Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE- SEMESTER–III (NEW) EXAMINATION – WINTER 2020	
Subject Code:3130306 Date:05/03/2023			
Subje	ect N	Name:Fundamentals of Digital Electronics	
Time:10:30 AM TO 12:30 PM Total Marks:56			
Instructions:			
111501 4	1.	Attempt any FOUR questions out of EIGHT questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
			Marks
0.1	(ล) Define the following terms: (1) Flip flop (2) Counter (3) Register	03
X	(h) Implement T flip flop using D flip flop.	04
	(c) Perform the subtraction with the following decimal numbers using 1's	07
	X = 1	compliment and 2's compliments. (a) 11010-1101. (b) 10010-10011	
0.2	(a) How does a counter work as frequency divider? Explain with suitable	03
	(example	
	(b) Draw and explain Ring counter	04
	(c) Write short note on Programmable Logic Arrays.	07
Q.3	(a) Reduce the expression $F = ((AB)'+A'+AB)'$	03
_	(b) Convert $F(A, B, C) = BC + A$ into standard minterm form.	04
	(c)) Minimise the logic function F (A,B,C,D) = Π_M (1, 2, 3, 8, 9, 10,	07
		$(11,14) \cdot d (7, 15)$ Use Karnaugh map. Draw the logic circuit for the	
		simplified function using NOR gates only.	
Q.4	(a) Convert the following to other canonical form	03
		$F(x,y,z) = \Sigma(1,3,7)$	
	(b) Discuss NAND gate as universal gate (implement NOT, AND, OR &	04
		NOR gate using NAND gate)	~-
	(C) State and prove De'Morgan's Theorems with the help of truth tables.	07
0.5	(03
Q.5	(a (b) Give the applications of Decoder.) Implement the given function using multipleyer $E(A, B, C) = 0$	U3 04
	(D) implement the given function using multiplexer $F(A, B, C) = \sum_{n=1}^{\infty} (1, 2, 4, 7)$	04
	(0)	$ZIII(1,2,4,7)$ Implement following logic function using 8V1 MUV E = $\Sigma m(0, 1, 2)$	07
	(0	5 7 11 12 14 15)	07
		5, 7, 11, 15, 14, 15)	
06	(0) Evaluin the working of multipleyer	03
Q.0	(a (h) Design $A \ge 16$ decoder using two 3 ≥ 8 decoder	03
	() (c	Design 4 X to decoder using two 5 X o decoder.	07
	(Ľ	$F(A B C D) = \Sigma m(0 1 3 4 8 9 15)$	07
		$\Gamma(1, D, C, D) = 2 \Pi(0, 1, 5, 1, 0, 7, 15).$	
0.7	(я) Explain Johnson counter.	03
~ •'	(h) Draw & explain in brief a high assertion input SR latch	04
	() (c) With logic circuit explain the working of 4-bit magnitude comparator	07
0.8	(a) Explain shift registers.	03
	(b) What is race around condition in JK flip flop.	04
	(c) Explain half and full adders in detail.	07
