Enrolment No.

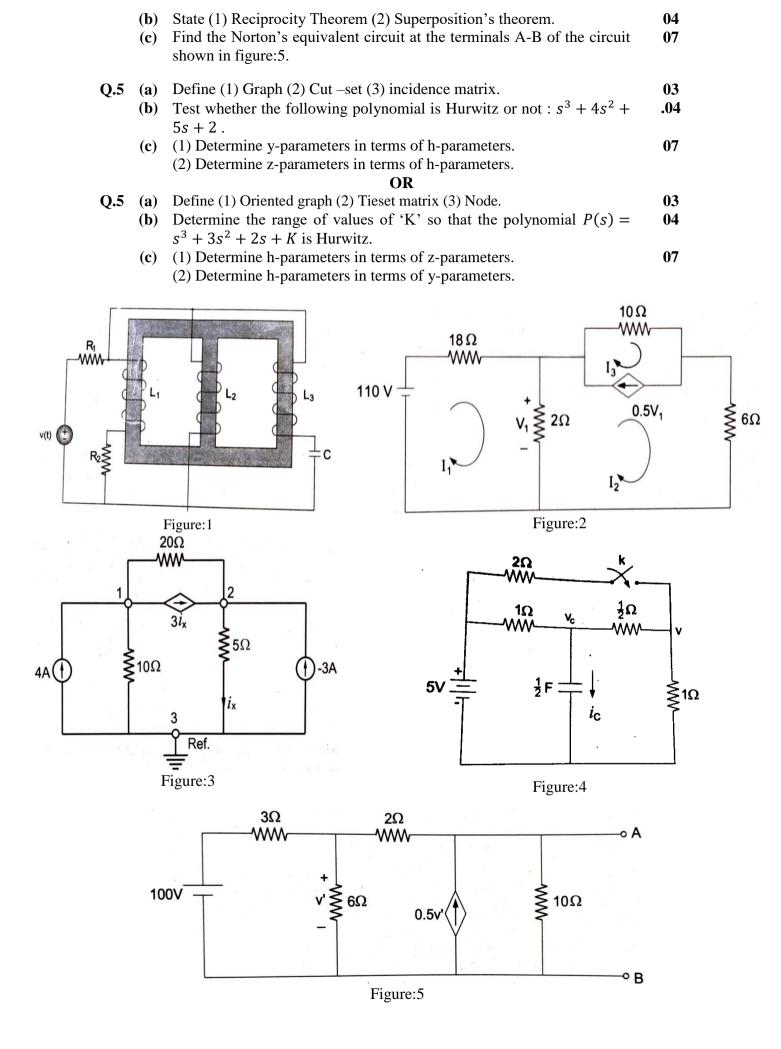
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III(NEW) EXAMINATION – WINTER 2022 de:3131103 Date:27-02-2023

Subject Code:3131103

Subject Name:Network Theory

Time:02:30 PM TO 05:00 PM

Instructions:


- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

Total Marks:70

Q.1	(a)	Differentiate between an open circuit and a short circuit. Draw their characteristics in v-i plane.	03
	(b)	Discuss the following: (1) Linear and Non-Linear elements (2) Bilateral and Unilateral elements (3) Active and Passive elements (4) Lumped and Distributed Networks.	04
	(c)	The figure:1 shows three windings on a magnetic core. Using different shaped dots, establish polarity markings for the windings, and write KVL equations for this network.	07
Q.2	(a)	How many types of controlled sources are possible? Draw their symbols.	03
	(b)	•	04
	(c)	Find the current I_1 and I_2 in the network of figure:2 using mesh analysis. OR	07
	(c)	In the network of figure:3, use node analysis to determine i_x .	07
Q.3	(a)	How the following elements will behave at t=0 and t= ∞ . (1) Resistance (2) Inductor (3) Capacitor.	03
	(b)	An exponential voltage $v(t) = 4 e^{-5t}$ is applied at time t=0 to a series R-C circuit having R= 0.2 Ω and C=1F. Obtain current $i(t)$ through the circuit.	04
	(c)	Explain how to obtain the transient response of a first order system using an appropriate example.	07
OR			
Q.3	(a)	What is time constant? What is its significance?	03
	(b)	Define the terms critical resistance, damping ratio, natural frequency and settling time for a series R-L-C circuit.	04
	(c)	In the network of figure:4, a steady state is reached with the switch k open. At t=0, the switch is closed. Find the voltage across capacitor for t>0.	07
Q.4	(a)	Obtain Laplace transform of (1) Unit Step function (2) Unit Ramp function (3) Unit Impulse function.	03
	(b)	State (1) Millman's theorem (2) Maximum Power Theorem.	04
	(c)	State (1) friminan 5 meeter (2) friamman 1 over Theorem. Also derive the condition for maximum power transfer to the load for DC and AC circuit.	07
OR			
04	(a)	O(1 + 1) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	02

Q.4 (a) Obtain Laplace transform of $(1)u(t-a)(2)r(t-a)(3)\delta(t-a)$. 03

