Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130306 Date: 3/12/2019 **Subject Name: Fundamentals of Digital Electronics Total Marks: 70**

Time: 02:30 PM TO 05:00 PM **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

	3.	Figures to the right indicate full marks.	
	•	1 igui es to the 1 igui muicute 1 un mui moi	Marks
Q.1	(a)	Subtract the following binary numbers by the 2's and 1's complement method. 10110-1011	03
	(b)	Encode data bits 1011 into the 7-bit even parity Hamming code. Find and correct error from 7-bit hamming code given below. 1110110	04
	(c)	Explain TTL and CMOS realization of AND and OR gate.	07
Q.2	(a)	For a two input AND & OR gate, Determine its output waveform in relations to input waveform A & B. Input A has frequency 2Hz with duty cycle 50% and Input B has frequency 1Hz with duty cycle 70%.	03
	(b)	Explain EX-OR and EX-NOR gate using its truth table, Symbol, and logic diagram.	04
	(c)	Reduce the expression $f=\sum m(1,4,7,10,13) + d(5,14,15)$ using k-map and implement the minimal expression in universal logic. OR	07
	(c)	Find the minimal expression for $f = \prod M(2, 8, 9, 10, 11, 12, 14)$ using tabular method.	07
Q.3	(a)	Reduce the Boolean Expression: $f = AB + \overline{AC} + A\overline{B}C(AB + C)$.	03
	(b)	• • • •	04
	(c)	Design Half adder and Half subtractor using universal logic. OR	07
Q.3	(a)	Draw logic diagram of 3-8 line decoder.	03
Q.C	(b)	Find out Minterms and Maxterms for Boolean expression:	04
	(c)	$f = A(\bar{A} + \bar{B})(A + B + C)$. Implement the logic function $F = \sum m(0,1,2,3,4,10,11,14,15)$ using a 16:1 MUX and 8:1 MUX.	07
Q.4	(a)	Explain 1-bit Magnitude comparator with logic diagram.	03
	(b)		04
	(c)	Design a 4-bit Binary to Gray Code converter with logic diagram. OR	07
Q.4		Write comparison of programmable logic devices.	03
	(b)	Design full subtractor using PLA circuit.	04
0.5	(c)	Explain design of a synchronous 3-bit Up-Down counter using J-K flip-flops. Write comparison between synchronous and asynchronous sequential circuits.	07
Q.5	(a) (b)	Describe master-slave pulse triggered D-flip-flop.	03 04
	(c)	Explain edge-triggered J-K flip-flop and T-flip-flop.	07
		OR	97
Q.5	(a)	Write excitation tables of S-R, J-K, D, and T flip-flop.	03
=	(b)	Describe Serial In, Parallel Out shift register.	04
	(c)	Design and explain Asynchronous two bit ripple up and down counter using negative edge triggered J-K flip-flops.	07
