Seat No.:	E 1 4 N -
Sear NO:	Enrolment No.
Jean 110	Lindinent 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2021

Subject Code:3131905 Date:21-0		2-2022	
Subject	Na	me:Engineering Thermodynamics	
Time:1	0:30	AM TO 01:00 PM Total Marks	s:70
Instruction	ns:		
1.		tempt all questions.	
2.		ake suitable assumptions wherever necessary.	
	_	gures to the right indicate full marks.	
		nple and non-programmable scientific calculators are allowed.	
5.	US	e of steam table is permitted.	
Q.1	(a)	Explain Guoy-Stodola theorem.	03
	(b)	Derive equation for filling of a tank.	04
	(c)	Prove that all reversible engines operating between operating between	07
		same temperatures limits have are equally efficient.	
Q.2	(a)	Draw open cycle gas turbine diagram and represent simple Brayton cycle	03
		on T-s and p-V diagram.	
	(b)	Distinguish between energy of non flow system and flow system.	04
	(c)	A simple Rankine cycle works between pressures 28 bar and 0.06 bar,	07
		the initial condition of steam being dry saturated. Calculate the cycle	
		efficiency, work ratio and specific steam consumption. OR	
	(c)	300 kJ/s of heat is supplied at a constant fixed temperature of 290°C to	07
	` '	a heat engine. The heat rejection takes place at 8.5°C. The following	
		results were obtained:	
		(i) 215 kJ/s are rejected. (ii) 150 kJ/s are rejected. (iii) 75 kJ/s are	
		rejected.	
		Classify which of the result report a reversible cycle or irreversible cycle	
		or impossible results.	
Q.3	(a)	State zeroth law of thermodynamics with its applications.	03
_	(b)	Compare Otto, Diesel and Dual cycle for same compression ratio and	04
		heat supplied. Also show comparison on p-v and T-s diagram.	
	(c)	A heat engine receives heat at the rate of 1500 kJ/min and gives an output	07
		of 8.2 kW. Determine: (i) The thermal efficiency, (ii) The rate of heat	
		rejection.	
		OR	
Q.3	(a)	Define the following terms:	03
		(i) Available energy, (ii) Unavailable energy, (iii) Dead state	
	(b)	What are the characteristics of entropy? Prove that entropy is a property	04
		of a system.	
	(c)	5 kg of water at 0°C is exposed to reservoir at 98°C. Calculate the change	07
		of entropy of water, reservoir and universe. Assume that specific heat of	
		water is 4.187 KJ/Kg-K.	
Q.4	(a)	Draw block diagram of Vapour Compression Refrigeration system.	03
		Write down all four processes only. Also show these processes on p-h	
		diagram.	
	(b)	State the types of irreversibility. What is their effect?	04
	(c)	Prove that violation of Kelvin-Plank statement leads to violation of	07

Clausius statement.

OR

Q.4	(a)	Compare Brayton cycle and Rankine cycle.	03
	(b)	Show that the COP of a heat pump is greater than the COP of refrigerator	04
		by unity.	
	(c)	Distinguish between energy of non flow system and flow system.	07
		Deduce the steady flow energy equation for a reciprocating compressor.	
Q.5	(a)	Prove that entropy is the property of system.	03
	(b)	Write short note on thermodynamic equilibrium.	04
	(c)	Define following terms: state, path, process, isolated system, intensive	07
		property, quasi-static process, perfect gas.	
		OR	
Q.5	(a)	Draw the sketch of Rankine cycle p-V, T-s and h-s diagram (consider	03
		Inlet and exit to turbine is superheated and saturated steam respectively).	
	(b)	Describe quasi-static process.	04
	(c)	Explain principle of increase of entropy. Apply it for the heat transfer	07
		through a finite temperature difference.	
