Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III(NEW) EXAMINATION - WINTER 2022 Subject Code:3131906 Date:27-02-2023

U		Name: Kinematics and Theory of Machines	
Instru		:30 PM TO 05:00 PM Total Marks:70	
mstru	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a) (b) (c)	Classify different types of constrained motions.	03 04 07
Q.2	(a) (b) (c)	Classify and draw different follower displacement diagram.	03 04 07
		OR	
	(c)		07
Q.3	(a) (b) (c)		03 04 07
		OR	
Q.3	(a) (b)		03 04

(c) In a reverted epicyclic gear train, the arm A carries two gears B and C and a compound gear D - E. The gear B meshes with gear E and the gear C meshes with gear D. The number of teeth on gears B, C and D are 75, 30 and 90 respectively. Find the speed and direction of gear C when gear B is fixed and the arm A makes 100 r.p.m. clockwise.

Q.4 (a) Explain klein's construction.

03

(b) Explain the term rubbing velocity.

04 07

(c) The mechanism of a machine, as shown in Figure, has the following dimensions: $O_1A = 100 \text{ mm}$, AC = 700 mm, BC = 200 mm, $O_3C = 200 \text{ mm}$, $O_2E = 400 \text{ mm}$, $O_2D = 200 \text{ mm}$ and BD = 150 mm. The crank O1A rotates at a uniform speed of 100 rad/s. Find the velocity of the point E of the bell crank lever by instantaneous center method.

OR

Q.4 (a) State and explain aronhold- kennedy theorem.

03

(b) Explain angular velocity, linear velocity, angular acceleration and linear acceleration.

04 07

(c) Figure shows configuration of an engine mechanism. The dimensions are the following: Crank OA = 200 mm; Connecting rod AB = 600 mm; distance of center of mass from crank end, AD = 200 mm. At the instant, the crank has an angular velocity of 50 rad/s clockwise and an angular acceleration of 800 rad/s2. Calculate the (i) velocity of D and angular velocity of AB (ii) acceleration of D and angular acceleration of AB

Q.5 (a) State the law of belting

03

(b) Compare belt drive, rope drive and chain drive.

04

(c) In an open-belt drive, the diameters of the larger and the smaller pulleys are 1.2 m and 0.8 m respectively. The smaller pulley rotates at 320 rpm. The center distance between

07

the shafts is 4 m. When stationary, the initial tension in the belt is 2.8 kN the mass of the belt is 1.8 kg/m and the coefficient of friction between the belt and the pulley is 0.25. Determine the power transmitted.

OR

Q.5	(a)	Classify the different type of brakes.	03
	(b)	Explain the working of multi plate clutch with neat sketch.	04
	(c)	A rope drive transmits 600 kW from a pulley of effective diameter 4 m, which runs at a	07
		speed of 90 r.p.m. The angle of lap is 160°; the angle of groove 45°; the coefficient of	
		friction 0.28; the mass of rope 1.5 kg/m and the allowable tension in each rope 2400 N.	
		Find the number of ropes required.	