Seat No.:	Ennalment Ma
Sear NO.	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER- III(NEW) EXAMINATION - WINTER 2022	
Subi	ect	Code:3131102 Date:24-02	-2023
•		Name:Digital System Design	
•		:30 PM TO 05:00 PM Total Mar	ks:70
Instru			225070
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
	7.	Simple and non-programmable scientific calculators are anowed.	Marks
Q.1	(a)	State and prove De-Morgan's Theorem.	03
	(b)		04
	(c)	- · · · · · · · · · · · · · · · · · · ·	07
		method.	
		$F(A,B,C,D) = \sum m(1,2,5,6,7,8,9,11,12,13,15)$	
Q.2	(a)	Convert as below	03
		I. $(110101010)_2 = ()_8 = ()_{16}$	
		II. $(673.10)_8 = ()_2$	
		III. $(ABF)_{16} = ()_{10}$	
	(b)	Show that NAND & NOR are universal gates	04
	(c)	Minimize the following function in SOP minimal form using K-Maps:	07
		$F(A, B, C, D) = \sum m(1, 2, 6, 7, 8, 13, 14, 15) + d(3, 5, 12)$	
		OR	
	(c)	Design a 4 bit binary to gray code converter and implement using EX-	07
		OR gates only.	
Q.3	(a)	Give comparison of TTL and CMOS family.	03
	(b)	Explain half adder & half subtractor circuit.	04
	(c)	Explain about JK & RS Flip Flop circuit using its symbol, block diagram,	07
		truth	
		table and characteristics equation.	
		OR	
Q.3	(a)	Derive excitation tables for R-S, J-K and T flip-flops.	03
	(b)	Compare ROM, PLA and PAL.	04
	(c)	Design a counter to generate the repetitive sequence 0,1,2,4,3,6.	07
	` /		
Q.4	(a)	Discuss general state machine architecture	03
ν .1	(b)	_	04

	(c)	Describe working principle of Programmable Logic Array with block diagrams.	07
		OR	
Q.4	(a)	Define: Register, Ripple counter, Synchronous counter.	03
	(b)	Implement Full Adder using 3×8 decoder.	04

(c) Explain the types Finite machines.

Q.5	(a)	Compare asynchronous and synchronous state machines.	03
	(b)	Implement T flip flop using D flip flop.	04
	(c)	Describe the operation of 4-bit bidirectional shift register with logic	07
		diagram.	
		OR	
Q.5	(a)	Define: i) Fan-in ii) Fan-out iii) Propagation delay	03
	(b)	Explain working of Toggle flip-flop with characteristic table and logic diagram.	04
	(c)	Explain dual slope type A/D converter in detail.	07
