GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY be - semester- iii(new) examination – winter 2022			
Subject Code:3130507 Date:24-02			-2023
Subject Name:Chemical Engineering Thermodynamics ITime:02:30 PM TO 05:00 PMTotal Marks:70Instructions:			
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	What is the scope and limitations of thermodynamics?	MARKS 03
	(b)	Explain (i) System and Surroundings (ii) Macroscopic and Microscopic aspect	04
	(c)	Derive the first law of thermodynamics for open system	07
Q.2	(a)		03
	(b)	•	04
	(c)	Determine the molar volume of gaseous methane at 300 K and 600 bar by the following methods: (a) Using the ideal gas equation (b) Using the van der Waals equation given that $a = 0.2285 \text{ N m}^4/\text{mol}^2$; $b = 4.27 \text{ x } 10^{-5} \text{ m}^3/\text{mol}$ OR	07
	(c)	A steel casting at a temperature 725 K and weighing 35 kg is quenched in 150 kg oil at 275 K. If there are no heat losses, determine the change in entropy. The specific heat (C_P) of steel is 0.88 kJ/kg K and that of oil is 2.5 kJ/kg K.	07
Q.3	(a)	What is an adiabatic process? Write the expression for work done during reversible adiabatic process	03
	(b)	Explain the terms 'state function' and 'path function'	04
	(c)	The <i>P</i> - <i>V</i> - <i>T</i> behaviour of nitrogen is represented by the ideal gas equation $PV = nRT$, where <i>n</i> is the number of moles of the gas and <i>R</i> the ideal gas constant ($R = 8.314$ kJ/kmol K). The heat capacities of the gas are $C_V = 20.8$ and $C_P = 29.1$ kJ/kmol K. The gas initially at 15 bar and 280 K is undergoing a change of state to the final condition of 1.5bar and 340 K. Determine the change in internal energy and the change in enthalpy. OR	07
Q.3	(a)	Explain Hess law of heat summation	03
	(b)	What is an equation of state? Give the expression for any three equations of state	04
	(c)	Three moles hydrogen and 1 mol nitrogen, both at 10 bar and 373K are separately admitted, mixed and then heated to 773 K in a heat exchanger with a corresponding increase in pressure. Calculate the entropy change in the process. Assume $C_V = 21$ J/mol K for the mixture.	07

- Q.4 (a) Define
 - 1. Entropy.
 - 2. Third law of thermodynamics
 - 3. One ton of refrigeration
 - (b) An ideal gas with heat capacity $C_P = 29.7$ kJ/kmol K flows steadily through a **04** long capillary tube at 5 bar and 350 K and leaves at 2 bar. What is its exit temperature?
 - (c) Derive Maxwell Relations

OR

- Q.4 (a) A heat engine operates between a heat source at 700 K and a heat sink at 03 300 K. What is the maximum efficiency of the engine?
 - (b) State various liquefaction processes and explain any one 04
 - (c) Derive an expression of entropy change involving ideal gas for following **07** process? 1) Constant volume process. 2) Constant pressure process. 3) Isothermal process. Also find the change in entropy when 2 kg of a gas at 277K is heated at constant volume to a temperature of 368K. Given $C_V = 1.42 \text{ kJ/kg}$ ·K.
- Q.5 (a) Air expands through a nozzle from a negligible initial velocity to a final 03 velocity of 350 m/s. What is the temperature drop of air, if air is assumed an ideal gas with $C_P = (7/2)R$?
 - (b) Explain vapor-compression refrigeration cycle? 04
 - (c) Explain with a schematic diagram the working of an absorption refrigeration 07 system

OR

- Q.5 (a) What is Joule-Thomson effect
 - (b) A refrigeration machine operating at a condenser temperature of 290 K needs 04 1.5 kW of power per ton of refrigeration.
 Determine the following: (i) The coefficient of performance (ii The heat rejected to the condenser
 - (c) Show that in multistage compression for minimum work, the inter-stage **07** pressure is the geometric mean of the initial and final pressures

07

03