GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(NEW) EXAMINATION - WINTER 2022 do:2120006

Subject Code:3130906 Date:2			2-02-2023	
Subjec	t Na	me:Electrical Circuit Analysis		
Time:02:30 PM TO 05:00 PM Total I			larks:70	
Instruct	ions:			
2	L. AU 2. Ma	tempt all questions. ake suitable assumptions wherever necessary.		
3	8. Fig	gures to the right indicate full marks.		
4	l. Sir	nple and non-programmable scientific calculators are allowed.	Marks	
0.1	(a)	State and explain Reciprocity theorem.	03	
2	(b)	What is the significance of Maximum Power transfer theorem? State and explain with example.	04	
	(c)	Determine the value of the voltage across 30Ω resistor using super position theorem for the network of figure-1.	07	
Q.2	(a)	Find the current through the resistors shown in the network of Figure-2.	03	
	(b)	Determine the voltage across 4Ω resistor using Thevenin theorem for the network of Figure-3.	04	
	(c)	Determine the node voltages for the circuit shown in Figure-4. OR	07	
	(c)	Determine the voltage across 4Ω resistor using mesh analysis for the network of Figure-5.	07	
Q.3	(a)	In the network of Figure-6, the switch k is closed at t=0, a steady state having previously been attained. Find i at t= $0+$.	03	
	(b)	Explain time constant in case of series R-L and series R-C circuit.	04	
	(c)	In the nework of Figure-7, a steady state is reached with the switch k open, at t=0, the switch k is closed. Find $i(t)$ for the given values.	07	
03	(a)	UR Draw the exact dual network for the network shown in Figure 8	03	
Q.3	(a) (b)	Explain and derive the step response to R-L series circuit using	03 04	
	(c)	In the nework of Figure-9, the switch k is open at time t=0. Obtain particular solution for $v(t)$. Assume zero initial condition.	07	
Q.4	(a)	Define poles and zeros of network function. Explain significance of poles and zeros in different network functions.	03	
	(b)	Determine the current flowing through the 3Ω resistor using Norton theorem for the network of Figure-10.	04	
	(c)	In a series R-L-C circuit of Figure-11 the switch k is closed at time t=0. Obtain particular solution for the current using laplace transform method. Assume zero initial conditions in the element. OR	07	
Q.4	(a)	Point out the relations between voltage and current for the following elements. (1) Resistor (2) Inductor.	03	
	(b)	Draw impedance triangle for R-L and R-C circuit and explain related terms.	04	

- (c) Three phase coils each having a resistance of 8Ω and inductance of 0.02 H are connected in delta to a three phase 480V, 50Hz supply. Calculate line current, phase current and power absorbed.
- **Q.5** (a) Determine the Y-Parameter of a two port network from the given open circuit Impedence parameters $Z_{11} = 5\Omega$, $Z_{12} = 3\Omega$, $Z_{21} = 3\Omega$, $Z_{22} = 4\Omega$.
 - (b) Derive expression of ABCD parameters in terms of Z parameters. 04
 - (c) Determine Z-parameters of the circuit shown in Figure-12. 07

OR

- Q.5 (a) Obtain condition for reciprocity and symmetry of a two port 03 network in terms of Y-parameters.
 - (b) A two port network is represented by following equations: 04 $V_1 = 24 I_1 + 8 I_2$
 - $V_2 = 8 \ I_1 + 32 \ I_2$

Determine h- parameter.

(c) Determine transmission parameters of the circuit shown in Figure-13.

Figure-1

