GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2021

Subject Code:3130005	Date:17-02-2022
Subject Code:3130005	Date:17-02-202

Subject Name: Complex Variables and Partial Differential Equations

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

- Q.1 (a) Represent z = 7i into polar form and find the argument of z and the principal value of the argument of z.
 - (b) State De Moivre's theorem. Find and plot all roots of $(1+i)^{\frac{1}{3}}$ in the complex plane.
 - Using the method of separation of variables, solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ and $u = e^{-5y}$ when x = 0.
- Q.2 (a) Define an analytic function. Write the necessary and sufficient condition for function f(z) to be analytic. Show that $f(z) = |z|^2$ is nowhere analytic.
 - (b) Define the Mobious transformation. Determine the bilinear **04** transformation which mapping the points $0, \infty, i$ onto $\infty, 2, 0$.
 - (c) Attempt the following.
 - (i) Define the harmonic function. Show that $u = x^2 y^2 + x$ is harmonic and find harmonic conjugate of u.
 - (ii) Show that $f(z) = \begin{cases} \frac{\text{Im}(z)}{|z|} & ; z \neq 0 \\ 0 & ; z = 0 \end{cases}$ is not continuous at z = 0

OR

- (c) Attempt the following.
 - (i) Prove that $\cos^{-1} z = -i \ln(z + i\sqrt{1 z^2})$.
 - (ii) Find the values of Re f(z) and Im f(z) at the point 7+2i, 3 where $f(z) = \frac{1}{1-z}$.
- Q.3 (a) Evaluate $\int_{C}^{z} z dz$, where C is the right- half of the circle |z| = 2 and hence show that $\int_{C}^{z} \frac{dz}{z} = \pi i$.
 - (b) Expand $f(z) = \sin z$ in a Taylor series about $z = \frac{\pi}{4}$ and write the Maclaurin series for e^{-z} .
 - (c) Write the Cauchy integral theorem and Cauchy integral formula and hence evaluate:

(i)
$$\oint_C \frac{e^z}{(z-1)(z-3)} dz$$
; $C: |z| = 2$. (ii) $\oint_C e^z dz$; $C: |z| = 3$.

4

Q.3 (a) Evaluate
$$\oint_C \frac{e^z}{z+i} dz$$
, where $c:|z-1|=1$.

- (b) Develop the following functions into Maclaurin series:(i) $\cos^2 z$ (ii) **04** $e^z \cos z$.
- (c) Evaluate $\int_C \text{Re}(z^2)dz$, where C is the boundary of the square with vertices 0, i, 1+i, 1 in the clockwise direction.
- Q.4 (a) Define the singular points of f(z). Find the singularity of f(z) and classify as pole, essential singularity or removable singularity. where $f(z) = \frac{1 e^z}{z}$.
 - **(b)** State the Cauchy residue theorem. Find the residue at its poles of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ and hence evaluate $\oint_C f(z)dz$, C:|z|=3.
 - Determine the Laurent series expansion of $f(z) = \frac{1}{(z+2)(z+4)}$ valid for regions
 - (i) |z| < 2
 - (ii) 2 < |z| < 4
 - (iii) |z| > 4

OR

Q.4 (a) Solve
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = e^{x+2y}$$
.

- (b) Form a partial differential equation by eliminating the arbitrary functions form the equations $z = f(x+ay) + \phi(x-ay)$.
- (c) Show that $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)} = \frac{\pi}{6}.$
- **Q.5** (a) Form a partial differential equation by eliminating the arbitrary function form $u = f(\frac{x}{y})$.
 - (b) State the Lagrange's linear partial differential equation of first order and hence solve x(y-z)p + y(z-x) = z(x-y)
 - Using the method of separation of variables, solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ where $u(0, y) = 8e^{-3y}$.

ΛR

Q.5 (a) Obtain the general solution of
$$p+q^2=1$$
.

(b) Solve by Charpit's method:
$$px + qy = pq$$
.

(c) Find the solution of the wave equation
$$u_{tt} = c^2 u_{xx}$$
, $0 \le x \le L$ satisfying the condition $u(0,t) = u(L,t) = 0$, $u_t(x,0) = 0$, $u(x,0) = \frac{\pi x}{L}$, $0 \le x \le L$.
