GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY be - semester- iii(new) examination - winter 2022			
Subject Code:3130306 Date:27-			2-2023
Subject Name:Fundamentals of Digital Electronics			
Time:02:30 PM TO 05:00 PMTotal Marks:70			
Instructions: 1. Attempt all questions.			
		Make suitable assumptions wherever necessary.	
	3. 4.	Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
	ч.	Simple and non-programmable scientific carculators are anowed.	MARKS
Q.1	(a)	111000101-101101	03
	(b)	1	04
	(c)	Explain Full Adder with truth table and Logic Diagram.	07
Q.2	(a)	Encode data bits 1010 into the 7-bit even parity Hamming code.	03
Q.2	(a) (b)		03 04
	(c) (c)	Explain Full Subtractor with truth table and Logic Diagram. OR	07
	(c)	Design 3-bit Magnitude Comparator.	07
Q.3	(a)	Draw logic diagram of Boolean expression $f = A + A\overline{BD} + \overline{ABC} + A\overline{BCD}$.	03
	(b) (c)	Design 16:1 MUX using 4:1 MUX (Multiplexer) Modules.	04 07
0.1	(\cdot)	OR	03
Q.3	(a) (b)		03 04
	(b) (c)	Find the minimal expression for $f = \sum m\{2,3,4,7,11,12,13\}$ using Kmap.	07
Q.4	(a)	Explain D Flip –flop.	03
C	(b)		04
	(c)	Design 4-bit Gray to Binary Code Converter. OR	07
Q.4	(a)	Implement Half adder with Programmable Logic Array.	03
	(b) (c)	Explain Serial IN, Serial Out shift register. Explain Positive Edge triggered S-R and J-K Flip Flops.	04 07
	(C)	Explain I oshive Edge unggered 5 K and 5 K Thp Hops.	07
Q.5	(a)		03
	(b) (c)	Explain Master- Slave J-K flip flop. Design Asynchronous Two-bit Ripple UP-Counter using Negative	04 07
	(U)	Edge-triggered J-K Flip-Flops.	U7
05	(a)	OR Evoluin Applications of Elin Flops	02
Q.5	(a) (b)		03 04
	(c)	Design Synchronous 3-bit UP Counter using JK flip flop.	07
