Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III(NEW) EXAMINATION - WINTER 2022

Subject Code: 3130005 Date: 20-02-2023
Subject Name: Complex Variables and Partial Differential Equations

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1 (a) If $z = \frac{2+6\sqrt{3}i}{5+\sqrt{3}i}$ then find its modulus value and the principal value of its argument.

- (b) Find all the values of $(1-i)^{2/3}$
- (c) Solve $\frac{\partial^2 z}{\partial x^2} 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = \cos(x + 2y)$
- Q.2 (a) Give examples of functions f(z) and g(z) which are analytic everywhere in the complex plane C such that f(z) is never zero and g(z) = 0 if and only if z = i.
 - (b) Discuss the continuity of $f(z) = \frac{Re(z^2)}{|z|^2}, \qquad z \neq 0,$

at z = 0 if f(0) = 0.

- (c) Define Mobius transformation. Find the mobius transformation which maps the points z = 0, -i, -1 to w = i, 1, 0 respectively.
- (c) Define Harmonic function and show that $u(x, y) = 2x x^3 + 3xy^2$ is harmonic. State what are Cauchy Riemann equations and use it to find the harmonic conjugate of the given function u(x, y).
- Q.3 (a) State: (i) Liouville Theorem and (ii) Cauchy-Goursat Theorem. 03
 - (b) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!}{n^n} Z^n$ using the appropriate formula.
 - (c) Evaluate $\int_C \bar{z}dz$ where C is along the sides of the triangle having vertices z = 0, 1, i.

OR

- Q.3 (a) Expand Ln (1+z) as a Taylor series about z=0 for |z|<1.
 - (b) Without computing the integral, show that 04

$$\left| \int_C \left| \frac{e^z}{z+1} dz \right| \le \frac{8\pi e^4}{3}$$

where C denotes the circle centered at origin and with radius 4.

(c) State the Generalized Cauchy integral formula and use it to compute 07

$$\int_C \frac{z+e^z}{(z-1)^3} dz$$

where C is |z| = 2.

- Identify the type of singularities of the function $f(z) = (z^2 z^6)^{-1}$. 03 0.4
 - 04 Using the Cauchy residue theorem, compute $\int_C \frac{1}{(z-1)^2(z-3)} dz$ where C is |z| = 4.

(c) Solve
$$(x^2 + 2y^2)p - xyq = xz$$
.

- Form the partial differentiation equation by eliminating the arbitrary **Q.4** 03 constants from $(x-a)(x-b) - z^2 = x^2 + y^2$.
 - 04
 - (b) Find the complete integral (complete solution) of $q^2 = z^2 p^2 (1 p^2)$. (c) Find the Laurent's series of $f(z) = \frac{3}{(z-2)(z+1)}$ in the regions: **07** (i) |z| < 1 and (ii) 1 < |z| < 2.
- Q.5 (a) Solve $25 \frac{\partial^2 z}{\partial x^2} 40 \frac{\partial^2 z}{\partial x \partial y} + 16 \frac{\partial^2 z}{\partial y^2} = 0$. 03
 - 04
 - (b) Find the complete integral (complete solution) of $p^2 q^2 = x y$. (c) Solve $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x + y)u$ using the method of separation of 07 variables.

Q.5 (a) Solve
$$\frac{\partial^2 z}{\partial x^2} + 10 \frac{\partial^2 z}{\partial x \partial y} + 25 \frac{\partial^2 z}{\partial y^2} = e^x e^{-y}$$
.

- (b) Using the contour integration, show that the value of the improper 04 integral $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ is equal to π .
- (c) A tightly stretched string with fixed end points x = 0 and x = 1 in the 07 shape defined by y = x(1 - x) is released from this position of rest. Find y(x,t) using the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$.
