GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2021			
Subject Code:3130306 Date:23-02					
•					
Subject Name: Fundamentals of Digital Electronics					
Time:10:30 AM TO 01:00 PM Total Marks:70 Instructions:					
Instru					
		Attempt all questions. Make suitable assumptions wherever necessary.			
		Figures to the right indicate full marks.			
		Simple and non-programmable scientific calculators are allowed.			
			Marks		
01	(a)	Perform the following:	03		
Q.1	(a)	(i) Convert the decimal number 68.16 into binary number.	03		
		(i) Convert the binary number 1101101.111 into octal number.			
		(iii) Find the 2's complement of the binary number 1011101.10			
	(b)	Explain AND, OR and NOT gates with its truth table, logical expression	04		
	(0)	and logical symbol.	U-		
	(c)	Justify why NAND & NOR gates are known as Universal Logic gates.	07		
		Design AND, OR & NOT gate using universal logic gates.			
•					
Q.2	(a)	Simplify the logical expression: $(AB)'(A' + B)(B' + B)$	03		
	(b)	State & prove the De Morgan's theorems using truth table & necessary	04		
		diagrams.			
	(c)	Define & Explain Binary codes in details with its classification.	07		
	(a)	OR Explain the CMOS & TTL realization of OR and NOT gates.	07		
	(c)	Explain the CMOS & TTE leanzation of OK and NOT gates.	07		
Q.3	(a)	Define the terms SOP and POS with examples.	03		
2.0	(b)	Find the Minterms and Maxterms of the expression	04		
	(~)	Y(A,B,C) = ABC' + A'B + AB'C' + ABC	•••		
	(c)	Reduce the expression $f(A,B,C,D) = \sum m(0,2,5,7,8,10,13,15)$ using k-map	07		
		and implement the minimal expression using AND, OR and NOT gates.			
		OR			
Q.3	(a)	Define the terms (i) Minterms (ii) Maxterms	03		
Q.J	(a) (b)	Convert the logical expression $F(X,Y,Z)=\sum m(1,2,3,6)$ into canonical SOP	03		
	(0)	form.	U-		
	(c)		07		
	(0)	Reduce the expression $f(W,X,Y,Z)=\pi M(3,5,7,8,10,11,12,13)$ using k-map and implement the minimal expression using AND, OR and NOT gates.	01		
		and implement the minimal expression using AND, OK and NOT gates.			
Q.4	(a)	Draw 1-bit magnitude comparator circuit with its truth table and logical	03		
7.7	(a)	expressions.	00		
	(b)	Write a short note on PROM.	04		
	(c)	Explain Full-Adder Circuit in details with truth table, logical expressions	07		
	(-)	and circuit diagram.			
		OR			
Q.4	(a)	Draw the logic diagram of 2-4 line decoder circuit.	03		
~''	(b)	Design full subtractor using PLA circuit.	03		
	(c)	Explain Multiplexer (MUX) circuit in details and make design of 8*1	07		
	. /	MUX using 4 [*] 1 MUX.			

Q.5	(a)	Write the difference between Combinational logic circuit and Sequential logic circuit.	03
	(b)	Write a short note on Serial-In, Parallel-Out (SIPO) shift register.	04
	(c)	Design and explain Asynchronous 2-bit ripple Up and Down counter	07
		using Negative Edge-triggered JK Flip-flops.	
		OR	
Q.5	(a)	Draw and explain the working of S-R Latch using NAND gate with truth table.	03
	(b)	Write a short note on Master slave flip flop.	04
	(c)	Design and explain Synchronous 4-bit Ring counter in details with necessary diagrams.	07
