Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020

Subject Code:3130907 Date:04/0. Subject Name:Analog & Digital Electronics Time:10:30 AM TO 12:30 PM Total Ma Instructions:			03/2021	
		ks:56		
	1. 2.	Attempt any FOUR questions out of EIGHT questions. Make suitable assumptions wherever necessary.		
	3.	Figures to the right indicate full marks.	MARK	
Q.1	(a)	Define Slew Rate, CMRR, & Input Offset Voltage.	03	
	(b)	Compare inverting and non-inverting op-amps.	04	
	(c)	Draw & explain in detail the logic diagram & the truth table of clocked SR flip-flop.	07	
Q.2	(a)	Draw block diagram of an op-amp.	03	
	(b)	Draw and explain working of zero crossing detector.	04	
	(c)	List out and discuss all the ideal characteristics of an op-amp.	07	
Q.3	(a)	For an inverting amplifier, $V_1 = 1V$, $V_2 = 3V$, $V_3 = 2V$ with $R_1 = R_2 = R_3 = 2K\Omega$ and $R_F = 3K\Omega$. Determine the output voltage.	03	
	(b)	Design an R-C phase shift oscillator to produce a sinusoidal output at 1KHz, using capacitor value $0.01 \mu F$.	04	
	(c)	Write a short note on instrumentation amplifier using op-amp.	07	
Q.4	(a)	Explain the application of an op-amp as an integrator.	03	
	(b)	Design full adder logic circuit using 3 x 8 decoder and OR gates.	04	
	(c)	Explain the circuit diagram of op-amp as a Peak detector.	07	
Q.5	(a)	Design D FF using SR FF. Write truth table of D FF.	03	
	(b)	Minimize following Boolean function using K-map:	04	
		$F(A,B,C,D) = \prod M(1, 2, 3, 8, 9, 11, 14) \cdot d(7, 15)$		
	(c)	Given a logic function: $Z = ABC + BC'D + A'BC$.	07	
		a) Make a truth table.b) Simplify using K-map.		
		c) Realize simplified function using NAND gates only.		
Q.6	(a)	Minimize following Boolean function using K-map: $Y(A,B,C,D) = \sum m(0, 3, 5, 6, 9, 10, 12, 15)$	03	
	(b)	Implement the following logic function using 8:1 multiplexer: $F(A, B, C, D) = \sum m(0, 1, 3, 4, 8, 9, 15)$	04	
	(c)	Design a 4-bit synchronous down counter using T flip-flops.	07	
Q.7	(a)	Compare combinational logic circuit with sequential logic circuit.	03	
	(b)	Draw basic internal structure of 7490 ripple counter IC. Design BCD counter using 7490 IC.	04	
	(c)	Draw & explain R-2R ladder D/A converter with necessary equations.	07	

Q.8	(a) (b)	Draw the logic diagram of 4-bit ripple up counter using JK FFs. Write a brief note on quantization and encoding.	03 04
	(c)	List out various commonly used A/D converters. Draw & explain Flash A/D converter with necessary decoding table. Also mention pros & cons of the same.	07
