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General Preface

This three-volume series grew out of a three-quarter course in probability,
statistics, and stochastic processes taught for a number of years at UCLA. We felt
a need for a series of books that would treat these subjects in a way that is well

COOI'UlIldIC(l, DUI WﬂlCﬂ WOUIU dlSO glVC a(lchd.[C CmpﬂaSlS to eacn SUDjCC[ as oemg
interesting and useful on its own merits.

1t
ideas of probability theory and aiso prepares the student both f
statistics and for further study in probability theory '

ory, CVUlUpb the basic
ystematlc unified manner. Together, the
d

The second volume, Inirodu Ct‘iO
theory of mathematical statistics in a
t

first two volumes contain the material
in mathematical statistics.

The third volume, Introduction to Stochastic Processes, treats Markov chains,
Poisson processes, birth and death processes, Gaussian processes, Brownian
motion, and processes defined in terms of Brownian motion by means of ele-

mentary stochastic differential equations.






In recent years there has been an ever increasing interest in the study of systems
which vary in time in a random manner. Mathematical models of such systems are
known as stochastic processes. In this book we present an elementary account of
PSRN PO S} a PPN ... dle oty AL Al e aocao 4.2~

some of the nporiant p‘ s in the Uicory of such Processes. We have tried to
select tOplCS that are conceptually interestmg and that have found fruitful

ann]ina ion in various branches of science and technologv
pplication 1n various branches of science nnology.
1
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continuous parameter process if T is an interval having positive length and a discrete
parameter process if T is a subset of t -h- e integers. If the random variables X(7
take on values from the fixed set &, then & is called the state space of the process.

Many stochastic processes of theoretical and applied interest possess the pro-
perty that, given the present state of the process, the past history does not affect
conditional probabilities of events defined in terms of the future. Such processes
are called Markov processes. In Chapters 1 and 2 we study Markov chains, which
are discrete parameter Markov processes whose state space is finite or countably
infinite. In Chapter 3 we study the corresponding continuous parameter processes,
with the “Poisson process’ as a special case.

In Chapters 4-6 we discuss continuous parameter processes whose state space is
typically the real line. In Chapter 4 we introduce Gaussian processes, which are

‘:ﬂ
1
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number of the random variables X(¢), ¢t € T, is normally d'stributed As an
important special case, we discuss the WanPr process, which arises as a mathe-

matical model for the physical phenomenon known as ‘Browman motion.”

In Chapter 5 we discuss integration and differentiation of stochastic processes.
There we also use the Wiener process to give a mathematical model for “white
noise.”

In Chapter 6 we discuss solutions to nonhomogeneous ordinary differential
equations having constant coefficients whose right-hand side is either a stochastic
process or white noise. We also discuss estimation problems involving stochastic
processes, and briefly consider the “spectral distribution” of a process.

vii



viii Preface

This text has been designed for a one-semester course in stochastic processes.
Written in close conjunction with Introduction to Probability Theory, the first
volume of our three-volume series, it assumes that the student is acquainted with
the material covered in a one-semester course in probability for which elementary
calculus is a prerequisite.

Some of the proofs in Chapters 1 and 2 are somewhat more difficult than the
rest of the text, and they appear in appendices to these chapters. These proofs and
the starred material in Section 2.6 probably should be omitted or discussed only
brleﬂy in an elementary course.
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Sections 1.
instructor, the stu
the first two chapters thorough]y Chapters 4-6 are independent of the first two
chapters and depend on Chapter 3 only in minor ways, mainly in that the Poisson
process introduced in Chapter 3 is used in examples in the later chapters. The
properties of the Poisson p1ocess that are needed later are summarized in Chapter

4 and can be regarded as axioms for the Poisson process.

2, 1.9, 222, 2.5.1, 2.6.1, d28) With some aid fro
dent should be able to read Chapter 3 without having studied

The authors wish to thank the UCLA students who tolerated preliminary
versions of this text and whose comments resulted in numerous improvements.
Mr. Luis Gorostiza obtained the answers to the exercises and also made many
suggestlons that resulted in significant 1mprovements Finally, we wish to thank
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Markov Chains

—

Consider a system that can be in any one of a finite or countably infinite number
of states. Let & denote this set of states. We can assume that .SP is a subset of the
__. Tl cndé (0 2o ~allad sl nddo csmmnsn ~
l lLCgClb LIIC dCl J 1D CdllCUu LWIIC JIWIE Spuce v
observed at the discrete moments of timen = 0, 1,

of the svstem at time ».
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Since we are interested in non-deterministic systems, we think of X,, n > 0, as
random variables defined on a common probability space. Little can be said about

h“l\“\ "ﬂ“l‘l\m 'rnﬁﬂn‘-\‘nn “I“lﬂﬂﬂ ["Vateal-) ﬂllfl +|I\’\ ‘ 'ﬂ“n“‘ AR 7= iﬁ w\“ A AR E . Va L
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The simplest possible structure is that of independent ran d variables. This

would be a good model for such systems as repeated experiments in which future

states of the system are independent of pa
that arise in practice, however, past and pr esent states of the system influence the
de

tac avan if thaev dn not nn:nnnlv
Two ) 8 4 L1 Wi
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Many systems have the property that given the present state, the past states have
no influence on the future. This property is called the Markov property, and

systems having this property are called Markov chains. The Markov property is
defined precisely by the requirement that

(1) P(Xn+1 = xn+1 I XO = xOs-"a Xn = xn) = P(Xn+1 = xn+1 | Xn = xn)

for every choice of the nonnegative integer » and the numbers x,, ..., X,;, €ach
in &. The conditional probabilities P(X,,, = y | X, = x) are called the transition
probabilities of the chain. In this book we will study Markov chains having
Stationary transition probabilities, i.e., those such that P(X,,, = y I X, =Xx)is
independent of n. From now on, when we say that X,, n > 0, forms a Markov
chain, we mean that these random variables satisfy the Markov property and have
stationary transition probabilities.

The study of such Markov chains is worthwhile from two viewpoints. First,
they have a rich theory, much of which can be presented at an elementary level.
Secondly, there are a large number of systems arising in practice that can be

modeled by Markov chains, so the subject has many useful applications.

1



2 Markov Chains

In order to help motivate the general results that will be discussed later, we begin
by considering Markov chains having only two states.

1.1. Markov chains having two states

Foran -xampl- e of a Markov chai :
that at the start of any particular day is elther broken down or in operating
condition. Assume that if the machine is broken down at the start of the
nth day, the probability is p that it will be successfully repaired and in
operating condition at the start of the (n + 1)th day. Assume also that if
the machine is in operating condition at the start of the nth day, the

probabilit‘y‘ is g that it will have a failure causing it to be broken down
t (n + 1th day. Finally, let 7y(0) denote the probability

« . .
i hraken r‘n“rn 11111-;-2"“ 10 qf fhn ctart nf th fh dav
O UViIVIMANWIL UV YYVIL AL l.ll-lull] AeWwe .y Lilv OL“AI- i I-l.l Viil uu_y-

correspond to the machine being broken down and let
e state 1 correspond to the machine being in operating condition. Let

A aeeramd A -..._...-.Ll,. AAAAAAAAAAA £ i ....,.QL_.... ad 4o
11C 1d4114V11l vdllauvlv UCllULlllg l.llC blalc Ul LUIC I1iialiliic atl u

According to the above description
PX,+; =1]X,
PX,+, =0] X,

1c 7.

0) = p,
1) =

and

s w

P(X, = 0) = mo(0).
Since there are only two states, 0 and 1, it follows immediately that
P(X,41 = 0| X, =0 =1-p,
PXoer =1]X,=1)=1-4g,
and that the probability 7,(1) of being initially in state 1 is given by
o(l) = P(Xy = 1) = 1 — 7,(0).

From this information, we can easily compute P(X,, = 0)and P(X, = 1).
We observe that
PX .. =0 = PX, =0and X =0+ PX,=1land X,,; =0)
\“*nt+1l J \“*n n+i Ve - nt+i J

Ii
PN
[y
I

YP(X, = 0) + gP(X, = 1)
= (1 - pPX, = 0) + g(1 — P(X, = 0))
=({0-p—-q@PX, =0 + gq.
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Markov chains having two states 3

Now P(X, = 0) = r,(0), so

PX; =0 =0-p—qno0) + ¢
and
PX,=0=(0—-p—qPX, =0 +gqg

(1 _— PAY 1 {
=0 —p— gm0 + g1 + (
It is easily seen by repeating this procedure » times that

2 PX,=0=(-p- 90 +q .Zo (1-p-aq)
J=
In the trivial case p = g = 0, it is clear that for ali n

PX, = 0) = ny(0) and P(X, = 1) = my(1).

Suppose now that p + ¢ > 0. Then by the formula for the sum of a
finite geometric progression,

";11 e \j_l—(l_p_q)"
L U—=—p—9q)y= — .
j=0 Pt yq

We conclude from (2) that

p+q ST p+g

and consequently that

@ P& ==Lt p— gy (m) - L)
P+tq P+t4q
Suppose that p and g are neither both equal to zero nor both equal to 1.
Then 0 < p + g < 2, which implies that [l — p — ¢g| < 1. In this case
we can let # - o0 in (3) and (4) and conclude that

&) 1: P(X. = 0) = q Ao A ' DYV 1\ P

) Im r(A, = v) = 14 Hm r{ix, = 1) = .
n~wo P+ q n— o p+q

We can also obtain the probabilities ¢/(p + ¢) and p/(p + q) by a

different approach. Suppose we want to choose 7,(0) and 7,(1) so that

P(X, = 0) and P(X, = 1) are independent of n. It is clear from (3) and
(4) that to do this we should choose

15(0) = —21 and  mo(l) = ——.
+ 4 p+q
Thus we see that if X, n > 0, starts out with the initial distribution
DIV NN\ q R | DrYv o 1\ __ p
L&y = V) = ana iAo =1) = >
p+4q p+q
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then for all n

PX,=0) =12 and PX,=1)=-F_.
p+q Pptq
The description of the machine is vague because it does not really say
whether X,, n > 0, can be assumed to satisfy the Markov property. Let

t th Marknav nronerty doec hnld Wae can use

A4 AVAQRLI NNV Y l.ll l.lvl DJ “VV LANJING . YV W Wwllii W

this added information to compute the joint distribution of X, X1, ..., X,
For example, let n = 2 and let x4, x;, and x, each equal 0 or 1. Then

v i

*P(\**G=x'u‘3X1 s ndXz-—x‘a)
= P(XO = xoanXm = xl)P(Xz = x2|XO = xoanXm = xl)
= P(Xp = xo)P(X; = x; | Xo = Xo)P(X; = x; | Xy = xp and X = x;).
Now P(X, = x;) and P(X, = x. | X, = x,) are determined by p, g
\ v v/ \ 1 11 v v/ o r>J 17
S | Y'Y o \ U L4 - 24l __.2 ol _ A1 o o odo <z e o om P [
and 7y(0); but without the Markov property, we cannot evaluate
P(X, = x,| Xy = xoand X; = x;) in terms of p, g, and ny(0). If the
arlzn\l nranarty 1c caticfied nwever then
AVA ANV Y ylvyv; LJ 49 U“‘rl&,ll\/u, 1AV 'V\I'\Il, LCALAWwil
X \112 J\«z I 110 J\*o A 1i\3 Ill J\rl} Fs \1!2 J\rz I lll ﬂll,
which is determined by p and g. In this case
( — v Y — » and — ¥\
x \AO ./\ro, Al J\«l, LI A2 J\rzl
= P(Y. = v YP(Y. = | = ¥ YP(Y. = v._ | = )
£\4o0 A0/ \A g A1 140 AOJ5 A2 ~2 041 1)

For example,

P(X, =0,X, =1,and X, = 0)
=PX, =0PX,=1]|X=0PX,=0|X,=1)
= 75(0)pq.

The reader should check the remaining entries in the following table,
which gives the joint distribution of X, X,, and X,.

Xo X1 X2 P(Xy = xo, X, = Xy, and X, = Xx,)
0 0 0 7o(0)(1 — p)?

0 0 1 no(0)(1 — p)p

0 1 0 mo(0)pq

0 1 1 mo(0)p(1 — ¢q)

1 0 0 (1 — =o(0))g(1 — p)

1 0 1 (1 — mo(0))gp

1 1 0 (1 — (O — g)g

1 1 1 (1 — mo(O)(1 ~ g)?
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1.2. Transition function and initial distribution

Let X,, n > 0, be a Markov chain having state space &. (The restriction

to two states is now dropped.) The function P(x, y), x€ & and y € &,
defined by
(6) P(x,y) = P(X, = y| X, = x), x,ye <,

is called the transition function of the chain. It is such that

@) Px,y») 20, x,ye¥,
and
(8) Y P(x,y) =1, xe.

Since the Markov chain has stationary probabilities, we see that

o VAR 74 h 74 AN

(9) r(An+1=Y|An=x)=P(X,}’), nZI-

It now follows from the Markov property that

(10) P( n+1 '—yIXO - 3"'aXn—1 _xn—la x) P(xsy)
In other words, if the Markov chain is in state x at time », then no matter
how it got to x, it has probability P(x, y) of being in state y at the next

X

(]
-
v

Ehre thi
step. For this reason the numb

probabilities of the Markov chain.
The function ny(x), x € &, defined by

(11) mo(x) = P(Xo = x), xe¥,

is called the initial distribution of the chain. It is such that

12) To(x) = 0, xe %,
and
(13) T mo(x) = 1.

The joint distribution of X, ..., X, can easily be expressed in terms of
the transition function and the initial distribution. For example,
P(Xy = xo, X; = x1) = P(Xo = x0)P(X; = x; | Xo = Xo)
= Mo(X0)P (X0, X1)-
Also,

P(YX. — x = Y. o= x.)
P(X, X Xq, X5 x;)

= P(Xy = X0, X1 = x))P(X; = x, | Xo = X0, X; = x,)
= To(X0)P (X0, X1)P(X = X, | Xy = X9, X; = Xy).
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Since X,, n > 0, satisfies the Markov property and has stationary transition
probabilities, we see that

PX, = x| Xo = %0, X1 = x1) = P(X, = x5 | X; = xy)

. = PX; = x; | Xo = xy)
x.)
= \"vV1Y vvVZ2/°
Thus
P( ' — v Y,_v\:wfv\p(v v \P(+ v )
LAy X0y 41 X1 A2 X2) To\XoJi\Xgs X1\ X1, X2)-

By induction it is easily seen that
(14) P(Xo = X, ... Xy = Xp) = Wo(x0)P(Xo, X1) " ** P(Xy— 1, Xp)-

It is usually more convenient, however, to reverse the order of our
definitions. We say that P(x, y), x € & and y € &, is a transition function
if it satisfies (7) and (8), and we say that n,(x), x € &, is an initial distribu-
tion if it satisfies (12) and (13). It can be shown that given any transition
function P and any initial distribution n,, there is a probability space and
Y 5 > 0 defined on that sna tisfving (14). Tt is

€S A It £ Uy, UvilllVud VIl uiiat o aCC sa g us il 10
n» = | e \t7)
~

not difficuit to show that these random variablies form a Markov chain

having transition function P and initial dlstrlbutlon Tg-

wandan maavy At nnd e, +ho
1110 ICdUC]. lilay UC UULllClCU Uy LI1C

%
tional probabilities we have discussed may not be well defined. For

74 AN\ 7 AN

This difficulty is easily resolved. Equations (7), (8), (12), and (13) defining

the transition functlons and the 1n1t1a1 dlStl‘lbuthI‘lS are well defined, and

Eanatinn 1 £ Vv Vv wall
L\iuallull \ 1 . LY An lD well

AN
a) 0>

defined. It is not hard to show that if (14) holds, then (1), (6), (9), and (10)
r the iti bilities

inther sp@cu e equations are

(@]
o
=
2
=
o
=
ld
3
ﬂ
o
S
W
::

well deﬁned The same quahﬁcatlon hold other equations involving
conditional probabilities that will be obtalned later.

It will soon be apparent that the transition function of a Markov chain
plays a much greater role in describing its properties than does the initial
distribution. For this reason it is customary to study simultaneously all
Markov chains having a given transition function. In fact we adhere to
the usual convention that by ‘““a Markov chain having transition function
P,” we really mean the family of all Markov chains having that transition
function.

In this section we will briefly describe several interesting examples of
Markov chains. These examples will be further developed in the sequel.
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Example 1. Random walk. Let &,, &,,... be independent integer-
valued random variables having common density f. Let X, be an
integer-valued random variable that is independent of the £;’s and set
X, =Xy + & + -+ &, The sequence X,, n > 0, is called a random
walk. It is a Markov chain whose state space is the integers and whose
transition function is given by

To verify this, let 7, denote the distribution of X;. Then
P(Xo = xo,..., X, = x,)

= P(XO = xO)P(él =Xy — xO)...P(én =X, — xn*l)
= n()(xo)f(xl - xo) e f(x,, - x,n—l)
= To(Xo)P (X0, X1) " * - P(X,— 1, Xp)s

and thus (14) holds.

chain. Whenever the particle is 1
jumps to state y with probability f(y — x).

As a special case, consider a simple random walk in which f(1) = p,
f(=1) = q, and f(0) = r, where p, ¢, and r are nonnegative and sum to

one. The transmon function is given by

= X —

D, y=x+1,
g, 1
P(x’y)=1

y=x
r, y = X,
0, elsewhere.
Let a particle undergo such a random walk. If the particle is in state x at a
given observation, then by the next observation it will have jumped to
state x + 1 with probability p and to state x — 1 with probability g;
with probability r it will still be in state x.

Example 2. Ehrenfest chain. The following is a simple model of the
exchange of heat or of gas molecules between two isolated bodies. Suppose
we have two boxes, labeled 1 and 2, and 4 balls labeled 1, 2,...,d.

Tnitially cAnma P thaca hhalle nra 1~n lhAav 1 and tha samaindar n-o in o]
uuuauy V11V LIIVOV UQlld alv 111 UUA 1 aAlliul LIV 1vilialiivuvl alv 111 U PN
An integer is selected at random from 1, 2, ..., d, and the ball labeled by

that integer is removed from its box and placed in the opposite box.

This procedure is repeated indefinitely with the selections being indepen-
dent from trial to trial. Let X, denote the number of balls in box 1 after
the nth trial. Then X, n > 0, is a Markovchainon & = {0, 1, 2,.. ., d}.
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The transition function of this Markov chain is easily computed.
Suppose that there are x balls in box 1 at time n. Then with probability
x/d the ball drawn on the (» + 1)th trial will be from box 1 and will be
transferred to box 2. In this case there will be x — 1 balls in box 1 at
time n + 1. Similarly, with probability (d — x)/d the ball drawn on the
(n + 1)th trial will be from box 2 and will be transferred to box 1, resuiting
inx + 1 balls in box 1 at time n + 1. Thus the transition function of this

.9 y=x—19

x

a
Py ={ _x _ .1

d

0

or x + 1 with positive probability.

A state a of a Markov chain is called an absorbing state if P(a, a) = 1
or, equivalently, if P(a, y) = O for y # a. The next example uses this
definition.

3. Gamble' ruin chain. Suppose a gambler starts out
n

1 initial canital in dollars and makes a series of one Aol!a

ua. wispsa “A a AAWs LAACRARWT OWiiwd Wi Viiw

=

bets against the 'nouse Assume that he has respective probabilities p a
each

q bet, and that if his capital ever
reaches zero, he is ruined and his capital remains zero thereafter. Let
X,, n > 0, denote the gambler’s capital at time n. This is a Markov chain
in which 0 is an absorbing state, and for x > 1

(15) P(x,y) = { p, y=x+1,
1 0, elsewhere.

Such a chain is called a gambler’s ruin chain on & = {0, 1, 2,...}. We
can modify this model by supposing that if the capital of the gambler
increases to d dollars he quits playing. In this case 0 and d are both
absorbing states, and (15) holds forx = 1,...,d — 1.

For an alternative interpretation of the latter chain, we can assume that
two gamblers are making a series of one dollar bets against each other and

pSrT il QAL LAGALAID & QAW B2 AL RGeS &5

that between them they have a total capital of d dollars. Suppose the first
gambler has probability p of winning any given bet, and the second gambler
has probability ¢ = 1 — p of winning. The two gamblers play until one
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of them goes broke. Let X, denote the capital of the first gambler at time
n. Then X,, n > 0, is a gambler’s ruin chain on {0, 1, ..., d}.

Example 4. Birth and death chain. Consider a Markov chain either

on¥ ={0,1,2,...}oron & = {0, 1, ..., d} such that starting from x
the chain 1 e at x — 1, x, or x + 1 after one step. The transition

wil b
function of such a chain is given by

(qx’ y=x—1a

r y=x

P(x’y)'__ ,.x’ 1‘_v,l 1
l Fxs Jy = AT 1
\ O, eisewhere,

where p, q,, and r, are nonnegative numbers such thatp, + ¢, + r, = 1.
The Ehrenfest chain and the two versions of the gambler’s ruin chain
L ~L 1z Tha «wheraca Cluiwtlh Aand dant
. 111V PIILQDC Uil Ll alilu uvcal
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state x + 1 corresponds to a “birth,” while a transition from state x t
state x — 1 corresponds to a ‘“death.”

-
@]

In Chapter 3 we will study birth and death processes These processes

are similar to birth and death chains, except that jumps are allowed to

-.u;...; aavar Kaiie Newliaz bt o o SRIGS geiiipe &

occur at arbitrary times instead of just at integer times. In most applica-
tions, the models discussed in Chapter 3 are more realistic than those
obtainable by using birth and death chains.

Example 5. Queuing chain. Consider a service facility such as a
checkout counter at a supermarket. People arrive at the facility at various
times and are eventually served. Those customers that have arrived at the
facility but have not yet been served form a waiting line or queue. There
are a variety of models to describe such systems. We will consider here
only one very simple and somewhat artificial model; others will be
discussed in Chapter 3.

' nt 4-: alhn svranars wad 1 AAanrAaiant smari~ade anes s m-v\‘t ng Qrismemnnca that
1.CL L1111V UV 111vadul LU 111 VUILIVVILIIVIIL PCIIUUD oay 11 11111 wo L)UPPUDC tiiat

if there are any customers waiting for service at the beginning of any given
period, exactly one customer will be served during that period, and that if

there are no customers waiting for service at the beginning of a period,
none will be served during that period. Let £, denote the number of new
customers arriving during the nth period. We assume that &,, &,,... are
independent nonnegative integer-valued random variables having common
density f.
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Let X, denote the number of customers present initiaily, and forn > 1,
let X, denote the number of customers present at the end of the nth period.

Tf Y _ N +La~ )4 wAdf YV 1 ¢han )4 V 1 £ 1
A, =v,tnen A,+; = g,,+1, ana i A, = 1,inen A, = A, + Cp+1 — 1.
It follows without difficulty from the assumptions on &,, n > 1, that

»
X n > 0,is a Markov chain whose state space is the no negative inte

“Epy - e a2 & AVARLT

and whose transition function P is glVCl’l by

PO, y) = f(»)

and

2imle mo maTibmemdeo

Example 6. Branchi iJ CNndin. Lo isider particles sucn as neutroms
or bacteria that can generate particles of the same type. The initial
set of objects is referred to as be‘n nging to the Oth generation. Particles
generated from the nth generation are said to belong to the (n + 1)th
generation. Let X,, n > 0, denote the number of particles in the
nth generation.
Nothing in this description requires that the various particles inagenera-
tion give rise to new particles simultaneously. Indeed at a given time

particles from several generations may coexist.

A typical situation’is illustrated in Figure 1: one initial particle gives rise
to two particles. Thus X, = 1 and X; = 2. One of the particles in the first
generation gives rise to three particles and the other gives rise to one
particle, so that X, = 4. We see from Figure 1 that X; = 2. Since neither
of the particles in the third generation gives rise to new particles, we
conclude that X, = 0 and consequently that X, = O for all » > 4. In
other words, the progeny of the initial particle in the zeroth generation
become extinct after three generations.

/N

/\

Figure 1
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In order to model this system as a Markov chain, we suppose that each
particle gives rise to £ particles in the next generation, where £ is a non-
negative integer-valued random variable having density f. We suppose
that the number of offspring of the various particles in the various genera-
tions are chosen independently according to the density f.

Under these assumptions X, n > 0, forms a Markov chain whose state
space is the nonnegative integers. State O is an absorbing state. For if
there are no particies in a given generation, there will not be any particies
in the next generation either. For x > 1

particle dies or dlsappears Suppose a partlcle gives rise to 5 partlcles

which in turn give rise to other particles; but after some number of
generations, all descendants of the initial particle have died or disappeared
(see Figure 1). We describe such an event by saying that the descendants
of the original particle eventually become extinct. An mterestlng problem

......... ......,.I....... ~Alhnteao 10 A A~ DU A thn smm~rliakilidtsy A AF Avvanmtrnal
lllVUlVlllg vraneliiilg viialiid 15 U Luliipu uc PlUUdUll vy p 01 €veliitual
extinction for a branching chain starting with a single particle or,
equivalently, the probability that a branching chain starting at state 1 will
eventually be absorbed at state 0. Once we determine p, we can easily

state
n a branching chain starting with x particles the

1 t101
descendants of each of inal particles eventually become extinct.

Indeed, since the particles are assumed to act independently in giving rise
to new particles, the desired bability is just p*

The branching chain was used originally to determine the probability
that the male line of a given person would eventually become extinct. For
this purpose only male children would be included in the various
generations.

find the probability that i

1
Aograndante Anf anrh I\Pt

Example 7. Consider a gene composed of d subunits, where d is
some positive integer and each subunit is either normal or mutant in form.
Consider a cell with a gene composed of m mutant subunits and d — m
normal subunits. Before the cell divides into two daughter cells, the gene
duplicates. The corresponding gene of one of the daughter cells is com-
posed of d units chosen at random from the 2m mutant subunits and the
2d - m) normal subunits. Suppose we follow a fixed line of descent
Tat V. ha t nnmh,

IiTOIm a vénl gent. 1LV Ag ©OF i num
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present, and let X,, n > 1, be the number present in the nth descendant
gene. Then X,, n > 0, is a Markov chainon & = {0, 1, 2,..., d} and
(2x\ (2d — 2x)
Poyy = I \d=y ]
(?4)
\d)

States 0 and d are absorbing states for this chain.

1.4. Computations with transition functions

Let X,, n > 0, be a Markov chain on % having transition function P.
In this section we wili show how various conditional probabilities can be
expressed in terms of P. We will also define the »-step transition function

aalr A

Ul the 1v1auxuv' uuaun

We begin with the formula
(16) P(Xn+1 = Xptgse e Xn+m = Xn+m I XO = X0y e Xn = xn)
= P(xm Xn+ 1) Tt P(xn+m—1: xn+m)°

To prove (16) we write the left side of this equation as

DIY — — v )
L\Ag = Aoy s Aptm — An+m)

PXo = Xgy---5 Xy = X,)
By (14) this ratio equals

To(X)P(Xg, X1)* ** P(xn+m 15 Xntm)
'n',,(x,.\P(r,. X ] P(x xn)

U U’ i—1s

b

which reduces to the rlght side of (16).

(17) P(Xn+1 = Vise oo Xn+m = Vm I XO = xO’- . ',Xn—l = Xp-1» Xn = x)
= P(x, y)P(y1, y2) "~ P(ym- 15 Ym)-

= P(x, y)P(y1, ¥2) "  P(Ym—15 Ym)-

Let B,,..., B, be subsets of &. It follows from (18) and Exercise 4(b)
that

(19) P(X,.,€By, ..., Xosm€Bun| Xo€Agy..., Xp_1€A,_1, X, = X)

v S Py v \P V) P( )
= L "t L TS Y)Y Y2) B\ Ym—15 Ym)-

y1€B; Ym € By
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The m-step transition function P™(x, y), which gives the probability of
going from x to y in m steps, is defined by

(200  P"(x,y) =X+ Y P(x, y)P(yy, y2) -
1 Im-1
P(ym—z’ .VM—I)P(ym-l’ y)
for m > 2, by P!(x, y) = P(x, y), and by

POy 1 _ [ X =D,
P(x, y) ~ 10, elsewhere.
We see by setting B, = -+ = B,,_, = & and B,, = {y} in (19) that

(21) P( n+m""y|XOEA0"'°:Xn—IEAn—1’Xn=x)=Pm(x9y)'
In particular, by setting 4, = -+- = A4,_, = &, we see that
(22) PXyim =y | X, = x) = P™(x, ).

It also follows from (21) that

(23) PXyim =y 1 Xo = %, X, = 2) = P"(z, )
Since (see Exercise 4(c))
+ —
Pn m(xay) = P(Xn+m = y'XO - X)
. DR > 74 "0 B 7 AN , V2 74 _ 1 v oo vV o =\
= Li\Ay = 2| Ag T A Apgym = V| Ag T Xy, 4, = 2)
z
=Y P¥x. 2VP(X.. =v]|X.=x.X = 2)
i N\ 2 V4 \~ J i v b n J?
z
we conclude from (23) that
(24) P ™(x, y) = Y P¥(x, z)P™(z, y).
z

For Markov chains having a finite number of states, (24) allows us to
think of P" as the nth power of the matrix P, an idea we will pursue in
Section 1.4.2.

Let n, be an initial distribution for the Markov chain. Since

P(Xn=y)=ZP(XO=x9Xn=y)
=ZP(X0=x)P(Xn=y|X0 =X),

we see that

U\ 4

25) P(X, = y) = ¥, n(x)P"(x, y).

This formula allows us to compute the distribution of X, in terms of the
initial distribution n, and the n-step transition function P”".
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For an alternative method of computing the distribution of X,, observe
that

P(Xn-i-i = y) = Z‘(Xn = X, Xn+i = y)
=ZP(Xn=x)P(Xn+1 = yIXn=x),
so that
(26) P(X,., = ) = ¥ P(X, = 9P(x, y).

If we know the distribution of X, we can use (26) to find the distribution
of X;. Then, knowing the distribution of X, we can use (26) to find the
distribution of X,. Similarly, we can find the distribution of X, by ap
ing (26) n times.

We will use the notatio

events defined in terms of a

n /Y \

rx(/‘l 7: a, ;(2 ?& a, ;(3 = a)

denotes the probability that a Markov chain starting at x is in a state a
at time 3 but not at time 1 or at time 2. In terms of this notation, (19) can

be rewritten as

ON DV = D Y =D 1Y -4 )4 = A Y — +)
\“l) T\ A1 EDyy...,A, 4 €D, | AgE Agy. .., Ap_1EAp_1, Ay = X)
— P(Y R Y R
=1L,\A1 €EDy,..., Ay € Dp)j.

T, = min (n > 0: X, € A)

if X,e A for somen > 0,and by T, = 0 if X, ¢ 4 for all n > 0. In
other words, T, is the first positive time the Markov chain is in (hits) A.
Hitting times play an important role in the theory of Markov chains. In
this book we will be interested mainly in hitting times of sets consisting of
a single point. We denote the hitting time of a point a € & by T, rather
than by the more cumbersome notation Tj,,.
An important equation involving hitting times is given by
n
(x, ) = Y, PAT, = m)P" ™(y,y), n=Ll
e
In order to verify (28) we note that the events {T, = m, X, = y},
1 < m < n, are disjoint and that

X, =y =U (T,=mX, =y

m=1
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We have in effect decomposed the event {X, = y} according to the hitting
time of y. We see from this decomposition that

Pi(x, y) = PAX, = y)
= ) P(T,=m, X, =y)

m=1
n

= N P(T =mPX =v!X.=x = m)
y x\*y 75 \“*n J 1 4*0 Ny Ly *J
m=1

n
\ ul ™ sy N s w P - -r .
= er('l =m)f(An=y|A0=an1 '-7&ya---a

Xm—l # Vs Xm = y)

= ¥ PAT, = mP""(y, 1),
and hence that (28) holds.

Example 8. Show that if a is an absorbing state, then P"(x, a) =
P(T, < myn>1.

If a is an absorbing state, then P""™(@,a) = 1 for 1 < m < n, and

-~
M smnliag Lot
L0 L

P'(x,a) = Y P

m=1
n
= z Px(Tt'a = -") = Px(Ta < 'ﬂ)
m=1
Observe that
P(T, =1) = P(X, =y) = P(x,y)
and that
P(T,=2)= Y P(X,=12X,=y)= Y P, z)P(z, y).
z#y z#y
For higher values of 7 the probabilities P (T , = n) can be found by using
the formula
(29) P(T,=n+1)= ) P(x,2)P(T,=n), nx1
Z#y

This formula is a consequence of (27), but it should also be directly
obvious. For in order to go from x to y for the first time at time n + 1,
it is necessary to go to some state z # y at the first step and then go from
z to y for the first time at the end of »n additional steps.
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1.4.2. Transition matrix. Suppose now that the state space & is
finite, say & = {0, 1,..., d}. In this case we can think of P as the
transition matrix having d + 1 rows and columns given by

0 d
0 Irp(o, 0) --- PO, d)]

d|P@0) - P d)_.
For example, the transition matrix of the gambler’s ruin chain on

N 1 9 21 14
W, L1, 4, 55 18

01 2 3
0{1000]
l|lg 0 p O0].
ZIOquI
3|_0001_|

Similarly, we can regard P” as an n-step transition matrix. Formula (24)
with m = n = 1 becomes

P*(x, y) = ¥, P(x, 2)P(z, y).

Recalling the definition of ordina ary matrix multiplication, we observe

that the two-step transition matrix P? is the product of the matrix P with
itecaelf More cenerally hv cetting m =1 in (DA we cea that
ALOWwiL AVAVA W 5\«11.\.«1“111, UJ Uvbbllls 4 411 \l-!_l'} YYWw Oww LiiQaitl
(30) P i(x, y) = ¥ P'(x, z)P(z, y)
zZ

It follows from (30) by induction that the n-step transition matrix P" is
the nth power of P.
An initial distribution 7, can be thought of as a (d + 1)-dimensional
row vector
mo = (10(0), . . ., mo(d)).
If we let &, denote the (d + 1)-dimensional row vector
= PX,=0),..., PX, = d)),
then (25) and (26) can be written respectively as

. = nP"
v

n
and
1!:"_,,1 = ”n.P.

The two-state Markov chain discussed in Section 1.1 is one of the few
examples where P" can be found very easily.
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Example 9. Consider the two-state Markov chain having one-step
transition matrix

p_[1—-p p |
g 1-gq)’

where p + g > 0. Find P".

obtain
PO,0)=—1 +(1-p-qgr-2
P+ q p+q
In order to find P"(0, 1) = Py(X, = 1), we set ny(1) = 0 in (4) and
obtain
PO =-"-—1-p-qr?
p+4q P+q
Similarly, we conclude that
DMt N\ — 71,6 — (1 — n _ A\ _q;
4\ 1y V) \* I 4 1)
P+q p+gq
and
P, y=—"—+(Q-p—gq——.
p+4q p+4q
It follows that
p__1 [apr]l A=p-—af p —p]
p q P q -
+gqla p] T l-a 4l

1.5. Transient and recurrent states

Let X, n

> 0, be a Markov chain having state space & and transition
function P. Se

et
Pxy = P(T, < o0).

Then p,, denotes the probability that a Markov chain starting at x will

he in ctate v at ecome nocitive time  In narticular n  denotec the nrah-
UV AlL UL LW } BV UNiLLAWY P\’Ulbl'v VALAAW e A LA y“l UAVMA\&A, ’/yy CEWIAV VWY CAAW t’lvu

ability that a Markov chain starting at y will ever return to y. A state y is
called recurrent if p,, = 1 and translent if p,, < 1. If y is a recurrent state,
a Markov chain starting at y returns to y with probability one. If y is a
transient state, a Markov chain starting at y has positive probability 1 —
p,y Of never returning to y. If y is an absorbing state, then P(T, = 1) =
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P(y,y) = 1 and hence p,, = 1; thus an absorbing state is necessarily
recurrent.
Let 1,(2), z € &, denote the indicator function of the set {y} defined by

1, z =y,
ly(z) = {0, z ;é y.

Let N(y) denote the number of times n > 1 that the chain is in state y.
Since 1,(X,) = 1 if the chain is in state y at time n and 1,(X;) = O other-
wise, we see that

s o]
(31) N(y) = ¥ 1,X,).

The event {N(y) = 1} is the same as the event {T, < co}. Thus

PAN() = 1) = P(T, < ©) = py,.

PN 22) = ¥ Y PAT, = mP(T, = n)
m=1 n=1
(3 per = oV PeT = )
\ L p i x\.ly Illv)} \b i y\ly 'l}}
m=1 n=1
= PxyPyy
Similarly we conclude that
(32) PANGY) = m) = popyl, mz1

Since

P(N(y) =m) = PN(y) 2 m) — P(N(y) = m+ 1),
it follows from (32) that

(33) PAN(Y) = m) = pop ' (1 = p,),  m=1.
Also
PN(y) =0) = 1 — P(N() = 1),
so that
(34) P(N(y) =0)=1— p,,
These formulas are intuitively obvious. To see why (33) should be true,

for example, observe that a chain starting at x visits state y exactly m
times if and only if it visits y for a first time, returns to y m — 1 additional
times, and then never again returns to y.
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We use the notation E,( ) to denote expectations of random variables
defined in terms of a Markov chain starting at x. For example,

(35) E((X)) = P(X. = y) = P
J \ J \

It follows from (31) and (35) that

ENO) = E

[
|
o
7~

[—y
-
<

D!
b~
=

Set
G(x, ) = ENO) = T P'(x, ).

Then G(x, y) denotes the expected number of visits to y for a Markov
chain starting at x.

Theorem 1 (i) Let y be a transient state. Then

P(N(y) < 0) =
and

(36) Glx,)) = —F=—,  xes,

which is finite for all x € &.

(i) Let y be a recurrent state. Then P (N(y) = ) = 1 and
G(y,y) = oo. Also

(37) P(N(y) = ) = P(T, < ©) = p,,, x€.
If p,y, = 0O, then G(x, y) = 0, while if p,, > 0, then G(x, y) = 0.

This theorem describes the fundamental difference between a transient
state and a recurrent state. If y is a transient state, then no matter where

tha MaslbAavy rhain atarte 1t malac Aanlv o fini
Lilv 1ViAi NNV Y uviialll oldal IrD, AL 11lAanwvo Ulll_y a 1111l

the expected number of visits to y is finite. Suppose instead that y is a
recurrent state. Then if the Markov chain starts at y, it returns to y
infinitely often. If the chain starts at some other state x, it may be im-
possible for it to ever hit y. If it is possible, however, and the chain does

visit y at least once, then it does so infinitely often.

J..

.« .
a nuimhar Af vigite tn v
v LIULLIUVL VUL VIDIW W _y na
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Proof. Let y be a transient state. Since 0 < p,, < 1, it follows from
(32) that

P,(N(y) = ) = lim P(N(y) = m) = lim p,p} "' = 0.

m-=> a0 m-=>ao0

By (33)

= X mpopyy (1= py)

Substituting £ = p,, in the power series

© i
et = 1
P a1 — 17

Y aF VSN S o
Uix, yj = < ®©
1 —»n
* Fyy
This completes the proof of (i)
and e wr YRy
Now let y be recurrent. Then p,, = 1 and it follows from (32) that
N £ATL N\ -\ } PPN D /A TI A SR NGERR §
XyUvyy) = W) = 1 l'x\1 \y} = m)
m= oo
= lim p,, = py,.
m-=> o
In particuiar, P(N(y) = o) = 1. If a nonnegative random variable has

positive probability of being infinite, its expectation is infinite. Thus

G(y,y) = E(N(y) =

If p,, = 0, then P (T, = m) = O for all finite positive integers m, so (28)
imf\ iac that Py ) =0 »n >~ 1 thue Gly v\ = 0 in thic cace If
Pll\ia l-ll.“b £z \J\«, J} V’ " . 1 Liirao U\J\f, }I v ALK l'l.l.l vuov. Al

Pxy > 0, then P, (N(y) = o) = p,, > 0 and hence
G(x, y) = E(N()) =

This compietes the proof of Theorem 1 i
Let y be a transient state. Since
®
L P'(x, y) = G(x, y) < oo, xe &,
n=1
exra can $lans
C SCUC Llldl
\JO} 11 1\,)’}—\), A T v .
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A Markov chain is called a transient chain if all of its states are transient
and a recurrent chain if all of its states are recurrent. It is easy to see that a
Markov chain having a finite state space must have at least one recurrent
state and hence cannot possibly be a transient chain. For if & is finite
and all states are transient, then by (38)

~ /™ j ,  Aziia a

= lim L, I, y)
n—-ow yes

= lim P(X, € &)

n-—
— e 1 __ 1
= um 1 =1,
n=+>w
wsxrlazalh do a Ansmbten Al b A
WIlILIL 1> a4 LUl aulLuivIL
| p PP RN - ey mdll dlen nbmndn ~prvm
1.9 IJebUlllpUbllIUl Ul UIT SLalT Spave

Let x and y be two n . We say that x leads to
yif py, > O It is left as an exercise for the reader to show that x leads to
y if and only if P*(x, y) > O for some positive integer n. It is also left to

the reader to show that if x leads to y and y leads to z, then x leads to z.

D..
:J"
(¢}
1-9
‘:
Q
-
=
.:’
=
@]
-t
W
‘—r

necessarily disti

Theorem 2 Let x be a recurrent state and suppose that x leads
to y. Then y is recurrent and p,, = p,, = 1.

Proof. We assume that y # x, for otherwise there is nothing to prove.
Since

39) ny = min (n > 1: P
It follows easily from (39) and (28) that P"(x, y) > 0 and
(40) P™(x,y) =0, 1 < m < n,.

z

Since P"(x, y) > 0, we can find states yy,..., y,,—; such that

Px(Xl =y1’--°’Xno—1 yno la y) P(x9y1)“'P(yno—lay)>0'

None of the states y, ..., Vu,—1 equals x or y; for if one of them did equal
x or y, it would be possible to go from x to y with positive probability in
fewer than n, steps, in contradiction to (40).



22

Markov Chains

We will now show that p,, = 1. Suppose on the contrary that p,, < 1.
Then a Markov chain starting at y has positive probability 1 — p . of
never hitting x. More to the point, a Markov chain starting at x has the
positive probability

P(x5 yl).'.P(yno—ls y)(l pyx)

of visiting the states y;,..., y,,—, ¥ successively in the first n, times and
never returning to x after time n,. But if this happens, the Markov chain
never returns to x at any time n > 1, so we have contradicted the
assumption that x is a recurrent state.

Since p,. = 1, there is a positive integer n; such that P"(y, x) > 0.

Now

P,-;i+.-=+no(y’ y) Py(Xn1+n+no = y)

2 Py(an = x’ Xn1+n = X, Xn1+n+no = y)
= P"(y, x)P"(x, x)P"(x, y).
Hence
(¢ 0]
Fals AN A Dny ., \
ULy, y) < y” Ly, y)

= P"(y, x)P™(x, y)G(x, x) = + o0,
from which it follows that y is also a recurrent state.

Since y is recurrent and y leads to x, we see from the part of the
theorem that has already been verified that p,, = 1. This completes the

proof. |
A nonempty set C of states is said to be closed if no state inside of C

leads to any state outside of C, i.e., if

(41) Pxy = 0, xeC and y ¢ C.

Equivalently (see Exercise 16), C is closed if and only if
(42) P'(x,y) = 0, xeC,y¢C,and n > 1.

Actually, even from the weaker condition

A\ Dfi+ Y — 0N v o
() L'\Ay V) = VY, AT

we can prove that C is closed. For if (43) holds, then for x e Cand y ¢ C
PX(x,y) = Y P(x, 2)P(z, y)

zZESL

r‘ n“ll e " ﬂ
C ana y & ¢,
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and (42) follows by induction. If C is closed, then a Markov chain
starting in C will, with probability one, stay in C for all time. If @ is an
absorbing state, then {a} is closed.

A closed set C is called irreducible if x leads to y for all choices of x
and y in C. It follows from Theorem 2 that if C is an irreducible closed
set, then either every state in C is recurrent or every state in C is transient.
The next result is an immediate consequence of Theorems 1 and 2.

Corollary 1 Let C be an irreducible closed set of recurrent
Then o, = 1 (N(v\ = m\ ]

S, Anen Py, £y £ \JJ
all choices of x and y in C.

recurrent Markov chain visits every state infinitely often with probability
one.

We saw in Section 1.5 that if & is finite, it contains at least one recurrent
state. The same argument shows that any finite closed set of states

contains at least one recurrent state. Now let C be a finite irreducible
e have seen that either every state in C is transient or every
i a at

ta Tt
LW AL

Theorem 3 Let C be a finite irreducible closed set of states.
Then every state in C is recurrent.

Consider a Markov chain having a finite number of states. Theorem 3
implies that if the chain is irreducible it must be recurrent. If the chain is
not irreducible, we can use Theorems 2 and 3 to determine which states
are recurrent and which are transient.

Example 10. Consider a Markov chain having the transition matrix

0123435
01 000 0 0]
1{2 212000
210 ¢+ £ 1+ 0 ¢
3]0 00 1 11
410 00 1 01
5000031 0 3,

Determine which states are recurrent and which states are transient.
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As a first step in studying this Markov chain, we determine by inspection
which states lead to which other states. This can be indicated in matrix
form as

O 1 2 3 4 5
of+ 0 0 0 0 o017
1 1 1 1 1 1 1
tyrr = r T T T
21+ 4+ + + + +
310 0 O + 4+ +
410 0 O + + +
5L0 0 O + + + |
The v v aleamant af thic matriv 1e L ar O acenrding ac o 1€ nAacitive Ar
4 11w J\r’ )’ WIANVALIAWIAL Vi L1110V iliQaviinn aAv ] AV J SRRV 4 uvvvxuxu.s “ao ny A9 II\IOII-IVU AV} §
zero, i.e., according as x does or does not lead to y. Of course, if
P(x, y) > 0, then p,, > 0. The converse is certainly not true in general.
TNee mvwrmseesala DAY NN\ __ N. L..¢
IVl CAa uplc, 1'(1., U} = VU, vui
P*2,0) = P2, DP(1,0) = 5} =55 > 0,
so that p,, > 0
r 4LV
e a_ N PR PR, .S A4 —_— 1 1 PR A A A XY7 .
oldlC U IS a4l 4DSOID1g Stdile, dnda Nnence diso a recCurrent statc. vwe sce
clearly from the matrix of +’s and O’s that {3, 4, 5} is an irreducible closed
set Thnnrnm 2 naow imnliec that 2 4 and § are recnrrent ctatee Qtatec 1
IwiL A 1ilwVUl wii o LANJYY llllyllvo LCiAGA L J’ 1, CR1IING o Gl LVWVUILAIWVILIL DLALVO. AMLlALlwY 1
and 2 both lead to 0, but neither can be reached from 0. We see from
Theorem 2 that 1 and 2 must both be transient states. In summary,

states 1 and 2 are transient, and states 0, 3, 4, and 5 are recurrent.

Let & rdenote the collection of transient states in &, and let &z denote
the collection of recurrent states in &. In Example 10, ¥ = {1, 2} and
Fr = {0,3,4,5}. The set L, can be decomposed into the disjoint ir-
reducible closed sets C; = {0} and C, = {3,4,5}. The next theorem
shows that such a decomposition is always possible whenever & is
nonempty.

Theorem 4 Suppose that the set S of recurrent states is

nonempty. Then $r is the union of a finite or countably infinite
number of disjoint irreducible closed sets C,, C,,. . .

Proof. Choose x € £ and let C be the set of all states y in & such
that x leads to y. Since x is recurrent, p,, = 1 and hence x € C. We wiil
now verify that C is an irreducible closed set. Suppose that y is in C and

2w landec $A ~ Qinra 11 1¢ rarnirrant 1+ fallawe fram Thanram D that » 1o
y 1vauoy v L. Jillvw A9 lUUUlLUllL, IV 1VILIVYYD 11Vill 111VvUL VI 4o LAl 4 1D
recurrent. Since x leads to y and y leads to z, we conclude that x leads
to z. Thus zis in C. This shows that C is c

..._ Lial J el £

z,
losed. Suppose that y and z
le

are both in C. Since x is recurrent and x leads to y, it follows from
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Theorem 2 that y leads to x. Since y leads to x and x leads to z, we
conclude that y leads to z. This shows that C is irreducible.

To complete the proof of the theorem, we need only show that if C and
D are two irreducible ciosed subsets of &, they are either disjoint or
identical. Suppose they are not disjoint and let x be in both C and D.

BTSN B I
3 2 blIl.LC X lb lll b d.IIU b lb l[fCUUblblC
in

s to
nd x leads to y, we conclude that y i

b
‘.2..
@]
(72]
(€]
Q..
w 2
7
5
S
o p; Ch

We can use our decomposition of the state space of a Markov chain to
understand the behavior of such a system. If the Markov chain starts out

J

in one of the irreducible closed sets C; of r current states, 1t stays 1n C;

forever and, with probability one, visits e tat ; infinitely often.
P [

T +L o y Alemten cdmsbo ~créd o
11 l.llC lVld KOV Cllalll >taid out l

stays in & forever or, at some

= =
g
(D
[¢]
=
-+
(4]
H
wn
o
=]
[¢]
c-v‘o

r
)
)
t
l
l
}
l'
)
r

Absorption probabilities. Let C e €
closed sets of recurrent states, and let p(x) = P (T < o) be the prob-
h

chaln remains permanently in C once it hits tha t set, we call pc(x) the
probability that a chain starting at x is absorbed by the set C. Clearly
pc(x) = 1, xe C, and pc(x) = O if x is a recurrent state not in C. It is
not so clear how to compute p.(x) for xe &, the set of transient
states.

If there are only a finite number of transient states, and in particular if &
itself is finite, it is always possible to compute p(x), x € &, by solving a
system of linear equations in which there are as many equations as
unknowns, i.e., members of ;. To understand why this is the case,
observe that if x € &7, a chain starting at x can enter C only by entering

C at time 1 or by being in < at time 1 and entering C at some future time.
The f ormer event has probability 3 ,.c P(x, y) and the latter event has
probability 3° .. P(x, )pc(»). Thus

m
I

(44) pC(x) = Z P(X, y) + Z P(x’ J’)PC(Y), X € yT'

yE

M
o)
l:.‘
jaV]
=
o
=
~
>
N
=
=
Q.
»
£
-
q']
”
=
q']
ﬂ
9
k-
w
=
o=}
=y
(¢]
(@)
ﬂ
5
:b
=
=
o
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=
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ﬂ
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o
o
o
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how to solve (44) for the unknowns c(x) X € 9’ T when 5” T is mﬁmte An
additional difficulty is that if & is infinite, then (44) need not have a unique
solution. Fortunately this difficulty does not arise if & is finite.



26

Markov Chains

Theorem 5 Suppose the set & 1 of transient states is finite and
let C be an irreducible closed set of recurrent states. Then the system
of equations

(45) f@) =Y Px,y)+ Y Px, Nf(y), xe€q

yeC ye&LT

has the unique solution

(46) fx) = pcx), xe L.

Proof. If (45) hoids, then

f(Z), ye .

=X Py,2)+ X P(yz

zeEFT

Substituting this into (45) we find that

fG)= % Px, )+ Y Y P(x, y)P(y,2)

yeC ye&¥r zeC

~

' w Y pro. ADSL S\ LN
T L i T\X Y)Y, 2)J\4)-
yeSrzeSLr
The sum of the first two terms is just P (T, < 2), and the third term
reduces to X, ... P2(x, z)f(z), which is the same as ¥ ... P2(x, y)f (»).
Thus
f(X) = Px(TC —<— 2) + Z Pz(xs y)f(y)'

Ye&r
By repeating this argument indefinitely or by using induction, we conclude
that for all positive integers n

(47) fx) =P(Tc <n)+ ), P, »f(y), xer

YESLT
Qinrca anrch e & ic tranciant 1t fallawe fram (AR that
OLILLC validl Yy © < p 10 Ualisiviiy, It 1UHUWDS 11Ul (J0) ulat
(48) lim P'(x, y) = 0, xe¥ and ye ;.
n— oo

According to the assumptions of the theorem, & is a finite set. It therefore
follows from (48) that the sum in (47) approaches zero asn — oo. Conse-
quently for x e &

e
|
:ﬂ
=
~
o
~~
[
O
IA
=
[

as desired. |

Example 11. Consider the Markov chain discussed in Example 10.
Find
P1o = Poyl) and P20 = Poy(2).
From (44) and the transition matrix in Example 10, we see that p,, and
p,o are determined by the equations

Pro =% + 3p10 + %P20
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and
P20 = 3P10 + %P20-
Solving these equations we find that p,, = 2 and p,, = 1.

By similar methods we conclude that p; 4 5}(1) = 2and p;34.52) = &
Alternatively, we can obtain these probabilities by subtracting p{o}(l)

and p,(2) from 1, since if there are only a finite number of transient
states,
£ AOQN NY s 1 an —- (O
(47) 2 Pc\X) = 1, Xe .
1

To verify (49) we note that for x € &

Y pe(x) = Y P(T;, < ©) = P(Ty, < o0).

- .

Since there are only a finite number of transient states and each transient
state is visited only finitely many times, the probability P(T,, < co) that
a recurrent state will eventually be hit is 1, so (49) holds.

Once a Markov chain starting at a transient state x enters an irreducible
closed set C of recurrent states, it visits every state in C. Thus

(50) N = px) ye .. and v e (
oY) Pxy Pc\X), xe Jy2A0d ye
It follows fro (50) that in our nrevious examnle
AU IOHOWS ITom (VL) thatl 1N our previous xampic

and
P23 = P2a = Pas = P{3,4,5}(2) = %.

1.6.2. Martingales. Consider a Markov chain having state space
{0, ..., d} and transition function P such that

d
(51) Y yP(x,y)=x, x=0,...,d.
y=0
Now
E[ +1|X0_X0"'° Xn—-l =xn—19Xn=x]

d
= ZO yP[Xn+1 = leO = xO"“:Xn—-l =xn—1aXn = x]
y=

d
= ¥ yP(x, )
by the Markov property. We conclude from (51) that
(52) E[Xn+1|X0 = Xgy -5 Xpyo1 =xn—1’Xn=x] = X,

i.e., that the expected value of X, ., given the past and present values of
Xo, - . ., X, equals the present value of X,. A sequence of random variables
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having this property is called a martingale. Martingales, which need not be
Markov chains, play a very important role in modern probability theory.
They arose first in connection with gambling. If X, denotes the capital of a
gambiler after time » and if all bets are “fair,” that is, if they result in zero
expected gain to the gambler, then X,, n > 0, forms a martingale.

S

and hence that P(0,1) =--- = P(0,d) = 0. Thus O is necessarily an
absorbing state. It follows similarly that d is an absorbing state. Consider
now a Markov chain satisfying (51) and having no absorbing states other
than 0 and d. It is left as an exercise for the reader to show that under

A Qftntn

141 1 A 1 h lanAd ¢+ N and L o
ditions the states i,..., a4 — 1 €acn i1€ad 10 statc v, ana nence

eS¢ CONQitions
s a transient state. If the Markov chain starts at x, it will eventually

enter one of the two ahgnrhing states 0 and 4 and remain there

permanently.
It follows from Example 8 that

d
E(X,) = y;o yP(X, = y)

d
= Zjo yP'(x, y)

d—1

= T yP'(x,y) + dP'(x, d)

y=1

d—1
Y., yP(x,y) + dP(T, < n).

y=1

Since states 1,2,...,d — 1 are transient, we see that P"(x, y) —» O as
n—>oofory=1,2,...,d — 1. Consequently,

lim E(X,) = dP(T; < ) = dp,,.

____ T ANTT R/ A 4

On the other hand, it follows from (51) (see Exercise 13(a)) that EX, =
EX,_, =--- = EX, and hence that E,(X,) = x. Thus
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By equating the two values of this limit, we conclude that

(53) Pxa =

Ql=x

Since p,o + p.a = 1, it follows from (53) that

X
p_x():l_—_, x_O’- ad
d

Of course, once (53) is conjectured, it is easily proved directly from
M anseasms & W n smnnd Al vrasnifer ¢land £ae - 1 J
11ICUVUI1C11I J. YY O 1ICCU VUl veililly tilat 1vul — ly...4y0U4 — 1,

(84) ’_C = Py Ay + ¥ Y Diy 1)
\J"T} L \J\r, u) T L x \A, }o
d y=1 d

Clearly (54) follows from (51).

The genetics chain introduced in Example 7 satisfies (51) as does a
oamhlar’e rm1in ~rhain AN r’l hao nhn frangitinn mateiv ~F tha
SQlliUIvVI O 1uUlll viialll Vil VYV, 1, s U llaviilyg UalbDIiuVvii iillaulliA VUl uiv
form

-1 N . N
1 \V T s T v
3 04 :

1 0 1 .
yA y4
‘ + 0 %
0o - - - - 0 1]

Suppose two gamblers make a series of one dollar bets until one of them
goes broke, and suppose that each gambler has probability 1 of winning
any given bet. If the first gambler has an initial capital of x dollars and
the second gambler has an initial capital of d — x dollars, then the second
anmhl hac nraohahility A — yld af onine hralka and tha first gamb!

ar
Saliivivl 1iao pryvvauiiiry ’.de — A4 UL 5\.’1115 ViVvLAVv Aaliu Lilv 1110

has probability 1 — (x/d) of going broke.

1.7. Birth and death chains

For an irreducible Markov chain either every state is recurrent or every
state is transient, so that an irreducible Markov chain is either a recurrent
chain or a transient chain. An irreducible Markov chain having only

Lanie A-. anv states 10 mannccnwiler maniimenad ll-. B N PRI,

11111 y 11y dStatvd Id I1ILllddalily 1l uliviii. ll. lb gCll ly aimcuit to
decide ether an irreducible chain having 1nﬁn1te1y any states is
recurrent or transient. We are able to do so, however, for the birth and

death chain.
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Consider a birth and death chain on the nonnegative integers or on
the finite set {0, . .., d}. In the former case we set d = co. The transition

function is of the form
qx: y=Xx - 1:
P(x,y) = {r, y =X,
(P, Yy=x+1,

u(x) = P(T, < Tp), a<x<b,
and set u(a) = 1 and u(b) = 0. If the birth and death chain starts at y,
then in one step it goesto y — 1, y, or y + 1 with respective probabilities

Dy
Set v, = 1 and
t Yo and
(57) y, =% 0<y<d
D" D,
F iy 8 2y

4\ Ve AN y}’ Vg Vs AN V4 4NN\ . . 1
wy ~ 1)y —uwy = wly) —uwy — 1)) a<y<»y,
yy—l
Fontnn xwhinh 3¢ fAllAawe that
11V111 11IVIL iU 1VULIVU VYWD Lilat

u(y + 1) — u(y) = Yert oo B (ua + 1) — u(a))
Ya ?y——l

Y (a:f 11 L1 YR
- \Uuw T 1) u\u))-

Consequently,

ViiOoW] Wit

58) u(y) —u(y + 1) =" @@ —u@+1), a<y<obh.
Ya

Summing (58) on y = a,...,b — 1 and recalling that u(e) = 1 and
u(b) = 0, we conclude that

u(a) — u(a + 1) _ 1

b—1 ‘
Ya y=a yy
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Thus (58) becomes

u(y) —u(y + 1) = bl”; , a<y<h

y=a 'y)’

Summing this equationony = x,..., b — 1 and again using the formula
u(b) = 0, we obtain

bl,y
u(x) = ==7-7, a <x<b.

I.I_L

ya‘})y

It now follows from the definition of u(x) that

(59) P(T, < T,) = Z”‘y, a<x<b.

<b-1 ,,
L,yai'y

By subtracting both sides of (59) from 1, we see that

Tx-1,

(60) P(T,<T)=2=22" 4<x<b
y=a ¥y

Example 12. A gambler playing roulette makes a series of one dollar
bets. He has respective probabilities 9/19 and 10/19 of winning and losing
each bet. The gambler decides to quit playing as soon as his net winnings

I'Cdb[l LJ UUlldrb o1 Illb net lObbe erLIl IU UUlld[b

(a) Find the probability that when he quits playing he will have won

The nrahlam te 1intn Aanr cechame if wa lat VYV Aannte tha ranifal Af the
IJL NWJULWILL 1100 1110V U Ul Owllwvilivw 11 YWWw Awl 11” VWIIV LW LW vutubcu Vi Lilv
gambler at time n with X, = 10. Then X,, n > 0, forms a birth and death
chain on {0, 1,..., 35} with birth and death rates

P = 9/19, 0 <x <35,
and

g, = 10/19, 0 < x < 35.

Vo a\"

35 are absorbing states. Formula (60) is applicable with
= 10, and b = 35. We conclude that

, = (1097, 0<y<34

= .047.

P(Tys < Ty) = 2v=0 (109 _ (10/9)"° — 1

-—2A 74 1N

X520 (10/9Y  (10/9)*° — 1

Thus the gambler has probability .047 of winning 25 dollars. His expected
loss in dollars is 10 — 35(.047), which equals $8.36.
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In the remainder of this section we consider a birth and death chain
on the nonnegative integers which is irreducible, i.e., such that p, > 0
for x > 0and ¢, > O for x > 1. We will determine when such a chain
1S recurrent ana when l[ 1S tran81ent.

As a special case of (59),

(217 - T _ 1 1
(61) P(To<T)=1—-—— n>

y——0 yy

[u—y
.

Consider now a birth and death chain starting in Stat 1. Since the birth
at a time (con-

®
(=gl

cidaring tha ¢ qitinn Fram atata A gtata ne mnaAvamant alAans tha sanl
Olu\dlllls Uiy L1 AQ1101LiIViILI 11ViL olalyv LU Jslalv av 111vvviiiviil aluus uiv 1vail
number line),

(62) 1<T,<Ty<:--

—1
=]
=
(]
£
w2
=
:

sequence of events. We conclude from Theorem of Chapter 1 of
Volume I! that '

event {’ro < ’;l';l f\u scmen > 1} OCCurs lf and oniy 1f the cven 19 < &0y
occurs. We can therefore rewrite (63) as
(64) lim P(Ty, < T)) = Py(T, < ).
n-—» oo
It follows from (61) and (64) that
1
y=0 7Ty

We are now in position to show that the birth and death chain is
recurrent if and only if

(66) . Yy = .

y=0
If the birth and death chain is recurrent, then P,(T, < o) = 1 and (66)
follows from (65). To obtain the converse, we observe that P(0, y) = 0
for y > 2, and hence
67) Py(Ty, < ©) = P(0,0) + PO, 1)P,(T, < o)
1 Paul G. Hoel, Qndpev ort, and Charle Stone, Introduction to Pro ity Theory

eI & Vv every atswwe y
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Suppose (66) holds. Then by (65)
PI(TO < 00) = 1.

1ary, we have shown that an irreducible birth and death chain
on {0, 1, 2,...} is recurrent if and only if

Example 13. Consider the birth and death chain on {0, 1, 2,...}
defined by

- x+?2 and g, = x>0
Px = 57— 4x My L 1} =
L\J\v T .l.} L\J\v T 1}
Determine whether this chain is recurrent or transient.
Since
4. _ X
- ’
Dy x + 2
it follows that
W 4174 1-2-
Ix
P11’ Px 3:4.- (x+2)
_ 2 =9 ([ 1 1
(x + 1)(x + 2) \x+1 x+2}
Thus
x§1 v x}=:1 \x +1 x4+ 2
— 1 1 1 L] L]
=23 -3+3-%+4-%5+"-)
= 2 . = 1

In this section we will describe which branching chains are certain of
extinction and which are not. We will also describe which queuing chains
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are transient and which are recurrent. The proofs of these results are
somewhat complicated and will be given in the appendix to this chapter.
These proofs can be skipped with no loss of continuity. It is interesting
to note that the proofs of the results for the branching chain and the
queuing chain are very similar, whereas the results themselves appear

Ll UI i€ Ulbblllllldl

1.8.1. Branching chain. Consider the branching C
in Example 6. The extinction prob bility p of the
that the descendants of a given particle eventually become extinct. Clearly

"U

p = pro = Pi(To < ).

Suppose there are x particles present initially. Since the numbers of
offspring of these particles in the various generations are chosen inde-
pendently of each other, the probability p,, that the descendants of each

Af tha X nartinlas ax ven f:in]ltl lharnma avtinat 1q gt tha wth rar ~AF tha
Ul Lll\/ Pal UIVIVO VY Luall] UVLVVUILLIV VALLLIIVL 1D Jual Lllb ALLL PU U Ul v

probability that the descendants of any one particle eventually become
extinct. In other words,

(69) Po = P55  x=12,....

Recall from Example 6 that a particle gives rise to ¢ particles in the
next generation, where £ is a random variable having density f. If
f(1) = 1, the branching chain is degenerate in that every state is an
absorbing state. Thus we suppose that f(1) < 1. Then state 0 is an
absorbing state. It is left as an exercise for the reader to show that every
state other than O is transient. From this it follows that, with probability
one, the branching chain is either absorbed at O or approaches + 0. We
conclude from (69) that

P(lim X, = o) =1 — p%, x=12,....

n— oo

Clearly it is worthwhile to determine p or at least to determine when
p_—_lqr]xlhvn/lrr' T o

1Q
A CUIE\3 VY e s ’I ™~ A A 1210

the formula

(70) @) = p,
whara M 1c tha neahohility cdanarating fiinatinn AF £ Aafnad he
VWIIVIV W 1D L1y Pl vuvaQuillll 5\411\11 al.lus 1UIIVLIVILI VUl J s UbLillIVAL U
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To verify (70) we observe that (see Exercise 9(b))

p = p1o = P(1,0) + Z P(1, )’)Pyo

“
)-

[
=)
N
:—‘
o
 —
+

iDs

~N
A
:—‘

<
N’

R~
-«

Let u denote the expected number of offspring of any given particle.
Suppose u < 1. Then the equation ®(¢) = ¢ has no roots in [0, 1) (under
our assumption that f(1) < 1), and hence p = 1. Thus ultimate extinction
is certainif u < 1andf(1) < 1.

Suppose instead that 4 > 1. Then the equatlon ®(z) = t has a unique

hhan ~ ‘1 ~ 1 Antinally A alwuwaxra

10Ul Po 11 LU, 1}, aliu 1IVIIVG 'J JS 3 § PO Ul 1. n\vtuall_y P alwayb

equals p,. Consequently, if u >

less than one.

S
he probability of ultimate extinction is

The proofs of these results will be given in t appe‘ ndix. The results
themselves are intuitively very reasonable. If u then on the average

.
no(\h ﬂ')fflf‘lﬁ |‘IPC f'iQp tn ‘llﬂ‘l‘ than Nnne X7 T2 ] N \ XII\'I‘IIA avnanrt
Wil Pul Ciwiv 51 YWwO 110V I-\I AW VYWl LiiQil Viiw ll V y l. \,l Wi [SAV N 4 AVA SRS Y vnywu

the population to die out eventually. If u > 1, the n the average each
particle gives rise to more than one new particle. In th1s case we would
expect that the population has positive probability of growing rapidly,
indeed geometrically fast, as time goes on. The case u = 1 is borderline;
but since p = 1 when u < 1, it is plausible by “continuity” that p = 1

alsowhenu = 1.

i
(¢
<

7

('D
-

Example 14. Suppose that every man in a certain society has exactly
three children, which independently have probability one-half of being a
boy and one-half of being a girl. Suppose also that the number of males
in the nth generation forms a branching chain. Find the probability that
the male line of a given man eventually becomes extinct.

The density f of the number of male children of a given man is the

bino d T‘ity ith parameters n = 5 and p = % inus jU) = 3,
) =32 =303 =1 and f(x) = 0 for x > 4. The mean num-
ber of male offenrinocic 1 = 3 Since 1 > 1 the extinction nrohahilitv »
WA VA Ldiiiwv \Illuylllla AN '~ 20 ANFALAW N ’~ - L’ CALW WIAVALANWLAN/ AL tlxvuuulxl\-’ ’I
is the root of the equation
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lying in [0, 1). We can rewrite this equation as

34+ 3t2-5t+1=0,
or equivalently as
C=DE*+4—-1) =

This equation has three roots, namely, 1, — /5 — 2, and /5 — 2. Con-

Sv‘ - ‘ lv 0 = /q - _
~1 SEN 4 AV
1.8.2. Queuing chain. Consider the queuing chain introduced in

Example 5. Let ¢,, &,,... and u be as in that example. In this section we
will indicate when the queuing chain is recurrent and when it is transient.
Let u denote the expected number of customers arriving in unit time.

0

ﬁnnn Arct than < 1 Qinra a
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the case, so that if u > 1 the queuing chain is transient.

Tn dicenceino the cace 1 < 1 we will acciime that the chain ic 1irraducihla
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(see Exercises 37 and 38 for necessary and sufficient conditions for irreduci-
bility and for results when the queuing chain is not irreducible). Suppose
first that 4 < 1. Then on the average fewer than one new customer will
enter the queue in unit time. Since one customer is served whenever the
queue is nonempty, we would expect that, regardless of the initial length of
the queue, it will become empty at some future time. This is indeed the case
and, in particular, O is a recurrent state. The case u = 1 is borderline,
but again it turns out that O is a recurrent state. Thus if u < 1 and the
queuing chain is irreducible, it is recurrent.
The proof of these results will be given in the appendix.

APPENDIX

1.9. Proof of results for the branching and queuing chains

In this section we will verify the results discussed in Section 1.8. To do
so we need the following.

Theorem 6 Let ® be the probability generating function of a
nonnegative integer-valued random variable ¢ and set p = E¢ (with
U= +oo if & does not have finite expectation). If u <1 and
P& = 1) < 1, the equation

(1) () =

has no roots in [0, 1). If p > 1, then (71) has a unique root p, in

[0, 1).
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Graphs of ®(z), 0 < ¢t < 1, in three typical cases corresponding to
u <1, u=1,and g > 1 are shown in Figure 2. The fact that u is the
left-hand derivative of ®(¢) at t = 1 plays a fundamental role in the proof
of Theorem 6.
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Proof. Let f denote the density of £. Then

(1) = f(0) + f(Dt + f(2)? +

'(r) = f(1) + 2D + Q) +
Thus ®0) = f(0), ®(1) = 1, and
lim @(r) = f(I) + 2@2) + J@) + -+ = p

Suppose first that 4 < 1. Then

Iim ®'(t) < 1.

0
Suppose next tha

for some n > 2 (ot ich implies
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u<l, a contradlctlon). Therefore ®'(¢) is stnctly increasing in
0 <t < 1. Since

= et
5
=3

lim ®'(f) =

t—1

we again conclude that ®'(z) < 1for0 < ¢ < 1.
Suppose now that ¢ < 1 and P(( = 1) < 1. We have shown that
®'(t) < 1for0 <t < 1. Thus

‘—‘;—(ci)(t)-—t)<0, 0<t<i,
t
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and hence ®(¢) — ¢ is strictly decreasing on [0, 1]. Since ®(1) — 1 = 0,
we see that ®(t) — ¢ > 0,0 < ¢t < 1, and hence that (71) has no roots on
[0, 1). This proves the first part of the theorem.
Suppose next that u > 1. Then
lim ®'(¢) > 1,
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®'(t) > 1forty, <t < 1. It follows from the mean value theorem that
O(1) — D(to)
> 1
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OINnce wiu } ’ onclude that ®(¢)) — 1, < 0. Now ®{#) — ¢ is

by the intermediate value
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only one such root.

Suppose that 0 < py < p; < 1, ®(p,) = po, and ®(p;) = p,. Then
the function ®(¢) — ¢ vanishes at p,, p,, and 1; hence by Rolle’s theorem
its first derivative has at least two roots in (0, 1). By another application

~ LT 11 9 .1

Ol nolie’st

corem ll.b bt.'«(.«OIlU UCIinLlVC \P \l} [ld.b at lCdb[ one root lIl \U l)
> 1, then at least one of the numbers f(2), f(3), ... is strictly
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Po is the unique root of the equatlon (I)(t)
p always equals pg.

First we observe that since the initial particles act independently in
giving rise to their offspring, the probability P(T, < n) that the de-
scendants of each of the y > 1 particles become extinct by time # is given by

P(T, < n) = (P(Tp < n)y.
Consequently for n > 0 by Exercise 9(a)

P(To<n+1)=P10) + 3 P, y)PT, < n)
y=1
P(1,0) + 3 P, y)Py(T, < my

y=1

= f(0) + 21 f)P(To < n)y,
=
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and hence

(72) P(To<n+1)= <I’(1’1(To <n), n

\
=

P(T, < 0) =0 < p,,

Vg

so that (73) is true for n = 0. Suppose that (73) holds for a given vaiue of
n. Since ®(¢) is increasing in ¢, we conclude from (72) that

Py(To < n+ 1) = ®P(Tpo < n)) < D(po) = po,

and thus (73) holds for the next value of n. By induction (73) is true for
alln > 0.
By letting n —» oo in (73) we see that

n-» o0

Since p is one of the two numbers p, or 1, it must be the number p,.

1.9.2. Queuing chain. We will now verify the results of Section

1Q9 T at £ Aan 4 4-L
1.0.4., LU G, UCHIULC UL

'

a nimmh
C HHuliiv

srsssn ey tlan e

customers arrivirg Quriing the nth time
period. Then &,,&,, ... are independent random variables having common
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It follows from Exercise 9(b) and the 1aenuty 0, z) = P(1, 2), valid
for a queuing chaln, that pyo = Pio- We will show that the number

P = Poo =
(74) (o) =

If 0 is a recurrent state, p = 1 and (74) follows immediately from the fact
that ®(1) = 1. To verify (74) in general, we observe first that by Exercise

9(b)
o0
poo = P(0, 0) + Z PO, y)p,0
y=1 g
i.e., that
(¢ o]
(75) p = f(0) + 21 F(»)pyo-
y=
In order to compute p,,, y = 1, 2,..., we consider a queuing chain start-
ing at the positive integer y. For n = 1,2,..., the event {T,_; = n}
OCCUrs if and only if

n=mnm>0y+¢ -D+--+¢,—1D=y—-1)
=min(ﬁz>0:él+---+§m=m—l),
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that is, if and only if n is the smallest positive integer m such that the
number of new customers entering the queue by time m is one less than
the number served by time m. Thus P(T,_, = n) is independent of y,
and consequently p, ,_, = P(T,—; < o) is independent of y for
y=12,.... Since p;; = p, we see that

o - =0.._1.._o="'=p19='0.

. 1
Yy + rJy Ly &

Now the queuing chain can go at most one step to the left at a time, so in

order to go from state y > 0 to state 0 it must pass through all the inter-

vening states y — 1,..., 1. By applying the Markov property we can
t

Dy = D Y st Pin 11}
Fyo Pyy—1iFy—-1,y-2 F1i0 P

It follows from (75) and (76) that

p = 1(0) + i P = ),

so that (74) holds.

Using (74) and Theorem 6 it is easy to see that if 4 < 1 and the queuing
chain is irreducible, then the chain is recurrent. For p satisfies (74) and by
Theorem 6 this equation has no roots in [0, 1) (observe that P(¢; = 1) < 1

ueuing chain is irreducible). We conclude that p = 1. S

recurrent, and thus since the chain is irreducible, all

Suppose now that 4 > 1. Again p satisfies (74) 'v'vhich, by Theorem 6,
has a unique root p, in [0, 1). Thus p equals either p, We will prove
that n — n
Lviiea L ” 'JO

To this end we first observe that by Exercise 9(a)
P(Ty <n+1)=P10) + Y P, yP(T, < n),
y=1

which can be rewritten as

77) Pl(lo s

We claim next that
(78) P(T, < n) < (Py(T, < n)y, y>1and n > 0.

To verify (78) observe that if a queuing chain starting at y reaches 0 in »
or fewer steps, it must reach y — 1 in n or fewer steps, go from y — 1 to
y — 2 in n or fewer steps, etc. By applying the Markov property we can
conclude (see Exercise 39) that

(1) P(Ty <n) < P(Ty—y < WP,_(Ty—, < n):--P(T, < n).
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78) is valid.
It follows from (77) and (78) that

P(To <n+ 1)< f0) + 21 F(P (T, < n)y,

i.e., that

(80) P(Thsn+ D) <0P(Th<n), nr=0
This in turn implies that

t2)) Pi(Ty, < n) < po, n=0,

by a proof that is almost identical to the proof that (72) implies (73) (the
slight changes needed are left as an exercise for the reader). Just as in the
proof of the corresponding resuit for the branching chain, we see by letting
n — oo in (81) that p < p, and hence that p = p,,.

< 1, and hence 0 is a
hain is 1rreduc1ble then
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transient state. It follows that if u > 1 and the

all states are transient. If u > 1 and the
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then case (d) of Exercise 38 holds (why?
show that again all states are transient.

t<

Exercises
1 Let X, n > 0, be the two-state Markov chain. Find
\ Dys — Nl Y N and VYV n\
\all\Al—UlA —UallUAZ'—U),
(b) P(X, # X,).

Suppose we have two boxes and 2d balls, of which d are black and d
are red. Initially, d of the balls are placed in box 1, and the remainder
of the balls are placed in box 2. At each trial a ball is chosen at random
from each of the boxes, and the two balls are put back in the opposite
boxes. Let X, denote the number of black balls initially in box 1 and,
for n > 1, let X, denote the number of black balls in box 1 after
the nth trial. Find the transition function of the Markov chain X,,

- ~ N
n = VJ.

N

3 Let the queuing chain be modified by supposing that if there are one or
more customers waiting to be served at the start of a period, there is
probability p that one customer will be served during that period and
probability 1 — p that no customers will be served during that period.

Find the transition function for this modified queuing chain.
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4 Consider a probability space (QQ, &/, P) and assume that the various
sets mentioned below are all in &7.
(a) Show that if D, are disjoint and P(C | D;) = p independently of i,
then P(C | |J; D)) = p.
(b) Show that if C; are disjoint, then P(|); C; | D) = ¥; P(C; | D).
(c) Show that if E; are disjoint and | J; E; = Q, then

P(C | D) = Z P(E; | D)P(C | E; n D).
(d) Show that if C; are disjoint and P(4 | C;) = P(B| C)) for all i,
then P(A | 'U'iC,-) = P(B]| 'U',-C,-‘).
5 Let X,, n > 0, be the two-state Markov chain.

(a) Find Py(T, = n).
(b) Find Py(T, = n).

6 Let X,, n > 0, be the Ehrenfest chain and suppose that X, has a
binomial distribution with parameters d and 1/2, i.e.,

DIY — v\ — v = N A
Iag = X) = 7d’ X = v,. , G.
Tind tha Aigteilhnitinn AF VY
PANVVIVERNILVIRSIN IO BIVICIBAVIIER V)Y Al-

|X.=Y. Y:x‘:
n

Xs ol - R, { =x. |l X. = x.)
=V vuU 1 1 viyr* 2 n YU 1 1 vvi7°

P(X,
\*=v

8 Let x and y be distinct states of a Markov chain having d < oo states

and crimnnnaca that v lande tA v T at 2» ha tha amallact nAgitis ntacar
L L J\r ivauo v )’. p i 9 ’lo UV L11V olllalivotl PUDILIVU lll‘-\fs\i].

such that P"(x, y) > 0 and let x,, ..., x, -, be states such that

ns.

P(x, x;1)P(x1, X3) " * " P(Xpy—25 Xno— 1)P(Xno-1, ¥) > 0.
(a) Show that x, x4, ..., x,__, y are distinct states.
(b) Use (a) to show that ny < d — 1.
(c) Conclude that P(T, < d — 1) > 0.
9 Use (29) to verify the following identities:

@) P (T, <n+1)=P(x,y) + ) P(x,2)P(T,<n), n=0;

z=ﬁy
(b) pyy = P(x, ¥) + Y P(x, 2)p,,.
ZEYy
10 Consider the Ehrenfest chain with d = 3.
(@) Find P(T, = n)forxe ¥ and 1 < n < 3.
(b) Find P, P2, and P>.
(c) Let m, be the uniform distribution =

and =;.
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11 Consider the genetics chain from Example 7 with d = 3.
(a) Find the transition matrices P and P2
(b) If ny = (0, 4, 4, 0), find =, and =,.
(c) Find P(Tp 3y = n),xe &, forn =1andn = 2.

12 Consider the Markov chain having state space {0, 1, 2} and transition

matrix
0 1 2
o O 1 0]
P=1|1—-p 0 p
o] N 1 N
L L \Y 1 UJ
(a) Find P?

13 Let X,, n > 0, be a Markov chain whose state space & is a subset of
{0, 1, 2, ...} and whose transition function P is such that

A nNs
2. YE\X, Y
y

< . — 0

A n -
= Ax + B, x e &,

N’

for some constants 4 and B.

(a) Show that EX,,, = AEX, + B.
(Y Shoaw that if 14 # 1 the

\Ul AJLANV VY il iy

&’

B
1 -4

B \
1-4)°

n

Y __ ' A /nv
LA, = T A \DAO—

14 Let X,, n > 0, be the Ehrenfest chain on {0, 1,..., d}. Show that the

assumption of Exercise 13 holds and use that exercise to compute

L /V )\
Lix\Ap).

15 Let y be a transient state. Use (36) to show that for all x

o0 o0

Y P'x,y) < X Py, ).

n=0

16 Show that p,, > 0if and only if P"(x, y) > 0 for some positive integer
n.

17 Show that if x leads to y and y leads to z, then x leads to z.

18 Consider a Markov chain on the nonnegative integers such that,
starting from x, the chain goes to state x + 1 with probability p,
0 < p < 1, and goes to state 0 with probability 1 — p.

(a) Show that this chain is irreducible.
(W Find P (T ) ~ 1

\U} l.lll\.ll.o\.l'o - n}’ n . 1.

(c) Show that the chain is recurrent.
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Consider a Markov chain having state space {0,1,..., 6} and
transition matrix

0123456
03 04 4 400
110010000
210001000
310100000
410000 3% 0%
5/000013% 30
6100000 3 3|

(a) Determine which states are transient and which states are recurrent.
(b) Find py,, y = 0,..., 6.

Consider the Markov chain on {0, 1, ..., 5} having transition matrix

012345
073 3 000 07
111 20000
2100 4020
314 200 % %
4100 320141 0
5100 % 0 ¢ + £

(a) Determine which states are transient and which are recurrent.

A o 2l 1 Y catiofirie | NP SE-eY

Consider a Markov chain on 1U, Iyo0a, u} baublylug \Jl) and h avulg
no absorbing states other than 0 and 4. Show that the states 1,...,
d — 1 each lead to 0, and hence that each is a transient state.

Show that the genetics chain introduced in Example 7 satisfies
Equation (51).

wlrmss Alhmlon dlind malone tom mmmadiae oo cbadae N1 "7
n bCl Ldlu IVIdll&UV Clidlil Lildl 4alldOS 111 1ICLICS 11ad dSLAed Y, |1, , LU
and transition function
/2d\ / x\? x\ld-y
ey =) za) '~ 24)
y/ \2d 2d

Find o (v 0 - v <« 27
rna px), vV < x < Za.

Consider a gambler’s ruin chain on {0, 1, ..., d}. Find
P(To<T), O<x<d

A gambler playing roulette makes a series of one dollar bets. He has

respective probabilities 9/19 and 10/19 of winning and losing each bet.

The gambler decides to quit playing as soon as he either is one dollar

ahead or has lost his initial capital of $1000.

(a) Find the probability that when he quits playing he will have lost
$1000.

(b) Find his expected loss.
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Consider a birth and death chain on the nonnegative integers such that
Px > 0and g, > O for x > 1.
(a) Show thatif 3%, 7, = oo, thenp,, = 1, x > 1.
(h) Show that d‘Y‘ < o0. then

\V ) WALUYVY uiGe a1 g 0 "y WS g Uiilwii

2= Yy

pr_‘_,oo le'
Ly Oyy

Consider a gambler’s ruin chain on {0, 1, 2,...}.

(a) Show Lhat ir g = P then Pxo = 1, X = 1.

(b) Show that if ¢ < p, then p,, = (g/p)*, x >

Hint: Use Exercise 26.

Consider an irreducibie birth and death chain on the nonnegative
integers. Show that if p, < ¢, for x > 1, the chain is recurrent.

Consider an irreducible birth and death chain on the nonnegative
integers such that

Con81der the birth and death chain in Example 13.
(a) Compute P(T, < T,) fora < x < b.
(b) Compute p,o, x > 0.

e e 4l l'I1\ 1

Consider a branching chain such that f(1) < 1
state other than O is transient.

o1 a1l 4
O10W tnat cvery

Consider the branching chain described in Example 14. If a given
man has two boys and one girl, what is the probability that his male
line will continue forever?

Consider a branching chain with f(0) = f(3) = 1/2. Find the
probability p of extinction.

Consider a branching chain with f(x) = p(1 — p)*, x > 0, where
0 < p < 1. Show that p =1 if p > 1/2 and that p = p/(1 — p) if
p < 1/2

Let X,, n > 0, be a branching chain. Show that E.(X,) =

Hint: See Exercme 13.

Let X,, n > 0, be a branching chain and suppose that the associated
random variable ¢ has finite variance ¢2.
(a) Show that
E[X2,]X, =x] = x6® + x*u?.
(b) Use Exercise 35 to show that
Ex(Xn2+ 1) = x”noz + “zEx(an)'
Hint: Use the formula EY = ¥, P(X = x)E[Y | X = x].
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(c) Show that
E(X}) =xa®?(W ™' + -+ 2 + x¥?,  n2x>1

FIN QL mvey 4l vt 0 alinn s 2 cmnamdinlan Saaietall dlhnee £ .. ~ 1
(4d) OSIIOW Llal 11 LICIC alC X palUuCliod Hiiaily, e 101 nn = i
-y (1 = 4"
(xazu"l(- ”\ u#1
Var X, = < \1 —u/
[ nxo?, p=1
ra s nsi g [ ~L Ll
COIDIUC C qucumg cnaiii.
(a) Show hat if either f(0) = 0 or f(0) + f(1) = 1, the chain is not

irreducible.

(b) Show thatif f(0) > Oand f(0) + f(1) < 1, the chain is irreducible.
Hint: First verify that (i) p,, > 0 for 0 < y < x; and (i1) if
Xo = 2 and f(x,) > 0, then pg ;o 4nxo—1y) > 0 forn > 0.

ROV S cbndan teme mlinlie neen alecaelila s wrlaiale hsea

UCLCIIIHIIC Wlubll SLALDD Ul Luc quculug cndin arc anUl Ulilg, wiiiCil 41
recurrent, and which are transient, when the chain is not irreducibie.

Consider the following four cases separately (see Exercise 37):

(2 f(1) = 1:
\&) J\J Ly

(b) f(0) > 0, f(1) > 0, and f(0) + f(1) = 1;
© f(0) =1,
d) f(0) = 0 and f(1) < 1.

Consider the queuing chain.
(a) Show that for y > 2 and m a positive integer
m=1
Py(T0=m)=kL_41Py(y1 )Py 1(m0=m—k)
(b) By summing the equationin (@) onm = 1,2,..., , show that

Pyo = Py, y—1 Py-1,0 y =2

(c) Why does Equation (76) follow from (b)?
(d) By summing the equation in (a) on m = 1, 2,..., n, show that

P(Ty < n) < P(T,-, <mP, (o <n), y=x2
() Why does Equation (79) follow from (d)?

40 Verify that (81) follows from (80) by induction.
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Markov Chain

Let X,, n > 0, be a Markov chain having state space & and transition function
P. If n(x), x € &, are nonnegative numbers summing to one, and if

~

1) L n(x)P(x, y) = n(y), ye,

7~

then = is called a stationary distribution. Suppose that a stationary distribution n
exists and that

@) lim P'(x, y) = o(y), ye .

Then, as we will soon see, regardless of the initial distribution of the chain, the
distribution of X, approaches w as n — oco. In such cases, 7 is sometimes called the
steady state distribution.

In this chapter we will determine which Markov chains have stationary distribu-
tions, when there is such a unique distribution, and when (2) holds.

Elementary properties of stationary distributions

N
-

Let 7 be a stationary distribution. Then

Y, n(x)P*(x, y) = Y, m(x) Y. P(x, z)P(z, y)

X

/

=y (z n(x)P(x, z)) P(z, y)
= Y n(z)P(z, y) = n(y).

z

n(x)P'(x, y) = n(y), ye.

~~
W
N’

=«
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Stationary Distributions of a Markov Chain

If X, has the stationary distribution n for its initial distribution, then
(3) implies that for all n

4 PX,=y) =n(), ye¥,
and hence that the distribution of X, is independent of n. Suppose con

vprcp]v fhnf the dictrihiitinn nf Y i1c indenendent af » Then the initial
AL Vil “‘-o‘l Vu‘«lv AV P Y l‘n Py} llluvl’vl‘“vllb NJA & A 1AWIikR Vl1lWw 111iuviCL1
distribution To is such that
no(y) = P(Xo = y) = P(X, = y) = L To(X)P(x, y).
CAancannantly + 16 n atatinnary dictrihintiAn Tn crnnmmary tha digteiliitian
LONSCQUlIiuY Mg 1S d Staudniary Gisiriouudlii. iil sumiimary, ui GiStrioution
of X, is independent of n if and only if the initial distribution is a

stationary distribution.

Suppose now that m is a stationary distribution and that (2) holds.

QPR RPC RSP T COPIILL TN I . o° R
LCU Tg DC UINC 1MNitidl distrioution. i1nen

) P(X, = y) = X mo(x)P"(x,y), ye¥.

By using (2) and the bounded convergence theorem stated in Section 2.5,
we can let n - oo in (5), obtaining

lim P(X, = y) = Y, no(x)n(y).

n- o0

Since Y, my(x) = 1, we conclude that

values of n the distribution of X, is approximately equal to the statlonary
distribution n. It implies that = is the unique stationary distribution. For
if there were some other stationary distribution we could use it for the
initial distribution n,. From (4) and (6) we would conclude that 7,(y) =
n(y),ye .

Consider a system described by a Markov chain having transition
function P and unique stationary distribution n. Suppose we start
observing the system after it has been going on for some time, say n, units
of time for some large positive integer n,. In effect, we observe Y,, n > 0,
where

Y, =X

n > 0.

n+ng?

The random variables Y,, n > 0, also form a Markov chain with transition
function P. In order to determine unique probabilities for events defined
in terms of the Y, chain, we need to know its initial distribution, which is
the same as the distribution of X,,.. In most practical applications it is very



2.2. Examples 49

hard to determine this distribution exactly. We may have no choice but to
assume that Y,, » > 0, has the stationary distribution = for its initial
distribution. This is a reasonable assumption if (2) holds and n, is large.

2.2. Examples

In this section we will consider some examples in which we can show
directly that a unique stationary distribution exists and find simple
formulas for it.

0 1

1 . -1
I =p ¥4 I
q

I

L I-q]

Wesaw thatif p + g > 0, the chain has a unique stationary distribution r,
determined by

- O
-

_4q

) =
vy &

P+ p+aq
We also saw that if 0 < p + g < 2, then (2) holds.

il
vy

Tiwmnni amitad: ~rma
111cal ©y uations.

Example 1. Consider a Markov chain havin

w0 , ) 2 _ o

’

3 4 o
3 } > t 3 /s

n0) , =) , =2
+ + =
3 4 2
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>, n(x) = 1 gives us the fourth equation
n(0) + n(1) + =n(2) =

By subtracting twice the first equation from the second equation, we
eliminate the term involving 7n(2) and find that =(1) = 57(0)/3. We

conclude from the first equation that n(2) = 3n(0)/2. From the fourth
equation we now see that

a(OM1 L 5 L 3) — 1
I(«\U}\l T 3 T 2} l,
and hence that
N — _6
n(0) = %
Tl ...
10us
— S5, 6 __ 2
n(l) =35 =%
and

n(2) = 3 2% = 7%

270) = £, w(l)=2% and 72 = &

Though it is not easy to see directly, (2) holds for this chain (see Section
2.7).

2.2.1. Birth and death chain. Consider a birth and death chain on

R Ao o e xmra cmd

{0, 1,..., d} or on the nonnegative integers. In the latter case we set
d =

0. We assume without further mention that the chain is irreducible,
i e th

at
.y Lxlub

)

p.>0 for 0<x<d
and
q. >0 for O<x<d

if d is finite, and that

p, >0 for 0<x< o
and
q, > 0 for 0<x< o
if d is infinite.
Suppose d is infinite. The system of equations

Y, "(x)P(x, y) = n(y), ye,
X
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becomes
n(0)ro + n(1)g, = n(0),
n(y — Dpy—y + 7(Wry + ©(y + Dgysy = n(y), y=1

Since

g, +r,=1

S
-
+

’

these equations reduce to

~7
It

™)

&4
\%
[S—

N — AY " ol 3 1
J = Yy!"\V) T Py—-1)y — 1)

It follows easily from (7) and induction that

yt+1
Consequently,
®) n(x) = 2Pt pg), x> 1
d1°° " 4x
Qadé
JCL
lf 1 x =0
.19\ T = DRI
( ) x 1 Po DPx-1 , x > 1.
q:° " 4qx
Then (8) can be written as
(10) m(x) = _m(0) >0
\tY) UaNed XY o=V

Conversely, (1) follows from (10).
Suppose now that 3, n, < oo or, equivalently, that

i Q0.

w e & o
(11) Vv Po " Px-1 _
(h L

TRy

We conclude from (10) that the birth and death chain has a unique
stationary distribution, given by

(12) n(x) = T x > 0.

Z;o=0 7ty ’
Suppose instead that (11) fails to hold, i.e., that

0
717\ v
(L) L n, = .
x=0
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We conclude from (10) and (13) that any solution to (1) is either identically
zero or has infinite sum, and hence that there is no stationary distribution.
In summary, we see that the chain has a stationary distribution if and
only if (11) holds, and that the stationary distribution, when it exists, is
given by (9) and (12).
Suppose now that d < oo. By essentially the same arguments used to
obtain (12), we conclude that the unique stationary distribution is given by

s o A
x <d,

IA

(14) n(x) = 0

Example 2. Consider the Ehrenfest chain introduced in Section 1.3
and suppose that d = 3. Find the stationary distribution.

The transition matrix of the chain is

01 23
O[O0 1 0 07
11420 % o
210 %2 0 3{.
3Lo o1 0l

This is an irreducible birth and death chain in which n, = 1,

1'!?1=

W |
W
W

and

[y
Wi
[

TC3=

1-3-1
Thus the unique stationary distribution is given by

n0 =4 =2«)=3 w2)=4 and Q) =4

Formula (2) does not hold for the chain in Example 2 since P"(x, x) = 0
for odd values of n. We can modify the Ehrenfest chain slightly and avoid
such “periodic” behavior.

Example 3. Modified Ehrenfest chain. Suppose we have two boxes
labeled 1 and 2 and d balls labeled 1, 2, ..., d. Initially some of the balls
are in box 1 and the remainder are in box 2. An integer is selected at
random from 1, 2,..., d, and the ball labeled by that integer is removed
from its box. We now select at random one of the two boxes and put the
removed ball into this box. The procedure is repeated indefinitely, the



2.2. Examples 53

selections being made independently. Let X, denote the number of balls
in box 1 after the nth trial. Then X,, n > 0, is a Markov chain on & =

{0, 1,..., d}. Find the stationary distribution of the chain for d = 3.

The transition matrix of this chain, for d = 3, is

01 2 3

01 1 0 07

113 4+ 30

210 % %+ ¢

3100 % 4
To see why P is gi s indicated, we will compute P(1, y), 0 < y < 3.
We start with one b ll in box 1 and two balls in box 2. Thus P(1, 0) is t}
probability that the ball selected is from box 1 and the box elected
box 2. Thus

P(1,0) =14 =%
Secondly, P(1, 2) is the probability that the ball selected is from box 2 and
the box selected is box 1. Thus

Clearly P(1, 3) = 0, since at most one ball is transferred at a time. Finally
P(1, 1) can be obtained by subtracting P(1, 0) + P(1, 2) + P(l1, 3) from

’
1 Alfnrnnhvplv P(1.1) is the nrobability that either the selected ball ig

Lo 4 RIVVIIIARALAY Wiy 4 \1y k) 10 liiwvw IJI.VUWU J 1AL WILIlwWi Viiw UOWiwWwives Uil 1O

from box 1 and the selected box is box 1 or the selected ball is from box 2
and the selected box is box 2. Thus

P, 1) =134 +% %=1

The other probabilities are computed similarly. This Markov chain is an
irreducible birth and death chain. It is easily seen that 7, 0 < x < 3, are
the same as in the previous example and hence that the stationary distri-
bution is again given by

7[(0) = %" 7!(1) = %s TE(2) = %, and 75(3) = %'

2.2.2. Particles in a box. A Markov chain that arises in several
applied contexts can be described as follows. Suppose that £, particles are
added to a box at times n = 1, 2, ..., where {,, n > 1, are independent
and have a Poisson distribution with common parameter 4. Suppose that
each particle in the box at time », independently of all the other particles
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in the bo d independently of how particles are added to the b X, has

smsmmalinlazilitery 2o o 1 AL wnsvanzsa: tlan LAy nde e A BIo Ll $xr
plUUdUlllLy VY ~ 1 O1 1c111a1111115 lll Li1C DVA atl LllllC (4 ‘I‘ 1 alill l) alll _y
qg = 1 — p of being removed from the box at time n + 1. Let X, d note
the m.mber of particles in the box at time n. Then X, n > 0,is a Markov

chain. We will find the stationary distribution of this cham. We will also

find an explicit formula for P"(x, y) and use this formula to show directly
that N hAlds
tiiat \L} 11VUINLD.

The same Markov chain can be used to describe a telephone exchange,
where £, is the number of new calls starting at time n, g is the probability

that a call in progress at time »n terminates by time n + 1, and X, is the
number of calls in progress at time .

We will now analyze this Markov chain. Let R(X,) denote the number
of particles present at time # that remain in the box at time n + 1. Then

Xor1 = &ue1 + R(X).

Clearly
D/D/v\_nlv_v\_/x\nzfi_n\x_z N o~ » ~
1\1\\An}"—41A"—‘4\}—"\Z’P\1 P} ’ U)L)A,
and
z,— A
v ©
P, = 2) = , 23>0
z!
Since
min(x,y)

P(Xn+1=inn=x)= ZO P(R(X,,)=z,f,,+1=y—-ziX,,=x)

min(x,y)
z=0
we conclude that
min(x,y) )‘y—ze—l x s I
(15) Py = % A (2) - o
=0 (y — z)! \2

It follows from (15) or from the original description of the process that
P(x, y) > Oforall x > Oand y > 0, and hence that the chain is irreducible.

Suppose X, has a Poisson distribution with parameter r. Then R(X,)
has a Poisson distribution with parameter pt. For

P(RX) = ) = ¥, P(X, = % R(X,) = )

I
D18

P(X, = x)P(R(X,) = y | X, = x)

xX=y

= i ' (x\ P — py™?
x=y X. \y/

tx -t
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= i ie—_t—— pPa - py™’
x=y y! (x - y)’
_ (et & (i1 = )y~
y! =y (x — p)!
_(piPet & (11 — p))’

vl Z=0 Al
y: z z!

iY

_ (ptye”’ S1-P)

v!
y H
(ptye™™
yt o
whinh chaure that PV Y hae tha indicratad Patcann Aictrikhiiéinn
111IV11 O11VU VWO Lilal 1\\Anl H1Ad LI11IV 11IMIvAatuvll 1 UIdoVIL Uil ivuilivil
We will now show that the stationary distribution is Poisson with
parameter ¢ for suitable . Let X, have such a distribution. Then X, =
4 /7Y \ PR P - Lt 114 X . _tT1__ 1 __ P 5 YN
gl + I((Ao) 15 1€ Suin Ol 1INacpendaciit r4naoin vdrid oics IldVll'lg roisson
distributions with parameters A and pt¢ respectively. Thus X, has a
DOISSGQ distrlkufinn n'nﬂ'\ narametar 1 L nt The dictribhntinn Af Y. unll
F s ) 8 ¥ § v LANJ11 YViilil Pululll\vb\il v [] II(«- A 1ilWw \JBiJollivuilivil Vi 111 Yy ilil
agree with that of X, if t = 4 + pt, i.e,, if
1 1
N
t = = =
1—-p g

‘e conclude that the Markov chain has a stationary distribution = which
a Poisson distribution with parameter 4/g, i.e., such that

(16) n) = HOTe oy

x!

Finally we will derive a formula for P"(x, y). Suppose X, has a Poisson
distribution with parameter ¢. It is left as an exercise for the reader to
show that X, has a Poisson distribution with parameter

tp" 4 /111 N
Ilpp+—\{1 — p)
q
Thus
0 e—ttx "
) P'(x, y) = P(X, = y)
x=0 x
[+ 2a-m|
. tp" + — —p ]
e [~ (1 + 2 - p)] q ,
I- \ q }J y!
and hence
b0
S i "+ = (1 - p"]
(17) y“ tXP(x y) —},(l—pn)/qet(l_pn) q
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Now if
¥ e = (L 0.0) (5 o).
x=0 x=0 x=0

where each power series has a positive radius of convergence, then

PO A
Cx — Ln UzUx—2
If a, = 0 for z > y, then
m:ﬁ(x:y}
Cx — y”, UzUx—2
z=0

Using this with (17) and the binomial expansion, we conclude that

nns N o X! e—l(l—p")/q min"(ﬂx,y) /y\ nz I—)b 71 n\]y_z (1 - pn)x—z
P'(x, y) = - Lz \)pr |-u=pr) =
Y z=0 \“/ Lgq J X — Z)!
"'L:I\L n.'m..l.ﬁnn n':nL Ter 4~
nicn Simpiincs siigniiy to
.-1 ] y—2
e (=)
=6 \2/ -2
OINCEV < p < 1,
Iim p" =0
n— oo
Tuus asn — oo the terms in the sum in (1) all annrnarh 7arn aveant far
;s I . A4110 111 LIiiw OuU1l1ll 111 \1 U} @il “Pl.’l.va\/ll LNVI VU AV L AV
the term corresponding to z = 0. We conclude that
- AN
(19) lim P(x,y) = ¥ =n(y), x,y=0.

n—* o0 y!

Thus (2) holds for this chain, and consequently the distribution 7 given by
(16) is the unique stationary distribution of the chain.

2.3. Average number of visits to a recurrent state

Consider an irreducible birth and death chain with stationary distribu-
tion #. Suppose that P(x, x) = r, = 0, x € &, as in the Ehrenfest chain
and the gambler’s ruin chain. Then at each transition the birth and death
chain moves either one step to the right or one step to the left. Thus the chain
can return to its starting point only after an even number of transitions.
In other words, P"(x, x) = O for odd values of n. For such a chain the

lim P'(x, y) = n(y), ye,

n— oo

clearly fails to hold.
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(20) lim a, = L

n=»a0

for some finite number L, then

exists for every pair x, y of states for an arbitrary Markov chain. In
Section 2.5 we will use the existence of these limits to determine which
Markov chains have stationary distributions and when there is such a
unique distribution.

Recall that

1 (Z\ —_ ’Ii, zZ = y ’
nE0, oz # oy,
and that
(22) E,(1,X,)) = P(X, = y) = P'(x, y).
Set
N = 3 1,(X.)
and

Gix, ) = ¥ P"(x, )

Then N,(y) denotes the number of visits of the Markov chain to y during
times m = 1,..., n. The expected number of such visits for a chain
starting at x is given according to (22) by
(23) E(N,(y)) = Gy(x, y).

Let y be a transient state. Then

iim N,(y) = N(y) < «©  with probability one,

n-* o
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and

lim G, (x, y) = G(x, y) < 0, xe .

n—* o

It follows that

e .. N (v) - . s e
(24) Im ——= =0 with probability one,
n—» oo n
and that
(25) lim Gulx ¥) 0, xe ¥
n—>oo n

iQ 1n i- ta v nnrl that F I 1)
vua l 10 111 otatlwv J/ aliu uviial uJv \ ) ‘y}

tion for a chain starting at x.
ose

Suppose now that y is a recurrent state. Let m, = E(T)) denote the
mean return time to y for a chain starting at y if this return time has finite

expectation, and set m, = oo otherwise. Let 1 (T, <« denote the random
variable thatis 1if T, < c0 and 0if T, = oo.

We wiil use the strong law of iarge numbers to prove the main resuit of
this section, namely, Theorem 1 below.

Strong iLaw of Large Numbers. Let &,, &,, ... be independent
identically distributed random variables. If these random variables

. Py A,

iean [, tnen

mél+'“+€n

n- o n

= u with probability one.

If these random variables are nonnegative and fail to have finite
expectation, then this limit holds, provided that we set u = + 0.

This important theorem is proved in advanced probability texts.

Theorem 1 Let y be a recurrent state. Then

N.(y) — Lir, <o)

(26) lim with probability one,
n— i my
and
@7) lim 9% Y) _ Py oo

n— o0 n my

These formulas are intuitively very reasonable. Once a chain reaches y,
it returns to y “on the average every m, units of time.” Thus if T, < oo
and n is large, the proportion of the first » units of time that the chain is in
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taking expectations.
From Corollary 1 of Chapter 1 and the above theorem, we immediately
obtain the next result.

Covollavy 1 T ot ' ho an irrodiucnihlo clocod cot of rorirront ctatoc
- lVlbulJ X AJ4CV W UL Wik LT T ULV IL LiVOCKW UL VJ roevarivise viwecy
Then
G(x, ) 1
(28) lim = -, x, yeC,
n-» o n m

20
L7

{ \

<£7)

If m, = oo the right sides
y [ =4

(25) hold.

Proof. In order to verify Theorem 1, we need to introduce some
additional random variables. Consider a Markov chain starting at a

rarnrrant t With nrohahility

1
AvVewudliviit o Cl-l. )’ YV iLll lJlUUaUlllb

J 1
times. Forr > 1 let T} denote the time of the rth visit to y, so that

T,;=min(n>1:N,(y) =r).

y

Set Wy =T, =T, and for r > 2 let W) =T, — T,”! denote the

waiting time between the (r — 1)th visit to y and the rth visit to y.

Clearly
W, 4
The random variables W! w? are independent and identicallv
A 11 LANS 111 X 4 A rr y’ rr y, Al v Au.uuy\.fll\.l\.«llb ali\l lu\.«lll’l\lally
distributed and hence they have common mean E(W ;) = Ey(Ty = m,.

This result should b mtu1t1velv obvious, since every time the ¢ urn
to y it behaves from then on just as would a chain starting out 1n1t1ally at
y. One can give a rigorous proof of this result by using (27) of Chapter 1

to show that forr > 1

//r+1=m | wl — ., WP — 2 ) — (mrl " \.
N 44 Mpq | Wy gy .oy Ty My = £\W, = iM,;4),

and then showing by induction that
P(W, =my,..., Wy =m,) =P(W, =my)---P(W}) =m,).
The strong law of large numbers implies that

Wl w24eoo 4+ WE
Im —~ . P >=m, with probability one,
k-0
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i.e., that
Tk
(30) lim T” = m, with probability one
ks K
Set r = N,(y). By time n the chain has made exactly r visits to y. Thus
the rth visit to y occurs on or before time n, and the (r + 1)th visit to y

occurs after time »; that is,

TIVnU’) <n< Tﬂn()’)*l

and hence

Tyn()’) n Tyn(Y)"'l

J 4

N(y)  N(y)  NO)
or at least these results hold for n large enough so that N,(y) = 1. Since
N,(») = oo with probability one as n = oo, these inequalities and (30)
tnoethar imnlu that
b\lsvbllvl llLI.PLJ vl

lim —— =m, with probability one,

or, equivalently, that (29) holds.
Let y be a recurrent state as before, but let X, have an arbitrary distribu-

V never wan~le o, T ~Ano wman~lh i hacraca
Yy ulCVvel 1Cavil y. 11 ll. UUCD 1 d.bll _y, llUWCVCl,

robability one,

4l

am M hnee 4L n AL 2. ...
L1011. 1n0€n tn€ cidiin m
the above argument is valid; and hence, with
N (1) /n —_ 1 { T < } /

p
as n = oo. Thus (26) is valid

4Ya\>Ji"** ~ ’y 2114

By aenmuon 0 < N,(y) < n, and hence

(31) 0< M) g
n

A theorem from measure theory, known as the dominated convergence
theorem, allows us to conclude from (26) and (31) that

lim E, (Nn(}’)) — E, (I{Ty<oo}) — P(T, < x) — Pxy
n- o n m, m, m
and hence from (23) that (27) hoids. This completes the proof of
Theorem 1. |

2.4. Null recurrent and positive recurrent

A recurrent state y is called null recurrent if m, = oo. From Theorem 1
we see that if y is null recurrent, then

G.(x, y) I Y

(32) lim 2% ) o [y &m=1 2 %V _ o xe .

n=> o n n-» o n
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(It can be shown that if y is null recurrent, then

(33) lim P'(x, y) = 0, xe <,
which is a stronger result than (32). We will not prove (33), since it will
not be needed later and its proof is rather difficult.)

A recurrent state y is called positive recurrent if m, < co. It follows
from Theorem 1 that if y is positive recurrent, then

=
@)
)
(=¥
by
@)
.—’
=)
o
z.
=
<
R ¢
ﬂ
[¢']
(@]
c
=
a
=
[ dd
7]
H
[+¥)
[
[¢']
g

recurrent state, then, with probability one, the proportion of time the
chain is in state y during the first #» units of time approaches the positive
limit 1/m,as n — co.

The next result is closely related to Theorem 2 of Chapter 1.

Proof. 1t follows from Theorem 2 of Chapter 1 that y leads to x.
Thus there exist positive integers n, and n, such that
P"(y,x) >0 and P™(x, y) > 0.

Now

png+m+nas N~ n

P "(y, y) = P"(y, x)P"(x, x)P"(x, y),

and by summing onm = 1, 2, ..., n and dividing by n, we conclude that

Gn1+n+n2(y’ y) _ Gnl-i-hz(y’ y) > Pnl(y x)P"z(x y) Gn(x’ x) .
n R n

As n — oo, the left side of this inequality converges to 1/m, and the right

P"(y, x)P"(x, y)
m, .

Hence

1P 0P Y)
m m,

’
y

and consequently m, < co. This shows that y is positive recurrent. |
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From this theorem and from Theorem 2 of Chapter 1 we see that if C
is an irreducible closed set, then every state in C is transient, every state in
C is null recurrent, or every state in C is positive recurrent. A Markov
chain is called a null recurrent chain if all its states are null recurrent and
a positive recurrent chain if all its states are positive recurrent. We see
therefore that an irreducible Markov chain is a transient chain, a null
recurrent chain, or a positive recurrent chain.

IfCis a Gn;t

10 a4 11111

f‘ll\(‘ 0

o o
Vv WwiUOV

(o R

cat nf
owilL Vil

recurrent state. For

yeC
and by summingonm = 1,..., n and dividing by » we find that
G.(x
y G0 _ 4y sec
yeC n
If C is finite and each state in C is transient or null recurrent, then (25)
holds and hence
G, (x,
1 =Ilim Y Gi(x, ¥)
n-> oo yeC n
X,
= Y lim Glx, ¥) = 0,
yel n—-w n
a contradiction.
We are now able to sharpen Theorem 3 of Chapter 1.

Theorem 3 Let C be a finite irreducible closed set of states.
Then every state in C is positive recurrent.

Proof. The proof of this theorem is now almost immediate. Since C
is a finite closed set, there is at least one positive recurrent state in C.
Since Cis irreducible, every state in C is positive recurrent by Theorem 2. |

Corollary 2 An irreducible Markov chain having a finite number
of states is positive recurrent.

Corollary 3 A Markov chain having a finite number of states has

no null recurrent states.

2 I y N 1Y

rrooj. L orolidry
Corollary 3, observe
Chantar 1 v ig caontained in an i
\/‘-luytvl l J AT W\ L% 23 A ad “ar
Since C is necessarily finite, it follows from heorem 3 that all states in
including y itself, are positive recurrent. Thus every recurrent state is

positive recurrent, and hence there are no null recurrent states. |

"8
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Example 4. Consider the Markov chain described in Example 10 of
Chapter 1. We have seen that 1 and 2 are transient states and that 0, 3, 4,
and 5 are recurrent states. We now see that these recurrent states are
necessarily positive recurrent.

2.5. Existence and uniqueness of stationary distributions

In this section we will determine which Markov chains have stationary
distributions and when there is a unique such distribution. In our dis-

CUSSIOD w¢E Wlll HCCU to lIl[CI'bll ange buminduu‘nb dilu llIIulb o1 bUVCI'dl
occasions. ThlS is Justlﬁed by the fo llowmg standard elementary result in

lim b,(x) = b(x), xe .

n—>oo

lim Y a(x)b,(x) = Y, a(x)b(x).

Let  be a stationary distribution and let m be a positive integer. Then
by (3)
Y n(z)P™(z, x) = n(x).

Summing this equation on m = 1, 2,..., n and dividing by n, we con-
clude that

(34) PO G (z X)

= 71(x), xe .

Theorem 4 Let &t be a stationary distribution. If x is a transient
state or a null recurrent state, then n(x) =

Proof. 1If x is a transient state or a null recurrent state,

(35) im &% _ o xee,

n—»oo n

as shown in Sections 2.3 and 2.4. It follows from (34), (35), and the
bounded convergence theorem that

(%) = lim ¥ n(z) &%) (Z X) _ o,

n—>o0 z

as desired. i
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It follows from this theorem that a Markov chain with no positive
recurrent states does not have a stationary distribution.

heorem 5

-

a unique stationary di strzbutzo m, given by

(36) n(x) = , xe ¥
mx
Proof. It follows from Theorem 1 and the assumptions of this theorem
that
Pl rd AN 4

. Gz, x i
(37) lim 2% X o 2y zes.

n— o0 n m,

Suppose © is a stationary distribution. We see from (34), (37), and the

Toomeen 1.1
oounaca convergenee LllCU rem t

. G, (z, x
n(x) = lim Y n(z) 2, X)
nsw z n
— 1 Y N 1
=—2,MZ) = —
m, z m,
Thus if there is a stationary distribution, it must be given by (36)

To complete the proof of the theorem we need to show that the function
n(x), x € &, defined by (36) is indeed a stationary distribution. It is clearly
nonnegative, so we need only show that

1
(38) Y- =1
\~¥J bod
x m,
and
1 1
(39) Z_P(x’y)=_’ yey
x m, m,

Toward this end we observe first that

Y P"(z, x) =
Summing on m = 1,..., n and dividing by », we conclude that
(40) y&@0 _ e
x n

Next we observe that by (24) of Chapter 1

"c:

>, P™(z, x)P(x, y
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By again summing on m = 1,..., n and dividing by 7, we conclude that

(41) ¥y G_"(in’l) P(x, y) = G,+1(z, ) _ P(z, ) .

x n n

If & is finite, we conclude from (37) and (40) that

B2 X n x M,

i.e., that (38) holds. Similarly, we conclude that (39) holds by letting
n — oo in (41). This completes the proof of the theorem if & is finite.

The argument to complete the proof for & infinite is more complicated,
since we cannot directly interchange limits and sums as we did for & finite
(the bounded convergence theorem is not applicable). Let &, be a

P f (¢4 W a copn Fenon

£ o e {
< . VYU JUU 110111 \ V) Lllat

2dm ~rzlanad A
1HI1ILC DULdCL O

(37) that

<« 1

— <1
xe&y My
The last ineguality holds for anv finite subset &. of &, and hence
W AWAUL Allv‘l““ll\«] AANSANAW AN/A \QAAJ AAAAAVY Wb OUWwWY 1 ~s A L= ’ SwALAWS AAwWiAw -

(42) Y —<1
\ '~} H —

x My
Far if tha ciom of 1/mm over ¥ € & exceeded 1 the cuum over come finite
A Ul 11 lilv 11 VLI L [Iiey VVVLI NV © o WAWWWUWL Ly LiiW UWILL VU VWl OViRIV Liilivv

subset of & would also exceed 1.
Similarly, we conclude from (41) that if &, is a finite subset of %, then

XE€Sy n n n
By letting n — oo in this inequality and using (37), we obtain
1 1
Y —P(x,y) < —
x€eS mx my
We conclude, as in the proof of (42), that
1 1
(43) Y — P(x,y) < —, ye S
\ 7 daned \""7 s/ 5 7
x m, m,
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Next we will show that equality holds in (43). It follows from (42) that
the sum on y of the right side of (43) is finite. If strict inequality held for
some y, it would follow by summing (43) on y that

) (Z 5 Pes )

=2 (Z P(x, y))
=X
which is a contradiction. This proves that equality holds in (43), i.e., that

(39) hoids.
Set

§]»— :§ l""

-

le

and hence ¢ = 1. This proves that (38) holds and completes the proof of
the theorem. i

Corollary 4 An irreducible Markov chain is positive recurrent if
and only if it has a stationary distribution.

b
nonnegative integers. Flnd necessary and sufficient conditions for the
chain to be

(a) positive recurrent,
(b) null recurrent,
(c) transient.

From Section 2.2.1 we see that the chain has a stationary distribution

A AN [S4

if and only if
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Thus (44) is necessary and sufficient for the chain to be positive recurrent.
We saw in Section 1.7 that

D . ..
(45) Y <
x=1Py1°"° Px
is a necessary and sufficient condition for the chain to be transient. For the
null recurrent, it is necessary and sufficient that (44) and (45)

chain to be
both fail to hold. Thus

=1 py e P =1 gy,

are necessary and sufficient conditions for the chain to be null recurrent.
As an immediate consequence of Corollary 2 and Theorem 5 we obtain

Corollary 5 If a Marko chain having ﬁmte number of states

one
X
47) lim (%) = n(x), xed
n—» o h
251 Radiin~nihla ahain T at a trihitinn an @ 1a lat
&.O. 8 ncGulCivIC Criail diouulil O 57, 1.C., 10y

( €
of . We say that 7 is concentrated on C if

n(x) = 0, x ¢ C.

By sentially the same argument used to prove Theorem 5 we can obtain

Theorem 6 Let C be anirreducible closed set of positive recurrent
states. Then the Markov chain has a unique stationary distribution ©
concentrated on C. It is given by

!—1 xeC
(48) n(x) = my ’

0, elsewhere.
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Suppose C, and C, are two distinct irreducible closed sets of positive

rarnrrant ctatac np a Marlkav chain Tt fallaw ws from Thanram & that tha

AWWUliAWiiIL DLlAAlwo 4 IVAALINVY wviidlll,. AL 1VIIVYYO 11Vill 111VUVLVILIL U LAl Lilv
Markov chain has a stationary distribution 7, concentrated on C, and a
different stationary distribution 7; concentr d on C,;. Moreover, the

distributions n, defined for 0 < a < 1 by

n(x) = (1 — )my(x) + an,(x), xe 4,

are distinct stationary distributions (see Exercise 5).
D. -A...L......._ MLl cncensaac A L mnmnd 4l 2 acmmcracmnaa =378 ~led o 2e
DY CUILLILLLIE 11ICOLICIDD 94U allu UICID COLCYULIILOS, WO ootairi

Corollary 7 Let %,

Markov chain.

() If & is empty, the chain has no stationary distributions.
i) If 5’ is a nonemptv irreducible set, the chain has a unique

but not irreducible, the chain has an infinite
t stationary distributions.

-y
S
=
K5
a-
=
Q
%
é
1Q \<

Consider now a Markov chain having a finite number of states. Then
every recurrent state is positive recurrent and there is at least one such
state. There are two possibilities: either the set % of recurrent states is
irreducible and there is a unique stationary distribution, or ¥, can be

Armmncad i ‘-:\ $ex1 A manma issads Lla ~AlAacad ont

chuulpUbU into two or more irreducible closed sets and there is an
infinite number of distinct stationary distributions. The latter possibility
holds for a Markov chain on & = {0, 1,..., d} in which d > 0 and 0
and d are both absorbing states. The gambler’s ruinchainon {0, 1, ..., d}
and the genetics model in Example 7 of Chapter 1 are of this type. For

uch a chain any distribution n,, 0 < a < 1, of the form
[ 1—a x=0,
T (x) = <{a, x =d,
0, elsewhere,

is a stationary distribution.

Example 6. Consider the Markov chain introduced in Example 10
of Chapter 1. Find the stationary distribution concentrated on each of
the irreducible closed sets.

We saw in
decomposed into the absorbing state 0 and the irreducible closed set
{3, 4, 5}. Clearly the unique stationary distribution concentrated on {0}
is given by #, = (1,0, 0,0, 0, 0). To find the unique stationary distri-

(h

that the set of

V\.A L A.\I vaidEV U

"
4
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bution concentrated on {3, 4, 5}, we must find nonnegative numbers
n(3), n(4), and n(5) summing to one and satisfying the three equations

7(3) + n(4) + 7(5) 3)
=71
6 2 4
3) = n(4)
3
- 43S
(3) n n(4) n 3n(d) = n(5).

2 2 4

From the first two of these equations we find that n(4) = =(3)/3 and
7(5) = 8n(3)/3. Thus

(31 4+ 1 4+
YN~ J\* 3

) = 1
) a

w0

from which we conclude that

"3) =% 1@=4r ad w(5=%

B
.
it
N
>
win
N’

\-v-’

is the stationary distribution concentrated on {3,

2.6. Queuing chain

Consider the queuing chain introduced in Example 5 of Chapter 1.
Recall that the number of customers arriving in unit time has density f
and mean pu. Suppose that the chain is irreducible, which means that
f({©) > 0and f(0) + f(1) < 1 (see Exercise 37 of Chapter 1). In Chapter
1 we saw that the chain is recurrent if u < 1 and transient if 4 > 1. In

Qantinn VA& 1 wa will chaw that 1in tha rasiierrant raca
VLU LIUVULL &Vl VW VVILL 011V YVYY L11AU 111 UiIVv 1VUVULIVIIL VAoV
(4Q) mo o=

\v7) 7esQ 1 .

n......,‘

ICNCC v is a PUSII.IVC

-
)

~ FAON ¢l nt 28 .0 1 tlhhfnen 2.a USSR |
Vlll1 \“77) tildat 11 M ~N 1, tiivil l’lo \ w aliul
is

y irreducibility the chain is positive recurrent. On
the nfhr-r h d if u = then m. = o0 and hence 0 is a null recurrent

CAAW NS Liiwai Aile. AAu, L’ vaiwax “*0 W Ceaane (<] Avvu iw

state. We conclude that the queuing chain is null recurrent in this case.
Therefore an irreducible queuing chain is positive recurrent if p < 1 and
null recurrent if u = 1, and transient if p > 1.

o
O
=
-
(D
""U)
m
e-c-
(D
s =
=
c
7
(on
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*2.6.1. Proof. We will now verify (49). We suppose throughout the
proof of this result that f(0) > 0, f(0) + f(1) < 1 and u < 1, so that
the chain is irreducible and recurrent. Consider such a chain starting at the
positive integer x. Then T,_, denotes the time to go from state x to state
x—1,and T,_; — T, 1 <y < x — 1, denotes the time to go from
state y to state y — 1. Since the queuing chain goes at most one step to
the left at a time, the Markov property insures that the random variables

- T T
“XxX=12 *x—2 “Xx—1° ’» *0 “1
non semAdnense dacd Mhnna wnsd s srnsmtalalan mwas 1t dAacmdtmnnlle, Jiadmilaribnde Caw
al’® lllUCl}C 1IVUCIIL. L1 IICOC 1A4llUVlll vadllavlOd dlcC IUCllledlly UlblllUUlCU, 101
each of them is distributed a

i.e., as the smallest positive integer # such that the num ustomers
served by time # is one more than the number of new customers arriving
by time n.

At L4\ f\ 1 ph PRGN
Let G(1),0 <t < 1, denote t

time to go from state 1 to state 0. Then
(50) G(t) = _Z‘ t"P,(Ty = n).

The probability generating function of the sum of independent nonnegative
integer-valued random variables is the product of their respective
probability generating functions. If the chain starts at x, then

To = T._, + (T,

= — T
10 x—1 T \fx-2 £

Y L oeee L (T __ TN
x—1) \

' r 4o £1)

is the sum of x independent random variables each having probability
generating function G(¢). Thus the probability generating function of T,
is (G(2))*; that is,

(51 GOy = T #P(To = n)
We will now show that
(52) G(t) = 1@(G(t)), 0O0<t<1,

where @ denotes the probability generating function of f. To verify (52)
we rewrite (50) as

G(f) = ZO 1P (Ty = n + 1) = tP(1,0) + ¢ Zl "P(T, = n + 1).

* This material is optional and can be omitted with no loss of continuity.
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By using successively (29) of Chapter 1, (51) of this chapter, and the
formula P(1, y) = f(y), y = 0, we find that

G(1) = tP(l, 0) + t z: Y P(l, y)P(T, = n)

y¥£0

1 s J £ 20
y*£0 n=1
= tP(1,0) + t ¥ P, y)G(t)y
y#0

A .

For 0 < ¢t < 1 we can differentiate both sides o
G'(t) = ®(G(t)) + tG'(t)D'(G(2)).
Solving for G'(¢) we find that

Q) 0

bl , t < 1.
@'(G(1))

(53) G'(t) =

o
— t

1

Now G(t) - 1 and ®(t) - l as ¢t — 1 and

0

lim &'(f) = lim Y xf(x)rF™?

t—1 t—»1 x=1
= ‘_Z.l xf(x) = p.

By letting ¢t — 1 in (53) we see that

-

1

(54) lim G'(t) =

t—1 -

By definition
G(t) = Zl P (T, = n)t".

But since P(1, x) = P(0, x), x = 0, it follows from (29) of Chapter 1 that
the distribution of T, for a queuing chain starting in state 1 is the same as
that for a chain starting in state 0. Consequently,

P O(TO = n)tn’
1

ok

G(t) =

n
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and hence
lim G'(f) = lim Y nPy(T, = n)i"?
t—1 t-»1 n=1
== Zl nPo(To = n)
= E(Tp) = my.
It now follows from (54) that (49) holds. |
2 7 Coanvarnanca tn tha etatinnarv dicetrihntinn
e F WNTIB VWIS uvllvv W LW VLA LIWVIIWAS , I LT A LIV

We have seen earlier in this chapter that if X,, n > 0, is an irreducible
positive recurrent Markov chain having = as its stationary distribution,
then

1 ¢ G, (x, y)

tm = 5 P N i O\% Y ol ) x ve &P
11111 ‘ i \J\r, -y} - 1111} Ib\)’}, Ny _y T v
n-»o N m=1 n-» o n

T thic cantinn wa urill cana whan tha gtrangar racnls

A1I LLI1D OUALLIVILL VWU VWWIIL OVG VWIIVILL UV OLlUlls\«l 1VOoUlL

holds and what happens when it fails to hold.

The positive integer d is said to be a divisor of the positive integer n if
n/d is an integer. If I is a nonempty set of positive integers, the greatest
common divisor of I, denoted by g.c.d. 7, is defined to be the largest integer
d such that d is a divisor of every integer in 1. It follows immediately that

1 <gcd I<min(n:nel).

In particular, if 1 € 7, then g.c.d. I = 1. The greatest common divisor of
the set of even positive integers is 2.
Let x be a state of a Markov chain such that P"(x, x) > 0 for some

mn A § |

We define its period d, by

-

n > 1, 1.e., such that p,, = P,(T, < o) > 0.
d, =gcd. {n>1:P%x, x) > 0}.

Then
1 <d <min@=>1:Px, x) > 0.
b 7 J

- “x -~ ~

If P(x, x) > 0, thend, = 1.
If x and y are two states, each of which leads to the other, then d, = d,.
For let n, and n, be positive integers such that

P1(x,y) >0 and P(y, x) > 0.
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Then
P"Fm(x, x) = P™(x, y)P™(y, x) > O,

and hence d, is a divisor of n; + n,. If P"(y, y) > 0, then
PrAITM(x, x) = P™(x, y)PY(y, y)P"(y, x) > O,

so that d, is a divisor of ny + n + n,. Since d, is a divisor of n, + n,,
it must be a divisor of n. Thus d, is a divisor of all numbers in the set

f.a ~ 1. Dn > Qimnn A +hha 1 QI i~ Az . Y
vt = 1. \y, y} j DLLILC uy lb LllC 14150 SuUlll UlVlbUl, we CUILL

that d, < d,. Slmllary d,<d,a

=
o
=3
[¢"]
=
&
k&.
I
Y

A 10 ¢+ nf D{v W)~ N FAr cnma
UiV 1D ulatl 1 \Ay A ~ VU 1Ul dulliv
n

irreducible queuing chain, such

»n
=
[e’]
o
(9]
w
7]
jo°]
=
<
(%)
"3
D
3,
@
=
<]

chain.

If some r, > 0, then P(x, x) = r, > 0, and the birth and death chain
is aperiodic. In particular, the modified Ehrenfest chain in Example 3 is
aperiodic.

Suppose r, = O for all x. Then in one transition the state of the chain
rhanans cithae Fonsa nm AdAd mrmabhanad gbnén $a ot aven mitzntraead cénén A
viiallgLd viillvl 11vill all VUl 11ULIIUCLICU dLdle LV all C©VYUll 11U1lIUeiTU >lall vl

we conclude that the chain is periodic with period 2. In particular, the
Ehrenfest chain introduced in Example 2 of Chapter 1 is periodic with
period 2.

P thovp ic n intoaor v N < » o~ A ocun that DB~ ) e N 12mloce
e/ LTI C D QIL Wiyl 1Ty V 2 1 NS Uy DULIL L I \J\r, j J KRreicov
n = md + r for some nonnegative intege and

(&6 ' T Pmd+riy 1) RPN

(56) lim P™*7(x, y) = dn(y).

m-—* o
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For an illustration of the second half of this theorem, consider an
irreducible positive recurrent birth and death chain which is periodic with
period 2. If y — x is even, then P>"*!(x, y) = 0 for all m > 0 and

lim P2™(x, y) = 2n(y).

m-—» oo
If y — x is odd, then P?>™(x, y) = O for all m > 1 and
lim P*™*!(x, y) = 2n(y).

m-—» o0

We will prove this theorem in an appendix to this chapter, which can be
omitted with no loss of continuity.

Example 8. Determine the asymptotic behavior of the matrix P" for
the transition matrix P

(a) from Example 3,

\*J ) of ’

(b) from Exampie 2.

(a) The transition matrix P from Example 3 corresponds to an aperiodic
irreducible Markov chain on {0, 1, 2, 3} having the stationary distribution

given by
n(0) = %, (1) = 3, n(2) = 3, and n(3) = .

It follows from Theorem 7 that for n large

3 % %]
IR EE | |
P 3 3%
L+ ¢ 3 4]
(b) The transition matrix P from Examnle 2 corresponds to a periodic
\Ul A 1AW Li ks g blvll AARGA VL A A M - t’ - Ll‘ur AT A d r -
irreducible Markov chain on {0, 1, 2, 3} having period 2 and the same

stationary distribution as the chain in Example 3. From the discussion
following the statement of Theorem 7, we conclude that for n large and
even

30 2 07
o |0 301
1310 3 0}
|03 0 2]
while for » large and odd
"0 3 0 37
10 30
Pt =
0 3 0 %
[+ 0 3 0
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APPENDIX

2.8. Proof of convergence

We will first prove Theorem 7 in the aperiodic case. Consider an

aperiodic, irreducible, positive recurrent Markov chain having transition

otntn cemana (P anAd tatinnaey Ascteilazstin o AV VS xre
staiv DPG\JC J 4 allu DLdLlUllal_y uibiiivuuvil it.

of Theorem 7 holds f ors
int

Then

(1) ged. T =1;

(i) f melandnel thenm + ne L
Property (ii) follows from the inequality

P™*"(a, a) > P™(a, a)P"(a, a).

-+
-+
(¢
X

Properties (i) and (ii) imply that there is a positiv

n:ffnra"n > n,.

integer n, suc

=3
(s
=
- ®
-

result in Section 2.8.:

forn > n,.

T A - ‘\ ~ 7?7 SAnnew
Let x and y be any pair o

there exist positive integers

3
Q..
S
w
[7,]
c
(¢]
=p
P
fom
o
ﬁ

P*(x,a) >0 and  P"(a,y) > 0.
Then for n > n,
Pm¥mim(x, y) > P™(x, a)P"(a, a)P"(a, y) > O.

We have shown, in other words, that for every pair x, y of states in & there
is a positive integer n, such that

(57) P'(x,») >0, n> ne.

[7¢]
(¢
-

= {(x,y) :xe ¥ and y € ¥}.

Then 2 is the set of ordered pairs of elements in &#. We will consider a
Markov chain (X,, Y,) having state space %2 and transition function P,
defined by

PZ((xO’ y0)9 (xs y)) = P(xO’ X)P(yo, y)'

It follows that X, » > 0, and Y,, n > 0, are each Markov chains having
transition function P, and the successive transitions of the X, chain and

the Y, chain are chosen independently of each other.
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We will now develop properties of the Markov chain (X,, Y,). In
particular, we will show that this chain is an aperiodic, irreducible,
positive recurrent Markov chain. We will then use this chain to verify the
conclusion of the theorem.

Choose (xo, ¥o) € &? and (x, y) € 2. By (57) there is an n, > 0 such
that

P'(x9, x) > 0 and P'(y,, y) > O, n > ny.

(g ol

1nen
( ) Pg((xo, y0)9 (x’ y)) = Pﬂ(xm X)P’!(yo, y) > Oa n 2 ny.

We conclude from (58) that the chain is both irreducible and aperiodic.
The distribution n, on %2 defined by 7,(x,, ¥o) = m(xo)n(y,) is a
stationary distribution. For

v ﬂ_{v_ 17A\p_((V \7,\ (V \’\\
Lod SN0 YOIE 2\\™NV0s JOJs \ ™ UV ))
(x0,y0) € &2
= Yy Y mle Yl vIP(x~ XYP( v~ v)
y” L TANMOJIRTOIIRN0 M)A J 0y V)
X0€Y¥ YeF

Thus the chain on &2 is positive recurrent; in particular, it is recurrent.
Cat

MWL

T=min(n>0:X%X,=17,).
Choose a € &. Since the (X,, Y,) chain is recurrent,
Two = min (n > 0: (X, Y,) = (a, a)

is finite with probability one. Clearly T < T, ,, and hence T is finite with
probability one.

) N PO \ 1 £omomoe o a AV o 2l A4l _ut . LI X7 \\
ror « Ily 1 (ICEAIUICSS O LIC Alstributllon o1 (44, 10))
(59) PX,=y,T<n=PY,=y,T<n, ye&.

This formula is intuitively reasonable since the two chains are indistin-
guishable for » > T. To make this argument precise, we choose

1<m<n Thenforze &

(60 DY — uvwlT=m Y —V = 2

\UU Az l.l I'b,ﬂ .lm L}
=PY,=y|T=mX, =Y, =2),

m

since both conditional probabilities equal P""™(z, y). Now the event
(T < n} is the union of the disjoint events

{T=mX,=Y,=2}, 1<m<n and ze ¥,
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so it follows from (60) and Exercise 4(d) of Chapter 1 that
PX,=y|T<n=PY,=y|T<n)

s\ 1

and hence that (59) holds.
Equation (59) implies that
PX,=y)=PX,=y,T<n+ PX,=»T>n)
P(Y, =y, T<n) + PX, =y, T>n)

DIV ! DT < =
f\‘n_.}’}"'f\‘ -~

IA

P(Y,=y) < P(X, =y + P(T > n).

T o £ . L. . ~ 1
1NCIC101IC 10rn =~ 1
L1\ 1 Ds v —_— =) DXy Y| - D/ \ < Ve 24
(o1) r\a, =)) — i, =J))| = r\L > n yeJs.
Since T is finite with probability one,
£ LN\ 15 ___ nsrr Y n
(62) mm {1 >n)=9
n—a

=y)=0, ye&.

Using (63), we can easily complete the proof of Theorem 7. Choose
x € & and let the initial distribution of (X, Y,) be such that P(X, = x) =
1 and

D AT ~ P

P(Yo = yo) = n(yo)y, yo€ .
Since X,, n > 0, and Y,, » > 0, are each Markov chains with transition
function P, we see that
(64) P(X, = y) = P(x, ), ye <,
and
(65) PY, =y =n(), yes.

Thus by (63)—(65)
lim (P'(x, y) — n(y)) = lim (P(X, = y) — P(Y, = y)) =0,

n— oo n—> oo

and hence the conclusion of Theorem 7 holds.

2.8.1. Periodic case. We first consider a slight extension of
Theorem 7 in the aperiodic case. Let C be an irreducible closed set of
positive recurrent states such that each state in C has period 1, and let n
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be the unique stationary distribution concentrated on C. By looking at the
Markov chain restricted to C, we conclude that

1
lim P(x,y) =n(y) =—, x,yeC.

n—» o my

In particular, if y is any positive recurrent state having period 1, then by

letting C be the irreducible closed set containing y, we see that

1
(66) lim P"(y, y) = —.

n-» oo Wly

We now proceed with the proof of Theorem 7 in the periodic case.
Let 1‘( n > n he an I‘I'I‘PA 141

ne I
= Uw ull ALLWwNiuiwi

-

periodic with period d > 1. bet Y, = X,45,m = 0. Then Y,,,, m>0,isa
d

ged. {m| Q™(», ) > 0} = gcd. {m| P™(y, y) > 0}

gcd. {n| P'(y, y) > 0}

w»—

= 1.

Thus all states have period 1 with respect to the Y, chain.

Let the X, chain and hence also the Y, chain start at y. Since the X,
chain first returns to y at some multiple of 4, it follows that the expected
return time to y for the Y, chain is d~'m,, where m, is the expected
return time to y for the X, chain. In particular, y is a positive recurrent
state for a Markov chain having transition function Q. By applying (66)
to this transition function we conclude that

. d
lim Q"(y, y) = — = dn(y),

and thus that

(67) lim P™(y,y) = dn(y), ye¥.

m-—» o0

Let x and y be any pair of states in % and set

r; = min (n : P'(x, y) >

1 >/77 7

0).

Then, in particular, P"'(x, y) > 0. We will show that P"(x, y) > 0 only
if n — r; is an integral multiple of d.
Choose n, such that P™'(y, x) > 0. Then

Pritm(y, y) = P"(y, X)P™(x, y) > 0,
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and hence r, + n, is an integral multiple of d. If P"(x, y) > 0, then by
the same argument n + n, is an integral multiple of d, and therefore so is
n — r,. Thus, n = kd + r, for some nonnegative integer k.

There is a nonnegative integer m, such that r, = m,d + r, where
0 < r < d. We conclude that

£ 7,0\ N __ P | ' —
(63) P(x, y) = uniess n=mada-+r

for some nonnegative integer m. It follows from (68) and from (28) of
Chapter 1 that

(69) Pr(x, y) = X PAT, = kd + NP"RKy, ).
Set
(Pm=Rd(y y),  O0<k<m
a ) = | (¥ ) <k<m,
= =10, k > m.

Then by (67) for each fixed &
lim a,(k) = dn(y).

m-» oo

We can apply the bounded convergence theorem (with & replaced by
{0, 1, 2,...}) to conclude from (69) that

lim P™*"(x, y) = dn(y) Z P(T, = kd + r)
m—» o k=0
= dn(y)P(T, < )
= dn(y),
and hence that (56) holds. This completes the proof of Theorem 7. |
2.8.2. A result from number theory. Let I be a nonempty set
of positive integers such that
(1) gecd. I =1;

(it) if m and n are in , then m + nisin L
Then there is an n, such that n € I for all n > n,.

X7

AL Wl 1t prove that / contains tw

h

crmd emeemm AL 4 PRy <=7

C
otherwise. Then there is an integer kK > 2 and an n, € I such that
4 h 1 0

.
n. 1 lr c Iand anv two dic ot 1in nteogerg 1
'll 1 IV e A& SB1AN AL lJ l.ub llvb AL Lvsvlo A

from property (i) that there is an n € I such that
We can write
n=mk+r,
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where m is a nonnegative integer and 0 < r < k. It follows from property
(ii) that (m + 1)(n, + k) and n + (m + 1)n, are each in I. Their
difference is

m+Dn, +k)—n—-—m+ Dny=k+mk —-—n=k—r,
1.

atlha A it A
s the definition of k.

al
hat I contains two consecutive integers, say n; and
n

en there are

LAV a

rs m and r such

onneocative inteo
1o0nnegative intege 1 ang

n—ny=mn; +r.

n=’(n1 + 1)+ (n_,_ —r+m)n1,
which is in I by property (ii). This shows that n € I for all

n=

ny = ni. |

Exercises

1 Consider a Markov chain having state space {0, 1, 2} and transition

~bas

E 22 -r
1liatllA

0 1 2
0lr4 4 2]
o I

e St o N I
22 4 4

Show that this chain has a unique stationary distribution 7 and find 7.

2 Consider a Markov chain having transition function P such that
P(x,y) = a,, xe & and y € &, where the a’s are constants. Show
that the chain has a unique stationary distribution 7, given by n(y) =
oa,yeE L.

b
3 Let © be a stationary distribution of a Markov chain. Show that if
n(x) > 0 and x leads to y, then n(y) > O.

4 Let 7 be a stationary distribution of a Markov chain. Suppose that y
and z are two states such that for some constant ¢
P(x, y) = cP(x, 2), xe 4.
Show that n(y) = cn(2).
5 Let n, and 7, be distinct stationary distributions for a Markov chain.

(a) Show that for 0 < a < 1, the function 7, defined by

Ax) = (1 — a)me(x) + an,(x), xe ¥,

is a stationary distribution.
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11

12

13

14

81

(b) Show that distinct values of a determine distinct stationary
distributions n,. Hint: Choose x, € & such that my(x,) # 7,(x,)
and show that m,(x,) = my(x,) implies that « = B.

Consider a birth and death chain on the nonnegative integers and

suppose thatp, = 1,p, = p > Oforx > l,andg, =¢g=1—-p>0

for x > 1. Find the stationary distribution when it exists.

(a) Find the atlonary distribution of the Ehrenfest chain.

LY Tiad 4l o mnamn mamr] wraoed o aaaa Lo Aiqdeclaoas o

(D) ring l.ll meanmn a 1u dlldllbU Ul l.lllb aistrioution.

For general d, nd the transition function of the modified Ehrenfest
Arhain intradiicad in nvnmnln 2 and chaw that thioc ~rhain hae tha cama
Vildlll 111 VU ULV 111 .L;Aa].llyl\z Jg¢ QALIU J11VYY L11Al LU11ID viiQilil 11ad L1V dalllv
stationary distributi does the originai Ehrenfest chain

T sd V oso s N Ln 6 cmmaidlicra smmitscmaind cmeadicnailala laleil o4 .41
LClL A,y T 2 U, DU a pPOdIUVE ICCULICIHL IHICUULIVIC DIl alld Jdcalil
chain, and suppose that X, has the stationary distribution . Show

that
PXy, =y| X, =x) = P(x

i

Hint: Use the definition of 7, given by 9).

Let X,, n > 0, be the Markov chain introduced in Section 2.2.2. Show
that if X, has a Poisson d1str1but10 with parameter ¢, then X, has a

Poisson distribution with parameter

A n
tp" + - (1 — p).
q

Let X,, n > 0, be as in Exercise 11. Show that

n )' n
E(X,) =xp" + = (1 — p").
q
Hint: Use the result of Exercise 11 and equate coefficients of ¢* in the
appropriate power series.

Let X,,n > 0, be asin Exercise 11 and suppose that X, has the stationary
dlstrlbutlon. Use the result of Exercise 12 to find cov (X, X,4+.).
m>0andn > 0.

Consider a Markov chain on the nonnegative integers having transition
function P given by P(x x + 1) = p and P(x, 0) =1- - P> where

n < p < 1 Chow t
F . 1 9

7 and find 7.



82

15

16

17

18

19

20

Stationary Distributions of a Markov Chain

The transition function of a Markov chain is called doubly stochastic if

Y P(x,y) =1, ye.

xe¥
What is the stationary distribution of an irreducible Markov chain
having d < oo states and a doubly stochastic transition function?

Consider an irreducible Markov chain having finite state space &,
transition function P such that P(x, x) 0, x e & and stationary

PP al 4 PR I

UlbL[lUULlUIl TT. LCL Pxs X € -7, DC: bu@ll Llat 0 < Dx < 1, ana et

O(x,y), xe & and y € &, be defined by

Q(xa X) =1- Dx

and
NV e 2 . = D <) s L
YA V) = Pxt\Xy V) y = A
Show that Q is the transition function of an irreducible Markov chain
having state space % and stationary distribution n’, defined by
p5 'n(x)
n'(x) = xe <.

Zyey p; tn(y)’

The interpretation of the chain with transition function Q is that
starting from x, it has probability 1 — p, of remaining in x and prob-
ability p, of jumping according to the transition function P.
Consider the Ehrenfest chain. Suppose that initially all of the balls
AAAAAAAAAA ) A PR N P S fammm zramd

arc in Luc second box. Find Luc cz(pcucu amount 01 time until the
system returns to that state. Hint: Use the result of Exercise 7(a).

A particle moves according to a Markov chain on {1, 2,..., ¢ + d},
where ¢ and 4 are positive integers. Starting from any one of the first
c states, the particle jumps in one transition to a state chosen uniformly
from the last d states; starting from any of the last 4 states, the particle
jumps in one transition to a state chosen uniformly from the first ¢
states.

(a) Show that the chain is irreducible.
(b) Find the stationary distribution.

Consider a Markov chain having the transition matrix given by
Exercise 19 of Chapter 1.

(a) Find the stationary distribution concentrated on each of the
irreducible closed sets.

(b) Find lim,_, , G,(x, y)/n.

Consider a Markov chain having transition matrix as in Exercise 20

of Chapter 1.

(a) Find the stationary distribution concentrated on each of the irre-
ducible closed sets.

(b) Find lim,_, , G,(x, y)/n.



Exercises

21 Let X,, n > 0, be the Ehrenfest chain with d = 4 and X, = 0.

(a) Find the approximate distribution of X, for » large and even.

(b) Find the approximate distribution of X, for n large and odd.
22 Consider a Markowv chain on {0, 1, 2} having transition matrix

0

ro
ot
L%

N = O

N OO

(a) Show that the chain is irreducible.

(b) Find the period.
(c) Find the stationary distribution.

2

o o=
| S

83

23 Consider a Markov chain on {0, 1, 2, 3, 4} having transition matrix

01
0o %
1[0 o

P=2[00
3|1 0
411 0

2

DL O O Ouwn

(a) Show that the chain is irreducible.

(b) Find the period.
(¢) Find the stationary distribution.

w

4

-

DO O PP O
O O M O




M arkov
Pure Jump

Processes

o

Consider again a system that at any time can be in one of a finite or countably
infinite set & of states. We call & the state space of the system. In Chapters 1 and
2 we studied the behavior of such systems at 1nteger times. In this chapter we will

~dae ~ lnalhaciiace ~
SLtud y lC ulliavioul v

3.1. Construction of jump processes

Consider a system starting in state x, at time 0. We suppose that the

system remains in state x, until some positive time 7,, at which time the
S to a new state =+ We allv'l the nangaihilitv tha

W AxwWYY Ulv“l-\l J\f 1 Y 2 J\'O Y W Vilw l.lvuo Ulllt (38 (]

the system remains permanently in state x,,, in which case we set 7; = 0.
If 7, is finite, upon reaching x, the system remains there until some time
T, > T, when it jumps to state x, # x;. If the system never leaves x,,
we set 7, = oo. This procedure is repeated indefinitely. If some 7,, = oo,
we set 7, = oo forn > m.

Let X(¢) denote the state of the system at time #, defined by

X0s O0<t<ry,
(1) X@={T T ™

1 25 T, <t <713,
The process defined by (1) is called a jump process. At first glance it might
appear that (1) defines X (¢) for all # > 0. But this is not necessarily

Consider, for example, a ball bouncing on the floor. Let the state of
the system be the number of bounces it has made. We make the physically
reasonable assumption that the time in seconds between the nth bounce
and the (n + 1)th bounce is 27". Then x, = n and
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We see that 7, < 2 and t, — 2 as n — oo. Thus (1) defines X (¢) only for
0 < t < 2. By the time ¢ = 2 the ball will have made an infinite number
of bounces. In this case it would be appropriate to define X(¢) = oo for
t > 2.

In general, if

) lim 7, < oo,

process does not

—~
-
-

ho]
"~
(@]
Q
[¢']
[72]
(7]
%
‘E‘
Q.‘
%
[
| v
laar}
o
=
[¢]
—~
-~
| —
ﬁl

we say that the
explode, i.e., if

(3) lim 7, = oo,

£
1V

will now specify a probability structure for such a jump process.
es

are of one of two types, nhvnrhmn or non-

N~ AANS Lo 2N L Vg

absorbing. Once the process reaches an absorbing state, it remains there
permanently. With each non-absorbing state x, there is associated a

Aictrilhiitinn Hinatian D —_— b A~ whinh vanichoe far ¢ o N and
WUiolllUvuuivil 1uiliviivil 1 x\t }, W \ (3 \ We VViliVIL VALLIDIIVD 1V1 | > V, allu
transition probabilities Q,,, y € &, which are nonnegative and such that
Q.. = 0and
X

(4) Y 0, 1.

fd =Xy

¥y

A process starting at x remains there for a random length of time t,
having distribution function F, and then jumps to state X(z,) = y with
probability Q,,, ye€ &. We assume that 7, and X(z,) are chosen
independently of each other, i.e., that

Px(Tl < t9 X(Tl) = y) = Fx(t)Qxy'

Here, as in the previous chapters, we use the notation P,( ) and E,( )
to denote probabilities of events and expectations of random variables

XX 71

defined in terms of a Pprocess 1n1uauy in state x. Whenever and however

the process jumps to a state y, it acts just as a process starting initially at y.
Far avammnla i€ v and 1 ara lhath nnﬂ_nkanrkunn ctatacg
1 Vi UAalllPl\.«, 11 A Qallu )’ alv UULIL 11ViiITauUuoul Ullls statvo,

Px(‘cl < s, X(Tl) =), T2 — Ty < t9 X(TZ) = Z) = Fx(S)QxyFy(t)Qyz'

Similar formulas hold for events defined in terms of three or more jumps.
If x is an absorbing state, we set Q,, = 9,,, where
5xy —_ 1, y = x’
0, y#x
Equation (4) now holds for all x € &.
We say that the jump process is pure or non-explosive if (3) holds with
probability one regardless of the starting point. Otherwise we say the
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process is explosive. If the state space & is finite, the jump process is
necessarily non-explosive. It is easy to construct examples having an
infinite state space which are explosive. Such processes, however, are
unlikely to arise in practical applications. At any rate, to keep matters
simple we assume that our process is non-explosive. The set of probability

zero where (3) fails to hold can safely be ignored. We see from (1) that
X (t) is then defined for all ¢+ > O.
Let P_(t) denote the probability that a process starting in state x will be
in state y at time 7. Then
Py(t) = PX() = y)

and

VP A =1

Ly L xp\b) i

5
In particular, P, (0) = §,,. Wecan also choose the initial state x according
to an initial distribution n,(x), x € &, where n,(x) > 0 and

In this case,

The transition function P,(t) cannot be used directly to obtain such
probabilities as

PX(t) = x4,..., X(t,) = x,)

unless the jump process satisfies the Markov property, which states that for

n R < < t and cp
U <<, s tand Xq,..., X X, Y€ S,

PX(t) =y | X(s9) = xq,..., X(5,) = X, X(5) = x) = P(t — 5).

By a Markov pure jump process we mean a pure jump process that
satisfies the Markov property. It can be shown, although not at the level
of this book, that a pure jump process is Markovian if and only if all
non-absorbing states x are such that

P(t;>t+ 5|1y >95) = Pty > 1), s, t >0,
i.e., such that

1——Fx(t+s)=15p
1 — F(s) ¥

(1
\¢)

L

LN
v
o

N’

’

~

n F_satisfies (5) if and only if it is an exponential

—.’
5
O
:3

Now a distribution f
distribution functlon (see Chapter 5 of Introducnon to Probabzllty Theory).
We conclude that a pure jump process is Markovian if and only if F, is an

exponential distribution for all non-absorbing states x.
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Let X(¢),0 < t < o, be a Markov pure jump process. If x is a non-
absorbing state, then F, has an exponential density f,. Let g, denote the
parameter of this density. Then ¢, = 1/E(r;) > 0 and

_ e, 120,
50 =10, t <0

Observe that

state, we set g, = 0.
It follows from the Markov property that for 0 < ¢, <---< ¢, and
Xiyeros X, N P,

(6) P(X(tl) = Xgs e ees X(t,,) = xn)
= P(X(tl) = xl)lexz(tZ - tl) Tt Pxn-lx,,(tn - tn—l)'

In particular, fors > 0Oand ¢t > 0

P ACL AN s AN S 7 xz zy
Since

Pt + 5) =) PAX(®) = z, X(t + 5) = y),
we conclude that
@) P(t+s) =Y P, ()P,), s=0andt>0.

z
Equation (7) is known as the Chapman-Kolmogorov equation.
The transition function P, (¢) satisfies the integral equation

which we will now verify. If x is an absorbing state, (8) reduces to the
obvious fact that

D 4\ — S +
L xy\t)] — Uxys ¢

Suppose x is not an absorbing state. Then for a process starting at x,
the event {1, < t, X(r;) = z and X(¢) = y} occurs if and only if the first
jump occurs at some time s < ¢ and takes the process to z, and the process
goes from z to y in the remaining ¢ — s units of time. Thus

PR Y

Px(Tl <t X(Tl) = z and X(I) = y) = q.e
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SO

P(t, <tand X(f) = y) = ). Pty <t, X(z,) = zand X(t) = y)
zZFEX

J: q.e ** (Z Q,.P.,(t — s)) ds.

ZFX
Also
P.(ty > tand X(t) = y) = 6,,P(r; > 1)
== 5xye"”“.
Consequently,

P (1) = P(X(®) = y)
= P(t, > tand X(t) = y) + P,(7, < tand X(t) = y)

c  _—axt rt . _—dxS {T‘ N D (2 ,.\\ S
= Oyxy + J qx \L Yxzl 2\t — 5)} as,
0 zFXx
as claimed. Replacing s by ¢t — s in the integral in (8), we can rewrite (8)
as
. - = _qi —qi rt qs/r‘ - — ..\ = ~
9) P, (t) = o0, ™ + g, ™ et \L szsz(s)) ds, t > 0.
0 z#EX

It follows from (9) that P,,(¢) is continuous in ¢ for ¢ > 0. Therefore
the integrand in (9) is a continuous function, so we can differentiate the
right side. We obtain
(10) Po(®) = —qPoy(t) + qx X QuPoy(t)y 120

zZFX
In particular,
xy(o) = —qu xy(o) + 4y Z szP zy(o)
z#X
41 x%V xy Ux Ly xzVzy
z#X
= _qxéxy + quxy'
Set
(11) G = PL(0), X ye.
Then
— fd x

2 _ { s y = X,
(12) = 14,0, v #x

It follows from (12) that
(13) Z qu = g4x = —{xx-
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The quantities g,,, x € & and y € &, are called the infinitesimal parameters
of the process. These parameters determine ¢, and Q,,, and thus by our
construction determine a unique Markov pure jump process. We can
rewrite (10) in terms of the infinitesimal parameters as

(14) Pnlry(t) = Z Q,xzpzy(t)9 t > 0.

This equation is known as the backward equation.
If & is finite, we can differentiate the Chapman-Kolmogorov equation
with respect to s, obtaining

(15)
\+Y)

oL
oy
v
o

In particular,

P.(H = Z P (OP,(0), t=0,

or equivalently,

v

(16) 0.
Formula (16) is known as the forward equation. It can be shown that (15)
and (16) hold even if & is infinite, but the proofs are not easy and will be
omitted.

In Section 3.2 we will describe some examples in which the backward or

g |

forward equation can be used to find explicit

3.2. Birth and death processes

Let ¥ = {0,1,...,d} or & ={0,1,2,...}. By a birth and death
process on & we mean a Markov pure jump process on & having infinites-
imal parameters ¢,, such that

Thus a birth and death process starting at x can in one jump go only to
the states x — 1 or x + 1
The parameters A, = ¢, ,+1, x € £, and u, = ¢, ,_;, x € &, are called

respectively the birth rates and death rates of the process. The parameters
g, and Q,, of the process can be expressed simply in terms of the birth
and death rates. By (13)

so that

(17) Gxx = _(lx + ”x) and dx = Ax + Uy
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Thus x is an absorbing state if and only if A, = u, = 0. If x is a non-
absorbing state, then by (12)

/ 11

B y=x-1,
Av + Hx

710\ N _ 1

(1s) Yxy = W_’ng_i =x + 1,
Ae + s
\0, elsewhere.

A birth and death process is called a pure birth process if u, = 0, x e &,

and a pure death proces. fi,=0,xe . A pure birth nrocess can move

Sl & e Mo wes u l‘. vx wiivax pa

only to the right, and a pure death process can move only to the left.
Given nonnegative numbers A,, x € &, and u,, x € &, it is natural to
ask whether there is a birth and death process corresponding to these
parameters. Of course, u, = 0 is a necessary requirement, as is 4; = 0
if & is finite. The only additional problem is that explosions must be
ruled out if & is infinite. It is not difficult to derive a necessary and
sufficient condition for the process to be non-exploswe A simple sufﬁment

condition for the

numbers 4 and B

"ES
&
¢
¢

L) - A . n

This condition holds in all the examples we will consider.

In finding the birth and death rates of specific processes, we will use
some standard properties of independent exponentially distributed random
variables. Let ¢&,,..., ¢, be independent random variables having
exponential distributions with respective parameters «,,..., «,. Then
min (¢,,..., &) has an exponential distribution with parameter
a; + -+ a, and

. o
710\ Dr¥ PO S~ £\ k . 1
(17) I'\Gx = 16y, s Sn)) = ) K =1, L
oy + -+ a,
Moreover, with probability one, the random variables &, , ¢, take on
n distinct values

Pmin (&, ..., &) > ) = P& > t,...,& > 1)
=P, >0 P&, >0

o_alt- . e p_0nt
[ %2 L %3

e—(a1+ v +an)t,

and hence that min (¢,, .. ., &,) has the indicated exponential distribution.
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Set

Then . hac an exnonential dictribution with narameter
A Liwil I’k A1 SALL Vl\yvllvll‘—l“l NSADVI AUV GBLAVILL YYALILX yulull‘vlvl
Bk . a]’
JFk
and ¢, and #u, are independent. Thus
P& = min (Ep. ., &) = P& < m)
= IW { ‘W ake_akxﬁke-ﬂky d\’\ dx
Jo \Us )
o0
. r o X —Bix 1.
= o€ € ax
Jo
ol o,

0 + P oy 4 a,

In order to show that the random variables &, ..., £, take on »n distinct
values with probability one, it is enough to show that P(¢. # £) = 1 for
r J b o \°1 7 2J]7
i # j. Butsince {; and ¢; have a joint density f, it follows that
Dz __ £\ __ ‘ ‘ £~ N A Ay — N
(& = ¢j) = ,” JX, yyax ay = v,
{(x,2): x=y}

as desired.

Example 1. Branching process. Consider a collection of particles
which act independently in giving rise to succeeding generations of
particles. Suppose that each particle, from the time it appears, waits a
random length of time having an exponential distribution with parameter
g and then splits into two identical particles with probability p and
disappears with probability I — p. Let X(¢), 0 < ¢t < oo, denote the

Consider a branching process starting out with x particles. Let
&y, ..., &, be the times until these particles split apart or disappear. Then
¢4, ..., ¢, each has an exponential distribution with parameter ¢, and
hence 7, = min (&,,..., ¢,) has an exponential distribution with
parameter g, = xq. Whichever particle acts first has probability p of
splitting into two particles and probability 1 — p of disappearing. Thus
forx > 1

Qx,x+1 =P and Qx,x-l =1- p-
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State 0 is an absorbing state. Since A, = ¢,0, ,+; and p, = ¢,0; -1,
we conclude that

- D), x > 0.

i

A, = Xqp and u, = xq(1

¥ §

In the preceding example we did not actually prove that the process is a
P Eon~ afin caanl lon ~

Tiotl nead An PN al-
Ull tn anda ucatu Pl ULLDD, l c. . Lllal lt del Lb ITOImM bbldlbll allCl I11lalklll

jump. This intuitively reasonable property basically depends on the fact

tlally distributed random variable ¢ satisfies the fo

’ 3 AR & ANan va AeiANa U iLL VieiivUirw DL LIJIAWD Lax ANJALLILiG

PE>t+s|E>s)=PE>1), s1t=0,

By (17) and the deﬁmtlon of /1 and pu,, the backward and forward
equations for a birth and death process can be written respectively as

(20)  Po(t) = uoPry;(t) — (A + p )P () + AP 1y (1), t=>0,

and

@) PLI) = Ay 1Pay i) — (y + BIPy(E) + fys1Pryss(2)
t>0

In (21) we set A_; =0, and if & = {0,...,d} for d < 0, we set

(22) @)= —of®) +9@), =0
then
t
(23) S = f(0)e™ + [ e~ """ 9g(s) ds, t>0.
Jo
The proof of this standard result is very easy. We multiply (22) through

11 = eg(e).
dt

Integrating from O to ¢ we find that

“f@) - 1) = [ g ds,

YAV

and hence that (23) holds.

3.2.1. Two-state birth and death process. Consider a birth
and death process having state space & = {0, 1}, and suppose that 0 and
1 are both non-absorbing states. Since p, = 4, = 0, the process is
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determined by the parameters Ao and ;. For simplicity in notation we
set A = Ao and u = pu,. We can interpret such a process by thinking of
state 1 as the system (e.g., telephone or machine) operating and state 0 as
the system being idle. We suppose that starting from an idle state the
system remains idle for a random length of time which is exponentially
distributed with parameter A, and that starting in an operating state the
system continues operating for a random length of time which is

exponentially distributed with parameter Q.

We will find the transition function of the process by solving the back-
ward equation. It is left as an exercise f r the reader to obtain the same
mciilia Tasr amderlome 4ha Faciirarmd amizad ~m
reésuits DY JdO1VIillg UIC 10I'walld Cyuatuloll

Setting y = 0 in (20), we see that
(24) Pyo(t) = —APyo(t) + AP (1), t >0,
and
(25) Pio(®) = pPoo(t) — uPyo(), t > 0.

Subtracting the second equation from the first,

d
dt (Poo(® — P1o(®) = —(4 + 1)(Poo(t) — P1o(1))-
Apnlvine (23).
rr=Js O\ Vad
— —(A+py
(26) Poo(t) — P1o(t) = (Poo(0) — Pyo(0))e
= g (A+me

Here we have used the formulas Py,(0) = 1 and P,,(0) = 0. It now
follows from (24) that

I3
Poo(t) = —UPoo(t) — Pyo(t)
—_ —le—(“'")‘
Thus
rt
D A\ _ D /(N wAWPE
Poo(t) = PoolV) + J Poo(s) ds
0
rt
. A —(24+u)de 7
=1 - J Ae VTR gs
0
A P
=1- (1 — e~ Grmn,
A+ u
or equivalently,
1"\  » JE AN U | ’1 —(A+pu) s N N
\«7) Loo\l) = € A i = V.

A+u—rl+u
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Now, by (26), P,o(2) = Pyo(t) — e~ **#" and therefore

(28) Pot) =+ — HF a5
A+ U A+l

By setting y = 1 in the backward equation, or by subtracting P,,(¢) and
P,,(t) from one, we conclude that

YO\ D A '1 S—(A+u)t 4~ N
\<7) Ioi\t) = - € ) 1 =2V,
A 1 4 1L n
7\ T /v T
and
A u —(A+p)t
(30) Pt = + e , t>0

A+u A+pu
From (27)-(30) we see that

31) lim P,() = (),
t—=+ o
where
(32) n(0) = —* and (1) =
A+ u A+ 1
If 7, is the initial distribution of the process, then by (27) and (28)
P(X(t) = 0) = mo(0)Poo(t) + (1 — mo(0))Pyo(0)
11 / - N
_ [ [ —=(A+pu)
= —— + (no(0) — Grme >0
A+ u ( 0 A u)
Similarly,
P(X(t) = 1) = ';L + {750(1) - "i“\l e_('H")t, t > 0.
A+u \ A+ u

Thus P(X(¢) = 0) and P(X(¢) = 1) are independent of ¢ if and only if ny
is the distribution 7 given by (32).

3.2.2. Poisson process. Consider a pure birth process X(2),
0 < t < o0, on the nonnegative integers such that

Ay =4 >0, x> 0.
Since a pure birth process can move only to the right,

(33) P (1) = O,

.2 AN s

y<xand t>0.

Also P, (t) = P(r, > t) and hence
(34) P.(t) = e ¥, t > 0.
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The forward equation for y # 0 is
P () = AP, ,_4(t) — AP, (1), t > 0.
From (23) we see that

t
— At —-A(t—
P(1) = e *P_(0) + J ,( =9p__(s)ds, t=0
n
NAY
Qince P (0) = we conclude that forv >
- A(t—
(35) P (b = ( e *TIP, _1(5) ds, t>0

It follows from (34) and (35) that

rt rt
P r1(® = AJ e M= 4s o = ie““J ds = Ate™™
0 0
and hence by using (35) once more that
pn e g [ o900 gs = 3202t [ g gs = PO p-
I x,x+2\%) JO JO )
By induction
(')'t\y—xe—/lt ) )
(36) P =", 0<x<yandt >0.
(y — x)!
Formulas (33) and (36) imply that
(37) ny(t) = PO,y-—x(t)5 t 2> O,

and that if X(0) = x, then X(¢) — x has a Poisson distribution with

parameter Ar.
In general, for 0 < s < ¢, X(¢t) — X(s) has a Poisson distribution with
parameter A(f — s5). Forif0 < s < tand y is a nonnegative integer, then

P(X(t) — X(s) = y) = Y, P(X(s) = x and X(f) = x + y)

= E P(X(s) = x)Px,x+y(t — 5)

= Y. P(X(s) = x)Py,(t — )
X

= POy(t - S)

_ (Ut = s)ye” 7

= ) .

If0 <t <---<t, the random variables

X)) — X(ty), ..., X(t,) — X(¢,-)
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are independent. For we observe thatifz,, ..., z,_, are arbitrary integers,
then by (6) and (37)

4

DIVt — Y(+) — - Yt — Y(+ ) = > )
L aniz) Ally) = <1505 Ally) Allp-1) = “4n-1)

Y P(X(t)) = X)Po,(t; — ;)" Po,,_ (t, — t,—y)

Py, (t; — 1) " Po,, _(ty — t,—1)
= P(X(tz) = X(t)) = 21)**"PX(t) = X(tn-1) = Zy-y).
By a Poisson process with parameter A on 0 < t < 00, we mean a pure
birth process X(¢), 0 < ¢t < oo, having state space {0, 1, 2, ...}, constant
birth rate 4, = 4 > 0, and initial value X(0) = 0. According to the
above discussion the Poisson process satisfies the following three

properties:

(i) X(0) =

(i) X(z,) — X(¢, ) X(ty) — X(t')) ., X(t,) — X(t,_,) are indepen-
dentfor0 < ¢ <t¢, <--- < t,,.

'he Poisson process can be used to model events occurring in time, such
alls coming into a telephone exchange, customers arriving at a queue,

smmn Al mnndiera Aintemdamendinenas At Vs
1auioactilive umuucglauuua LCL Al

\
Js
ents occurring in the time interval (0, ¢
iable X(¢) — X(s) denotes the numbe

Aw La S WiAAW LWL Liiw A

0<t<
t]. For
ber of
(s t] If the waiting times between successive events are independent and
exponentially distributed with common parameter A, then X(z), 0 <
t < oo, is a Poisson process and properties (i)-(iii) hold. Property (ii)
states that the number of events in any interval has a Poisson distribution.
Property (iii) states that the numbers of events in disjoint time intervals
are independent. Conversely, if X(¢), 0 < ¢t < oo, satisfies properties
(i)—(iii), then the waiting times between successive events are independent
and exponentially distributed with common parameter 4, and hence X (¢)
is a pure birth process with constant birth rate 4. This result was proved in
Chapter 9 of Volume I, but w111 not be needed.

eiﬂnﬂ 1\ Dl\‘ﬂﬂ(\“
IV LllC 1 UldduUIL

the process hits state X
occurring in time as descrlbed bove, the common time 7,
time when the nth event occurs.

The Poisson process can be used to construct a variety of other processes.

I
-3
bt o
(7, 3
-
=

(¢
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Example 2. Branching process with immigration. Consider the
branching process introduced in Example 1. Suppose that new particles
immigrate into the system at random times that form a Poisson process
with parameter A and then give rise to succeeding generations as described
in Example 1. Find the birth and death rates of this birth and death

process.

Suppose there are initially x pamcles present. Let &, ..., &, be the
times at which these particles split apart or disappear, and Iet 5 be the first
time a new particle enters the system Wc interpret the description of the
axrataien na 2sacalerian o 4l o semmie dand L L } 4 ™. ... £ } 4
SYdLCIL ad> HIpIyllg U dl. Tl lb lllUCpC 1Act Ol G, .. .45 Gy 111001 le c ey gx,
n are independent exponentially distributed random variables having
respective parameters ¢, ..., g, A. Thus

. = min (F £ n)
vi  AReaas \>1» s ox9 I

is exponentially distributed with parameter ¢, = xg + A, and by (19)

P(r, = _—
(t, n = xq+i

The event {X(t,) = x + 1} occurs if either 7, = 5 or
1:1 = min (él,.. .y éx)

and a particle splits into two new particles at time 7,. Thus

A xq
= +
Qx,x+1 xq + /1 xq + /lp
Also,
N —_ xq (1 _ n)
Cxx—1 = i\ — p)

lx = qux,x+1 = xqp + ’1

and
P = 40 -1 = xq9(1 — p).

It is also possible to construct a Poisson process with parameter 4 on
—o < t < oo. We first construct two independent Poisson processes
X,(t), 0 <t < o0, and X,(t), 0 < t < o0, both having parameter A.
We then define X(¢), —o0 < t < o0, by

(— -1,

x0 = {3

(=

")

vV A
=
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It is easy to show that the process X (), —o0 < t < 00, so constructed,
satisfies the following three properties:

(i) X(0) = 0.
(i) X(t) — X(s) has a Poisson distribution with parameter A(¢ — s) for

s < L
(i) X(t.) — X(1.) Xt — X(¢ } are indenendent for r. <
2 \‘2/) \*1/s s ARfn) “Ap—1) <1t NOLPCRCLIR VL & =
t2 S ¢t S tn'

3.2.3. Pure birth process. Consider a pure birth process X(¢),
0<t< o,on{0,1,2,...}. The forward equation (21) reduces to

(38) P
7%/ £
Since the process moves only to the right,

39) P.(t) =0, y<xandt>0.

It follows from (38) and (39) that

Pot) = — AP (D)
Since P,,(0) = 1 and P, (0) = O for y > x, we conclude from (23) that
(40) P, (1) = e *, t >0,
and

t
(41) P () = A, L e HUIp o _(s)ds, y>xandt>0.

We can use (40) and (41) to find P, (¢) recursively for y > x. In particular,
t
Px,x+ l(t) = Ax f e"lx+1(‘-S)e—lxs dS,
0

and hence fort > 0

A
x (e—/lxt _ e"l"“'), Ax :#lxs
(42) Px,x+1(t) = J}“x+1 — Ay H

Ui te= =, Ayy = Ay

Example 3. Linear birth process. Consider a pure birth process on
{0, 1, 2, ...} having birth rates

A, = XA, x >0,
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for some positive constant A (the branching process with p = 1 is of this
form). Find P, (1).

As noted above, P, () = 0 for y < x and
(t) = e™ %t = e~ ¥,
We see from (42) that

Pyirr(t) = xe™*H(1 — e

To compute P, .. ,(f) we set y = x + 2 in (41) and obtain
ree _
Px;x+2(t) = (x + I)XA.J e_(x+2)l(t_s)e_xls(1 _ e—}..s') ds
0

rt

= (x 4+ Dxle @+D4 | p2i5q — =4 g
Jo

—(x+2)At ‘ 225( 0% _ 1\ A
0

—(x+2)at (e - 1)2
24

+ 1 ) 1en D
— ( é ) e—x}.t(l _ e—/.t)z.

Q
[N

It is left as an exercise for the reader to show by induction that

o o (v — 1\ e e . N
—_ 7 - — XAt — T ALY T A > > .
@) Py =)0, )M -y yzxand 120

3.2.4. Infinite server queue. Suppose that customers arrive for
service according to a Poisson process with parameter A and that each
customer starts being served immediately upon his arrival (i.e., that there
are an infinite number of servers). Suppose that the service times are
independent and exponentially distributed with parameter u. Let X(¢),
0 <t < oo, denote the number of customers in the process of being
served at time ¢. This birth and death process, cailed an infinite server
queue, is a specnal case of the branchlng process with immigration corre-

15 “T‘ P al 4

sponding to ¢ = p and p = 0. We conclude that 4, = A and pu, = xi,
x > 0. The transition function P,[(f) will now be obtained by a
probabilistic argument

Let Y(¢) denote the number of customers who arrive in the time
interval (0, t]. An interesting and useful result about the Poisson process
is that conditioned on Y(¢) = k, the times when the first £ customers
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arrive are distributed as k independent random variables each uniformly
distributed on (0, ¢]. In order to see intuitively why this should be true,
consider an arbitrary partition 0 = ¢, < t; < = t of [0, t] and
let X; denote the number of customers arriving between time ¢;_; and
time ¢, Then X,,..., X,, are independent random variables having
Poisson distributions with respective parameters

Mty — 1)y ooy My — 1)
and X, + X,, = Y(t) has a Poisson distribution with parameter
At. Thus fo Xy, - - - » X, Nonnegative integers adding up to £,
P(X1=x19 Xm=xm|Y(t)—k)
‘;L(XI;xl, ,‘Am;xmllll—*_ +Xm;k)
=P(X1=xis 7~‘m=Ym3-“‘i+ +Xm=k)
Py + 7+ X = B)
P(" = X1 ’ Xm = Xm)

m At — t,_1)-|xie_l(n ti-1)
— il=1 X;!
(lt)"e"“
k!
k! m /f - N\ X

H’"lx, ll—_Ik

But these multinomial probabilities are just those that would be obtained
by choosing the k arrival times independently and uniformly distributed

o~ o 2

If a customer arrives at time s € (0, ], the probability that he is still in

the nrocess of beino served at time 7 is e *¢~%_ Thus if a customer arrives

l..l.Av PrVVWVOO Vi Uiiig Ow Wb Sev viaiadw v AT © WOV iliwa eanai

at a time chosen uniformly from (0, 7], the probability that he is still in
the process of being served at time ¢ is

t — o ut
P, - 1 [‘ e—u(t—s) dS — 1 e .

l JO Ut

Let X,(¢) denote the number of customers arriving in (0, #] that are
still in the process of being served at time ¢. It follows from the results
of the previous two paragraphs that the condmonal distribution of X,(¢)

Tox Y\ 1 2l - Lo foadees Lo czsidle . e

glVCl’l tnat Y \l) = K isa [)lIlUIIudl Ulbll iout

i.e., that
{ I\

PX, () =n| Y = \n) Pl — p)".
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Q (Are™™ k!
= k! nl(k — n)!

(1 — p)k—n
FI\* rt

n!
(1tp o~ Atpe
= \'UV‘I:} L %4
n!

In =— i (1 _ o, #h
Ibl‘.’t \.L [ 3 }o
U
Let x denote the number of customers present initially and let X,(¢)

denote the number of these customers still in the process of being served
at time ¢. Then X,(¢) is independent of X, (?) and has a binomial distribu-
tion with parameters x and e™*'. Since X(¢) = X,(t) + X,(¢), we
conclude that

min(x,y)

Po() = PX(®) =y) = Y PAX(0) =KPX (1) =y — k)

k=0

Therefore

@ Po="3 l(ii) ™l — o7ty

k=0
A A
-1 - ™)
X (ﬂ ) exp {_&(1 —_ e—“’)\] .
(y = k)! \n /]

Ast — oo, e™** - 0, and hence the terms in the sum in (44) all approach
0 except the term corresponding to £ = 0. Consequently

£1::\
45) lim P = MW"

Vo= 4ln
[+
t— o y'
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3.3. Properties of a Markov pure jump process

In this section we will discuss the notions of recurrence, transience,
irreducibility, stationary distributions, and positive recurrence of Markov
pure jump processes. The results will be described briefly and without
proofs, as they are very similar to those for the Markov chains discussed in
Chapters 1 and 2. In Section 3.3.1 we apply these results to birth and
death processes.

Let X(2), o0, be a Markov pure jump process having state

d YN £ v tb

rot vicit t
'y AU AL Ir

i v

T,=min (t > 0: X() = y).

en min (t ~> O . Xff\ n\ — 0N A more 11c
= . \lv} I Ve LA Viw D

varlable in this case is the time T, of the first return to y after the process
leaves y. Both cases are covered by setting

T, =min (f > 7, : X(2) = y).

N/ T4

Here 7, is the time of the first jump. If 7, = 0 or X(¢) # yforallt > t,,

+4 ~
WEC ML I, = .

pxy = x(l < w)

A state y € & is called recurrent if p,, = 1 and transient if p,, < 1. The
process is said to be a recurrent process if all of its states are recurrent and
a transient process if all of its states are transient. The process is called
irreducible if p,, > O for all choices of x € ¥ and y € &.

The function P(x, y) = Q,,, x € & and y € &, is the transition function
of a Markov chain called the embedded chain. The quantities p,, for this
Markov chain are equal to the corresponding quantities for the Markov
pure jump process. This relationship shows tha
involving only the numbers p,, are also valid in th

€
particular. an irreduci ible process is eithe recurrent process or a transient

pPAruivuiQiy Gix 22 AV prLVVVS ACAR AWV LAl L Wil

esults of Chapter 1

=
(o}

-t

o
0 <

process. It is recurrent if and only if the embedded chain is recurrent.
If n(x), x € &, are nonnegative numbers summing to one and if

(46) Y n(x)P.(1) = n(y), yeS andt >0,

then n is called a stationary distribution. 1f X (0) has a stationary distribu-
tion = for its initial distribution, then

P(X(t) = y) = Y, n(x)P,(t) = n(p),

so that X(¢) has distribution = for all ¢ > 0.
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If (46) holds and & is finite, we can differentiate this equation and
obtain

dt>0.

o L4 ~ s

Y= 0 ve & an
J J

(47 Y 2(x)P
\*""/ Lod \
X

In particular, by setting ¢ = 0 in (47), we conclude from (11) that

(48) LX), =0, ye.

X
It can be shown that (47) and (48) are valid even if & is an infinite set.
Suppose, conversely, that (48) holds. If & is finite we conclude from the
backward equation (14) that

Thus
. T(x)Py(1)

is a constant in ¢ and the constant value is given by

Y. n(x)P,(0) = §7t(X)5xy = ().

X

Consequently (46) holds. This conclusion is also valid if & is infinite, but
the proof is much more complicated. In summary, (46) holds if and only
if (48) holds.

A non-absorbing recurrent state x is called positive recurrent or null
recurrent according as the mean return time m,, = E.(T,) is finite or infinite.
An absorbing state is considered to be positive recurrent. The process is said

to be a positive recurrent process if all its states are positive recurrent and a
null recurrent process 1 f all its states are null recurrent. An 1rredu01ble recur-
rent process must be either a null recurrent process or a po sitive recurrent

process. It can be shown that a stationary distribution is concentrated on
the positive recurrent states, and hence a process that is transient or null
recurrent has no stationary distribution. An irreducible positive recurrent
process has a unique stationary distribution n, which, unless & consists of
a single necessarily absorbing state, is given by

(49) n(x) = ——1 , xe <.
q.m
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Formula (49) is intuitively reasonable. For in a large time interval
[0, ], the process makes about ¢/m, visits to x and the average time in x
per visit is 1/g,. Thus the total time spent in state x during the time
interval [0, ¢] should be about #/(g,m,) and the proportion of time spent
in state x should be about 1/(g,m,). This argument can be made rigorous

Q aqQ ag r]r\n in Qantinn )
O AY YA UVUIIV i1l OVLVLUIVULL &L.oJ.

Markov pure jump processes do not have any periodicities, and, in
particular, for an irreducible positive recurrent process having statio
distributio
(50) Iim P(t) = n(y), x,yed

t— o0
T€ VIO haoo tha initial Aigteihiitinn v (v v~ P than
il A \U} 1ad tilv 11iitial Jgiodiiivuuivil ILO\J\r}, A T v 4 Uil
P(X() = y) = X mo(x)P,(1),

which, by (50) and the bounded convergence theorem, converges to

2 mo()m(y) = m(y)

X
as t —» oo. In other words

lim P(X(t) = y) = n(y),

t—> o0

and hence the distribution of X(¢) converges to the stationary distribution
n regardless of the initial distribution of the process.

3.3.1. Appiications to birth and death processes. Let X(2),
0 < t < o0, be an irreducible birth and death process on {0, 1, 2,..
Tha rnenrace 10 tranciant £ and Anly iFtha ambhadAdaAd hiseth and Aoath ~hain
111 Pl ULUODD 1D Llaldiviil 11 allu Ull]y 11 U1V C111UCUULVU Ull Ll allud uvalll viiailli
having transition function P(x, y) = Q,,, x = 0 and y > 0, is transient.
From (18) in this chapter and the results in Section 1.7, we conclude that
the birth and death process is transient if and only if
(51) F T g,
xX= l A’l A.x
Equation (48) for a stationary distribution © becomes
n(Duy — n(0)4 = 0,

(52)

Wy + Dpyry — 74, =2y, — 2y — Diyy,  y 21

It follows easily from (52) and induction that

(y + Duyyy — ()4, =0, y =0,
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and hence that

ny + 1) = ny), y=0
/“ty+1
Consequently,
IJVO. b IJI: _1
(53) n(x) = ———n(0), x=>1
Hi® " Hx
[« PAY'S
oCL
]'1, x =0,
(54) T, = /1 e A
] 0 x—1 , x > 1
l Uyt Ky
Than &2 ~ran ha ywrittan ac
110Cil (J5) Caill OC WIIWCIl a8
(55) n(x) = n,n(0), x>0

Conversely, (52) follows from (54) and (55).
Suppose now that > n, < oo, i.e., that

P i g T

© 9 ...
(56) Y, 39————‘ < 0.

x=1 Hg*" " Uy
We conclude from (55) that the birth and death process has a unique
stationary distribution 7, given by

(57 x) = —>*—, x=>0.

y=0 Ty
If (56) fails to hold, the birth and death process has no stationary
distribution.

In summary, an irreducible birth and death process on {0, 1, 2,...} is
transient if and only if (51) holds, positive recurrent if and only if (56)
holds, and null recurrent if and only if (51) and (56) each fail to hold, i.e.,
if and only if

(58) Zu::w and Z;:dD_
x=1 A’l‘..A‘x X=1 [yt Uy

An irreducible birth and death

0
{0, 1, ..., d} is necessarily positive recurrent. It has

distribution given by

go
~
(@]
e
(4]
173
[7,]
=
o
<
[T X
=
o
=
=
P
'
w
H
&
o
[¢]
w
o
o
O
e

(59) n(x)=zd"—x, 0<x <d,

y=0 Ty

where 7., 0 < x < d, is given by (54).
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Example 4. Show that the infinite server queue is positive recurrent
and find its stationary distribution.

The infinite server queue has state space {0, 1, 2,...} and birth and
death rates

A, = 2 and U, = XU x>0
X & ~x Ny =
is process is clearly irreducil It follows from (54) that
X X
_E G —n
x v' 1% v > -
NV Pad
Qince
Millvw
o9} X
& G _
x=0 X!

is finite, we conclude that the process is positive recurrent and has the

unique stationary distribution 7 given by
Alp)* _
(60) a(x) = g x>0,
x!
which we note is a Poisson distribution with parameter A/u. We also note
that (50) holds for this process, a direct consequence of (45) and (60).

Example 5. N server queue. Suppose customers arrive according
to a Poisson process with parameter A > 0. They are served by N servers,
where N is a finite positive number. Suppose the service times are ex-
ponentially distributed with parameter u and that whenever there are more
than N customers waiting for service the excess customers form a queue
and wait until their turn at one of the N servers. This process is a birth
and death process on {0, 1, 2,...} with birth rates 4, = 4, x > 0, and
death rates

(xu, 0<x<N,
Hx = {N Us x > N.

Determine when this process is transient, null tecurrent, and positive
recurrent; and find the stationary distribution in the positive recurrent
case.

Condition (51) for transience reduces to



Exercises 107

Thus the N server queue is transient if and only if Ny < A. Condition
(56) for positive recurrence reduces to

v {4\

x=0 \ H
The N server queue is therefore positive recurrent if and only if A < Npu.
Consequently the N server queue is null recurrent if and only if 1 = Npu.

These results naturallv are similar to those for the 1 server queue discussed

£ 741 \N¥
2 x
WK , 0<x <N,
x!
me=14
4/ x> N
\JA‘T' J.A‘Tx_N’ o
Set
2 NS Y (A
= L = L o\ )
x=0 x=0 X! NT O\ N iy
W - | AT 1 -y

R | K x!
Xx) =
|1 Guwr o
(K N! N*N’ -
Exercises

1 Find the transition function of the two-state birth and death process by
solving the forward equation.

2 Consider a birth and death process having three states 0, 1, and 2,
and birth and death rates such that A, = pu,. Use the forward equation
to find Py(¢), y = 0, 1, 2.

Exercises 3-8 all refer to events occurring in time according to a
Poisson process with parameter A on 0 < ¢ < 0. Here X (¢) denotes the

number of events that occur in the time interval (0, ¢].

3 Find the conditional probability that there are m events in the first s
units of time, given that there are n events in the first ¢ units of time,
where 0 < L.

e t
m<nand0 < s <
Let T,, denote the time to the mth event.
of T, Hmt:{ <t} ={X@) = m}.
5 Find the density of the random variable T,, in Exercise 4. Hint: First
consider some specific cases, say, m = 1

o
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6 Find P(T; < s| X(t) = n) for 0 < s < t and n a positive integer.

7 Let T be a random variable that is 1ndependent of the times when
events occur. Suppose that 7 has an exponential density with
parameter v:

t>0

v bl bl
f() = {0 t < 0.

Find the distribution of X (7"), which is the number of events occurring
by time T. Hint: Use the formulas

P(X(T) = n) = ' fAOPX(T) = n| T = 1) dt
and i
PX(T)=n|T=1t)=PX() =n
8 Solve the previous exercise if 7 has the gamma density with parameters
o« and v
o VETeTY (), t>0,
JT\*) — l

9 Verify Equation (43).
10 Consider a pure death process on {0, 1, 2,...}.

X7 tha £~ wd Arratin
\a) \AJ llLC LllC 1I0fWara cquauuu

(b) Find P_(¢).
(c) Solve for P, (t) in terms of P, . ,(t).
(d) Find P,

{f\
A JLL“ P s ’x 1\0/

(¢) Show thatif u, = xu, x > 0, for some constant y, then
p () = (% ‘e~ BY(1 —uryx—y 0
ny(t)—k)(e YA — e ® 7Y, 0<y<x.

11 Let X(¢), t > 0, be the infinite server queue and suppose that initially
there are x customers present. Compute the mean and variance of
X(1).

12 Consider a birth and death process X (¢), ¢ > 0, such as the branching
process, that has state space {0, 1, 2, ...} and birth and death rates of
the form

A, = XA and U, = XU, x >0,

where A and py are nonnegative constants. Set
oo}
m(t) = E(X(1) = ZO YP(0).
y:

(a) Write the forward equation for the process

(b) Use the forward equation t

(¢) Conclude that
m(f) = xe®~#r,

13 Let X(¢), t > 0, be as in Exercise 12. Set

s{f) = E(X*() = Zo Y2P(2).
y=
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(a) Use the forward equation to show that

s:(1) = 214 — ws) + (4 + wm(0).

(b) Find s,(2).
(c) Find Var X (¢) under the condition that X (0) =

Suppose d particles are distributed into two boxes. A particle in box 0
remains in that box for a random length of time that is exponentially
Aictmiloaritad marntmatar 1 hafAavra gatnag ta laavw 1 edinla 2 lhae 1
umntliivuitcu Wllll paiaiiivivi 4 OCIOIC Hulllg lU 00X 1. I'\ l)d.l UVIC 111 VUA 1
remains there for an amount of time that is exponentially distributed

with parameter u before going to box 0. The particles act independently
of each other. Let X(?#) denote the number of narticles in box 1 at

WwwWilL Vvl AJWEL LR \F ) BVIIVUIV LUilV iUV vE PORLuivivo i1l vvun 1

time ¢ > 0. Then X(¢), ¢t > 0, is a birth and death process on

{0,...,d}.
(a) Find the birth and death rates.

\U} 11110 1 xd\‘}- LLLret . AsNLU Ai\‘v}, ¢ = VvV VvV

a nf
> box i at time O,
so that X(r) = X,(¢) + X,(¢). If X(0) = x, then X,(¢) and

Y. (f\ are indenendent and binomiallv distributed with narameters

LR ¥ ) BiAV JIMVPVIIMVALSY QAW VAV AIARRL) WRiCRALIU RV Vraudl pARaiiiivivad

defined in terms of x and the transition function of the two-state
birth and death process.
(¢) Find E,(X(?)).
Consider the infinite server queue discussed in Section 3.2.4. Let
X J(t) and X (t) be as deﬁned there Suppose that the initial distribu-
is ;

to show that X,(¢) has a Poisson distribution with parameter
ve M,

(b) Use the result of (a) to show that X (1) = X,(¢) + X,(¢) has a
Poisson distribution with parameter

% + /v —_ %\ e_lu!
P Y
(c¢) Conclude that X(¢) has the same distribution as X(0) if and only if
= A/p.

Consider a birth and death process on the nonnegative integers whose
death rates are given by u, = x, x > 0. Determine whether the

process is transient, null recurrent, or positive recurrent if the birth
rates are

(a) ] — v L 1 > N

\Qa) Ay AT Ly A Z U,

M)A, =x+2 x=>0.



110

17

18

19

N
-l

22

Markov Pure Jump Processes

Let X(¢), t > 0, be a birth and death process on the nonnegative
integers such that A, > Oand y, > Oforx > 1. Sety, = 1 and

- - ul. ' llx X > 1
x s =
2.1' * Ax
(a) Show that if ¥ _ v = oo.then o.» = 1 > 1
(a) Show that1f 2 -0 7y oo, then p, Lx=>1
AN OL ... 4L 4 1L YOO A5 S 4l
(b) Show that if 3>°2 y, < o, then
2=z ¥
Pxo P x =1
©
y=07Vy

Hint: Use Exercise 26 of Chapter 1.

Let X(¢), t > 0, be a single server queue (N = 1 in Example 5).
(a) Show that ifu>1>0,thenp,,=1,x > 1.
(b) Show that if u < A, then

pro = (WA, x=1.

Consider the branching process introduced in Example 1. Use
Exercise 17 to show that if p < 1, then p,, = 1 for all x and that if

p > %, then

px0=kpp), x > 1.

- -

Find the stationary distribution for the process in Exercise 14.

QIIY\Y\I\CD /’ mor-]ﬂnﬂnc aroa Q‘I]l‘\iﬂf‘f tn QIIIIQ‘DG Qﬂf‘ ranairg T e Q‘;]'I'Ifﬂ
UUYPUD\J “ 111Awilllivo Qi v DUUJ\I\JI- VU 1Qiluivo il l\tl}“llﬂo A4 llv 1LGiiTui v
times are exponentially distributed with parameter p, and the repair

times are exponentially distributed W1th parameter . Let X (t) denote
the number of machines that are in satisfactory order at time ¢. If

there is only one repairman, then under appropriate reasonable
assumptions, X(¢), t > 0, is a birth and death processon {0, 1, ..., d}
with birth rates A, = A4, 0 < x < d, and death rates u, = xyu,
0 < x < d. Find the stationary distribution for this process.

Consider a positive recurrent irreducible birth and death process on
= {0, 1, 2,...}, and let X(0) have the statlonary distribution 7 for

ito 1mitinl Aigtrilritinn Thaoan V¢ haa Aigtrilan w Farall + S N Tha
ILD llllllal UidLliilvuLivlil,. 111V11 A \l} 1iao UIDLIIUULIUII i 1VULl all l« z. V. @I
quantities
e ¢} e 0]
k) I O VAN 1 n I ] 7\
Eixey = Y, 4m(x) and  Epyg = 3 ma(x)
x=0 x=

terpreted, respectively, as the avera
average death rate of the process.
(a) Show that the average birth rate equals the average death rate.

(b) What does (a) imply about a positive recurrent N server queue?
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A stochastic process can be defined quite generally as any collection of random
variables X(¢), ¢t € T, defined on a common probability space, where T is a subset
of (— o0, ) and is usually thought of as the time parameter set. The process is
called a continuous parameter process if T is an interval having positive length and
a discrete parameter process if T is a subset of the integers. If T = {0, 1, 2,...}itis
usual to denote the process by X,, » > 0. The Markov chains discussed in Chapters
1 and 2 are discrete parameter processes, while the pure jump processes discussed
in Chapter 3 are continuous parameter processes.

A stochastic process X (¢), t € T, is called a second order process if EX*(t) <
for each ¢t € T. Second order processes and random variables defined in terms of
them by various ‘“linear” operations including integration and differentiation are
the subjects of this and the next two chapters. We will obtain formulas for th
means, variances, and covariances of such random variables.

We will consider continuous parameter processes almost exclusively in these
three chapters. Since no new techniques are needed for handling the analogous
results for discrete parameter processes, little would be gained by treating such

processes in detail.

-
o
a

px(t) = EX(2).
The covariance function ry(s, t), s € T and t € T, is defined by
ry(s, 1) = cov (X(s), X(¢)) = EX(s)X(t) — EX()EX(2).

This function is also called the auto-covariance function to distinguish it
from the cross-covariance function which will be defined later. Since

111
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Var X(t) = cov (X(¢), X(t)), the variance of X'(¢) can be expressed in
terms of the covariance function as

D Var X(t) = ry(t, t), teT.
By a finite linear combination of the random variables X(¢), t € T, we

mraant o randArne n-'n‘\ln AF tlhn FAsesan
11vall a 1ali\vlll vallauviliv Ul L1y 1VUll1ll

n

Y, bX(t)

j=1

J—

where n is a positive integer, ¢,, ..., t, are points in T, and b,, ..., b, are
real constants. The covariance between two such finite linear combinations
is given by

cov (Z a;X(s), Z b; X(t,))

i=1 ji=

I
[NZE!
uM 2

aib i cov (X(sp), X(¢)))

= i 2 a;bry(s;, t;).

Tn nartirnlar =1L U=
111 paitiivuial,
n n
() Var l Y b;X(t; )| Y Y bbrts, t)).
J i=1 j=1

It follows immediately from the definition of the covariance function
that it is symmetric in s and ¢, i.e., that

(2} o ¢ — p (
) rx\W, t) — I'x\

It is also nonnegative definite. That is, if n is a positive integer, ¢4, ..., ¢,
arein T, and b,, ..., b, are real numbers, then

Z Z bibry(ts 1)) =

This is an immediate consequence of (2).
We say that X(¢), —o0 < t < o0, is a second order stationary process

'p pl\" -\ 4 YA"" “Iimka.‘ ~ "kﬂ ﬂal‘\’\“l‘ l\"‘f‘a.‘ E 2SS o2 Yal-YJ} V{‘\ ~ > +4 P ~
11 1Ul Lvuly Hullivuvl ¢ LUV dLULIU ULULL PLIUWVLOD I\ ), — W N T N W,
defined by

Vi — Vs ~\ — v <~ AN

‘\l«}—A\L T I-), W N N W,

has the same mean and covariance functions as the X(¢) process. It is
left as an exercise for the reader to show that this is the case if and only if
ux(t) is independent of ¢ and rx(s, ) depends only on the difference
between s and .

Let X(¢), —o0 < t < oo, be a second order stationary process. Then

px(t) = px, —© <t < o,
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where py denotes the common mean of the random variables X (¢),
—0o0 < t < o0. Since ry(s, t) depends only on the difference between s

and ¢,

4 ry(s, t) = rx(0, t — s), —0 < 5,1t < 0.
The function ry(t), — o0 < t < o0, defined by

5 ry(t) = ry(0, t), -0 <t < 00,

tc alom ~allad 4l
is also calied the covaria

process. We see from (4) d (5) th
rg(s, t) = ry(t — s), —0 < 5,1t < o0.
It follows from (3) that ry(¢) is symmetric about the origin, i.e., that
re(—1t) = ry(t), -0 <t < 0.

The random variables X(¢), —o0 < t < oo, have a common variance
.‘7 " k‘l
vy

ai1us
51 Vil

Var X(t) = ry(0), -0 <t < .

Recall Schwarz’s inequality, which asserts that if X and Y are random
variables having finite second moment, then (EXY)? < EX2?EY2.
Applying Schwarz’s inequality to the random variables X — EX and
Y — EY, we see that (cov (X Y ))2 Var X Var Y.

T4 £AMNacsro o o laco 4 L~
It follows from this last inequality that

lcov (X(0), X(9)| < v/ Var X(0) Var X(2),
and hence that
Irx(t)] < ry(0), —0 <t < o0.

If ry(0) > 0, the correlation between X(s) and X(s + ¢) is given inde-
pendently of s by

cov (X(s), X(s + 1)) _ rx(1)

’
VVar X(s) VVar X(t)  7x(0)

—0 < s,t< 00.

Example1. Let Z, and Z, be independent normally distributed
random variables each having mean 0 and variance 2. Let A be a real
constant and set X(¢t) = Z, cos At + Z,sinAt, —o0 <t < oo. Find
the mean and covariance functions of X(¢), —o0 < ¢ < oo, and show
that it is a second order stationary process.

We observe first that
ux(t) = E'Z1 cos At + EZ, sin At = 0, —0 <t < 0.
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Next,

rx(s, 1) = cov (X(s), X(1))
= EX(s)X() — EX(s)EX(?)

= EX(s)X(?)

= E(Z, cos As + Z, sin As)(Z, cos it + Z, sin Af)
72 e rme e 72 14 « 9.

= LLj COS AS COS Al -+ LL, SII1 AS SIIL Al

This shows that X(¢), —o0 < ¢t < 00, is a second order stationary process
having mean zero and covariance function

< 1 < on

Example 2. Consider a two-state birth and death process as discussed
in Section 3.2.1. It follows from that discussion that the transition
probabilities of the process are given by

(7 n(0) = —*# and  n()= 2.
U

In Chapter 3 we discussed birth and death processes defined on 0 <
t < oo. Actually in the positive recurrent case it is possible to construct a
corresponding process on —o0 < t < oo having the stationary distribu-
tion determined by (7). This process will be such that

8) PX() = 0) = 7%71 and P(X(t) = 1) = ;i—ﬂ ,

-0 <t < o0,
and such that the Markov property

O PX@)=y|X(s)=x)= Pt — ), —00 <s<t< o,
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holds, where P (t), t > 0, is given by (6). We will show that such a
process is a second order stationary process and find its mean and
covariance functions.

The mean function is given by

px(t) = EX(1)

A
=0-PX(t) =0+ 1-PX(#t)=1) = -
A+
Let —o0 < s <t < o0. Then
EX(5)X(®)) = P(X(s) =1 and X(®) =1)
— DIV — N\NDIV/Ii 1] VI — 1)\
=I\AS) = 1)A\l) = 1 | A\$) = 1)
= P(X(s) = 1)P,(t — s)
2 (A U VA
= + e-u+u)u—s))
A+p\A+p A4 u

4 ) L M Gme-s)

A+ u (A + u)?
L \ LI d4
YTae £ 1 o ____ 4Ll 4
IT 101IOWS tnat
Y S N '1/‘ —(A+u)(it—ys) A o o P A e
rx\s, t) = € s — <s<KI<
{ £ ”\2
\IV 1 }
By symmetry we see that
Ap
-— + p—
TX(S, t)=——e (G+mlt sl, —0 < §5t < 0.
A+ p)?
4+

Thus X(¢), —o0 < t < o0, is a second order stationary process having
mean A/(A + u) and covariance function

y) -
rx(t) - —/q—HT e ()‘+”)I!l’ —0 <t < 0.
“+ n)y
Other interesting examples of second order processes can be obtained
from Poisson processes.

Exampie 3. Consider a Poisson process X(f), —o0 < ¢ < o0, with
parameter A (see Section 3.2.2). This process satisfies the following

nrAanartioag .
Pl Ul}\tl UIVO .

i) X(0) =0
X(t) — X(s) has a Poisson distribution with mean A(t — s) for

(i) X(t,) — X(t)), X(&;3) — X(¢,), ..., X(¢t,) — X(t,_,) are indepen-
dentfort, <t, <---<t,.
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We will now find the mean and covariance function of a process X (¢),
— 0 < t < oo, satisfying (i)—(iii). It follows from properties (i) and (ii)
that X(¢) has a Poisson distribution with mean At for ¢ > 0 and
— X (¢) has a Poisson distribution with mean A(—¢) for t < 0. Thus

ux(t) = At, —0 <t < o0,
Since the variance of a Poisson distribution equals its mean, we see that
X(t) has finite second moment and that Var X(¢) = Alz]. Let0 < s < 1.
L .
111CI1

cov (X(s), X(s)) = Var X(s) =
It follows from properties (i) and (iii) that X(s) and X(z) — X(s) are

cov (X(s), X(t) — X(s) =

cov (X(s), X(¢)) = cov (X(5), X(s) + X(¢) — X(5))
cov (X (s), X(5)) + cov (X(s), X(t) — X(s))

= /s.

(10) ( t) (A min (!S!a !t!)s st =2 Q:
ry(s, t) =
e iO, st < 0,
The PTroCEss 1roin uxampw 3 is not a second order S‘i&t:Gi‘a"'y Process
In the next example we will consider a closely related process which is a
second order stationary process

Example 4. Let X(¢), —o0 <t < o0, be a Poisson process with
parameter 4. Set

Yt — Y(r L 1)\ — Y(¢+) —_—n < t < oD
‘\i, \l« .l, \i, WS ™~ F T

v Y

Find the mean and covariance function of the Y(¢) process, and show
that it is a second order stationary process.

ty

ay

<
I

EXt+ 1) — X))
=AMt + 1) — At =4,
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so the random variables Y(¢) have common mean A. To compute the
covariance function of the Y(¢) process, we observe that if [t — 5| > 1,
then the random variables X(s + 1) — X(s) and X(¢t + 1) — X(¢) are
independent by property (iii). Consequently,

ry(s,t) =0 for lt — s| > 1.

Suppose s < t < s + 1. Then
cov (Y(s), Y(¢)) = cov(X(s + 1) — X(s), Xt + 1) — X(2))

=cov(X(t) — X&)+ X(s+1) — X(@), X(s+ 1)

—X@)+ Xt + 1) — X(s + 1)).

It follows from property (iii) and the assumptions on s and ¢ that

cov(X(t) — X(s), X(s + 1) — X(¢)) =0,

cov(X(t) — X(s5), Xt + 1) — X(s + 1)) = 0,

o
f=
cu

cov(X(s+1)— X@),Xt+1) — X+ 1) =0.

By property (ii)
cov (X(s + 1) — X(#), X(s + 1) — X(?)) = Var (X(s + 1) — X(2))
= AMs + 1 —¢).

hus

A L11ee

} & P

cov (Y(s), Y(t)) = A(s + 1 — 1).
By using symmetry we find in general that

_ M=t —sDh,  le—sl <1,
ry(s, 1) = {o, It —s| > 1.

a second order stationary process having
n

In Figure 1 we have graphed the covariance function for three different
second order stationary processes. These covariance functions are special
cases of those found in Examples 1, 2, and 4 respectively. In each case

ry(0) = 1 and hence ry(¢) is equal to the correlation between X(0) and
X(¢). In the top curve of Figure 1 we see that the correlation oscillates

hhaturaan 1 and 1 Tn tha midAla vrua tha ~nrealatin Aarrancas av
ULLWIALIL T 1 allud 1. 4111 IV uu\.uuc vul A\ A Y Lll\t \«Ullclallull UvLvilivadsuvo VAT

ponentially fast as || — oo. In the bottom curve the correlation decreases
linearly to zero as |?| increases from 0 to 1 and remains zero for all larger

values of |¢].
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Consider two second order processes X(¢),t € T, and Y(¢), t € T. Their
cross-covariance function is defined as

Clearly

and
rxx(s, t) = rx(s, t).

The cross-covariance function can be used to find the covariance function
of the sum of two processes. Indeed,
ry+y(s, t) = cov (X(s) + Y(s), X(t) + Y(2))
= ryx(s, 1) + rxy(s, t) + ryx(s, t) + ryy(s, t),
which can be rewritten as

(11) rX+Y(s9 t) = rX(ss t) + rXY(ss t) + rYX(S, t) + ry(S, t)'
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In the important case when the cross-covariance function vanishes, (11)
reduces to

(12) rx+y(s, t) = ry(s, t) + ry(s, ).

These formulas are readily extended to sums of any finite number of
processes. Consider in particular n second order stationary processes
X,(t),—0 <t < 0,...,X,(t), —0 <t < o0, whose cross-covariance
functions all vanish. Then their sum

Yt = X.(1) + . 1 (1) —0 <t < 0O
LA \lv} LA 1 ll 1 [] lln\l I, e T~ [ 2 T W,
is a second order stationary process such that
n
(13) Ux = Z Hx,
k=1
and
2
(14) rx(®) = ), rx (), —00 <t < o0.
k=1

Exampleb. LetZ,,,Z 21> Z22y -+ s Lyt Zy2 be 2n independent
normally distributed random variables each having mean zero and such

that
VaI'Zk1=VaI‘Zk2=O'i, k=1,...,n.

Let 4,, ..., 4, be real constants and set

n
X(t) = E (Zkl COS I’Lk
k=1

+ 0 7
T T 4L

Find the mean and covariance functions of X(¢), —o0 < t < 0.

Set
Xk(t) = Zkl COoS Akt + Zk2 sSin A.kt
It follows from the independence of the Z’s that the cross-covariance
function between X(¢) and X,(¢) vanishes for i # j. Thus by using (13)
and (14) together with the results of Example 1, we see that X(¢), —0 <

t < oo, is a second order stationary process havmg mean zero and
covariance function

(15) re(t) = Y. of cos At, —0 <t < 0.
k=1

:hn
!\"
()

saussian processes

aussi
finite linear combination of the andom ariables X(t), t
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distributed. (In this context constant random variables are regarded as
normally distributed with zero variance.) Gaussian processes are also
called normal processes, and normally distributed random variables are
sometimes said to have a Gaussian distribution. If X(¢), te T, is a
Gaussian process, then for each ¢ € T, X (¢) is normally distributed and, in
particular, EX?*(t) < 0. Thus a Gaussian process is necessarily a second
order process. Gaussian processes have many nice theoretical properties
that do not hold for second order processes in general. They are aiso
widely used in applications, especially in engineering and in the physical

Example 6. Show that the process X(¢), —o0 < t < o0, from

To verify that this is a Gaussian process, w

where Z, and Z, are independent and normally distributed. Thus
a X)) + -+ a,X(t,)
= Z,(a,cos Aty + -+ a,cos At,) + Z,(a, sin At; + - + a,sin At,)

is a linear combination of independent normally distributed random
variables and therefore is itself normally distributed.

It is left as an exercise for the reader to show that the process in Example
5 is also a Gaussian process.

Two stochastic processes X(¢), t € T, and Y(¢t), t € T, are said to have
the same joint distribution functions if for every positive integer n and every
choice of 7,, .. ., t,, all in T, the random variables

X(ty),..., X(,)

have the same joint distribution function as the random variables

One of the most useful properties of Gaussian processes is that if two
such processes have the same mean and covariance functions, then they

also have the same joint distribution functions. We omit the proof of this
I T~ con that +tha (1a x

resu To see that the Gaussian aSdeudeu iS NcCEssary, 60SCrve unat uic
process defined in Exercise 15 has the same mean and covariance functions
as that from Example 1 with ¢ = 1 but not the same joint distribution

functions.
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The mean and covariance functions can also be used to find the higher
moments of a Gaussian process.

Exampie 7. Let X(7), ¢ € T, be a Gaussian process having zero means.
Find EX*(¢) in terms of the covariance function of the process.

We recall that if X is normally distributed with mean 0 and variance ¢
then EX* = 36*. Slnce X(¢) is normally distributed with mean 0 and

¥rA onan

[y, RN
e

EX*(t) = 3(rx(t, 1))*.
Let n be a positive integer and let X;,..., X, be random variables.
They are said to have a joint normal (or Gaussian) distribution if
ale + + anXl‘i
is normally distributed for every choice of the constants a,,...,q, A
stochastic process X (¢), ¢t € T, is a Gaussian process if and only if for every
positive integer n and every c h01ce of t,,...,¢t, all in T, the random
wrnminlalas, Vs N\ Y4\ Lncra o cmtemd ommzmzan~l T2 4 Sl . a2
valliavlts A lq), s A¢,) llaVCl a _]Ul Il 11011114l UIDLIIDULIOL
Let X,,..., X, be random variables having a joint normal distribution
and a density f with respect to integration on R". (Such a density exists

if and only if the covariance matrix of X,,..., X, has nonzero deter-
minant.) It can be shown that fis necessarily of the form

(16)  fCxp-vvs X)) = 3 S exp [—3x — WITi(x — W],

where ¥ is the covariance matrix

[cov (Xl,.Xl) -+ COV (Xl,. Xn)-|

Y =
Lot

- [cov (X,,,:Xl) . COV (X,,,i X,,)_l

9

x and u are the vectors

Xy Hn

and denotes matrix transpose. In particular, if n = 2, then (16) can be

(17) F(xy, %) = 1 exp | _ QG )]
2161031 — p? L 2 |
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where

Q(xla Xp) = !

s
) - () () - (o) |

rr 1 2 1 N 1 1 . o oy 1 2 4 N R
Here p, and o7 denote the mean and variance of X, u, and a5 denote the

mean and variance of X,, and p denotes the correlation between X, and

N n alon 11e0 (1K) +~ nl\ At that tha rAanditinana
1DV UdL \l U} LU D11V YY Lllalr Lllc LUILIMIUV11aA

is a linear function of these n

v o af Y
APC blatlUll o1 A,

andom variables,

©
g
=
23
,><
)—l
Pt o

A stochastic process X(), —o0 <t < o0, is said to be strictly
stationary if for every number 7 the stochastic process Y(¢), —o0 < t < 00,
defined by
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order stationary process. The converse is not true in general. It is left as
an exercise for the reader to demonstrate by an example that a second
order stationary process need not be strictly stationary.

Let X(¢), —00 < t < o0, be a second order stationary process which is
also a Gaussian process. Then this process is necessarily strictly stationary.
For if 7 is any real number, then the Y(¢) process defined by Y(¢) =
X(t + 1), —00 <t < o0, is a Gaussian process having the same mean
and covariance functions as the X(¢) process. It therefore has the same
joint distribution functions as the X(¢) process.

Since the processes in Examples 1 and 5 are Gaussian and second order
stationary, they are also strictly stationary. The second order stationary
processes from Examples 2 and 4 are not Gaussian, but it can be shown
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“.9. 1Ne vvienoer process
It has long been known from microscopic observations that particles

suspended in a liquid are in a state of constant highly irregular motion.
It gradually came to be realized that the cause of this motion is the
bombardment of the particles by the smaller invisible molecules of the
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liquid. Such motion is called ‘“Brownian motion,” named after one of
the first scientists to study it carefully.

Many mathematical models for this physical process have been pro-
posed. We will now describe one such model. Let the location of a
particle be described by a Cartesian coordinate system whose origin is the

e A — a4t 1 a4 a4l 4 n L ... 41 L‘L..A_ P PR o
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the position of the particle vary independently, each according to a
stochastic nrocess W(H) — oD <t < O caticfvino the ollowino
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properties:
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(i) W(t) — W(s) has a normal distribution with mean 0 and variance
o%(t — s)fors < .
(i) W(t,) — W), W(ts) — W(tp),..., W(,) — W(t,-,) are inde-

nr ¢ < ¢ & o0 & 1
Vil 11 = 2 = = ¢y

Here 62 is some positive constant.
Property (i) follows from our choice of the coordinate system. Pro-
perties (ii) and (iii) are plausible if the motion is caused by an extremely

. 1 3 11, 12 1 122 o . 4
large number of unrelated and individually negligible collisions which

have no more tendency to move the particle in one direction than in the

opposite direction. In particular, the central limit theorem makes it

reasonable to suppose that the increments W (¢) — W(s) are normaily
distributed.
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Avogadro’s nt
in a scientific experiment conducted shortly thereafter led to an estimate
of Avogadro’s number that is within 19 percent of the presently accepted
value. Einstein’s work and its experimental confirmation gave added
evidence for the atomic basis of matter, which was still being questioned
at the turn of the century.

Although the mathematical model is reasonable and fits the experi-
mental data quite well, it has certain theoretical deficiencies that will be
discussed in Section 5.3. In Chapter 6 we will discuss another mathematical
model for the physical process.

A stochastic process W(t), —o0 <t < ©

e
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satisfying properties (i)-
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Norbert Wiener and Paul Lévy developed much of the theory, and the
process is also known as the Wiener-Lévy process and as Brownian

motion. The Wiener process is usually assumed to satisfy an additional
property involving ‘“‘continuity of the sample functions,” which we will
discuss in Section 5.1.2.
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It follows immediately from the properties of the Wiener process that
the random variables W (¢) all have mean 0 and that

(1) FW(+ N\ — W+ YWW(+\ — Wt = 0 f <t <t <t
\1v9) NI \*2) AAANS VIANAAANS" V) Tr\*¢3)) Vs 1 = 2 = 3 = ¢4-
The covariance function of the process is
2 .
¢ min (|s|, 1)), st > 0,
(19) rW(S’ t) = {n ot <« N
(Y St < u.

The proof of (19) is virtually identical to that of Formula (10) for the
covariance function of the Poisson process defined in Example 3. It is
left as an exercise for the reader to show that

(V) E(W(s) — W(@)W(t) — W(a))
= ¢“min (s — a, t ), s>aand t > a
The Wiener process is a Gaussian process. In other words, if £, <
< t,and b,, ..., b, are real constants, the random variable
L YI7f+4 \ 1 1 L TX7 4\
O1vwrily) + UnVV Uy

Then each of the random varlables W(tl), cees W(t,,) is a llnear combma—
tion of the increments W(t,) — W(t,),..., W(t,) — W(t,_,). Indeed,

Wit = (W(t, N — W(r) L 4+ (W) — W(. . )N < i<n
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Thus b W/f Y Leoo L hWW(t)ecan alen he written ac a linear eomhinatinn
\b 1/ T 1 Un rr \l«n} Wil QRIVOV Uw Yrilillvil QAo Q 1111wl wVvlilviliiauivil

of the increments W(¢,) — W(t,),..., W(t,) — W(t,-,). Now these
ncrements are independent and normallv distributed. Thus any linear
combination of them, in particular,

L YX7{+ \ 1 o L 4\
OgWWty) + 777 1 O ly,)

is normally distributed.

Exercises

1 Let X(¢), —o0 < t < o0, be a second order process. Show thatitisa
second order stationary process if and only if uy(¢) is independent of ¢
and ry(s, t) depends only on the difference between s and .
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2 Let X(#), —o0 < t < o0, be a second order process. Show that it is a

w

second order stationary process if and only if EX(s) and EX(s)X (s + ¢)
are both independent of s.

-y

Let X(z), —o0 < t < 00, be a second order stationary process and set
Y¢) =Xt +1) — X(t), —o <t < oo. Show that the Y(r)
process is a second order stationary process having zero means and
covariance function

ry(8) = 2ry(t) — rx(t — 1) — rx(t + 1)
Let X(¢), —o0 < t < oo, be a second order stationary process.
(a) Show that

Var (X(s + 1) — X(5) = 2(x(0) — ry(0)).

4
(b) Show that for M > 0

P(X(s + 1) — X() = M) < M‘ (rx(0) — ry(®)).

Let X(¢), —o0 < t < oo, be a Poisson process with parameter 4 and
set Y(#) = X(¢t) — tX(1),0 < ¢t < 1. Find the mean and covariance
functions of the Y (¢) process.
Let U,,..., U, be independent random variables, each uniformly
distributed on (0,1). Let ¥(t,x), 0 <t <1 and 0 <x <1, be
defined by

(1. x < t.

Y(t, x) = {4 -,
0, x>t

X@t) = %2 W, U), 0<t<l,

is the empirical distribution function of Uy, . .., U,. Compute the mean
and covariance functions of the X(¢) process.

Let X(¢), —o0 < t < o0, be a second order stationary process having
covariance function ry(t), —o0 <t < oo. Set Y(t) = X(t + 1),
—o < t < oo. Find the cross-covariance function between the X (¢)
process and the Y(¢) process.

Let R and ©® be independent random variables such that ® is uniformly
distributed on [0, 27) and R has the density

r o= "%/20?
fa(r) = 40°
[0, r <0,

, O<r< oo,

where ¢ is a positive constant. It follows by using the change of variable
formula involving Jacobians that R cos ® and R sin © are independent
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Second Order Processes

random variables, each normally distributed with mean 0 and variance
a%. Let A be a positive constant and set

X(t) = Rcos (it + O), —0 <t < 00.

N 7

Show that the X (¢) process a second order stationary process having

u—p_
]
)

ry(t) = a* cos it, —0 <t < .

.- .5 O, be independent random variables such
t the @’s are uniformly distributed on [0, 2n) and R, has the density

et B vy Kiike “K 22833 ~ Newaa

(. e~"2% 0 < r < o,
frlr) = {0%
lO, r <0,

where a,,..., 0, are positive constants. Let 4,,..., 4, be positive
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t < o0, be a Gaussian process and let f and g be
functions from(=w, o) to (— o0, o). Showthat Y(¢) = f(£)X(g(¢)),
—00 < t < 00,is a Gaussian process and find its mean and covariance
functions.

Let X(¢), —o0 < t < oo, be a Gaussian process having mean zero

and set Y(¢) = X*(t), —0 < t < 0.

(a) Find the mean and covariance functions of the Y (¢) process.

(b) Show that if the X (¢) process is a second order stationary process,
then so is the Y(z) process.

Let X 1 and X, have the joint density glve n by (17).

(a) Find the conditional density of X, gi =

gi iv .
(b) Find the conditional expectation of X, given X; = x;.

Let Z, and Z, be independent and identically distributed random
variables taking on the values —1 and 1 each with probability 1/2.
Show that X(t) = Z, cos At + Z, sin A, —0 < t < o0, is a second

order stationary process which is not strictly stationary.
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16 Verify Formula (20).

17 Find the distribution of W(l) + --- + W(n) for a positive integer n.
Hint: Use the formulas

1+2+n_+n=n(ﬁ+1)
2
and
124 92 4o q g2 = O D@+ D)
6
18 Set
x( =2L T PO <t <o

where ¢is a positive constant. Show that the X (¢) process is a stationary
Gaussian process having covariance function

(g2 /. !,t!\ o
- k - 7} Itl <Eé,
rx(t) = ¢ &
'\0, [t] > e.
19 Set )
X(@®) = e W (™), —0 <t < o0,

where a is a positive constant. Show that the X (¢) process is a stationary
Gaussian process having covariance function

ry() = %, —0 <t < 0.

20 Find the mean and covariance functions of the following processes:
(@ X@®) =Ww@):, t=0;
(b) X(¢t) = tw(/t), t>0;
©) X(@t) = c'Ww(c*), t=0;
d xX@ =w@i —tw(@), 0<t<Il.



