Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2021

	•	Code:3141906 Date:01/01/2022 Name:Fluid Mechanics and Hydraulics Machines	
Tim	Time:10:30 AM TO 01:00 PM Instructions: Total Marks: 70)
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	If the surface tension at air water interface is 0.069 N/m, What is the pressure difference between inside and outside of an air bubble of diameter 0.009 mm?	03
	(b)	Explain hydraulic similitude in model analysis.	04
	(c)	Derive Bernoulli's equation stating all assumptions.	07
Q.2	(a)	Discuss types of equilibrium of floating body.	03
	(b)	State and prove Pascal's law.	04
	(c)	Derive an expression for continuity for 3 D flow and reduce it for steady incompressible 2 D flow in cartesian coordinate system. OR	07
	(c)	An annular plate 2m external diameter and 1m internal diameter with its greatest and least depths below the surface being 1.5 m and 0.75 m respectively. Calculate the magnitude, direction and location of the force acting upon one side of the plate due to water pressure.	07
Q.3	(a)	Discuss Eulerian and Lagrangian approach for description of fluid flow.	03
	(b)	Explain the terms: Surface tension and Compressibility.	04
	(c)	Explain governing of Impulse turbines.	07
Q.3	(a)	OR Enlist the characteristics of a Laminar flow.	03
	(b)	Explain the concept of hydraulic gradient and total energy lines.	04
	(c)	Deduce the expression of discharge through Venturimeter with usual notations.	07
Q.4	(a)	Explain major and minor losses in a pipe flow.	03
	(b)	Define cavitation. How does it affect the performance of hydraulic machines?	04
	(c)	Deduce the expression of discharge through V notch. OR	07
Q.4	(a)	Explain the function of draft tube in the case of reaction turbines.	03
	(b)	A Pelton wheel generates 8000 kW under a net head of 130 m at a speed of 200 r.p.m. Assuming the mechanical efficiency 75 percent and hydraulic efficiency 87 percent, determine required discharge.	04
	(c)	With neat sketch explain construction and working of hydraulic press.	07

Q.5	(a)	Explain phenomenon of water hammer and its effects.	03
	(b)	Define and explain briefly the following: (i) Velocity potential; (ii) Stream function.	04
	(c)	Write a short note on hydraulic intensifier.	07
		OR	
Q.5	(a)	A turbine is to operate under a head of 25 m at 200 r.p.m. The discharge is 9 m ³ /s. If the overall efficiency is 90 per cent, determine: (i) Power generated; (ii) Specific speed of the turbine; (iii) Type of turbine.	03
	(b)	Discus characteristic curves of centrifugal pump.	04
	(c)	With neat sketch explain construction and working of hydraulic accumulator.	07
