| Seat No.: | Enrolment No. |
|-----------|---------------|
|           |               |

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

**BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020** 

Subject Code:3131103 Date:05/03/2021

Subject Name: Network Theory Time: 10:30 AM TO 12:30 PM

**Total Marks:56** 

## **Instructions:**

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

|     |                   |                                                                                                                                                                                                                                                                                                                                             | MARKS          |
|-----|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Q.1 | (a)<br>(b)<br>(c) | Determine the Laplace transform of $f(t) = e^{-3t}\cos 4t$ .<br>Explain the terms: 1) Tree 2) Bilateral 3) Oriented Graph 4) Linear In the circuit of Fig.1, switch k is closed at t=0. For the elements values given, obtain the general solution and particular solution for current i(t). Obtain the value of current at time t=0.1 sec. | 03<br>04<br>07 |
| Q.2 | (a)<br>(b)<br>(c) |                                                                                                                                                                                                                                                                                                                                             | 03<br>04<br>07 |
| Q.3 | (a)<br>(b)<br>(c) | What is time constant? What is its significance? Briefly describe Millman's theorem. For the network of Fig.3, find the current through R=10hm by applying Thevenin's theorem. All resistances are in ohms.                                                                                                                                 | 03<br>04<br>07 |
| Q.4 | (a)               | Derive the condition for network to be reciprocal for ABCD parameters.                                                                                                                                                                                                                                                                      | 03             |
|     | (b)<br>(c)        | Explain characteristic of an ideal voltage source. In the network of Fig.4, the switch k is closed at t=0, a steady state having previously been attained. Find the particular solution for the current.                                                                                                                                    | 04<br>07       |
| Q.5 | (a)<br>(b)        |                                                                                                                                                                                                                                                                                                                                             | 03<br>04       |
|     | (c)               | In the network of Fig.6, the switch k is closed at t=0. Find the values of i, $\frac{di}{dt}$ and $d^2i/dt^2$ at t=0 <sup>+</sup> , if V=100V, R=10ohm, L=1H and C=10 <sup>-5</sup> F.                                                                                                                                                      | 07             |
| Q.6 | (a)<br>(b)        | What is network synthesis?  Obtain step response to R-L series circuit using Laplace Transformation.                                                                                                                                                                                                                                        | 03<br>04       |
|     | (c)               | Derive relationship between incidence matrix (A), fundamental tieset matrix $(B_f)$ and fundamental cut-set matrix $(Q_f)$ .                                                                                                                                                                                                                | 07             |
| Q.7 | (a)               | List advantages of Laplace transformation method over classical method.                                                                                                                                                                                                                                                                     | 03             |
|     | (b)<br>(c)        | Briefly explain Positive Real Function (PRF). For the network of Fig.7, determine h-parameters.                                                                                                                                                                                                                                             | 04<br>07       |

Q.8 (a) Define fundamental loop and cut-set.

**03** 

**(b)** Derive the condition for network to be symmetrical for g-parameters.

04 07

(c) In Fig.8, the switch is in the position 1 long enough to establish steady state conditions and at t=0 is switched to position 2. Find expression for current in the circuit.



\*\*\*\*\*\*