GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2020

Subject Code:3130005 Date:09/03/2021

Subject Name: Complex Variables and Partial Differential Equations

Time:10:30 AM TO 12:30 PM Total Marks:56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Marks
Q.1	(a)	Show that the function $u = x^2 - y^2 + x$ is harmonic.	03
	(b)	Find the fourth roots of -1.	04
	(c)	(i) Find and sketch the image of the region $ z > 1$ under the transformation	03
		w=4z.	
		(ii) Find the real and imaginary parts of $f(z) = z^2 + 3z$.	04
0.2	(a)	2+i	03

- Q.2 (a) Evaluate $\int_{0}^{2+i} z^2 dz$ along the line y = x/2.
 - (b) Determine the Mobius transformation that maps $z = 0,1,\infty$ onto w = -1,-i,1 or respectively.
 - (c) (i) Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$, where C is the circle |z| = 1/2.
 - (ii) For which values of z does the series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ convergent?
- Q.3 (a) Evaluate $\oint_C \frac{dz}{z^2}$ where C is a unit circle.
 - Find the residue Res(f(z), 2i) of the function $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$.
 - (c) Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series in the region (i)|z| < 1, (ii)1 < |z| < 2, (iii)|z| > 2.
- Q.4 (a) Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C: |z-2| = 2.
 - (b) Evaluate by using Cauchy's Residue Theorem $\int_C \frac{5z-2}{z(z-1)} dz$, C: |z| = 2.
 - (c) Find Laurent's series that represent $f(z) = \frac{1}{z(z-1)}$ in the region (i)0 < |z| < 1, (ii)0 < |z-1| < 1.

(a)	Solve $xp + yq = x - y$.	03
(b)	Derive p.d.e. from $z = ax + by + ab$ by eliminating a and b.	04
(c)	(i) Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0$.	03
	(ii) Solve $pq = k$, where k is a constant.	04
(a)	Solve $zp + yq = x$.	03
(b)	Form the p.d.e. by eliminating ϕ from $x + y + z = \phi(x^2 + y^2 + z^2)$.	04
(c)	(i) Solve $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$.	03
	(ii) Solve $zpq = p + q$ by Charpit's method.	04
(a)	Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x}$.	03
(b)	Solve the p.d.e. $u_x = 4u_y$, $u(0, y) = 8e^{-3y}$.	04
(c)	A string of length l is initially at rest in its equilibrium position and motion is started by giving each of its points a velocity kx for $0 \le x \le l/2$ and $k(l-x)$ for $l/2 \le x \le l$. Find the displacement $u(x,t)$.	07
(a)	Solve $DD''(D-2D'-3)z = 0$.	03
(b)	Solve the pde $u_{xx} = 16u_{xy}$.	04
(c)	A bar of length 2 m is fully insulated along its sides. It is initially at a uniform temperature of $10^{\circ}C$ and at $t=0$ the ends are plunged into ice and maintained at a temperature of $0^{\circ}C$. Determine an expression for the temperature at a point P at a distance x from one end at any subsequent time t seconds after $t=0$.	07
	(b) (c) (a) (b) (c) (a) (b) (c)	 (b) Derive p.d.e. from z = ax + by + ab by eliminating a and b. (c) (i) Solve (D³ - 4D²D'+4DD'²)z = 0. (ii) Solve pq = k, where k is a constant. (a) Solve zp + yq = x. (b) Form the p.d.e. by eliminating φ from x + y + z = φ(x² + y² + z²). (c) (i) Solve (D² + DD'+D'-1)z = sin(x+2y). (ii) Solve zpq = p + q by Charpit's method. (a) Solve dô³z/∂x³ - 2 ∂³z/∂x²∂y = 2e²x. (b) Solve the p.d.e. u_x = 4u_y, u(0, y) = 8e⁻³y. (c) A string of length l is initially at rest in its equilibrium position and motion is started by giving each of its points a velocity kx for 0 ≤ x ≤ l/2 and k(l-x) for l/2 ≤ x ≤ l. Find the displacement u(x,t). (a) Solve DD"(D - 2D'-3)z = 0. (b) Solve the pde u_{xx} = 16u_{xy}. (c) A bar of length 2 m is fully insulated along its sides. It is initially at a uniform temperature of 10° C and at t = 0 the ends are plunged into ice and maintained at a temperature of 0° C. Determine an expression for the temperature at a point P at a distance x from one end at any subsequent time
