Seat No.: Enrolment No	eat No.:	Enrolment No
------------------------	----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130005	Date: 26/11/2019
Subject Name: Complex Variables and Parti	al Differential Equations

Time: 02:30 PM TO 05:00 PM

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Mark
Q.1	(a)	Find the real and imaginary parts of $f(z) = \frac{3i}{2+3i}$.	03
	(b)	State De-Movire's formula and hence evaluate	04
		$(1+i\sqrt{3})^{100}+(1-i\sqrt{3})^{100}$.	
	(.)		07

- Define harmonic function. Show that $u(x, y) = \sinh x \sin y$ is harmonic 07 function, find its harmonic conjugate v(x, y).
- Determine the Mobius transformation which maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$ **Q.2** 03 into $w_1 = -1$, $w_2 = -i$, $w_3 = 1$.
 - Define logz , prove that $i^i=e^{-(4n+1)\frac{\pi}{2}}$. **(b)** 04
 - (c) Expand $f(z) = \frac{1}{(z-1)(z+2)}$ valid for the region 07 (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2.

- Find the image of the infinite strips (i) $\frac{1}{4} \le y \le \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under the **07** transformation $=\frac{1}{2}$. Show the region graphically.
- (a) Evaluate $\int_c (x y + ix^2) dz$ where c is a straight line from z = 0 to z = 0**Q.3** 03
 - Check whether the following functions are analytic or not at any point, 04 (i) f(z) = 3x + y + i(3y - x) (ii) $f(z) = z^{3/2}$.
 - Using residue theorem, evaluate $\int_0^\infty \frac{dx}{(x^2+1)^2}$. 07
- Expand Laurent series of $f(z) = \frac{1-e^z}{z}$ at z = 0 and identify the **Q.3** 03 singularity.
 - **(b)** If f(z) = u + iv, is an analytic function, prove that 04 $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |Ref(z)|^2 = 2|f'(z)|^2.$
 - **(c)** Evaluate the following: **07** $\int_{c} \frac{z+3}{z-1} dz$ where c is the circle (a) |z| = 2 (b) $|z| = \frac{1}{2}$.
 - $\int_{C} \frac{\sin z}{\left(z \frac{\pi}{c}\right)^{3}} dz \text{ where } c \text{ is the circle } |z| = 1.$ ii.

Q.4	(a)	Evaluate $\int_0^{2+4i} Re(z) dz$ along the curve $z(t) = t + it^2$.	03
	(b)	Solve $x^2p + y^2q = (x + y)z$.	04
	(c)	Solve the equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ for the condition of heat along rod without	07
		radiation subject to the conditions (i) $\frac{\partial u}{\partial t} = 0$ for $x = 0$ and $x = l$;	
		(ii) $u = lx - x^2$ at $t = 0$ for all x .	
		OR	
Q.4	(a)	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{2x+3y}$.	03
	(b)	Solve $px + qy = pq$ using Charpit's method.	04
	(c)	Find the general solution of partial differential equation $u_{xx} = 9u_y$ using method of separation of variables.	07
Q.5	(a)	Using method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$.	03
	(b)		04
	(c)	A string of length $L = \pi$ has its ends fixed at $x = 0$ and $x = \pi$. At time $t = 0$, the string is given a shape defined by $f(x) = 50x(\pi - x)$, then it is released. Find the deflection of the string at any time t.	07
		OR	
Q.5	i_ :	Solve $p^3 + q^3 = x + y$.	03
	(b)	Find the temperature in the thin metal rod of length l with both the ends insulated and initial temperature is $\sin \frac{\pi x}{l}$.	04
	(c)	Derive the one dimensional wave equation that governs small vibration of an elastic string. Also state physical assumptions that you make for the system.	07
