GUJARAT TECHNOLOGICAL UNIVERSITY

	DE SEMESTED V (NEW) EXAMINATION WINTED 2022		
C1		BE - SEMESTER-V (NEW) EXAMINATION – WINTER 2022	2022
Sui	ojeci	Code:5151908 Date:04-01	-2023
Sul	oject	Name:Control Engineering	
Time:10:30 AM TO 01:00 PM Total Marks:7			ks:70
Inst	ruction	15:	
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
			Marks
0.	1 (a)	1. What does the arrow on the branch of a Signal Flow Graph represent?	03
	()	2. In a 4/3 DCV, 4 stands for and 3 stands for ?	
		3. Define self-loop	
	(b)	Write advantages and disadvantages of Open Loop System	04
	(c)	Differentiate between Open Loop and Close Loop System	07
	(t)	Differentiate between Open Loop and Close Loop System.	07
0) (a)	Write Leplace Transform of following	02
Q.	\mathbf{Z} (a)	$\frac{1}{2} t = \frac{2}{2} e^{-at} = \frac{2}{2} Sin \omega t$	03
	(b)	The transfer function of a system is given by	04
	(U)	The transfer function of a system is given by,	04
		$V(\mathbf{S} + \mathbf{A})$	
		$T(S) = \frac{R(3+0)}{2(2-2)(2-2)(2-2)(2-2)}$	
		$S(S+2)(S+5)(S^2+7S+12)$	
		Determine: i) Poles ii) Zeros iii) Characteristic equation	
		iv) Plot Poles and zeros on S-plane	
	(c)	Explain the Analogous Elements of Mechanical Rotational System.	07
		OR	
	(c)	Determine $C(s)/R(s)$ by using Block Diagram Reduction Technique. (Fig.	07
		1)	
Q .	3 (a)	Explain the following,	03
		1. Step Input	
		2. Ramp Input	
		3. Parabolic Input	
	(b)	Compare Block Diagram and Signal Flow Graph.	04
	(c)	Determine $C(s)/R(s)$ by using Mason's Gain Formula. (Fig. 2)	07
		OR	
Q.	3 (a)	Define, i) Delay Time ii) Peak Time iii) Setting Time	03
	(b)	The characteristic equation of the system is given by	04
		$s^4 + 2s^3 + (4 + k)s^2 + 9s + 25 = 0$	
		Determine the range of k for the system to be stable.	
	(c)	Find the Open Loop Transfer Function of an equivalent prototype, single	07
		loop unity feedback system having second order, whose step response is	
		shown in (Fig. 3).	
Q.	4 (a)	Draw basic hydraulic circuit with standard symbols and label.	03
-	(b)	Explain nozzle flapper amplifier with neat sketch.	04
	(c)	Obtain the transfer function for hydraulic system with PID control action.	07
	. /	OR	
0.	4 (a)	Differentiate hydraulic and pneumatic control system.	03
.	(h)	Write down the sources of hydraulic power	04

07 Sketch the root locus of the system whose open loop transfer function is, (c)

$$G(s) = \frac{K}{s(s+1)(s+3)}$$

Determine the value of K for damping ratio equal to 0.5.

Determine the stability of following system using Routh's Criterion. 03 Q.5 **(a)** $G(s)H(s) = \frac{9}{s^2(s+2)}$ 04 (b) Explain Lag – Lead Compensation of Time response. Explain Phase margin and Gain margin related to frequency response. 07 (c)

- Obtain State Space model of Spring Mass Damper system. 03 Q.5 **(a)** (b) Explain frequency response specifications, 04 i) Resonant Peak ii) Bandwidth iii) Resonant Frequency 07
 - Write a short note on Nyquist Stability Criteria. **(c)**
