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1.1 intRODUCtiOn

In the lower classes, the students have studied a few topics in Elementary Matrix 

theory. They are assumed to be familiar with the basic definitions and concepts of 

matrix theory as well as the elementary operations on and properties of matrices. 

Though the concept of rank of a matrix has been introduced in the lower classes, 

we briefly recall the definition of rank and working procedure to find the rank of a 

matrix, as it will be of frequent use in testing the consistency of a system of linear 

algebraic equations, that will be discussed in the next section.

1.1.1 Rank of a Matrix

Determinant of any square submatrix of a given matrix A is called a minor of A. If the 

square submatrix is of order r, then the minor also is said to be of order r.

Let A be an m × n matrix. The rank of A is said to be ‘r’, if

 (i)  there is at least one minor of A of order r which does not vanish and

(ii)  every minor of A of order (r + 1) and higher order vanishes.

In other words, the rank of a matrix is the largest of the orders of all the non-

vanishing minors of that matrix. Rank of a matrix A is denoted by R(A) or ρ(A).

To find the rank of a matrix A, we may use the following procedure:

We first consider the highest order minor (or minors) of A. Let their order be r. 

If any one of them does not vanish, then ρ(A) = r. If all of them vanish, we next 

consider minors of A of next lower order (r – 1) and so on, until we get a non-zero 

minor. The order of that non-zero minor is ρ(A).

This method involves a lot of computational work and hence requires more time, 

as we have to evaluate many determinants. An alternative method to find the rank of 

a matrix A is given below:

Reduce A to any one of the following forms, (called normal forms) by a series of 

elementary operations on A and then find the order of the unit matrix contained in 

the normal form of A:

I I O
I

O

I O

O O
r r

r r[ ] [ ]
























; ; ;|
|

|
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Here I
r
 denotes  the unit matrix of order r and O is zero matrix.

By an elementary operation on a matrix (denoted as E-operation) we mean any 

one of the following operations or transformations:

 (i)  Interchange of any two rows (or columns).

 (ii)  Multiplication of every element of a row (or column) by any non-zero scalar.

(iii)  Addition to the elements of any row (or column), the same scalar multiples 

of corresponding elements of any other row (or column).

Note  The alternative method for finding the rank of a matrix is based on the 

property that the rank of a matrix is unaltered by elementary operations.

Finally we observe that we need not necessarily reduce a matrix A to the normal 

form to find its rank. It is enough we reduce A to an equivalent matrix, whose rank 

can be easily found, by a sequence of elementary operations on A. The methods are 

illustrated in the worked examples that follow.

1.2 VECtORS

A set of n numbers x
1
, x

2
, . . ., x

n
 written in a particular order (or an ordered set of n 

numbers) is called an n-dimensional vector or a vector of order n. The n numbers are 

called the components or elements of the vector. A vector is denoted by a single letter 

X or Y etc. The components of a vector may be written in a row as X = (x
1
, x

2
, ..., x

n
)  

or in a column as X

x

x

xn

=

























1

2


. These are called respectively row vector and 

column vector. We note that a row vector of order n is a 1 × n matrix and a column 

vector of order n is an n × 1 matrix.

1.2.1 Addition of Vectors

The sum of two vectors of the same dimension is obtained by adding the corresponding 

components.

i.e., if X = (x
1
, x

2
, . . ., x

n
)  and  Y = (y

1
, y

2
, . . ., y

n
),

then X + Y = (x
1
 + y

1
, x

2
 + y 

2
. . ., x

n
 + y

n
).

1.2.2 Scalar Multiplication of a Vector

If k is a scalar and X = (x
1
 , x

2
, . . ., x

n
) is a vector, then the scalar multiple kX is defined as

kX = (kx
1
,  kx

2
, . . ., kx

n
).

1.2.3 Linear Combination of Vectors

If a vector X can be expressed as X = k
1
X

1
 + k

2
X

2
 + . . . + k

r
X

r
 then X is said to be a 

linear combination of the vectors X
1
, X

2
, . . ., X

r
.
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1.3  LinEAR DEPEnDEnCE AnD LinEAR inDEPEnDEnCE  

OF VECtORS

The vectors X
1
, X

2
, . . ., X

r
 are said to be linearly dependent if we can find scalars k

1
, 

k
2
, . . . k

r
, which are not all zero, such that k

1
X

l
 + k

2
X

2
 + . . . + k

r
X

r
 = 0.

A set of vectors is said to be linearly independent if it is not linearly dependent, 

i.e. the vectors X
1
, X

2
, . . ., X

r
 are linearly independent, if the relation k

1
X

1
 + k

2
X

2
+ 

. . . k
r
X

r
 = 0 is satisfied only when k

l
 = k

2
 = . . . = k

r
 = 0.

Note  When the vectors X
1
, X

2
, . . ., X

r
 are linearly dependent, then  

k
1
X

1
 + k

2
X

2
 + . . . + k

r
X

r
 = 0, where at least one of the k’s is not zero. Let k

m
 ≠ 0.

Thus X
k

k
X

k

k
X

k

k
Xm

m m

r

m

r=− ⋅ − −⋅⋅⋅−1

1

2

2 .

Thus at least one of the given vectors can be expressed as a linear combination 

of the others.

1.4  MEtHODS OF tEStinG LinEAR DEPEnDEnCE  

OR inDEPEnDEnCE OF A SEt OF VECtORS

Method 1 Using the definition directly.

Method 2  We write the given vectors as row vectors and form a matrix. Using 

elementary row operations on this matrix, we reduce it to echelon form, i.e. the one 

in which all the elements in the rth column below the rth element are zero each. If the 

number of non-zero row vectors in the echelon form equals the number of given vectors, 

then the vectors are linearly independent. Otherwise they are linearly dependent.

Method 3 If there are n vectors, each of dimension n, then the matrix formed as in 

method (2) will be a square matrix of order n. If the rank of the matrix equals n, then 

the vectors are linearly independent. Otherwise they are linearly dependent.

1.5  COnSiStEnCY OF A SYStEM OF LinEAR  

ALGEBRAiC EQUAtiOnS

Consider the following system of m linear algebraic equations in n unknowns:

 a
11

x
1
 + a

12
x

2
 + . . . + a

1n
x

n
 = b

1

 a
21

x
1
 + a

22
x

2
 + . . . + a

2n
x

n
 = b

2

 a
m1

x
1
 + a

m2
x

2
 + . . . + a

mn
x

n
 = b

m

This system can be represented in the matrix form as AX = B, where

 
A

a a a

a a a

a a a

X

x

x

x

n

n

m m mn

n

=





















=


11 12 1

21 22 2

1 2

1

2

…

…

 


,























=

























, B

b

b

bm

1

2
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The matrix A is called the coefficient matrix of the system, X is the matrix of unknowns 

and B is the matrix of the constants.

If B ≡ O, a zero matrix, the system is called a system of homogeneous linear equations; 

otherwise, the system is called a system of linear non-homogeneous equations.

The m × (n + 1) matrix, obtained by appending the column vector B to the 

coefficient matrix A as the additional last column, is called the augmented matrix of 

the system and is denoted by [A, B] or [A | B].

i.e. A B

a a a b

a a a b

a a a b

n

n

m m mn m

,[ ]=





















11 12 1 1

21 22 2 2

1 2

…

…

…

1.5.1  Definitions

A set of values of x
1
, x

2
 . . ., x

n
. which satisfy all the given m equations simultaneously 

is called a solution of the system.

When the system of equations has a solution, it is said to be consistent. Otherwise 

the system is said to be inconsistent.

A consistent system may have either only one or infinitely many solutions.

When the system has only one solution, it is called the unique solution.

The necessary and sufficient condition for the consistency of a system of linear 

non-homogeneous equations is provided by a theorem, called Rouches’s theorem, 

which we state below without proof.

1.5.2 Rouche’s theorem

The system of equations AX = B is consistent, if and only if the coefficient matrix A 

and the augmented matrix [A, B] are of the same rank.

Thus to discuss the consistency of the equations AX = B (m equations in n 

unknowns), the following procedure is adopted: 

We first find R(A) and R(A, B).

   (i)  If R(A) ≠ R(A, B), the equations are inconsistent

  (ii)  If R(A) = R(A, B) = the number of unknowns n, the equations are consistent 

and have a unique solution.

In particular, if A is a non-singular (square) matrix, the system AX = B has 

a unique solution.

(iii)  If R(A) = R(A, B) < the number of unknowns n, the equations are consistent 

and have an infinite number of solutions.

1.5.3 System of Homogeneous Linear Equations

Consider the system of homogeneous linear equations AX = O (m equations in n 

unknowns)

i.e a
11

x
1
 + a

12
x

2
 + . . . a

1n
x

n
 = 0

 a
21

x
1
 + a

22
x

2
 + . . . + a

2n
x

n
 = 0

 – – – – – – – – – – – – – – – –

 a
m1

x
1
 + a

m2
x

2
 + . . . a

mn
x

n
 = 0 



Matrices 1.7

This system is always consistent, as R(A) = R(A, O). If the coefficient matrix A is 

non-singular, the system has a unique solution, namely, x
1
 = x

2
 = . . . = x

n
 = 0. This 

unique solution is called the trivial solution, which is not of any importance.

If the coefficient matrix A is singular, i.e. if | A| = 0, the system has an infinite 

number of non-zero or non-trivial solutions.

The method of finding the non-zero solution of a system of homogeneous linear 

equations is illustrated in the worked examples that follow.

WORKED EXAMPLE 1(a)

Example 1.1 Show that the vectors X
1
 = (1, 1, 2), X

2
 = (1, 2, 5) and X

3
 = (5, 3, 4) are 

linearly dependent. Also express each vector as a linear combination of the other two.

Method 1

Let k
1
X

1
 + k

2
X

2
 + k

3
X

3
 = 0

i.e. k
1
(1, 1, 2) + k

2
(1, 2, 5) + k

3
(5, 3, 4) = (0, 0, 0)

∴ k
1
 + k

2
 + 5k

3
 = 0 (1)

 k
1
 + 2k

2
 + 3k

3
 = 0 (2)

 2k
1
 + 5k

2
 + 4k

3
 = 0 (3)

(2) – (1) gives k
2
 – 2k

3
 = 0  or  k

2
 =2k

3 
(4)

Using (4) in (3), k
1
 = – 7k

3
 (5)

Taking k
3
 = 1, we get k

1
 = – 7 and k

2
 = 2.

Thus –7X
1
 + 2X

2
 + X

3
 = 0 (6)

∴ The vectors X
1
, X

2
, X

3
 are linearly dependent.

From (6), we get X X X1 2 3

2

7

1

7
= + ,

 X X X2 1 3

7

2

1

2
= −  and X

3
 = 7X

1
 – 2X

2

Method 2

Writing X
1
, X

2
, X

3
 as row vectors, we get

A R R R=

















 − −



















′ = − ′

1 1 2

1 2 5

5 3 4

1 1 2

0 1 3

0 2 6

2 2 1∼ , RR R R3 3 15= −( )

∼

1 1 2

0 1 3

0 0 0

23 3 2



















′′= ′ + ′( )R R R

In the echelon form of the matrix, the number of non-zero vectors = 2 (< the number 

of given vectors).
∴ X

1
, X

2
, X

3
 are linearly dependent.
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Now 0 2

5 2

7 2

3 3 2

3 1 2 1

1 2 3

= ′′= ′ + ′

= −( )+ −( )
=− + +

R R R

R R R R

R R R

i.e. –7X
1
 + 2X

2
 + X

3
 = 0

As before, X X X X X X1 2 3 2 1 3

2

7

1

7

7

2

1

2
= + = −,  and X

3
 = 7X

1 
– 2X

2
.

Method 3

 |A| = 0 ∴ R (A) ≠ 3; R (A) = 2
∴ The vectors X

1
, X

2
, X

3
 are linearly dependent.

Example 1.2 Show that the vectors X
1
 = (1, –1, –2, –4), X

2
 = (2, 3, –1, –1),  

X
3
 = (3, 1, 3, –2) and X

4
 = (6, 3, 0, –7) are linearly dependent. Find also the  relationship 

among them.

A

X

X

X

X

=

























=

− − −

− −

−

−










1

2

3

4

1 1 2 4

2 3 1 1

3 1 3 2

6 3 0 7
















− − −























′ =
∼

1 1 2 4

0 5 3 7

0 4 9 10

0 9 12 17

2R RR R R

R R R R R

2 1 3

3 1 4 4 1

2

3 6

− ′ =(
− ′ = − )

,

,

∼

1 1 2 4

0 1
3

5

7

5

0 4 9 10

0 9 12 17

1

5
2 2

− − −

























′′= ′ ′′R R ; RR R R R3 3 4 4

1 1 2 4

0 1
3

5

7

5

0 0
33

5

22

5

0 0
33

5

22

5

= ′ ′′= ′










− − −



;

∼































= ′′′= ′′− ′′ ′′′= ′′− ′R R R R R3 3 2 4 44 9; ′′( )

− − −





























′′

R2

1 1 2 4

0 1
3

5

7

5

0 0
33

5

22

5

0 0 0 0

∼ ′′′= ′′′ − ′′′( )R R R4 4 3

Number of non-zero vectors in echelon form of the matrix A = 3.
∴  The vectors X

1
, X

2
, X

3
, X

4
 are linearly dependent.



Matrices 1.9

Now 0

9 4

4 4 3

4 2 3 2

4 3 2

= ′′′′= ′′′− ′′′

= ′′− ′′( )− ′′− ′′( )

= ′ − ′ − ′

R R R

R R R R

R R R

== −( )− −( )− −( )

=− − − +

R R R R R R

R R R R

4 1 3 1 2 1

1 2 3 4

6 3 2

∴ The relation among X
l
, X

2
, X

3
, X

4
 is

– X
1
 – X

2
 – X

3
 + X

4
 = 0 or X

1
 + X

2
 + X

3
 – X

4
 = 0.

Example 1.3 Show that the vectors X
1
 = (2, –2, 1), X

2
 = (1, 4, –1) and  

X
3
 = (4, 6, –3) are linearly independent.

Method 1

Let k
1
 X

1
 + k

2
 X

2
 + k

3
 X

3
 = 0

i.e. k
1
 (2, –2, 1) + k

2 
(1, 4, –1) + k

3
 (4, 6, –3) = (0, 0, 0)

∴ 2k
1
 + k

2
 + 4k

3
 = 0 (1)

 –2k
1
 + 4k

2
 + 6k

3
 = 0 (2)

 k
1
 – k

2 
–3k

3
 = 0 (3)

From (1) and (2), k
2
 + 2k

3
 = 0 (4)

From (2) and (3),  k
2
 = 0 (5)

∴ k
1
 = 0 = k

2
 = k

3
.

∴ The vectors X
1
, X

2
, X

3
 are linearly independent.

Method 2

A

X

X

X

=


















=

−

−

−



















−

−

−

1

2

3

2 2 1

1 4 1

4 6 3

1 4 1

2 2 1

4 6 3

∼



















′ = ′ =( )

−

−

−



















′

R R R R

R

1 2 2 1

2

1 4 1

0 10 3

0 10 1

;

∼ ′′ = ′ − ′ ′′ = ′ − ′( )

−

−

−



















′′′

R R R R R

R

2 1 3 3 1

3

2 4

1 4 1

0 10 3

0 0 2

;

∼ == ′′ − ′′( )R R3 2

Number of non-zero vectors in the echelon form of A = number of given vectors,
∴ X

1
, X

2
, X

3
 are linearly independent.

Example 1.4 Show that the vectors X
1
 = (1, −1, −1, 3), X

2
 = (2, 1, −2, −1) and  

X
3
 = (7, 2, −7, 4) are linearly independent.

A

X

X

X

=


















=

− −

− −

−



















− −1

2

3

1 1 1 3

2 1 2 1

7 2 7 4

1 1 1 3

0∼ 33 0 7

0 9 0 17

2

7

2 2 1

3 3 1

−

−



















′ = −(
′ = − )

R R R

R R R

;
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 ∼

1 1 1 3

0 3 0 7

0 0 0 4

33 3 2

− −

−



















′′ = ′ − ′( )R R R

Number of non-zero vectors in the echelon form of A = number of given vectors.
∴ X

1
, X

2
, X

3
 are linearly independent.

Example 1.5 Test for the consistency of the following system of equations:

 x
1
 + 2x

2
 + 3x

3
 + 4x

4
 = 5

 6x
1
 + 7x

2
 + 8x

3
 + 9x

4
 = 10

 11x
1
 + 12x

2
 + 13x

3
 + 14x

4
 =15

 16x
1
 + 17x

2
+ 18x

3
 + 19x

4
 = 20

 21x
1
 + 22x

2
 + 23x

3
 + 24x

4
 = 25

The given equations can be put as

1 2 3 4

6 7 8 9

11 12 13 14

16 17 18 19

21 22 23 24

1

2





























x

x

xx

x

3

4

5

10

15

20

25

























=





























i.e. AX = B (say)

Let us find the rank of the augmented matrix [A, B] by reducing it to the normal form

A B,[ ]=















1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25























∼

1 2 3 4 5

5 5 5 5 5

10 10 10 10 10

15 15 15 15 15

20 20 20 20 20






















→ −

→ −

→ −

→ −

(

)

R R R

R R R

R R R

R R R

2 2 1

3 3 1

4 4 1

5 5 1

Note  If two matrices A and B are equivalent, i.e. are of the same rank, it is 

denoted as A ~ B.

∼

1 2 3 4 5

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

5
2 2





























→



R R

→ →

→





− − − −

− − −

, , ,R R R R

R R

3 3 4 4

5 5

1

10

1

15

1

20

1 2 3 4 5

0 1 2 3 4

0 1 2 3∼ −−

− − − −

− − − −





























→( − →
4

0 1 2 3 4

0 1 2 3 4

2 2 1 3 3R R R R R, −−

→ − → − )

R

R R R R R R

1

4 4 1 5 5 1

,

,
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∼

1 0 0 0 0

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

2 2 3





























[ →−C C C, →→ ÷ −( )

→ ÷ −( ) → ÷ −( )

C

C C C C

3

4 4 5 5

2

3 4

1 0 0 0 0

0 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0

,

,

∼

00 0

1 0 0 0

3 3 2 4 4 2

5 5 2





























→( − → −

→ − )

R R R R R R

R R R

, ,

∼

00

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3 3 2 4





























→( − →C C C C C, 44 2

5 5 2

−

→ − )

C

C C C

,

∼

1 0 0 0 0

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

− − − −

− − − −

− − − −

− − − −





























→ − → −

→ − → −

( , ,

, )

C C C C C C

C C C C C C

2 2 1 3 3 1

4 4 1 5 5 1

2 3

4 5

Now [A, B] has been reduced to the normal form 

I2 0

0 0

 

 

















The order of the unit matrix present in the normal form = 2.

Hence the rank of [A, B] = 2.

The rank of the coefficient matrix A can be found as 2, in a similar manner.

Thus R (A) = R [A, B] = 2
∴ The given system of equations is consistent and possesses many solutions.

Example 1.6 Test for the consistency of the following system of equations:

x
1
 − 2x

2
 − 3x

3
 = 2; 3x

1
 − 2x

2
 = −1; −2x

2
 − 3x

3
 = 2; x

2
 + 2x

3
 = 1.

The system can be put as

1 2 3

3 2 0

0 2 3

0 1 2

2

1

2

1

2

3

− −

−

− −










































=

−
x

x

x
11
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i.e. AX = B (say)

A B,[ ]=

− −

− −

− −

























− −

−

1 2 3 2

3 2 0 1

0 2 3 2

0 1 2 1

1 2 3 2

0 4 9 7
∼

00 2 3 2

0 1 2 1

32 2 1
− −

























→ −( )R R R

∼

1 0 0 0

0 4 9 7

0 2 3 2

0 1 2 1

2 32 2 1 3 3 1

−

− −

























→ + → +C C C C C C, , CC C C

R R R

4 4 1

2 4 4

2

1 0 0 0

0 1 2 1

0 2 3 2

0 4 9 7

→ −( )

− −

−

























→∼ , →→( )

−

























→ + →

R

R R R R R

2

3 3 2 4 4

1 0 0 0

0 1 2 1

0 0 1 4

0 0 1 11

2∼ , −−( )

−

























→ − →

4

1 0 0 0

0 1 0 0

0 0 1 4

0 0 1 11

2

2

3 3 2 4

R

C C C C C∼ , 44 1

4 4 3

1 0 0 0

0 1 0 0

0 0 1 4

0 0 0 15

1 0 0

−( )

−

























→ −( )

C

R R R∼

∼

00

0 1 0 0

0 0 1 0

0 0 0 15

4

1 0 0 0

0 1 0 0

0 0 1 0

4 4 3

−

























→ −( )C C C

∼

00 0 0 1

1

15
4 4

























→−










R R
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∴ R[A, B] = 4

But R (A) ≠ 4, as A is a (4 × 3) matrix.

In fact R (A) = 3, as the value of the minor

3 2 0

0 2 3

0 1 2

0

−

− − ≠

Thus R (A) ≠ R [A, B]
∴The given system is inconsistent.

Example 1.7 Test for the consistency of the following system of equations and solve 

them, if consistent, by matrix inversion.

x − y + z + 1 = 0; x − 3y + 4z + 6 = 0; 4x + 3y − 2z + 3 = 0;

7x − 4y + 7z+ 16 = 0.

A

A B

=

−

−

−

−

























[ ]=

− −

− −

−

1 1 1

1 3 4

4 3 2

7 4 7

1 1 1 1

1 3 4 6

4 3 2
,

−−

− −

























− −

− −

−

−









3

7 4 7 16

1 1 1 1

0 2 3 5

0 7 6 1

0 3 0 9

∼
















( → −

→ −

→ − )

− −

−

R R R

R R R

R R R

2 2 1

3 3 1

4 4 1

4

7

1 0 0 0

0 2 3 5

0 7 6 1

,

,

∼

00 3 0 9

1 0 0 0

0

2 2 1 3 3 1 4 4 1

−

























→ + → − → +( )C C C C C C C C C, ,

∼
11 6 7

0 5 3 2

0 9 0 3

1 0 0 0

2 3 2 4

−

− −

−

























↔ ↔( )R R C Cand then

∼
00 1 0 0

0 0 27 33

0 0 54 66

5 93 3 2 4 4 2

−

−

























→ + → +( )R R R R R R,

aand then

C C C C C C3 3 2 4 4 26 7→ + → −( ),
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∼

1 0 0 0

0 1 0 0

0 0 1 1

0 0 2 2

1

27

1

33
3 3 4 4

























→− →




C C C C,






























( → −
∼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

2
4 4 3R R R and theen

C C C4 4 3→ − )

∴ R [A, B] = 3. Also R (A) = 3
∴ The given system is consistent and has a unique solution.

To solve the system, we take any three, say the first three, of the given equations.

i.e. 

1 1 1

1 3 4

4 3 2

1

6

3

−

−

−




































=

−

−

−



















x

y

z

i.e. AX = B, say
∴  X = A−1 B (1)

Let  A

a a a

a a a

a a a

=

−

−

−


















≡








1 1 1

1 3 4

4 3 2

11 12 13

21 22 23

31 32 33













Now A
11

 = co-factor of a
11

 in |A| = −6

A
12

 = 18; A
13

 = 15; A
21

 = 1; A
22

 = −6; A
23

 = −7;

A
31

 = −1; A
32 

= −3; A
33

 = −2.

∴  Adj A( )=
− −

− −

− −



















6 1 1

18 6 3

15 7 2

 |A| = a
11

 A
11

 + a
12

 A
12

 + a
13

 A
13

 = −9

∴ A
A

A− = =−

− −

− −

− −



















1 1 1

9

6 1 1

18 6 3

15 7 2

adj  (2)

Using (2) in (1),

x

y

z


















=−

− −

− −

− −



















−

−

−






1

9

6 1 1

18 6 3

15 7 2

1

6

3
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=−


















=

−

−

−



























1

9

3

27

33

1

3

3

11

3

∴ Solution of the system is x y z=− =− =−
1

3
3

11

3
, ,

Example 1.8 Test for the consistency of the following system of equations and solve 

them, if consistent:

3x + y + z = 8; − x + y − 2z = − 5; x + y + z = 6; – 2x + 2y − 3z = − 7.

Note  As the solution can be found out by any method, when the system is 

consistent, we may prefer the triangularisation method (also known as Gaussian 

elimination method) to reduce the augmented matrix [A, B] to an equivalent matrix. 

Using the equivalent matrix, we can test the consistency of the system and also 

find the solution easily when it exists. In this method, we use only elementary row 

operations and convert the elements below the principal diagonal of A as zeros.

 

A B,[ ]=
− − −

− − −

























− − −

3 1 1 8

1 1 2 5

1 1 1 6

2 2 3 7

1 1 1 6

1 1 2 5
∼

33 1 1 8

2 2 3 7

1 1 1 6

0 2 1 1

0 2 2 10

0 4

1 3

− − −

























↔( )

−

− − −

−

R R

∼

11 5

3 2

1 1 1 6

0 2

2 2 1 3 3 1 4 4 1

























→ + → − → +( )R R R R R R R R R, ,

∼
−−

− −

























→ + → −( )
1 1

0 0 3 9

0 0 1 3

2

1 1 1 6

0

3 3 2 4 4 2R R R R R R,

∼
22 1 1

0 0 3 9

0 0 0 0

1

3
4 4 3

−

− −

























→ +










R R R

 

(1)

Now, Determinant of [A, B] = − Determinant of the equivalent matrix = 0. (
∴

 Two 

rows interchanged in the first operation)

∴ R A B,[ ]≤ 3
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Now 

1 1 1

0 2 1

0 0 3

6 0−

−

=− ≠

∴ R [A, B] = R (A) = 3 = the number of unknowns.

∴ The system is consistent and has a unique solution.

A system of equations equivalent to the given system is also obtained from the 

equivalent matrix in (1).

The equivalent equations are

x + y + z = 6,  2y − z= 1  and  − 3z = − 9

Solving them backwards, we get

x = 1, y = 2, z = 3.

Example 1.9 Examine if the following system of equations is consistent and 

find the solution if it exists.

x y z x y z x y z x y z+ + = − + = − + = + + =1 2 2 3 1 2 5 3 2, ; ; .

A B,[ ]=
−

−

























− −

−

1 1 1 1

2 2 3 1

1 1 2 5

3 1 1 2

1 1 1 1

0 4 1 1

0 2 1 4
∼

00 2 2 1

2

3

1

2 2 1

3 3 1

4 4 1
− − −

























→ −(
→ −

→ − )

R R R

R R R

R R R

,

,

∼

11 1 1

0 4 1 1

0 0
1

2

9

2

0 0
5

2

1

2

1

2
3 3 2

− −

− −































→ −R R R ,, R R R4 4 2

1

2

1 1 1 1

0 4 1 1

0 0
1

2

9

2

0 0 0 22

→ −










− −





















∼







→ +( )R R R4 4 35

It is obvious that det [A, B] = 4 and det [A] = 3

∴ R [A, B] ≠ R [A].

∴ The system is inconsistent.

Note  The last row of the equivalent matrix corresponds to the equation 

0 0 0 22⋅ + ⋅ + ⋅ =x y z , which is absurd. From this also, we can conclude that the 

system is inconsistent.
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Example 1.10 Solve the following system of equations, if consistent: 

x + y + z = 3, x + y − z = 1; 3x + 3y − 5z = 1.

A B,[ ]= −

−



















− −

− −















1 1 1 3

1 1 1 1

3 3 5 1

1 1 1 3

0 0 2 2

0 0 8 8

∼ 



→ − → −( )

− −



















→ −

R R R R R R

R R

2 2 1 3 3 1

3 3

3

1 1 1 3

0 0 2 2

0 0 0 0

4

,

∼ RR2( )

∴ All the third order determinants vanish 
∴ R [A, B] ≠ 3

Consider 
1 1

0 2−
, which is a minor of both A and [A, B].

The value of this minor = − 2 ≠ 0
∴ R (A) = R [A, B] < the number of unknowns.
∴ The system is consistent with many solutions.

From the first two rows of the equivalent matrix, we have x + y + z = 3 and  

− 2z = − 2 

i.e. z = 1  and  x + y = 2.

∴  The system has a one parameter family of solutions, namely x = k, y = 2 − k,  

z = 1, where k is the parameter.

Giving various values for k, we get infinitely many solutions.

Example 1.11 Solve the following system of equations, if consistent:

x x x x x x x x x x x1 2 3 4 1 2 3 4 1 2 32 5 4 3 2 7 5 2 3 3+ − − = + − − = − + =; ; .

A B,[ ]=

− −

− −

−



















− −

− −

−

1 2 1 5 4

1 3 2 7 5

2 1 3 0 3

1 2 1 5 4

0 1 1 2 1

0 5 5 1

∼

00 5

2

1 2 1 5 4

0 1 1 2 1

0 0 0 0 0

2 2 1 3 3 1

−



















→ − → −( )

− −

− −





R R R R R R,

∼














→ +( )R R R3 3 25

∴ R [A, B] ≠ 3 (
∴

 the last row contains only zeros)

Similarly R (A) ≠ 3.

Since 
1 2

0 1
0≠ , R (A) = R [A, B] = 2 < the number of unknowns.

∴ The given system is consistent with many solutions.



1.18 Mathematics II

From the first two rows of the equivalent matrix, we have

 
x x x x1 2 3 42 5 4+ − − =

 (1)

and x x x2 3 42 1− − =  (2)

As there are only 2 equations, we can solve for only 2 unknowns.

Hence the other 2 unknowns are to be treated as parameters.

Taking x
3
 = k and x

4
 = k′, we get

 x
2
 = 1 + k + 2k' [from (2)]

and x
1
 = 4 − 2 (1+ k + 2k') + k + 5k' [from (1)] 

i.e. x
1
 = 2 − k + k'

∴ The given system possesses a two parameter family of solutions.

Note  From the Examples (10) and (11), we note that the number of parameters 

in the solution equals the difference between the number of unknowns and the 

common rank of A and [A, B].

Example 1.12 Find the values of k, for which the equations x + y + z = 1, 

x + 2y + 3z = k and x + 5y + 9z = k2 have a solution. For these values of k, find the 

solutions also.

A B k

k

k

k

,[ ]=



















−

−















1 1 1 1

1 2 3

1 5 9

1 1 1 1

0 1 2 1

0 4 8 12 2

∼ 



→ −(
→ − )

−

− +



















→

R R R

R R R

k

k k

R

2 2 1

3 3 1

2

3

1 1 1 1

0 1 2 1

0 0 0 4 3

,

RR R

A R A

3 24

1 1 1

0 1 2

0 0 0

2

−( )



















∴ ( )=∼

 (1)

If the system possesses a solution, R [A, B] must also be 2. 
∴ The last row of the matrix in (1) must contain only zeros.

∴ k2 − 4k + 3 = 0  i.e. k = 1 or 3.

For these values of k, R (A) = R [A, B] = 2 < the number of unknowns.
∴ The given system has many solutions.

Case (i) k = 1

The first two rows of (1) give the equivalent equations as

 x + y + z = 1 (2)and
 y + 2z = 0 (3)

Puting z = λ, the one-parameter family of solutions of the given system is

x = λ + 1, y = − 2λ  and  z = λ

Case (ii) k = 3 

The equivalent equations are

 x + y + z = 1 (2)
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and y + 2z = 2 (4)

Putting z = μ, the one-parameter family of solutions of the given system is

x = μ − 1, y = 2 − 2 μ, z = μ.

Example 1.13 Find the condition satisfied by a, b, c, so that the following system of 

equations may have a solution:

x + 2y − 3z = a; 3x − y + 2z = b; x − 5y + 8z = c.

A B

a

b

c

a

b a

c a

,[ ]=

−

−

−



















−

− −

− −





1 2 3

3 1 2

1 5 8

1 2 3

0 7 11 3

0 7 11

∼














→ − → −( )

−

− −

− +







R R R R R R

a

b a

a b c

2 2 1 3 3 13

1 2 3

0 7 11 3

0 0 0 2

,

∼ 












→ −( )

−

−



















∴ ( )=

R R R

A R A

3 3 2

1 2 3

0 7 11

0 0 0

2∼

 (1)

If the given system possesses a solution, R [A, B] = 2.
∴ The last row of (1) should contain only zeros.
∴ 2a − b + c = 0. Only when this condition is satisfied by a, b, c, the system will 

have a solution.

Example 1.14 Find the value of k such that the following system of equations has  

(i) a unique solution, (ii) many solutions and (iii) no solution.

kx + y + z = 1; x + ky + z = 1; x + y + kz = 1.

A

k

k

k

A k k k k

k k k

=



















= −( )+ −( )+ −( )

= −( ) + −( )

1 1

1 1

1 1

1 1 1

1 2

2

2

== −( ) +( )k k1 2
2

|A| = 0, when k = 1 or k = –2

When k ≠ 1 and k ≠ −2, |A| ≠ 0  ∴ R(A) = 3

Then the system will have a unique solution.

∴



1.20 Mathematics II

When k = 1, the system reduces to the single equation x + y + z = 1.

In this case, R(A) = R[A, B] = 1.
∴ The system will have many solutions.

(i.e. a two parameter family of solutions)

When k = − 2,

A B,[ ]=

−

−

−



















−

−

−















2 1 1 1

1 2 1 1

1 1 2 1

1 2 1 1

2 1 1 1

1 1 2 1

∼ 



↔( )

−

−

−



















→ + → −(

R R

R R R R R R

1 2

2 2 1 3 3 1

1 2 1 1

0 3 3 3

0 3 3 0

2∼ , ))

−

−



















→ +( )∼

1 2 1 1

0 3 3 3

0 0 0 3

3 3 2R R R

Now 1 2 1

0 3 3

0 0 0

0 3

1 2

0 3
0 2

2 1 1

3 3 3

0 0 3

−

− = ∴ ( )<

−

−
≠ ∴ ( )=

−

− =

R A

R A

a minor of AA B,[ ]≠ 0

∴ R[A, B] = 3.  Thus R(A) ≠ R[A, B].
∴ The system has no solution.

Example 1.15 Investigate for what values of λ, μ, the equations x + y + z = 6, 

x + 2y + 3z = 10 and x + 2y + λz = μ have (i) no solution, (ii) a unique solution, 

(iii) an infinite number of solutions.

A B,[ ]=

















 − −

















1 1 1 6

1 2 3 10

1 2

1 1 1 6

0 1 2 4

0 1 1 6λ λµ µ

∼



→ −(
→ − )

− −



















→ −

R R R

R R R

R R

2 2 1

3 3 1

3 3

1 1 1 6

0 1 2 4

0 0 3 10

,

∼

λ µ

RR

A A

2

1 1 1

0 1 2

0 0 3

3

( )

∴

−



















= −∼

λ

λand
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If λ ≠ 3, |A| ≠ 0  ∴ R(A) = 3
∴ When λ ≠ 3 and μ takes any value, the system has a unique solution.

If λ = 3, |A| = 0 and a second order minor of A, i.e. 
1 1

0 1
0≠

∴ R (A) = 2.

When λ = 3, A B,[ ]
−



















∼

1 1 1 6

0 1 2 4

0 0 0 10µ

 (1)

When λ = 3 and μ = 10, the last row of (1) contains only zeros.
∴  R[A, B] ≠ 3 and clearly R[A, B] = 2.

Thus, when λ = 3 and μ = 10, R(A) = R[A, B] = 2.
∴ The system has an infinite number of solutions.

When λ = 3 and μ ≠ 10, a third order minor of [A, B], i.e.

1 1 6

1 2 4

0 0 10

10 0

µ

µ

−

= − ≠

∴  R [A, B] = 3

Thus, when λ = 3 and μ ≠ 10, R(A) ≠ R[A, B].
∴ The given system has no solution.

Example 1.16 Test whether the following system of equations possess a non-trivial 

solution.

x
1
 + x

2
 + 2x

3
 + 3x

4
 = 0; 3x

1
 + 4x

2
 + 7x

3
 + 10x

4
 = 0;

5x
1
 + 7x

2
 + 11x

3
 + 17x

4
 = 0; 6x

1
 + 8x

2
 + 13x

3
 + 16x

4
 = 0.

The given system is a homogeneous linear system of the form AX = 0.

A=























 −

1 1 2 3

3 4 7 10

5 7 11 17

6 8 13 16

1 1 2 3

0 1 1 1

0 2 1 2

0 2 1

∼

22

3

5

6

1 1 2 3

0 1

2 2 1

3 3 1

4 4 1

























→ −(
→ −

→ − )

R R R

R R R

R R R

,

,

∼
11 1

0 0 1 0

0 0 1 4

2 2

1 1 2 3

3 3 2 4 4 2
−

− −

























→ − → −( )R R R R R R,

∼
00 1 1 1

0 0 1 0

0 0 0 4

4 4 3
−

−

























→ −( )R R R

∴ |A| = 4 i.e. A is non-singular
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R(A) = R[A, 0] = 4 

∴ The system has a unique solution, namely, the trivial solution.

Example 1.17 Find the non-trivial solution of the equations x + 2y + 3z = 0,  

3x + 4y + 4z = 0, 7x + 10y + 11z = 0, if it exists.

 

A
R R

=



















− −

− −



















→ −
1 2 3

3 4 4

7 10 11

1 2 3

0 2 5

0 4 10

2 2
∼

33

7

1 2 3

0 2 5

0 0 0

2

1

3 3 1

3 3 2

R

R R R

R R R

,(
→ − )

− −



















→ −( )∼  (1)

∴ |A| = 0  and  
1 2

0 2
0

−
≠   ∴ R(A) = 2

∴ The system has non-trivial solution. From the first two rows of (1), we see that the 

given equations are equivalent to

 x + 2y + 3z = 0 (2)

and − 2y − 5z = 0 (3)

Putting z = k, we get y k=−
5

2
 from (3) and x = 2k.

Thus the non-trivial solution is x = 4k, y = –5k and z = 2k.

Example 1.18 Find the non-trivial solution of the equations x − y + 2z − 3w = 0, 3x + 

2y – 4z + w = 0, 5x – 3y + 2z + 6w = 0, x – 9y + 14z − 2w = 0, if it exists.

A=

− −

−

−

− −

























− −

−

1 1 2 3

3 2 4 1

5 3 2 6

1 9 14 2

1 1 2 3

0 5 10 10

0
∼

22 8 21

0 8 12 1

3

5

2 2 1

3 3 1

4 4

−

−

























→ −(
→ −

→ −

R R R

R R R

R R R

,

,

11

2 2

1 1 2 3

0 1 2 2

0 2 8 21

0 8 12 1

1

5

)

− −

−

−

−

























→






∼ R R




− −

−

−

−

























→ −∼

1 1 2 3

0 1 2 2

0 0 4 17

0 0 4 17

23 3 2R R R R, 44 4 28→ +( )R R
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~

1 1 2 3

0 1 2 2

0 0 4 17

0 0 0 0

4 4 3

− −

−

−

























→ −( )R R R

∴ |A| = 0 i.e. R(A) < 4
∴ The system has a non-trivial solution.

The system is equivalent to

 x − y + 2z − 3w = 0 (1)

 y − 2z +2w = 0 (2)

 −4z + 17w = 0 (3)

Putting w = 4k, we get z = 17k from (3), y = 26k from (2) and x = 4k.

Thus the non-trivial solution is x = 4k, y = 26k, z = 17k and w = 4k.

Example 1.19 Find the values of λ for which the equations x +(λ + 4) y + (4λ + 2)z = 

0, x + 2(λ + 1) y + (3λ + 4) z = 0, 2x + 3λy + (3λ + 4) z = 0 have a non-trivial solution. 

Also find the solution in each case.

 

A=

+ +

+ +

+



















+ +

− − +

−

1 4 4 2

1 2 2 3 4

2 3 3 4

1 4 4 2

0 2 2

0

λ λ

λ λ

λ λ

λ λ

λ λ

λ

~

88 5
2

2 2 1

3 3 1−



















→ −(
→ − )

λ

R R R

R R R

,

 (1)

For non-trivial solution, |A| = 0

i.e. −5λ (λ − 2) − (λ − 8) (2 − λ) = 0

i.e. −4λ2 + 16 = 0

∴  λ = ± 2

When λ = 2, the system is equivalent to

x + 6y + 10z = 0

 −6y − 10z = 0, from (1)

Putting z = 3k, we get y = −5k and x = 0

i.e. the solution is x = 0, y = −5k and z = 3k.

When λ = −2, the system is equivalent to

 x + 2y − 6z = 0

 −4y + 4z = 0, from (1)

Putting z = k, we get y = k and x = 4k.

i.e. the solution is x = 4k, y = k and z = k.
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EXERCiSE 1(a)

Part A

(Short Answer Questions)

 1. Define the linear dependence of a set of vectors.

 2. Define the linear independence of a set of vectors.

 3. If a set of vectors is linearly dependent, show that at least one member of the 

set can be expressed as a linear combination of the other members.

 4. Show that the vectors X
1
 = (1, 2), X

2
 = (2, 3) and X

3
 = (4, 5) are linearly 

dependent.

 5. Show that the vectors X
1
 = (0, 1, 2), X

2
 = (0, 3, 5) and X

3
 = (0, 2, 5) are linearly 

dependent.

 6. Express X
1
 = (1, 2) as a linear combination of X

2
 = (2, 3) and X

3
 = (4, 5).

 7. Show that the vectors (1, 1, 1), (1, 2, 3) and (2, 3, 8) are linearly independent.

 8. Find the value of a if the vectors (2, −1, 0), (4, 1, 1) and (a, −1, 1) are linearly 

dependent.

 9. What do you mean by consistent and inconsistent systems of equations. Give 

examples.

10. State Rouche’s theorem.

11. State the condition for a system of equations in n unknowns to have (i) one 

solution, (ii) many solutions and (iii) no solution.

12. Give an example of 2 equations in 2 unknowns that are (i) consistent with 

only one solution and (ii) inconsistent.

13. Give an example of 2 equations in 2 unknowns that are consistent with many 

solutions.

14. Find the values of a and b, if the equations 2x − 3y = 5 and ax + by = −10 

have many solutions.

15. Test if the equations x + y + z = a, 2x + y + 3z = b, 5x + 2y + z = c have a unique 

solution, where a, b, c are not all zero.

16. Find the value of λ, if the equations x + y − z = 10, x − y + 2z = 20 and λx −  

y + 4z = 30 have a unique solution.

17. If the augmented matrix of a system of equations is equivalent to 

1 2 1 2

0 5 3 2

0 0 0

− − −

















λ

, find the value of λ, for which the system has a unique 

solution.

18. If the augmented matrix of a system of equations is equivalent to

1 2 1 3

0 2 2 2

0 0 1 3

−

−

+ −

















λ µ

, find the values of λ and μ for which the system has 

only one solution.
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19. If the augmented matrix of a system of equations is equivalent to 

1 2 3 4

0 5 4 2

0 0 2 3

−

− −

















λ µ

, find the values of λ and μ for which the system

has many solutions.

20. If the augmented matrix of a system of equations is equivalent to

1 1 2 3

0 3 1 2

0 0 8 11

− − −

− −

















λ µ

, find the values of λ and μ for which the system 

has no solution.

21. Do the equations x − 3y − 8z = 0, 3x + y = 0 and 2x + 5y + 6z = 0 have a non-

trivial solution? Why?

22. If the equations x + 2y + z = 0, 5x + y –z = 0 and x + 5y + λz = 0 have a non-

trivial solution, find the value of λ.

23. Given that the equations x + 2y − z = 0, 3x + y − z = 0 and 2x – y = 0 have 

non-trivial solution, find it.

Part B

Show that the following sets of vectors are linearly dependent. Find their relationship 

in each case:

24. X
1
 = (1, 2, 1), X

2
 = (4, 1, 2), X

3
 = (6, 5, 4), X

4
 = (−3, 8, 1).

25. X
1
 = (3, 1, −4), X

2
 = (2, 2, −3), X

3
 = (0, −4, 1), X

4
 = (−4, −4, 6)

26. X
1
 = (1, 2, −1, 3), X

2
 = (0, −2, 1, −1), X

3
 = (2, 2, −1, 5)

27. X
1
 = (1, 0, 4, 3), X

2
 = (2, 1, −1, 1), X

3
 = (3, 2, −6, −1)

28. X
1
 = (1, −2, 4, 1), X

2
 = (1, 0, 6, −5), X

3
 = (2, −3, 9, −1) and X

4
 = (2, −5, 7, 5).

29. Determine whether the vector x
5
 = (4, 2, 1, 0) is a linear combination of the 

set of vectors X
1
 = (6, − 1, 2, 1), X

2
 = (1, 7, − 3, −2), X

3
 = (3, 1, 0, 0) and 

X
4
 = (3, 3,−2,−1).

Show that each of the following sets of vectors is linearly independent.

30. X
1
 = (1, 1, 1); X

2
 = (1, 2, 3); X

3
 = (2, −1, 1).

31. X
1
 = (1, −1, 2, 3); X

2
 = (1, 0, −1, 2); X

3
 = (1, 1, −4, 0)

32. X
1
 = (1, 2, −1, 0) X

2
 = (1, 3, 1, 2); X

3
 = (4, 2, 1, 0); X

4
 = (6, 1, 0, 1).

33. X
1
 = (1, −2, −3, −2, 1); X

2
 = (3, −2, 0, −1, −7); X

3
 = (0, 1, 2, 1, −6); X

4
 = (0, 

2, 2, 1, −5).

34. Test for the consistency of the following system of equations:

3 4 5 6

4 5 6 7

5 6 7 8

10 11 12 13

15 16 17 18

1

2

3

4





























x

x

x

x

























=





























7

8

9

14

19
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Test for the consistency of the following systems of equations and solve, if con-

sistent:

35. 2x − 5y + 2z = −3; −x − 3y + 3z = −1; x + y − z = 0; −x + y = 1.

36. 3x + 5y − 2z = 1; x − y + 4z = 7; −6x − 2y + 5z = 9; 7x − 3y + z = 4.

37. 2x + 2y + 4z = 6; 3x + 3y + 7z = 10; 5x + 7y + 11z = 17; 6x + 8y + 13z = 16.

Test for the consistency of the following systems of equations and solve, if 

consistent:

38. x + 2y + z = 3; 2x + 3y + 2z = 5; 3x − 5y + 5z = 2; 3x + 9y − z = 4.

39. 2x + 6y − 3z = 18; 3x − 4y + 7z = 31; 5x + 3y + 3z = 48; 8x − 3y + 2z = 21.

40. x + 2y + 3z = 6; 5x − 3y + 2z = 4; 2x + 4y − z = 5; 3x + 2y + 4z = 9.

41. x + 2y = 4; 10y + 3z = −2; 2x − 3y − z = 5; 3x + 3y + 2z = 1.

42. 2x
1
 + x

2
 + 2x

3
 + x

4
 = 6; x

1
 − x

2
 + x

3
 + 2x

4
 = 6; 4x

1
 + 3x

2
 + 3x

3
 − 3x

4
 = −1; 2x

1
 + 

2x
2
 − x

3
 + x

4
= 10

43. 2x + y + 5z + w = 5; x + y + 3z − 4w = − 1; 3x + 6y − 2z + w = 8; 2x + 

 2y + 2z − 3w = 2.

Test for the consistency of the following systems of equations and solve, if consistent:

44. x − 3y − 8z = − 10; 3x + y = 4z; 2x + 5y + 6z = 13.

45. 5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 10z = 5.

46. x − 4y − 3z + 16 = 0; 2x + 7y + 12z = 48; 4x − y + 6z = 16; 5x − 5y + 3z = 0.

47. x − 2y + 3w = 1; 2x − 3y + 2z + 5w = 3; 3x − 7y − 2z + 10w = 2.

48. x
1
 + 2x

2
 + 2x

3
 − x

4
 = 3; x

1
 + 2x

2
 + 3x

3
 + x

4
 = 1; 3x

1
 + 6x

2
 + 8x

3
 + x

4
 = 5.

49. Find the values of k, for which the equations x + y + z = 1, x + 2y + 4z = k and 

 x + 4y + 10z = k2 have a solution. For these values of k, find the solutions 

also.

50. Find the values of λ, for which the equtions x + 2y + z = 4, 2x − y − z = 3λ and 

4x − 7y − 5z = λ2 have a solution. For these values of λ, find the solutions also.

51. Find the condition on a, b, c, so that the equations x + y + z = a, x + 2y + 3z = 

b, 3x + 5y + 7z = c may have a one-parameter family of solutions.

52. Find the value of k for which the equations kx − 2y + z = 1, x − 2ky + z = −2 and 

x − 2y + kz = 1 have (i) no solution, (ii) one solution and (iii) many solutions.

53. Investigate for what values of λ, μ the equations x + y + 2z = 2, 2x − y + 

3z = 2 and 5x − y + λz = μ have (i) no solution, (ii) a unique solution, (iii) an 

infinite number of solutions.

54. Find the values of a and b for which the equations x + y + 2z = 3, 2x − y + 

3z = 4 and 5x − y + az = b have (i) no solution, (ii) a unique solution, (iii) 

many solutions.

55. Find the non-trivial solution of the equations x + 2y + z = 0; 5x + y − z = 0 and 

x + 5y + 3z = 0, if it exists.

56. Find the non-trivial solution of the equations x + 2y + z + 2w = 0; x + 3y + 2z 

+ 2w = 0; 2x + 4y + 3z + 6w = 0 and 3x + 7y + 4z + 6w = 0, if it exists.

57. Find the values of λ for which the equations 3x + y − λz = 0, 4x − 2y − 3z = 

0 and 2λx + 4y + λz = 0 possess a non-trivial solution. For these values of λ, 

find the solution also.

58. Find the values of λ for which the equations (11 − λ) x − 4y − 7z = 0, 7x − 

(λ + 2) y − 5z = 0, 10x − 4y − (6 + λ) z = 0 possess a non-trivial solution. For 

these values of λ, find the solution also.
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1.6 EiGEnVALUES AnD EiGEnVECtORS

1.6.1  Definition

Let A = [a
ij
] be a square matrix of order n. If there exists a non-zero column vector 

X and a scalar λ, such that

AX = λX

then λ is called an eigenvalue of the matrix A and X is called the eigenvector 

corresponding to the eigenvalue λ.

To find the eigenvalues and the corresponding eigenvectors of a square matrix A, 

we proceed as follows:

Let λ be an eigenvalue of A and X be the corresponding eigenvector. Then, by 

definition,

AX = λX = λIX, where I is the unit matrix of order n.

i.e. (A − λI) X = 0 (1)

i.e. 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

1 0 0

0 1 0

0 0

…

…

…

… …

… …





















−λ

00 1

1

2

…




















































x

x

xn















=

























0

0

0



i.e. a x a x a x

a x a x a x

n n

n n

11 1 12 2 1

21 1 22 2 2

0

0

−( ) + +⋅⋅⋅+ =

+ −( ) +⋅⋅⋅+ =

λ

λ

.....................................................

a x an n1 1 2+ xx a xnn n2 0+⋅⋅⋅ −( ) =λ

 

(2)

Equations (2) are a system of homogeneous linear equations in the unknowns x
1
, 

x
2
, . . . , x

n.

Since X

x

x

xn

=

























1

2


 is to be a non-zero vector,

x
1
, x

2
, . . . , x

n
 should not be all zeros. In other words, the solution of the system (2) 

should be a non-trivial solution.

The condition for the system (2) to have a non-trivial solution is

 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

0

− ⋅⋅⋅

− ⋅⋅⋅

⋅⋅⋅ −

=

λ

λ

λ

 (3)

i.e. |A − λ I| = 0 (4)

The determinant |A − λI| is a polynomial of degree n in λ and is called the 

characteristic polynomial of A.

The equation |A − λ I| = 0 or the equation (3) is called the characteristic equation of A.
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When we solve the characteristic equation, we get n values for λ. These n roots 

of the characteristic equation are called the characteristic roots or latent roots or 

eigenvalues of A.

Corresponding to each value of λ, the equations (2) possess a non-zero (non-

trivial) solution X. X is called the invariant vector or latent vector or eigenvector of 

A corresponding to the eigenvalue λ.

Notes 

 1. Corresponding to an eigenvalue, the non-trivial solution of the system (2) will 

be a one-parameter family of solutions. Hence the eigenvector corresponding 

to an eigenvalue is not unique.

 2. If all the eigenvalues λ
1
, λ

2
, . . . , λ

n
 of a matrix A are distinct, then the cor-

responding eigenvectors are linearly independent.

 3. If two or more eigenvalues are equal, then the eigenvectors may be linearly 

independent or linearly dependent.

1.6.2 Properties of Eigenvalues

 1. A square matrix A and its transpose AT have the same eigenvalues.

Let A = (a
ij
); i, j = 1, 2, . . . , n.

The characteristic polynomial of A is

 A I

a a a

a a a

a a a

n

n

n n nn

− =

− ⋅⋅⋅

− ⋅⋅⋅

⋅⋅⋅ −

λ

λ

λ

λ

11 12 1

21 22 2

1 2

 (1)

The characteristic polynomial of AT is

 A I

a a a

a a a

a a a

T

n

n

n n nn

− =

−

−

−

λ

λ

λ

λ

11 21 1

12 22 2

1 2

…

…

…

 (2)

Determinant (2) can be obtained by changing rows into columns of determi-

nant (1).
∴  |A − λ I| = |AT − λ I|
∴ The characteristic equations of A and AT are identical.
∴ The eigenvalues of A and AT are the same.

 2. The sum of the eigenvalues of a matrix A is equal to the sum of the principal 

diagonal elements of A. (The sum of the principal diagonal elements is called 

the Trace of the matrix.)

The characteristic equation of an nth order matrix A may be written as

 λ λ λn n n n

nD D D− + −⋅⋅⋅+ −( ) =− −
1

1

2

2 1 0,  (1)

where D
r
 is the sum of all the rth order minors of A whose principal diagonals 

lie along the principal diagonal of A.
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(Note  D
n
 = |A|). We shall verify the above result for a third order matrix.

Let A

a a a

a a a

a a a

=



















11 12 13

21 22 23

31 32 33

The characteristic equation of A is given by

 

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

0

−

−

−


















=

λ

λ

λ

 (2)

Expanding (2), the characteristic equation is

a a a
a a

a a

a a
a

11

2

22 33

22 23

32 33

12 21

−( ) − +( ) +














− − +

λ λ λ

λ
221 23

31 33

13 31

21 22

31 32

a

a a
a a

a a

a a














+ +










λ


= 0

i.e. − + + +( )

− + +

λ λ3

11 22 33

2

11 12

21 22

11 13

31 33

22 23

32 33

a a a

a a

a a

a a

a a

a a

a a















+ =λ A 0

i.e. λ3 − D
1
 λ2 + D

2
 λ − D

3
 = 0, using the notation given above.

This result holds good for a matrix of order n.

Note  This form of the characteristic equation provides an alternative 

method for getting the characteristic equation of a matrix.

Let λ
1
, λ

2
, . . . , λ

n
 be the eigenvalues of A.

∴ They are the roots of equation (1).

∴ λ λ λ1 2

1

1

11 22

1
+ +⋅⋅⋅+ =

− −( )
=

= + +⋅⋅⋅+

=

n

nn

D
D

a a a

ATrace of the matrix .

 3. The product of the eigenvalues of a matrix A is equal to |A|.

If λ
1
, λ

2
, . . . , λ

n
 are the eigenvalues of A, they are the roots of

λ λ λn n n n

nD D D− + −⋅⋅⋅+ −( ) =− −
1

1

2

2 1 0
.

∴ Product of the roots =
−( ) ⋅ −( )1 1

1

n n

nD

i.e. λ
1
, λ

2
 . . . λ

n 
= D

n
 = |A|.

1.6.3 Aliter

λ
1
,
 
λ

2
, . . . , λ

n 
are the roots of |A −  λI| = 0
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∴ |A − λI| ≡ (−1)n (λ − λ
1
) (λ − λ

2
) . . . (λ − λ

n
), since L.S. is a nth

 
degree polynomial 

in λ whose leading term is (−1)n λn.

Putting λ = 0 in the above identity, we get |A| = (−1)n (−λ
1
) (−λ

2
) . . . (−λ

n
)

i.e. λ
1 
λ

2
 . . . λ

n
 = |A|.

1.6.4 Corollary

If |A| = 0, i.e. A is a singular matrix, at least one of the eigenvalues of A is zero and 

conversely.

 4. If λ
1
, λ

2
, . . ., λ

n 
are the eigenvalues of a matrix A, then

(i)  kλ
1
, kλ

2
, . . . kλ

n
 are the eigenvalues of the matrix kA, where k is a non-

zero scalar.

(ii)  λ λ λ1 2

p p

n

p, , ,…  are the eigenvalues of the matrix Ap, where p is a positive 

integer.

(iii)  
1 1 1

1 2λ λ λ
, ,⋅⋅⋅

n

 are the eigenvalues of the inverse matrix A−1, provided λ
r
 

≠ 0 i.e. A is non-singular.

  (i) Let λ
r
 be an eigenvalue of A and X

r
 the corresponding eigenvector.

Then, by definition,

 AX
r
 = λ

r
 x

r
 (1)

Multiplying both sides of (1) by k,

 (kA)X
r
 = (kλ

r
) X

r
 (2)

From (2), we see that kλ
r
 is an eigenvalue of kA and the corresponding 

eigenvector is the same as that of λ
r
, namely X

r
.

  (ii) Premultiplying both sides of (1) by A,

A X A AX

A X

AX

X

r r

r r

r r

r r

2

2

= ( )

= ( )

= ( )

=

λ

λ

λ

Similarly A X Xr r r

3 3= λ  and so on.

In general, A X Xp

r r

p

r= λ  (3)

From (3), we see that λr

p
 is an eigenvalue of Ap with the corresponding 

eigenvector equal to X
r
, which is the same for λ

r
.

  (iii) Premultiplying both sides of (1) by A−1,

A−1 (AX
r
) = A−1 (λ

r
 X

r
)

i.e. X
r
 = λ

r
 (A−1 X

r
)

∴  A X Xr

r

r

− =1 1

λ
 (4)
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From (4), we see that
1

λr

is an eigenvalue of A–1 with the corresponding

eigenvector equal to X
r
, which is the same for λ

r
.

 5. The eigenvalues of a real symmetric matrix (i.e. a symmetric matrix with real 

elements) are real.

Let λ be an eigenvalue of the real symmetric matrix and X be the corre-

sponding eigenvector. 

Then AX = λ (1)

Premultiplying both sides of (1) by X T  (the transpose of the conjugate of 

X), we get

 X AX X XT T= λ  (2)

Taking the complex conjugate on both sides of (2),

 X A X X XT T= λ λ( )assuming that may becomplex

i.e. X A X X X A A AT T= =λ ( , )∵ as is real  (3)

Taking transpose on both sides of (3),

X A X X X AB B AT T T T T T= =



λ ∵( )

i.e. X A X X X A A AT T T= =



λ ∵( ) , as issymmetric  (4)

From (2) and (4), we get

λ λX X X XT T=

i.e. 
( )λ λ− =X XT 0

X XT  is an 1 × 1 matrix, i.e. a single element which is positive

∴ λ λ− = 0

i.e. λ is real.

Hence all the eigenvalues are real.

 6. The eigenvectors corresponding to distinct eigenvalues of a real symmetric

matrix are orthogonal. 

Note  Two column vectors X

x

x

x

Y

y

y

yn n

=













=







1

2

1

2

 
and









are said to be

orthogonal, if their inner product (x
1
y

1
 + x

2
y

2
 + … x

n
y

n
) = 0

i.e. if XTY = 0.

Let λ
1
, λ

2
 be any two distinct eigenvalues of the real symmetric matrix A 

and X
1
, X

2
 be the corresponding eigenvectors respectively. 

Then AX
1
 = λ

1
X

1
 (1)

and AX
2 
= λ

2
X

2
 (2)

Premultiplying both sides of (1) by, X T
2  we get

X AX X XT T

2 1 1 2 1= λ
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Taking the transpose on both sides,

 X AX X X A AT T T

1 2 1 1 2= =λ ( )∵  (3)

Premultiplying both sides of (2) by X T
1 , we get

 X AX X XT T

1 2 2 1 2= λ  (4)

From (3) and (4), we have

 λ λ1 1 2 2 1 2X X X XT T=

i.e. 
( )λ λ1 2 1 2 0− =X XT

Since 
λ λ1 2 1 2 0≠ =, X XT

i.e. the eigenvectors X
1
 and X

2
 are orthogonal.

WORKED EXAMPLE 1(b)

Example 1.1 Given that A=












5 4

1 2
, verify that the eigenvalues of A2 are the

squares of those of A. 

Verify also that the respective eigenvectors are the same.

The characteristic equation of A is 
5 4

1 2
0

−

−
=

λ

λ

i.e. (5 − λ) (2 − λ) − 4 = 0

i.e. λ2 − 7λ + 6 = 0

∴ The eigenvalues of A are λ = 1, 6.

The eigenvector corresponding to any λ is given by (A − λ I) X  = 0

i.e. 
5 4

1 2
0

1

2

−

−












=

λ

λ

x

x

When λ = 1, the eigenvector is given by the equations

4x
1
 + 4x

2
 = 0 and

x
1
 + x

2
 = 0, which are one and the same. 

Solving, x
1
 = − x

2
. Taking x

1
 = 1, x

2
 = −1.

∴ The eigenvector is 
1

1−
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When λ = 6, the eigenvector is given by

−x
1 
+ 4x

2
 = 0

and x
1 
− 4x

2  
= 0

Solving, x
1 
= 4x

2

Taking   x
2 
= 1, x

1 
= 4

∴ The eigenvector is 
1

4













Now  A2
5 4

1 2

5 4

1 2

29 28

7 8
=
























=













The characteristic equation of A2  is 
29 28

7 8
0

−

−
=

λ

λ

i.e. (29 − λ) (8 − λ) − 196 = 0

i.e. λ2 − 37λ + 36 = 0

i.e. (λ − 1)(λ − 36) = 0 
∴ The eigenvalues of A2 are 1 and 36, that are the squares of the eigenvalues of A, 

namely 1 and 6. When λ = 1, the eigenvector of A2 is given by

28 28

7 7
0 28 0 7 7 0

1

2
2 1 2
























= + = + =

x

x
x x x x. i.e. 28 and1

Solving, x
1
 = –x

2
. Taking x

1
 = 1, x

2
 = –1.

When λ = 36, the eigenvector of A2  is given by

−

−
























= − + = − =

7 28

7 28
0 7 28 0 7 28

1

2
2 1 2

x

x
x x x x. i.e. and1 00.

Solving, x
1
 = 4x

2
. Taking x

2
 = 1, x

1
 = 4.

Thus the eigenvectors of A2 are

1

1

4

1−

























and , which are the same as the respective eigenvectors of A.

Example 1.2 Find the eigenvalues and eigenvectors of the matrix

A=



















1 1 3

1 5 1

3 1 1
The characteristic equation of A is

1 1 3

1 5 1

3 1 1

0

−

−

−

=

λ

λ

λ

i.e. (l – λ) {λ2 – 6λ + 4} – (1 – λ – 3) + 3(1 – 15 + 3λ) = 0

i.e. –λ3 + 7λ2 – 36 = 0 or λ3 – 7λ2 + 36 = 0 (1)

i.e. (λ + 2) (λ2 – 9λ + 18) = 0 [∴ λ= –2 satisfies (1) ]

i.e. (λ + 2) (λ – 3) (λ – 6) = 0

∴ The eigenvalues of A are λ = –2, 3, 6.

Case (i) λ = –2.

The eigenvector is given by
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3 1 3

1 7 1

3 1 3

0

1

2

3





































=

x

x

x
 

(2)

i.e. x
1
 + 7x

2
 + x

3
 = 0

 3x
1
 + x

2
 + 3x

3
 = 0 

Solving these equations by the rule of cross-multiplication, we have

 
x x x1 2 3

21 1 3 3 1 21−
=

−
=

−

i.e. 

x x x1 2 3

20 0 20
= =

−
 

(3)

Note  To solve for x
1
, x

2
, x

3
, we have taken the equations corresponding to the second 

and third rows of the matrix in step (2). The proportional values of x
1
, x

2
, x

3 
obtained 

in step (3) are the co-factors of the elements of the first row of the determinant of the 

matrix in step (2). This provides an alternative method for finding the eigenvector.

From step (3), x
1
 = k, x

2
 = 0 and x

3
 = –k.

Usually the eigenvector is expressed in terms of the simplest possible numbers, 

corresponding to k = 1 or – 1.

∴  x
1
 = 1,   x

2
 = 0,   x

3
 = – 1

Thus the eigenvector corresponding to λ = – 2 is 

X1

1

0

1

=

−



















Case (ii) λ = 3.

The eigenvector is given by 

−

−





































=

2 1 3

1 2 1

3 1 2

0

1

2

3

x

x

x

.

Values of x
1
, x

2
, x

3
 are proportional to the co-factors of –2, 1, 3 (elements of the 

first row i.e. –5, 5, –5. 

i.e. 
x x x x x x1 2 3 1 2 3

5 5 5 1 1 1−
= =

−
=
−

=or

∴ X 2

1

1

1

= −



















Case (iii) λ = 6.

The eigenvector is given by 

−

−

−





































=

5 1 3

1 1 1

3 1 5

0

1

2

3

x

x

x
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∴  

x x x1 2 3

4 8 4
= =

or 

x x x1 2 3

1 2 1
= =

∴

 

X3

1

2

1

=



















Note  Since the eigenvalues of A are distinct, the eigenvectors X
1
, X

2
, X

3
 are 

linearly independent, as can be seen from the fact that the equation k
1
X

1
 + k

2
X

2
 + k

3
X

3
 

= 0 is satisfied only when k
1
 = k

2
 = k

3
 = 0.

Example 1.3 Find the eigenvalues and eigenvectors of the matrix

A=



















0 1 1

1 0 1

1 1 0

The characteristic equation is given by

λ3 – D
1
λ2 + D

2
λ – D

3
 = 0, where

D
1
 = the sum of the first order minors of A that lie along the main diagonal of A 

= 0 + 0 + 0

= 0

D
2
 =  the sum of the second order minors of A whose principal diagonals lie along the 

principal diagonal of A.

= + +
0 1

1 0

0 1

1 0

0 1

1 0

= – 3

D
3
= |A| = 2

Thus the characteristic equation of A is

λ3 – 3λ – 2 = 0

i.e. (λ + l)2 (λ – 2) = 0

∴ The eigenvalues of A are λ = –1, –1, 2.

Case (i) λ = –1.

The eigenvector is given by

−

−

−




































=

λ

λ

λ

1 1

1 1

1 1

0

1

2

3

x

x

x

All the three equations reduce to one and the same equation x
1
 + x

2
 + x

3
 = 0. There 

is one equation in three unknowns.
∴ Two of the unknowns, say, x

1
 and x

2
 are to be treated as free variables (parameters). 

Taking x
1
 = 1 and x

2
 = 0, we get x

3
 = –1 and taking x

1
 = 0 and x

2
= 1, we get x

3
= – l



1.36 Mathematics II∴ X X1 2

1

0

1

0

1

1

=

−



















=

−



















and

Case (ii) λ = 2.

The eigenvector is given by

−

−

−




































=

2 1 1

1 2 1

1 1 2

0

1

2

3

x

x

x

Values of x
1
, x

2
, x

3
 are proportional to the co-factors of elements in the first row.

i.e. 
x x x

1 2 3

3 3 3
= =

or 
x x x

1 2 3

1 1 1
= =

∴ x3

1

1

1

=



















Note  Though two of the eigenvalues are equal, the eigenvectors X
1
, X

2
, X

3
 are 

found to be linearly independent.

Example 1.4 Find the eigenvalues and eigenvectors of the matrix

A=

−

−



















2 2 2

1 1 1

1 3 1

The characteristic equation of A is

2 2 2

1 1 1

1 3 1

0

− −

−

− −

=

λ

λ

λ

i.e. (2 – λ)(λ2 – 4) + 2(– l – λ – l) + 2(3 – l + λ) = 0

i.e. (2 – λ)(λ – 2)(λ + 2) = 0

∴ The eigenvalues of A are λ = –2, 2, 2.

Case (i) λ = – 2

The eigenvector is given by

4 2 2

1 3 1

1 3 1

0

1

2

3

−


































=

x

x

x

∴ 
x x x

1 2 3

8 2 14−
=

−
=  (by taking the co-factors of elements of the third row)
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i.e. 
x x x

1 2 3

4 1 7−
=

−
=

∴ X1

4

1

7

=

−

−



















Case (ii) λ = 2.

The eigenvector is given by

0 2 2

1 1 1

1 3 3

0

1

2

3

−

−

−


















=

x

x

x

∴ 
x x x x x x

1 2 3 1 2 3

0 4 4 0 1 1
= = = =or

∴ X X2 3

0

1

1

= =



















Note  Two eigenvalues are equal and the eigenvectors are linearly dependent.

Example 1.5 Find the eigenvalues and eigenvectors of the matrix 

A=

− −

− −

− −



















11 4 7

7 2 5

10 4 6

Can you guess the nature of A from the eigenvalues? Verify your answer.

The characteristic equation of A is

11 4 7

7 2 5

10 4 6

0

− − −

− − −

− − −

=

λ

λ

λ

i.e. (11 – λ)( λ2 + 8λ – 8) + 4(8 – 7λ)–7(10λ – 8) = 0

i.e. λ3 – 3λ2 + 2λ = 0
∴ The eigenvalues of A are λ = 0, 1, 2.

Case (i) λ = 0.

The eigenvector is given by 

11 4 7

7 2 5

10 4 6

0

1

2

3

− −

− −

− −




































=

x

x

x

∴ 
x x x

1 2 3

8 8 8−
=

−
=

−
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or 
x x x

1 2 3

1 1 1
= =

∴ X1

1

1

1

=



















Case (ii) λ = 1.

The eigenvector is given by 

10 4 7

7 3 5

10 4 7

0

1

2

3

− −

− −

− −




































=

x

x

x

∴ 

x x x
1 2 3

1 1 2−
= =

−

∴ X 2

1

1

2

= −



















Case (iii) λ = 2.

The eigenvector is given by 

9 4 7

7 4 5

10 4 8

0

1

2

3

− −

− −

− −




































=

x

x

x

∴ 
x x x

1 2 3

12 6 12
= =

or  
x x x

1 2 3

2 1 2
= =

∴ X 3

2

1

2

=



















Since one of the eigenvalues of A is zero, product of the eigenvalues = |A| = 0, i.e. A 

is non-singular. It is verified below:

11 4 7

7 2 5

10 4 6

11 12 20 4 42 50 7 28 20 0

− −

− −

− −

= −( )+ − +( )− − +( )= .

Example 1.6 Verify that the sum of the eigenvalues of A equals the trace of A and 

that their product equals |A|, for the matrix

A= −

−



















1 0 0

0 3 1

0 1 3
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The characteristic equation of A is

1 0 0

0 3 1

0 1 3

0

−

− −

− −

=

λ

λ

λ

i.e. (l – λ)(λ2 – 6λ + 8) = 0

∴ The eigenvalues of A are λ = 1, 2, 4.

Sum of the eigenvalues = 7.

Trace of the matrix = 1 + 3 + 3 = 7

Product of the eigenvalues = 8.

|A| = 1 × (9 – l) = 8.

Hence the properties verified.

Example 1.7 Verify that the eigenvalues of A2 and A–1 are respectively the squares 

and reciprocals of the eigenvalues of A, given that

A=



















3 1 4

0 2 6

0 0 5

The characteristic equation of A is

3 1 4

0 2 6

0 0 5

0

−

−

−

=

λ

λ

λ

i.e. (3 – λ) (2 – λ) (5 – λ) = 0

∴ The eigenvalues of A are λ = 3, 2, 5.

Now A2

3 1 4

0 2 6

0 0 5

3 1 4

0 2 6

0 0 5

9 5 38

0 4 42

0 0 25

=




































=



















The characteristic equation of A2 is

9 5 38

0 4 42

0 0 25

0

−

−

−

=

λ

λ

λ

i.e. (9 – λ)(4 – λ)(25 – λ) = 0

∴ The eigenvalues of A2 are 9, 4, 25, which are the squares of the eigenvalues of A.

Let A

a a a

a a a

a a a

=


















≡










3 1 4

0 2 6

0 0 5

11 12 13

21 22 23

31 32 33 






A
11

 = Co-factor of a
11

 = 10; A
12

 = 0; A
13

 = 0;



1.40 Mathematics II

A
21

 = – 5; A
22

 = 15; A
23

 = 0; A
31

 = – 2; A
32

 = – 18; A
33

 = 6

 |A| = 30.

∴ A− =

− −

−



















1 1

30

10 5 2

0 15 18

0 0 6

 

=

− −

−































1

3

1

6

1

15

0
1

2

3

5

0 0
1

5

The characteristic equation of A–1 is

 

1

3

1

6

1

15

0
1

2

3

5

0 0
1

5

0

− − −

− −

−

=

λ

λ

λ

i.e. 
1

3

1

2

1

5
0−









 −








 −








=λ λ λ

∴ The eigenvalues of A–1 are 
1

3

1

2

1

5
, , ,  which are the reciprocals of the eigenvalues of A.

Hence the properties verified.

Example 1.8 Find the eigenvalues and eigenvectors of (adj A), given that the 

matrix

 

A=

−

−



















2 0 1

0 2 0

1 0 2

The characteristic equation of A is

 

2 0 1

0 2 0

1 0 2

0

− −

−

− −

=

λ

λ

λ

i.e. (2 – λ)3 – (2 – λ) = 0

i.e. (2 – λ) (λ2 – 4λ + 3) = 0
∴ The eigenvalues of A are λ = 1, 2, 3.

Case (i)   λ = 1.

The eigenvector is given by 

1 0 1

0 1 0

1 0 1

0

1

2

3

−

−




































=

x

x

x
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∴ = =

∴ =



















x x x

X

1 2 3

1

1 0 1

1

0

1

Case (ii) λ = 2.

The eigenvector is given by

0 0 1

0 0 0

1 0 0

0

1

2

3

−

−




































=

x

x

x
i.e. –x

3
 = 0   and  –x

1
 = 0

∴ x
1
 = 0, x

3
 = 0 and x

2
 is arbitrary. Let x

2
 = 1

∴ X 2

0

1

0

=



















Case (iii) λ = 3.

The eigenvector is given by

− −

−

− −




































=

1 0 1

0 1 0

1 0 1

0

1

2

3

x

x

x

.

∴ = =
−

∴ =

−



















x x x

X

1 2 3

3

1 0 1

1

0

1

The eigenvalues of A–1 are 1
1

2

1

3
, ,  with the eigenvectors X

1
, X

2
, X

3
.

Now 
adj A

A
A= −1

i.e. adj A = |A| · A–1 = 6A–1 (∵ A = 6  for the given matrix A)

∴ The eigenvalues of (adj A) are equal to 6 times those of A–1, namely, 6, 3, 2.  

The corresponding eigenvectors are X
1
, X

2
, X

3
 respectively.

Example 1.9 Verify that the eigenvectors of the real symmetric matrix

A=

−

− −

−



















3 1 1

1 5 1

1 1 3

are orthogonal in pairs.

The characteristic equation of A is
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3 1 1

1 5 1

1 1 3

0

− −

− − −

− −

=

λ

λ

λ

i.e. (3 – λ)(λ2 – 8λ + 14) + (λ – 3 + 1) + (1 + λ – 5) = 0

i.e. λ3 – 11λ2 + 36λ – 36 = 0

i.e. (λ – 2) (λ – 3) (λ – 6) = 0

∴ The eigenvalues of A are λ = 2, 3, 6.

Case (i) λ = 2.

The eigenvector is given by 

1 1 1

1 3 1

1 1 1

0

1

2

3

−

− −

−




































=

x

x

x

∴ = =
−

= =
−

∴ =

−



















x x x x x x

X

1 2 3 1 2 3

1

2 0 2 1 0 1

1

0

1

or

Case (ii) λ = 3.

The eigenvector is given by 

0 1 1

1 2 1

1 1 0

0

1

2

3

−

− −

−




































=

x

x

x

∴
−

=
−

=
−

∴ =



















x x x

X

1 2 3

2

1 1 1

1

1

1

Case (iii) λ = 6.

The eigenvector is given by 

− −

− − −

− −




































=

3 1 1

1 1 1

1 1 3

0

1

2

3

x

x

x

x x x

X

1 2 3

3

2 4 2

1

2

1

=
−

=

= −
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Now 

X X

X X

T

T

1 2

2 3

1 0 1

1

1

1

0

1 1 1

1

2

1

0

= −[ ]


















=

= [ ] −


















=

XX XT
3 1 1 2 1

1

0

1

0= −[ ]
−


















=

Hence the eigenvectors are orthogonal in pairs.

Example 1.10 Verify that the matrix

A= −

−



















1

3

2 2 1

2 1 2

1 2 2

is an orthogonal matrix. Also verify that 
1

λ
 is an eigenvalue of A, if λ is an eigenvalue 

and that the eigenvalues of A are of unit modulus.

Note  A square matrix A is said to be orthogonal if AAT = ATA = I.

Now 

AAT = −

−


















×

−

−



















=

1

3

2 2 1

2 1 2

1 2 2

1

3

2 2 1

2 1 2

1 2 2

1

9

99 0 0

0 9 0

0 0 9

1 0 0

0 1 0

0 0 1


















=


















= I

Similarly we can prove that ATA = I.

Hence A is an orthogonal matrix.

The characteristic equation of 3A is

2 2 1

2 1 2

1 2 2

0

−

− −

− −

=

λ

λ

λ

i.e. (2 – λ) (λ2 – 3λ + 6) – 2(2λ – 4 – 2) + (4 – 1 + λ) = 0

i.e. λ3 – 5λ2 + 15λ – 27 = 0

i.e. (λ – 3) (λ2 – 2λ + 9) = 0

∴ The eigenvalues of 3A are given by 
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 λ = 3   and  λ =
± −

= ±
2 4 36

2
1 2 2i

∴ The eigenvalues of A are

λ λ λ1 2 31
1 2 2

3

1 2 2

3
= =

+
=

−
, ,

i i

Now 
1

1

1 3

1 2 2

3 1 2 2

2 2 2 2

1 2 2

3

1

1

2

3

λ
λ

λ

( )

(1+ ) (1 )
λ

= =

=
+

=
−

−
=

−
=

i

i

i i

i

and similarly 
1

3

2
λ

λ= .

Thus, if λ is an eigenvalue of an orthogonal matrix, 
1

λ
 is also an eigenvalue.

Also |λ
1
| = |1| =1.

λ2

1

3

2 2

3

1

9

8

9
1= + = + =

i

Similarly, |λ
3
| = 1.

Thus the eigenvalues of an orthogonal matrix are of unit modulus.

EXERCiSE 1(b)

Part A

(Short Answer Questions)

1. Define eigenvalues and eigenvectors of a matrix.

2. Prove that A and AT have the same eigenvalues.

3. Find the eigenvalues of 2A2, if A=












4 1

3 2
.

4. Prove that the eigenvalues of (–3A–1) are the same as those of A=












1 2

2 1
.

5. Find the sum and product of the eigenvalues of the matrix A=

−

− − −



















1 2 2

1 0 3

2 1 3

.

6. Find the sum of the squares of the eigenvalues of A=



















3 1 4

0 2 6

0 0 5

.



Matrices 1.45

 7. Find the sum of the eigenvalues of 2A, if A=

−

− −

−



















8 6 2

6 7 4

2 4 3

.

 8. Two eigenvalues of the matrix A=



















2 2 1

1 3 1

1 2 2

 are equal to 1 each. Find the 

third eigenvalue.

 9. If the sum of two eigenvalues and trace of a 3 × 3 matrix A are equal, find the 

value of |A|.

10. Find the eigenvectors of A=












1 2

0 3
.

11. Find the sum of the eigenvalues of the inverse of A=



















3 0 0

8 4 0

6 2 5

.

12. The product of two eigenvalues of the matrix A=

−

− −

−



















6 2 2

3 3 1

2 1 3

 is 16. Find 

the third eigenvalue.

Part B

13. Verify that the eigenvalues of A–1 are the reciprocals of those of A and that the 

respective eigenvectors are the same with respect to the matrix

A=
−

−













1 2

5 4
.

14. Show that the eigenvectors of the matrix A
a b

b a i i
=

−























 −













are and
1 1

.  

Find the eigenvalues and eigenvectors of the following matrices:

15. 

2 2 0

2 1 1

7 2 3− −


















 16. 

− −

− −



















1 2 2

1 2 1

1 1 0

 17. 

2 2 7

2 1 2

0 1 3

−

−



















18. 

− −

−

− −



















2 2 3

2 1 6

1 2 0

 19. 

2 2 1

1 3 1

1 2 2


















 20. 

6 2 2

2 3 1

2 1 3

−

− −

−



















21. 

3 10 5

2 3 4

3 5 7

− − −


















 22. 

2 2 2

1 1 1

1 3 1

−

−


















 23. 

2 1 0

0 2 1

0 0 2
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24. 

5 2 0 0

2 2 0 0

0 0 5 2

0 0 2 2

−

−

























25. Find the eigenvalues and eigenvectors of A=

−

− −

−



















8 6 2

6 7 4

2 4 3

.

What can you infer about the matrix A from the eigenvalues? Verify your 

answer.

26. Given that A=

−

−

−



















15 4 3

10 12 6

20 4 2

, verify that the sum and product of the eigen-

values of A are equal to the trace of A and |A| respectively.

27. Verify that the eigenvalues of A2 and A–1 are respectively the squares and 

reciprocals of the eigenvalues of A, given that A=



















3 0 0

8 4 0

6 2 5

.

28. Find the eigenvalues and eigenvectors of (adj A), when A=

−

− −

−



















2 1 1

1 2 1

1 1 2

.

29. Verify that the eigenvectors of the real symmetric matrix A=

−

−

− −



















2 1 1

1 1 2

1 2 1

.

are orthogonal in pairs.

30. Verify that the matrix A=

− −

−



















1

3

1 2 2

2 1 2

2 2 1

 is orthogonal and that its 

eigenvalues are of unit modulus.

1.7 CAYLEY-HAMiLtOn tHEOREM

This theorem is an interesting one that provides an alternative method for finding the 

inverse of a matrix A. Also any positive integral power of A can be expressed, using 

this theorem, as a linear combination of those of lower degree. We give below the 

statement of the theorem without proof:

1.7.1 Statement of the theorem

Every square matrix satisfies its own characteristic equation.
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This means that, if c
0
 λn + c

1
 λn –1 + … + c

n –1
 λ + c

n
 = 0 is the characteristic equation 

of a square matrix A of order n, then

 c
0
 An + c

1
 Αn –1 + … + c

n –1
 A + c

n
 I = 0 (1)

Note:  When λ is replaced by A in the characteristic equation, the constant term 

c
n 
should be replaced by c

n
 I to get the result of Cayley-Hamilton theorem, where I is 

the unit matrix of order n.

Also 0 in the R.S. of (1) is a null matrix of order n.

1.7.2 Corollary

(1) If A is non-singular, we can get A–1, using the theorem, as follows:

Multiplying both sides of (1) by A–1 we have

c
0
 An –1 +c

1
 An –2 + … + c

n –1
 I + c

n
 A–1 = 0

∴ A
c

c A c A c I
n

n n
n

− − −
−=− + +⋅⋅⋅+( )1

0
1

1
2

1

1
.

(2) If we multiply both sides of (1) by A, c
0
 An + 1 + c

1
 An + … + c

n –1
 A2 + c

n
 A = 0

∴  A
c

c A c A c A c An n n
n n

+ −
+=− + +⋅⋅⋅+ +( )1

0
1 2

1
1

21

Thus higher positive integral powers of A can be computed, if we know powers 

of A of lower degree.

1.7.3 Similar Matrices

Two matrices A and B are said to be similar, if there exists a non-singular matrix P 

such that B= P–1 AP.

When A and B are connected by the relation B = P–1 AP, B is said to be obtained 

from A by a similarity transformation.

When B is obtained from A by a similarity transformation, A is also obtained from 

B by a similarity transformation as explained below:

B= P–1 AP

Premultiplying both sides by P and postmultiplying by P-1, we get

PBP–1 = PP–1 APP–1

 = A

Thus A = PBP–1

Now taking P–1 = Q, we get A = Q–1 BQ.

1.8 PROPERtY

Two similar matrices have the same eigenvalues.

Let A and B be two similar matrices.

Then, by definition, B = P–1 AP

∴ B – λΙ = P–1AP – λ I

 = P–1 AP – P–1 λ IP



1.48 Mathematics II

 = P–1 (A – λI) P

∴ |B – λI| = |P–1| |A – λI| |P|

 = |A – λI| |P–1P|

 = |A – λI| |I|

 = |A – λI|

Thus A and B have the same characteristic polynomials and hence the same 

characteristic equations.
∴ A and B have the same eigenvalues.

1.8.1 Diagonalisation of a Matrix

The process of finding a matrix M such that M–1 AM = D, where D is a diagonal matrix, 

is called diagonalisation of the matrix A. As M–1 AM = D is a similarity transformation, 

the matrices A and D are similar and hence A and D have the same eigenvalues.

The eigenvalues of D are its diagonal elements. Thus, if we can find a matrix M 

such that M–1 AM = D, D is not any arbitrary diagonal matrix, but it is a diagonal 

matrix whose diagonal elements are the eigenvalues of A.

The following theorem provides the method of finding M for a given square matrix 

whose eigenvectors are distinct and hence whose eigenvectors are linearly independent.

1.8.2 theorem

If A is a square matrix with distinct eigenvalues and M is the matrix whose columns 

are the eigenvectors of A, then A can be diagonalised by the similarity transformation 

M–1 AM = D, where D is the diagonal matrix whose diagonal elements are the 

eigenvalues of A.

Let λ
1
, λ

2
, . . .,  λ

n
 be the distinct eigenvalues of A and X

1
, X

2
, . . . , X

n
 be the 

corresponding eigenvectors.

Let M = [X
1
, X

2
, …, X

n
], which is an n × n matrix, called the Modal matrix.

∴ AM = [AX
1
, AX

2
,…, AX

n
] [Note  Each AX

r
 is a (n × 1) column vector]

Since X
r
 is the eigenvector of A corresponding to the eigenvalue λ

r
,

AX
r
=λX

r  
(r=l,2,…n)

∴ AM = [λ
1
X

1
, λ

2
X

2
,…, λ

n
X

n
]

 

=[ ]

−−

−−

− − − − −

−−

























X X X n

n

1 2

0 0 0

0 0 0

0 0 0

, , ,…

λ

λ

λ

1

2

 = MD (1)

As X
1
, X

2
, . . . , X

n
 are linearly independent column vectors, M is a non-singular 

matrix Premultiplying both sides of (1) by M–1, we get M–1 AM = M–1 MD = D. 

Note  For this diagonalisation process, A need not necessarily have distinct 

eigenvalues. Even if two or more eigenvalues of A are equal, the process holds good, 

provided the eigenvectors of A are linearly independent.
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1.9 CALCULAtiOn OF POWERS OF A MAtRiX A

Assuming A satisfies the conditions of the previous theorem,

 D = M−1 AM

∴ A = M D M−1

 A2 = (M D M−1) (M D M−1)

 = MD(M−1 M)DM−1

 = MD2M−1

Similarly, A3 = MD3 M−1

Extending,  Ak = M Dk M−1

 

=

−−

−−

− − − −− −

−−

























−M M

k

k

n

k

λ

λ

λ

1

2 1

0 0 0

0 0 0

0 0 0

1.10  DiAGOnALiSAtiOn BY ORtHOGOnAL 

tRAnSFORMAtiOn OR ORtHOGOnAL REDUCtiOn

If A is a real symmetric matrix, then the eigenvectors of A will be not only linearly 

independent but also pairwise orthogonal. If we normalise each eigenvector X
r
, i.e. 

divide each element of X
r
 by the square-root of the sum of the squares of all the 

elements of X
r
 and use the normalised eigenvectors of A to form the normalised 

modal matrix N, then it can be proved that N is an orthogonal matrix. By a property 

of orthogonal matrix, N−1 = NT.
∴ The similarity transformation M−1 A M = D takes the form NT AN = D.

Transforming A into D by means of the transformation NT AN = D is known as 

orthogonal transformation or orthogonal reduction.

Note:  Diagonalisation by orthogonal transformation is possible only for a real 

symmetric matrix.

WORKED EXAMPLE 1(c)

Example 1.1 Verify Cayley-Hamilton theorem for the matrix A=



















1 3 7

4 2 3

1 2 1
and also use it to find A−1.

The characteristic equation of A is

1 3 7

4 2 3

1 2 1

0

−

−

−

=

λ

λ

λ
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i.e. (1 − λ)( λ2 − 3 λ − 4) − 3(4 − 4 λ − 3) + 7(8 − 2 + λ) = 0

i.e. λ3 − 4λ2 − 20λ – 35 = 0

Cayley-Hamilton theorem states that

 A3 − 4A2 − 20A − 35 I=0 (1)

which is to be verified.

Now, A2

1 3 7

4 2 3

1 2 1

1 3 7

4 2 3

1 2 1

20 23 23

15 22 37=




































=

110 9 14

1 3 7

4 2 3

1 2 1

20 23 23

15 22 33 2



















= ⋅ =



















A A A 77

10 9 14

135 152 232

140 163 208

60 76 111


















=



















Substituting these values in (1), we get,

L.S. =

135 152 232

140 163 208

60 76 111

80 92 92

60 88 148

40


















−

336 56

20 60 140

80 40 60

20 40 20

35 0 0

0 35 0


















−


















−

00 0 35

0 0 0

0 0 0

0 0 0



















=



















= R.S.

Thus Cayley-Hamilton theorem is verified. Premultiplying (1) by A−1,

A2 – 4A – 20I – 35A−1 = 0

∴ A A A I− = − −( )

=


















−

1 21

35
4 20

1

35

20 23 23

15 22 37

10 9 14

4 12 28

166 8 12

4 8 4

20 0 0

0 20 0

0 0 20


















−































=

− −

− −

−



















1

35

4 11 5

1 6 25

6 1 10

Example 1.2 Verify that the matrix A=

−

− −

−



















2 1 2

1 2 1

1 1 2

 satisfies its characteristic 

equation and hence find A4.

The characteristic equation of A is

2 1 2

1 2 1

1 1 2

0

− −

− − −

− −

=

λ

λ

λ
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i.e. (2 − λ) (λ2 − 4λ + 3) + (λ − 2 + 1) + 2(l − 2 + λ) = 0

i.e. λ3 − 6λ2 + 8λ − 3 = 0 (1)

According to Cayley-Hamilton theorem, A satisfies (1), i.e.

 A3 − 6A2 + 8A − 3I = 0 (2)

which is to be verified.

Now A2

2 1 2

1 2 1

1 1 2

2 1 2

1 2 1

1 1 2

7 6 9

=

−

− −

−



















−

− −

−



















=

−

−− −

−



















5 6 6

5 5 7

A A A3 2

2 1 2

1 2 1

1 1 2

7 6 9

5 6 6

5 5 7

= ⋅ =

−

− −

−



















−

− −

−



















==

−

− −

−



















29 28 38

22 23 28

22 22 29

Substituting these values in (2),

L.S.=

−

− −

−



















−

−

− −

−

29 28 38

22 23 28

22 22 29

42 36 54

30 36 36

30 330 42

16 8 16

8 16 8

8 8 16

3 0 0

0 3 0

0 0 3



















+

−

− −

−



















−



















=



















=

0 0 0

0 0 0

0 0 0

R.S.

Thus A satisfies its characteristic equation. 

Multiplying both sides of (2) by A, we have, 

A4 − 6A3 + 8A2 − 3A = 0

∴  A4 = 6A3 − 8A2 + 3A (3)

 = 6(6A2 − 8A + 3 I) − 8A2 + 3A, using (2)

 = 28A2 − 45A+18I (4)

A4 can be computed by using either (3) or (4).

From (4),

A4

196 168 252

140 168 168

140 140 196

90 45 90

45 9=

−

− −

−



















−

−

− 00 45

45 45 90

18 0 0

0 18 0

0 0 18

124 123 1

−

−



















+



















=

− 662

95 96 123

95 95 124

− −

−



















Example 1.3 Use Cayley-Hamilton theorem to find the value of the matrix given by 

(A8 − 5A7 + 7A6 − 3A5 + 8A4 − 5A3 + 8A2 − 2A + I), if the matrix

A=



















2 1 1

0 1 0

1 1 2

.
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The characteristic equation of A is

2 1 1

0 1 0

1 1 2

0

−

−

−

=

λ

λ

λ

i.e. (2 − λ) (λ2 − 3λ + 2) + λ − 1 = 0

i.e. λ3 − 5λ2 + 7λ − 3 = 0
∴  A3 − 5A2 + 7A − 3I = 0, by Cayley-Hamilton theorem  (1)

Now the given polynomial in A

 = A5(A3 − 5A2 + 7A − 3I) + A(A3 − 5A2 + 8A − 2I) + I

 = 0 + A(A3 − 5A2 + 7A − 3I) + A2 + A +I, by (1)

 = A2 + A +I, again using (1) (2)

Now A2

2 1 1

0 1 0

1 1 2

2 1 1

0 1 0

1 1 2

5 4 4

0 1 0

4 4 5

=





































=



















Substituting in (2), the given polynomial

=



















+



















+








5 4 4

0 1 0

4 4 5

2 1 1

0 1 0

1 1 2

1 0 0

0 1 0

0 0 1












=



















8 5 5

0 3 0

5 5 8

Example 1.4 Find the eigenvalues of A and hence find An (n is a positive integer), 

given that A=












1 2

4 3
.

The characteristic equation of A is

1 2

4 3
0

−

−
=

λ

λ

i.e. λ2 − 4λ − 5 = 0
∴ The eigenvalues of A are λ = − 1, 5

When λn is divided by (λ2 − 4λ − 5), let the quotient be Q(λ) and the remainder be 

(aλ + b).

Then λn ≡ (λ2 − 4λ − 5) Q(λ) + (aλ + b) (1)

Put λ = −1 in (1). − a + b = (−l)n (2)

Put λ = 5 in (l). 5a + b = 5n (3)

Solving (2) and (3), we get

a b
n n n n

=
− −

=
+ −5 1

6

5 5 1

6

( ) ( )
and
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Replacing λ by the matrix A in (1), we have

A A A I Q A aA bI

Q A aA bI

n = − − + +

= × + +

( ) ( )

( ) (

2 4 5

0 byCayley-Hamilton theorrem)

( ) ( )
=

− −






















+

+ −





5 1

6

1 2

4 3

5 5 1

6

n n n n





















1 0

0 1

For example, when n = 3,

A3 125 1

6

1 2

4 3

125 5

6

1 0

0 1
=

+



















+

−




















=











+













=












21 42

84 63

20 0

0 20

41 42

84 83

Example 1.5 Diagonalise the matrix A=

−

−



















2 2 7

2 1 2

0 1 3

 by similarity transforma-

tion and hence find A4.

The characteristic equation of A is

2 2 7

2 1 2

0 1 3

0

− −

−

− −

=

λ

λ

λ

i.e. (2 − λ) (λ2 + 2λ − 5) −2 (−6 − 2λ + 7) = 0

i.e. λ3 − 13λ + 12 = 0

i.e. (λ − l) (λ − 3) (λ + 4) = 0

∴  Eigenvalues of A are λ = 1, 3, −4.

Case (i) λ = 1.

The eigenvector is given by 

1 2 7

2 0 2

0 1 4

0

1

2

3

−

−





































=

x

x

x

∴  x x x1 2 3

2 8 2−
= =

∴  X1

1

4

1

= −

−



















Case (ii) λ = 3.
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The eigenvector is given by 

− −

−

−





































=

1 2 7

2 2 2

0 1 6

0

1

2

3

x

x

x

∴ x x x1 2 3

10 12 2
= =

∴  X 2

5

6

1

=



















Case (iii) λ = −4.

The eigenvector is given by 

6 2 7

2 5 2

0 1 1

0

1

2

3

−



































=

x

x

x

∴  x x x1 2 3

3 2 2
=
−

=

∴  X3

3

2

2

= −



















Hence the modal matrix is M = − −

−



















1 5 3

4 6 2

1 1 2

Let M

a a a

a a a

a a a

≡



















11 12 13

21 22 23

31 32 33

Then the co-factors are given by

A
11

 = 14, A
12 

= 10, A
13

 = 2, A
21 

= −7, A
22

 = 5, A
23

 = −6,

A
31

= −28, A
32

 = −10, A
33 

 = 26.

and |M| = a
11

A
11

 + a
12

A
12

 + a
13

A
13

 = 70.

∴ M− =

− −

−

−



















1 1

70

14 7 28

10 5 10

2 6 26

The required similarity transformation is

 M–1 A M = D(1, 3, −4) (1)

which is verified as follows:    

AM =

−

−



















− −

−



















2 2 7

2 1 2

0 1 3

1 5 3

4 6 2

1 1 2
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=

−

−

− −



















1 15 12

4 18 8

1 3 8

M A M− =

− −

−

−



















−

−

− −






1 1

70

14 7 28

10 5 10

2 6 26

1 15 12

4 18 8

1 3 8














=

−



















=

−










1

70

70 0 0

0 210 0

0 0 280

1 0 0

0 3 0

0 0 4










A4 is given by A4

 
= M D4 M–1 (2)

 

D M4 1

1 0 0

0 81 0

0 0 256

1

70

14 7 28

10 5 10

2 6 26

− =



















×

− −

−

−



















=

− −

−

−



















1

70

14 7 28

810 405 810

512 1536 6656

 
M D M4 1

1 5 3

4 6 2

1 1 2

1

70

14 7 28

810 405 810

512 15

− = − −

−



















×

− −

−

− 336 6656

1

70

5600 2590 15890

3780 5530 18060

1820 26



















=

−

−

− 660 12530



















i.e. A4

80 37 227

54 79 258

26 38 179

=

−

−

−



















Example 1.6 Find the matrix M that diagonalises the matrix A=



















2 2 1

1 3 1

1 2 2

 by

means of a similarity transformation. Verify your answer. The characteristic equation 

of A is
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2 2 1

1 3 1

1 2 2

0

2 5 4 2 1 1 0

7

2

3

−

−

−

=

−( ) − +( )− −( )+ −( )=

−

λ

λ

λ

. . λ λ λ λ λ

. . λ

i e

i e λλ λ

. . λ λ

2

2

11 5 0

1 5 0

+ − =

−( ) −( )=i e

∴ The eigenvalues of A are λ = 5, 1, 1.

Case (i) λ = 5.

The eigenvector is given by 

−

−

−




































=

3 2 1

1 2 1

1 2 3

0

1

2

3

x

x

x

∴ 
x x x

1 2 3

4 4 4
= =

∴ X1

1

1

1

=



















Case (ii) λ = 1.

The eigenvector is given by 

1 2 1

1 2 1

1 2 1

0

1

2

3




































=

x

x

x

All the three equations are one and the same, namely, x
1
 + 2x

2
 + x

3
 = 0

Two independent solutions are obtained as follows:

Putting x
2
 = –1 and x

3
 = 0, we get x

1
 = 2

Putting x
2
 = 0 and x

3
 = -1, we get x

1
 = 1

∴ X X2 3

2

1

0

1

0

1

= −



















=

−



















and

Hence the modal matrix is

M

a a a

a a a

a a a

= −

−


















≡









1 2 1

1 1 0

1 0 1

11 12 13

21 22 23

31 32 33











Then the co-factors are given by

A
11

 = 1, A
12

 = 1, A
13

 = 1, A
21

 = 2, A
22

 = –2, A
23

 = 2

A
31

 = 1, A
32

 = 1, A
33

 = –3 and

|M| = a
11

A
11

 + a
12

A
12

 + a
13

A
13

 = 4
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∴ M − = −

−



















1 1

4

1 2 1

1 2 1

1 2 3

The required similarity transformation is

 M A M D− = ( )1 5 1 1, ,  (1)

We shall now verify (1).

AM =



















−

−



















= −

−

2 2 1

1 3 1

1 2 2

1 2 1

1 2 1

1 2 3

5 2 1

5 2 1

5 2 33

1

4

1 2 1

1 1 0

1 0 1

5 2 1

5 2 1

5 2 3

1



















= −

−



















−

−





−M A M














=



















=



















1

4

20 0 0

0 4 0

0 0 4

5 0 0

0 1 0

0 0 1

== ( )D 5 1 1, , .

Example 1.7 Diagonalise the matrix A=

−

−

− −



















2 1 1

1 1 2

1 2 1

 by means of an 

orthogonal transformation. The characteristic equation of A is 

2 1 1

1 1 2

1 2 1

0

2 2 3 1 1 02

− −

− −

− − −

=

−( ) − −( )− − −( )− − −( )=

λ

λ

λ

. . λ λ λ λ λ

.

i e

i e.. λ λ λ

. . λ λ λ

3 24 4 0

1 1 4 0

− − + =

+( ) −( ) −( )=i e

∴ The eigenvalues of A are 1 = –1, 1, 4.
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Case (i) λ = –1.

The eigenvector is given by 

3 1 1

1 2 2

1 2 2

0

1

2

3

−

−

− −




































=

x

x

x

∴ x x x
1 2 3

0 5 5
= =

∴ X1

0

1

1

=



















Case (ii) λ = 1.

The eigenvector is given by 

1 1 1

1 0 2

1 2 0

0

1

2

3

−

−

− −




































=

x

x

x

∴ x x x
1 2 3

4 2 2−
= =

−

∴ X 2

2

1

1

= −



















Case (iii) λ = 4.

The eigenvector is given by 

− −

− −

− − −




































=

2 1 1

1 3 2

1 2 3

0

1

2

3

x

x

x

∴ 
x x x

1 2 3

5 5 5
= =

−

∴ X 3

1

1

1

=

−



















Hence the modal matrix M = −

−



















0 2 1

1 1 1

1 1 1

Normalising each column vector of M, i.e. dividing each element of the first column 

by 2 , that of the second column by 6  and that of the third column by 3 , we 

get the normalised modal matrix N. 
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Thus N = −

−































0
2

6

1

3

1

2

1

6

1

3

1

2

1

6

1

3

The required orthogonal transformation that diagonalises A is

 NT A N = D (–1, 1, 4) (1)

which is verified below:

A N =

−

−

− −



















−

−















2 1 1

1 1 2

1 2 1

0
2

6

1

3

1

2

1

6

1

3

1

2

1

6

1

3



















= − −

− −



























0
2

6

4

3

1

2

1

6

4

3

1

2

1

6

4

3








= −

−

































N A NT

0
1

2

1

2

2

6

1

6

1

6

1

3

1

3

1

3

0
22

6

4

3

1

2

1

6

4

3

1

2

1

6

4

3

1 0 0

0 1 0

0 0 4

− −

− −

































=

−

















= −( )D 1 1 4, , .

Example 1.8 Diagonalise the matrix A=



















2 0 4

0 6 0

4 0 2

 by means of an orthogonal  

transformation.
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The characteristic equation of A is

2 0 4

0 6 0

4 0 2

0

2 6 2 16 6 0

6 2

−

−

−

=

−( ) −( ) −( )− −( )=

−( ) −

λ

λ

λ

. . λ λ λ λ

. . λ λ

i e

i e 44 12 0

6 0

λ

. . λ λ 6 λ + 2

−( )=

−( ) −( )( )=i e

∴ The eigenvalues of A are λ = −2, 6, 6.

Case (i) λ = −2.

The eigenvector is given by 

4 0 4

0 8 0

4 0 4

0

1

2

3




































=

x

x

x

∴ x x x
1 2 3

32 0 32
= =

−

∴ X1

1

0

1

=

−



















Case (ii) λ = 6.

The eigenvector is given by 

−

−




































=

4 0 4

0 0 0

4 0 4

0

1

2

3

x

x

x

We get only one equation,

i.e. x
1
 − x

3
 = 0 (1)

From this we get, x
1
 = x

3
 and x

2
 is arbitrary.

x
2
 must be so chosen that X

2
 and X

3
 are orthogonal among themselves and also each 

is orthogonal with X
1
.

Let us choose X
2
 arbitrarily as 

1

0

1



















Note  This assumption of X
2
 satisfies (1) and x

2 
is taken as 0.

Let X

a

b

c

3 =



















X
3
 is orthogonal to X

1

∴  a − c = 0 (2)

X
3
 is orthogonal to X

2

∴  a + c = 0 (3)
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Solving (2) and (3), we get a = c = 0 and b is arbitrary.

Taking b X= =



















1

0

1

0

3,

Note  Had we assumed X
2
 in a different form, we should have got a different 

X
3
.

For example, if X X2

1

2

1

1

1

1

=



















= −


















⋅, then 3

The modal matrix is M =

−



















1 1 0

0 0 1

1 1 0

The normalised model matrix is

 N =

−



























1

2

1

2
0

0 0 1

1

2

1

2
0

The required orthogonal transformation that diagonalises A is

 NT AN = D(−2, 6, 6) (1)

which is verified below:

AN =


















−



























2 0 4

0 6 0

4 0 2

1

2

1

2
0

0 0 1

1

2

1

2
0

==

−


























2

2

6

2
0

0 0 6

2

2

6

2
0
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N ANT =

−






























−


1

2
0

1

2

1

2
0

1

2

0 1 0

2

2

6

2
0

0 0 6

2

2

6

2
0

























 

=

−

















= −( )

2 0 0

0 6 0

0 0 6

2 6 6D , ,

Note  From the above problem, it is clear that diagonalisation of a real symmetric 

matrix is possible by orthogonal transformation, even if two or more eigenvalues are 

equal.

EXERCiSE 1(c)

Part A

(Short Answer Questions)

1. State Cayley-Hamilton theorem.

2. Give two uses of Cayley-Hamilton theorem.

3. When are two matrices said to be similar? Give a property of similar 

matrices.

4. What do you mean by diagonalising a matrix?

5. Explain how you will find Ak, using the similarity transformation M−1 AM = 

D.

6. What is the difference between diagonalisation of a matrix by similarity and 

orthogonal transformations?

7. What type of matrices can be diagonalised using (i) similarity transformation 

and (ii) orthogonal transformation?

8. Verify Cayley-Hamilton theorem for the matrix A=












5 3

1 3
.

9. Use Cayley-Hamilton theorem to find the inverse of A=












7 3

2 6
.

10. Use Cayley-Hamilton theorem to find A3, given that A=
−











1 3

2 4
.
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11. Use Cayley-Hamilton theorem to find (A4 – 4A3 – 5A2 + A + 2I), when

A=












1 2

4 3
.

12. Find the modal matrix that will diagonalise the matrix A=











⋅

5 3

1 3

Part B

13. Show that the matrix A
a b

c d
=











  satisfies its own characteristic equation and

hence find A−1.

14. Verify Cayley-Hamilton theorem for the matrix A=

−

− −

−



















7 2 2

6 1 2

6 2 1

and

hence find A−1

15. Verify Cayley-Hamilton theorem for the matrix A= −

−



















1 1 1

1 2 3

2 1 3

 and hence

find A−1.

16. Verify that the matrix A= −

−



















1 2 3

2 1 4

3 1 1

 satisfies its own characteristic 

equation and hence find A4.

17. Verify that the matrix A= −

−



















1 0 3

2 1 1

1 1 1

 satisfies its a own characteristic

equation and hence find A4.

18. Find An, using Cayley-Hamilton theorem, when A=












5 3

1 3
. Hence find A4.

19. Find An, using Cayley-Hamilton theorem, when A=












7 3

2 6
. Hence find A3.

20. Given that A= −

−



















1 0 3

2 1 1

1 1 1

, compute the value of (A6 − 5A5 + 8A4 − 2A3 −

9A2 + 31A − 36I), using Caylay-Hamilton theorem.

Diagonalise the following matrices by similarity transformation:

21. 

2 2 0

2 1 1

7 2 3− −



















22. 

1 1 1

0 2 1

4 4 3−



















; find also the fourth power of this matrix.
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23. 

3 1 1

1 5 1

1 1 3

−

− −

−


















 24. 

1 3 3

3 5 3

6 6 4

−

−

−


















 25. 

6 2 2

2 3 1

2 1 3

−

− −

−



















26. 

0 1 1

1 0 1

1 1 0



















Diagonalise the following matrices by orthogonal transformation:

27. 

10 2 5

2 2 3

5 3 5

− −

−

−


















 28. 

3 1 0

1 2 1

0 1 3

−

− −

−


















 29. 

2 1 1

1 2 1

1 1 2

−

− −

−



















30. 

− −

−

− −



















2 2 3

2 1 6

1 2 0

1.11 QUADRAtiC FORMS

A homogeneous polynomial of the second degree in any number of variables is called 

a quadratic form.

For example, x x x x x x x x x1

2

2

2

3

2

1 2 1 3 2 32 3 5 6 4+ − + − +  is a quadratic form in three 

variables.

The general form of a quadratic form, denoted by Q in n variables is

Q c x c x x c x x

c x x c x c x x

c

n n

n n

= + +⋅⋅⋅+

+ + +⋅⋅⋅+

+

11 1

2

12 1 2 1 1

21 2 1 22 2

2

2 2

311 3 1 32 3 2 3 3

1

x x c x x c x x

c x

n n

n n

+ +⋅⋅⋅+

+( )

+

− − − − − − − − − − − − − − − − − − − − − − −

xx c x x c xn n nn n1 2 2

2+ +⋅⋅⋅+

i.e. Q c x xij i j

i

n

j

n

=
==

∑∑
11

 

In general, c
ij
 ≠ c

ji
. The coefficient of x

i
 x

j
 = c

ij
 + c

ji
.

Now if we define a c cij ij ji= +( )
1

2
, for all i and j, then a

ii
 = c

ii
, a

ij
 = a

ji
 and

a
ij
 + a

ji
 = 2a

ij
 = c

ij
 + c

ji
.

∴ =
==

∑∑Q a x xij i j

i

n

j

n

11

, where a
ij
 = a

ji
 and hence the matrix A = [a

ij
] is a symmetric

matrix. In matrix notation, the quadratic form Q can be represented as Q = XT AX, 

where
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A a X

x
x

x

X x x xij

n

T

n= 



 =





















= [ ]⋅, , , ,

1

2
1 2


…and

.

The symmetric matrix A a

a a a

a a a

a a a

ij

n

n

n n nn

= 



 =

















11 12 1

21 22 2

1 2





   










 is called the matrix of

the quadratic form Q.

Note  To find the symmetric matrix A of a quadratic form, the coefficient of

xi

2
 is placed in the a

ii
 position and 

1

2
×











coefficient x xi j
 is placed in each of the a

ij

and a
ji
  positions.

For example, (i) if Q x x x x= − +2 3 41

2

1 2 2

2 , then

A=

−

−























2
3

2

3

2
4

(ii) if Q x x x x x x x x x= + + − + +1
2

2
2

3
2

1 2 1 3 2 33 6 2 6 5 ,

then A=

−

−





























1 1 3

1 3
5

2

3
5

2
6

Conversely, the quadratic form whose matrix is

3
1

2
0

1

2
0 6

0 6 7

3 7 121

2

3

2

1 2

−































= − + +is Q x x x x xx x2 3

1.11.1  Definitions

If A is the matrix of a quadratic form Q, |A| is called the determinant or modulus of Q.

The rank r of the matrix A is called the rank of the quadratic form.

If r < n (the order of A) or |A| = 0 or A is singular, the quadratic form is called 

singular. Otherwise it is non-singular.
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1.11.2 Linear transformation of a Quadratic Form

Let Q = XT AX be a quadratic form in the n variables x
1
, x

2
, . . . , x

n
.

Consider the transformation X = PY, that transforms the variable set X = [x
1
, x

2
, . . 

. , x
n
]T to a new variable set Y = [y

1
, y

2
, . . . , y

n
]T, where P is a non-singular matrix.

We can easily verify that the transformation X = PY expresses each of the variables 

x
1
, x

2
, . . . , x

n
 as homogeneous linear expressions in y

1
, y

2
, . . . , y

n
. Hence X = PY is 

called a non-singular linear trans formation.

By this transformation is transformed to

=

, Q X AX

Q PY A PY

Y P

T

T

T

=

( ) ( )
= TT

T T

AP Y

Y BY B P AP

( )
= =, where

Now B P AP P A P

P AP A
B

T T
T

T T

T

=( ) =

= ( )
=

∵ is sysmmetric

∴  B is also a symmetric matrix.

Hence B is the matrix of the quadratic form YT BY in the variables y
1
, y

2
, . . . , y

n
. 

Thus YT B Y is the linear transform of the quadratic form XT AX under the linear 

transformation X = PY, where B = PT AP.

1.11.3 Canonical Form of a Quadratic Form

In the linear transformation X = PY, if P is chosen such that B = PT A P is a 

diagonal

matrix of the form 

λ

λ

λ

1

2

0 0

0 0

0 0





   

 n

























, then the quadratic form Q gets reduced as

Q Y BY

y y y

y

T

n

n

=

=[ ]

























1 2

1

2

10 0

0 0

0 0

, , ,…





   



λ

λ

λ

yy

y

y y y

n

n n

2

1 1

2

2 2

2 2





























= + + +λ λ λ

This form of Q is called the sum of the squares form of Q or the canonical form of Q.

1.11.4  Orthogonal Reduction of a Quadratic  

Form to the Canonical Form

If, in the transformation X = PY, P is an orthogonal matrix and if X = PY transforms the 

quadratic form Q to the canonical form then Q is said to be reduced to the canonical 

form by an orthogonal transformation.
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We recall that if A is a real symmetric matrix and N is the normalised modal 

matrix of A, then N is an orthogonal matrix such that NT AN = D, where D is a 

diagonal matrix with the eigenvalues of A as diagonal elements.

Hence, to reduce a quadratic form Q = XT AX to the canonical form by an 

orthogonal transformation, we may use the linear transformation X = NY, where 

N is the normalised modal matrix of A. By this orthogonal transformation, Q gets 

transformed into YT DY, where D is the diagonal matrix with the eigenvalues of A as 

diagonal elements.

1.11.5 nature of Quadratic Forms

When the quadratic form XT AX is reduced to the canonical form, it will contain only 

r terms, if the rank of A is r.

The terms in the canonical form may be positive, zero or negative.

The number of positive terms in the canonical form is called the index (p) of the 

quadratic form.

The excess of the number of positive terms over the number of negative terms in the 

canonical form i.e. p − (r -p) = 2p − r is called the signature(s) of the quadratic form 

i.e. s = 2p − r.

The quadratic form Q = XT A X in n variables is said to be

(i) positive definite, if r = n and p = n or if all the eigenvalues of A are 

positive.

 (ii) negative definite, if r = n and p = 0 or if all the eigenvalues of A are negative.

(iii) positive semidefinite, if r < n and p = r or if all the eigenvalues of A ≥ 0 and 

at least one eigenvalue is zero.

(iv) negative semidefinite, if r < n and p = 0 or if all the eigenvalues of A ≤ 0 and 

at least one eigenvalue is zero.

(v) indefinite in all other cases or if A has positive as well as negative eigen-

values.

WORKED EXAMPLE 1(d)

Example 1.1 Reduce the quadratic form 2 2 2 41

2

2

2

3

2

1 2 1 3 2 3x x x x x x x x x+ + + − −  to 

canonical form by an orthogonal transformation. Also find the rank, index, signature 

and nature of the quadratic form.

Matrix of the Q.F. is A=

−

− −

− − −



















2 1 1

1 1 2

1 2 1

Refer to the worked example (7) in section 1(c).

The eigenvalues of A are −1, 1, 4.

The corresponding eigenvectors are [0, 1, 1]T [2, −1, l]T and [1, 1, −l]T respectively.
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The modal matrix M = −

−



















0 2 1

1 1 1

1 1 1

The normalised modal matrix N = −

−































0
2

6

1

3

1

2

1

6

1

3

1

2

1

6

1

3

Hence NT AN = D (−1, 1, 4), where D is a diagonal matrix with −1, 1, 4 as the 

principal diagonal elements.
∴  The orthogonal transformation X = NY will reduce the Q.F. to the canonical form

− + + ⋅y y y1

2

2

2

3

24

Rank of the Q.F. = 3.

Index = 2

Signature = 1

Q.F. is indefinite in nature, as the canonical form contains both positive and negative 

terms.

Example 1.2 Reduce the quadratic form 2 6 2 81

2

2

2

3

2

1 3x x x x x+ + +  to canonical 

form by orthogonal reduction. Find also the nature of the quadratic form.

Matrix of the Q.F. is A=



















2 0 4

0 6 0

4 0 2

Refer to worked example (8) in section 1(c).

The eigenvalues of A are −2, 6, 6.

The corresponding eigenvectors are [1, 0,−1]T, [1, 0, l]T and [0, 1, 0]T respectively.

Note  Though two of the eigenvalues are equal, the eigenvectors have been so 

chosen that all the three eigenvectors are pairwise orthogonal.

The modal matrix M =

−



















1 1 0

0 0 1

1 1 0

The normalised modal matrix is given by 

N =

−



























1

2

1

2
0

0 0 1

1

2

1

2
0
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Hence NT AN = Diag (−2, 6, 6)
∴  The orthogonal transformation X = NY

i.e. x y y

x y

x y y

1 1 2

2 2

3 1 2

1

2

1

2

1

2

1

2

= +

=

=− +

will reduce the given Q.F. to the canonical form − + +2 6 61

2

2

2

3

2y y y .

The Q.F. is indefinite in nature, as the canonical form contains both positive and 

negative terms.

Example 1.3 Reduce the quadratic form x x x x x x x1

2

2

2

3

2

1 2 2 32 2 2+ + − +  to the 

canonical form through an orthogonal transformation and hence show that it is 

positive semidefinite. Give also a non-zero set of values (x
1
, x

2
, x

3
) which makes this 

quadratic form zero.

Matrix of the Q.F. is A=

−

−



















1 1 0

1 2 1

0 1 1

The characteristic equation of is      

λ

λ

λ

A

1 1 0

1 2 1

0 1 1

0

− −

− −

−

=

i.e. 1 2 1 1 1 0−( ) −( ) −( )−{ }− −( )=λ λ λ λ

i.e. 1 3 02−( ) −( )=λ λ λ

∴  The eigenvalues of A are λ = 0, 1, 3.

When λ = 0, the elements of the eigenvector are given by x
1
 − x

2
 = 0, − x

1
 +2x

2
 + 

x
3
 = 0 and x

2
 + x

3
 = 0.

Solving these equations, x
1
 = 1, x

2
 = 1, x

3
 = −1

∴  The eigenvector corresponding to λ = 0 is

 [1, 1, − 1]T

When λ = 1, the elements of the eigenvector are given by −x
2
 = 0, − x

1
 + x

2
 + x

3
 = 

0 and x
2
 = 0.

Solving these equations, x
1
 = 1, x

2
 = 0, x

3
 = 1.

∴  When λ = 1, the eigenvector is

[1, 0, 1]T

When λ = 3, the elements of the eigenvector are given by −2x
1
 − x

2
 = 0, − x

1
 − x

2
 + 

x
3
 = 0 and x

2
 − 2x

3
 = 0

Solving these equation, x
1
 = −1, x

2
 = 2, x

3
 = 1.

∴  When λ = 3, the eigenvector is [−1, 2, 1]T.

Now the modal matrix is M =

−

−



















1 1 1

1 0 2

1 1 1
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The normalised modal matrix is

N =

−

−































1

3

1

2

1

6

1

3
0

2

6

1

3

1

2

1

6

Hence NT AN = Diag (0, 1, 3)
∴  The orthogonal transformation X = NY.

i.e.  x y y y

x y y

1 1 2 3

2 1 3

1

3

1

2

1

6

1

3

2

6

= + −

= +

x y y y3 1 2 3

1

3

1

2

1

6
=− + +

will reduce the given Q.F. to the canonical form 0 3 31

2

2

2

3

2

2

2

3

2⋅ + + = +y y y y y .

As the canonical form contains only two terms, both of which are positive, the 

Q.F. is positive semi-definite.

The canonical form of the Q.F. is zero, when y
2
 = 0, y

3
 = 0 and y

1
 is arbitrary.

Taking y1 3= , y
2
 = 0 and y

3
 = 0, we get x

1
 = 1, x

2
 = 1 and x

3
 = −1.

These values of x
1
, x

2
, x

3
 make the Q.F. zero.

Example 1.4 Determine the nature of the following quadratic forms without reduc-

ing them to canonical forms:

i( ) + + + + +x x x x x x x x x1

2

2

2

3

2

1 2 2 3 3 13 6 2 2 4

ii( ) + + + − −5 5 14 2 16 81

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x

iii( ) + − + − −2 3 12 8 41

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x .

Note  We can find the nature of a Q.F. without reducing it to canonical form. The 

alternative method uses the principal sub-determinants of the matrix of the Q.F., as 

explained below:

Let A = (a
ij
)

n×n 
be the matrix of the Q.F.

Let  D
1
 = |a

11
| = a

11
, D

a a

a a
2

11 12

21 22

= ,

 D

a a a

a a a

a a a

3

11 12 13

21 22 23

31 32 33

=  etc. and D
n
 = |A|
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D
1
, D

2
, D

3
, … D

n
 are called the principal sub-determinants or principal minors of A.

(i) The Q.F. is positive definite, if D
1
, D

2
, …, D

n
 are all positive i.e. D

n
 > 0 for 

all n.

(ii) The Q.F. is negative definite, if D
1
, D

3
, D

5
, … are all negative and D

2
, D

4
, D

6
, 

… are all positive i.e. (−1)n D
n
 > 0 for all n.

(iii) The Q.F. is positive semidefinite, if Dn ≥ 0  and least one D
i
 = 0.

(iv) The Q.F. is negative semidefinite, if (−1)n Dn ≥ 0  and at least one D
i
 = 0.

(v) The Q.F. is indefinite in all other cases.

(i) Q x x x x x x x x x= + + + + +1

2

2

2

3

2

1 2 2 3 3 13 6 2 2 4

Matrix of the Q.F. is A=



















1 1 2

1 3 1

2 1 6

Now D
1
 = |1| = 1; D2

1 1

1 3
2= = ;

D
3
 = 1 · (18 − 1) − 1 · (6 − 2) + 2(1 − 6) = 3.

D
1
, D

2
, D

3
 are all positive.

∴  The Q.F. is positive definite.

(ii) Q x x x x x x x x x= + + + − −5 5 14 2 16 81

2

2

2

3

2

1 2 2 3 3 1 .

A=

−

−

− −



















5 1 4

1 5 8

4 8 14

Now D
1
 = 5; D2

5 1

1 5
24= = ;

D A3 5 70 64 1 14 32 4 8 20

30 18 48 0

= = ⋅ −( )− ⋅ −( )− ⋅ − +( )

= + − =

D
1
 and D

2
 are > 0, but D

3
 = 0

∴  The Q.F. is positive semidefinite.

(iii) Q x x x x x x x x x= + − + − −2 3 12 8 41

2

2

2

3

2

1 2 2 3 3 1

A=

−

−

− − −



















2 6 2

6 1 4

2 4 3

Now D
1
 = |2| = 2; D2

2 6

6 1
34= =− ;
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D A3 2 3 16 6 18 8 2 24 2

38 156 44 162

= = ⋅ − −( )− ⋅ − −( )− − +( )

=− + + =

∴  The Q.F. is indefinite.

Example 1.5 Reduce the quadratic forms 6 3 14 4 41

2

2

2

3

2

1 2 2 3x x x x x x x+ + + +

+18 3 1x x  and 2 5 4 21

2

2

2

1 2 3 1x x x x x x+ + +  simultaneously to canonical forms by a 

real non-singular transformation.

Note  We can reduce two quadratic forms XT AX and XT BX to canonical forms 

simultaneously by the same linear transformation using the following theorem, 

(stated without proof):

If A and B are two symmetric matrices such that the roots of |A − λB| = 0 are all distinct, 

then there exists a matrix P such that PT AP and PT BP are both diagonal matrices.

The procedure to reduce two quadratic forms simultaneously to canonical forms 

is given below:

(1) Let A and B be the matrices of the two given quadratic forms.

(2) Form the characteristic equation |A – λB| = 0 and solve it. Let the eigenvalues 

(roots of this equation) be λ
1
, λ

2
, …, λ

n
.

(3) Find the eigenvectors X
i
 (i = 1, 2, …, n) corresponding to the eigenvalues λ

i
, 

using the equation (A − λ
i
 B) X

i
 = 0.

(4) Construct the matrix P whose column vectors are X
1
, X

2
, …, X

n
. Then X = PY 

is the required linear transformation.

(5) Find PT AP and PT BP, which will be diagonal matrices.

(6) The quadratic forms corresponding to these diagonal matrices are the required 

canonical forms.

The matrix of the first quadratic form is

A=



















6 2 9

2 3 2

9 2 14

The matrix of the second quadratic form is

B =



















2 2 1

2 5 0

1 0 0

The characteristic equation is |A − λB| = 0

i.e. 

6 2 2 2 9

2 2 3 5 2

9 2 14

0

− − −

− −

−

=

λ λ λ

λ λ

λ

Simplifying, 5λ3 − λ2 − 5λ+ 1 = 0

i.e. (λ − 1)(5λ − 1)(λ + 1) = 0

∴  λ =−1
1

5
1, ,
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When λ = −1, (A − λB) X = 0 gives the equations.

8x
1
 + 4x

2
 + 10x

3
 = 0; 4x

1
 + 8x

2
 + 2x

3
 = 0; 10x

1
 + 2x

2
 + 14x

3
 = 0.

Solving these equations, x x x1 2 3

72 24 48−
= =

∴  X
1
 = [−3, 1, 2]T

When λ λ= −( ) =
1

5
0, A B X  gives the equations. 

28x
1
 + 8x

2
 + 44x

3
 = 0; 8x

1
 + 10x

2 
+ 10x

3
 = 0; 44x

1
 + 10x

2
 + 70x

3
 = 0.

Solving these equations, 
x x x1 2 3

360 72 216−
= =

∴ X
2
 = [−5, 1, 3]T

When λ = 1,(A − λB) X = 0 gives the equations

 4x
1
 + 8x

3
 = 0; − 2x

2
 + 2x

3
 = 0; 8x

1
 + 2x

2
+ 14x

3
 = 0

∴ X
3
 = [2, −1, −1]T.

Now P X X X= =

− −

−

−



















[ , , ]1 2 3

3 5 2

1 1 1

2 3 1

Now 

P APT =
−
−

− −

































− −
−

3 1 2
5 1 3
2 1 1

6 2 9
2 3 2
9 2 14

3 5 2
1 1 1
2 33 1

2 1 3
1 1 1
1 1 2

3 5 2
1 1 1
2 3 1

−

















= − − −
−

















− −
−
−
















=

















1 0 0
0 1 0
0 0 1

Hence the Q.F. XT AX is reduced to the canonical form y y y1

2 2

3

2
2+ + .

Now P B PT =
−
−

− −

































− −
−

3 1 2
5 1 3
2 1 1

2 2 1
2 5 0
1 0 0

3 5 2
1 1 1
2 3 −−

















=
− − −
− − −

−

















− −
−
−









1

2 1 3
5 5 5
1 1 2

3 5 2
1 1 1
2 3 1








=

−















1 0 0
0 5 0
0 0 1

Hence the Q.F. XT B X is reduced to the canonical form − + +y y y1

2

2

2

3

25 .

Thus the transformation X = PY reduces both the Q.F.’s to canonical forms.

Note  X = PY is not an orthogonal transformation, but only a linear non-singular 

transformation.
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EXERCiSE 1(d)

Part A

(Short answer questions)

 1. Define a quadratic form and give an example for the same in three variables:

 2. Write down the matrix of the quadratic form 3 5 5 2 21

2

2

2

3

2

1 2 2 3x x x x x x x+ + − +

+ 6 3 1x x .

 3. Write down the quadratic form corresponding to the matrix 

2 1 2

1 2 2

2 2 3

−

−

− −


















.

 4. When is a Q.F. said to be singular? What is its rank then?

 5.  If the Q.F. XT AX gets transformed to YT BY under the transformation X = PY, 

prove that B is a symmetric matrix.

 6.  What do you mean by canonical form of a quadratic form? State the condition 

for X = PY to reduce the Q.F. XT AX into the canonical form.

 7.  How will you find an orthogonal transformation to reduce a Q.F. XT AX to the 

canonical form?

 8. Define index and signature of a quadratic form.

9. Find the index and signature of the Q.F. x x x1

2

2

2

3

22 3+ − .

10. State the conditions for a Q.F. to be positive definite and positive semidefinite.

Part B

11. Reduce the quadratic form 2 5 3 41

2

2

2

3

2

1 2x x x x x+ + +  to canonical form by an 

orthogonal transformation. Also find the rank, index and signature of the Q.F.

12. Reduce the Q.F. 3 3 5 2 6 61

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x− − − − −  to canonical form by 

an orthogonal transformation. Also find the rank, index and signature of the Q.F.

13. Reduce the Q.F. 6 3 3 4 2 41

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x+ + − − +  to canonical form 

by an orthogonal transformation. Also state its nature.

14. Obtain an orthogonal transformation which will transform the quadratic form 

2 2 2 2 2 21

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x+ + − − +  into sum of squares form and find 

also the reduced form.

15. Find an orthogonal transformation which will reduce the quadratic form 

2 2 21 2 2 3 3 1x x x x x x+ +  into the canonical form and hence find its nature.

16. Reduce the quadratic form 8 7 3 12 8 41

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x+ + − − +  to the 

canonical form through an orthogonal transformation and hence show that it 

is positive definite. Find also a non-zero set of values for x
1
, x

2
, x

3
 that will 

make the Q.F. zero.

17. Reduce the quadratic form 10 2 5 6 10 41

2

2

2

3

2

2 3 3 1 1 2x x x x x x x x x+ + + − −  to a 

canonical form by orthogonal reduction. Find also a set of non-zero values of 

x
1
, x

2
, x

3
, which will make the Q.F. zero.

18. Reduce the quadratic form 5 26 10 6 4 141

2

2

2

3

2

1 2 2 3 3 1x x x x x x x x x+ + + + +  to 

a canonical form by orthogonal reduction. Find also a set of non-zero values 

of x
1
, x

2
, x

3
, which will make the Q.F. zero.
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19. Determine the nature of the following quadratic forms without reducing them 

to canonical forms:

 (i) 6 3 14 4 18 41

2

2

2

3

2

2 3 1 3 1 2x x x x x x x x x+ + + + +

 (ii) x x x x x1

2

1 2 2

2

3

22− + +

 (iii) x x x x x x x x x1

2

2

2

3

2

1 2 2 3 3 12 3 2 2 2+ + + + −

20. Find the value of λ so that the quadratic form λ( ) + 2x x x x x x1

2

2

2

3

2

1 2 22+ + −   

x x x3 3 12+ may be positive definite.

21. Find real non-singular transformations that reduce the following pairs of qua-

dratic forms simultaneously to the canonical forms.

 (i) 6 2 3 4 8 5 5 2 81

2

2

2

3

2

1 2 3 1 1

2

2

2

3

2

1 2 3 1x x x x x x x x x x x x x x+ + − + + + − +and .

 (ii) 3 3 3 2 2 2 4 2 21

2

2

2

3

2

1 2 2 3 3 1 1 2 2 3 3 1x x x x x x x x x x x x x x x+ − + − + + −and .

 (iii) 2 2 3 2 4 4 2 21

2

2

2

3

2

1 2 2 3 3 1 2 3 1 2 2

2x x x x x x x x x x x x x x+ + + − − − −and .

 (iv) 3 6 2 8 4 5 5 8 21

2

2

2

3

2

1 2 2 3 1

2

2

2

3

2

1 2 2 3x x x x x x x x x x x x x x+ + + − + + − −and .

AnSWERS  

Exercise 1(a)

Part A

(6) X X X1 2 3

1

2

3

2
=− +

(8) a = 8

(12) x + 2y = 3 and 2x – y = 1; x + 2y = 3 and 2x + 4y = 5

(13) x + 2y = 3 and 2x + 4y = 6 (14) a = −4, b = 6

(15) Have a unique solution. (16) λ ≠ 5

(17) No unique solution for any value of λ.

(18) λ ≠ −1 and μ = any value (19) λ = 2 and μ = 3

(20) λ = 8 and μ ≠ 11 (21) No, as |A| ≠ 0

(22) λ = 3 (23) x = k, y = 2k, z = 5k

Part B

(24) −7X
1 
+ X

2
 + X

3
 + X

4
 = 0

(25) 2X
1 
− X

2
 − X

3
 + X

4
 = 0

(26) 2X
1 
+ X

2
 − X

3
 = 0

(27) X
1 
− 2X

2
 + X

3
 = 0

(28) X
1 
− X

2
 + X

3
 − X

4
 = 0

(29) Yes. X
5 
= 2X

1
 + X

2
 − 3X

3
 + 0.X

4

(34) R(A) = R[A, B] = 2; Consistent with many solutions.



1.76 Mathematics II

(35) R(A) = 3 and R[A, B] = 4; Inconsistent

(36) R(A) = 3 and R[A, B] = 4; Inconsistent

(37) R(A) = 3 and R[A, B] = 4; Inconsistent

(38) Consistent; x = –1, y = 1, z = 2 (39) Consistent; x = 3, y = 5, z = 6

(40) Consistent; x = 1, y = 1, z = 1 (41) Consistent; x = 2, y = 1, z = −4

(42) Consistent; x
1
 = 2, x

2
 = 1, x

3
 = −1, x

4
 = 3

(43) Consistent; x y z w= = = =2
1

5
0

4

5
, , ,

(44) Consistent; x = 2k − 1, y = 3 − 2k, z = k

(45) Consistent; x
k

y
k

z k=
−

=
+

=
7 16

11

3

11
, ,

(46) Consistent; x k y k z k= − = − =
16

3

9

5

16

3

6

5
, ,

(47) Consistent; x = 3 − 4k − k′, y = 1 − 2k + k′, z = k, w = k′

(48) Consistent; x
1
 = −2k + 5k′ + 7, x

2
 = k, x

3
 = −2k′ − 2, x

4
 = k′

(49) k = 1, 2: When k = 1, x = 2λ + 1, y = −3λ, z = λ

When k = 2, x = 2μ, y = 1 − 3μ, z = μ

(50) λ = 1, 8: When λ = 1, x = k + 2, y = 1 − 3k, z = 5k

 When λ = 8, x k y k z k= +( ) =− +( ) =
1

5
52

1

5
3 16, ,

(51) a + 2b − c = 0

(52) No solution, when k = 1; one solution, when k ≠ 1 and −2; many solutions, 

when k = −2.

(53) No solution when λ = 8; and μ ≠ 6; unique solution, when λ ≠ 8 and μ = any 

value; many solutions when λ = 8 and μ = 6.

(54) If a = 8, b ≠ 11 no solution; If a ≠ 8 and b = any value, unique solution; If a 

= 8 and b = 11, many solutions

(55) x = k, y = −2k, z = 3k (56) x = −4k, y = 2k, z = −2k, w = k

(57) λ = 1, −9; When λ = 1, x = k, y = −k, z = 2k and when λ = −9, x = 3k, y = 

9k, z = −2k

(58) λ = 0, 1, 2; When λ = 0, solution is (k, k, k); When λ = 1, solution is (k,  −k, 

2k); When λ = 2, solution is (2k, k, 2k).

Exercise 1(b)

(3) 2, 50 (5) −2, −1

(6) 38 (7) 36

(8) 5 (9) 0

(10) 
1

0

1

1

























and  (11) 
47

60

(12) 2

(15) 1, 3 −4; (−2, 1, 4)T, (2, 1, −2)T, (1, −3, 13)T

(16) 1 5 5 1 0 1 5 1 1 1 5 1 1 1, , ; , , , , , , , ,− −( ) − −( ) + −( )T T T

(17) 1, 3, −4; (−1, 4, 1)T, (5, 6, 1)T, (3, −2, 2)T
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(18) 5, −3, −3; (1, 2, −1)T, (2, −1, 0)T , (3, 0, 1)T

(19) 5, 1, 1, ; (1, 1, 1)T, (2, −1, 0)T, (1, 0, −1)T

(20) 8, 2, 2; (2, −1, 1)T, (1, 2, 0)T, (1, 0, −2)T

(21) 3,.2, 2; (1, 1, −2)T, (5, 2, −5)T

(22) −2, 2, 2 ; (4, 1, −7)T, (0, 1, 1)T

(23) 2, 2, 2; (1, 0, 0)T

(24) 1, 1, 6, 6; (0, 0, 1, 2)T, ( 1, −2, 0, 0)T, (0, 0, 2, −1)T and (2, 1, 0, 0)T

(25) 0, 3, 15; (1, 2, 2)T, (2, 1, −2)T, (2, −2, 1)T; A is singular

(26) Eigenvalues are 5, −10, −20; Trace = −25; |A| = 1000

(28) 1, 4, 4; (1, −1, 1)T, (2, −1, 0)T, (1, 0, −1)T

(29) −1, 1, 4; (0, 1, 1)T, (2, −1, 1)T, (1, 1, −1)T

Exercise 1(c)

(9) 
1

36

6 3

2 7

−

−












  (10) 

−











19 57

38 76

(11) 
3 2

4 5












 (12) M =

−













1 3

1 1

(13) 
1

ad bc

d b

c a−

−

−











  (14) 

1

3

3 2 2

6 5 2

6 2 5

− −

−

− −



















(15) −

− −

−

−



















1

11

3 4 5

9 1 4

5 3 1

 (16) 

248 101 218

272 109 50

104 98 204



















(17) 

7 30 42

18 13 46

6 14 17

−

−

− −



















(18) An
n n n n

=
−










⋅











+

−











6 2

4

5 3

1 3

3 2 6

2

1. 00

0 1

976 960

320 336

























;

(19) An
n n n n

=
−






















+

−











9 4

5

7 3

2 6

9 4 4 9

5

. . 11 0

0 1

463 399

266 330

























;

(20) 

0 0 0

0 0 0

0 0 0


















 (21) D M1 3 4

2 2 1

1 1 3

4 2 13

, , ;−( ) = − −

− −



















(22) D M A1 2 3

1 1 1

2 1 1

2 0 1

99 115 65

100 116 65

160

4, , ; ;( ) =

−



















=

−

−

− 1160 81
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(23) D M2 3 6

1 1 1

0 1 2

1 1 1

, , ;( ) = −

−



















(24) D M4 2 2

1 1 1

1 1 0

2 0 1

, , ;− −( ) =

−



















(25) D M8 2 2

2 1 1

1 0 2

1 2 0

, , ;( ) = −

−



















(26) D M2 1 1

1 1 1

1 1 0

1 0 1

, , ;− −( ) = −

−



















(27) D N0 3 14

1

42

1

3

3

14

5

42

1

3

1

14

4

42

1

3

2

14

, , ;( ) =

−

−

































(28) D N1 3 4

1

6

1

2

1

3

2

6
0

1

3

1

6

1

2

1

3

, , ;( ) = −

−

































(29) D N4 1 1

1

3

1

2

1

6

1

3

1

2

1

6

1

3
0

2

6

, , ;( ) =

−

−

































(30) D N5 3 3

1

6

2

5

1

30

2

6

1

5

2

30

1

6
0

5

30

, , ;− −( ) = −

−
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Exercise 1(d)

 (2) 

3 1 3

1 5 1

3 1 5

−

−



















 (3) 2 2 3 2 4 41
2

2
2

3
2

1 2 2 3 3 1x x x x x x x x x+ + + − −
 (4) Singular, when |A| = 0; Rank r < n

 (6) PT AP must be a diagonal matrix

 (9) index = 2 and signature = 1

(11) N Q y y y r=

−






























= + +

1

5
0

2

5

2

5
0

1

5

0 1 0

3 61
2

2
2

3
2; ; == = =3 3 3; ;p s

(12) N Q=

−

−

































=

3

10

1

35

1

14

0
5

35

2

14

1

10

3

35

3

14

; 44 8 3 1 11
2

2
2

3
2y y y r p s− − = = =−; ; ;

(13) N Q y y= −

−

































= +

2

6
0

1

3

1

6

1

2

1

3

1

6

1

2

1

3

8 21
2

2; 22
3
22+ y Q;  is positive definite

(14) N Q y y=

−

−

































= +

1

3

1

2

1

6

1

3

1

2

1

6

1

3
0

2

6

4 1
2

2
2; ++ y3

2

(15) N Q y y=

− −

−

































= −

1

3

1

2

1

5

1

3

1

2

1

5

1

3
0

2

5

2 1
2

2; 22
3
2− y Q;  is indefinite
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(16) N Q y y= −

−































= +

1

3

2

3

2

3

2

3

1

3

2

3

2

3

2

3

1

3

3 152
2

3; 22
1 2 3; x x x= 1, = 2, = 2

(17) N Q=

−

−

































=

1

42

1

3

3

14

5

42

1

3

1

14

4

42

1

3

2

14

3; yy y x x x2
2

3
2

1 2 314 5 4+ −; = 1, = , =

(18)  N =

−

−

− −



























16

378

2

14

1

27

1

378

1

14

5

27

11

378

3

14

1

27








= + − −; ;Q y y x x x14 27 1 112
2

3
2

1 2 3= 16, = , =

(19) (i) positive definite; (ii) positive semidefinite; (iii) indefinite

(20) λ > 2

(21) (i) P Q y y y Q y y y=

−



















=− + + = + +

1 1 0

1 1 1

1 0 0

4 2 41 1
2

2
2

3
2

2 1
2

2
2

3
2; ;

 (ii) P Q y y y Q y y=

−

−

−



















=− + + = −

1 1 1

1 1 1

2 0 0

16 4 8 4 41 1
2

2
2

3
2

2 1
2

2; ; 22
3
24+ y

 (iii) P Q y y y Q y y=



















= + + = −

1 0 1

0 1 1

1 1 1

1 1
2

2
2

3
2

2 2
2

3
2; ;

 (iv) P Q y y y Q y y y=

−



















= + − = + +

0 0 1

0 1 1

1 1 1

2 4 41 1
2

2
2

3
2

2 1
2

2
2

3
2; ;
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Vector Calculus 

2UNIT

2.1 INTRODUCTION

In Vector Algebra we mostly deal with constant vectors, viz. vectors which are constant 

in magnitude and fixed in direction. In Vector Calculus we deal with variable vectors 

i.e. vectors which are varying in magnitude or direction or both. Corresponding to 

each value of scalar variable t, if there exists a value of the vector F, then F  is called 

a vector function of the scalar variable t and is denoted as F F t= ( ) . For example, 

the position of a particle that moves continuously on a curve in space varies with 

respect to time t. Hence the position vector r  of the particle with respect to a fixed 

point is a function of time t, i.e. r r t= ( ) .

Also the position vector of the particle varies from point to point. Hence it can 

also be considered as a function of the point. If the points are specified by their 

rectangular cartesian co-ordinates (x, y, z), then r  is a function of the scalar variables 

x, y, z, i.e. r r x y z= ( , , ).

A physical quantity, that is a function of the position of a point in space, is called 

a scalar point function or a vector point function, according as the quantity is a 

scalar or vector. Temperature at any point in space and electric potential are examples 

of scalar point functions. Velocity of a moving particle and gravitational force are 

examples of vector point functions.

When a point function is defined at every point of a certain region of space, then 

that region is called a field. The field is called a scalar field or a vector field, according 

as the point function is a scalar point function or vector point function. In Vector 

Calculus, though differentiation and integration of vector time functions and vector 

point functions are dealt with, we will be concerned with the latter only.

2.2 VECTOR DIFFERENTIAL OPERATOR ∇

We now consider an operator ∇  (to be read as ‘del’) which is useful in defining 

three quantities known as the gradient, the divergence and the curl, that are useful in 

engineering applications.
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The operator ∇ is defined as

∇=
∂
∂
+

∂
∂
+

∂
∂

i
x

j
y

k
z

∇ is called the vector differential operator, as it behaves like a vector (though not a

vector) with 
∂
∂

∂
∂

∂
∂x y z

, ,  as coefficients of i j k, ,  respectively. When writing 

∇=
∂
∂∑ i

x
, it should be noted that i  and 

∂
∂x

 are written as the first and second 

factors respectively.

2.2.1 Gradient of a Scalar Point Function

Let f (x, y, z) be a scalar point function defined in a certain region of space. Then the 

vector point function given by

∇ =
∂
∂
+

∂
∂
+

∂
∂









 =

∂
∂
+

∂
∂
+

∂
∂

φ φ
φ φ φ

i
x

j
y

k
z

i
x

j
y

k
z

is defined as the gradient of f and shortly denoted as grad f.

Note  1. ∇ f should not be written as f ∇ .

 2. When ∇  combines with f, neither . nor × should be put between ∇  and 

f.

 3. If f is a constant, ∇ f = 0.

 4. ∇ (c
1
f

1
 ± c

2
f

2
) = c

1
∇f

1
 ± c

2   ∇ 
f

2 
where c

1
 and c

2
 are constants and f

1
, 

f
2
 are scalar point functions.

 5. ∇ (f
1
 f

2
) = f

1 
∇

 
f

2 
+ f

2 ∇ f
1
.

 6. ∇









=

∇ − ∇
≠

φ

φ

φ φ φ φ

φ
φ1

2

2 1 1 2

2

2
0, if

2

 .

 7. If v = f (u), then ∇ v = f ′ (u) ∇ u.

2.2.2 Directional Derivative of a Scalar Point 

Function f (x, y, z)

Let P and Q be two neighbouring points whose position vectors with respect to the 

origin O be r OP(= )  and r r OQ+∆ =( )  respectively, so that PQ r=∆  and PQ 

=∆r. Let f and f + ∆f be the values of a scalar point function f at the points P and Q 

respectively.

Then
d

d

φ φ

r r r
=

→

∆
∆







lim

∆ 0
 is called the directional derivative of f in the direction OP.

i.e. d

d

φ

r
 gives the rate of change of f with respect to the distance measured in the

direction of r .
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In particular, 
∂
∂

∂
∂

∂
∂

φ φ φ

x y z
, ,  are the directional derivatives of f at P(x, y, z) in the

directions of the co-ordinate axes.

2.2.3 Gradient as a Directional Derivative

Let f (x, y, z) be a scalar point function. Then f (x, y, z) = c represents, for various 

values of c, a family of surfaces, called the level surfaces of the function f.

Consider two level surfaces of f, namely f = c
1
 and f = c

2
 passing through two 

neighbouring points P r( )  and Q ( )r r+∆ . [Refer to Fig. 2.1]

Let the normal at P to the level surface f = c
1 

meet f = c
2
 at R.

Clearly the least distance between the two 

surfaces = PR = ∆n.

If QPR = θ , then, from the figure PQR, which 

is almost a right angled triangle,

 ∆n = ∆r cos θ (1)

If n  is the unit vector along PR, i.e. in the direction of outward drawn normal at P to 

the surface f = c
1
, then (1) can be written as

 ∆ = ⋅∆n n r , where ∆r PQ= .

or  d dn n r= ⋅  (2)

∴ d =
d

d
dφ

φ

n
n

 =
d

d
d

φ

n
n r ⋅  [by using (2)] (3)

Also d = d d
z

dφ
φ φ φ∂
∂

+
∂
∂

+
∂
∂x

x
y

y z   [Refer to Chapter 4 of Part I]

 

=
∂
∂

+
∂
∂

+
∂
∂









⋅ + +

φ φ φ

x
i

y
j k x i y j z k

z
(d d d )

 =∇ ⋅φ dr   (4)

From (3) and (4),

 
∇ ⋅ =φ

φ
d

d

d
dr

n
n r .

Since  PQ r r=∆ (or d ) is arbitrary,

 ∇ =φ
φd

dn
n   (5)

From (1), d

d

d

d (cos )

φ φ

θn r
=

P

R Q

∆n ∆r

   = c1

   = c2θ

Fig. 2.1
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i.e. 
d

d
cos

d

d

φ
θ
φ

r n
=  

i.e. 
d

d

d

d
 cos 1

φ φ
θ

r n
≤ ≤[ ]∵

i.e. the maximum directional derivative of f is 
d

d

φ

n
, that is the directional derivative 

f in the direction of n .

Thus, from (5), we get the following interpretation of ∇f :

∇f is a vector whose magnitude is the greatest directional derivative of f and 

whose direction is that of the outward drawn normal to the level surface f = c.

WORKED EXAMPLE 2(a)

Example 2.1 Find the directional derivative of f = x 2yz + 4xz2 at the point P (1, −2, 

−1), (i) that is maximum, (ii) in the direction of PQ, where Q is (3, −3, −2).

φ

φ
φ φ φ

= +

∇ =
∂
∂

+
∂
∂

+
∂
∂

= + + + +

x yz xz

x
i

y
j

z
k

xyz z i x z j x y xz

2 2

2 2 2

4

2 4 8( ) ( ) kk

\ ( ) ( )∇ = − −− −φ 1 2 1 8 10, , i j k  

The magnitude of (∇f)
P
 is the greatest directional derivative of f  at P.

Thus the maximum directional derivative of f at ( )1 2 1 64 1 100, ,− − = + + = 

165  units.

 PQ OQ OP i j k= − = − −2

Directional derivative of f in the direction of PQ  = Component (or projection) of 

∇f along PQ  .

=
∇ ⋅

=
− − ⋅ − −

+ +

=

φ PQ

PQ

i j k i j k( ) ( )

units.

8 10 2

4 1 1

27

6
Example 2.2 Find the unit normal to the surface x3 − xyz + z3 = 1 at the point 

(1, 1, 1).

Note  Unit normal to a surface f = c at a point means the unit vector n  in the 

direction of the outward drawn normal to the surface at the given point.
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The given equation of the surface x3 − xyz + z3 = 1 is taken as f (x, y, z) = c.

∴  f = x3 − xyz + z3 

∇f is a vector acting in the direction of the outward drawn normal to the surface 

f = c.

Now ∇ = − − + −φ ( ) ( ) 3 32 2x yz i xzj z xy k

 ( )( )∇ = − + =φ 1 1 1 2 2, , i j k n  (= a vector in the direction of the normal)

∴  n
n

n

i j k

 =

= − +

| |

1

3
2 2( )

Example 2.3 Find the directional derivative of the function f = xy2 + yz2 at the point 

(2, −1, 1) in the direction of the normal to the surface x log z − y2 + 4 = 0 at the point 

(− 1, 2, 1).

The equation of the surface x log z − y2 + 4 = 0 is identified with ψ (x, y, z) = c.

\ ψ(x, y, z) = x log z − y2 and c = − 4.

The direction of the normal to this surface is the same as that of ∇ψ.

Now ∇ψ = − +(log )z i y j
x

z
k2

∴  (∇ψ
 ) ( ) (say)− =− − =1 2 1 4, , j k b

 

φ

φ

φ

= +

∇ = + + +

∇ = − −−

xy yz

y i xy z j yz k

i j k

2 3

2 3 2

2 1 1

2 3

3 3

( ) 

( )( ), ,

Directional derivative of f in the direction of b

 

=
∇ ⋅

=
− − ⋅ − −

+

=

φ b

b

i j k j k

| |

( ) ( )

 units.

3 3 4

16 1

15

17

Example 2.4 Find the angle between the normals to the surface xy = z2 at the points 

(−2, −2, 2) and (1, 9, −3).

Angle between the two normal lines can be found out as the angle between the 

vectors acting along the normal lines.

Identifying the equation xy = z2 with f (x, y, z) = c, we get f = xy − z2 and c = 0.

∇ = + −φ yi x j zk2
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 ( )( )∇ =− − − =− −φ 2 2 2 12 2 4, , i j k n  (say)

 ( )( )∇ = + + =−φ 1 9 3 29 6, , i j k n  (say)

n1  and n2  are vectors acting along the normals to the surface at the given points. 

∴ If q is the required angle,

cos θ=
⋅

=
−

⋅
=−

n n

n n

1 2

1 2

44

24 118

11

177

∴ θ= −










−cos 1 11

177

Example 2.5 Find the angle between the surfaces x2 − y2 − z2 = 11 and xy + yz − zx = 18 

at the point (6, 4, 3).

Angle between two surfaces at a point of intersection is defined as the angle 

between the respective normals at the point of intersection.

Identifying  x2 − y2 − z2 = 11 with f = c,

we have  f = x2 − y2 − z2 and c = 11.

∴ ∇ = − −φ 2 2 2xi y j zk

 ( )( )∇ = − − =φ 6 4 3 112 8 6, , i j k n

Identifying xy + yz − zx = 18 with ψ = c´,

we have ψ = xy + yz − zx and c´ = 18

 ∇ψ = − + + + −( ) ( ) ( )y z i z x j y x k

∴  ∇ψ 6 4 3
9 2

, ,( ) = + −i j k

If q is the angle between the surfaces at (6, 4, 3), then

cos θ=
⋅

=
−

=−
×

n n

n n

1 2

1 2

48

244 86

24

61 86

∴ θ=
−










−cos 1 24

5246

Example 2.6 Find the equation of the tangent plane to the surface 2xz2 − 3xy −

4x = 7 at the point (1, −1, 2).

Identifying 2xz2 − 3 xy − 4x = 7 with f = c,

we have   f = 2xz2 − 3xy − 4x and c = 7.

∴ 
∇ = − − − +φ ( )2 3 4 3 42z y i x j xzk

 
( )( )∇ = − +−φ 1 1 2 7 3 8, , i j k

(∇f)
(1,−1,2)

 is a vector in the direction of the normal to the surface f = c.
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∴ D.R.’s of the normal to the surface (f = c) at the point (1,−1, 2) are (7, −3, 8).

Now the tangent plane is the plane passing through the point (1, −1, 2) and having 

the line whose D.R.’s are (7, − 3, 8) as a normal.

∴ Equation of the tangent plane is

 7(x − 1) − 3(y + 1) + 8(z − 2) = 0

i.e.  7x − 3y + 8z − 26 = 0.

Example 2.7 Find the constants a and b, so that the surfaces 5x2 − 2yz − 9x = 0 and 

ax2y + bz3 = 4 may cut orthogonally at the point (1,−1, 2).

Two surfaces are said to cut orthogonally at a point of intersection, if the respective 

normals at that point are perpendicular.

Identifying 5x2 − 2yz − 9x = 0 with f
1
 = c, 

we have ∇ = − − −φ1 10 9 2 2( )x i z j yk

∴ ( )( )∇ = − + =−φ1 1 1 2 14 2, , i j k n  (say)

Identifying ax2y + bz3 = 4 with f
2
 = c´.

we have ( )∇ = + +φ2
2 22 3axyi ax j bz k

∴ ( )( )∇ =− + + =−φ2 1 1 2 22 12, , ai a j bk n  (say)

Since the surfaces cut orthogonally, n n1 2⊥ .

i.e. n n1 2 0⋅ =
i.e. −6a + 24b = 0

i.e. −a + 4b = 0 (1)

Since (1,−1, 2) is a point of intersection of the two surfaces, it lies on ax2y + bz3 = 4

∴  −a + 8b = 4  (2)

Solving (1) and (2), we get a = 4 and b = 1.

Example 2.8 If r  is the position vector of the point (x, y, z), a is a constant vector

and φ  = x2 + y2 + z2, prove that (i) grad ( )r a a⋅ =  and (ii) r ⋅ =grad φ φ2 .

 r xi yj zk= + +

Let a a i a j a k= + +1 2 3

∴  r a a x a y a z⋅ = + +1 2 3

∴  grad r a a i a j a k a⋅( )= + + =1 2 3

 f = x2 + y2 + z2

∴  grad φ= + +2 2 2xi yj zk

∴ r x y z⋅ = + + =grad ( )φ φ2 22 2 2 .

Example 2.9 If r  is the position vector of the point (x, y, z) with respect to the ori-

gin, prove that ∇ = −( )r nr rn n 2 .
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 r xi yj zk= + +

∴  r r x y z2 2 2 2 2= = + +| |   (1)

∴ ∇ =
∂
∂

+
∂
∂

+
∂
∂

( ) ( ) ( ) ( )r
x

r i
y

r j
z

r kn n n n

 =
∂
∂

+
∂
∂

+
∂
∂











−nr
r

x
i

r

y
j

r

z
kn 1  (2)

From (l),  2 2r
r

x
x

∂
∂
=

i.e.

Similarly,  and 

∂
∂
=

∂
∂
=

∂
∂
=

r

x

x

r

r

y

y

r

r

z

z

r
  (3)

Using (3) in (2), we have

 

∇ = + +








= + +

=

−

−

−

( )

( )

.

r nr
x

r
i

y

r
j

z

r
k

nr xi yj zk

nr r

n n

n

n

1

2

2

Example 2.10 Find the function f, if grad f

= − + + − + −( ) ( ) ( ) .y xyz i xy x z j z x yz k2 3 2 3 3 2 22 3 2 6 3

 ∇ = − + + − + −φ ( ) ( ) ( )y xyz i xy x z j z x yz k2 3 2 3 3 2 22 3 2 6 3  (1)

By definition, ∇ =
∂
∂

+
∂
∂

+
∂
∂

φ
φ φ φ

x
i

y
j

z
k  (2)

Comparing (1) and (2), we get

 
∂
∂
= −

φ

x
y xyz2 32   (3)

 
∂
∂
= + −

φ

y
xy x z3 2 2 3

 (4)

 
∂
∂
= −

φ

z
z x yz6 33 2 2  (5)

Integrating both sides of (3) partially with respect to x (i.e. treating y and z as 

constants),

 f = xy2 − x2yz3 + a function not containing x  (6)
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Note  When we integrate both sides of an equation ordinarily with respect to 

x, we usually add an arbitrary constant in one side. When we integrate partially, 

we add an arbitrary function of the other variables y and z, i.e. an arbitrary function 

independent of x.

Integrating (4) partially with respect to y.

 f = 3y + xy2 − x2yz3 + a function not containing y  (7)

Integrating (5) partially with respect to z,

 φ= − +
3

2

4 2 3z x yz  a function not containing z (8)

(6), (7) and (8) give only particular forms of f. The general form of f is obtained as 

follows:

The terms which do not repeat in the R.S’s of (6), (7) and (8) should necessarily 

be included in the value of f.

The terms which repeat should be included only once in the value of f.

The last terms indicate that there is a term of f which is independent of x, y, z, i.e. 

a constant.

∴  φ= + + − +3
3

2

4 2 2 3y z xy x yz c .

EXERCISE 2(a)

Part A

(Short Answer Questions)

 1. Define grad f and give its geometrical meaning.

 2. If r is the position vector of the point (x, y, z), prove that ∇ =( )r
r

r
1

.

 3. If r  is the position vector of the point (x, y, z), prove that ∇ =( )| |r r2 2 .

 4. If r is the position vector of the point (x, y, z), prove that ∇ = ′f r
r

f r r( ) ( )
1

.

 5. Find grad f at the point (1, –2, –1) when f = 3x2y − y3z2.

 6. Find the maximum directional derivative of f = x3y2z at the point (1, 1, 1).

 7. Find the directional derivative of f = xy + yz + zx at the point (1, 2, 3) along 

the x-axis.

 8. In what direction from (3, 1, −2) is the directional derivative of f = x2y2z4 

maximum?

 9. If the temperature at any point in space is given by T = xy + yz + zx, find the 

direction in which the temperature changes most rapidly with distance from 

the point (1, 1, 1).

10. The temperature at a point (x, y, z) in space is given by T(x, y, z) = x2 + y2 − z. 

A mosquito located at (1, 1, 2) desires to fly in such a direction that it will get 

warm as soon as possible. In what direction should it fly?

Part B

11. If f = xy + yz + zx and F x yi y zj z xk= + +2 2 2 , find F  ∙ grad f and F× 

grad f at the point (3, −1, 2).
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12. Find the directional derivative of f = 2xy + z2 at the point (1, −1, 3) in the 

direction of i j k+ +2 2 .

13. Find the directional derivative of f = xy2 + yz3 at the point P ( 2, −1, 1) in the 

direction of PQ where Q is the point (3, 1, 3).

14. Find a unit normal to the surface x2y + 2xz = 4 at the point (2, −2, 3).

15. Find the directional derivative of the scalar function f = xyz in the direction 

of the outer normal to the surface z = xy at the point (3, 1, 3).

16. Find the angle between the normals to the surface xy3z2 = 4 at the points 

(−1, −1, 2) and (4, 1, −1).

17. Find the angle between the normals to the surface x2 = yz at the points (1, 1, 1) 

and (2, 4, 1).

18. Find the angle between the surfaces z = x2 + y2 − 3 and x2 + y2 + z2 = 9 at the 

point (2, −1, 2).

19. Find the angle between the surfaces xy2z = 3x + z2 and 3x2 − y2 + 2z = 1 at the 

point (1, −2, 1).

20. Find the angle between the tangent planes to the surfaces x log z − y2 = −1 and 

x2y + z = 2 at the point (1, 1, 1).

21. Find the equation of the tangent plane to the surface xz2 + x2y = z − 1 at the 

point (1, −3, 2).

22. Find the values of l and μ, if the surfaces lx2 − μyz = (λ + 2)x and 4x2y + z3 = 4 

cut orthogonally at the point (1, −1, 2).

23. Find the values of a and b, so that the surfaces ax3 − by2z = (a + 3)x2 and 

4x2y − z3 = 11 may cut orthogonally at the point (2, −1, −3).

24. Find the scalar point function whose gradient is ( ) ( )2 22 2xy z i x yz j− + +
+ −( )y zx k2 2 .

25. If ∇ = + +φ 2 33 2 3 2 2xyz i x z j x yz k , find f (x, y, z), given that f (1, −2, 2) = 4.

2.2 THE DIVERGENCE OF A VECTOR

If F x y z(   ), ,  is a differentiable vector point function defined at each point (x, y, z) in 

some region of space, then the divergence of F , denoted as div F , is defined as

 

div F F

i
x

j
y

k
z

F

i
F

x
j

F

y
k

F

=∇⋅

=
∂
∂
+

∂
∂
+

∂
∂









⋅

= ⋅
∂
∂
+ ⋅

∂
∂
+ ⋅

∂
∂zz

Formula for Ñ×F , when F F i F j F k= + +1 2 3

 
∇⋅ =

∂
∂
+

∂
∂
+

∂
∂









⋅ + +F i

x
j

y
k

z
F i F j F k( )1 2 3
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 =
∂
∂
+
∂
∂
+
∂
∂

F

x

F

y

F

z

1 2 3

Note  Since F is a vector point function, F
1
, F

2
 and F

3
 are scalar point functions 

and hence ∇⋅F  is also a scalar point function.

2.3.1 Physical meaning of ∇⋅F

    (i) If V V i V j V kx y z= + +  is a vector point function representing the 

instantaneous velocity of a moving fluid at the point (x, y, z), then ∇⋅V  

represents the rate of loss of the fluid per unit volume at that point.

  (ii) If the vector point function V  represents an electric flux, then ∇⋅V represents 

the amount of flux that diverges per unit volume in unit time.

(iii) If the vector point function V  represents heat flux, then ∇⋅V  represents the 

rate at which heat is issuing from the concerned point per unit volume.

In general, if F  represents any physical quantity, then ∇⋅F  gives at each point 

the rate per unit volume at which the physical quantity is issuing from that point. It is 

due to this physical interpretation of ∇⋅F , it is called the divergence of F .

2.3.2 Solenoidal Vector

If F  is a vector such that ∇⋅ =F 0  at all points in a given region, then it is said to 

be a solenoidal vector in that region.

2.3.3 Curl of a Vector

If F  (x, y, z) is a differentiable vector point function defined at each point (x, y, z) in 

some region of space, then the curl of F  or the rotation of F , denoted as curl F  or 

rot F  is defined as

Curl F F

i
x

j
y

k
z

F

i
F

x
j

F

y
k

F

z

= ∇×

=
∂
∂
+

∂
∂
+

∂
∂









×

= ×
∂
∂
+ ×

∂
∂
+ ×

∂
∂

Note  Curl F  is also a vector point function.

Formula for Ñ´F , when F F i F j F k= + +1 2 3
 (where F

1
, F

2
 and F

3
 are scalar 

point functions):

∇× = ×
∂
∂

+ +

=
∂
∂

× +
∂
∂

× +
∂
∂

×

∑

∑

F i
x

F i F j F k

F

x
i i

F

x
i j

F

x
i k

( )

( ) ( ) ( )

1 2 3

1 2 3
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=
∂
∂

−
∂
∂









∑

=
∂
∂
−
∂
∂









 +

∂
∂
−

F

x
k

F

x
j

F

y

F

z
i

F

z

2 3

3 2 1
∂∂
∂









 +

∂
∂
−
∂
∂











=
∂
∂

∂
∂

∂
∂

F

x
j

F

x

F

y
k

i j k

x y z

F

3 2 1

1 FF F2 3

2.3.4 Physical Meaning of Curl F

If F  represents the linear velocity of the point (x, y, z) of a rigid body that rotates 

about a fixed axis with constant angular velocity ω , then curl F  at that point 

represents 2ω .

2.3.5 Irrotational Vector

If F   is a vector such that ∇× =F 0  at all points in a given region, then it is said to 

be an irrotational vector in that region.

2.3.6 Scalar Potential of an Irrotational Vector

If F  is irrotational, then it can be expressed as the gradient of a scalar point 

function.

Let  F F i F j F k= + +1 2 3

Since F  is irrotational, Curl F = 0  

i.e. 

i j k

x y z

F F F

∂
∂

∂
∂

∂
∂
=

1 2 3

0  

i.e. 
∂
∂
−
∂
∂









 +

∂
∂
−
∂
∂









 +

∂
∂
−
∂F

y

F

z
i

F

z

F

x
j

F

x

F3 2 1 3 2 1

∂∂









 =

y
k 0

∴ 
∂
∂

=
∂
∂

∂
∂
=
∂
∂

∂
∂

=
∂
∂

F

y

F

z

F

z

F

x

F

x

F

y

3 2 1 3 2 1; ; 
  (1)

Equations (1) are satisfied when

F
x

F
y

1 2=
∂
∂

=
∂
∂

φ φ
,  and F

z
3 =

∂
∂
φ
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∴ F i
x

j
y

k
z

=
∂
∂
+

∂
∂
+

∂
∂

=∇

φ φ φ

φ

If F  is irrotational and F =∇φ , then f is called the scalar potential of F .

2.3.7 Expansion Formulae Involving Operations by ∇

Expansion formulas involving operations by one or two ∇’s are given below: The 

proofs of some of them are given and those of the rest are left as exercise to the 

students.

 1. If u  and v  are vector point functions, then ∇⋅ ± =∇⋅ ±∇⋅( )u v u v .

 2. If u  and v  are vector point functions, then ∇× ± =∇× ±∇×( )u v u v .

 3. If f is a scalar point function and F  is a vector point function, then

∇⋅ = ∇⋅ + ∇( )⋅( ) ( )φ φ φF F F

 Proof:  ∇⋅ = ⋅
∂
∂

= ⋅
∂
∂
+
∂
∂











= ⋅
∂
∂
+

∂
∂

∑

∑

∑

( ) ( )φ φ

φ
φ

φ
φ

F i
x

F

i
F

x x
F

i
F

x
i

xx
F

F F

∑






⋅

= ∇⋅( )+ ∇( )⋅φ φ

 4. If f is a scalar point function and F  is a vector point function, then

∇× = ∇× + ∇( )×( ) ( )φ φ φF F F

 5. If u  and v  are vector point functions, then ∇⋅ ×( )= ⋅ − ⋅u v v u u vcurl curl .

 Proof: ∇⋅ × = ⋅∑
∂
∂

×( )

=∑ ⋅
∂
∂
× + ×

∂
∂









=∑ ⋅
∂
∂
×




( )u v i
x

u v

i
u

x
v u

v

x

i
u

x
v


−∑ ⋅

∂
∂
×









= ×
∂
∂







⋅ −∑ ×

∂
∂




i
v

x
u

i
u

x
v i

v

x




⋅∑ u

[ the value of a scalar triple product is unaltered, when dot and cross are 

interchanged]
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= ∑ ×
∂
∂







⋅ − ∑ ×

∂
∂







⋅

= ⋅ − ⋅

i
u

x
v i

v

x
u

v u u vCurl Curl

 6. If u vand are vector point functions, then

∇× × = ∇⋅ + ⋅∇ − ∇⋅ − ⋅∇( ) ( ) ( ) ( ) ( )u v v u v u u v u v

Note  In this formula, ∇⋅ ⋅∇v vand  are not the same, ∇⋅v  means div v , but 

v ⋅∇  represents the operator v
x

v
y

v
z

x y z

∂
∂
+

∂
∂
+

∂
∂

,  if v v ix= +  v j v ky z+ ⋅  

Thus v u⋅∇( )   represents v
u

x
v

u

y
v

u

z
x y z

∂
∂
+

∂
∂
+

∂
∂
⋅

 7. If u vand  are vector point functions, then ∇ ⋅( )= × + ×u v v u u vcurl curl  

+ ⋅∇ + ⋅∇( ) ( )v u u v .

 8. If f is a scalar point function, then div (grad f) = ∇ . (∇f) = ∇2f, 

where ∇ =
∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2x y z
 is called the Laplacian operator and 

∇ =
∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2
φ

φ φ φ

x y z
 is called the Laplacian of f. ∇2f = 0 is called the 

Laplace equation.

Note  ∇2 can also operate on a vector point function F resulting in 

∇ =
∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2
F

F

x

F

y

F

z
.

 9. If f is a scalar point function, then curl (grad f) = ∇ × (∇f) = 0.

Proof grad φ
φ φ φ

=
∂
∂







 +

∂
∂









 +

∂
∂







x

i
y

j
z

k

∴ curl (grad f)=
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂ ∂

−
∂
∂ ∂










+

∂

i j k

x y z

x y z

y z z y
i

φ φ φ

φ φ φ2 2 2

∂∂ ∂
−
∂
∂ ∂










+

∂
∂ ∂

−
∂
∂ ∂









z x x z

j
x y y x

k
2 2 2φ φ φ

 = 0.

Note  This result means that (grad f) is always an irrotational vector.
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10. If F  is a vector point function, then div (curl ) ( )F F=∇⋅ ∇× =0 .

Proof: Let F F i F j F k= + +1 2 3

∴ curl F

i j k

x y z

F F F

F

y

F

z
i

F

z

=
∂
∂

∂
∂

∂
∂

=
∂
∂
−
∂
∂









 +

∂
∂
−
∂

1 2 3

3 2 1
FF

x
j

F

x

F

y
k3 2 1

∂









 +

∂
∂
−
∂
∂











∴ div curl F
x

F

y

F

z y

F

z

F

x
( )= ∂

∂
∂
∂
−
∂
∂









+

∂
∂

∂
∂
−
∂
∂






3 2 1 3



+

∂
∂

∂
∂
−
∂
∂











=
∂
∂ ∂

−
∂
∂ ∂

+
∂
∂

z

F

x

F

y

F

x y

F

x z

F

2 1

2

3

2

2

2

1

yy z

F

y x

F

z x

F

z y∂
−
∂
∂ ∂

+
∂
∂ ∂

−
∂
∂ ∂

=

2

3

2

2

2

1

0.

Note  This result means that (curl F ) is always a solenoidal vector.

11. If F  is a vector point function, then

curl (curl ) ( ) ( ) 2F F F F=∇× ∇× =∇ ∇⋅ −∇ .

Proof: Let F F i F j F k= + +1 2 3

Then curl F
F

y

F

z
i

F

z

F

x
j

F

x
=
∂
∂
−
∂
∂









 +

∂
∂
−
∂
∂









 +

∂
∂
−
∂3 2 1 3 2 FF

y
k1

∂











∴ curl (curl F )

=
∂
∂

∂
∂

∂
∂

∂
∂
−
∂
∂











∂
∂
−
∂
∂











i j k

x y z

F

y

F

z

F

z

F

x

3 2 1 3 ∂∂
∂
−
∂
∂











=∑
∂
∂

∂
∂
−
∂
∂









−
∂
∂

∂

F

x

F

y

y

F

x

F

y z

F

2 1

2 1 11 3

2

2

2

3

∂
−
∂
∂























=∑
∂
∂ ∂

+
∂
∂ ∂











z

F

x
i

F

y x

F

z x

−
∂
∂

+
∂
∂

























=∑
∂
∂

+
∂
∂

2

1

2

2

1

2

2

1

2

2

2

F

y

F

z
i

F

x

F

xx y

F

x z

F

x

F

y

F

z∂
+
∂
∂ ∂










−
∂
∂

+
∂
∂

+
∂
∂











2

3

2

1

2

2

1

2

2
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=∑
∂
∂

∂
∂
+
∂
∂
+
∂
∂









−

∂
∂

+
∂
∂

+
∂
∂




x

F

x

F

y

F

z x y z

1 2 3

2

2

2

2

2

2


















=∑
∂
∂

∇⋅( )−∇











=
∂
∂

∇⋅( )+ ∂
∂

F i

x
F F i

i
x

F j

1

2

1

yy
F k

z
F F i F j F k

F F

∇⋅( )+ ∂
∂
∇⋅( )











−∇ + +





=∇ ∇⋅( )−∇

2

1 2 3

2 .

12. If F  is a vector point function, then

grad (div ) ( ) ( )F F F F=∇ ∇⋅ =∇× ∇× +∇2 .

Note  Rewriting the formula (11), this result is obtained.

WORKED EXAMPLE 2(b)

Example 2.1 When f = x3 + y3 + z3 − 3xyz, find ∇f, ∇ . ∇f and ∇ × ∇f at the point 

(1, 2, 3).

 f = x3 + y3 + z3 − 3x yz

∇ =∑
∂
∂









= − + − + −

∇⋅∇ =
∂
∂

φ
φ

φ

x
i

x yz i y zx j z xy k

x

3 3 32 2 2( ) ( ) ( )

[33 3 3

6

2 2 2( )] [ ( )] [ ( )]

( )

x yz
y

y zx
z

z xy

x y z

i j k

x

− +
∂
∂

+
∂
∂

−

= + +

∇×∇ =
∂
∂

∂
φ

∂∂
∂
∂

− − −

= − + − − + + − +

y z

x yz y zx z xy

x x i y y j z z

3 3 3

3 3 3 3 3 3

2 2 2( ) ( ) ( )

( ) ( ) ( ))k

Note  ∇ × ∇f = 0, for any f, as per the expansion formula (9).

( )( )∇ =− + +φ 1 2 3 15 3 21, , i j k

(∇ . ∇f)
(1, 2, 3)

 = 36 and (∇ × ∇f)
(1, 2, 3)

 = 0.

Example 2.2 If F x y xz i xz xy yz j z x k= − + + − + + +( ) ( ) ( )2 2 2 22 , find ∇⋅ ∇F ,  

( ) ( ) and ( )∇⋅ ∇× ∇⋅ ∇× ∇× ∇×F F F F, , at the point (1, 1, 1).
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F x y xz i xz xy yz j z x k

F
x

x y xz
y

= − + + − + + +

∇⋅ =
∂
∂

− + +
∂
∂

( ) ( ) ( )

( )

2 2 2 2

2 2

2

2 (( ) ( )

( ) ( )

( ) (

xz xy yz
z

z x

x z x z z

x z

F
x

x

− + +
∂
∂

+

= + + − + +
= +

∇ ∇⋅ =
∂
∂

+

2 2

2 2 2

5

55 5 5

5

22 2

z i
y

x z j
z

x z k

i k

F

i j k

x y z

x y xz

) ( ) ( )+
∂
∂

+ +
∂
∂

+

= +

∇× =
∂
∂

∂
∂

∂
∂

− + xxz xy yz z x

x y i x x j y z k

x y i y z k

− + +

=− + − − + +

=− + + +

∇⋅ ∇

2 2

2 2( ) ( ) ( )

( ) ( )

( ×× =
∂
∂

− + +
∂
∂

+
∂
∂

+

=− + + =

F
x

x y
y z

y z) [ ( )] ( ) ( )0

1 0 1 0

Note  ∇⋅ ∇× =( )F 0 , for any F , as per the expansion formula

∇× ∇× =
∂
∂

∂
∂

∂
∂

− +( ) +

= +

( )F

i j k

x y z

x y y z

i k

0

∴ ( ) ; [ ( )] ;

( ) ; [

( ) ( )

( )

∇⋅ = ∇ ∇⋅ = +

∇× =− + ∇

F F i k

F i k

1 1 1 1 1 1

1 1 1

6 5

2 2

, , , ,

, , ⋅⋅ ∇× =

∇× ∇× = +

( )( )] ;

[ ( )]( )

F

F i k

1 1 1

1 1 1

0
, ,

, ,

Example 2.3 If ā is a constant vector and r  is the position vector of the point (x, y, 

z,) with respect to the origin, prove that (i) grad ( )a r a⋅ = , (ii) div ( )a r×  = 0 and 

(iii) curl ( )a r a× =2 .

r xi yj zk= + +

Let a a i a j a k= + +1 2 3 , where a
1
, a

2
, a

3
 are constants.

∴  a r a x a y a z⋅ = + +1 2 3
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∴  grad ( ) ( )

(

a r
x

a x a y a z i

a i a j a k

a

a r

i j k

a a a

x y z

a

⋅ =∑
∂
∂

+ +

= + +

=

× =

=

1 2 3

1 2 3

1 2 3

2 zz a y i a x a z j a y a x k− + − + −3 3 1 1 2) ( ) ( )

∴ div ( ) ( ) ( ) ( )

curl ( )

a r
x

a z a y
y

a x a z
z

a y a x

a r

× =
∂
∂

− +
∂
∂

− +
∂
∂

−

=

×

2 3 3 1 1 2

0

==
∂
∂

∂
∂

∂
∂

− − −

= + − − − +

i j k

x y z

a z a y a x a z a y a x

a a i a a j a

2 3 3 1 1 2

1 1 2 2( ) ( ) ( 33 3

1 2 32

2

+

= + +

=

a k

a i a j a k

a

)

( )

Example 2.4 Show that u x xy z i x y xy j y z x z k= + + − − +(2 ) ( ) ( )2 8 3 3 4 22 3 2 2 3 is

not solenoidal, but v xyz u= 2  is solenoidal.

 
∇⋅ =

∂
∂

+ +
∂
∂

− +
∂
∂

− +u
x

x xy z
y

x y xy
z

y z x z( ) ( ) { ( )}2 8 3 3 4 22 2 3 2 2 3

 = (4x + 8y2z) + (3x3 − 3x) − (8y2z + 2x3)

 = x3 + x

 ≠ 0, for all points (x, y, z)

∴ u  is not solenoidal.

∴  

v xyz u

x yz x y z i x y z x y z j xy z x y

=

= + + − − +

2

3 2 2 3 3 4 2 2 2 2 2 3 4 42 8 3 3 4 2( ) ( ) ( zz k

v x yz xy z x yz x yz xy z x yz

3

2 2 3 3 4 2 2 2 3 3 4 26 16 6 6 16 6

)

( ) ( ) ( )∇⋅ = + + − − +

 = 0, for all points (x, y, z) 

∴  v  is solenoidal.

Example 2.5 Show that F y z yz x i xz xy j xy xz= − + − + + + − +( ) ( ) (2 2 3 2 3 2 3 2

2z k)  is both solenoidal and irrotational.
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∇⋅ =

∂
∂

− + −
∂
∂

+
∂
∂

− +F
x

y z yz x
y

xz xy
z

xy xz z( ) + ( ) + ( )2 2 3 2 3 2 3 2 2

 = −2 + 2x − 2x + 2

 = 0, for all points (x, y, z)

∴ F   is a solenoidal vector.

 

∇× =
∂
∂

∂
∂

∂
∂

− + − + − +

= −

F

i j k

x y z

y z yz x xz xy xy xz z

x x

( ) ( ) ( )

(

2 2 3 2 3 2 3 2 2

3 3 )) ( ) ( )i y z z y j z y y z k− − + − + + − −3 2 2 3 3 2 2 3

 = 0, for all points (x, y, z)

:. F  is an irrotational vector.

Example 2.6 Show that F y xz i xy z j x z y z k= + + − + − +( ) ( ) ( )2 2 22 2 2 2  is 

irrotational and hence find its scalar potential.

 

∇× =
∂
∂

∂
∂

∂
∂

+ − − +

= − + − −

F

i j k

x y z

y xz xy z x z y z

i xz

( ) ( ) ( )

( ) (

2 2 22 2 2 2

1 1 4 4xxz j y y k) ( )+ −2 2

 = 0, for all points (x, y, z)

∴ F  is irrotational.

Let the scalar potential of F  be f.

∴ F

x
i

y
j

z
k

=∇

=
∂
∂

+
∂
∂

+
∂
∂

φ

φ φ φ

∴ 
∂
∂
= +

φ

x
y xz2 22  

Integrating partially w.r.t. x;

 f = xy2 + x2z2 + a function independent of x  (1)

 

∂
∂
= −

φ

y
xy z2

Integrating partially w.r.t. y;

 f = xy2 − yz + a function independent of y  (2)

 

∂
∂
= − +

φ

z
x z y z2 22
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Integrating partially w.r.t. z;

 f  = x2z2 − yz + z2 + a function independent of z  (3)

From (1), (2), (3), we get f  = xy2 + x2z2 − yz + z2 + c.

Example 2.7 Find the values of the constants a, b, c, so that F axy b z i= +( )3

+ − + −( ) ( )3 32 2x cz j xz y k  may be irrotational. For these values of a, b, c, find 

also the scalar potential of F . 

F  is irrotational.

∴ ∇× =F 0

i.e. 

i j k

x y z

axy bz x cz xz y

∂
∂

∂
∂

∂
∂

+ − −

=

( ) ( ) ( )3 2 23 3

0

i.e. ( ) ( ) ( )− + − − + − =1 3 3 6 02 2c i z bz j x ax k

∴ c − 1 = 0, 3z2 (1 − b) = 0, x (6 − a) = 0

∴ a = 6, b= 1, c = 1.

Using these values of a, b, c,

F xy z i x z j xz y k= + + − + −( ) ( ) ( )6 3 33 2 2

Let f be the scalar potential of F .

∴ F
x

i
y

j
z

k

x
xy z

y
x z

z
xz y

=∇ =
∂
∂

+
∂
∂

+
∂
∂

∂
∂
= +

∂
∂
= −

∂
∂
= −

φ
φ φ φ

φ φ φ
6 3 3

3 2 2, ,

Integrating partially w.r.t. the concerned variables,

 f = 3x2y + xz3 + a function independent of x (1)

 f = 3x2y − yz + a function independent of y (2)

 f = xz3 − yz + a function independent of z (3)

From(l), (2) and (3), we get

f  = 3x2y + xz3 − yz + c

Example 2.8 If f and ψ are scalar point functions, prove that (i) f ∇f is irrota-

tional and (ii) ∇f × ∇ψ is solenoidal.

 ∇ × f∇f = f (∇ × ∇f) + ∇f × ∇f , by expansion formula

 = f (0) + 0 , by expansion formula

 = 0

∴ f∇f is irrotational
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∇⋅ ×( )= ⋅ − ⋅u v v u u vcurl curl , by expansion formula

∴ ∇ ⋅ (∇f × ∇ψ) = ∇ψ ⋅ curl (∇f) − ∇f ⋅ curl (∇ψ )

 = ∇ψ ⋅ 0 − ∇f ⋅ 0 = 0.

∴ (∇f × ∇ψ) is solenoidal.

Example 2.9Example 2.9 If r = | |r , where r  is the position vector of the point (x, y, z), prove

that ∇2 (rn ) = n(n + 1) rn−2 and hence deduce that 
1

r
 satisfies Laplace equation.

We have already proved, in worked example (9) of the previous section, that 

∇ = −( )r nr rn n 2 .

Now  ∇ =∇⋅ ∇

=∇⋅ −

2

2

( ) ( )

( )

r r

nr r

n n

n

 = ∇ ⋅ + ∇⋅





= − ⋅ +





− −

− −

n r r r r

n n r r r r

n n

n n

( ) ( )

( ) ,

2 2

4 22 3

, by expansion formula

 

[since ( )

( ) ( ) ( )

]

∇⋅ =∇⋅ + +

=
∂
∂

+
∂
∂

+
∂
∂

=

r xi yj zk

x
x

y
y

z
z

3

∴ ∇2(rn) = n [(n − 2) rn−4 r2 + 3rn−2]

 = n (n+1) rn−2

Taking n = −1 in the above result,

∇







= − =−2 31

1 0 0
r

r( ) ( )  

i.e. 1

r
 satisfies Laplace equation.

Example 2.10 If u and v are scalar point functions, prove that 

∇ ⋅ (u∇v − v∇u) = u∇2 v − v∇2 u.

∇ ⋅ (u∇v − v∇u) = ∇ ⋅ (u∇v) − ∇ ⋅ (v∇u)

 = (∇u ⋅ ∇v + u∇2 v) − (∇v ⋅ ∇u + v∇2 u)

[by the expansion formula]

 = u∇2v − v∇2 u.

Example 2.11 If u and v are scalar point functions and F  is a vector point function

such that uF v=∇ , prove that F ⋅  curl F=0 .

Given  uF v=∇

∴ F
u

v= ∇
1
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∴ Curl F
u

v=∇× ∇










1

 = ∇×∇ +∇







×∇

1 1

u
v

u
v( ) , by expansion formula

 =∇







×∇

1

u
v , since ∇ × ∇v = 0.

Now F F
u

v
u

v⋅ = ∇ ⋅ ∇ ×∇




















curl
1 1

 =
1

0
u

( ) , [ Two factors are equal in the 

scalar triple product] 

 = 0.

Example 2.12 If r = r , where r  is the position vector of the point (x, y, z) with 

respect to the origin, prove that (i) ∇f (r) =
′f r

r
r

( )
 and

(ii) ∇ = ′′ + ′2 2
f r f r

r
f r( ) ( ) ( ).

 r2 = x2 + y2 + z2

∴ 2 2r
r

x
x

∂
∂
=

∴ 
∂
∂
=

r

x

x

r
. Similarly, 

∂
∂
=

r

y

y

r
 and 

∂
∂
=

r

z

z

r
.

Now  ∇ =
∂
∂

= ′ ∂
∂

= ′

=
′

∇ =∇⋅∇

∑

∑

∑

f r i
x

f r

f r
r

x
i

f r
x

r
i

f r

r
r

f r f r
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( )

( )

( ) (2 ))

( )

( ) ( )
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f r

r
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f r
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⋅⋅

=
′′ − ′









∇ ⋅ +

′
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r f r f r

r
r r
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r
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( )
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3 3∵
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′′ − ′
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r r

f r

r

( ) ( ) ( )
2

1 3

∵∇ =
∂
∂

= =










∑∑( )r

r

x
i

x

r
i

r
r

1

 

=
′′ − ′










+
′

= ′′ + ′

r f r f r

r r
r

f r

r

f r
r

f r

( ) ( )
( )

( )

( ) (

2

21 3

2
))

Example 2.13 Find f (r) if the vector f (r) r  is both solenoidal and irrotational.

f (r) r  is solenoidal

∴ ∇⋅{ }=f r r( ) 0

i.e. ∇ ⋅ + ∇⋅ =f r r f r r( ) ( ) 0  [by expansion formula]

i.e. 
′

⋅ + =
f r

r
r r f r

( )
( )3 0  [Refer to the previous problem]

i.e. rf r′ ( ) + 3f (r) = 0

i.e. 
′

+ =
f r

f r r

( )

( )

3
0

Integrating both sides w.r.t. r,

 log f (r) + 3 log r = log c

i.e. log r3 f (r) = log c

∴ f r
c

r
( )=

3
 (1)

f (r) r  is also irrotational

∴ ∇×{ }=f r r( ) 0

i.e. ∇ × + ∇× =f r r f r r( ) ( ) 0 [by expansion formula]

i.e. 
′

×( )+ = ∇× =
∂
∂

∂
∂

∂
∂
=

























f r

r
r r r

i j k

x y z

x y z

( )
0 0 0∵

i.e. 
′

+ =
f r

r

( )
( )0 0 0

This is true for all values of f (r) (2)

From (1) and (2), we get that f (r) r  is both solenoidal and irrotational if f (r) =
c

r3

Example 2.14 If f is a scalar point function, prove that ∇f is both solenoidal and 

irrotational, provided f is a solution of Laplace equation.

 ∇ ⋅ ∇f = 0, only when ∇2f = 0.

i.e, ∇f is solenoidal, only when ∇2f = 0 (1)
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 ∇ × ∇f = 0, always [by expansion formula]

i.e. ∇f is irrotational always (2)

From (1) and (2), 

∇f is both solenoidal and irrotational, when ∇2f = 0, i.e. when f is a solution of 

Laplace equation.

Example 2.15 If F  is solenoidal, prove that curl curl curl curl F F=∇4 .

Since F  is solenoidal, ∇⋅ =F 0  (1)

By the expansion formula,

 Curl curl F F F=∇ ∇⋅ −∇( ) 2  (2)

 =−∇2 F  [by (1)]

∴ Curl curl curl curl F  = curl curl ( )−∇2 F

 = − curl curl ( )∇2 F

 =− ∇ ∇⋅∇ −∇ ∇[ { } ( )]2 2 2F F , by using (2)

 =− ∇ ∇ ∇⋅ −∇[ { ( )} ]2 4F F , by interchanging the 

operations ∇ ⋅ and ∇2

 = ∇4 F {by using (1)}

EXERCISE 2(b)

Part A

(Short Answer Questions)

 1. Define divergence and curl of a vector point function.

 2. Give the physical meaning of ∇⋅F
 3. Give the physical meaning of ∇×F

 4. When is a vector said to be (i) solenoidal, (ii) irrotational ?

 5. Prove that the curl of any vector point function is solenoidal.

 6. Prove that the gradient of any scalar point function is irrotational.

 7. If r  is the position vector of the point (x, y, z) w.r.t. the origin, find div r  

and curl r .

 8. If F xyz i xy j x yz k= + −3 22 3 2 , find ∇⋅F  at the point (1,−1, 1).

 9. If F x yz i y zx j z xy k= + + + + +( ) ( ) ( )2 2 22 3 , find ∇×F  at the point (2,−1, 2).

10. If F x y i j x y k= + + + − +( ) ( )1 , show that F  is perpendicular to curl F .

11. If F zi x j yk= + + , prove that curl curl F=0 .

12. Show that F x y i y z j x z k= + + + + −( ) ( ) ( )2 3 2  is solenoidal.

13. Show that F y z i x y z j x y k= + + − + −(sin ) ( cos ) ( ) is irrotational.

14. Find the value of l, so that F y z i x z j x y k= + +λ 4 2 3 2 2 24 5 may be sole-

noidal.

15. Find the value of l, if F x y i x y j x z k= − + + + −( ) ( λ ) ( )2 5 3 is solenoidal.
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16. Find the value of a, if F ax y z i a x j a xz k= − + − + −( ) ( ) ( )3 2 22 1  is irro-

tational.

17. Find the values of a, b, c, so that the vector F x y a z i= + + +( )

( ) ( )bx y z j x cy z k+ − + − + +2 2  may be irrotational.

18. If ū and v  are irrotational, prove that ( )u v×  is solenoidal.

19. If f
1
 and f

2
 are scalar point functions, prove that ∇ × (f

1
 ∇f

2
) = − ∇ × 

(f
2
∇f

1
).

20. If ∇f is a solenoidal vector, prove that f is a solution of Laplace equation.

Part B

21. If u = x2yz and v = xy − 3z2, find (i) ∇ ⋅ (∇u × ∇v) and ∇ × (∇u × ∇v) at the 

point (1, 1, 0).

22. Find the directional drivative of ∇ ⋅ (∇f) at the point (1, −2, 1) in the direction 

of the normal to the surface xy2 z = 3x + z2 , where f = x2 y2 z2

23. If F x i xy j x y z k= + +3 52 2 3 , find ∇⋅ ∇ ∇⋅ ∇× ∇⋅ ∇×F F F F, ( ), , ( )  and 
∇× ∇×( )F  at the point (1, 2, 3)

24. If ā is a constant vector and r  is the position vector of (x, y, z) w.r.t. the ori-

gin, prove that ∇× ⋅ = ×[( ) ]a r r a r .

25. Prove that F yzi zx j xy k= + +3 2 4  is not irrotational, but (x2 y z3) F  is ir-

rotational. Find also its scalar potential.

26. Show that F z x y i x y z j y z x k= + + + + + + +( ) ( ) ( )2 2 3 3 2 2  is irrotation-

al, but not solenoidal. Find also its scalar potential.

27. Find the constants a, b, c, so that F x y az i bx y z j= + + + − − +( ) ( )2 3  

( )4 2x cy z k+ +  may be irrotational. For these values of a, b, c, find its sca-

lar potential also.

28. Find the smallest positive integral values of a, b, c, if F axyz i bx z j= +3 2 3

+cx yz k2 2  is irrotational. For these values of a, b, c, find its scalar potential also.

29. If r  is the position vector of the point (x, y, z) w.r.t. the origin, prove that

(i)∇⋅








=

1 2

r
r

r
 and (ii) ∇ ∇⋅





















=−

1 2
3r

r
r

30. Find the value of n, if rn r  is both solenoidal and irrotational, when 

r xi y j zk= + + .

2.4 LINE INTEGRAL OF VECTOR POINT FUNCTIONS

Let F  (x, y, z) be a vector point function defined at all 

points in some region of space and let C be a curve in that 

region (Fig. 2.2).

Let the position vectors of two neighbouring points 

P and Q on C be r  and r r+∆ .Then PQ r=∆  If F  

acts at P in a direction that makes an angle θ with PQ ,

P

Q

∆r
r + ∆r

θ

r

F C

   Fig. 2.2
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then F r F r⋅∆ = ∆( ) cos θ

In the limit, F r F r⋅ =d d cos θ .

Note  Physically F r⋅ d  means the elemental work done by the force F  through 

the displacement dr .

Now the integral F r

C

∫ ⋅ d  is defined as the line integral of F  along the curve C.

Since F r F r

C C

∫ ∫⋅ =d cos dθ , it is also called the line integral of the tangential

component of F  along C.

Note   (1) F r

A
C

B

( )

d∫ ⋅  depends not only on the curve C but also on the terminal

points A and B.

(2) Physically F r

A
C

B

( )

d∫ ⋅  denotes the total work done by the force F  in

displacing a particle form A to B along the curve C.

(3) If the value of F r

A

B

∫ ⋅ d  does not depend on the curve C, but only

on the terminal points A and B, F  is called a Conservative vector.

Similarly, if the work done by a force F  in displacing a particle 

from A to B does not depend on the curve along which the particle 

gets displaced but only on A and B, the force F  is called a Conser-

vative force.

(4) If the path of integration C is a closed curve, the line integral is

denoted as F r

C

⋅∫ d .

(5) When F F i F j F k= + +1 2 3
,

F r F i F j F k x i y j z k

C C

∫ ∫⋅ = + + ⋅ + +d ( ) (d d d )1 2 3

( )∵ r xi yj zk= + +

 = + +∫ ( d d d )F x F y F z

C

1 2 3 , which is evaluated as in the prob-

lems in Chapter 5 of Part I.

(6) φdr

C

∫ , where f is a scalar point function and F r

C

∫ ×d  are also

line integrals.

2.4.1 Condition for F  to be Conservative

If F  is an irrotational vector, it is conservative.
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Proof:  Since F  is irrotational, it can be expressed as ∇f. i.e., F =∇φ

F r r

x
i

y
j

z
k x i y j

A

B

A

B

A

B

d d

(d d

∫ ∫⋅ = ∇ ⋅

=
∂
∂

+
∂
∂

+
∂
∂









∫ ⋅ +

φ

φ φ φ
++

=
∂
∂

+
∂
∂

+
∂
∂









∫

= ∫

d )

d d d

d

A

B

A

z k

x
x

y
y

z
z

B

φ φ φ

φ

 = [ ]φ A

B
, whatever be the path of integration

 = −φ φ( ) ( )B A

∴ F  is conservative.

Note  If F  is irrotational (and hence conservative) and C is a closed curve, then

F r

C

∫ ⋅ =d 0.

[∵  φ φ( ) ( )A B= , as A and B coincide]

2.4.2 Surface Integral of Vector Point Function

Let S be a two sided surface, one side of which is 

considered arbitrarily as the positive side.

Let F  be a vector point function defined at all 

points of S.

Let dS be the typical elemental surface area in S 

surrounding the point (x, y, z).

Let n  be the unit vector normal to the surface 

S at (x, y, z) drawn in the positive side (or outward 

direction)

Let θ be the angle between F  and n .

∴ The normal component of F F n F= ⋅ = cos θ

The integral of this normal component through the elemental surface area 

dS over the surface S is called the surface integral of F  over S and denoted as

F S

S

∫ cos dθ  or F n S

S

∫ ⋅  d .

If dS  is a vector whose magnitude is dS and whose direction is that of n , then

 dS n S=  d .

∴ F n S

S

∫ ⋅  d  can also be written as F S

S

∫ ⋅ d .

ˆ

(x, y, z)

d s

n

S

θ

F

   Fig. 2.3
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Note  (1) If S is a closed surface, the outer surface is usually chosen as the 

positive side.

(2) φ
S

S∫ d  and F S

S

∫ ×d , where f is a scalar point function are also

surface integrals.

(3) When evaluating F n S

S

∫ ⋅  d , the surface integral is first expressed in 

the scalar form and then evaluated as in problems in Chapter 5 of part I.

To evaluate a surface integral in the scalar form, we convert it into a double

integral and then evaluate. Hence the surface integral F S

S

∫ ⋅ d  is also denoted as

F S

S

∫∫ ⋅ d .

WORKED EXAMPLE 2(c)

Example 2.1 Evaluate φ
C

r∫ d , where C is the curve x = t, y = t2, z = (1 − t) and

f = x2 y (1 + z) from t = 0 to t = 1.

r xi yj zk= + +

∴ d d d dr x i y j z k= + +

Hence the given line integral I ( ) (d d + d )= + +∫ x y z x i y j z k

C

2 1

 

= ∫ + + ∫ + + ∫ +

= ∫ − +

i x y z x j x y z y k x y z z

i t t t j

C C C

2 2 2

4

0

1

1 1 1

2

( )d ( )d ( )d

( ) d tt t t t k t t t

i
t t

j
t

4

0

1
4

0

1

0

1
5 6

0

1

2 2 2

2
5 6

4

∫ − + ∫ − −

= −










 +

( ) d ( ) ( d )

66 7

0

1
5 6

6
2

7
2

5 6

7

30

8

21

7

30

−










 + − +













= + −

t
k

t t

i j k .

Example 2.2 If F xyi zj x k= − + 2 , evaluate F r

C

∫ ×d , where C is the curve

x = t2, y = 2t, z = t3 from (0, 0, 0) to (1, 2, 1).

F r

i j k

xy z x

x y z

z z x y i xy z x x j xy y z x k

× = −

=− + − − + +

d

d d d

( d d ) ( d d ) ( d d )

2

2 2
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∴ The given line integral

 

= − + − − + +

= − ⋅ ⋅+ ⋅

∫ [ ( d d ) ( d d ) ( d d ) ]

[ (

z z x y i xy z x x j xy y z x k

t t t

C

2 2

3 2 43 2))d ( )d ( )d ]t i t t t t t j t t t t k− ⋅ − ⋅ + ⋅ +∫ 2 3 2 2 2 23 2 4 3 3

0

1

[ (0, 0, 0, ) corresponds to t = 0 and (1, 2, 1) corresponds to t = 1]

 

=− +∫ − − +∫ +∫

=−

i t t t j t t t k t t t

i
t

( ) d ( )d ( )d3 2 6 2 4 2

3
6

5 4

0

1
5 5

0

1
3 4

0

1

0

1
6

++









−









+ +






2

5
4

6
2

5

5

0

1
6

0

1

4
5t

j
t

k t
t




=− − +
9

10

2

3

7

5
i j k

Example 2.3 Find the work done when a force F x y x i xy y j= − + − +( ) (2 )2 2  

displaces a particle in the xy-plane from (0, 0) to (1, 1) along the curve (i) y = x, (ii) 

y2 = x. Comment on the answer.

W = Work done by F F r

C

= ⋅∫ d  

 

= − + − + ⋅ + +

= − + − +

∫ [( ) ( ) ] (d d d )

[( ) d (

x y x i xy y j x i y j z k

x y x x xy y

C

2 2

2 2

2

2 ))d ]y

C

∫
Case (i)  C is the line y = x.

∴ W x y x x xy y y

x x

y x
y x

1

2 2

2

0

1

2

2

2

3

= − + − +

= −

=−

=
=

∫

∫

[( ) d ( )d ]

( )d

(d d )

Case (ii)  C is the curve y2 = x.

∴

 

W x y x x xy y y

y y y y

x y
x y y

2

2 2

2

5 3

0

1

2

2 2

2

= − + − +

= − −

=

=
=

∫

∫

[( ) d ( )d ]

( )d

(d d )

−−
2

3

Comment As the works done by the force, when it moves the particle along two 

different paths from (0, 0) to (1, 1), are equal, the force may be a conservative 

force.

In fact, F  is a conservative force, as F  is irrotational.
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It can be verified that the work done by F  when it moves the particle from (0, 0)

to (1, 1) along any other path (such as x2 = y) is also equal to −
2

3
.

Example 2.4 Find the work done by the force F zi xj yk= + +  , when it moves 

a particle along the arc of the curve r ti t j tk= + +cos sin  from t = 0 to t = 2p.

From the vector equation of the curve C, we get the parametric equations of the 

curve as x = cos t, y = sin t, z = t.

Work done by F F r

zi xj yk x i y j z k

z x x y y z

t

C

C

C

= ∫ ⋅

= + + ⋅ + +∫

= + +∫

= −

d

( ) (d d d )

( d d d )

( sin tt t t t

t t t t
t

) cos sin d

cos sin
sin

2+ +



∫

= − + +







0

2

0

2

1

2

2

2

π

π

−












= + − − −
=

cos

( ) ( )

t

2 1 1

3

π π

π

Example 2.5 Evaluate F r

C

∫ ⋅ d , where F y i x y j zk= + + +(sin ) ( cos )1  and

C is the circle x2 + y2 = a2 in the xy-plane.

Given integral = + + +



 ⋅ + +

= + +

∫ (sin ) ( cos ) (d d d )

sin d ( co

y i x y j zk x i y j z k

y x x

C

1

1 ss ) d d

sin d ( cos )d

y y z z

y x x y y

x y a

z

+[ ]

= + +[

+ =
=












∫
2 2 2

0

1 ]]
+ =

∫
x y a2 2 2

Since C is a closed curve, we use the parametric equations of C, namely x = a cos θ,  

y = a sin θ and the parameter θ as the variable of integration. To move around the 

circle C once completely, θ varies from 0 to 2 π.

Now, given integral = + +[ ]

= [ ]

= ⋅[

∫
∫

(sin d cos d ) d

d( sin ) d

d cos sin ( sin )

y x x y y x y

x y x y

a aθ θ ]]+{ }∫ a2

0

2

cos dθ θ

π
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= ⋅ + +




















=

a a
a

a

cos sin ( sin )
sin 2

θ θ θ
θ

π

π
2

0

2

2

2 2

Example 2.6 Find the work done by the force F xy z i x j xz k= + + +( )2 33 2 2 , 

when it moves a particle from (1, −2, 1) to (3, 1, 4) along any path.

To evaluate the work done by a force, the equation of the path and the terminal 

points must be given. As the equation of the path is not given in this problem, we 

guess that the given force F  is conservative. Let us verify whether F  is conservative, 

i.e. irrotational.

∇× =
∂
∂

∂
∂

∂
∂

+

= − − − + −
=

F

i j k

x y z

xy z x xz

i z z j x x k

2 3

0 0 3 3 2 2

0

3 2 2

2 2( ) ( ) ( )

∴ F  is irrotational and hence conservative. 

∴ Work done by F  depends only on the terminal points.

Since F  is irrotational, let F=∇φ .

It is easily found that φ = x2 y + z3 x + c.

 Work done by F F r= ⋅
−
∫ d

( )

( )

1 2 1

3 1 4

, ,

, ,

 

= ∇ ⋅

=

=[ ]

−

−

−

∫

∫

φ

φ

φ

d

d

( , , )

( , , )

(3,1, 4)

( , , )

( , , )

( , ,

r

x y z

1 2 1

1 2 1

3 1 4

1 2 11

3 1 4

2 2

1 2 1

3 1 4

201 1

2

)

( , , )

( , , )

( , , )

( ) ( )

= + +





= + − − +
=

−
x y z x c

c c

002 .

Example 2.7 Find the work done by the force F y x y z i x x y z= − + −( )3 22 2 2 2( )

j x y zk−2 , when it moves a particle around a closed curve C.

To evaluate the work done by a force, the equation of the path C and the terminal 

points must be given.
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Since C is a closed curve and the particle moves around this curve once completely, 

any point (x
0
, y

0
, z

0
 ) can be taken as the initial as well as the final point.

But the equation of C is not given. Hence we guess that the given force F  is 

conservative, i.e. irrotational. Actually it is so, as verified below.

∇× =
∂
∂

∂
∂

∂
∂

− − −

= − + − − +

F

i j k

x y z

y x yz x y z x xyz

xz xz i yz

3 2 2

2 2 2 2

2 2 2 3 2

( ) ( yyz j x y z x y z k) ( )+ − − +
=

6 6

0

2 2 2 2

Since F  is irrotational, let F =∇φ .

∴ Work done by F F r

C

= ⋅∫ d

 = ∇ ⋅

=

= −
=

∫

∫

φ

φ

φ φ

d

d

( , , ) ( , , )

( , , )

( , , )

r

x y z x y z

C

x y z

x y z



0 0 0

0 0 0

0 0 0 0 0 0

00

Example 2.8 Evaluate A S

S

∫∫ ⋅ d , where A x yi yz j zk= − +12 3 22  and S is

the portion of the plane x + y + z = 1 included in the first octant (Fig. 2.4).

Given integral I = dA n S

S

∫∫ ⋅ , where n  is the unit normal to the surface S given by

f = c,

i.e. x + y + z = 1

∴ φ

φ

= + +

∇ = + +

= + +

x y z

i j k

n i j k 1

3
( )

 

∴ I ( ) ( ) d

( ) d

= − + ⋅ + +

= − +

∫∫

∫∫

12 3 2
1

3

1

3
12 3 2

2

2

x yi yzj zk i j k S

x y yz z S

S

S

Fig. 2.4

B

C

O

A

z

y

x
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To convert the surface integral as a double integral, we project the surface S on the 

xoy - plane. Then dS cos γ= dA, where γ is the angle between the surface S and the 

xoy - plane, i.e. the angle between n  and k . ∴cos γ= ⋅n k

∴ d
d d d

S
A

n k

x y
=

⋅
=

 1

3

∴ I = ( )
d d1

3
12 3 2

1

3

2x y yz z
x y

OAB

− +
∆
∫∫

[ the projection of S on the xoy plane is ΔOAB]

 = − − − + − −{ }
∆
∫∫ 12 3 1 2 12x y y x y x y x y

OAB

( ) ( ) d d

Note  To express the integrand as a function of x and y only, z is expressed as a 

function of x and y from the equation of S.

I ( )d d

( ) ( )

= + + − − +

= − + − +

−

∫∫ 12 3 3 5 2 2

4 1
3

2
1 3

2 2

0

1

0

1

3 2

x y xy y y x x y

y y
y

y

y

yy y y y y y y2 2

0

1

1 5 1 1 2 1

49

120

( ) ( ) ( ) ( ) d− − − − − + −












=

∫

 

Example 2.9 Evaluate F S

S

∫∫ ⋅ d , where F yzi zxj xyk= + +  and S is the part

of the sphere x2 + y2 + z2 = 1 that lies in the first octant.

Given integral I d= ⋅∫∫ F n S

S

 , where n  is the unit normal to the surface S given by

 f = c i.e. x2 + y2 + z2 = 1.

 f = x2 + y2 + z2

∴ ∇ = + +φ 2 2 2xi yj zk

∴ n
xi yj zk

x y z

xi yj zk

xi yj zk

 =
+ +

+ +

=
+ +

×

= + +

2 2 2

4

2

4 1

2 2 2( )

( )

.

 

[ the point (x, y, z) lies on S]

∴ I = ( ) ( ) dyzi zxj xyk xi yj zk S

S

+ + ⋅ + +∫∫
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=

=
⋅

∫∫

∫∫

3

3

xyz S

xyz
x y

n k

S

R

d

d d


,

where R is the region in the xy-plane bounded 

by the circle x2 + y2 = 1 and lying in the first 

quadrant.

 

I =
d d

d d

d

3

3

3
2

0

1 2

0

1

0

1

0

1 2
2

xyz
x y

z

xy x y

y
x

R

y

y

∫∫

= ∫∫

= ∫










−

−

yy

y y y

y y

= ∫ −

= −










=

3

2
1

3

2 2 4

3

8

0

1
2

0

1
2 4

( ) d

Example 2.10 Evaluate F S

S

∫∫ ⋅ d  if , F yzi y j xz k= + +2 2 2 and S is the sur-

face of the cylinder x2 + y2 = 9 contained in the first octant between the planes

z = 0 and z = 2.

Given integral I d= ⋅∫∫ F n S

S

 , where n  is the unit normal to the surface S given by

f = c,  i.e. x2 + y2 = 9 

∴ f = x2 + y2

 ∇ = +φ 2 2xi yj

∴ n
xi yj

x y

xi yj

 =
+

+

=
+

×

2 2

4

2

4 9

2 2( )

( )
 [∴ the point (x, y, z) lies on S]

 = +
1

3
( )xi yj

BO

A

z

y

x

Fig. 2.5
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∴ I = ( ) ( )dyzi y j xz k xi yj S

s

+ + ⋅ +∫∫ 2
1

3

2 2

 

= +

= +
⋅

∫∫

∫∫

1

3
2

1

3
2

3

3

( ) d

( )
d d

xyz y S

xyz y
x z

n j

s

R


where R is the rectangular region OABC in the 

xoz-plane, got by projecting the cylindrical surface 

S on the xoz-plane (Fig. 2.6).

 

I = ( )
d d

( ) d d

[ ( )] d d

1

3
2

3

2

2 9

3

2

2

0

3

xyz y
x z

y

xz y x z

xz x x

R

R

+

= +

= + −

∫∫

∫∫

∫ zz

z z

z
z

0

2

0

2

2
2

9

2
18 3 2 9

9

2 2
36

∫

∫= + × − ×








= ⋅ + ⋅










d

00

81=

EXERCISE 2(c)

Part A

(Short Answer Questions)

 1. Define line integral of a vector point function.

 2. When is a force said to be conservative? State also the condition to be  

satisfied by a conservative force.

 3. If F  is irrotational, prove that it is conservative.

 4. Define surface integral of a vector point function.

 5. Explain how F S

S

⋅∫∫ d  is evaluated.

 6. Evaluate r r

C

∫ ⋅d , where C is the line y = x in the xy-plane from (1, 1) to  

(2, 2).

 7. Find the work done by the force F xi yj= +2 when it moves a particle on 

the curve 2y = x2 from (0, 0) to (2, 2).

 8. Prove that the force F x yz i xz j xyk= + + − +( ) ( )2 3 is conservative.

B

O

C

A

z

y

x

Fig. 2.6
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 9. Evaluate ( ) dyzi zxj xyk S

S

+ + ⋅∫∫ , where S is the region bounded by x = 0,

x = a, y = 0, y = b and lying in the xoy-plane.

10. Find the work done by a conservative force when it moves a particle around 

a closed curve.

Part B

11. Evaluate φ dr

C

∫ , where f = 2xyz2 and C is the curve given by x = t2, y = 2t,

z = t3 from t = 0 to t = 1.

12. Evaluate F r

C

∫ ×d  along the curve x = cos t, y = 2 sin t, z = cos t from t = 0

to t =
π

2
, given that F xi yj zk= + +2 .

13. Evaluate F r

C

∫ ×d  along the curve x = cos θ, y = sin θ, z = 2 cos θ from θ = 0

to θ
π

=
2

, given that F yi zj xk= − +2

14. Evaluate F r

C

⋅∫ d  along the curve x = t2, y = 2t, z = t3 from t = 0 to t = 1,

given that F xyi zj x k= − + 2 .

15. Find the work done by the force F xyi y j= −3 2 , when it moves a particle

along the curve y = 2x2 in the xy-plane from (0, 0) to (1, 2).

16. Find the work done by the force F y z i z x j x y k= + + + + +( ) ( ) ( )3 2 3 2 , 

when it moves a particle along the curve x = a cos t, y = a sin t, z
at

=
2

π
 

between the points (a, 0, 0) and (0, a, a).

17. Find the work done by the force F y i xzj yz x k= + + + −( ) ( )2 3  when it 

moves a particle along the line segment joining the origin and the point (2, 1, 1).

18. Evaluate F r

C

∫ ⋅d , where C is the circle x2 + y2 = 4 in the xy-plane, if

F x y z i x y z j x y z k= − − + + − + − +( ) ( ) ( )2 3 2 42 .

19. Find the work done by the force F x y i x z j yk= + + + +( ) ( )2 2 2 2 , when it

moves a particle along the upper half of the circle x2 + y2 = 1 from the point 

(−1, 0) to the point (1, 0).

20. Find the work done by the force F e z xy i x j e z kx x= − + − + +( ) ( ) ( )2 1 2 ,

when it moves a particle from (0, 1, −1) to (2, 3, 0) along any path.

21. Find the work done by the force F y x z i y x j= + + − +( cos ) ( sin )2 3 2 4

( )3 22xz k+ ,when it moves a particle from (0, 1, −1) to 
π

2
1 2, ,−







 along any 

path.
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22. Find the work done by the force F y i xy z j yk= + + +2 2 2( ) , when it

moves a particle around a closed curve C.

23. Evaluate F S

S

⋅∫∫ d , where F xyi x j x z k= − + +2 ( )  and S is the part of

the plane 2x + 2y + z = 6 included in the first octant.

24. Evaluate F S

S

⋅∫∫ d , where F yi xj k= − + 4  and S is the part of the sphere

x2 + y2 + z2 = a2 that lies in the first octant.

25. Evaluate F S

S

⋅∫∫ d , where F zi xj y zk= + −3 2  and S is the surface of the

cylinder x2 + y2 = 16 included in the first octant between the planes z = 0 and 

z = 5.

2.5 INTEGRAL THEOREMS

The following three theorems in Vector Calculus are of importance from theoretical 

and practical considerations:

1. Green’s theorem in a plane

2. Stoke’s theorem

3. Gauss Divergence theorem

Green’s theorem in a plane provides a relationship between a line integral and a 

double integral.

Stoke’s theorem, which is a generalisation of Green’s theorem, provides a 

relationship between a line integral and a surface integral. In fact, Green’s theorem 

can be deduced as a particular case of Stoke’s theorem. Gauss Divergence theorem 

provides a relationship between a surface integral and a volume integral.

We shall give the statements of the above theorems (without proof) below and 

apply them to solve problems:

2.5.1 Green’s Theorem in a Plane

If C is a simple closed curve enclosing a region R in the xy-plane and P(x, y), Q (x, y) 

and its first order partial derivatives are continuous in R, then

( d d ) d dP x Q y
Q

x

P

y
x y

C R

+ =
∂
∂
−
∂
∂









∫ ∫∫

where C is described in the anticlockwise direction.

2.5.2 Stoke’s Theorem

If S is an open two sided surface bounded by a simple closed curve C and if F  is a 

vector point function with continuous first order partial derivatives on S, then

F r F S

C S

⋅ = ⋅∫ ∫∫d curl d ,

where C is described in the anticlockwise direction as seen from the positive tip of 

the outward drawn normal at any point of the surface S.
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2.5.3 Gauss Divergence Theorem

If S is a closed surface enclosing a region of space with volume V and if F  is a vector 

point function with continuous first order partial derivatives in V, then

F S F v
S V

∫∫ ∫∫∫⋅ =d (div ) d .

2.5.4 Deduction of Green’s Theorem from Stoke’s Theorem

Stoke’s theorem is F r F S
C S

∫ ∫∫⋅ = ⋅d curl d   (1)

Take S to be a plane surface (region) R in the xy-plane bounded by a simple closed 

curve C.

Also take F P x y i Q x y j= +( , ) ( , )

Then curl F

i j k

x y z

P Q

Q

x

P

y
k

=
∂
∂

∂
∂

∂
∂

=
∂
∂
−
∂
∂











0

 [ P and Q are functions of x and y]

Inserting all these in (1), we get

 ( ) (d d d ) dPi Q j xi yj zk
Q

x

P

y
k S

RC

+ ⋅ + + =
∂
∂
−
∂
∂










⋅∫∫∫

i.e. ( d d ) ( ) dP x Q y Q P k n S

C

x y

R

+ = − ⋅∫ ∫∫
  (2)

Now n  is the unit vector in the outward drawn normal direction to the surface R. 

Normal at any point of R, that lies in the xy-plane, is parallel to the z-axis.

Taking the positive direction of the z-axis as the positive (outward) direction of 

n , we get n k = .

Using this in (2), we get

( d d ) ( ) d dP x Q y Q P x y

C

x y

R

+ = −∫ ∫∫

 [ dS = elemental plane surface area in the xy-plane

 = dx dy]

Note  If the surface S is a plane surface, problems in Stoke’s theorem will reduce 

to problems in Green’s theorem in a plane.

2.5.5 Scalar form of Stoke’s Theorem

Take F Pi Q j Rk= + +  in Stoke’s theorem, where P, Q, R are functions of x, y, z.
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Then  F r P x Q y R z⋅ = + +d d d d   (1)

 Curl F R Q i P R j Q P ky z z x x y= − + − + −( ) ( ) ( )

∴ Curl F S F n S⋅ = ⋅d curl d

 

= − ⋅ + − ⋅ + − ⋅

= −

( )( )d ( )( )d ( )( )d

( ) d

R Q n i S P R n j S Q P n k S

R Q y

y z z x x y

y z

  

dd ( ) d d ( ) d dz P R z x Q P x yz x x y+ − + −  (2)

[ dS cos γ = dx dy i.e. dS ( )n k ⋅  = dx dy] 

Inserting (1) and (2) in Stoke’s theorem, it reduces to the scalar form

( d d d ) [( ) d d ( ) d d ( ) d d ]P x Q y R z R Q y z P R z x Q P x yy z z x x y

SC

+ + = − + − + −∫∫∫
 (3)

Note  If we take P and Q as functions of x and y only and R = 0 in (3), we get 

Green’s theorem in a plane.

2.5.6 Scalar form of Gauss Divergence Theorem

Take F Pi Qj Rk= + +  in Divergence theorem, where P, Q, R are functions of

x, y, z.

Then div F
P

x

Q

y

R

z
=
∂
∂
+
∂
∂

+
∂
∂

  (1)

 

F S F n S

P n i S Q n j S R n k S

P y z Q z x R x

⋅ = ⋅

= ⋅ + ⋅ + ⋅
= + +

d d

( ) d ( ) d ( ) d

d d d d d d



  

yy  (2)

Inserting (1) and (2) in Divergence theorem, we get

 ( d d d d d d ) ( ) d d dP y z Q z x R x y P Q R x y z

S

x y z

V

+ + = + +∫∫ ∫∫∫  (3)

which is the scalar form of Divergence theorem.

Note  (3) is also called Green’s theorem in space.

2.5.7 Green’s Identities

In Divergence theorem, take F d=z }, where f and y are scalar point functions. 

Then div (f ∇ ψ) = ∇⋅ (f ∇ ψ)

 = f ∇2 ψ + ∇f ⋅ ∇y

∴ Divergence theorem becomes

 φ ψ φ ψ φ ψ∇ ⋅ = ∇ +∇ ⋅∇∫∫ ∫∫∫d ( ) dS V

S V

2  (1)
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Interchanging f and y,

 d ( )dS V
S V

2

$ $d d d d= +} z } z z }## ###  (2)

(l) - (2) gives,

 ( ) d ( ) dφ ψ ψ φ φ ψ ψ φ∇ − ∇ ⋅ = ∇ − ∇∫∫ ∫∫∫S V

S V

2 2  (3)

Note  (1) or (2) is called Green’s first identity and (3) is called Green’s second 

identity.

WORKED EXAMPLE 2(d)

Example 2.1 Verify Green’s theorem in a plane with respect to ( )x y

C

2 2−∫  dx +

2xy dy, where C is the boundary of the rectangle in the xoy-plane bounded by the 

lines x = 0, x = a, y = 0 and y = b.

(OR)

Verify Stoke’s theorem for a vector field defined by F x y i xy j= − +( )2 2 2  in the 

rectangular region in the xoy-plane bounded by the lines x = 0, x = a, y = 0 and y = b.

Stoke’s theorem is F r F S
SC

⋅ = ⋅∫∫∫ d curl d

Now curl F

i j k

x y z

x y xy

y y k

=
∂
∂

∂
∂

∂
∂

−

= +

2 2 2 0

2 2( ) 

∴ We have to verify that 

[( ) ] (d d d ) dx y i xy j xi y j zk yk n S

C S

2 2 2 4− + ⋅ + + = ⋅∫ ∫∫ 

i.e. [( ) d d ] d dx y x xy y y x y

C R

2 2 2 4− + =∫ ∫∫  [Fig. 2. 7] (1)

∵ n k=





(1) is also the result for the given function as per Green’s theorem.

O

D

y

x = 0

y = b

y = 0

x = a

B

A
x

Fig. 2.7
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L.S. of (1) [( ) d

d d d

2= + + + −

=
=( ) =

=( ) =
=( )

∫ ∫ ∫
OA
y
y

AB
x a
x

BD
y b
y

x y

0
0 0 0

2 xx x y y

DO
x
x

+

=
=( )
∫ 2

0
0

d ]

d

[∵ the boundary C consists of 4 lines]

 = + + − +∫∫ ∫x x ay y x b x

ba

a

2

00

0

2 0d d ( ) d2 2

Note  To simplify the line integral along each line, we make use of the equation 

of the line and the corresponding value of dx or dy

 =









+ − −











=

x
a y

x
b x

ab

a

b

a
3

0

0

3
2

0

2

3 3

2

( )2

 

R.S. of (1) d d

( ) d ( )2

=

= =

=

∫∫

∫

4

4 2

2

00

0

0

0

2

y x y

y x y a y

a b

ab

a

b

b

.

Since L.S. of (1) = R.S. of (1), Stoke’s theorem (Green’s theorem) is verified.

Example 2.2 Verify Green’s theorem in a plane for [(3 8 )d (4 )2 2x y x y xy

C

− + −∫ 6  

d ]y , where C is the boundary of the region defined by the lines x = 0, y = 0 and x + y = 1.

Green’s theorem is ( d d ) = ( ) d dP x Q y Q P x yx y

RC

+ −∫∫∫
∴ For the given integral,

 [3 8 ] d (4 ) d ] = d d2x y x y x y y y x y

C R

2 6 10− + −∫ ∫∫ [Fig. 2.8] (1)

O

B

y

x = 0

y = 0

x + y = 1

A
x

Fig. 2.8

L.S. of (1)

d
d d

= + +

=
=( ) + =

= −
=−













∫ ∫
OA

y
y

AB
x y
x y
x y

0
0

1
1

BBO
x
x

x y x y x y y

=
=( )
∫ − + −

0
0

6

d

2 2[(3 8 )d (4 )d ]
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= + − − − − −

=

∫∫ ∫3 6 4

3

2 2

0

1

0

1

1

0

x x y y y y y y y y yd [{3(1 ) 8 }( d ) + {4 (1 )}d ]+ d2

xx x y y y y y2

0

1

0

1

0

1

3 4 1
11

3
2 3 2

5

d (11 + 4 ) d d2∫ ∫∫+ − − = + + −








−

=
33

R.S. of (1)  =

= −

= −









=

−

∫∫

∫

10

10

5 10
3

5

3

0

1

0

1

0

1

2
3

0

1

y x y

y y

y
y

y

d d

(1 y) d

Since L.S. of (1) = R.S. of (1), Green’s theorem is verified.

Example 2.3 Use Stoke’s theorem to evaluate F r

C

∫ ⋅d , where F x y= −(sin )

i xj−cos and C is the boundary of the triangle whose vertices are (0, 0), 
π

2
,0











 

and π

2
,1











.

Note  Evaluating F r

C

⋅∫ d  by using Stoke’s theorem means  expressing the line 

integral in terms of its equivalent surface integral and then evaluating the surface 

integral.

By Stoke’s theorem, F r F S

SC

⋅ = ⋅∫∫∫ d curl d , where S is any open two-sided

surface bounded by C. [Fig. 2.9]

To simplify the work, we shall choose S as the plane surface R in the xoy-plane 

bounded by C.

∴ F r F k x y xoy n k S x y

RC

⋅ = ⋅ = =∫∫∫ d curl d d [ For the -plane, and d d d ]∵ 

For this problem,

curl

(sin ) cos

(sin )

F

i j k

x y z
x y x

x k

=
∂
∂

∂
∂

∂
∂

− −

= +

0

1
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∴ Τhe given line integral = (1 + sin ) d dx x y

R

∫∫

 

=

= −( )

= − +





∫∫

∫

(1 + sin ) d d

cos d

cos

x x y

x x y

y y

y

y

π

π

π

π

π π π

2

2

0

1

2

2
0

1

2 2 2







= − +










= +

∫ d

sin

y

y
y y

0

1

2

0

1

2 4

2

2

4

2

π π

π

π

π

π
.

Example 2.4 Use Green’s theorem in a plane to evaluate [(2 ) dx y x
C

− +∫
( + ) d ]x y y , where C is the boundary of the circle x2 + y2 = a2 in the xoy-plane.

By Green’s theorem in a plane,

( d d ) = ( ) d dP x Q y Q P x y
C

x y

R

+ −∫ ∫∫

∴
[(2 ) d ( + ) d ] [1 ( 1)] d dx y x x y y x y

C
R

− + = − −∫ ∫∫

 

=

= ×

=

∫∫2

2

2 2

d d [Fig. 2.10]

area of the region

x y

R

a

R

π

Example 2.5 Verify Stoke’s theorem when F x y x i x y j= − − −(2 ) ( )22 2  and C 

is the boundary of the region enclosed by the parabolas y2 = x and x2 = y.

Stoke’s theorem is F r F n S

SC

⋅ = ⋅∫∫∫ d curl d

Now curl 

( )

F

i j k

x y z

xy x x y

x x k

xk

=
∂
∂

∂
∂

∂
∂

− − +

= − −

=−

2 0

2 2

4

2 2 2

x
2

π

y

O

y =

y = 0
A

x

2

2
, 0

π

π

x =

B
2

, 1
π

Fig. 2.9

y

O
x

Fig. 2.10
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∴ Stoke’s theorem becomes

[( ) d ( ) d ] d d

d d [Fig. 2.1

2 4

4

2 2 2x y x x x y y x k k x y

x x y

C R

R

− − − = − ⋅

= −

∫ ∫∫

∫∫ 11]  (1)

O

y = x2

x = y2

D

A

B(1, I)

Fig. 2.11

L.S. of (1) [(2 ) d ( ) d

d d

= + − − −

=
=









∫
OAB

y x
y x x

x y x x x y y

2

2

2 2 2 ]]

( ) d ( ) d

d d

2

BDO

x y
x y y

x x x y y y y

=
=









∫

∫= − + − +

2

2

5 4 5 2

1

0

0

2 3 2

11

∫
[ the coordinates of B are found as (1, 1) by solving the equations y = x2 and 

x = y2]

 

=
−

= −

=−

=− −

∫∫

∫

3

5

4

2

2

20

1

2
2

0

1

4

0

1

R.S. of (1) d d

( ) d

( ) d

x x y

x y

y y y

y

y

y

y

∫∫

=−
3

5
Since L.S. of (1) = R.S. of (1), Stoke’s theorem is verified.

Example 2.6 Prove that the area bounded by a simple closed curve C is given by 

1

2
( d d )x y y x

C

−∫  Hence find the area bounded (i) by the parabola y2 = 4a x and its 

latus rectum and (ii) by the ellipse 
x

a

y

b

2

2

2

2
1+ = .



Vector Calculus 2.47

By Green’s theorem, ( d d ) ( )d dP x Q y Q P x yx y

RC

+ = −∫∫∫

Taking P
y

=−
2

 and Q
x

=
2

, we get

 

1

2

1

2

1

2
( d d ) d d

d d

x y y x x y

x y

C R

R

− = − −




















=

∫ ∫∫

∫∫
 =Area of the region R enclosed by C.

(i) Area bounded by the parabola and its latus

rectum = −∫
1

2
( d d )x y y x

C

[Fig. 2.12]

  

= + −
















= − +
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=

=
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4
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( d d )

( d d )
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L SLLOL
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a
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a
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d

( d d )

y
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x
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=
=

∫ ∫ −
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= − +
















=

−

−

∫∫
1

2 4

4

2

2

2

2

2

2

y

a
y a y

y

a

a

a

a

a

d d

dyy a y

a

aa

+

=

∫∫ d

0

2

0

2

28

3
.

(ii) Area bounded by the ellipse

 = −∫
1

2
( d d )x y y x

C

 
= −

=
=











∫
1

2
( d d )

[Fig. 2.13]
cos

sin

x y y x

x a

y b

θ

θ

 = +∫
1

2

2 2

0

2

ab (cos sin ) dθ θ θ

π

 = πab.

O

x = a

x

y

L

L'

S

(a, 2a)

(a, –2a)

Fig. 2.12

O
x

y

3π
θ =

2

π
θ =

θ = 0

θ = 2π

θ = π

2

Fig. 2.13
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Example 2.7 Use Stoke’s theorem to prove that (i) curl (grad f) = 0 and (ii) div

(curl )F = 0.

(i) Stoke’s theorem is curl d dF S F r

CS

⋅ = ⋅∫∫∫ 

Taking F = grad φ , we have

 curl (grad ) d grad dφ φ⋅ = ⋅∫∫∫ S r

CS



 = ∫ dφ
C



 = 0

The above result is true for any open two-sided surface S, provided it is bounded 

by the same simple closed curve C. [Fig. 2.14]

∴  curl (grad ) d , [for any  and hence for any d ]φ ⋅ =S S S0

∴ curl (grad φ) =0

(ii) Gauss divergence theorem is

(div )d dF v F S

SV

= ⋅∫∫∫∫∫ , where S is a closed surface enclosing a volume V.

Replacing F Fby curl , we have

 div (curl ) d curl dF v F S

SV

= ⋅∫∫∫∫∫  (1)

The surface integral in (1) appears to be the same as that in Stoke’s theorem. However 

Stoke’s theorem cannot be used to simplify the R.S. of (1), as S is a closed surface. 

In order to enable us to use Stoke’s theorem, we divide S into two parts S
1
 and S

2
 by 

a plane. S
1
 and S

2
 are open two-sided surfaces, each of which is bounded by the same 

closed curve C as given in Fig. 2.15.

Now (1) becomes

div (curl ) d curl d curl dF v F S F S

SSV

= ⋅ + ⋅∫∫∫∫∫∫∫
21

 = ⋅ + ⋅∫∫ F r F r

CC

d d

 [by Stoke’s theorem]

Note  If C is described in the anticlockwise sense as seen from the positive tip 

of the outer normal to S
1
, it will be described in the clockwise sense as seen from the 

positive tip of the outer normal to S
2
.

∴  div (curl ) d d dF v F r F r

CCV

= ⋅ − ⋅∫∫∫∫∫ 

 = 0.

Since V is arbitrary, div (curl )F = 0 .

C

S2S1 S3

Fig. 2.14

C

S1

S2

Fig. 2.15
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Example 2.8 Evaluate (sin d cos d sin d )z x x y y z

C

− +∫ , by using Stoke’s theorem,

where C is the boundary of the rectangle defined by 0 ≤ x ≤ π, 0 ≤ y ≤ 1, z = 3.

The scalar form of Stoke’s theorem is ( d d d ) [( )P x Q y R z R Qy z

SC

+ + = −∫∫∫
d d ( ) d  d ( ) d  d ]y z P R z x Q P x yz x x y+ − + −
Taking P = sin z, Q = −cos x, R = sin y, we get

(sin d cos d sin d )z x x y y z

C

− +∫

 = + +∫∫ (cos d d cos d d sin d d )y y z z z x x x y

S

 = ∫∫ sin  d  dx x y

S

 [  S is the rectangle in the z = 3 plane

 and hence dz = 0]

 

=

=−

∫∫ sin d d

(cos )

x x y

x

00

1

0

π

π

 = 2

Example 2.9 Evaluate ( d d d d d d )x y z y z x z x y

S

+ +∫∫ 2 3  where S is the closed

surface of the sphere x2 + y2 + z2 = a2.

Scalar from of divergence theorem is

( d d d d d d ) ( ) dP y z Q z x R x y P Q R Vx y z

VS

+ + = + +∫∫∫∫∫

Taking P = x, Q = 2y, R = 3z,

the given surface integral =  6 6dv V

V

=∫∫∫

 
= ×6

4

3

3πa

 = 8πa3.

Example 2.10 Verify Stoke’s theorem for F xyi yz j zxk= − −2 where S is the 

open surface of the rectangular parallelopiped formed by the planes x = 0, x = 1, y = 

0, y = 2 and z = 3 above the xoy-plane.

Stoke’s theorem is F r F S

SC

⋅ = ⋅∫∫∫ d curl d

Here curl F

i j k

x y z

xy yz xz

=
∂
∂

∂
∂

∂
∂

− −2
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= + +2yi zj xk

∴ Stoke’s theorem takes form

 ( d d d ) = ( ) dxy x yz y zx z yi zj xk S

SC

− − + − ⋅∫∫∫ 2 2  (1)

C

B'
O'

A'

C'

B
O

A

z

x

y

n = – jˆ

n =  jˆ

Fig. 2.16

The open cuboid S is made up of the five faces x = 0, x = 1, y = 0, y = 2 and z = 3 and 

is bounded by the rectangle OAC′ B lying on the xoy-plane. [Fig. 2.16]

L.S. of (1) = ( d d d )xy x yz y zx z

OAC B

− −
′
∫ 2

 =
′
∫ xy x

OAC B

d  [Fig. 2.17] ( the boundary C lies on the plane z = 0)

 

= + + +

=
=









′
=
=









′
=

∫∫ ( d )

ddd

xy x
BO

x
x

C B

y
y

AC

x 0
0

2
0

1
xx

OA

y
y

x x

=








=
=









∫∫

∫=

0

0
0

1

0

2

d

d

 = −1.

(1) (2 )yi zj xk n sR.S. of d
0 1x

n i
x
n i

y

n j

y

n j

z
n k

0 2 3

$+ + + + += -
=
=

=
=

=

=

=

=

=

=- -

r r r t

t t
t r t r t r

` ` c c cj j m m m
## ## ## ## ##

Note   nt  is the unit normal at any point of the concerned surface. For example, 

at any point of the plane surface y = 0, the outward drawn normal is parallel to the 

y-axis, but opposite in direction. ∴ nt  at any point of y = 0 is equal to − j .

Similarly nt  for y = 2 is equal to j  and so on.

Using the relevant value of nt  and simplifying the integrand, we have

R. S. of (1) =− + − + −
= = ===
∫∫ ∫∫ ∫∫∫∫∫∫2 2

0 1 320

y S y S z S z S x S

x x zyy

d d d d d

C'
B

O A

y

x

Fig. 2.17
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=− + − + −∫∫ ∫∫∫∫∫∫2 2

0

2

0

3

0

3

0

1

0

3

0

1

0

2

0

3

0

y y z y y z z z x z z x x x yd d d d d d d d d d

11

0

2

∫∫

[ Elemental plane (surface) area dS on x = 0 and x = 1 are equal, each equal to dy 

dz etc.]

 =− ∫∫ x x yd d

0

1

0

2

 ( the other integrals cancel themselves)

 

=−










=−

∫
x

y
2

0

2

0

1

2

1

d

.

Thus Stoke’s theorem is verified.

Example 2.11 Verify Stoke´s theorem for F y zi z xj x yk= + +2 2 2  where S is the 

open surface of the cube formed by the planes x = ±a, y = ±a and z = ±a, in which 

the plane z = −a is cut.

Stoke’s theorem is F r F S

SC

⋅ = ⋅∫∫∫ d curl d

Here  curl 

( ) ( ) ( )

F

i j k

x y z

y z z x x y

x zx i y xy j z yz k

=
∂
∂

∂
∂

∂
∂

= − + − + −

2 2 2

2 2 22 2 2

∴ Stoke’s theorem takes the form

( d d d ) [( ) ( ) ( ) ] dy z x z x y x y z x zx i y xy j z yz k S

SC

2 2 2 2 2 22 2 2+ + = − + − + − ⋅∫∫∫∫  (1)

F

O
H

E

B

CD

A

y

z

x
0

Fig. 2.18

The open cube S is bounded by the square ABCD that lies in the plane z = −a (Fig. 

2.18)

L.S. of (1) = + +
=−
∫ ( d d d )

( )

y z x z x y x y z

z a

2 2 2

 = − +∫ ( d d )ay x a x y

ABCD

2 2
 [ dz = 0, as z = −a]
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x = a

y = a

dx = 0dx = 0

dy = 0

y = – a

x = – a

dy = 0

AD

BC

Fig. 2.19

 L.S. of (1) = + + + − + ( )

= −

∫ ∫ ∫ ∫

∫ ∫
−

−

AB BC CD DA

a

a

a

a

ay x a x y

a y a x

( d d ) Fig. 2.19

d d

2 2

3 3 −− −

=

−

−
∫ ∫a y a x

a

a

a

a

a

3 3

44

d d

.

 R.S. of (1) = + + +
=−
=−









=
=









=−
=−





∫∫ ∫∫
x a

n i

x a

n i

y a

n j  




=
=









∫∫ ∫∫
y a

n j

 + − + − + − ⋅
=
=









∫∫ [( ) ( ) ( ) ] dx zx i y xy j z yz k n S

z a

n k

2 2 22 2 2





 

= − + − + −
= =−=−
∫∫ ∫∫∫∫ ( ) d ( ) d ( ) d2 2 22 2 2zx x S x zx S xy y S

x a y ax a

 
+ − + −

= =
∫∫ ∫∫( ) d ( ) dy xy S z yz S

y a z a

2 22 2

 
= − − + −∫∫ ∫∫( ) d d ( ) d d2 22 2az a y z a az y z

 + − − + −∫∫ ∫∫( ) d d ( ) d d2 22 2ax a z x a ax z x

 + −∫∫ ( ) d da ay x y2 2  [ using the equations of the planes to

simplify the integrands]

 = − + −
−−−−
∫∫∫∫ 4 4az y ax z x

a

a

a

a

a

a

a

a

d dz d d

 + −
−−
∫∫ ( ) d da ay x y

a

a

a

a

2 2

 = 0 + 0 + 4a4 = 4a4.

Thus Stokes’ theorem is verified.
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Example 2.12 Verify Stokes’ theorem for F yi yz j y k=− + +2 2
, where S is the 

upper half of the sphere x2 + y2 + z2 = a2 and C is the circular boundary on the xoy-plane.

Curl F

i

x
y

j

y

yz

k

z
y

k

=
∂
∂
−

∂
∂

∂
∂

=

2
2

.

Stoke’s theorem is F r F S

C S

∫ ∫∫⋅ = ⋅d d

Here  ( d d d ) d− + + = ⋅∫∫∫ y x yz y y z k S

SC

2 2

   (1)

C is the circle in the xoy-plane whose equation is x2 + y2 = a2 and whose parametric 

equations are x = a cos θ and y = a sin θ.

∴  L.S. of (1) = −
+ =

∫ y x

x y a

d
2 2 2

 ( C lies on z = 0)

 
= ∫ a2

0

2

sin d2 θ θ

π

 = −








a2

0

2

2 2
θ

θ
π

sin 2

 = πa2.

 R.S. of (1) = k n S

S

∫∫ ⋅   d , where

 n x y z =
∇
∇

+ +
φ

φ
φ, where = 2 2 2

 =
+ +

+ +

2

4 2 2 2

( )

( )

xi yj zk

x y z

 =
+ +xi yj zk

a
  [ the point (x, y, z) lies on f = a2]

∴  R.S. of (1) = ∫∫
z

a
S

S

d

 =
⋅∫∫

z

a

x y

n kR

d d


, where R is the projection of S on the xoy-

plane.

 = ∫∫ d dx y

R

, where R is the region enclosed by x2 + y2 = a2.

 = πa2

Thus Stoke’s theorem is verified.
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Example 2.13 If S is the surface of the sphere x2 + y2 + z2 = 1, evaluate

 ( ) dxi yj zk S

S

+ + ⋅∫∫ 2 3 .

By Divergence theorem,

 F S F v

S V

∫∫ ∫∫∫⋅ =d (div ) d

∴  F S
x

x
y

y
z

z V

S V

∫∫ ∫∫∫⋅ =
∂
∂

+
∂
∂

+
∂
∂











d ( ) ( ) ( ) d2 3

 = ∫∫∫6 dV

V

 = 6V, where V is the volume enclosed by S.

 = ×6
4

3
π

 = 8π.

Example 2.14 Verify Gauss divergence theorem for F x i y j z k= + +2 2 2 , where 

S is the surface of the cuboid formed by the planes x = 0, x=a, y=0, y=b, z = 0 and 

z = c.

Divergence theorem is

 F S F V

S V

∫∫ ∫∫∫⋅ =d (div ) d  (1)

S is made up of six plane surfaces.

∴  L.S. of (1) = + + + +
=
=−

=
=

=
=−

=
=

=
=−

∫∫ ∫∫ ∫∫ ∫∫ ∫∫
x

n i

x a

n i

y

n j

y b

n j

z

n k

0 0 0
    

 + + + ⋅
=
=

∫∫ ( ) dx i y j z k n S

z c

n k

2 2 2 



 

 = − + + − +
= ===
∫∫ ∫∫∫∫∫∫ x S x S y S y S

y y bx ax

2 2 2

0

2

0

d d d d

 
− +

= =
∫∫ ∫∫z S z S

z z c

2

0

2d d
 (on using the relevant values 

of n  )

 = + +∫ ∫ ∫∫∫∫a y z b z x c x y

b c abac

2

0

2

0

2

0000

d d d d d d

 = abc (a + b + c)

 R.S. of (1) = + +∫∫∫ ( ) d d d2 2 2x y z x y z

V

 = + +∫∫∫ ( ) d d d2 2 2

000

x y z x y z

abc
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= + ⋅ + ⋅

= + + ⋅

=

∫∫

∫

( ) d  d 

( ) d 

(

x y x z x y z

a y ay a z y z

a b

a

bc

b

c

2

0

00

2 2

0

0

2

2 2

2

++ +

= ++ +
= + +

∫ ab ab z z

a bc ab c abc

abc a b c

c

2

0

2 2 2

2 ) d

( )

Thus divergence theorem is verified.

Example 2.15  Verify divergence theorem for F x i z j yz k= + +2  over the cube 

formed by 

 x = ±1,  y = ±1, z = ±1.

Divergence theorem is  F S F V

VS

⋅ = ∫∫∫∫∫ d (div )d   (1)

 L.S. of (1) = + + + +

+

=−
=−

=
=

=−
=−

=
=

=−
=−

∫∫ ∫∫ ∫∫ ∫∫ ∫∫
x

n i

x

n i

y

n j

y

n j

z

n k

1 1 1 1 1
    

(( )  d

d d d

x i z j yz k n S

x S x S z S

z

n k

x x y

2

1

2

1

2

1

+ + ⋅

= − + + −

=
=

=− = =−

∫∫

∫∫ ∫∫





11 1

∫∫ ∫∫+
=

z S

y

d

 
− +

=
=− =
∫∫ ∫∫yz S yz S

z z1 1

0

d d  (using the relevant values of )n

 R.S. of (1)  = ( ) d d d

( ) d d d

( d d )

2

2

2

1

1

1

1

1

1

1

1

1

1

x y x y z

x y x y z

y y z

v

+

= +

=

∫∫∫

∫∫∫

∫

−−−

−−
∫∫

= 0

Thus divergence theorem is verified.
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EXERCISE 2(d)

Part A

(Short Answer Questions)

 1. State Green’s theorem in a plane or the connection between a line integral and 

a double integral.

 2. State Stoke’s theorem or the connection between a line integral and a surface 

integral.

 3. State Gauss divergence theorem or the connection between a surface integral 

and a volume integral.

 4. Deduce Green’s theorem in a plane from Stoke’s theorem.

 5. State the scalar form of Stoke’s theorem.

 6. Give the scalar form of divergence theorem.

 7. Derive Green’s identities from divergence theorem.

 8. Use Stoke’s theorem to prove that ∇ × ∇ f = 0.

 9. Use the integral theorems to prove ∇⋅ ∇× =( )F 0 .

10. Evaluate ( d d d )yz x zx y xy z

C

+ +∫  where C is the circle given by x2 + y2 +

z2 = 1 and z = 0.

11. Evaluate ( d d d d d d )x y z y z x z x y

S

+ +∫∫  over the surface of the sphere

 x2+ y2 + z2 = a2.

12. If C is a simple closed curve and r xi yj zk= + + , prove that r r

C

⋅ =∫ d 0 .

13. If C is a simple closed curve and f is a scalar point function, prove that 

φ φ∇ ⋅ =∫ dr

C

0 .

14. If S is a closed surface and r xi yj zk= + + , find the value ∇





 ⋅∫∫

1

r
S

S

d .

15. If S is a closed surface enclosing a volume V, evaluate ∇ ⋅∫∫ ( ) dr S

S

2  .

16. Evaluate [( )d ( )d ]x y x x y y

C

− + −∫ 2 3 , where C is the boundary of a unit 

square.

17. Evaluate ( d d )x y y x

C

−∫ , where C is the circle x2 + y2 = a2.

18. If A F= curl , prove that A S

S

⋅ =∫∫ d 0 , where S is any closed surface.

19. If S is any closed surface enclosing a volume V and if A a xi by j c zk= + + ,

prove that A S a b c V

S

∫∫ ⋅ =d ( + + ) .

20. If r x i yj zk= + +  and S the surface of a sphere of unit radius, find

r S

S

⋅∫∫ d .
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Part B

21. Verify Green’s theorem in a plane with respect to ( d d )x x xy y

C

2 −∫ , where C

 is the boundary of the square formed by x = 0, y = 0, x = a, y = a.

22 Verify Stoke’s theorem for F x i xyj= +2  in the square region in the xy-

plane bounded by the lines x = 0, y = 0, x = 2, y = 2.

23. Use Green’s theorem in a plane to evaluate x y x x y y

C

2 3 31( ) d ( ) d+ + +



∫  

where C is the square formed by x = ± 1 and y = ± 1.

24. Use Stoke’s theorem to find the value of F r
C

⋅∫ d , when F xy x i= − +( ) 2

x y j2  and C is the boundary of the triangle in the xoy-plane formed by x = 1, 

y = 0, and y = x.

25. Verify Green’s theorem in a plane with respect to ( ) d2 2 2x y x

C

− +
∫

( ) dx y y2 2+ 
 , where C is the boundary of the region in the xoy-plane

enclosed by the x-axis and the upper half of the circle x2 + y2 = 1.

26. Verify Stoke’s theorem for F xy y i x j= + +( )2 2  in the region in the xoy-

plane bound by y = x and y = x2.

27. Use Green’s theorem in a plane to find the finite area enclosed by the parabolas  

y2 = 4ax and x2 = 4ay.

28. Use Green’s theorem in a plane to find the area of the region in the xoy-plane 

bounded by y3 = x2 and y = x.

29. Verify Stoke’s theorem for F y z i yz j xzk= − + + + −( ) ( )2 4 , where S is 

the open surface of the cube formed by x = 0, x = 2, y = 0, y = 2 and z = 2.

30. Verify Stoke’s theorem for F x y i xyj xyzk= − + +( )2 2 2  over the surface 

of the box bounded by the planes x = 0, x = a, y = 0, y = b and z = c.

31. Verify Stoke’s theorem for F x y i yz j y zk= − − −( ) 2 2 2  where S is the 

upper half of the sphere x2 + y2 + z2 = 1 and C is the circular boundary in the 

xoy-plane.

32. Verify Gauss divergence theorem for F x yz i y zx j= − + − +( ) ( )2 2

( )z xy k2 −  and the closed surface of the rectangular parallelopiped formed 

by x = 0, x = 1, y = 0, y = 2, z = 0 and z = 3.

33. Verify divergence theorem for (i) F xzi y j yzk= − +4 2
 and 

(ii) F x z i x yj xz k= − + −( )2 2 2 ,  when S is the closed surface of the cube 

formed by  x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

34. Use divergence theorem to evaluate ( ) dyz i zx j z k S

S

2 2 22+ + ⋅∫∫ , where 

S is the closed surface bounded by the xoy-plane and the upper half of the 

sphere x2 + y2 + z2 = a2 above this plane.
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35. Use divergence theorem to evaluate ( ) d4 2 2 2xi y j z k S

s

− + ⋅∫∫ , where S is 

the closed surface bounded by the cylinder x2 + y2 = 4 and the planes z = 0 

and z = 3.

ANSWERS

Exercise 2(a)

(5)  − − −12 9 16i j k   (6)  14   (7) 5

(8)  
1

19
3 3( )i j k+ −  (9) 

1

3
( )i j k+ +  (10) 

1

3
2 2( )i j k+ −

(11) 25; − + −56 30 47i j k  (12) 
14

3
 (13) −

11

3
 

(14) ± − + +
1

3
2 2( )i j k  (15) −

27

11
 (16) cos-1 −










45

2299
 

(17) cos-1 13

3 22









  (18) cos-1 8

3 21









  (19) cos-1 −











3

7 6
 

(20) cos-1 −










1

30
  (21) 2x − y − 3z + 1 = 0 (22) λ= =

5

2
1; µ

(23) a b=− =
7

3

64

9
;  (24) x2y − xz2 + y2z + c (25)  φ= +x yz2 3 20

Exercise 2(b)

(7) 3; 0 (8) 4  (9) 2( )i j k+ +

(14) λ can take any value  (15) λ = −1 (16) a = 4

(17) a = −1, b= l, c = − l  (21) 0; 3k   (22) 
124

21
 

(23) 80; 80 37 36 27 54 20 0 74 27i j k i j k i j+ + − + +; ; ;

(25)  x3y2z4 (26) x2 + y2 + 3xy + yz + z2x

(27) a = 4, b = 2, c = − 1; 
x y

z xy yz zx
2 2

2

2

3

2
2 4− + + − +  

(28) x2yz3 (30) −3

Exercise 2(c)

(6) 3 (7) 6  (9) a b2 2

2
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(10) 0 (11) 
8

11

4

5
i j k+ +  (12) − + +π

π
i j k

1

2

3

2

(13) 2
4

1

2
−







 + −









π
πi j  (14) 

51

70

(15) −
7

6
 (16) 2a2 (17) 8

(18) 8π  (19) 2 (20) −
19

2

(21) 4π + 5 (22) 0 (23) 27

4
(24) πa2 (25) 90

Exercise 2(d)

(10) 0 (11) 4πa3 (15) 6V

(16) 5 (17) 2πa2 (20) 4π

(23) 
8

3
 (24) −

1

12
 (27) 16

3

2a

(28) 
1

10
 (34) πa4 (35) 84π





Unit-3

AnAlytic Functions





Analytic Functions

3UNIT

3.1 INTRODUCTION

Before we introduce the concept of complex variable and functions of a complex 

variable, the definition and properties of complex numbers, which the reader has 

studied in the lower classes are briefly recalled.

If x and y are real numbers and i denotes −1, then z = x + iy is called a Complex 

number. x is called the real part of z and is denoted by Re(z) or simply R(z); y is 

called the imaginary part of z and is denoted by Im(z) or simply I(z).

The Complex number x − iy is called the conjugate of the Complex number

z = x + iy and is denoted by z . Clearly z z x y r= + =2 2 2 , where r is z , viz., the

modulus of the Complex number z. Also z z= ; R z
z z

( ) =
+
2

, I z
z z

i
( ) =

−
2

.

The complex number z = x + iy is geometrically represented by the point P (x, y) 

with reference to a pair of rectangular coordinate axes OX and OY, which are 

called the real axis and the imaginary axis respectively (Fig. 3.1). Corresponding 

to each complex number, there is a unique point in the XOY−plane and conversely, 

corresponding to each point in the XOY-plane, there is a unique complex number. 

The XOY-plane, the points in which represent complex numbers, is called the 

Complex plane or Argand plane or Argand diagram.

Y

r

P (x, y)
(r, θ)

y

XMxO

θ

Fig. 3.1
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If the polar coordinates of the point P are (r, q ), then r OP x y= = + =2 2

modulus of z or z  and θ = ∠ = 





=−MOP
y

x
tan 1  amplitude of z or amp (z).

Since x = r cos q and y = r sin q,

z = x + iy = r (cos q + i sin q ) or re iq.

r (cos q + i sin q) is called the modulus-amplitude form of z and re iq is called the 

polar form of z.

3.2 THE COMPLEX VARIABLE

The quantity z = x + iy is called a complex variable, when x and y are two independent  

real variables.

The Argand plane in which the variables z are represented by points is called 

the z-plane. The point that represents the complex variable z is referred to as the 

point z.

3.2.1 Function of a Complex Variable

If z = x + iy and w = u + iv are two complex variables such that there exists one 

or more values of w, corresponding to each value of z in a certain region R of the 

z-plane, then w is called a function of z and is written as w = f (z) or w = f (x + iy). 

When w = u + iv = f (z) = f (x + iy), clearly u and v are functions of the variables x 

and y. For example, if w = z2, then

 u + iv = (x + iy)2

  = (x2 − y2) + i(2xy)

Thus u = x2 − y2 and v = 2xy.

∴ w = f (z) = u(x, y) + iv(x, y)

If z is expressed in the polar form, u and v are functions of r and q. If, for every 

value of z, there corresponds a unique value of w, then w is called a single-valued 

function of z.

For example, w = z2 and w
z

=
1

 are single-valued functions of z.

If, for every value of z, there correspond more than one value of w, then w is 

called a multiple valued function of z. For example, w = z1/4 and w = amp(z) are 

multiple valued functions of z. w = z1/4 is four valued and w = amp(z) is infinitely 

many valued for z ≠ 0.

3.2.2 Limit of a Function of a Complex Variable

The single valued function f (z) is said to have the limit l (= a + ib) as z tends to z
0
, 

if f (z) is defined in a neighbourhood of z
0
 (except perhaps at z

0
) such that the values 

of f (z) are as close to l as desired for all values of z that are sufficiently close to z
0
, 

but different from z
0
. We express this by writing lim  { ( )} = 

z z→ 0

f z l .
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Note  Neighbourhood of z
0
 is the region of the z-plane consisting of the set of 

points z for which |z − z
0
| < ρ, where r is a positive real number, viz., the set of points 

z lying inside the circle with the point z
0
 as centre and r as radius.

Mathematically we say lim { ( )} = 
z z→ 0

f z l , if, for every positive number ∈ (however 

small it may be), we can find a positive number d, such that | f (z) − l| < ∈, whenever 

0 < | z − z
0 
| < d.

Note  In real variables, x → x
0
 implies that x approaches x

0
 along the x-axis or 

a line parallel to the x-axis (in which x is varying) either from left or from right. In 

complex variables, z → z
0
 implies that z approaches z

0
 along any path (straight or 

curved) joining the points z and z
0
 that lie in the z-plane, as shown in the Fig. 3.2.

Thus, in order that lim { ( )}
z z→ 0

f z  may exist,  f (z) should approach the same value l,

when z approaches z
0
 along all paths joining z and z

0
.

3.2.3 Continuity of f (z)

The single valued function f (z) is said to be continuous at a point z
0
, if

 
lim { ( )} =
z z

f z
→

( )
0

0f z .

This means that if a function f (z) is to be continuous at the point z
0
, the value of f (z) 

at z
0
 and the limit of f (z) as z → z

0
 must exist (as per the definition given above) and 

these two values must be equal.

A function f (z) is said to be continuous in a region R of the z-plane, if it is 

continuous at every point of the region.

If f (z) = u (x, y) + iv (x, y) is continuous at z
0
 = x

0
 + iy

0
, then u (x, y) and v (x, y) will 

be continuous at (x
0
, y

0
) and conversely. The function f (x, y) is said to be continuous at 

the point (x
0
, y

0 
), if lim  [ ( , )] = ( , )

x x
y y

x y x
→
→

0

0

0 0φ φ y , in whatever manner  x → x
0
 and y → y

0
.

3.2.4 Derivative of f (z)

The single valued function f (z) is said to be differentiable at a point z
0
, if

Y

z0

X

z

O

Fig. 3.2
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 lim
∆ →

+ ∆( ) − ( )
∆











z

f z z f z

z0

0 0
 exists (1)

This limit is called the derivative of f (z) at z
0
 and is denoted as f ′ (z

0
). On putting  

z
0
 + Δz = z or Δz = z − z

0
, we may write

 

′ =
( ) − ( )

−










→
f z

f z f z

z zz z
( ) lim0

0

0
0

.

On putting z
0
 = z in (1), we get

′ =
+ ∆( ) − ( )

∆








∆ →

f z
f z z f z

zz
( ) lim

0

3.2.5 Analytic Function

A single valued function f (z) is said to be analytic at the point z
0
, if it possesses a 

derivative at z
0
 and at every point in some neighbourhood of z

0
.

A function f (z) is said to be analytic in a region R of the z-plane, if it is analytic 

at every point of R.

An analytic function is also referred to as a regular function or a holomorphic 

function.

A point, at which a function f (z) is not analytic, viz., does not possess a derivative, 

is called a singular point or singularity of f (z).

3.2.6 Cauchy-Riemann Equations

We shall now derive two conditions (usually referred to as necessary conditions) that 

are necessarily satisfied when a function f (z) is analytic in a region R of the z-plane.

Theorem

If the function f (z) = u (x, y) + iv (x, y) is analytic in a region R of the z-plane, then

(i) ∂
∂

∂
∂

∂
∂

u

x

u

y

v

x
, ,  and ∂

∂
v

y
 exist and (ii) ∂

∂
=

∂
∂

u

x

v

y
 and ∂

∂
= −

∂
∂

u

y

v

x
at every point in 

that region.

Proof

f (z) = u (x, y) + iv (x, y) is analytic in R.

∴ f ' (z) exists at every point z in R(by definition)

i.e., L
f z z f z

zz
=

+ ∆( ) − ( )
∆









∆ →

lim
0

 exists (1) 

i.e., L takes the same value, when Δz → 0 along all paths.

In particular, L takes the same value when Δz → 0 along two specific paths QRP and 

QSP shown in Fig. 3.3. (2)
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It is evident that when z takes the increment Δz, x and y take the increments Δx and 

Δy respectively; hence we may write

L
u x x y y iv x x y u x y iv x y

x i y
=

+ ∆ + ∆( ) + + ∆ ∆( ){ } − ( ) + ( )
∆ + ∆( )→

lim
, , + , ,

0

y {{ }
∆ + ∆











x i y

Let us now find the value of L, say L
1
, corresponding to the path QRP, viz., by 

letting Δy → 0 first and then by letting Δx → 0.

Thus L
u x x y iv x x y u x y iv x y

xx
1

0
=

+ ∆( ) + + ∆( ){ } − ( ) + ( ){ }
∆













=

∆ →
lim

, ,

llim
, , , ,

∆ →

+ ∆( ) − ( )
∆









+
+ ∆( ) − ( )

∆






x

u x x y u x y

x
i

v x x y v x y

x0











=
∂
∂

+
∂
∂

u

x
i

v

x
 (3)

(by the definition of partial derivatives.)

Now we shall find the value of L, say L
2
, corresponding to the path QSP, viz., by 

letting Δx → 0 first and then by letting Δy → 0.

Thus L
u x y y iv x y y u x y iv x y

i yy
2

0
=

+ ∆( ) + + ∆( ){ } − ( ) + ( ){ }
∆








∆ →
lim

, , , ,





=
+ ∆( ) − ( )

∆








+
+ ∆( ) − ( )

∆


∆ →
lim

, , , ,

y i

u x y y u x y

y

v x y y v x y

y0

1

















= −
∂
∂

+
∂
∂

i
u

y

v

y
 (4)

(by the definition of partial derivatives.)

L exists [by (1)]

∴ L
1
 and L

2
 exist at every point in R.

i.e. ∂
∂

∂
∂

∂
∂

u

x

u

y

v

x
, ,  and ∂

∂
v

y
 exist at every point in R (i)

L exists uniquely [by (2)]

Y

X
O

S

P(z)
R

Q(z + Δz)

Δy

Δx

Fig. 3.3
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∴ L
1
 = L

2

i.e., ∂
∂

+
∂
∂

=
∂
∂

−
∂
∂

u

x
i

v

x

v

y
i

u

y
, by (3) and (4).

∴ ∂
∂

=
∂
∂

u

x

v

y

and ∂
∂

= −
∂
∂

u

y

v

x
 at every point in R (ii)

Note  

 1. The two equations given in (ii) above are called Cauchy-Riemann equations 

which will be hereafter referred to as C.R. equations.

 2. When f (z) is analytic, f ′ (z) exists and is given by L, viz., by L
1
 or L

2
.

Thus f ′(z) = u
x
 + iv

x
 or v

y
 − iu

y 
, where u

x 
, u

y 
, v

x
, v

y
 denote the partial derivatives.

 3. If w = f (z), then f ′ (z) is also denoted as d

d

w

z
.

Thus d

d

w

z

u

x
i

v

x

x
u iv

w

x

=
∂
∂

+
∂
∂

=
∂
∂

+( )

=
∂
∂

Also d

d

w

z
i

u

y

v

y

i
y

u iv

i
w

y

= −
∂
∂

+
∂
∂

= −
∂
∂

+( )

= −
∂
∂

 4. In the above theorem, we have assumed that w = f (z) is analytic and then derived 

the two conditions that necessarily followed. However the two conditions do not 

ensure the analyticity of the function w = f (z). In other words, the two conditions 

are not sufficient for the analyticity of the function w = f (z).

The sufficient conditions for the function w = f (z) to be analytic in a region R 

are given in the following theorem.

Theorem

The single valued continuous function w = f (z) = u (x, y) + iv (x, y) is analytic in 

a region R of the z-plane, if the four partial derivatives u
x
, v

x
, u

y
 and v

y
 have the 

following features: (i) They exist, (ii) They are continuous and (iii) They satisfy the 

C.R. equations u
x
 = v

y
 and u

y
 = −v

x
 at every point of R.
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Proof

Consider   Δu = u (x + Δx, y + Δy) − u (x, y)

 = [u (x + Δx, y + Δy) − u (x, y + Δy) + u (x, y + Δy) − u (x, y)]

 = Δ x . u
x
(x + q

1
Δx, y + Δy) + Δy . u

y
(x, y + q

2
Δy),

  where 0 < q
1
, q

2
 < 1, (by using the mean-value theorem.)

  u
x
 is a continuous function of x and y, by (ii).

∴ u
x
(x + q

1
∆x, y + ∆y) = u

x
(x, y) + ∈

1
, where

 ∈
1
 → 0 as Δx and Δy → 0 or as Δz → 0.

 u
y
 is a continuous function of x and y, by (ii).

∴ u
y
 (x, y + q

2
∆y) = u

y
 (x, y) + ∈

2
, where

 ∈
2 
→ 0 as Δz → 0

∴ ∆u = ∆x [u
x
 (x, y) + ∈

1
] + ∆y[u

y
 (x, y) + ∈

2
],

where ∈
1
 and ∈

2
 → 0 as Δz → 0. (1)

Similarly, using the continuity of the partial derivatives v
x
 and v

y
, we have

∆v = ∆x [v
x
(x, y) + ∈

3
] + ∆y [v

y
(x, y) + ∈

4
],

where ∈
3
 and ∈

4
 → 0 as Δz → 0 (2)

Now  Δw = Δu + iΔv

 = (u
x
 + iv

x
) Δx + (u

y
 + iv

y
) Δy + (∈

1
 + i∈

3
) ∆x + (∈

2
 + i∈

4 
) ∆y,

 using (1) and (2).

= (u
x
 + iv

x
) Δx + (u

y
 + iv

y
) Δy + h

1
∆x + h

2
∆y, where

h
1 
= (∈

1 
+ i∈

3
) and h

2
 = (∈

2
 + i∈

4
) → 0 as ∆z → 0 (3)

Using (iii) in (3), i.e., putting v
y
 = u

x
 and u

y
 = − v

x
 in (3), we have

Δw = (u
x
 + iv

x
) Δx + (−v

x
 + iu

x
) Δy + h

1
Δx + h

2
Δy

 = u
x
(Δx + iΔy) + iv

x
(Δx + iΔy) + h

1
Δx + h

2
Δy

 = (u
x
 + iv

x
) Δz + h

1
Δx + h

2
Δy

∴ 
∆
∆

∆
∆

∆
∆

w

z
u iv

x

z

y

z
x x= + + +η η1 2  (4)

Now ∆ ∆x z≤  and ∆ ∆y z≤

∴  
∆
∆

x

z
≤ 1  and 

∆
∆

y

z
≤ 1

∴ η η η η1 2 1 2

∆
∆

∆
∆

x

z

y

z
+ ≤ +
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∴ η η1 2

∆
∆

∆
∆

x

z

y

z
+





→ 0 as ∆z → 0 [ ∴ h
1
 and h

2
 → 0 as ∆z →0] (5)

Now taking limits on both sides of (4) and using (5), we have

 
d

d

w

z
u ivx x= + .

i.e., the derivative of w = f (z) exists at every point in R.

i.e., w = f (z) is analytic in the region R.

3.2.7 C.R. Equations in Polar Coordinates

When z is expressed in the polar form reiq, we have already observed that u and v, 

where w = u + iv, are functions of r and q. In this case, we shall derive the C.R. 

equations satisfied by u(r, q) and v (r, q), assuming that w = u(r, q ) + iv (r, q ) is 

analytic.

Theorem

If the function w = f (z) = u(r, q) + iv (r, q) is analytic in a region R of the z-plane, 

then (i) ∂
∂

∂
∂

∂
∂

∂
∂

u

r

u v

r

v
, , ,
θ θ

 exit and (ii) they satisfy the C.R. equations, viz.,

∂
∂

=
∂
∂

u

r r

v1

θ
 and 

∂
∂

= −
∂
∂

v

r r

u1

θ
 at every point in that region.

Proof

f (z) = u (r, q) + iv (r, q) is analytic in R.

∴  f ′ (z) exists at every point z in R (by definition)

i.e., L
f z z f z

zz
=

+( )− ( )







→

lim
∆

∆
∆0

 exists (1)

i.e., L
u r r iv r r u r iv r

r ei
=

+ +( )+ + +( ){ }− ( )+ ( ){
→

lim
, , , ,

( )∆

∆ ∆ ∆ ∆
θ

θ θ θ θ θ θ

0

}}
( )











∆ reiθ

exists.

i.e., L take the same value, in whatever manner ∆z = ∆(reiq ) → 0.

In particular, L takes the same value, corresponding to the two ways given below 

in which ∆z → 0. (2)

 ∆z = ∆(reiq) 

 = eiq · ∆r, if q  is kept fixed

∴ When ∆z → 0, ∆r → 0, if q  is kept fixed. Let us find the value of L, say L
1
, 

corresponding to this way of ∆z tending to zero.
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Thus L
u r r u r

e r
i

v r r v r

er i i1
0

=
+( )− ( )








+
+( )− ( )

→
lim

, , , ,

∆

∆
∆

∆θ θ θ θ
θ θ∆∆r

e
u

r
i

v

r

i



















=
∂
∂

+
∂
∂







− θ

 

(3)

(by the definition of partial derivatives.)

Now ∆z = ∆ (reiq
  )

 = reiq i∆q, if r is kept fixed.

∴ When ∆z → 0, ∆q → 0, if r is kept fixed.

We shall now find the value of L = L
2
, corresponding to this way of ∆z tending 

to zero.

Thus L
u r u r

r e i
i

v r v r
i2

0
=

+( )− ( )
⋅









+
+( )− ( )

→
lim

, , , ,

∆

∆
∆

∆
θ θ

θ θ θ

θ

θ θ θ

rr e i

r
e i

u v

i

i

θ

θ

θ

θ θ

⋅


















= −
∂
∂

+
∂
∂







−

∆

1

 

(4)

(by the definition of partial derivatives.)

Since L exists [by (1)], L
1
 and L

2
 exist at every point in R.

i.e.  ∂
∂

∂
∂

∂
∂

∂
∂

u

r

u v

r

v
, , ,
θ θ

 exists at every point in R. (i)

Since L exists uniquely [by (2)],

     L
1
 = L

2

i.e. e
u

r
i

v

r r
e i

u vi i− −∂
∂

+
∂
∂







= −
∂
∂

+
∂
∂







θ θ

θ θ

1
, from (3) and (4).

∴ ∂
∂

=
∂
∂

u

r r

v1

θ

and ∂
∂

= −
∂
∂

v

r r

u1

θ
 at every point in R (ii)

Note 

 1. When f (z) is analytic, f ′ (z) exists and is given by L, viz., by L
1
 or L

2
.

Thus, when  f (z) = u(r, q) + iv (r, q) is analytic,

f ′ (z)= e−iq(u
r
 + iv

r 
) or 

1

r
e v iui− −θ

θ θ( ),

where u
r 
, u

q 
, v

r 
, v

q
 denote the partial derivatives.

 2. If w = f (z), then
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d

d

w

z
e

r
u iv e

w

r

i i= ⋅
∂
∂

+( ) =
∂
∂

− −θ θ .

Also 
d

d
( )

w

z

i

r
e u iv

i

r
e u iv

i

r
e

w

i

i

i

= − +

= −
∂

∂
+( )

= −
∂
∂

−

−

−

θ
θ θ

θ

θ

θ

θ
.

 3. The two conditions derived in the theorem do not ensure the analyticity of w 

= f (z). The sufficient conditions for the analyticity of w = f (z) =u (r, q ) + iv 

(r, q ) in R are given below without proof.

 (i) u
r 
, u

q 
, v

r
, v

q
 must exist

(ii) they must be continuous;

(ii) they must satisfy the C.R. equations in polar co-ordinates at every point 

in the region R.

WORKED EXAMPLE 3(a)

Example 3.1  Find lim ( )
z

f z
→0

, when f z
x y

x y
( ) =

+

2

2 2
.

Let us find the limit of f (z) corresponding to any one manner, say, by letting  y → 0 

first and then by letting x → 0.

Thus lim ( ) lim lim
y

x

x x
f z

x→
→

→ →
[ ]= 





= ( )=
0

0

0 2 0

0
0 0 .

This does not mean that lim ( )
z

f z
→

[ ]
0

 exists and is equal to 0.

However, we proceed to verify whether lim ( )
z

f z
→

[ ]
0

 can be 0, as per the mathe -

matical definition, which states that lim ( )
z

f z
→

[ ]=
0

0 , if we can find a d such that 

f z( ) − <∈0 , whenever 0 0< − <z δ .

Now, using polar coordinates,

 

f z
r

r

r

( )
cos sin

cos sin

| cos || sin |

− =
+( )

=

0
3 2

2 2 2

2

θ θ

θ θ

θ θ

 
< < <r, sin cos since andθ θ1 1

∴ f z r( ) ,− <∈
∈

0
2

when <
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i.e., when  z − <
∈

0
2

Thus, taking δ ≤
∈
2

, we have proved that

 f z( ) − <∈0 , when z − <0 δ .

∴ lim
z

x y

x y→ +




0

2

2 2
 exists and is equal to 0.

Example 3.2  If f z
x y y ix

x y
z( ) ( )=

−( )
+

≠
3

6 2
0  and  f (0) = 0, prove that 

f z f

z

( )− ( ){ }0

→ 0 as z → 0 along any radius vector, but not as z → 0 in any manner.

Now f z f

z

x y y ix

x y x iy

ix y

x y

( )− ( )
=

−
+( ) +

=
−

+
0 3

6 2

3

6 2

( )

( )

 (1)

A radius vector is a line through the pole (origin) and hence its equation is y = mx. 

To take the limit of (1) as z → 0 along any radius vector, we put y = mx in (1) and 

then let x → 0.

Thus lim lim

li

y mx

x

x

i x y

x y

imx

x x m=
→

→

−
+









 =

−
+( )













=

0

3

6 2 0

4

2 4 2

mm
x

imx

x m→

−
+









 =

0

2

4 2
0 , for various values of m.

∴ 
f z f

z

( )− ( )







→
0

0 , as z → 0 along any radius vector.

Now let us find the limit of (1) by moving along the curve y = x3 and approaching 

the origin.

Thus lim lim

lim

z y x

x

x

f z f

z

i x y

x y

i

→ =
→

→

( )− ( )







=
−

+










=
−

0

0

3

6 2

0

0
3

xx

x x

i6

6 6 2
0

+








 = − ≠ .

Note  Since the limiting values are not unique, the limit does not exist.
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Example 3.3  Prove that the function f (z), where f z
x i y i

x y
( ) =

+( )− −( )
+

2 21 1
,

when z ≠ 0 and f (z) = 0, when z = 0 is continuous at z = 0.

 

f z
x y

x y
i

x y

x y
( )=

−
+







+
+
+







2 2 2 2

Consider L f z f z i x

L

z y
x

x

z

1
0 0

0
0

2
0

1 0= = = + =

=

→ →
→

→

→

lim[ ( )] lim[ ( )] lim[( ) ]

lim [ ff z f z i y

L f z

x
y

y

z

( )] lim[ ( )] lim [( ) ]

lim [ ( )] li

= = − + =

= =

→
→

→

→

0
0

0

3
0

1 0

mm [ ( )] lim
y mx
x

x
f z

m

m
i

m

m
x

→
→

→
=

−

+
+

+

+






















0
0

2 21

1

1

1



=

= =
→ →

→

0

4
0

0

L f z f z
z y

x

lim [ ( )] lim [ ( )]
( )φ x

 (1)

where y = f (x) is any curve through the origin.

∴  f (0) = 0

By Taylor’s series expansion, we get

y x x x x= =
′ ( )

+
′′ ( )

+
′′′ ( )

+ ∞φ
φ φ φ

( )
! ! !

....
0

1

0

2

0

3

2 3

since f (0) = 0.

 

=
′ ( )

+
′′ ( )

+
′′′ ( )

+ ∞








x x x

φ φ φ0

1

0

2

0

3

2

! ! !
....

 = x . y (x), where y (x) → f′ (0) as x → 0 (2)

Using (2) in (1), we have

 

L
x

x
i

x

x
x

x
4

0

2 21

1

1

1

0

=
− ( )
+ ( ) +

+ ( )
+ ( )

























=

→
lim

ψ

ψ

ψ

ψ

Thus lim
z→0

 [f (z)] takes the same value 0, in whatever manner z → 0.

∴ lim[ ( ) ( ).
z

f z f
→

= =
0

0 0

∴ f (z) is continuous at z = 0.

Example 3.4  Show that the function f (z) is discontinuous at the origin (z = 0), given 

that

f z
x y x y

x y
( ) =

−( )
+

2
3 3

, when z ≠ 0
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= 0, when z = 0.

Consider

lim[ ( )] lim [ ( )] lim
z y m x

x
x

f z f z
m m x

m x→ →
→

→
= =

−( )
+( )








0

0
0

3

3 3

1 2

1 



=
−( )

+
m m

m

1 2

1 3

Thus lim
z→0

 [f (z)] depends on the value of m and hence does not take a unique

value.

∴ lim
z→0

 [f (z)] does not exist.

∴ f (z) is discontinuous at the origin.

Example 3.5  Show that the function f (z) is discontinuous at z = 0, given that

 f z
xy

x y
( ) =

+
2

3

2

2 4
, when z ≠ 0 and f (0) = 0.

Consider lim[ ( )] lim [ ( )]

lim

z y m x
x

x

f z f z

m x

m x

→ =
→

→

=

=
+







=

0
0

0

2

4 2

2

1 3
0

Note  

Just because the value of lim
z→0

 [f (z)], when z → 0 along the line y = mx is 0, we

should not conclude that the limit exists and hence f (z) is continuous at z = 0.)

Now let us take the limit by approaching 0 along the curve x = y2.

Then lim[ ( )] lim [ ( )]

lim

z x y
y

y

f z f z

y

y y

→ =
→

→

=

=
+









 = ≠

0
0

0

4

4 4

2

2

3

1

2
0 .

∴ lim
z→0

 [f (z)] does not exist and hence f (z) is not continuous.

Example 3.6  Show that the function |z|2 is continuous and differentiable at the 

origin, but it is not analytic at any point.

Let f (z) = |z|2. Then f (0) = 0.

Now | f (z) − 0| = |z|2 = r2, where z = reiq

 < ∈, whenever r < ∈, if 

 ∈ is sufficiently small and positive

i.e. | f (z) − 0| < ∈, whenever 0 < |z| < ∈.
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∴ lim
z→0

 [f (z)] exists and is equal to 0 = f (0)

∴ f (z) is continuous at the origin.

Also ′ =
+ ∆( )− ( )

∆








=
∆
∆













=

∆ →

∆ →

f
f z f

z

z

z

z

z

( ) lim

lim

l

0
0 0

0

0

2

iim
∆ →

∆







=

z
z

0

0

_

∴ f (z) is differentiable at the origin.

Now 
lim lim

li

∆ → ∆ →

+ ∆( )− ( )
∆









=
+ ∆ −

∆













=

z z

f z z f z

z

z z z

z0 0

2 2

mm

lim

lim

∆ →

∆ →

∆

+ ∆( ) + ∆( )−
∆











=
∆
∆

+ + ∆










=

z

z

z z z z zz

z

z
z

z
z z

0

0

zz
x iy

x i y

x i y
x iy x i y

→
+( ) ∆ − ∆( )

∆ + ∆
+ −( )+ ∆ − ∆( )









0

Let us find the value of this limit by making ∆z → 0 in two different manners.

 

L x iy
x i y

x i y
x iy x i y

y
x

1
0
0

= +( ) ∆ − ∆( )
∆ + ∆

+ −( )+ ∆ − ∆( )









=

∆ →
∆ →

lim

liim .
∆ →

+( )+ −( )+ ∆  =
x

x iy x iy x x
0

2

 

L x iy
x i y

x i y
x iy x i y

x
y

2
0
0

= +( ) ∆ − ∆( )
∆ + ∆

+ −( )+ ∆ − ∆( )









=

∆ →
∆ →

lim

liim
∆ →

− +( )+ −( )− ∆  = −
y

x iy x iy i y iy
0

2

 L
1
 ≠ L

2
 for all values of x and y.

∴ f (z) is not differentiable at any point z ≠ 0.

∴ f (z) is not analytic at any point z ≠ 0.

[ | | ]∵ ∆ = ∆ ⋅∆z z z2

{  When  + 0, 0}∵ ∆ ∆ → ∆ − ∆ →x i y x i y
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Though f (z) is differentiable at z = 0, it is not differentiable at any point in the 

neighbourhood of z = 0. 

∴ f (z) is not analytic even at the origin.

Hence f (z) = |z|2 is not analytic at any point.

Example 3.7  Show that the function f (z) = x y  is not regular at the origin, 

although Cauchy-Riemann equations are satisfied at the origin.

f z u x y iv x y x y( ) ( , ) ( , )= + = . ∴ u x y x y v x y( , ) ; ( , )= = 0 .

 

u
u

x

u x u

x
x

x
( , ) lim

, ,

lim

,

0 0
0 0 0

0 0
0

=
∂
∂







=
∆( )− ( )

∆










=

( )
∆ →

∆xx

y
y

x

u
u y u

y

→

∆ →

−
∆









 =

=
∆( )− ( )

∆










=

0

0

0 0
0

0 0
0 0 0

( , ) lim
, ,

lim
∆∆ →

∆ →

−
∆









 =

=
∆( )− ( )

∆










=

y

x
x

y

v
v x v

x

0

0

0 0
0

0 0
0 0 0

( , ) lim
, ,

limm

( , ) lim
, ,

l

∆ →

∆ →

−
∆









 =

=
∆( )− ( )

∆










=

x

y
y

x

v
v y v

y

0

0

0 0
0

0 0
0 0 0

iim
∆ →

−
∆









 = ⋅

y y0

0 0
0

Clearly u
x
 = v

y
 and u

y
 = − v

x
 at the origin.

i.e., C.R. equations are satisfied at the origin.

Now lim
( ) ( )

lim

l

∆ → ∆ →

+ ∆ −
∆









 =

∆ ⋅∆ −
∆ + ∆













=

z z

f z f

z

x y

x i y0 0

0 0 0

iim
∆ = ∆
∆ →

∆

∆ +( )












y m x

x

m x

x im
0

2

1
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=
+

m

im1

The limit is not unique, since it depends on m. ∴ f ′(0) does not exist.

Hence f (z) is not regular at the origin.

Note  This problem means that C.R. equations are not sufficient for the analyti-

city of the function.

Example 3.8  Prove that the following functions are analytic and also find their 

derivatives using the definition.

 (i) z3;    (ii) e−z;    (iii) sin z;    (iv) cosh z;

 (v) z n (n is a positive integer);       (vi) log z.

(i) Let f (z) = u + iv = z3 = (x + iy)3

 = (x3 − 3xy2) + i (3x2y − y3)

∴ u = x3 − 3xy2 ; v = 3x2y − y3

 u
x
 = 3x2 − 3y2 ; v

x
 = 6xy

 u
y
 = − 6xy ; v

y
 = 3x2 − 3y2

Obviously u
x
, u

y
, v

x
, v

y
 exist for finite values of x and y (i.e., everywhere in 

the finite plane).

They are continuous everywhere, since they are polynomials in x and y.

Also u
x
 = v

y 
= 3x2 − 3y2 and v

x
 = − u

y
= 6xy i.e., C.R. equations are satisfied 

for all finite values of x and y.

All the three sufficient conditions that ensure the analyticity of f (z) are 

satisfied everywhere.

∴ f (z) is analytic everywhere.

 Now f ′ (z) = u
x 
+ iv

x

 = 3x2 − 3y2 + i6xy

 = 3(x + iy)2

 = 3 z2.

(ii) Let f (z) = u + iv = e−z = e −( x + iy)

 = e−x (cos y − i sin y)

∴ u = e−x cos y ; v = − e−x sin y

 u
x
 = − ex cos y; v

x
 = e−x sin y

 u
y
 = − e−x sin y; v

y
 = − e−x cos y

u
x 
, u

y 
, v

x
, v

y
 exist everywhere, are continuous everywhere ( ∴ e−x, sin y and 

cos y are continuous functions) and satisfy C.R. equations everywhere.

∴ f (z) is analytic everywhere.

Now f ′(z) = u
x
 + iv

x
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 = − e−x cos y + ie−x sin y

 = − e−x (cos y − i sin y) 

= − e−x . e−iy = − e−(x + iy) = −e−z.

(iii) Let f (z) = sin z 

i.e. u + iv = sin (x + iy)

 = sin x cos iy + cos x sin iy

 = sin x cosh y + i cos x sinh y.

∴ u = sin x cosh y ; v = cos x sinh y

 u
x
 = cos x cosh y ; v

x
 = − sin x sinh y

 u
y
 = sin x sinh y ; v

y
 = cos x cosh y

The four partial derivatives are products of circular and hyperbolic functions.

∴ They exist, are continuous and satisfy C.R. equations everywhere.

∴ f (z) is analytic everywhere.

Now f ′ (z) = u
x
 + iv

x

 = cos x cosh y − i sin x sinh y

 = cos x cos iy − sin x sin iy

 = cos (x + iy)

 = cos z.

(iv) Let f (z) = cosh z = cos iz

i.e. u + iv = cos (ix − y)

 = cosh x cos y + i sinh x sin y

∴ u = cosh x cos y ; v = sinh x sin y

 u
x
 = sinh x cos y ; v

x
 = cosh x sin y

 u
y
 = − cosh x sin y ; v

y
 = sinh x cos y

∴ u
x 
, u

y
, v

x
, v

y
 exist, are continuous and satisfy C.R. equations everywhere.

∴ f (z) is analytic everywhere.

Now f ′(z) = u
x
 + iv

x

 = sinh x cos y + i cosh x sin y

 = sinh (x + iy) = sinh z.

(v) Let f (z) = u (r, q) + iv (r,q) = z n = (reiq )n

 = r n (cos nq + i sin nq)

∴ u = r n cos nq ; v = r n sin nq

 u
r
 = nr n−1 cos nq ; v

r
 = nr n−1 sin nq

 u
q
 = − nr n sin nq ; v

q
 = nr n cos nq 

u
r 
, u

q
 , v

r 
, v
q
 exist and are continuous for finite values of r and hence everywhere.
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Also u
r

v nr nr

n= = −1 1

θ θcos

and  v
r

u nr nr

n= − = −1 1

θ θsin

i.e., C.R. equations are also satisfied everywhere.

∴ f (z) is analytic everywhere.

Now f′ (z) = e−iq (u
r
 + iv

r
)

 = e−iq 
· nr n−1 (cos nq + i sin nq)

 = nr n−1 e−iq 
· e

inq

 = nr n−1 ei(n−1) q

 = n[reiq]n−1 = nzn−1.

(vi) Let f (z) = u + iv = log z = log (r eiq)

 = log r + iq 

∴ u = log r; v = q

 
u

r
vr r= =

1
0;

 u
q
 = 0; v

q
 = 1

∴ u
r 
, u

q 
, v

r 
, v

q
 exist, are continuous and satisfy C.R. equations everywhere except 

at r = 0 i.e. z = 0

∴ f (z) is analytic everywhere except at z = 0.

 

′ = +

= + ⋅





= = ≠

−

−

f z e u iv

e
r

i

re z
z

i

r r

i

i

( ) ( )θ

θ

θ

1
0

1 1
0, .

3.2.8 Important Note

In the above problems, we observe that the derivatives of some of the elementary 

functions of a complex variable are similar to those of corresponding functions of a 

real variable. This is true with respect to other elementary functions also.

This is due to the fact that the definitions of f ′(z) in Complex Calculus and f ′(x) in 

Real Calculus are identical, except that there is a slight difference in the interpretation 

of the concerned limits.

Also, due to the same reason, the rules of differentiation, such as the sum rule, 

product rule, quotient rule and function of function rule are the same as those in Real 

Calculus.

Hence, when a function f (z) is known to be analytic, it can be differentiated in the 

ordinary manner as if z is a real variable.
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Further since integration is the inverse operation of differentiation, f z z ( ) d∫  can 

be evaluated as in Real Calculus, using the usual formulas and rules of integration. 

However the arbitrary constant of integration need not be a real constant; it may be 

a complex constant.

Example 3.9  Find where each of the following functions ceases to be analytic.

 (i) z

z2 1−( ) ;   (ii) z

z

2

2

4

1

−
+

;   (iii) z i

z i

+
−( )2

;   (iv) z3 − 4z − 1;

 (v) tan2z.

(i) Let f z
z

z
( ) =

−2 1

∴ ′ =
−( )⋅ − ⋅

−( )
=

− +( )
−( )

f z
z z z

z

z

z
( )

2

2
2

2

2
2

1 1 2

1

1

1

f (z) is not analytic, where f ′(z) does not exist, i.e., where f ′(z) → ∞.

f ′(z) → ∞,  if (z2 − l)2 = 0,  i.e., if z = ± l.

∴ f (z) is not analytic at the points z = ± 1.

(ii) Let f z
z

z
( ) =

−
+

2

2

4

1

∴ ′ =
+( )⋅ − −( )⋅

+( )
=

+( )
f z

z z z z

z

z

z
( )

2 2

2
2

2
2

1 2 4 2

1

10

1

∴ f (z) is not analytic where z2 + 1 = 0

i.e. at the points z = ± i .

(iii) Let f z
z i

z i
( ) =

+
−( )2

∴ ′ =
−( ) ⋅ − +( ) ⋅ −( )

−( )

=
− +( )

−( )
→∞ =

f z
z i z i z i

z i

z i

z i
z i

( )

at

2

4

3

1 2

3
,

∴ f (z) is not analytic at z = i.

(iv) Let f (z) = z3 − 4z − l

∴ f ′(z) = 3z2 − 4, that exists everywhere.

∴ f (z) is analytic everywhere.
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(v) Let f (z) = tan2 z

∴ ′ = =f z z z
z

z
( ) tan sec

sin

cos
2

22

3

∴ f ′(z) → ∞,  when cos3z = 0,  i.e., when z
n

=
−( )2 1

2

π

∴ f (z) is not analytic at z
n

=
−( )2 1

2

π
;  n = 1, 2, 3, . . . .

Example 3.10  Prove that every analytic function w = u(x, y) + iv (x, y) can be 

expressed as a function of z alone.

z = x + iy  and  z x iy= −

∴ x
z z

=
+
2

  and  y
z z

i
=

−
2

Hence u and v and also w may be considered as a function of z and z

Consider ∂
∂

=
∂
∂

+
∂
∂

=
∂
∂

⋅
∂
∂

+
∂
∂

⋅
∂
∂







+
∂
∂

⋅
∂
∂

+
∂
∂

⋅

w

z

u

z
i

v

z

u

x

x

z

u

y

y

z
i

v

x

x

z

v

y

∂∂
∂







= −





+ −





= − +

y

z

u
i
u i v

i
v

u v
i

x y x y

x y

1

2

1

2

1

2

1

2

1

2
( )

22
( )u vy x+

 = 0, by C.R. equations, as w is analytic.

This means that w is independent of z ,  i.e. w is a function of z alone.

This means that if w = u(x, y) + iv (x, y) is analytic, it can be rewritten as a function 

of (x + iy). Equivalently a function of z cannot be an analytic function of z.

Note  Let the analytic function w be given by

 w = u (x, y) + iv (x, y) (1)

 =
+ −





+
+ −





u
z z z z

i
iv

z z z z

i2 2 2 2
, ,  (2)

In order to get w as a function of z alone, we may replace z  by z in the R.H.S. 

of (2).

Then w = u (z, 0) + iv (z, 0) (3)

Equation (3) can be obtained from (1) by replacing x by z and y by 0.



Analytic Functions 3.23

Thus we get the following rule known as Milne-Thomson rule. If a function of x 

and y can be expressed as a function of z = x + iy, it can be done by simply replacing 

x by z and y by 0 in the given function.

Example 3.11  Show that u + iv = x iy

x iy a

−
− +

 (a ≠ 0) is not an analytic function of 

z, whereas u − iv is such a function at all points where z ≠ − a.

Now u + iv = z

z a+
 = a function of z . Since a function of z  cannot be analytic, 

(u + iv) is not an analytic function of z.

u − iv = conjugate of (u + iv) = z

z a+
 = f (z), say.

f (z) is a function of z alone and f ' (z) = a

z a+( )2
,  that exists everywhere except at

z = −a.

∴ f (z) is analytic, except at z = −a.

Example 3.12  Show that an analytic function with

 (i) constant real part is a contant; and

(ii) constant modulus is a constant.

Let  f(z) = u + iv be the analytic function.

(i) Given  u = constant = c, say

∴ u
x
 = 0 and u

y
 = 0.

By C.R. equations,   v
y
 = u

x
 = 0 and

 v
x
 = −u

y
 = 0

Since the partial derivatives of v with respect to both x and y are zero,

 v is a constant = c′, say

∴ f(z) = c + ic′

 = constant.

(ii) Given |  f(z)| = u v2 2+  = c

∴ u2 + v2 = c2 (1)

Differentiating (1) partially with respect to x and y, we get 

 2u u
x
 + 2v v

x
 = 0

and 2u u
y
 + 2v v

y
 = 0

i.e., u u
x
 + v v

x
 = 0 (2)

and −u v
x
 + v u

x
 = 0 (by C.R. equations)
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or v u
x
 − u v

x
= 0 (3)

(2) and (3) form a system of two homogeneous algebraic equations in the 

unknowns u
x
 and v

x
.

The system possesses only a trivial solution, since 
u v

v u−
 = − (u2 + v2 ) ≠ 0

∴ Solution of equations (2) and (3) is u
x
 = 0 and v

x
 = 0

Now f '(z) = u
x
 + iv

x
 = 0

∴ f (z) = a constant.

EXERCISE 3(a)

Part A

(Short Answer Questions)

 1. Explain briefly the concept of the limit of a function of a complex variable.

 2. What is the basic difference between the limit of a function of a real variable 

and that of a complex variable.

 3. Define the continuity of a function of a complex variable.

 4. When is a function of a complex variable said to be differentiable at a point?

 5. Define analytic function of a complex variable.

 6. State the Cauchy-Riemann equations in Cartesian Coordinates satisfied by an 

analytic function.

 7. State the sufficient conditions that will ensure the analyticity of a function

w = f(z) = u(x, y) + iv(x, y)

 8. State the Cauchy-Riemann equations in polar coordinates satisfied by an 

 analytic function.

 9. If w = u (x, y) + iv (x, y) is an analytic function of z, prove that 

  
d

d

w w

x
i

w

yz
=

∂
∂

= −
∂
∂

.

10. If w = u (r, q ) + iv (r, q ) is an analytic function of z, prove that e
w

z

iθ d

d

 =
∂
∂

= −
∂
∂

w

r

i

r

w

θ
.

 Prove that the following functions are not analytic:

11 f (z) = z ; 12. f(z) = x iy

x y

+
+2 2

;

13. f (z) = ex(cos y − i sin y)

14. f (z) = cos x cosh y +i sin x sinh y
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15. f z x y i
y

x
( ) = +( ) + 





−log cot2 2 12 .

Determine where the Cauchy-Riemann equations are satisfied for the following 

functions:

16. x2 + iy2; 17. (x3 − 3y2x) + i(3x2y − y3);

18. 
x

x y
i

y

x y2 2 2 2+
+

+
;  19. xy2  +  iyx2; 20. z

z

−
+

1

1
.

21. Find the value of a, b, c, d so that the function f (z) = (x2 + axy + by2) + i (cx2 + 

dxy + y2) may be analytic.

22. Determine p such that the function f z x y i
px

y
( ) = +( ) +







−1

2

2 2 1log tan  is

 analytic.

23. If u + iv is analytic, show that v − iu and −v + iu are also analytic.

24. If u + iv is analytic, show that v + iu is not analytic.

Part B

25. Given that f z
xy x y

x y
( ) =

−( )
+2 2

 and f (0) = 0, show that lim
0z→

( ) f z  exists.

26. Show that lim
0z→

( ) f z  does not exist, if f z
x y

x y
( ) =

+2 24
 and f (0) = 0.

27. Show that lim
0z→ +











x y

x y

2

2 4
 does not exist, even though the function approaches

 the same limit along every straight line through the origin.

28. Prove that the function f z
x y y ix

x y
( ) =

−( )
+2 2

,  when z ≠ 0 and f (z) = 0, when z = 0

 is continuous at the origin.

29. Given that f z
x y

x y
( ) =

−
+

3 3

3 3
 and f (0) = 0, show that  f (z) is not continuous at z = 0.

30. If f z
x y

x y
( ) =

+

2

4 2
, z ≠ 0 and f (0) = 0, show that f (z) is not continuous at z = 0.

31. Show that the function f (z) is not continuous at z = 0, if f z
x y

x y
( ) =

+2 2 2
,

 z ≠ 0 and f (0) = 0.

32. Show that the function f (x,  y) is discontinuous at (0,  0), given that

 f x y
x y y x

x y y x
,( ) =

−( )
+( ) +( )
4

8 2
and  f (0, 0) = 0.
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33. Show that the function f (z) defined by

f z
x y y i x

x y
z( ) =

( )
,

−
2 2

0
+

≠   and  f (0) = 0

 is not analytic at the origin, though it satisfies Cauchy-Riemann equations at 

the origin.

34. Show that function f (z) defined by f z
x y x i y

x y
( )

( )
, 0=

+
≠

2 3

6 10

−
z  and f (0) = 0 

 is not analytic at the origin, though it satisfies Cauchy-Riemann equations at 

the origin.

35. Prove that the function f (z) defined by f z
x i y i

x y
( )

( ) ( )
, 0=

+
+

≠
3 3

2 2

1 1− −
z  and

 f (0) = 0 is continuous at the origin. Prove also that the Cauchy-Riemann 

equations are satisfied by f (z) at z = 0 and yet ′f z( )  does not exist at z = 0. 

Prove that the following functions are analytic and also find their derivatives 

using definition.

36. f (z) = z2; 37. f (z) = ez; 38. f (z) = cos z; 39. f (z) = sinh z.

40. If f (z) and f z( )  are both analytic, show that f (z) is a constant.

3.3 PROPERTIES OF ANALYTIC FUNCTIONS

3.3.1  Definition

∂
∂

+
∂
∂

=
2

2

2

2
0

φ φ

x y
 is known as Laplace equation in two dimensions.

∂
∂

+
∂
∂

2

2

2

2x y
 is called the Laplacian operator and is denoted as ∇2 .

Using this operator, the Laplace equation is usually written as ∇ =2 0φ .

It is recalled, from Vector Calculus, that

 ∇ ≡
∂

∂
+

∂
∂

+
∂

∂
i

x
j

y
k

z

− − −
 and hence

 ∇ =∇⋅∇ =
∂

∂
+

∂
∂

+
∂

∂
2

2

2

2

2

2

2x y z
 in three dimensions.

The Laplace equation in polar co-ordinates is defined as 
∂
∂

+
∂
∂

+
∂
∂

=
2

2 2

2

2

1 1
0

φ φ φ

r r r r θ
.

Property 1

The real and imaginary parts of an analytic function w u i= + v  satisfy the Laplace

equation in two dimensions, viz. ∇ =2 0u  and ∇ =2 0v .
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Since w = u + iv is analytic in some region of the z-plane, u and v satisfy Cauchy- 

Riemann equations.

i.e. ∂
∂

= ∂
∂

u

x

v

y
 (1)

and ∂
∂

= − ∂
∂

u

y

v

x
 (2)

Differentiating both sides of (1) partially with respect to x, we get

 ∂
∂

= ∂
∂ ∂

2

2

2
u

x

v

x y
 (3)

Differentiating both sides (2) partially with respect to y, we get

 ∂
∂

= − ∂
∂ ∂

2

2

2
u

y

v

y x
 (4)

The second order mixed partial derivatives ∂
∂ ∂

2v

x y
 and ∂

∂ ∂

2v

y x
 are equal, when 

they are continuous.

Assuming the continuity of ∂
∂ ∂

2v

y x
 and ∂

∂ ∂

2v

y x
 and adding (3) and (4), we get

 

∂
∂

+ ∂
∂

=
2

2

2

2

u

x

u

y
0

i.e. u satisfies Laplace equation or u is a solution of the Laplace equation ∇ =2φ 0.  

Similarly, differentiating (1) partially with respect to y and (2) partially with respect to

x and adding with the assumption of continuity of  and 
2 2∂

∂ ∂
∂

∂ ∂



u

x y

u

y x




, we get

 

∂
∂

+
∂
∂

=
2

2

2

2

v

x

v

y
0

i.e. v also satisfies Laplace equation or v is also a solution of the Laplace equation 

∇ =2φ 0.

Note  A real function of two real variables x and y that possesses continuous 

second order partial derivatives and that satisfies Laplace equation is called a 

harmonic function.

If we assume the continuity of the second order partial derivatives of u and v, 

the above property means that when w = u + iv is analytic, u and v are harmonic. 

Conversely, when u and v are any two harmonic functions, chosen at random, u + iv 

need not be analytic.

If u and v are harmonic functions such that u + iv is analytic, then each is called 

the conjugate harmonic function of the other.
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Property 2

The real and imaginary parts of an analytic function w = u(r, q ) + iv (r, q) satisfy the 

Laplace equation in polar coordinates.

Since w = u(r, q ) + iv(r, q) is analytic in some region of the z-plane, u and v satisfy 

Cauchy-Riemann equations in polar coordinates.

i.e. ∂
∂

=
∂
∂

u

r r

v1

θ
 (1)

and ∂
∂

= −
∂
∂

v

r r

u1

θ
 (2)

or 
1

r

u v

r

∂
∂

= −
∂
∂θ

 (3)

Differentiating (1) partially with respect to r,

we get 
∂
∂

=
∂

∂ ∂
−

∂
∂

2

2

2

2

u

r r

v

r r

v1 1

θ θ
 (4)

Differentiating (3) partially with respect to q,

we get 
1

2

2

r

u v

r

∂
∂

= −
∂

∂ ∂

2

θ θ
 (5)

Using (1), (4) and (5), we get

∂
∂

+
∂
∂

+
∂
∂

=
∂

∂ ∂
−

∂
∂ ∂







=
2

2 2

2

2

2 2u

r r

u

r r

u

r

v

r

v

r

1 1 1
0

θ θ θ
,

assuming the continuity of the mixed derivatives.

Thus u satisfies Laplace equation in polar coordinates.

Similarly we can prove that v also satisfies Laplace equation in polar co-ordinates.

Property 3

If w = u(x, y) + iv(x, y) is an analytic function, the curves of the family u(x, y) = a and the 

curves of the family v(x, y) = b, cut orthogonally, where a and b are varying constants.

Consider a representative member of the family u(x, y) = a, corresponding to a = a
1
.

i.e. u(x, y) = a
1

Taking differentials on both sides, we get

 du = 0

i.e. 
∂
∂

+
∂
∂

=
u

x
x

u

y
yd d 0

∴ 
d

d
1

y

x

u

x

u

y

m= −

∂
∂







∂
∂







= , say, where m
1
 is the slope of the curve u (x, y) = a

1
 at (x, y).
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Similarly, considering a typical member of the second family whose equation is 

v(x, y) = b
1
, we can get

m
y

x

v

x

v

y

2 = = −

∂
∂







∂
∂







d

d
, where m

2
 is the slope of the curve v (x, y) = b

1
 at (x, y).

Now m m

u

x

u

y

v

x

v

y

1 2 =

∂
∂







∂
∂







⋅

∂
∂







∂
∂







 =

∂
∂







− ∂
∂







⋅

∂
∂







∂
∂







v

y

v

x

v

x

v

y

, by C.R. equations, since (u + iv) is analytic.

 = −1

This is true at the point of intersection of the two curves u(x, y) = a
1
 and v (x, y) 

= b
1
 also.

Thus a typical member of the family u (x, y) = a cuts orthogonally a typical 

member of the family v (x, y) = b.

∴ Every member of the family u (x, y) = a cuts orthogonally every member of the 

family v (x, y) = b.

Note  The two families are said to be orthogonal trajectories of each other.

Property 4

If w = u (r, q) + iv (r, q ) is an analytic function, the curves of the family u(r, q) = a 

cut orthogonally the curves of the family v (r, q) = b, where a and b are arbitrary 

constants.

Proceeding as in property (3), we get

 d

d

θ

θ

r

u

r

u







= −

∂
∂







∂
∂







1

 (1)

and 
d

d

θ

θ

r

v

r

v







= −

∂
∂







∂
∂







2

 (2)
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In polar coordinates the condition for orthogonality of two curves is

 r
r

r
r

d

d

d

d

θ θ





⋅






= −
1 2

1 .

From (1) and (2), we have

 

r
r

r
r

r
u

r

u

r
v

r

v

d

d

d

d

θ θ

θ θ







⋅






=

∂
∂

∂
∂

⋅

∂
∂

∂
∂

1 2

 

=
⋅ ∂

∂
∂
∂

⋅
− ∂

∂






∂
∂

r
r

u

u

r
r

u

v

1 1

θ

θ

θ

θ

,

(by C.R. equations in polar coordinates.)

 = − 1.

Hence the property follows.

3.3.2  Construction of an Analytic Function, When Its Real or   

Imaginary Part is Known

Method 1

Let u (x, y), the real part of the analytic function f(z) = u (x, y) + iv (x, y) be known. 

In this method, we first find v (x, y) and then find u (x, y) + iv (x, y) as a function of

z. Since u (x, y) is given, ∂
∂

u

x
 and ∂

∂
u

y
 can be found out.

 

d d dv
v

x
x

v

y
y=

∂
∂

+
∂
∂

 = −
∂
∂







+
∂
∂







u

y
x

u

x
yd d  (1)

The expression (Mdx + Ndy) is an exact differential if ∂
∂

=
∂
∂

M

y

N

x
.

This condition for exactness is satisfied by the R.H.S. expression of (1), as

 

∂
∂

−
∂
∂







=
∂

∂
∂
∂





y

u

y x

u

x

i.e., −
∂
∂

=
∂
∂

2

2

2

2

u

y

u

x
 or 

∂
∂

+
∂
∂

=
2

2

2

2
0

u

x

u

y
,

which is true by property (1) discussed above.

∴ R.H.S. of (1) is an exact differential. Now, integrating both sides of (1), we get
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v
u

y
x

u

x
y c= −

∂
∂







+
∂
∂















 +∫ d d , where c is an arbitrary (real) constant of integration.

Then f (z) = u(x, y) + iv (x, y) is found out by using Milne-Thomson rule.

Note   If v(x, y) is given, we can find u(x, y) first by a similar procedure and then 

find f (z).

Method 2 (Milne-Thomson method)

Let u(x, y) be the real part of the analytic function f(z) = u(x, y) + iv(x, y). In this 

method, we first find  f ' (z) as a function of z and then find  f(z) by ordinary integration. 

The imaginary part of f(z) gives v(x, y).

Since u(x, y) is given, ∂
∂
u

x
 and ∂

∂
u

y
 can be found out.

 ′ =
∂
∂

+
∂
∂

=
∂
∂

−
∂
∂

f z
u

x
i

v

x

u

x
i

u

y

( )  [ ∴ f (z) is analytic]

 = u
x 
(x, y) − iu

y
 (x, y)

 = u
x 
(z, 0) − iu

y
(z, 0), by Milne-Thomson rule.

∴ f z u z iu z z cx y( ) ( , ) ( , )= −  +∫ 0 0 d , where c is an arbitrary (imaginary) contant 

of integration.

Separating the real and imaginary parts of  f (z), we can find v (x, y).

Note  

1. The real part of  f (z) obtained should be identical to the given u (x, y).

2. If v (x, y) is given, we can first find

 
f z v z iv z z cy x( ) ( , ) ( , ) ,= +  +∫ 0 0 d

by a similar procedure and then find u (x, y) by separation of  f (z).

3.3.3 Applications

Properties (1) and (3) of analytic functions discussed above provide solutions to a 

number of flow and field problems.

If we consider two dimensional steady flow such as fluid flow, electric current flow 

and heat flow, the paths of fluid particles are called stream lines and their orthogonal 

trajectories are called equipotential lines. In the study of two dimensional irrotational 

motion of an incompressible fluid in planes parallel to the xy-plane, if v  represents 

the velocity of a fluid particle, we can find a function f (x, y) such that
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v
x

i
y

j=
∂
∂

+
∂
∂

φ φ

The function f (x, y) which gives the velocity components is called the velocity 

potential. The function y (x, y), which is such that f (x, y) + iy (x, y) is analytic, is 

called the stream function.

The function w = f (z) = f (x, y) + iy (x, y), which represents the flow pattern is 

called the Complex potential.

The curves f (x, y) = a and y (x, y) = b are called equipotential lines and stream 

lines respectively.

In the study of electrostatics and gravitational fields, the curves f (x, y) = a and 

Ψ (x, y) = b are respectively called equipotential lines and lines of force.

In heat flow problems, the curves f (x, y) = a and Ψ (x, y) = b are respectively 

called isothermals and heat flow lines.

WORKED EXAMPLE 3(b)

Example 3.1  Prove that the following function u = x3 − 3xy2 + 3x2 − 3y2 + 1 is 

harmonic. Also find the conjugate harmonic function v and the corresponding 

analytic function (u + iv)

 u = x3 − 3xy2 + 3x2 − 3y2 + 1

u
x
 = 3x2 − 3y2 + 6x; u

xx
 = 6x + 6

 u
y
 = − 6xy − 6y ; u

yy
 = − 6x − 6

∴ u
xx

 + u
yy 

= 0 and so u is a harmonic function.

Since v is the conjugate harmonic of u, u + iv is analytic.

∴ By C.R. equations, u
x
 = v

y
 and u

y
 = − v

x

Now d d d

d d

d d

v
v

x
x

v

y
y

u

y
x

u

x
y

xy y x x y x y

=
∂
∂

+
∂
∂

= −
∂
∂

+
∂
∂

= + + − +( ) ( )6 6 3 3 62 2

∴ v xy y x x y x y c

M x N y c

= + + − +  +

= + +

∫
∫

( ) ( )

( )

6 6 3 3 62 2d d

d d , say.

To evaluate the integral in the R.H.S., we integrate all the terms in M partially with 

respect to x, also integrate only those terms in N not containing x and add them.

Thus v = 3x2y + 6xy − y3 + c
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Let w = u + iv

= (x3 − 3xy2 + 3x2 − 3y2 + 1) + i (3x2y + 6xy − y3 + c)

 = z3 + 3z2 + 1 + ic, by Milne-Thomson rule.

Example 3.2  In a two dimensional fluid flow, find if xy(x2 − y2) can represent the 

stream function. If so, find the corresponding velocity potential and also the complex 

potential.

If y = xy(x2 − y2) represents the stream function, it should be the imaginary part of 

an analytic function and hence harmonic.

  y = x3y − xy3

  y
x
 = 3x2y − y3;  y

xx
 = 6xy

 y
y
 = x3 − 3xy2;  y

yy
 = −6xy

 ∴ y
xx

 + y
 yy

 = 0.

i.e., y is a harmonic function.

∴ y can represent the stream function. Let f be the corresponding velocity potential.

Then f + iy is analytic.

∴  f
x
 = y

y
 and f

y
 = −y

x
 (by C.R. equations)

Now d d dφ
φ φ

=
∂
∂

+
∂
∂x

x
y

y

 

=
∂
∂

−
∂
∂

= − − −

ψ ψ

y
x

x
y

x xy x x y y y

d d

d d( ) ( )3 2 2 33 3

∴

 

φ = d d( ) ( )x xy x x y y y

x
x y

y
c

3 2 2 3

4
2 2

4

3 3

4

3

2 4

− − − 

= − + +

∫

If f (z) represents the complex potential,

 f (z) = f + iy

 = − + +






+ −

= +

x
x y

y
c i x y xy

z c

4
2 2

4
3 3

4

4

3

2 4

1

4

( )

(by Milne-Thomson rule)
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Example 3.3  Find if f = (x − y) (x2 + 4xy + y2) can represent the equipotential for 

an electric field. Find the corresponding complex potential w = f + iy and also y, if 

possible.

If f represents the equipotential for an electric field, it should be the real part of an 

analytic function and hence harmonic.

  f = (x − y) (x2 + 4xy + y2)

  f
x
= (x − y) (2x + 4y) + (x2 + 4xy + y2)

  f
xx

= 4x + 2y + 2x + 4y = 6x + 6y

f
y
 = (x − y) (4x + 2y) + (x2 + 4xy + y2) (−1)

  f
yy

 = −4y − 2x − 4x − 2y = −6x −6y

∴  f
xx

 + f
yy

 = 0

i.e., f is a harmonic function.

∴ f can represent the equipotential of an electric field.

The corresponding complex potential

 w = f + i y is analytic

∴ d

d

w

z
i

i

x

y

= +

−

φ

φ φ

ψ x

x=

 = [(x − y) (2x + 4y) + (x2 + 4xy + y2)]

 − i[(x − y) (4x + 2y) − (x2 + 4xy + y2)]

 = 3z2 − i·3z2

∴

 

w i z z ic

i z ic

= − +

= − +
∫ 3 1

1

2( )

( )

d

3

Now w = f + iy = (1 − i) (x + iy)3 + ic

 = (1− i) (x3 + 3ix2y − 3xy2 − iy3) + ic

 = (x3 − 3xy2 + 3x2y − y3) + i(3x2y − y3 − x3 + 3xy2 + c)

∴ y = 3(x2y + xy2 ) − (x3 + y3) + c.

Note  The value of f obtained from w is the same as the given value of f.

Example 3.4  Prove that v = log [(x − 1)2 + (y −2)2] is harmonic in every region which 

does not include the point (1, 2). Find the corresponding analytic function w = u + iv 

and also u.

 v = log [(x − l)2 + (y − 2)2]

v
x

x y
x =

−( )
−( ) + −( )

2 1

1 2
2 2

;

  

v
x y x

x y
xx =

−( ) + −( )



 − −( )

−( ) + −( )





1 2 2 4 1

1 2

2 2 2

2 2
2

.
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v
y

x y
v

x y y

x
y yy=

−( )
−( ) + −( )

=
−( ) + −( )



 − −( )

−( )
2 2

1 2

1 2 2 4 2

1
2 2

2
2

;

.

22 2
2

2+ −( )



y

v
x
, v

y
, v

xx
 and v

yy
 do not exist at the point (1, 2).

But in every region not containing (1, 2),

v v
y x

x y

x y

xx yy+ =
−( ) − −( ){ }

−( ) + −( )





+
−( ) − −( ){2 2 1

1 2

2 1 2
2 2

2 2
2

2 2 }}
−( ) + −( )





=

x y1 2

0

2 2
2

∴ v is harmonic in every region not containing the point (1, 2).

w = u + iv is the corresponding analytic function.

∴ d

d

w

z

u

x
i

v

x

v

y
i

v

x

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

 (by C.R. equations)

 

=
−( )+ −( )

−( ) + −( )

=
− + −( )

−( ) +

2 2 2 1

1 2

4 2 1

1 4

2 2

2

y i x

x y

i z

z
,  (by Milne-Thomson rule.)

 

=
−( )+{ }

− +( ) − −( )
=

− −

2 1 2

1 2 1 2

2

1 2

i z i

z i z i

i

z i

∴

 

w
i

z i
z c

i z i c

=
− −

+

= − − +

∫
2

1 2

2 1 2

d

log ( ) .

i.e. u iv i x i y c+ = − + −{ }+2 1 2log ( ) ( )

 

= −( ) + −( ){ } +
−
−















 +−2

1

2
1 2

2

1

2 2 1i x y i
y

x
clog tan

 
= −

−
−







+








 + − + −{ }−2

2

1
1 21 2 2tan log ( ) ( )

y

x
c i x y



Mathematics II3.36

∴ u
y

x
c= −

−
−







+−2
2

1

1tan ,  where c is a real constant. Also we note that 

v is the same as the given value.

Example 3.5  Find v such that w = u + iv is an analytic function of z, given that 

u e xyx y= ⋅−2 2

2cos .  Hence find w.

 
u e xyx y= ⋅−( ) cos

2 2

2

 
u e y xy x e xyx

x y x y= − + ⋅− −( ) ( )( sin ) cos
2 2 2 2

2 2 2 2

 

u e x xy y e xyy

x y x y= − − ⋅− −( ) ( )( sin ) cos
2 2 2 2

2 2 2 2

 dv = (v
x
 dx + v

y
 dy)

 = − u
y
 dx + u

x
 dy

∴ v e x xy e y xy x
x y x y= ⋅ + ⋅





−( ) −( )∫
2 2 2 2

2 2 2 2sin cos d

 
+ − ⋅ + ⋅





+−( ) −( )
e y xy e x xy y c

x y x y2 2 2 2

2 2sin 2 cos 2 d

To evaluate M x N yd d+[ ]∫ ,  where Mdx + Ndy is an exact differential in which N

does not contain any term independent of x, it is enough to evaluate  just M xd∫  

treating y as a constant.

∴ v e x xy x e y xy x c
x y x y= + ⋅ +−( ) −( )∫∫

2 2 2 2

2 2 2 2sin cosd d

 = ⋅ + ⋅ { } +−( ) −( )∫∫ e x xy x e xy c
x y x y2 2 2 2

2 2 2sin sind d ,

 treating y as a constant.

 
= ⋅ + −−( ) −( )∫ e x xy x e xy

x y x y2 2 2 2

2 2sin d sin 2

 
sin 2 2

2 2

xy e x x c
x y⋅ ⋅ +−( )∫ d ,

 integrating by parts.

 
= +−( )

e xy c
x y2 2

2sin

Now w = u + iv

 
= + +−( ) −( )

e xy i e xy c
x y x y2 2 2 2

2 2cos { sin }

 = +e cz2

 (by Milne-Thomson rule.)



Analytic Functions 3.37

Example 3.6  Find the analytic function w = u + iv,

if v = e2x (x cos 2y − y sin 2y). Hence find u.

 v = e2x (x cos 2y − y sin 2y)

 v
x
 = e2x . cos 2y + 2e2x (x cos 2y − y sin 2y)

v
y
 = e2x (− 2x sin 2y − 2y cos 2y − sin 2y)

 
d

d

w

z
u iv v ivx x y x= + = + ,  (by C.R. equations.)

 = + +0 2 2 2i ze ez z[ ],  (by Milne-Thomson rule.)

∴ w i ze e z cz z= +( ) +∫ 2 2 2 d ,  where c is real

 = ⋅ − ⋅






+








 +i z

e e e
c

z z z

2
2

2
4 2

2 2 2

,  by Bernoulli’s formula

 = iz e2z +c

i.e.,  u iv i x iy e cx iy+ = + ++( ) ( )2

 = (ix − y) e2x (cos 2y + i sin 2y) + c

= − + + + −[ ( sin cos ) ] ( cos sin )x y y y e c i x y y y ex x2 2 2 22 2

∴ u = −(x sin 2y + y cos 2y) e2x + c.

Example 3.7  Determine the analytic function f (z) = u + iv, given that 3u + 2v 

= y2 − x2 + 16xy.

 3u + 2v = y2 − x2 + l6xy 

(1)∴ 3u
x
 + 2v

x
 = − 2x+l6y

and 3u
y
 + 2v

y
 = 2y + 16x

i.e., 2u
x 
− 3v

x
 = 2y + 16x (2)

 (by C.R. equations.)

Solving (1) and (2), we get

 u
x
 = 2x + 4y and vx = −4x + 2y

 f ′ (z) = u
x
 + iv

x

 = (2x + 4y) + i(−4x + 2y)

 = 2z − i4z, (by Milne-Thomson rule.)

∴ f z z i z z c ic( ) = − + +∫ ( )2 4 1 2d

 = z2 − 2iz2 + c
1
 + ic

2

 = (1 − 2i)z2 + c
1
 + ic

2

Since 3u + 2v does not contain any constant,
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3 2 0

3

2
1 2 2 1c c c c+ = ∴ = −

∴ = − + −





f z i z i c( ) ( )1 2 1
3

2

2

1,  where c
1
 is a real constant.

Example 3.8  Determine the analytic function f (z) = P + iQ, given that P − Q =

cos sin

cos

x x e

x e e

y

y y

+ −
− −

−

−2
 and f (p/2) = 0.

 f (z) = P + iQ

∴ if (z) = − Q + iP

∴ (1 + i) f (z) = (P − Q) + i(P + Q)

i.e., f (z) = u + iv, say.

Thus, if we construct the analytic function f (z) with u = P − Q as the real part,

then f z
i

z( ) ( )=
+
1

1
φ .

 

u
x x e

x y

y

=
+ −

−( )
−cos sin

cos cosh2

∴ u
x y x x x x x e

x
x

y

=
−( )⋅ −( )+ ⋅ + −( )

−

−
1

2

cos cosh cos sin sin cos sin

cos coshh y( )










2

 

u
x y e y x x e

x y
y

y y

=
−( ) + + −( )

−( )






− −
1

2 2

cos cosh sinh cos sin

cos cosh







Now f′(z) = u
x
 + iv

x

 = u
x
 − iu

y
, (by C.R. equations)

 

=
−( ) −( )+ + −( )− −( )

−( )
cos cos sin sin cos sin cos

cos

z z z z z z i z

z

1 1 1

2 1
2

 

=
+( ) −( )

−( )
=

+
−( ) =

+








1 1

2 1

1

2 1

1

4 22

2
i z

z

i

z

i zcos

cos cos
cos ec 




∴ φ ( ) = dz
i z

z c
1

4 2

+
+ +









∫ cosec 2

 

= −
+

+











1

4
2

2

i z
ccot

i.e., f z
z

c( ) cot= + ′
1

2 2
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Since

 

f c
π π

2
0

1

2 4
0







= ′ − =, cot

 

 ∴

 

′ =c
1

2

∴

 

f z
z

( ) cot= −





1

2
1

2

Example 3.9  Verify that the families of curves u = c
1
 and v = c

2

 cut orthogonally, 

when w = u + iv = z3.

 u + iv = z3 = (x + iy)3

 = x3 + 3ix2y − 3xy2 − iy3

∴ u = x3 − 3xy2 and v = 3x2y − y3

Consider the family of curves u = c
1

i.e. x3 − 3xy2 = c
1 

(1)

Differentiating (1) with respect to x, we get

 

3 3 2 02 2x y xy
y

x
− +





=
d

d

∴ 
d

d

y

x
m

x y

x y
= =

−
1

2 2

2

Consider the family of curves v = c
2
.

i.e. 3x2y − y3 = c
2
 (2)

Differentiating (2) with respect to x, we get

 

3 2 3 02 2x y x
y

x
y

y

x
+





− =
d

d

d

d

∴ 
d

d

y

x
m

x y

x y
= = −

−2 2 2

2

 m
1
m

2
 = −1

∴ The families of curves u = c
1
 and v = c

2
 cut orthogonally.

Example 3.10  If u = x2 − y2 and v
y

x y
= −

+2 2
 prove that both u and v satisfy 

Laplace equations, but that (u + iv) is not a regular function of z.

 u = x2 − y2

∴ u
x
 = 2x; u

xx
 = 2; u

y
 =  − 2y; u

yy
 = − 2

∴ u
xx

 + u
yy

 = 0

i.e., u satisfies Laplace equation.
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v
y

x y
= −

+2 2

v
xy

x y
x =

+( )
2

2 2
2

;

  

v y
x y x x y x

x y
xx =

+( )⋅ − ⋅ +( )⋅

+( )












2
1 2 22 2 2 2

2 2
4

 

=
−( )

+( )
2 3y y x

x y

2 2

2 2
3

 

v
x y y

x y

y x

x y
y = −

+( )⋅ −

+( )












=
−

+( )
2 2

2 2

2

2 2

1 2 2

2

2

2

 

v
x y y y x x y y

x y
yy =

+( ) ⋅ − −( ) ⋅ +( ) ⋅

+( )
2 2 2

2

2 2 22
2

2 2

2
4

 

=
−

+
2 3 2

2 3

y x y

x y

( )

( )

2

2

∴ v
xx

 + v
yy

 = 0

i.e. v satisfies Laplace equation.

Now u
x
 ≠ v

y
 and u

y
 ≠ − v

x

i.e. C.R. equations are not satisfied by u and v.

Hence u + iv is not a regular (analytic) function of z.

Note  The reason for the above situation is that u and v are not the real and 

imaginary parts of the same analytic function. In fact, u is the real part of z2 and v is 

the imaginary part of 1

z
.

Example 3.11  If u (x, y) and v (x, y) are harmonic functions in a region R, prove that 

the function ∂
∂

−
∂
∂







+
∂
∂

+
∂
∂







u

y

v

x
i

u

x

v

y
 is an analytic function of z = x + iy.

u and v are harmonic functions.

∴ u
xx

, u
xy

, u
yy

 and v
xx

, v
xy

, v
yy

 are all continuous (and hence exist) (1)

and u
xx

 + u
yy 

 = 0 and v
xx

 + v
yy

 = 0 (2)

Consider P + iQ = (u
y
 − v

x
) + i(u

x
 + v

y
)

 P
x
 = u

yx
 − v

xx
 and P

y
 = u

yy
 − v

xy

 Q
x
 = u

xx
 + v

yx
 and Q

y
 = u

xy
 + v

yy
.

The four partial derivatives P
x 
, P

y
, Q

x
 and Q

y
 exist and are continuous in the region 

R [by (1)].
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 P
x
 = Q

y
, if u

yx
 − v

xx
 = u

xy
 + v

yy

i.e. if v
xx

 + v
yy

 + (u
xy

 − u
yx

) = 0

i.e. if v
xx

 + v
yy

 = 0 [by (l)],

which is true, by (2).

 P
y
 = − Q

x
, if u

yy
 − v

xy
 = − (u

xx
 + v

yx
)

i.e. if u
xx

 + u
yy

 − (v
xy

 − v
yx

) = 0

i.e. if u
xx

 + u
yy

 = 0 [by (l)],

which is true, by (2).

Thus the C.R. equations are satisfied by P and Q (3)

∴ By (1) and (3), P + iQ is analytic.

Example 3.12  Show that the families of curves r n = a sec nq and r n = b cosec nq 

intersect orthogonally, where a and b are arbitrary constants.

The given equations can be rewritten as r n cos nq = a and r n sin nq = b.

i.e. u(r, q ) = a and v(r, q ) = b, say.

Now u(r, q) + iv(r, q) = r n (cos nq + i sin nq )

 = r n einq

 = (reiq )n or z n, which is an analytic function.

∴ By property (4), the families of curves u(r, q) = a and v(r, q) = b cut 

orthogonally.

Example 3.13  If f (z) is a regular function of z, prove that 
∂

∂
+

∂
∂





x y

f z
2

2

2

2| ( )|

= 4| f ' (z)|2.

Let f(z) = u+iv

∴ | f (z)|2 = u2 + v2 and ′ = +f z u vx x( )
2 2 2

Since f(z) is a regular (analytic) function,

 u
x
 = v

y
 and u

y
 = − v

x
 (C.R. equations) (1)

and u
xx

 + u
yy

 = 0 and v
xx

 + v
yy

 = 0 (Laplace equations) (2)

Now 
∂

∂
=

x
u u ux( )2 2

 

∂
∂

= +
2

2x
u u u uxx x( ) ( )2 22

Similarly, 
∂
∂

= +
2

2y
u u u uyy y( ) ( ),2 22
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∂
∂

= +
2

2

2 22
x

v vv vxx x( ) ( )  and 
∂
∂

= +
2

2

2 22
y

v vv vyy y( ) ( )

∂
∂

+
∂
∂







( ) =
∂
∂

+
∂
∂







+
∂
∂

+
∂
∂




2

2

2

2

2
2

2

2

2

2
2

2

2

2x y
f z

x y
u

x y
| | 




v2

 
= + + + + + + +2 2 2 22 2 2 2u u u u u v v v v vxx yy x y xx yy x y( ) ( ) ( ) ( )

 = + + +2 2 2 2 2( ),u u v vx y x y  by (2)

 = ( ),2 2 2 2 2u v v ux x x x+ + +  by (1)

 

= ( )

( )

4

4

2 2

2

u v

f z

x x+

= ′ .

Example 3.14 If f (z) = u + iv is a regular function of z, prove that ∇ 2{log

| f (z)|} = 0.

 f (z)  =  (u  +  iv) is analytic.

∴ u
x
 = v

y
 and u

y
 = − v

x
 (C.R. equations) (1)

and u
xx

 + u
yy

 = 0 and v
xx

 + v
yy

 = 0 (Laplace equations)

 log log ( ) f z u v( ) = +
1

2

2 2
 (2)

∴

 

∂
∂

= ⋅
+ ⋅
+







=
+
+x

f z
uu v v

u v

uu v v

u v

x x x xlog ( ) 
1

2

2 2
2 2 2 2

∂
∂

=
+( ) + + +{ } − + +2

2

2 2 2 2 2 2

x
f z

u v uu u vv v uu vv uuxx x xx x x x x

log ( )
( )(

 
vvv

u v

x ) 
+( )2 2

2

 =
+

+ + + −
+( )

+
1 2

2 2

2 2

2 2
2

2

u v
u u v v u v

u v
u u v vxx xx x x x x{ } ( )  (3)

Similarly,

∂
∂

( ) =
+

+ + + −
+( )

+
2

2 2 2

2 2

2 2
2

1 2

y
f z

u v
u u vv u v

u v
u u v vyy yy y y y ylog { } ( )| 22

 (4)

Adding (3) and (4), we get

 

∇ ( ){ } =
+

+ + + + + + +2

2 2

2 2 2 21
log [ ( ) ( ) ]f z

u v
u u u v v v u v u vxx yy xx yy x x y y

 

−
+( )

+ + +
2

2 2
2

2 2

u v
u u v v u u v vx x y y[( ) ( ) ]

=
+

+ −
+( )

+ + − +
1

2
2

2 2

2 2

2 2
2

2 2

u v
u v

u v
u u v v u v v ux x x x x x[ ( )] [( ) ( ) ],

 by (1) and (2).
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=
+( )

+
−

+( )
+( ) + +( )

=
+

2 2

2

2 2

2 2
2 2

2

2 2 2 2 2 2

2

u v

u v u v
u u v v u v

u v

x x

x x x x

x

{ }

xx x x

u v

u v u v

u v

2

2 2

2 2 2 2

2 2
2

2

0

( )
+

−
+( ) +( )

+( )
=

Example 3.15  Find the equation of the orthogonal trajectories of the family of 

curves given by 3x2y + 2x2 − y3 − 2y2 = a, where a is an arbitrary constant.

If w = u + iv is analytic, the families of curves u = a and v = b are known as the 

orthogonal trajectories of each other. The given family can be assumed as u = a. We 

have to find the equation v = b, such that u + iv is analytic.

 u = 3x2y + 2x2 − y3 − 2 y2

 u
x
 = 6

xy
 + 4x ; u

y
 = 3x2 − 3y2 − 4y

 dv = v
x
 dx + v

y
 dy

 = − u
y 
dx + u

x
 dy, (by C.R. equations)

 = (3y2 + 4y − 3x2) dx + (6xy + 4x) dy

∴ v y y x x xy x y= + −( ) + +( ) ∫ 3 4 3 6 42 2 d d

 = 3xy2 + 4xy − x3

∴ The required equation of the orthogonal trajectories is 3xy2 + 4xy − x3 = b, where 

b is an arbitrary constant.

EXERCISE 3(b)

Part A

(Short Answer Questions)

 1. State any two properties of an analytic function.

 2. Define a harmonic function and give an example.

 3. How are analytic function and harmonic function related?

 4. Write down the Laplace equations in two-dimensional cartesian and polar 

coordinates.

 5. What do you mean by conjugate harmonic function? Find the conjugate har-

monic of x.

Verify whether the following function’s are harmonic.

 6. xy   7. ex sin y   8. x2 + y2   9. cos x sinh y

10. e y cosh x.

The following functions are harmonic. Find the corresponding conjugate 

harmonic functions:



Mathematics II3.44

11. x2 − y2   12. e x cos y   13. sin x cosh y   14. 2x( 1 − y)

15. log (x2 + y2)

Find the analytic function f (z) = u + iv, given that

16. v = amp(z) 17. u = y2 − x2 18. u = e y cos x 19. v = sinh x sin y

20. u
x

x y
=

+2 2
.

Part B

21. Prove that the function u = x (x2 − 3y2) + (x2 − y2) + 2xy is harmonic. Also find 

the conjugate harmonic function v and the corresponding analytic function 

(u + iv).

22. Prove that the function v = 3x2y + x2 − y3 − y2 is harmonic. Also find the con-

jugate harmonic function u and the corresponding analytic function (u + iv).

23. Show that φ = 2x y
x

x y
− +

+
2

2 2
 can represent the velocity potential in an 

 incompressible fluid flow. Also find the corresponding stream function and 

complex potential. 

24. Show that y = x2 − y2 − 3x − 2y + 2xy can represent the stream function of an 

incompressible fluid flow. Also find the corresponding velocity potential and 

complex potential.

25. Show that the equation x3y − xy3 + xy + x + y = c can represent the path of elec-

tric current flow in an electric field. Also find the complex electric potential 

and the equation of the potential lines.

26. Find the analytic function w = u + iv, if u = ex (x sin y + y cos y). Hence find v.

27. Find the analytic function w = u + iv, if v = e−x (x cos y + y sin y). Hence find u.

28. Find the analytic function w = u + iv, if u = e−2xy·sin (x2 − y2). Hence find v.

29. Find the analytic function w = u + iv, if v = e−2y (y cos 2x + x sin 2x). Hence 

find u.

30. Find the analytic function f (z) = u + iv, given that u v
x

x y
+ =

+
2

2 2
 and f (1) = i.

31. Find the analytic function  f (z) = u + iv, given that 2u − 3v = 3y2 − 2xy − 3x2 

+ 3y − x and f (0) = 0.

32. Find the analytic function  f (z) = P + iQ, if P Q
x

y x
− =

−
sin

cosh cos

2

2 2
.

33. Find the analytic function  f (z) = P + iQ, if Q
x y

x y
=

+
sin sinh

cos cosh
,

2 2
 if f (0) = l.

34. Verify that the families of curves u = c
1
 and v = c

2
 cut orthogonally, when 

w = u + iv = z4.
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35. Verify that the families of curves u = c
1
 and v = c

2
 cut orthogonally, when w 

 = u i
z

+ =υ
1 .

36. Show that the families of curves r n = an cos nq and r n = bn sin nq cut orthogo-

nally, where a and b are arbitrary constants.

37. Find the equation of the orthogonal trajectories of the family of curves given 

by 2x − x3 + 3xy2 = a.

38. Prove that u = e−y cos x and v = e−x sin y satisfy Laplace equations, but that 

(u + iv) is not an analytic function of z.

39. If f (z) is an analytic function of z in any domain, prove that

 ∂
∂

+
∂
∂







= ′ −
2

2

2

2

2 2 2

x y
f z p f z f zp p| | | | | | .( ) ( ) ( )

40. If f (z) is an analytic function of z in a region R, prove that

 ∇ =∇ = ′2 2 2 2 22{ ( )} {Im ( )} ( )Re f z f z f z| | .

3.4 CONFORMAL MAPPING

3.4.1 Mapping

A continuous real function y = f (x) can be represented graphically by a curve in the 

Cartesian xy-plane. Similarly a continuous real function z = f (x, y) is represented 

graphically by a surface in three dimensional space.

In the same fashion, if we wish to represent a function of the complex variable w = 

f (z) or u + iv = f (x + iy), a four-dimensional space is required, since w = f (z) involves 

four real variables two independent variables x and y and two dependent variables u 

and v. As it is not possible, we make use of two complex planes for the two variables 

z and w. These are called the z-plane and the w-plane respectively. In the z-plane, the 

point z = x + iy is plotted and in the w-plane, the point w = u + iv is plotted.

A function w = f (z) is not, as usual, represented by a locus of points in the four- 

dimensional space, but by a correspondence between points of the z-plane and points 

of the w-plane. To each point (x, y) in the z-plane, the function w = f (z) determines 

a point (u, v) in the w-plane if f (z) is a single-valued function. If the point z moves 

along some curve C in the z-plane, the corresponding point w will, in general, move 

along a curve C′ in the w-plane. Similarly if the point z moves over a region R in 

the Z-plane, the corresponding point w moves over a region R′ in the w-plane. The 

correspondence thus defined is called a mapping or transformation of elements 

(points, curves or regions) in the z-plane onto elements in the w-plane. The function 

w = f (z) is called the mapping or transformation function. The corresponding points, 

curves or regions in the two planes are called the image of each other.

To visualise the nature of a function f (z), we study the properties of the mapping 

defined by w = f (z). To get a clear idea of the mapping given by w = f (z), we usually
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consider the images of lines parallel to either co-ordinate axis, of concurrent lines 

passing through the origin, of concentric circles |z| = constant and of regions enclosed 

by such curves in the z-plane. Also we can investigate the maps onto the z-plane of 

lines parallel to the u-axis and v-axis of the w-plane. The images of u = c
1
 and v = c

2
 

that lie in the z-plane are called the level curves of u and v.

3.4.2 Conformal Mapping

y

x
z0

C2 C1

O

QP

v

u
w0

C2 C1

O

Q'P'

' '

Fig. 3.4

Consider the transformation w = f (z), where f (z) is a single valued function of z. 

Under this transformation, a point z
0
 and any two curves c

1
 and c

2
 passing through 

z
0
 in the z-plane will be mapped onto a point w

0
 and two curves c′

1
 and c′

2
 in the 

w-plane. If the angle between c
1
 and c

2
 at z

0
 is the same as the angle between c′

1
, and 

c′
2
 at w

0
, both in magnitude and sense, then the transformation w = f (z) is said to be 

conformal at the point z
0
. The formal definition is given as follows.

3.4.3  Definition

A transformation that preserves angles between every pair of curves through a point, 

both in magnitude and sense, is said to be conformal at that point. A transformation 

under which angles between every pair of curves through a point are preserved in 

magnitude, but altered in sense is said to be isogonal at that point.

The conditions under which the transformation w = f (z) is conformal are given by 

the following theorem:

Theorem

If f (z) is analytic and f ′ (z) ≠ 0 in a region R of the z-plane, then the mapping performed 

by w = f (z) is conformal at all points of R.

Proof

Let z
0
 be a point in the region R of the z-plane where f (z) is analytic and let f′ (z

0
) ≠ 0.

Fig. 3.5

y

x
(z0)

(a)
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O

θ α

Q (z0 + ∆z)

P P'

'
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u
(w0)
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C1

O

θ' α'

Q' (w0 + ∆w)
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Let c
1
 be a continuous curve through z

0
 and c′

1
 be its image through w

0
.

Let Q be a neighbouring point z
0
 + Δz on c

1
 and Q′ be its image w

0
 + Δw on c′

1
.

Let the chords PQ and P′Q′ make angles θ and θ′ with the x-axis and u-axis 

respectively. Then Δz is a complex number whose modulus is the length PQ (= r) 

and amplitude is θ.

∴ Δz = r eiθ

Similarly, Δw = r′ eiθ'

Since f (z) is analytic at z
0
,

 ′ =
+ ∆( )− ( )

∆











=

∆
∆





∆ → ∆ →

f z
f z z f z

z

w

zz z
( ) lim lim0

0

0 0

0
eexists  (1)

Since f′ (z
0
) ≠ 0, it can be expressed in the polar form as R eif.

∴ From (1), we get

 R e
r e

r e

r

r
ei

z

i

i r

i φ
θ

θ

θ=
′











 =

′







∆ →

′

→

′
lim lim (

0 0

−−














θ )

∴ R
r

rr
= ′



→

lim
0

 (2)

and φ θ θ= ′ −
→

lim ( )
r 0

 (3)

Let the angle made by the tangent to c
1
 at z

0
 with the x-axis be α and that to c′

1 
at 

w
0
 with the u-axis be α′.

When r → 0 or Δz → 0, Q approaches P and hence the chord PQ tends to be the 

tangent at z
0
 to the curve c

1
 and so θ → α. Similarly θ′ → α′.

Hence, from (3), we get

 f = α′ − α (4)

If c
2
 is another curve through z

0
 in the z-plane and c′

2
 is its image through w

0
 in the 

w-plane and if the tangents to c
2
 and c′

2
 at z

0
 and w

0
 make angles b and b′ with the 

x-axis and the u-axis respectively, then

 f = b′ − b (5)

From (4) and (5), we get

 α′ − α = b′ − b or b − α = b′ − α′.

i.e. the angle between c
1
 and c

2
 is equal to the angle between c′

1
 and c′

2
, both in 

magnitude and sense. This means that the mapping w = f (z) preserves angles between 

any two curves through the point z
0
.

∴ The mapping w = f (z) is conformal at z
0
.

Note  

1. If f (z
0
) = 0, it cannot be expressed in the polar form, since the amp {f (z

0
)} is 

undefined. Hence the proof of the theorem is not valid. Thus, though f (z) may 

be analytic at z
0
, the mapping w = f (z) will not be conformal at z

0
, if f (z

0
) = 0.
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 [See Worked Example 3.3 in Section 3(c)]

2. The point, at which the mapping w = f (z) is not conformal, i.e. f ′ (z) = 0, is 

called a critical point of the mapping.

 It is known that if the transformation w = f (z) is conformal at a point, the  inverse 

transformation z = f −1 (w) is also conformal at the corresponding point.

 The critical points of z = f −1 (w) are given by 
d

d

z

w
= 0 . Hence the critical 

 points of the transformation w = f (z) are given by 
d

d

w

z
= 0  and 

d

d

z

w
= 0

 [See Worked Example (3.3) below].

3. From equation (2) in the proof of the theorem, we get R
r

r
= ′

 approximately, 

i.e. r' = Rr

 or |Δw| = |f ' (z
0
)| ∙ |Δz|.

 This means that, under the transformation, an infinitesimal length Δz in the 

neighbourhood of z
0
 is magnified by the factor |f ′ (z

0
)|. Consequently, infini-

tesimal areas near z
0
 in the z-plane are magnified by the factor |f′ (z

0
)|2.

4. From equation (4) in the proof of the theorem, we get

 a′ = a + f or a + amp [f ′ (z
0
)]

 This means that, under the transformation, the tangent to a curve through z
0 
is 

rotated through an angle f = amp [f ′ (z
0
)], i.e. the direction of a curve through 

z
0
 is rotated through an angle f = amp [f ′ (z

0
)].

5. From Notes (3) and (4), we observe that the image of a small figure near z
0 

under the mapping w = f (z) can be obtained by rotating it through an angle 

= amp[f ′ (z
0
)] and by magnifying it by a factor = | f′ (z

0
) |. Hence the shape of 

the image of a small figure near z
0
 is approximately the same as that of the 

original figure under a conformal transformation.

3.5 SOME SIMPLE TRANSFORMATIONS

1. Translation

The transformation w = z + c, where c is a complex constant, represents a 

translation.

Let z = x + iy, w = u + iv and c = a + ib

Then u + iv = x + iy + a + ib

∴ u = x + a and v = y + b

These two equations may be called the transformation equations.

Hence the image of any point (x, y) in the z-plane is the point (x + a, y + b) in the 

w-plane.
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If we assume that the w-plane is super-imposed on the z-plane, we observe that

the point (x, y) and hence any figure is shifted by a distance c a b= +2 2  in the 

direction of c i.e., translated by the vector representing c. Hence this transformation 

transforms a circle into an equal circle. Also the corresponding regions in the z- and 

w-planes will have the same shape, size and orientation.

2.  Magnification

The transformation w = cz, where c is a real constant, represents magnification. The 

transformation equations are given by

 u + iv = c (x + iy)

i.e., u = cx and v = cy

∴ The image of the point (x, y) is the point (cx, cy).

Hence the size of any figure in the z-plane is magnified c times, but there will be 

no change in the shape and orientation. This transformation also transforms circles 

into circles.

3.  Magnification and Rotation

The transformation w = cz, where c is a complex constant, represents both 

magnification and rotation.

Let z = r eiq, w = R eif and c = reiα,

Then Reif = (ρ eiα)(r eiθ)

 = (ρ r) · e
i (q + a)

∴ The transformation equations are

 R = ρr and f = q + a.

Thus the point (r, q) in the z-plane is mapped onto the point (ρr, q + a). This means 

that the magnitude of the vector representing z is magnified by ρ = |c| and its direction is 

rotated through angle a = amp (c). Hence the transformation consists of a magnification 

and a rotation. Clearly circles in the z-plane are mapped onto circles by this transformation. 

Also every region in the z-plane is mapped onto a similar region by this transformation.

4.  Magnification, Rotation and Translation

The general linear transformation w = az + b, where a and b are complex constants, 

represents magnification, rotation and translation. The transformation w = az + b 

can be considered as the combination of the two simple transformations w
1
 = az and 

w = w
1
 + b.

w
1
 = az represents magnification by |a| and rotation through amp (a).

w = w
1
 + b represents translation by the vector representing b.

Thus any figure in the z-plane will undergo magnification, rotation and translation 

by the transformation w = az + b. In particular, circles will be mapped into circles by 

this transformation.
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5.  Inversion and Reflection

The transformation w
z

=
1

 represents inversion with respect to the unit circle |z| = 1, 

followed by reflection in the real axis.

[The inverse of a point P with respect to a circle with centre O and radius r is 

defined as the point P′ on OP such that OP · OP′ = r2]

Let z = reiθ and w = Reif

Then w
z

=
1

 gives R
r

ei ie φ θ= −1

∴ The transformation equations are

 R
r

=
1

 and f = − q.

Thus the image of the point (r, q ) in the z-plane is 
1

r
,−




θ  under this transformation

If we assume that the w-plane is super-imposed on the z-plane and that P is

(r, q) and P′ is 
1

r
, θ







, then OP
OP

′ =
1

.

i.e., OP · OP′ = 1

∴ P′ is the inverse of P with respect to the unit circle |z| = 1, as shown in Fig. 3.6.

y (v)

O x (u)

P (r, θ)

1
P" ( – θ)r'

1P' ( θ)
r'

Fig. 3.6

If we consider the point ′′ −





P
r

1
, θ , it is the reflection of the point ′ 





P
r

1
, θ  in

the real axis. Thus the transformation w
z

=
1

 consists of an inversion of z with

respect to the unit circle |z| = 1, followed by reflection in the real axis.

Also it is observed that the interior (exterior) of the unit circle |z| = 1 is mapped 

onto the exterior (interior) of the unit circle |w| = 1.
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3.6 SOME STANDARD TRANSFORMATIONS

1. The Transformation w = z2

 w = z2 ∴ u + iv = (x + iy)2 = x2 − y2 + 2ixy

Hence the transformation equations are

 u = x2 − y2 (1)

and v = 2xy (2)

Consider a line parallel to the x-axis, given by the equation

 y = b (3)

The equation of the image of (3), which will be an equation in u and v, is got by 

eliminating x and y from (1), (2) and (3).

Using (3) in (1) and (2), we have

 u = x2 − b2 (4)

and v = 2bx (5)

Eliminating x from (4) and (5), we have

 u
v

b
b= 





−
2

2

2 ,   i.e. v2 = 4b2 (u + b2) (6)

Equation (6) represents in the w-plane a parabola whose vertex is (− b2, 0), focus 

is (0, 0) and axis lies along the u-axis and which is open to the right. [Fig. 3.7]

If b is regarded as an arbitrary constant or parameter, (3) represents a family of 

lines parallel to the x-axis. In this case, (6) represents a system of parabolas, all 

having the origin as the common focus, i.e. equation (6) represents a family of 

confocal parabolas.

Consider the equation x = a (7)

This represents a line parallel to the y-axis. The image of line (7) is got by 

eliminating x and y from (1), (2) and (7).

Thus the image of (7) is given by the following equations

 u = a2 − y2 

and v = 2ay

i.e. by the equation

 u a
v

a
= − 





2

2

2

or v2 = − 4a2(u − a2) (8)

Equation (8) represents in the w-plane a parabola, whose vertex is (a2, 0), focus is 

(0, 0) and axis lies along the u-axis and which is open to the left. [Fig. 3.7]

If a is regarded as an arbitrary constant or parameter, (7) represents a family of 

lines parallel to the y-axis and (8) represents a family of confocal parabolas with the 

common focus at the origin.
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y

O

x = a

y = b

x

u

v

(– b2, 0)

v
2 = – 4a

2 (u – a
2 ) v2 = – 4b2 (u + b2)

(a2, 0)O

(a) (b)

Fig. 3.7

Thus a system of lines parallel to either coordinate axis is mapped onto a system 

of confocal parabolas under the transformation w = z2, with the exceptions x = 0 and 

y = 0.

The map of y = 0 is given by u = x2 and v = 0, i.e., by v = 0, where u > 0.

i.e., the map of the entire x-axis is the positive part or the right half of the u-axis.

The map of x = 0 is given by u = − y2 and v = 0, i.e., by v = 0, where u < 0.

i.e., the map of the entire y-axis is the negative part or the left half of the u-axis.

Using polar forms of z and w, i.e. putting

 z = reiθ and w = Reif in w = z2, we have

 R eif = (r eiθ)2 = r2ei2θ

∴ The transformation equations are

 R = r2 and f = 2q.

Now r = a represents a family of concentric circles in the z-plane. Its map is 

given by R = a2, that represents a family of concentric circles in the w-plane. q = a 

represents a family of concurrent lines through the origin in the z-plane. Its map is 

given by f = 2a, that represents a family of concurrent lines through the origin in 

the w-plane.

Consider now u = c, that represents a family of lines parallel to the v-axis. 

The image of u = c is given by x2 − y2 = c2, that represents a family of rectangular 

hyperbolas whose principal axes lie along the coordinate axes in the z-plane. 

Consider v = d, that represents a family of lines parallel to the u-axis. The image of

u = d is given by xy
d

=
2

, that represents a family of rectangular hyperbolas whose 

asymptotes are the coordinate axes in the z-plane.

Finally for the mapping function w = z2,

 d

d

w

z
z= 2

 = 0, at z = 0.

Hence the transformation w = z2 is conformal at all points in the z-plane except at the 

origin, i.e. z = 0 is the critical point of the transformation w = z2.
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2. The Transformation w = ez

w = ez  ∴ 
d

d

w

z
ez= ≠ 0  for any z.

∴ The transformation w = ez is conformal at all points in the z-plane.

Putting z = x + iy and w = R eif in w = ez, we get

 R e if = ex + iy

 = ex · eiy

∴ The transformation equations are

 R = ex (1)

and f = y (2)

The image of the system of parallel lines x = a in the z-plane is given by R = ea, 

that represents a family of concentric circles in the w-plane.

The image of the system of parallel lines y = b in the z-plane is given by f = b, 

that represents a family of concurrent lines through the origin in the w-plane. In 

particular, the image of the y-axis i.e. x = 0 is the unit circle R = 1 or |w| = 1. The 

image of x > 0 is given by R > 1 or |w| > 1 and the image of x < 0 is given by R < 1 

or |w| < 1. i.e. the region lying on the right side of the y-axis in the z-plane is mapped 

onto the exterior of the unit circle |w| = 1 in the w-plane.

Similarly, the region lying on the left side of the y-axis in the z-plane is mapped 

onto the interior of the unit circle |w| = 1 in the w-plane.

The image of the entire x-axis, i.e. y = 0 is given by f = 0, i.e., the positive part 

of the u-axis.

Similarly the image of the line y = p is given by f = p, i.e., the negative part of 

the u-axis.

y

x = a

   =
 c

   
= d

x = a

O

y = d

y = c

(a) (b)

x

u

R = ea

R = eb

O

v

Fig. 3.8

Finally we note that the image of the rectangular region in the z-plane defined by 

a ≤ x ≤ b and c ≤ y ≤ d is the annular region in the w-plane defined by ea ≤ R ≤ eb and 

c ≤ f ≤ d. The corresponding regions are shaded in the Fig. 3.8.
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3. The Transformation w = sin z

w = sin z ∴ 
d

d
cos

w

z
z=

 = 0,

 when z
n

=
−( )2 1

2

π
,  where n is an integer.

∴ The transformation w = sin z is conformal at all points except at z
n

=
−( )2 1

2

π
.

i.e. the critical points of the transformation are 2
,

2
3 ,

2
5 , .z ! ! ! f=

r r r

Putting z = x + iy and w = u + iv in w = sin z, we get

 u + iv = sin (x + iy)

 = sin x cosh y + i cos x sinh y.

:. The transformation equations are

 u = sin x cosh y (1)

and v = cos x sinh y (2)

Consider the family of lines parallel to the x-axis, given by

 y = b (3)

where b is an arbitrary constant.

Image of (3) is given by

 u = sin x cosh b (3a)

and v = cos x sinh b (4)

Eliminating x from (3a) and (4), we get the equation of the image of (3) as

 

u

b

v

b

2 2

1
cosh sinh2 2

+ =  (5)

Equation (5) represents a family of ellipses whose principal axes lie along the u- and 

v-axes, centres are at the origin and semi axes are of lengths cosh b and |sinh b|.

The foci of these ellipses are at the points (± 1, 0) [∵ The foci of the ellipse

x

a

y

b

2

2

2

2
1+ =  are (± ae, 0), i.e. ( , )± −a b2 2 0 ]

The coordinates of the foci of the family of ellipses (5) are independent of the 

parameter b.

This means that all the members of the family (5) have the same two points as 

foci.

Hence (5) represents a family of confocal ellipses. [Fig. 3.9]

Thus a family of lines parallel to the x-axis in the z-plane is mapped onto a family 

of confocal ellipses in the w-plane, with the exception of y = 0, i.e, the x-axis itself.

Now the map of y = 0 is given by

 u = sin x and v = 0
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i.e. by   −1 ≤ u ≤ 1 and v = 0

i.e. the map of the entire x-axis is the segment of the u-axis, lying between −1 

and +1.

Consider again the segment of the line y = b within the range − π/2 ≤ x ≤ π/2. For 

these values of x, cos x is positive.

Hence, from (4) i.e. v = cos x sinh b, we see that v > 0 when b > 0 [as sinh b > 0 

when b > 0] and v < 0 when b < 0 [as sinh b < 0 when b < 0].

Thus the image of the segment of the line y = b within − π/2 ≤ x ≤ π/2 is the upper 

or lower half of the ellipse 
u

b

v

b

2 2

1
cosh sinh2 2

+ = ,  according as b > 0 or < 0.

Now consider the family of lines parallel to the y-axis, given by x = a (6)

where a is an arbitrary constant.

Image of (6) is given by

 u = sin a cosh y (7)

and v = cos a sinh y (8)

Eliminating y from (7) and (8), we get the image of (6) as

 
u

a

v

a

2

2

2

1
sin cos2

− =  (9)

(9) Represents a family of confocal hyperbolas with common foci at (± 1, 0) [

:.

 the 

foci of the hyperbola 
x

a

y

b

2

2

2

2
1− =  are (± ae, 0), i.e. ( ± +a b2 2 ,  0)] [Fig. 3.9]

Thus a family of lines parallel to the y-axis in the z-plane is mapped onto a family 

of confocal hyperbolas in the w-plane, with the exceptions of the y-axis and the lines 

x = ±
π

2
.

Fig. 3.9

y

O

y = b

x = a

(a) (b)

(– 1, 0) (1, 0)

x

v

O

ss'
u

The map of x = 0 is given by

 u = 0 and v = sinh y

i.e. u = 0 and v > 0 (when y > 0) and

 u = 0 and v < 0 (when y < 0)

Thus the upper and lower halves of the y-axis are mapped onto the upper and 

lower halves of the v-axis under the transformation w = sin z.
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Consider the map of the line x = π/2, which is given by u = cosh y and v = 0  

i.e. by u ≥ 1 and v = 0

Similarly, the map of the line x = − π/2 is given by u = − cosh y and v = 0  

i.e. by u ≤ − l and v = 0

Thus the part of the u-axis for which u ≥ 1 and the part of the u-axis for 

which u ≤ − l are the images of the lines x =
π

2
 and x = −

π

2
respectively.

In conclusion, if we note the family of ellipses (5) and the family of hyperbolas 

(9) have the same two points (± 1, 0) as common foci, we can say that in general the 

transformation w = sin z maps the system of lines parallel to either coordinate axis in 

the z-plane into a system of confocal conics in the w-plane.

4. The Transformation w = cosh z

 w = cosh z ∴ 
d

d
sinh

w
z

z
=

 = − i sin iz

 = 0, when z = i. np, where n is an integer.

∴ The transformation w = cosh z is conformal at all points except the critical points 

z = ± iπ, ± i2π, . . .

Putting z = x + iy and w = u + iv in

 w = cosh z, we get

 u + iv = cos i (x + iy)

 = cos (ix − y)

 = cosh x cos y + i sinh x sin y

∴ The transformation equations are

 u = cosh x cos y (1)

and v = sinh x sin y (2)

The image of the family of parallel lines y = b (3)

is the family of hyperbolas

 
u

b

v

b

2

2

2

1
cos sin2

− =  (4)

The foci of (4) are (± 1, 0)

Thus the family of lines parallel to the x-axis in the z-plane is mapped onto a 

family of confocal hyperbolas in the w-plane with the exception y = 0, y = p and 

y = π/2.

The map of y = 0 is given by

 u = cosh x and v = 0.
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When x > 0, cosh x takes values from 1 to ∞.

∴ The image of the positive part of the x-axis is the portion of the u-axis for which 

u ≥ 1.

The map of y = π is given by

u = − cosh x and v = 0

∴ The image of the positive part of the line y = π is the portion of the u-axis for 

which u ≤ − 1.

The map of y = π/2 is given by

 u = 0 and v = sinh x

∴ The images of the positive and negative parts of the line y =
π

2
 are the positive 

and negative parts of the v-axis respectively.

The image of the family of parallel lines x = a (5), is the family of ellipses

 
u

a

v

a

2

2

2

2
1

cosh sinh
+ =  (6)

The foci of (6) are (± 1, 0).

Thus the family of lines parallel to the y-axis in the z-plane is mapped onto a 

family of confocal ellipses in the w-plane with the exception of the y-axis itself.

The image of x = 0 is given by

 u = cos y and v = 0

i.e. by −1 ≤ u ≤ 1 and v = 0

i.e. the image of the entire y-axis is the segment of the u-axis, for which −1 ≤ 

u ≤ 1. Thus, in general, the transformation w = cosh z maps the system of lines 

parallel to either coordinate axis in the z-plane into a system of confocal conics in 

the w-plane.

5.  The Transformation w z
k

z
= +

2

, where k is real and positive

w z
k

z
= +

2

  ∴ 
d

d

w

z

k

z
= −

=

1

0

2

2

,

 

when z = ± k

∴ The transformation w z
k

z
= +

2

 is conformal at all points of the z-plane except 

at z = ± k.

Putting z = r eiq and w = u + iv in w z
k

z
= +

2

,  we get

 
u iv re

k

r
ei i+ = + −θ θ

2
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= +






+ −






r
k

r
r

k

r

2 2

cos sinθ θ

∴ The transformation equations are

 u r
k

r
= +







2

cosθ  (1)

and v r
k

r
= −







2

sinθ  (2)

Consider a family of concentric circles with centre at the origin in the z-plane, 

given by the polar equation r = a, (3)

where a is a parameter. The image of (3) is given by

 u a
k

a
= +







2

cosθ  and v a
k

a
= −







2

sinθ .

Eliminating q from these equations, the equation of the image of the family (3) is

 
u

a
k

a

v

a
k

a

2

2
2

2

2
2

1

+






+

−






=  (4)

Equation (4) represents a family of ellipses whose centres are at the origin, 

principal axes lie along the u- and v-axes and foci are at the points

± +






− −


















a
k

a
a

k

a

2
2

2
2

0, , i.e. (±2k, 0).

The co-ordinates of the foci do not depend on a.

Hence (4) represents a family of confocal ellipses

Thus a family of concentric circles with centre at the origin in the z-plane is 

mapped onto a family of confocal ellipses, with the exception of r = k.

The image of the circle r = k is given by u = 2k cos q  and v = 0 (from (1) and (2) 

i.e. − 2k ≤ u ≤ 2k and v = 0.

Thus the image of the circle r = k is the segment of the u−axis, given by − 2k ≤ u ≤ 2k.

Consider a family of concurrent lines through the origin in the z- plane, given by 

the polar equation q = a (5)

where a is a parameter. The image of (5) is given by

u r
k

r
= +







2

cosα  and v r
k

r
= −







2

sin α .

Eliminating r from these equations, the equation of the image of the family (5) is

u v
k

2

2

2
24

cos sin2α α
− =

or 
u

k

v

k

2

2 2

2

2
1

4 cos 4 sin2α α
− =  (6)
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Equation (6) represents a family of hyperbolas whose centres are at the origin, 

principal axes lie along the u- and v-axes and foci are at the points

± +( )4 4 02 2k kcos sin2 2α α , ,  i.e. (± 2k, 0)

The coordinates of the foci do not depend on a. Hence (6) represents a family of 

confocal hyperbolas.

Thus a family of concurrent lines through the origin in the z-plane is mapped onto 

a family of confocal hyperbolas, with the exceptions of q = 0, q = p and q = p/2. The 

image of q = 0 is given by

u r
k

r
= +

2

 and v = 0

i.e. u r
k

r
k= −





+
2

2  and v = 0

i.e. u > 2k and v = 0

Thus the image of the positive part of the x-axis is the part of the u-axis for which 

u > 2k.

Similarly the image of q = p, i.e. the negative part of the x-axis is that part of the 

u-axis for which u < − 2k.

The images of the lines q = p/2 and θ
π

=
3

2
 are given by u = 0.

Hence the image of the y-axis is the v-axis.

WORKED EXAMPLE 3(c)

Example 3.1  Find the image of the circle |z| = 2 under the transformation  

(i) w = z + 3 + 2i,

(ii) w = 3 z, (iii) w e zi= 2 4π  and (iv) w = (1 + 2i) z + (3 + 4i)

(i) The equation of the given circle |z| = 2 in the Cartesian from is x y2 2 2+ =  

or x2 + y2 = 4 (1)

The mapping function is w = z + 3 + 2i

i.e. u + iv = x + iy + 3 + 2i

∴ The transformation equations are

 u = x + 3 (2)

and v = y + 2 (3)

Eliminating x and y from (1), (2) and (3), we get the equation of the image.

From (2), x = u − 3; from (3), y = v − 2.
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Using these values of x and y in (1), the required equation of the image is 

(u − 3)2 + (v − 2)2 = 4.

 (ii) The transformation is w = 3z

i.e. u + iv = 3 (x + iy)

∴ u = 3x (4)

and v = 3y (5)

Eliminating x and y from (1), (4) and (5), the equation of the image of (1) is 

obtained as

 
u v

3 3
4

2 2







+ 





=  or u2 + v2 = 36.

(iii) The transformation is w e zi= ⋅ ⋅2 4π /

i.e., u iv i z

i x iy

+ = +
= + +

2 4 4

1

( )

( ) ( )

cos sinπ π

∴ u = x − y (6)

and v = x + y (7)

From (6) and (7), w get x
u v

=
+
2

 and y
v u

=
−
2

.

Using these values of x and y in (1), the image of (1) is obtained as

 

v u v u+





+
−





=
2 2

4

2 2

i.e. u2 + v2 = 8.

(iv) The transformation is w = (1 + 2i) z + (3 + 4i)

i.e. u + iv = (1 + 2i) (x + iy) + 3 + 4i

 = (x − 2y + 3) + i (2x + y + 4)

∴ u = x − 2y + 3 (8)

and v = 2x + y + 4 (9)

Solving (8) and (9), we get

x
u v

=
+ −2 11

5
 and y

v u
=

− +2 2

5

Using these values of x and y in (1), the image of (1) is obtained as

 (u − 3)2 + (v − 4)2 = 20 (10)

Aliter

The transformation is w − (3 + 4i) = (1 + 2i)z
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∴ |w − (3 + 4i)| = |1 + 2i| |z|

∴ The map of |z| = 2 is given by

| ( ) | ,w i− + =3 4 2 5  which is a circle whose centre is the point (3 + 4i) and radius 

equal to 2 5  and which is the same as the circle given by (10).

Example 3.2

(a) Find the image of the triangular region in the z-plane bounded by the lines x = 0, 

y = 0 and x + y = 1 under the transformation (i) w = 2z and (ii) w = eip /4. z

(b) Find the image of the rectangular region in the z-plane bounded by the lines x = 

0, y = 0, x = 2 and y = 1 under the transformation

(i)  w = z + 2 −i and (ii) w = (1 + 2i)z + (1 + i).

(a) (i) w = 2z i.e., u + iv = 2(x + iy)

∴ u = 2x and v = 2y

∴ The images of x = 0, y = 0 and x + y = 1 are respectively u = 0, v = 0 and u + v = 2. 

The corresponding regions in the z-and w-planes are shown in the Figs 3.10 (a) and 

(b) respectively.

Fig. 3.10

y

O
(a) (b)

u + v = 2
x + y = 1

x
O

v

u

(a) (ii) w = eip /4 . z i.e., u iv i x iy+ = + +
1

2
1( ) ( )

∴ u x y= −
1

2
( )  and v x y= +

1

2
( )

On solving, we get,

 x u v= +
1

2
( )  and y v u= −

1

2
( )

∴ The maps of x = 0 and y = 0 are, respectively, u + v = 0 and u = v.

The map of x + y = 1 is v =
1

2
.

The corresponding regions in the z-plane and w-plane are shown in the Figs 3.11 

(a) and (b) respectively.
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y

v

v = 1/

O O
(a) (b)

x + y = 1

v =
 – u v 

=
 u

x u

2

Fig. 3.11

(b) (i) w = z + 2−i, i.e. u + iv = x + iy + 2−i

i.e. u = x + 2 and v = y − 1

The vertices of the given rectangle in the z-plane are (0, 0), (2, 0), (2, 1) and (0, 1).

The images of these points in the w-plane are (2, − 1), (4, − 1), (4, 0) and (2, 0) 

respectively. The corresponding regions in the two planes are shown in the Figs 3.12 

(a) and (b)

Fig. 3.12

y v

O

O'

C' B'

A'
x

u

O

BC

A

(a)

(2, 1) (2, 0) (4, 0)

(4,  – 1)(2,  – 1)

(b)

(0, 1)

(2, 0)

(b) (ii) w = (1 + 2i)z + (1 + i)

i.e. u + iv = (1 + 2i) (x + iy) + (1 + i)

The image of (0, 0) is given by

 u + iv = (1 + 2i) (0 + i0) + 1 + i

 = 1 + i, i.e. the point (1, 1)

The image of (2, 0) is given by

 u + iv = (1 + 2i) (2 + i0) + 1 + i

 = 3 + 5i, i.e. the point (3, 5)

The image of (2, 1) is given by

 u + iv = (1 + 2i) (2 + i) + 1 + i

 = 1 + 6i, i.e. the point (1, 6)
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The image of (0, 1) is given by

 u + iv = (1 + 2i) (0 + i) + 1 + i

 = − 1 + 2i, i.e. the point (−1, 2)

The corresponding regions in the two planes are shown in the Figs 3.13 (a) and (b).

Example 3.3  Find the critical points of the transformations

(i) w = z2 and (ii) w
z

=
1

. Give one example each to show that the mapping given

 by these functions is not conformal at the critical points.

(i)  w = z2 ∴ 
d

d
z

w

z
= 2

∴ 
d

d

w

z
= 0  at z = 0

∴ z = 0 is the critical point of the transformation w = z2.

Using polar coordinates, w = z2 becomes

 Reif = r 2 e i2θ

∴ R = r2 (1)

and f = 2θ (2)

Consider two lines passing through the origin in the z-plane, given by the 

polar equations q = a and q = b ( b > a)

Angle between these two lines = b − a
The images of these two lines are

  f = 2a and f = 2b  [from (2)]

y v

O
O' (1, 1)

A' (3, 5)

B' (1, 6)

x

u

O

BC

A

(a)

(2, 1)

( – 1, 2)

(b)

(0, 1)

(2, 0)
C'

Fig. 3.13
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Angle between these two image lines = 2b  − 2a. Thus angle between any 

two curves, i.e. lines through z = 0 is not preserved in magnitude.

∴ The mapping w = z2 is not conformal at z = 0.

(ii)  w
z

=
1

 ∴ 
d

d

w

z z
= − →∞

1
2

 as z → 0.

∴ w = 1/z is not analytic at z = 0 and hence the mapping w = 1/z is not 

conformal at z = 0.

i.e. z = 0 is the critical point of the transformation.

Using polar co-ordinates, w
z

=
1

 becomes

 Re
r

ei iφ θ=
1

∴ R
r

=
1

 (3)

and f = − q  (4)

From (4), we see that the images of the two lines q = a and q = b (b > a) 

in the z-plane are f = − a and f = − b.

Angle between the lines q = a and q = b is ( b  −  α) and the angle between 

the image lines is (a − b).

Thus the angle between any two curves, i.e. the lines through z = 0 is not 

preserved in sense.

∴ The mapping w
z

=
1

 is not conformal at z = 0.

Example 3.4  Show that the transformation w
z

=
1

 transforms, in general, circles

and straight lines into circles and straight lines. Point out the circles and straight lines 

that are transformed into straight lines and circles respectively.

 w
z

=
1

 ∴ z
w

=
1

 i.e. x iy
u iv

u iv

u v
+ =

+
=

−
+

1
2 2

∴ The transformation equations are

 x
u

u v
=

+2 2
 (1)

and y
v

u v
=

−
+2 2

 (2)

Consider the equation

 a(x2 + y2) + bx + cy + d = 0 (3)

Equation (3) represents a circle not passing through the origin if a ≠ 0 and d ≠ 0, 

a circle passing through the origin if a ≠ 0 and d = 0, a straight line not passing 

through the origin if a = 0 and d ≠ 0 and a straight line passing through the origin, if 

a = 0 and d = 0.
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Using (1) and (2) in (3), the image of (3) in the w-plane is given by

a
u

u v

v

u v

bu

u v

cv

u v

2

2 2 2

2

2 2 2 2 2 2 2
0

( ) ( )
d

+
+

+








+
+

−
+

+ =

i.e. d (u2 + v2) + bu − cv + a = 0 (4)

Now Eq. (4) represents a circle not passing through the origin if a ≠ 0 and d ≠ 0, a 

straight line not passing through the origin if a ≠ 0 and d = 0, a circle passing through the 

origin if a = 0 and d ≠ 0 and a straight line passing through the origin if a = 0 and d = 0.

Thus circles not passing through the origin and straight lines passing through the 

origin are mapped onto similar circles and straight lines respectively.

But circles passing through the origin are mapped onto straight lines not passing 

the origin.

Straight lines not passing through the origin are mapped onto circles passing 

through the origin.

Example 3.5  Find the image of the following regions under the transformation 

w
z

=
1

:

 (i) the half-plane x > c, when c > 0

 (ii) the half-plane y > c, when c < 0

(iii) the infinite strip 1

4

1

2
≤ ≤y

Also show the corresponding regions graphically.

 w
z

=
1

 ∴ z
w

=
1

 i.e. x iy
u iv

u v
+ =

−
+2 2

∴ The transformation equations are

 x
u

u v
=

+2 2
 (1)

and y
v

u v
= −

+2 2
 (2)

(i) The image of the region x > c is given by 
u

u v
c

2 2+
>  from (1).

i.e. c(u2 + v2) < u or u v
u

c

2 2+ <  [

∴

 c > 0]

i.e. u
c

v
c

−





+ < 





1

2

1

2

2

2

2

 (3)

Equation (3) represents the interior of the circle

 u
c

v
c

−





+ = 





1

2

1

2

2

2

2

,  whose centre is 
1

2
0

c
,







 and radius is 1

2c
.

The corresponding regions are shown in Figs 3.14 (a) and (b)
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y

O

O

c

x > c

v

x

u

(a) (b)

0)
1
2c'(

Fig. 3.14

The image of the region y > c is given by

 −
+

>
v

u v
c

2 2
 from (2)

i.e. c (u2 + v2) < − v or u v
v

c

2 2+ >
−

 [

∴

 c < 0]

i.e. u v
c c

2

2 2
1

2

1

2
+ +





> 





 (4)

Equation (4) represents the exterior of the circle

 u v
c c

2

2 2
1

2

1

2
+ +





= 





, whose centre is 0
1

2
, −



c

 and radius is 1

2 c
.

The corresponding regions are shown in the Figs 3.15 (a) and (b)

y

O

y > c
x

(a)

O

v

u

(b)

)
1
2c

(0,

Fig. 3.15

(iii) The image of y ≥
1

4
is given by

 −
+

≥
v

u v2 2

1

4

i.e. u2 + v2 ≤ − 4v or u2 + (v + 2)2 ≤ 22

i.e. the interior of the circle u2 + (v + 2)2 = 22.

The image of y ≤ 1/2 is given by

 −
+

≤
v

u v2 2

1

2

i.e. u2 + v2 ≥ − 2v or u2 + (v + 1)2 ≥ 1

i.e. the exterior of the circle u2 + (v + 1)2 = 1.

The corresponding regions are shown in the Figs 3.16 (a) and (b)
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y v

O

y = 1/2

y = 1/4
x

u

(a) (b)

Fig. 3.16

Example 3.6

(i) Show that the image of the hyperbola x2 − y2 = 1 under the transformation 

 w
z

=
1

 is the lemniscate R2 = cos 2f.

(ii) Show that the image of the circle |z − 1| = 1 under the transformation w = z2 is 

the cardioid R = 2(1 + cos f).

(i)  w
z

z
w

= =
1 1

or

i.e. x iy
R R

i
i

+ = = −
1 1

e φ
φ φ(cos sin )

∴ The transformation equations are

 x
R

=
1

cos φ  (1)

and y
R

= −
1

sin φ  (2)

The given hyperbola is   x2 − y2 = 1 (3)

Using (1) and (2) in (3), we get the image of (3) in the w-plane in polar co-ordinates 

as 
1 1

1
2

2

2R R
cos sin 2φ φ− =

i.e. R2 = cos 2f, which is a lemniscate.

(ii) The given circle is |z − 1| = 1

i.e. |x − 1 + iy| = 1

i.e. (x − 1)2 + y2 = 1 or x2 + y2 − 2x= 0

i.e. r2 − 2r cos θ = 0 or r = 2 cos θ (4)

The transformation is w = z2

i.e. R eif = r2 ei2q

∴ R = r2 (5)

and f = 2θ (6)

Eliminating r and θ from (4), (5) and (6), we get the polar equation of the image 

of (4).

From (4), r2 = 4 cos2 θ

 = 2(1 + cos2 θ)

i.e. R = 2(1 + cos f), which is a cardioid.
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Example 3.7  Find the image in the w-plane of the region of the z-plane bounded by 

the straight lines x = 1, y = 1 and x + y = 1 under the transformation w = z2.

 w = z2 i.e. u + iv = (x + iy)2 = x2 − y2 + i2 xy

∴ The transformation equations are

 u = x2 − y2 (1)

and v = 2xy (2)

From the discussion of the transformation w = z2, we get the image of the line 

x = 1 as the parabola v2 = − 4 (u − 1) and the image of the line y = 1 as the parabola 

v2 = 4(u + 1).

The image of the line x + y = 1 (3)

is got by eliminating x and y from (1), (2) and (3).

Using (3) in (1) and (2), we have

 u = x2 − (1 − x)2

and  v = 2x (1 − x)

i.e. u = 2x − 1 (4)

and v = 2x (1 − x) (5)

Eliminating x from (4) and (5), we get

 

v u
u

= + −
+








( )1 1
1

2

i.e. v
u

=
−1

2

2

 or u2 = − 2(v − 1/2)

which represents a parabola in the w-plane.

Thus the image of the region bounded by x = 1, y = 1 and x + y = 1 is the region 

bounded by the three parabolas v2 = −4(u − 1), v2 = 4(u + 1) and u2 = −2 (v − 1/2)

The corresponding regions in the two planes are shown in the Figs 3.17 (a) and (b).

Fig. 3.17

y

O

O
u

B
C

B' A'

C"

C'

A

y = 1

x + y = 1

v 2 = – 4 (u – 1)

u 2
 = – 2 (v – 1/2)

x  = 1

v2 = 4 (u + 1)

(a) (b)

v

Note  The region A′ B′ C′′ is also bounded by the three parabolas, but the 

corresponding region is that which contains the images of the points A (1, 0), B (0, 1) 

and C (1, 1), namely the points A′(1, 0), B′(−1, 0) and C′(0, 2).

Example 3.8  Find the image of the rectangular region bounded by the lines (i) x = 1,  

x = 3, y = 1 and y = 2 and (ii) u = 1, u = 3, v = 1 and v = 2 under the transformation w = z2.
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(i) Proceeding as in the discussion of the transformation w = z2, we find that the 

images of the lines x = 1, x = 3, y = 1 and y = 2 are respectively the parabolas 

v2 = − 4 (u − 1), v2 = −36 (u − 9), v2 = 4(u + 1) and v2 = 16(u + 4).

The given rectangular region in the z−plane lies in the first quadrant, 

bounded by q = 0 and q = π/2 in polar form.

Hence the image region lies in the upper half of the w-plane, since the 

images of q = 0 and q = π/2 are respectively f = 0 and f = π, as one of 

the transformation equations of w = z2 in the polar form is f = 2q. The 

corresponding regions are shown in the Figs 3.18 (a) and (b)

Fig. 3.18

y

O

B

C'

B'

A'

D'

v

O
A

CD y = 2

y = 1

x = 3x = 1

x

u

(a) (b)

(ii) The transformation equations corresponding to w = z2 are u = x2 − y2 and 

v = 2xy.

∴ The images of u = 1, u = 3, v = 1 and v = 2 are respectively the rectangular 

hyperbolas x2 − y2 = 1, x2 − y2 = 3, xy = 1/2 and xy = 1 in the z-plane.

Fig. 3.19

v

O

B

C'

B'

B"

A"

D"

C"

A'

D'

y

OA

CD v = 2

v = 1

u = 3u =1

u

x

(a) (b)
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The required image region is that bounded by these four hyperbolas. There are 

two regions bounded by these hyperbolas as shown in the Figs 3.19 (a) and (b).

Both the region in the z-plane are valid images of the given rectangular region in 

the w-plane.

This is because we are transforming from the w-plane to the z-plane by means of 

the transformation z = w1/2, which is a two valued function.

Example 3.9  Find the images of the following under the transformation w = ez:

(i) the line y = x, (ii) the segment of the y-axis, given by 0 ≤ y ≤ π, (iii) the left 

half of the strip 0 ≤ y ≤ p and (iv) the right half of the strip 0 ≤ y ≤ p.

The transformation equations of the mapping w = ez are given by

 Reif = ex + iy = ex . eiy

i.e. R = ex (1)

and  f = y (2)

(i) The image of the line y = x is

 log R = f or R = ef,

which is the polar equation of an equiangular spiral.

(ii) The image of the y-axis i.e., x = 0 is R = 1 [from (1)] i.e., the unit circle |w| = 1. 

The image of the y = 0 is f = 0 and that of the line y = p is f = p.

∴ The image of the region 0 ≤ y ≤ p is the region defined by 0 ≤ f ≤ p, i.e. the upper 

half of the w-plane.

Hence the image of the segment of x = 0, between y = 0 and y = π is the 

semicircle |w| = 1, v ≥ 0, as shown in the Figs 3.20 (a) and (b).

y

v

u
O

| w | = 1
O

π

x

(a) (b)

Fig. 3.20

y

O

y = π

x

v

u
O

| w | = 1

(a) (b)

Fig. 3.21
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(iii) The left half of the strip 0 ≤ y ≤ p is given by 0 ≤ y ≤ p and x ≤ 0.

∴ The image is given by 0 ≤ f ≤ p and R ≤ 1 or |w| ≤ 1, i.e. the interior of the unit 

circle |w| = 1 lying in the upper half of the w−plane.

The corresponding images are shown in the Figs 3.21 (a) and (b)

(iv) Similarly the right half of the strip 0 ≤ y ≤ p is mapped onto the exterior of the 

unit circle |w| = 1 lying in the upper half of the w-plane Figs 3.22 (a) and (b).

Fig. 3.22

y

O

y = π

x

v

u
O

(a) (b)

Example 3.10  Find the maps of the boundary and interior of the rectangle formed 

by x = ±
π

2
 and y = ± c in the z-plane under the transformation w = sin z.

Fig. 3.23

y

B

AD

C

C' B'

A'
D'O

y = c v

O

y = – c

x = π/2x = – π/2

S2 S1

S2

x

(a) (b)

' S1'

The transformation equations of the mapping function w = sin z are

 u = sin x cosh y (1)

and  v = cos x sinh y (2)

The part AS
1
 of the side AB of the given rectangle is given by x = p/2 and  

− c ≤ y ≤ 0. Its image is given by

 u = cosh y and v = 0 [Fig. 3.23]

Now u is a decreasing function of y in − c ≤ y ≤ 0, since 
d

d
sinh

u

y
y= < 0 , when

y < 0. Hence the image of AS
1
 is given by v = 0 and cosh c ≥ u ≥ 1, i.e. by the 

segment A′S′
1
 of the u-axis in the w-plane. Similarly the image of S

1
 B is given by



Mathematics II3.72

v = 0 and 1 ≤ u ≤ cosh c, i.e. by the segment S′
1
B′ (which is the same as S′

1
 A′) of the 

u-axis.

The image of the line segment BC, i.e. y = c, 
π

π
2

2≥ ≥ −x /  is given by

 u = sin x cosh c and

v = cos x sinh c, − p/2 ≤ x ≤ p/2 
i.e. the image of BC is the elliptic arc

 u

c

v

c
v

2

2

2

2
1 0

cosh sinh
+ = >,

[When − p/2 ≤ x ≤ p/2 and c > 0, cos x > 0 and sinh c > 0].

i.e. the image of BC is the upper half B′ C′ of the ellipse

 

u

c

v

c

2

2

2

2
1

cosh sinh
+ =  (3)

Similarly the images of the line segments CS
2
, S

2
D and DA of the z-plane are the 

line segments C′S′
2
, S′

2
D′ (which is the same as S′

2
C′) and the lower half D′A′ of the 

ellipse (3).

Thus the image of the boundary of the rectangle consists of the ellipse and the two 

segments of the u-axis.

Hence the image of the rectangular region is the interior of the ellipse in the 

w-plane.

Example 3.11  Show that the transformation w = cos z maps the segment of the 

x-axis given by 0 ≤ x ≤ p/2 into the segment 0 ≤ u ≤ 1 of the u-axis. Show also that it 

maps the strip y ≥ 0, 0 ≤ x ≤ p/2 into the fourth quadrant of the w-plane.

The transformation equation of w = cos z are given by u + iv = cos (x + iy)

 = cos x cosh y − i sin x sinh y

i.e. u = cos x cosh y (1)

 v = − sin x sinh y (2)

The image of the x-axis, i.e. y = 0 is given by

 u = cos x and v = 0

Since we consider the segment of the x−axis given by 0 ≤ x ≤ p/2, 0 ≤ u ≤ 1

Thus the image of the segment of y = 0, 0 ≤ x ≤ p/2, is the segment of v = 0,  

0 ≤ u ≤ 1. The boundaries of the given strip are x = 0, x = p/2 and y = 0.

The image of x = 0 is given by u = cosh y and v = 0, i.e. u ≥ 1 and v = 0.

The image of x = p/2 is given by u = 0 and v = sinh y.

Since y ≥ 0 for the given strip, v ≤ 0

Thus the image of x = p/2, y ≥ 0 is u = 0, v ≤ 0

The image of y = 0, 0 ≤ x ≤ p/2 is v = 0, 0 ≤ u ≤ 1.

Thus the image of the given region is the region bounded by

v = 0, 0 ≤ u ≤ l; v = 0, u ≥ 1 and u = 0, v ≤ 0

i.e. v = 0, u ≥ 0 and u = 0, v ≤ 0

i.e. the fourth quadrant in the w-plane. The corresponding regions are shown in the 

Figs. 3.24 (a) and (b)
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Example 3.12  Find the image of the region defined by 0 ≤ x ≤ 3, − p/4 < y < p/4 

under the transformation w = sinh z.

The transformation equations of w = sinh z are given by u + iv = sinh (x + iy)

 = − i sin i (x + iy)

 = − i sin i (ix − y)

= sinh x cos y + i cosh x sin y

i.e. u = sinh x cos y (1)

and v = cosh x sin y (2)

The image of x = 0 is given by u = 0 and

 v = sin y i.e. u = 0 and

 − ≤ ≤1 2 1 2v  ( ∴ −p/4 ≤ y ≤ p/4)

The image of x = 3 is given by

 u = sinh 3 cos y and v = cosh 3 . sin y

i.e. the ellipse 
u v2 2

1
sinh 3 cosh 32 2

+ = ,  u > 0, since cos y ≥ 0.

The image of y = − p/4 is given by

 u x=
1

2
sinh  and v x= −

1

2
cosh

i.e. the lower part of rectangular hyperbola v u2 2 1

2
− =  ( 

∴

 v < 0)

Similarly the image of y = p/4 is the upper part of the rectangular hyperbola 

v2 − u2 = 1/2. Thus the image of the given region is the region in the right part of 

the v-axis, bounded by the segment of the v-axis, the ellipse and the rectangular 

hyperbola as shown in the Figs 3.25 (a) and (b).

y

x

u

O y = 0

x = 0

v

v'

Ox = π/2

(a) (b)

Fig. 3.24

y
v

x = 0 x = 3

D

O

A

C

x

B

B' D'
C'

B'
O

u

A'

y = π/4

y = – π/4

(a) (b)

Fig. 3.25
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Example 3.13  Show that the transformation w z
a b

z
= +

−2 2

4
 transforms the

circle z a b= +
1

2
( )  in the z-plane into an ellipse of semi-axes a, b in the w-plane.

In the discussion of the transformation w z
k

z
= +

2

, we have proved that the 

image of the circle |z| = c, i.e., r = c is the ellipse whose equation is

 

u

c
k

c

v

c
k

c

2

2
2

2

2
2

1

+






+

−






=  (1)

Putting k
a b2

2 2

4
=

−
 and c a b= +

1

2
( )  in (1), we get

 c
k

c
a b a b a+ = + + − =

2 1

2

1

2
( ) ( )  and

 c
k

c
a b a b b− = + − − =

2 1

2

1

2
( ) ( )

∴ The image of z a b= +
1

2
( ) , i.e., r a b= +

1

2
( )  under the transformation

w z
a b

z= +
−





2 2

4
/  is the ellipse 

u

a

v

b

2

2

2

2
1+ = , whose semi-axes are a and b.

Example 3.14 Prove that the region outside the circle |z| = 1 maps onto the

whole of the w-plane under the transformation w z
z

= +
1

.

Proceeding as in the discussion of the transformation w z
k

z
= +

2

, we can prove

that the image of the circle |z| = 1, i.e. r = 1 is the segment of the real axis, given by 

− 2 ≤ u ≤ 2 and that the image of the circle |z| = a, i.e. r = a is the ellipse

 
u

a
a

v

a
a

2

2

2

2
1 1

1

+





+
−





=  (1)

The semi axes of this ellipse are f (a) = a + 1/a and g a a
a

( ) = −
1

.

Now f a a
a

a
′ ( ) = − =

−
>1 1

1
02

2

2
, when a > 1 and g′(a) = 1 + 1/a2 > 0, for all 

a and hence when a > 1.

∴ f (a) and g(a) are increasing functions of a, when a > 1.

Hence, when a increases, the semi axes of the ellipse (1) increase.

The region outside the circle r = 1 may be regarded as the area swept by the circle 

r = a, where 1 < a < ∞.
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Similarly the area swept by the ellipse 
u

a
a

v

a
a

a
2

2

2

2
1 1

1 1

+





+
−





= < < ∞, , is 

the entire w-plane.

Hence the region outside the circle r = 1 maps onto the entire w-plane.

Example 3.15  Show that the transformation w ze
e

z
= +







−1

2

α
α

, where a is real,

maps the upper half of the interior of the circle |z| = ea onto the lower half of the 

w-plane.

The transformation equations of the mapping function w ze
ze

= +





−
−

1

2

1α

α
 are 

given by

 u iv re e
re

ei i+ = +





−
−

−1

2

1θ α

α

θ

i.e. u r e
re

= +






−
−

1

2

1α

α
θcos  (1)

and v r e
re

= +






−
−

1

2

1α

α
θsin  (2)

The boundary of interior of the circle |z| = ea or r = ea lying in the upper half of the 

z-plane consists of θ = 0, θ = π and r = eα.

The image of θ = 0 is given by

 u r e
re

= +






−
−

1

2

1α

α
 and v = 0, from (1) and (2).

i.e. u r e
r e

= −








 +













−
−

1

2

1
22

2

2

α

α

/

/
 and v = 0

i.e. u ≥ +
1

2
0 2( )  and v = 0 or u ≥ 1 and v = 0.

Similarly the image of θ = p is given by u ≤ − 1 and v = 0.

The image of r = eα is given by

 u = cos θ and v = 0, from (1) and (2).

i.e., − 1 ≤ u ≤ 1 and v = 0.

Thus the boundary of the semi-circle r = eα lying in the upper half of the z-plane 

is the entire u-axis.

The interior of the semi-circle is given by r < eα and 0 < θ < p.

When r < ea, re−a < 1

∴ − < −−

1
1

re α
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∴ r e
r e

−
−−







<α

α

1
0

∴ 
1

2

1
0r e

r e

−
−−







<α

α
θsin , since sin θ is positive when 0 < θ < p.

i.e. v < 0.

Hence the interior of the semi-circle |z| = eα lying in the upper half of the z-plane 

maps onto the lower half of the w-plane. The corresponding images are shown in the 

Figs 3.26 (a) and (b).

Fig. 3.26

y v

O

O
|z| = eα

x

u

(a) (b)

EXERCISE 3(c)

Part A

(Short Answer Questions)

1. What do you mean by conformal mapping?

2. When is a transformation said to be isogonal? Prove that the mapping w z=  is 

isogonal.

3. State the conditions for the transformation w = f (z) to be conformal at a point.

4. Define critical point of a transformation.

5. Find the critical points of the transformation

  w ze
e

z
= +







−1

2

α
α

.

6. Find the critical points of the transformation w2 = (z − a) (z − b).

7. Find the magnification factor of small lengths near z = p/4 under the transfor-

mation w = sin z.

 Find the image of the circle |z| = a under the following transformations

8. w = z + 2 + 3i    9. w = 2z     10. w = (3 + 4i) z

11. w = (1 + i) z + 2 − i  12. w
i

z
=

2

13. Find the image of the infinite strip 0 ≤ x ≤ 2 under the transformation w = iz.

14. Find the image of the region that lies on the right of the y-axis under the 

 transformation w = iz + i.
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15. Find the image of the region y > 1 under the transformation w = (1 − i)z.

16. Find the image of the hyperbola xy = 1 under the transformation w = 3z.

17. Find the image of the hyperbola x2 − y2 = a2 under the transformation  

w = (1 + i)z.

18. Find the image of the half-plane y > c, when c > 0 under the transformation 

 w
z

=
1

.

19. Find the image of the half-plane x > c, when c < 0 under the transformation 

w = 1/z.

20. Find the image of the line y = mx under the transformation w
i

z
= .

21. Find the image of the region 0 < θ < p/n in the z-plane under the transformation 

w = zn, where n is a positive integer.

22. Find the images of the lines x = 1 and y = 1 under the transformation w = iz2.

23. Find the image of the region 2 < | z | < 3 under the transformation w = z2.

24. Find the image of the region 
π π

4 2
< <arg z  under the transformation w = z2.

25. Find the level curves of u and v under the transformation w = − iz2.

26. Find the image of the infinite strip 0 ≤ x ≤ 1 under the transformation w = ez.

27. Find the image of the x-axis under the transformation w = cos z.

28. Find the image of the y-axis under the transformation w = cos z.

29. Find the image of the x-axis under the transformation w = sinh z.

30. Find the image of the y-axis under the transformation w = sinh z.

31. Find the equations of transformation for the mapping given by w
a

z
z

= +



2

1
.

32. Find the images of the points whose polar co-ordinates are (1, 0) and (1, p) 

 under the transformation w z
z

= +
1

.

Part B

33. Find the image of the triangle with vertices at z = i, z = 1 − i, z = 1 + i under 

the transformation (i) w = 3z + 4 − 2i and (ii) w = iz + 2 − i.

34. Find the map of the square whose vertices are z = 1 + i, − 1 + i, − 1 − i and 

 1 − i by the transformation w = az + b, where a i= +2 1( )  and b = 3 + 3i.

35. Prove that the interior of the circle |z| = a maps onto the interior of an ellipse 

 in the w-plane under the transformation w x
ib y

a
= + , 0 < b < a. Is the 

 transformation conformal?

36. Show that the transformation w
z

=
1

 maps the circle |z − 3| = 5 onto the circle 

 w + =
3

16

5

16
. What is the image of the interior of the given circle in the 

 z- plane?
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37. Find the image of (i) the infinite strip 0
1

2
< <y

c
 and (ii) the quadrant x > 0, 

 y > 1, under the transformation w
z

=
1

.

38. Find the image of the triangle formed by the lines y = x, y = − x and y = 1 

under the transformation w = z2.

39. Find the image of the region of the square whose vertices are z = 0, 1, 1 + i 

and i under the transformation w = z2.

40. When a > 0, show that w = exp (p z/a) transforms the infinite strip 0 ≤ y ≤ a 

onto the upper half of the w-plane.

41. Discuss the transformation w = log z. Also prove that the whole of the z-plane 

maps onto the horizontal strip − p ≤ v ≤ p. (The principal value of log z is to 

be considered.)

  Note  The properties of the transformation w = log z are identical with 

those of w = ez, if we interchange z and w.

42. Discuss the transformation w = cos z.

43. Discuss the transformation w = sinh z.

44. Show that the transformation w
z

a
= sin

π
 maps the region of the z-plane 

 given by y ≥ 0 and − a/2 ≤ x ≤ a/2 onto the upper half of the w-plane.

45. Find the image of the semi-infinite strip 0 ≤ x ≤ π, y ≥ 0 under the transformation 

w = cos z.

46. Find the image of the region defined by − p/4 ≤ x ≤ p/4, 0 ≤ y ≤ 3 under the 

transformation w = sin z.

47. Show that the transformation w = cosh z maps (i) the segment of the y-axis 

 from 0 to iπ

2
 onto the segment 0 ≤ u ≤ 1 of the u-axis, (ii) the semi-infinite 

 strip x > 0, 0 ≤ y ≤ p/2 onto the first quadrant of the w-plane.

48. Find the image of the region in the z-plane given by 1 ≤ x ≤ 2 and − p/2 ≤ y ≤ 

p/2 under the transformation w = sinh z.

49. Show that the transformation w
a

z
z

= +



2

1
 where a is a positive constant 

 maps (i) the semi-circle |z| = 1 in the upper z-plane onto the segment − a ≤ u ≤ 

a of the u-axis, (ii) the exterior of the unit circle in the upper z-plane onto the 

upper w-plane.

50. Show that the transformation

 w ze
e

z
= +







−1

2

α
α

, where a is real, maps the interior of the circle |z| = 1 

 onto the exterior of an ellipse whose major and minor axes are of lengths 2 

cosh a and 2 sinh a respectively.
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Hint: The image of the circle |z| = 1 is the ellipse 
u v2

2

2

2
1

cosh sinhα α
+ = . The 

image of any  point inside |z| = 1, for example, the point (a, q ), where a < 1 is a 

point outside the ellipse, since |u (a, q )| > |u (1, q )| and |v(a, q)| >|v(1, q)|



.

3.7  BILINEAR AND SCHWARZ−CHRISTOFFEL 

TRANSFORMATIONS

3.7.1 Bilinear Transformation

The transformation w
az b

cz d
=

+
+

, where a, b, c, d are complex constants such that 

ad − bc ≠ 0 is called a bilinear transformation. It is also called Mobius or linear 

fracti onal transformation.

Now d

d ( )

w

z

ad bc

cz d
=

−
+ 2

. If ad − bc = 0, every point of the z-plane becomes a critical 

point of the bilinear transformation. 

The transformation can be rewritten as

w
a

c

ad bc

c cz d
= −

−
+

( )

( )
. Hence, if ad − bc = 0,

the transformation takes the form w
a

c
= , which has no meaning as a mapping

func tion. Due to these reasons, we assume that ad − bc ≠ 0. The expression (ad − bc) 

is called the determinant of the bilinear transformation.

The inverse of the transformation w
az b

cz d
=

+
+

 is z
d w b

cw a
=

− +
−

,  which is also a 

bilinear transformation.

The images of all points in the z-plane are uniquely found, except for the point 

z
d

c
= − . Similarly the image of every point in the w-plane is a unique point, except 

for the point w
a

c
= . If we assume that the images of the points z

d

c
= −  and w

a

c
=  

are the points at  infinity in the w- and z-planes respectively, the bilinear transformation 

becomes one-to-one between all the points in the two planes.

To discuss the transformation w
az b

cz d
=

+
+

, (1)

we express it as the combination of simple transformations discussed in the previous 

section.

When c ≠ 0, (1) can be expressed as
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w
a

c

bc ad

c cz d
= +

−





⋅
+
1

If we make the substitutions

 w
1 
= cz + d (2)

 w
w

2

1

1
=  (3)

then w = Aw
2
 + B (4)

where A
bc ad

c
=

−
 and B

a

c
= .

The substitutions (2), (3) and (4) can be regarded as transformations from the 

z-plane onto the w
1
-plane, from the w

1
-plane onto the w

2
-plane and from the w

2
-plane 

onto the w-plane respectively.

We know that each of the transformations (2), (3) and (4) maps circles and straight 

lines into circles and straight lines (since straight lines may be regarded as circles of 

infinite radii).

Hence the bilinear transformation (1) maps circles and straight lines onto circles and 

straight lines, in general. When c = 0, (1) becomes w
a

d
z

b

d
d=





+ 





≠( )0  i.e.

(1) reduces to the form w = Az + B. This transformation also maps circles into circles.

Thus the bilinear transformation always maps circles into circles with lines as 

limiting cases.

3.7.2  Definition

If the image of a point z under a transformation w = f(z) is itself, then the point is 

called a fixed point or an invariant point of the transformation.

Thus a fixed point of the transformation w = f(z) is given by z = f(z).

The fixed points of the bilinear transformation w
az b

cz d
=

+
+

 are given by 
az b

cz d
z

+
+

= .

As this is a quadratic equation in z, we will get two fixed points for the bilinear 

trans formation.

Note  

1. A bilinear transformation can be uniquely found, if the images w
1
, w

2
, w

3
 of 

any three points z
1
, z

2
, z

3
 of the z-plane are given. 

 Let the bilinear transformation required be

 w
az b

cz d
=

+
+

 (1)

 (1) can be re-written as w

a

d
z

b

d

c

d
z

=





 + 









 +1

 or 
Az B

C z

+
+1
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 Since the images of z
1
, z

2
 and z

3
 are w

1
, w

2
 and w

3
 respectively, we have

 w
Az B

C z
1

1

1 1
=

+
+

 (2)

 w
Az B

C z
2

2 1
=

+
+

2  (3)

 and w
Az B

C z
3

3 1
=

+
+

3  (4)

 Equations (2), (3) and (4) are three equations in three unknowns A, B, C. 

Solving them we get the values of A, B, C uniquely and hence the bilinear 

transformation (1) uniquely.

2. If a set of three points and their images by a bilinear transformation are 

given, it can be found out by using the cross-ratio property of the bilinear 

transformation, which is given below.

3.7.3  Definition

If z
1
, z

2
, z

3
, z

4
 are four points in the z-plane, then 

z z z z

z z z z

1 2 3 4

1 4 3 2

−( ) −( )
−( ) −( )

 is called the 

cross-ratio of these points.

Cross-ratio property of a bilinear transformation The cross-ratio of four points is 

invariant under a bilinear transformation.

i.e. if w
1
, w

2
, w

3
, w

4
 are the images of z

1
, z

2
, z

3
, z

4
 respectively under a bilinear 

transformation, then

w w w w

w w w w

z z z z

z z z z

1 2 3 4

1 4 3 2

1 2 3 4

1 4 3 2

−( ) −( )
−( ) −( ) =

−( ) −( )
−( ) −( )

.

Proof

Let the bilinear transformation be w
az b

cz d
=

+
+

Then w w
az b

cz d

az b

cz d

ad bc z z

cz d cz d
i j

i

i

j

j

i j

i j

− =
+
+

−
+
+

=
−( ) −( )
+( ) +( )

∴

 

( ) ( )w w w w
ad bc z z z z

cz d cz d cz d
1 2 3 4

2

1 2 3 4

1 2 3

− − =
−( ) −( ) −( )

+( ) +( ) +( ) ccz d4 +( )

and ( ) ( )w w w w
ad bc z z z z

cz d cz d cz d
1 4 3 2

2

1 4 3 2

1 2 3

− − =
−( ) −( ) −( )

+( ) +( ) +( ) ccz d4 +( )

∴

 

w w w w

w w w w

z z z z

z z z z

1 2 3 4

1 4 3 2

1 2 3 4

1 4 3 2

−( ) −( )
−( ) −( ) =

−( ) −( )
−( ) −( )
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Note  To get the bilinear transformation that maps z
2
, z

3
, z

4
 of the z-plane onto 

w
2
, w

3
, w

4
, we assume that the image of z under this transformation is w and make use 

of the invariance of the cross-ratio of the four points z, z
2
, z

3
, z

4
. Thus

 
w w w w

w w w w

z z z z

z z z z

−( ) −( )
−( ) −( ) =

−( ) −( )
−( ) −( )

2 3 4

4 3 2

2 3 4

4 3 2

 (1)

(1) ensures that the images of z = z
2
, z

3
, z

4
 are respectively w = w

2
, w

3
, w

4
. Now, 

simplifying (1) and solving for w, we get the required bilinear transformation 

in the form w
az b

cz d
=

+
+

.

3.8 SCHWARZ-CHRISTOFFEL TRANSFORMATION

3.8.1  Definition

The transformation that maps the boundary of a given polygon in the w-plane onto 

the x-axis (and hence maps the vertices of the polygon onto points on the x-axis) 

and the interior of the polygon onto the upper half of the z-plane is called Schwarz- 

Christoffel transformation.

Specifically, if x
1
, x

2
, . . . ., x

n
 that are points on the x-axis such that x

1
 < x

2
 < x

3
 < 

. . . . . < x
n
, are the images of the vertices w

1
, w

2
, . . . ., w

n
 of a polygon in the w-plane 

and a
1
, a

2
, . . . . a

n
 are the corresponding interior angles of the polygon, then the 

required Schwarz-Christoffel transformation is given by

d

d

w

z
A z x z x z xn

n

= −( ) ⋅ −( ) −( )− − −
1

1

2

1 11 2α

π

α

π

α

π ,

where A is an arbitrary complex constant.

Proof

[The proof is in the nature of verification of the mapping of the transformation.]

v y

O

P (w)

A4 (w4)

A3 (w3)

0

A2 (w2)

A1

(w1)

α2

π – α1

α3

α4

A1

x1 x2 x3 x4 xz

P'

α1

u
' A2' A3' A4'

Fig. 3.27

The given transformation is

d dw A z x z x z x zn

n

= −( ) ⋅ −( ) −( ) ⋅− − −
1

1

2

1 11 2α

π

α

π

α

π
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∴ amp (d amp ( ) amp ( ) amp ( )w A z x z x) = + −





− + −





− +
α

π

α

π
1

1

2

21 1 … … +

α

π
n

nz x−





−1 amp ( )  (1) 

[ ∴ amp (z
1
z

2
 ...) = amp (z

1
) + amp (z

2 
) + .... and amp (zk) = k amp (z)]

Let the image of P(w) be P′(z) as shown in Fig. 3.27.

When P moves towards A
1
, P′ moves towards A′

1
. As long as P′(z) is on the left of 

A′
1
 (x

1
), z − x

1
, z − x

2
, . . . ., z − x

n
 are all negative real numbers.

∴ amp (z − x
1
) = amp (z − x

2
) =  . . . . = amp (z − x

n
) = p

But once P′(z) has crossed A′
1
(x

1
), i.e., when x

1
 < z < x

2
, z − x

1
 is a positive real 

number and hence amp (z − x
1
) = 0, while amp (z − x

2
) = amp (z − x

3
) = . . . . = amp 

(z − x
n
) = p

Also amp(A) and amp(dz) do not change.

[ ∴ A is a constant and dz is positive hence amp (dz) = 0]

Thus when z croses A′
1
, amp (z − x

1
) suddenly changes from p to 0 or undergoes 

an increment of −p. 

∴ From (1), we get

Increase in amp (d ) ( )w = −





− = −
α

π
π π α1

11 .

This increase is in the anticlockwise direction. This means that when P(w), 

moving along PA
1
, reaches A

1
, it changes its direction through an angle p−a

1
 in the 

anticlockwise sense and then starts moving along A
1
A

2
. Similarly when P(w) reaches 

A
2
, it turns through an angle p−a 

2
 and then starts moving along A

2
 A

3
.

Proceeding further, we find that as P(w) moves along the boundary of the polygon, 

P′(z) moves along the x-axis and conversely. Now when a person walks along the 

boundary of the polygon in the w-plane in the anticlockwise sense, the interior of the 

polygon lies to the left of the person. Hence the corresponding area in the z-plane 

should lie to the left of the person, when he or she walks along the corresponding 

path in the z-plane, i.e. along the x-axis from left to right. Clearly the corresponding 

area is the upper half of the z-plane.

Thus the interior of the polygon in the w-plane is mapped onto the upper half of 

the z-plane.

Note  

1. Integrating (1), the Schwarz-Christoffel transformation can also be expressed 

 as w A z x z x z x z Bn

n

= −( ) ⋅ −( ) ⋅⋅⋅ −( ) ⋅ +∫
− − −

1

1

1

1 1
1 2
α

π
α

π

α

π d

 where B is a complex constant of integration.

2. The transformation which maps a polygon in the z-plane onto the real axis of 

the w-plane is got by interchanging z and w in the above transformation.

3. It is known that not more than three of the points x
1
, x

2
, . . ., x

n
 can be chosen 

arbitrarily.
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4. It is advantageous to choose one point, say x
n
, at infinity, as explained below. 

 If we take A

xn

n
=

−( ) −

λ
α

π
1

,  where l is a constant, the transformation can be

 written as

 

d

d

w

z
z x z x z x

x z

x
n

n

n

n

= −( ) ⋅ −( ) ⋅⋅⋅ −( ) ⋅
−


− −

−

−−

λ 1

1

2

1

1

11 2
1α

π

α

π

α

π



−
α

π
n 1

 As xn →∞ , the transformation reduces to 

 d

d

w

z
z x z x z xn

n

= −( ) ⋅ −( ) ⋅⋅⋅⋅ −( )− −
−

−−

λ 1

1

2

1

1

11 2
1α

π

α

π

α

π

 This means that, if x
n
 is at infinity, the factor z xn

n

−( ) −
α

π
1
 is absent in the 

transformation. Thus the R.H.S. of the transformation contains one factor less 

than the original form.

5. Infinite open polygons can be considered as limiting cases of closed polygons.

WORKED EXAMPLE 3(d)

Example 3.1  Find the invariant points of the transformation w
z i

iz
= −

+
+

2 4

1
. Prove

also that these two points together with any point z and its image w, form a set of four 

points having a constant cross ratio.

The invariant points of the transformation are given by

 z
z i

i z
= −

+
+

2 4

1

i.e. iz2 + 3z + 4i = 0  or z2 − 3iz + 4 = 0

i.e. (z − 4i) (z + i) = 0

∴ The invariant points are 4i and − i. Taking z z z w
z i

i z
z i1 2 3

2 4

1
4= = = −

+
+

=, ,  and

z
4
 = − i, the cross-ratio of the four points z

1
, z

2
, z

3
 and z

4
 is given by

 

z z z z

z
z i

i z
i i

z i i
z i

i z

1 2 3 4

2 4

1
4

4
2 4

1

, , ,( )=
+ +

+






+( )

+( ) + +
+







=
+ +( )

+( ) − +( )
5 3 4

2 8

2i i z z i

z i z i
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=
+ +( )
+ +( )

5 3 4

2 3 4

i i z z i

i i z z i

2

2

 = 5/2

 = a constant, independent of z.

Example 3.2  Find the bilinear transformation that maps the points 1 + i, − i, 2 − i of 

the z-plane into the points 0, 1, i of the w-plane.

Taking z
1
 = 1 + i, z

2
 = − i, z

3
 = 2 − i and w

1
 = 0, w

2
 = 1, w

3
 = i and using the 

invariance of the cross-ratio (z, z
1
, z

2
, z

3
), we have

 

w i

w i

z i

z i i

−( ) −( )
−( ) −( ) =

− −( ) −( )
− +( ) − −( )

0 1

1 0

1 2

2 1 2

i.e.

 

w i

w

z i i i

z i

−
=

− +( ) − −( ) −( )
− −( ) −( )

2 1 2 1

1 2

i.e. 1
3 2

2 1
− =

+( ) − +( )
− −( )

i

w

i z i

z i

∴ 
i

w

i z i

z i

i z i

z i

= −
+( ) − +

− −

=
− +( ) + −

− −

1
3 7

2 2 2

1 5 3

2 2 2

∴ w
z i

i i z i
=

− −( )
− − +( ) + −{ }

2 2 2

1 5 3

i.e. the required bilinear transformation is

 w
z i

i z i
=

− −
−( ) − −
2 2 2

1 3 5

Example 3.3  Find the bilinear transformation which maps the points (i) i, − 1, 1 of 

the z-plane into the points 0, 1, ∞ of the w-plane respectively (ii) z = 0, z = 1 and z = ∞ 

into the points w = i, w = 1 and w = − i.

(i) (w, w
1
, w

2
, w

3
) = (z, z

1
, z

2
, z

3
)

i.e., 
w w w w

w w w w

z z z z

z z z z

−( ) −( )
−( ) −( ) =

−( ) −( )
−( ) −( )

1 2 3

3 2 1

1 2 3

3 2 1

 (1)

To avoid the substitution of w
3
 = ∞ in (1) directly, we put w

w
3

3

1
=

′
 simplify and 

then put w′
3
 = 0. Thus (1) becomes
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w w w w

w w w w

z z z z

z z z z

−( ) ′ −( )
′ −( ) −( ) =

−( ) −( )
−( ) −( )

1 2 3

3 2 1

1 2 3

3 2 1

1

1
 (2)

Using the given values z
1
 = i, z

2
 = − 1, z

3
 = 1, w

1
 = 0, w

2
 = 1 and w′

3
 = 0, we get

 

w z i

z i
w

i z i

z

−( )
−( ) =

−( ) −( )
−( ) − −( ) =

−( ) −( )
−

1

1 1

2

1 1

1

1
, i.e.,

(ii) w w w w

w w w w

z z z z

z z z z

z z

−( ) −( )
−( ) −( ) =

−( ) −( )
−( ) −( )

=
−

1 2 3

3 2 1

1 2 3

3 2 1

1(( ) ′ −( )
′ −( ) −( ) ′ =

z z

z z z z
z

z

2 3

3 2 1

3

3

1

1

1
, where

Using the values z
1 
= 0, z

2
 = 1, z’

3
 = 0 and w

1
 = i, w

2
 = 1 and w

3
 = − i, we get

 

w i i

w i i

z−( ) +( )
+( ) −( ) =

−( )
−( )⋅

1

1

1

1 1

i.e.
 

w i

w i

i z

i

−
+

=
−( )
+

1

1

i.e. 2

2

1 1

1 1

w

i

i z i

i i z

Nr Dr

Dr Nr
=

−( ) + +( )
+( ) − −( ) =

+
−







∴ w
i z i

i i z
w

z i

i z
=

+( ) + −( )
+( ) − −( )

+
+

1 1

1 1 1
or = .

Example 3.4  If a, b are the two fixed points of a bilinear transformation, show that 

it can be written in the form (i) 
w a

w b
k

z a

z b

−
−

= −
−







, where k is a constant, if a ≠ b;

(ii) 
1 1

w a z a
c

−
=

−
+ , where c is a constant, if a = b.

(i) Since the images of a and b are a and b respectively, (w, a, w
3
, b) = (z, a, z

3
, b)

i.e. 
w a w b

w b w a

z a z b

z b z a

−( ) −( )
−( ) −( ) =

−( ) −( )
−( ) −( )

3

3

3

3

i.e. w a

w b

z b w a

z a w b

z a

z b

−
−

=
−( ) −( )
−( ) −( )











−
−







3 3

3 3
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i.e. 
w a

w b
k

z a

z b

−
−

=
−
−







, where k is a constant.

(ii) Since the image of z = a is w = a, the bilinear transformation can assumed as

 w a
z a

cz d
− =

−
+

 (1)

The fixed points of (1) are given by

 (z − a) [(cz + d) − 1] = 0

i.e. c z a z
d

c
( )− +

−





=
1

0  (2)

Since both the roots of (2) are equal to a,

 
d

c
a d ca

−
= − ∴ = − +

1
1  (3)

Using (3) in (1), the required bilinear transformation is w a
z a

cz ca
− =

−
− +1

i.e. 1 1

w a

c z a

z a−
=

− +
−

( )

i.e. 1 1

w a z a
c

−
=

−
+ ,  where c is a constant.

Example 3.5  Show that the transformation w
z

z
=

−
+

1

1
 maps the unit circle in the 

w-plane onto the imaginary axis in the z-plane. Find also the images of the interior 

and exterior of the unit circle.

The image of the unit circle |w| = 1 is given by

 
z

z

−
+

=
1

1
1,  i.e. |z − 1| = |z + 1|

i.e. |(x − 1) + iy| = |(x + 1) + iy|

i.e. (x − 1)2 + y2 = (x + 1)2 + y2

i.e. −2x = 2x or x = 0, which is the imaginary axis.

The image of the interior of the unit circle i.e. |w| < 1 is given by |z − 1| < | z + 1|

i.e. −2x < 2x or x > 0, which is the right half of the z-plane.

Similarly the image of the exterior of the circle |w| = 1 is the left half of the 

z-plane.

Example 3.6  Show that the transformation w
z i

iz
=

−
−1

 maps (i) the interior of the 

circle | z | = 1 onto the lower half of the w-plane and (ii) the upper half of the z-plane 

onto the interior of the circle | w | = 1.
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 w
z i

iz
=

−
−1

 (1)

∴ w − iwz = z − i

i.e. z (1 + iw) = w + i

∴ z
w i

iw
=

+
+1

 (2)

(2) is the inverse transformation of (1). The interior of the circle | z | = 1 is given by 

| z | < 1.

From (2), the image of | z | < 1 is given by

 
w i

i w

+
+

<
1

1 , i.e. | w + i | < | 1 + iw |

i.e. | u + i (v + 1)| < | (1 − v) + iu |

i.e. u2 + (v + 1)2 < (1 − v)2 + u2

i.e. 2v < − 2v or 4v < 0 or v < 0,

i.e., the lower half of the w-plane.

(2) can be written as

 

x iy
u i v

v iu

u i v v iu

v u

u v v

+ =
+ +
− +

=
+ +[ ] − −[ ]

− +

=
− +

( )

( )

( ) ( )

( )

1

1

1 1

1

1

2 2

++[ ] + − −
+ −
1 1

1

2 2

2 2

i v u

u v

( )

( )

∴ x
u

u v
=

+ −
2

12 2( )
 (3)

and y
u v

u v
=

− −
+ −

1

1

2 2

2 2( )
 (4)

The upper half of the z-plane is given by y > 0. Its image is given by

 
1

1
0

2 2

2 2

− −
+ −

>
u v

u v( )
 [from (4)]

i.e. u2 + v2 < 1 or | w |2 < 1

i.e. | w | < 1

i.e. the interior of the circle | w | = 1.
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Example 3.7  Find the most general bilinear transformation that maps the upper half 

of the z-plane onto the interior of the unit circle in the w-plane.

Let the required bilinear transformation be

 w
a z b

c z d
=

+
+

 (1)

Since the image of y > 0 has to be | w | < 1, the boundaries of the two regions must 

correspond i.e. the image of y = 0 must be | w | = 1. Since three points determine a 

circle uniquely, we shall make three convenient points lying on y = 0 map into three 

points on | w | = 1. Let us assume that the three points z = 0, z = ∞ and z = 1 map onto 

points on the circle | w | = 1. Thus, when z = 0, | w | = 1.

∴ From (1), we get  1 = =
b

d
b d, i.e.  (2)

Rewriting (1), we have w
a b z

c d z
=

+
+

/

/
 (1)′

When z = ∞, | w | = 1.

∴ From (1)′, we get 
a

c
= 1 , i.e. | a | = | c | (3)

If a = 0, then, from (3), we see that c = 0

In this case, the transformation (1) becomes w
b

d
= , which will map the whole

of z-plane onto a single point w
b

d
= , which is not true. Hence a ≠ 0 and so c ≠ 0,

from (3).

∴ a

c
≠ 0 , such that 

a

c
= 1 , from (3)

∴ a

c
 may be taken as eiθ, where θ is real.

Again, re-writing (1), w
a

c

z b a

z d c
=

+
+

( )

( )

/

/

i.e. w e
z b a

z d c

i=
+
+







θ /

/

Putting 
b

a
= −α  and 

d

c
= − β , where a and b are complex, the required 

transformation becomes

 w e
z

z

i=
−
−







θ α

β
 (4)
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From (2) and (3), we have b

a

d

c
=

i.e. | a | = | b | (5)

We have assumed that the point z = 1 also maps onto a point on the circle | w | = 1.

∴ From (4), 1
1

1
=

−
−

eiθ α

β

i.e. |1 − a | = |1 − b | (6)

From (5) and (6), we find that either a = b or α β= .

If we assume that a = b, the transformation reduces to w = e iq, which will map the 

whole of the z-plane into a single point, which is not true. Hence β α= .

∴ The required transformation is w e
z

z

i=
−
−







θ α

α
. Since α is arbitrary, it can be 

taken as any point in the upper half of the z-plane.

The image of z = α is w = 0, which lies inside | w | = 1.

Thus the upper half of the z-plane maps onto | w | < 1 by the transformation

w e
z

z

i=
−
−







θ α

α
, where α is any point in y > 0.

Example 3.8  Find the transformation that will map the strip x ≥ 1 and 0 ≤ y ≤ 1 of 

the z-plane into the half-plane (i) v ≥ 0 and (ii) u ≥ 0.

(i) Consider the isosceles triangle BAC, which is a three sided polygon. 

[Fig. 3.28]

When C → ∞, the interior of this triangle becomes the region of the given strip.

In the limit, the interior angles of the polygon are 
π π

2 2
0, and .

Let us assume that the images of B, A, C are w = − 1, 1 and ∞ respectively.

Then the required Schwarz-Christoffel transformation is

 
d

d
( ) ( )

z

w
A w w= + ⋅ −− −

1 12 2
1 1π

π
π
π ,

O

v

OA

B

Cx = 1

y = 1

y = 0
(a) (b)

x u

Fig. 3.28
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omitting the factor corresponding to w = ∞ , as per Note (4) under the discussion of 

the transformation.

Note  z and w are interchanged in the Schwarz-Christoffel transformation for-

mula, as we are mapping a polygon in the z-plane onto the upper half of the w-plane.

i.e. 
dz

w
A w w

A

w

d
= + −

=
−

− −( ) . ( )/ /1 1

1

1 2 1 2

2

∴

Integrating with respect to w, we get

 z = A cosh−1 w + B

When z = 1, w = 1, ∴ B = 1

When z = 1 + i, w = −1 ∴ 1 + i = A cosh−1 (−1) + 1

i.e. i = A . ip [ 

∴

 cosh ip = cos p = − 1]

 A=
1

π

∴ Required transformation is z w= +−1
11

π
cosh

i.e.  cosh−1 w = p (z − 1) or w = cosh p (z − 1)

(ii)  Put w′ = u′ + iv′ = i (u + iv) = iw

This means that u − v system is rotated about the origin through π

2
 in the

positive direction giving u′ − v′ system. Hence v′ ≥ 0 corresponds to u ≥ 0.

∴ The required transformation that maps the given region in the z-plane onto 

u ≥ 0 is

 i w = cosh p (z − 1)

i.e.  w = − i cosh p (z − 1)

Example 3.9  Find the transformation that maps the semi-infinite strip y ≥ 0, − a ≤ x 

≤ a onto the upper half of the w-plane. Make the points z = −a and z = a correspond 

to the points w = –1 and w = 1.

A

v

OB A' B'

C

y

(a) (b)

x u

Fig. 3.29
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Proceeding as in the previous example, the required transformation is

d

d

z

w

A

w

i A

i w

k

w
=

−
=

−
=

−2 2 21 1 1

 [Fig. 3.29]

Note  This change is made to simplify the evaluation of constants after integration.

∴ z k
w

w
B=

−
+∫

d

1 2

 = k sin−1 w + B (1)

When z = − a, w = − 1 and when z = a, w = 1

∴  k (− π/2) + B = −a and k (π/2) + B = a

Solving, we get k
a

=
2

π
 and B = 0.

Using these values in (1), the required transformation is z
a

w= −2 1

π
sin  or

 

w
z

a
= 





sin
π

2

Example 3.10 Find the transformation that maps the infinite strip 0 ≤ v ≤ π of the 

w-plane onto the upper half of the z-plane.

Fig. 3.30

y

O

B C

A

A' O(B')

u
v = π

(a) (b)

xu

– 1 1

Consider the rhombus ABOC, which is a four sided polygon. [Fig. 3.30]

When B and C → ∞, the interior of the this rhombus becomes the region of the given 

strip. In the limit, the interior angles at A, B, O and C are p, O, p and O respectively.

Let us assume that the images of A, B, O, C are the points −1, 0, 1 and ∞ of the 

z-plane.

Then the required transformation is

 

( 1) ( 0) ( 1)A z z z
d

d

z

w 1 1 1
0

$ $- -= +
- - -

r

r

r r

r

i.e. d

d

w

z

A

z
=  ∴ w = A log z + B (1)

When w = 0, z = 1 ∴B = 0

When w = p i, z = −1 ∴ A log (−1) = p i

i.e. A log (e ip ) = pi

i.e. A (ip) = ip or A = 1

Using these values in (1), the required transformation is w = log z.
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EXERCISE 3(d)

Part A

(Short Answer Questions)

1. Define a bilinear transformation and its determinant.

2. Find the value of the determinant of the transformation w
iz

z i
=

−
−

1
.

3. What do you mean by the fixed point of a transformation? Does the fixed 

point exist only for a bilinear transformation?

4. Define the cross ratio of four points in a complex plane.

5. State the cross ratio property of a bilinear transformation.

6. What is Schwarz-Christoffel transformation? State the formula for the same.

7. What is the advantage of choosing the image of one vertex of the polygon at 

infinity in Schwarz-Christoffel transformation?

8. Find the invariant points of the transformations

 (i) w = iz2 and (ii) w = z3

 Find the invariant points of the transformations

9. w
z

z
=

+
+

2 6

7
 10. w

z i

i z
=

−
−

3 5

1
 11. w

z i

z
=

− −
+
1

2

12. Find the condition for the invariant points of the transformation w
az b

cz d
=

+
+

 to

 be equal.

13. Find all linear fractional transformations whose fixed points are − 1 and 1.

14. Find all linear fractional transformations whose fixed points are − i and i.

15. Find all linear fractional transformations without fixed points in the finite 

plane.

16. Find the image of the real axis of the z-plane by the transformation w
z i

=
+
1

.

Part B

17. Find the bilinear transformation which maps the points

  (i) z = 0, − i, − 1 into w = i, 1, 0 respectively,

 (ii) z = − i, 0, i into w = − 1, i, 1 respectively.

18. Find the bilinear transformation that maps the points (i) z = 0, − 1, ∞, into the 

points w = − 1, −2 − i, i respectively, (ii) z = 0, − i, 2 i into the points w = 5i, 

∞ − i/3 respectively.

19. Prove that w
z

z
=

−1
 maps the upper half of the z-plane onto the upper half 

 of the w-plane. What is the image of the circle | z | = 1 under this 

transformation?

20. When the point z moves along the real axis of the z-plane from z = − 1 to z = + 1, 

 find the corresponding movement of the point w in the w-plane, if w
iz

z i
=

−
−

1
.
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21. Prove that, under the transformation w
z i

i z
=

−
−1

, the region Im(z) ≥ 0 is mapped

 onto the region | w | ≤ 1. Into what region is Im (z) ≤ 0 mapped by this  

transformation?

22. Find the images of (i) the segment of the real axis between z = + 1 and z = − 1 

(ii) the interior of the circle | z | = 1 and (iii) the exterior of the circle | z | = 1

 under the transformation w
iz

z i
=

+
+

1
.

23. Show that the transformation w
i z

i z
=

−
+

 maps the circle | z | = 1 onto the

 imaginary axis of the w-plane. Find also the images of the interior and  

exterior of this circle.

24. Find the bilinear transformation that maps the upper half of the z-plane onto 

the interior of the unit circle of the w-plane in such a way that the points 

z = i, ∞ are mapped onto w = 0, −1.

 [Hint: Use Worked Example (3.7).]

25. Find the transformation which maps the area in the z-plane within an infinite 

 sector of angle π

m
 onto the upper half of the w-plane.

 



Hint: The sectoral region bounded by OX and OP may be regarded as an

 open polygon with vertex at O and interior angle π

m
. Make the origin of the 

 z-plane correspond to the origin of the w-plane.





26. Find the transformation which maps the semi-infinite strip

   (i) x ≥ 0, 0 ≤ y ≤ c onto v ≥ 0

  (ii) u ≥ 0, 0 ≤ v ≤ p onto y ≥ 0

27. Find the transformation which maps the semi-infinite strip y ≥ 0, 0 ≤ x ≤ a 

onto the upper half of the w-plane. Make the points z = 0 and z = a correspond 

to w = +1 and w = –1.

28. Find the transformation that maps the infinite strip 0 ≤ y ≤ k onto the upper 

half of the w-plane. Make the points z = 0, z = ik correspond to w = 1, –1.

29. Find the transformation that maps the region in the z-plane above the line y =  

b, when x < 0 and that above the x-axis, when x > 0 into the upper half of the 

w-plane. Make the points z = ib and z = 0 correspond to w = –1 and w = 1.

30. Find the transformation that maps the region in the w-plane above the u-axis 

when u < 0 and that above v = b when u > 0 into the upper half of the z-plane.  

Make the points w = 0 and w = ib correspond to z = 0 and z = 1.
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ANSWERS

Exercise 3(a)

16. at all points on the line y = x 17. at all points

18. nowhere 19. only at the origin

20. at all points except z = −1 21. a = 2, b = −1, c = −1, d = 2

22. p = − 1    36. 2z 37. ez 38. −sin z 

39. cosh z

Exercise 3(b)

5. y + c 6. Yes 7. Yes 8. No 

9. Yes 10. No 11. 2 xy 12. ex sin y

13. cos x sinh y 14. x2 − y2 + 2y; 15. 2 1tan− 





y

x
 16. log z

17. −z2 18. eiz 19. cosh z 20. 1

z

21. v = 3x2y − y3 + 2xy + y2 − x2 + c;  f (z) = z3 + z2 − iz2 + ic

22. u = x3 − 3xy2 − 2xy + c;  f (z) = z3 + iz2 + c

23. ψ = −
+

+ = + +2
1

2 2

2xy
y

x y
c f z z

z
ic; ( )

24. f = x2 − y2 − 2x + 3y − 2xy + c  f(z) = z2 − 2z + i (z2 −3z)

25. 
z z

i z
4 2

4 2
1+ + +( )   x4 − 6x2y2 + y4 + 2 (x2 − y2) + 4 (x − y) = c′

26. w = −iz . ez + ic ; v = ex (y sin y − x cos y) + c

27. w = ize−z + c ; u = e−x (x sin y − y cos y) +c

28. w = −ieiz2
 +ic ; v = e−2xy cos (x2 − y2) + c

29. w = zei2z + c ; u = e−2y (x cos 2x − y sin 2x) + c

30. f z
i

z
( ) =

+
−

1
1  31. f (z) = iz2 − z

32. f z
z

i
c( )

cot 
=

+
+

1
 33. f z z( ) ( sec )= +

1

2
1

37. 2y + y3 − 3x2y = b

Exercise 3(c)

5. z = ± ea 6. z = a, β   and 
1

2
α β+( )  7. 

1

2

8. (u − 2)2 + (v − 3)2 = a2 9. | w | = 2a 10. | w | = 5a



Mathematics II3.96

11. (u − 2)2 + (v + 1)2 = 2a2 12. w
a

=
1

2
 13. 0 < v < 2

14. v > 1 15. u + v > 2 16. u v = 9 17. u v = a2

18. Interior of the circle u v
c c

2

2 2
1

2

1

2
+ +





= 





19. Exterior of the circle u
c

v
c

−





+ = 





1

2

1

2

2

2

2

20. u = mv 21. Upper half of the w-plane

22. u2 = − 4 (v − 1);  u2 = 4 (v + 1) 23. 4 < |w| < 9

24. 
π

π
2

< arg ( ) <w  25. x y = c
1
 and y2 − x2 = c

2

26. The annular region 1 ≤ R ≤ e

27. Segment of v = 0, given by − 1 ≤ u ≤ 1

28. Part of v = 0, given by u ≥ 1

29.  u-axis 30. Segment of u = 0, given by −1 ≤ v ≤ 1.

31. u
a

r
r

v
a

r
r

= +





= −



2

1

2

1
cos , sinθ θ

32. (± 2, 0)

33.  (i) Triangle with vertices w = 4 + i, 7 + i, 7 − 5i

 (ii) Triangle with vertices w = 1 − i, 1, 3 − 2i

34. Square with vertices w i i= + ±( ) ( )+3 2 2 2 2 33 3, ∓

35. No

36. The exterior of the image circle

37.  (i) u2 + (v + c)2 > c2, v < 0

 (ii) u2 + v2 + v < 0, u > 0

38. The region enclosed by v2 = 4 (u + 1) and u = 0

39. The region above the u-axis, bounded by the u-axis, v2 = 4 (1 − u) and v2 = 4 

(1 + u).

45. The lower half of the w-plane

46. The region in the upper half of the w-plane bounded by the part of the

 u-axis given by − ≤ ≤
1

2

1

2
u , the ellipse 

u v2

2

2

23 3
1

cosh sinh
+ =  and the

 hyperbola u v2 2 1

2
− = .

48. The elliptic annular region bounded by 
u v2

2

2

21 1
1

sinh cosh
+ =  and

 
u v2

2

2

22 2
1

sinh cosh
+ = , lying in the right half of the w-plane.
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Exercise 3(d)

2. −2 3. No

8.  (i) z = 0 and z = −i

 (ii) z = 0, ± 1.

9. z = 1, − 6 10. z = i, − 5i   11. z = − i, z = − 1 + i

12. (a − d)2 + 4bc = 0 13. w
a z b

b z a
=

+
+

 14. w
a z b

a b z
=

+
−

15. w = z + a 16. u2 + v2 + v = 0 

17. (i) w i
z

z
= −

+
−







1

1

 (ii) w
i i z

z
=

−
+ 1

18. (i) w
i z

z
=

−
+

2

2

 (ii) w
z i

i z
=

−
−

3 5

1

19. The line u = – 1/2

20. w moves along the upper half of the circle | w | = 1 from w = −1 to w = +1 in 

the clockwise sense.

21. | w | ≥ 1

22. The lower half of the circle | w | = 1; v < 0; v > 0

23. u > 0; u < 0 24. w
i z

i z
=

−
+

 25. w = kzm

26.  (i) w
z

c
= cosh

 (ii) z = cosh w

27. w
z

a
= cos

π  28. w = ep z/k

29. z
b

w w= − + −

π
( cosh )2 1

1
 30. w

i b
z z z= + −( )−2

11

π
sin ( )
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Complex 
Integration

4UNIT

4.1 INTRODUCTION

The concept of a real line integral, with which the reader is familiar is extended to 

that of a complex line integral as given below in Fig. 4.1.

Let f (z) be a continuous function of the complex variable  z (= x + iy) and bet C be 

any continuous curve connecting two points A(z0) and B(zn) on the z-plane. Let C 

be divided into n parts by means of the points z1, z2, ...zn–1. Let zk –zk–1 = Δzk. Let αk 

be an arbitrary point in the arc zk–1 zk (k = 1, 2, ..., n).

Let   S f z z f zn k k k

k

n

k k

k

n

= ( ) −( ) ( )∆−
= =
∑ ∑ 1

1 1

or .

If the limit of Sn exists as n → ∞ in such a way that each Δzk → 0 and if the limit is 

independent of the mode of subdivision of C and the choice of the points αk, then 

it is called the complex line integral of f (z) along C from A to B and denoted as

f z z

C

( )∫ d . Practically a complex line integral is expressed in terms of two real line 

integrals and evaluated.

Fig. 4.1

O

C

y

z1

zn –1

zk

zk –1

A (z0)

αk

B (zn)

x
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i.e. If  f z u x y iv x y( ) ( , ) ( , ),= + then

  
f z z u iv x i y

CC

( ) ( ) ( )d d d= + +∫∫

 

= − + +∫∫ ( ) ( )u x v y i v x u y

CC

d d d d

Note  When C is an open arc (of finite length) of a continuous curve, the sense 

of description of C is obvious, as it is traversed from A(z0) to B(zn). When C is a 

simple closed curve, i.e. a continuous closed curve which does not intersect itself and 

which encloses a finite region in the Argand plane, then C is traversed in the direction 

indicated by the arrows drawn on C. In this case, the complex line integral is called

contour integral and denoted by the special symbol f z z

C

( ) .d∫
If the sense of description of C is not indicated by arrows, C is traversed in the 

positive sense or direction, i.e. the direction in which a person, walking along C, has 

the interior region of C to his or her left. Practically we shall take the anticlockwise 

direction of traversal of C as the positive direction.

4.1.1 Simply and Multiply Connected Regions

A region R is called simply connected, if any simple closed curve which lies in R can 

be shrunk to a point without leaving R. A region R which is not simply connected is 

called multiply connected.

Obviously, a simply connected region is one which does not have any “holes” in 

it, whereas a multiply connected region is one which has. 

A multiply connected region can be converted into a simply connected region by 

introducing cross-cuts as shown in Figs 4.2 (a), (b) and (c)

(a) Simply connected

      region
(b) Multiply connected

       region

(c) Multiply connected region

     converted into simply connected

     region by cross-cuts

Fig. 4.2

4.2 CAUCHY’S INTEGRAL THEOREM OR CAUCHY’S 

FUNDAMENTAL THEOREM

If f (z) is analytic and its derivative f ' (z) is continuous at all points on and inside a

simple closed curve C, then f z z

C

( ) .d =∫ 0
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Proof

Let f (z) = u (x, y) + iv (x, y) = u + iv

Then f z z u iv x i y

C C

( ) = +( ) +( )∫ ∫d d d

 = − + +∫∫ ( ) ( )u x v y i v x u y
CC

d d d d  (1)

Since f  ' (z) is continuous, the four partial derivatives 
∂
∂

∂
∂

∂
∂

∂
∂

u

x

u

y

v

x

v

y
, , ,  are also

continuous on C and in the region R enclosed by C.

Hence Green’s theorem in a plane, namely,

( )P x Q y
Q

x

P

y
x y

C R

d d d d+ =
∂
∂

−
∂
∂





∫ ∫∫

can be applied to each of the lines integral in the R.H.S. of (1).

∴ f z z
v

x

u

y
x y i

u

x

v

y
x y

C RR

( )d d d d d= −
∂
∂

−
∂
∂







+
∂
∂

−
∂
∂





∫ ∫∫∫∫

Since the function f (z) = u + iv is analytic, u and v satisfy the Cauchy-Riemann 

equations in R.

i.e 
∂
∂

=
∂
∂

∂
∂

= −
∂
∂

u

x

v

y

u

y

v

x
and

i.e 
∂
∂

−
∂
∂

= −
∂
∂

−
∂
∂

=
u

x

v

y

v

x

u

y
0 0and  (3)

Using (3) in (2), we get

 f z z i

C

( )d = + =∫ 0 0 0

Note 

1. The above theorem can be proved without assuming that f ' (z) is continuous, 

as was done by a French mathematician E. Goursat. We state below the 

modified form of the above theorem, called Cauchy-Goursat theorem without 

proof.

 “If f (z) is analytic at all points on and inside a simple closed curve C, then 

  

f z z

C

( )d =∫ 0”

2. We have proved Cauchy's integral theorem for a simply connected region. It 

can be extended to a multiply connected region as follows.

4.2.1 Extension of Cauchy’s Integral Theorem

If  f (z) is analytic on and inside a multiply connected region whose outer boundary 

is C and inner boundaries are C1, C2,..., Cn, then
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f z z f z z f z z f z z

CCCC n

( ) ( ) ( ) ( )d d d d= + + + ∫∫∫∫ 

21

 where all the integrals are taken in

the same sense. We shall prove the extension for a doubly connected region for 

simplicity.

A
A

B

B
C1

C

Fig. 4.3

We convert the doubly connected region into a simply connected region by introducing 

the cross-cut AB (Fig. 4.3).

By Cauchy's integral theorem, f z z

C

( )d =
′
∫ 0  where C' includes C described in

anticlockwise sense, C1 described in clockwise sense, AB and BA

∴ 

C' C C1 AB BA

 f (z)dz  f (z)dz  f (z)dz  f (z)dz  f (z)dz = + + = 0+

The last two integrals in the R.H.S. are equal in value but opposite in sign and hence 

cancel each other.

∴ 

C C1

 f (z)dz  f (z)dz + = 0

i.e. 

C C1

 f (z)dz  f (z)dz = –

 
C1

 f (z)dz =

Note  By introducing as many cross-cuts as the number of inner boundaries, we 

can give the proof in a similar manner for the extension of Cauchy's integral theorem 

stated above.

4.2.2 Cauchy’s Integral Formula

If f (z) is analytic inside and on a simple closed curve C that encloses a simply 

connected region R and if ‘a’ is any point in R, then f a
i

f z

z a
z

C

( )
( )

,=
−∫

1

2
d

where C is described in the anticlockwise sense.
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Proof

Since f (z) is analytic on and inside C, 
f z

z a

( )

−
 is also analytic on and inside C,

except at the point z = a. Now we draw a small circle C' with centre at z = a and 

radius ρ, lying completely inside C. The function 
f z

z a

( )

−
 is analytic in the doubly

connected region bounded by C and C'.

∴ By Cauchy's Extended theorem, we have

∴ 
f z

z a
z

f z

z a
z

C C

( ) ( )

'
−

=
−∫ ∫ d d  (1)

If z is any point on C', then |z – a| = ρ and hence z – a = ρeiθ or z = a + ρeiθ 

∴ dz = iρeiθ dθ

∴ f z

z a
z

f a e

e
i e

i

i

i

C

( ) ( )

−
=

+
∫∫ d d




 








0

2



( When z moves around C' once completely, θ varies from 0 to 2π)

 = +∫i f a ei( ) 


d

0

2

 (2)

(2) is true, however small the circle C' is and hence true when ρ → 0. Taking limits 

of (2) as ρ → 0, we get

 
f z

z a
z i f a if a

C

( )
( ) ( )

'
−

= = ⋅∫∫ d d 



2

0

2


 (3)

y

O

a
P

C'

x

C

Fig. 4.4
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Using (3) in (1), we have

 
f z

z a
z i f a

C

( )
( )

−
=∫ d 2

∴ f a
i

f z

z a
z

C

( )
( )

.=
−∫

1

2
d

4.2.3 Extension of Cauchy’s Integral Formula to a Doubly 

Connected Region

If f (z) is analytic on C1 and C2 (C2 lies completely within C1) and in the annular 

region R between C1 and C2 and if ‘a’ is any point in R, then

f a
i

f z

z a
z

i

f z

z a
z

CC

( )
( ) ( )

=
−

−
−∫∫

1

2

1

2
21

 
d d

A
A

B

B

C2

C1

‘a’

Fig. 4.5

Proof

We convert the doubly connected region to a simply connected region by introducing 

the cross-cut AB. ‘a’ lies in this region (Fig. 4.5).

By Cauchy's integral formula,

 f a
i

f z

z a
z

C

( )
( )

,=
−∫

1

2
d

where C includes C1 described in the anticlockwise sense, C2 in the clockwise sense, 

AB and BA.

∴ 
C1 C1 AB BA

 f (a)
1

2 πi z – a z – a z – a z – a

 f (z)  f (z)  f (z)  f (z)
= dz dz dz dz+ + +

 
C1 C2

z – a z – a

 f (z)  f (z)
=

1

2 πi

1

2 πi
dz dz+  ( the last two integrals cancel each

       other)
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=

−
−

−∫ ∫
1

2

1

2
1 2

 i

f z

z a
z

i

f z

z a
z

C C

( ) ( )
d d 

4.2.4 Cauchy’s Integral Formulas for the Derivatives 

of an Analytic Function

By Cauchy's integral formula, we have

 f a
i

f z

z a
z

C

( )
( )

=
−∫

1

2
d  (1)

Differentiating partially both sides of (1) with respect to ‘a’ and performing the 

differentiation within the integration symbol in the R.H.S., we get

 f a
i

f z

z a
z

C

'( )
( )

=
−( )∫

1

2 2

!


d  (2)

Proceeding further, we get

 

′′ =
−( )∫f a

i

f z

z a
z

C

( )
( )

.
2

2 3

!


d etc

 

f a
n

i

f z

z a
zn

n

C

( )
+=

−( )∫( )
( )!

2 1
d

WORKED EXAMPLE 4(a)

Example 4.1 If f (z) is analytic in a simply connected region R, show that

f z z

z

z

( )d

0

1

∫  is independent of the path joining the points z0 and z1 in R and lying within

R. Verify this by evaluating ( )z z z

C

2 3+∫ d along (i) the circle |z| = 2 from (2, 0) to (0, 2)

in the anticlockwise direction (ii) the straight line from (2, 0) to (0, 2) and (iii) the 

straight lines (2, 0) to (2, 2) and then from (2, 2) to (0, 2).

Let C1 (ADB) and C2 (AEB) be any two curves joining A(z0) and B(z1) in the region 

R. (Fig. 4.6)

Now ADBEA may be regarded as a simple closed curve in R.

∴ By Cauchy's integral theorem,

f z z i e f z z f z z

ADBEA ADB BEA

( ) , . . ( ) ( )d d d= + =∫ ∫ ∫0 0
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E

A

B

D

x

Z1

C1

C2

Z0

Fig. 4.6

i.e. f z z f z z f z z

ADB AEBBEA

( ) ( ) ( )d d d= − =∫ ∫∫

i.e. 
f z z f z z

C C

( ) ( )d d=∫ ∫
1 2

 ( ) ( ) ( ) .

| |

z z z z z z e e e i

C z

i i i2 2

2

2

0

2

3 3 2 3 2 2

1

+ = + = + ∫ ∫ ∫
=

d d d  




( on the circle |z| = 2, z = 2eiθ and the end points are given by θ = 0 and θ = π/2 ) 

 = + ⋅








8

3
12

2

3 2

0

2

i
e

i
i

e

i

i i 


 = − + −
8

3
1 6 13 2( ) ( )e ei i 

 = − − + − + = − −
8

3
1 6 2 0

44

3

8

3
( ) ( . )i i i

The equation of C2, the line joining (2, 0) and (0, 2) is x + y = 2. [Fig. 4.7]

D (0, 2) B (2, 2)

(2, 0)

y

O

A

C1
C3

C3

C2

x

Fig. 4.7

 

( ) [ ( )]( )

( )

z z z x y i xy x iy x i y

C x yC

2 2 2

2

3 2 3

22

+ = − + + + +
+ =
∫∫ d d d

 = − − + − + + − −∫[ ( ) ( ) { ( )}]( )x x i x x x i x x i x2 2

2

0

2 2 2 3 2 d d
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 = − + + + − − +∫[( ) ( )]2 8 2 2 6 102 2

2

0

x x i x x xd

  = − + + + − − +













2

3
4 2

2

3
3 10

3
2 3 2

2

0
x

x x i x x x

 = −
−44

3

8

3
i

 ( ) ( )

( )( )

z z z z z z

BD
y

AB
x

C

2 2

22

3 3

3

+ = + +

==

∫∫∫ d d

 

= + + + + + + +∫∫[( ) ( )] [( ) ( )]2 3 2 2 3 22 2

2

0

0

2

iy iy i y x i x i xd d

 [ on AB, dx = 0 and on BD, dy = 0]

 
=

+
+

+





+

+
+

+





( ) ( ) ( ) ( )2

3

3 2

2

2

3

3 2

2

3 2

0

2
3 2

2

0
iy iy x i x i

 = − −



 − − =− −

8

3
6

8

3
6

44

3

8

3
i i.

The values of the given integral are the same, irrespective of the curve joining the 

two points, since f (z) = z2 + 3z is analytic everywhere.

If the curve is not specified, the integral can be evaluated easily as follows, 

provided the integrand is an analytic function.

f z z z z z
z z

i

i

i

i

( ) ( )

,

d d= + = +




 = − −

+

+

( )
∫ 2

3 2

2

2

2 0

0 2

2 0

0

3
3

3

2

44

3

8

3

,,

.

2( )

∫

Example 4.2 Evaluate ( )x y ix z

i

− +
+

∫ 2

0

1

d  along (i) the line joining z = 0 and z = 1 + i,

(ii) the parabola y = x2 and (iii) the curve x = t, y = 2t – t2.

(i) The line joining the points z = 0 and z = 1 + i, i.e. the points (0, 0) and (1, 1) 

is y = x

 ( )( ) ( )( )x y ix z i y x x ix i x

i

− + + = − + +∫∫
+

2 2

0

1

0

1

1d d d

 
= − +





 = − +( ) ( ).1

3

1

3
1

3

0

1

i
x

i

(ii) When y = x2, dy = 2x dx
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∴ The given integral = − + +∫ ( )( )x x ix x i x x2 2

0

1

2d d

 = − − + −∫[( ) ( )]x x x i x x x2 3 2 3

0

1

2 3 2 d

 

= − −





 + −






 = − +

1

2

1

3

2

4
1

2

4

1

3 2
i

i

(iii) (0, 0) corresponds to t = 0 and (1, 1) corresponds to t = 1.

∴ The given integral

 

= − + + ⋅ + −∫ ( )[ ( ) ]t t t i t t i t t2 2 22 2

0

1

d d

 = − − + − + −∫[( ) ( )]2 2 5 23 2 3 2

0

1

t t t i t t t td

 = − −





 + − + −






 = − +

2

4

1

3

1

2

2

4

5

3
1

1

3

1

6
i i

Note  The values of the integral along three different curves are different, as the 

integrand is not an analytic function of z.

Example 4.3 Evaluate

(i) dz

z
C

−∫ 2
 

and (ii) ( )z zn

C

−∫ 2 d

 

(n ≠ –1), where C is the circle whose centre is 2 and radius 4.

(i) The equation of the circle whose centre is 2 and radius 4 is |z –2| = 4 

∴ z – 2 = 4eiθ  and dz = 4eiθ idθ

To describe C once completely, θ has to vary from 0 to 2π.

∴ 
d dz

z

e i

e
i i

i

i

C
−

= = =∫∫ 2

4

4
2

0

2

0
2








 . [ ]

(ii) ( ) .z z e e in n in i

C

− = ∫∫ 2 4 4

0

2

d d 




 = + +∫4 1 1

0

2
n i ne ( )



d

 =
+









 = ≠ −+

+

4
1

0 11
1

0

2

n
i ne

i n
n

( )

( )
,




since 
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Aliter for (ii)

 (z – 2)n is analytic on and inside C.

 ∴ By Cauchy's integral theorem, z z
n

C

−( ) =∫ 2 0d

Example 4.4  Evaluate 
z

z
z

C

+
∫

2
 d , where (i) C is the semicircle |z| = 2 in the upper 

half of the z-plane, (ii) C is the semicircle |z| = 2 in the lower half of the z-plane and 

(iii) C is the entire circle |z| = 2.

(i) On the semicircle |z| = 2, z = 2eiθ and θ varies from 0 to π in the upper half.

∴ z

z
z

e

e
e i

C

i

i

i+
=

+( )
⋅∫ ∫

2 2 2

2
2

0

d d





 

 = +




 = −( ) +2 2 1 2

0

i
e

i
e i

i
i




 

 = – 4 + 2πi

(ii) On the semicircle in the lower half, θ varies from π to 2π

∴ 
z

z
z i

e

i
i

i

C

+
= +





 = +∫

2
2 4 2

2

d






 

(iii) On the entire circle, θ varies from 0 to 2π

∴ 
z

z
z i

e

i
i

i

C

+
= +









 =∫

2
2 4

0

2

d




 

= The sum of values of the integral along the two 

semi-circles.

Aliter for (iii)

 
z

z
z

+

=
∫

2

2

 is of the form 
f z

z a
z

C

( )
−∫ d , where f (z) is analytic on and inside C

that contains the point a.

Here f (z) = z + 2 is analytic on and inside |z| = 2, contains the point z = 0.

 ∴ By Cauchy's integral formula, we have

 f
i

f z

z
z

C

0
1

2
( ) = ( )

∫ d

∴ z

z
z i i

C

+
= +( ) =∫

2
2 0 2 4d  
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Example 4.5  Evaluate 
ze

z a
z

z

C −( )∫ 3
d , where z = a lies inside the closed curve C,

using Cauchy’s integral formula.

By Cauchy’s integral formula,

 
f z

z a
z

i
f a

C

( )
−( )

= ( )∫ 3

2

2
d



!
"  (1)

where f(z) is analytic on and inside C and the point z = a lies inside C.

Comparing the given integral with the L.H.S. of (1), we find that f (z) = zez.

zez is analytic everywhere and hence analytic on and inside C. Also ‘a’ lies inside 

C.

∴ 
ze

z a
z

i

z
ze

z

C

z

z a−( )
= ( )







∫

=
3

2

2

2

2
d

d

d



!

 = πi {(z + 2)ez}z = a

 = (a + 2)eaπi.

Example 4.6  Evaluate 

tan

,

z

z a
z a

C

2 2 2
2−( )

= − < <( )∫ d where C is the boundary of the 

square whose sides lie along x = ± 2 and y = ± 2 described in the positive sense 

(Fig. 4.8).

x = – 2 x =  2

y =  2

y = – 2

y

x

Fig. 4.8

Let 

tan
z

z a
z

f z

z a
z

C C

2
2 2−( )

≡
( )
−( )∫ ∫d d

f z
z( ) = tan
2

 is analytic on and inside C, since f z
z

' ( ) = 1

2 2

2sec  does not exist at z

= ± π, ± 3π etc. which lie outside C.

Also, since – 2 < a < 2, the point z = a lies inside C.
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Hence Cauchy’s integral formula holds good.

∴  

tan

!
tan

z

z a
z

i

z

z

z a

2 2

1 22−( )
= 
















∫

=( )
d

d

d



 = ⋅





 =

=
2

1

2 2 2

2 2 i
z

i
a

z a

sec sec .

Example 4.7  Use Cauchy's integral formula to evaluate

sin cos z z

z z
z

C

2 2

2 3

+
−( ) −( )∫ d , where C is the circle |z| = 4.

  
1

2 3

1

3

1

2z z z z−( ) −( )
=

−( )
−

−( )

∴ Given integral =
+
−

−
+
−∫ ∫

sin cos sin cos   z z

z
z

z z

z
z

C C

2 2 2 2

3 2
d d

 =
( )
−

−
( )
−∫ ∫

f z

z
z

f z

z
z

C C
3 2

d d say,  (1)

f (z) = sin πz2 + cos πz2 is analytic on and inside C.

The points z = 2 and z = 3 lie inside C (Fig.4.9).

∴ By Cauchy's integral formula, form (1), we get

 
sin cos

sin cos
 

 
z z

z z
z i z z

C
z

2 2
2 2

32 3
2

+
−( ) −( )

= +( )∫ =
d

 – 2πi(sin πz2 + cos πz2)z=2

 = 2πi (sin 9π + cos 9π) – 2πi (sin 4π + cos 4π)

 = – 2πi – 2πi = –4πi.

2O 3

| z | = 4

y

x

Fig. 4.9
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Example 4.8  Evaluate 
7 1

3 42

z

z z
z

C

−
− −∫ d ,  where C is the ellipse x2 + 4y2 = 4,

using Cauchy’s integral formula. The ellipse x y
x y2 2

2

2

2

2
4 4

2 1
1+ = + =or is the 

standard ellipse as shown in the Fig. 4.10.

 
7 1

3 4

7 1

4 12

z

z z
z

z

z z
z

C C

−
− −

=
−

−( ) +( )∫ ∫d d

Of the two points z = 4 and z = –1 the point z = –1 only lies inside C. Re-writing the 

given integral, we have

 
7 1

3 4

7 1

4

1 12

z

z z
z

z

z

z
z

f z

z
z

C CC

−
− −

=

−
−









+( )
≡

( )
+∫ ∫∫d d d  (1)

f z
z

z
( ) = −

−
7 1

4
 is analytic inside C and the point z = –1 lies inside C.

∴ By Cauchy's integral formula, form (1),

7 1

3 4
2 1 2

8

5

16

52

z

z z
z i f i i

C

−
− −

= −( ) = −
−






=∫ d    .

–1 O

y

x

C

Fig. 4.10

Example 4.9 Evaluate 
z z

z zC

d

−( ) −( )∫
1 2

2
, where C is the circle z − =2

1

2
, using 

Cauchy’s integral formula.

z − =2
1

2
 is the circle with centre at z = 2 and radius equal to 1/2. The point z = 2 

lies inside this circle (Fig. 4. 11).
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The given integral can be re-written as

z

z

z

f z

z
z

CC

−








−( )
≡

( )
−( )∫∫

1

2 2
2 2

d say, ,

f z
z

z
( ) =

−1
 is analytic on and inside C and the point z = 2 lies inside C.

∴ By Cauchy's integral formula,

 
z

z z
z

i
f

C −( ) −( )
= ′( )∫

1 2

2

1
2

2
d



!

 =
−













 =

2
1

2

i
z

z

z
z

d

d

 =
−

−( )











= −

=

2
1

1
2

2

2

 i
z

i

z

21

2
1| z – 2 | =  

O

y

x
2

1

Fig. 4.11

Example 4.10  Use Cauchy’s integral formula evaluate 
z

z z
z

C

+
−∫

1

23 2
d , where C

is the circle |z − 2 − i| = 2.

The circle |z − (2 + i)| = 2 is the circle whose centre is the point z = 2 + i and radius 

is 2, as shown in Fig. 4.12. The point z = 2 lies inside this circle.

The given integral can be re-written as

z

z

z
z

f z

z
z

C C

+







−
≡

( )
−∫ ∫

1

2 2

2

d d say, .

f z
z

z
( ) = +1

2
 is analytic on and inside C and the point z = 2 lies inside C.

∴ By Cauchy’s integral formula,

 
z

z z
z i f i

z

z
i

C z

+
−

= ( ) = +





=∫
=

1

2
2 2 2

1 3

23 2 2
2

d    .
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(2 + i)

2

2

O

y

x

Fig. 4.12

Example 4.11  Evaluate 
z

z z
z

C

+
+ +∫

4

2 52
d ,  where C is the circle |z + 1 + i| = 2,

using Cauchy’s integral formula.

|z + 1 + i| = 2 is the circle whose centre is z = −1 −i and radius is 2.

z

z z

z

z i z i

+
+ +

=
+

+ +( ) + −( )
4

2 5

4

1 2 1 22

∴ The integrand is not analytic at z = −1 −2i and z = −1 + 2i.

Of these, the point z = −1 −2i lies inside C. (Fig. 4.13)

Noting this, we rewrite the given integral as

z

z i

z i
z

f z

z i
z

C C

+
+ −









+ +
≡

( )
− − −( )∫ ∫

4

1 2

1 2 1 2
d d say, .

f(z) is analytic on and inside C and the point (−1 − 2i) lies inside C.

∴ By Cauchy’s integral formula.

 
z

z z
z i f i

C

+
+ +

= − −( )∫
4

2 5
2 1 2

2
d 

 =
− − +

− − + −








2
1 2 4

1 2 1 2
i

i

i i

 = − −( )

2
3 2i

(–1 + 2i)

(–1 – 2i)

(–1 – i)

y

O x

2

Fig. 4.13
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Example 4.12   If df a
z z

z a
z

C

( ) = + +
−∫

3 7 12

, where C is the circle |z| = 2, find the 

values of f (3), f ′(1 − i) and f″ (1 − i)

Note   In Cauchy’s integral formula, f (z) was used to denote the numerator of the

integrand and  
f z

z a
z i f a

C

( )
−

= ( )∫ d 2 ,  but in this problem f (a) is used to denote the 

value of the integeral.

 f a
z

z a
z

C

( ) = ( )
−∫


d ,  where φ  (z) = 3z2 + 7z + 1

∴  f
z

z
z

z

z
C

3
3 3

( ) = ( )
−

( )
−∫

 
d and  is analytic on and inside C.

∴ By Cauchy’s integral theorem, f (3) = 0

Now ′ ( ) = ( )
−( )∫f a

z

z a
z

C


2

d

 = ′( )2

1




i
a

!
,  if the point ‘a’ lies inside C

 (by Cauchy’s integral formula)

The point (l − i) lies within the circle C (Fig. 4.14).

∴ ′ −( ) = + +( )



 = −

f i i
z

z z
z i

1 2 3 7 12

1


d

d

 = 2πi [(6(1 − i) + 7] = 2π (6 + 13i)

Also ′′( ) = ( )
−( )

= ′′( )∫f a
z

z a
z

i
a

C

2 2
2

23

 
d .

!

 = + +( )







 =

= −

2 3 7 1 12
2

2

2

1

 i
z

z z i

z i

d

d

EXERCISE 4(a)

Part A

(Short Answer Questions)

1. Define simply and multiply connected regions.

2. State Cauchy’s integral theorem.

z = 1 – i

| z | = 2

z = 3

y

O
x

Fig. 4.14
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3. State Cauchy-Goursat theorem.

4. State Cauchy’s extended integral theorem as applied to a multiply connected 

region.

5. State Cauchy’s integral formula.

6. State Cauchy’s extended integral formula, as applied to a doubly connected 

region.

7. State Cauchy’s integral formula for the nth derivative of an analytic 

function.

8. Evaluate z z

i
2

0

3

d ,

+

∫  along the lines 3y = x.

9. Evaluate ∫ (x2 − iy2) dz along the straight line from (0, 0) to (0, 1) and then 

from (0, 1) to (2, 1).

10. Evaluate z z

C

∫ 2
d , where C is circle |z – 1| = 1.

11. Evaluate 3 2
2

xy iy z

i

i

+( )
−

∫ d  along the line joining the points z = i and z = 2 – i.

12. Evaluate 
1

z
z

C

d ,∫  where C is the semi-circular are |z| = 1 above the real axis.

13. Evaluate x iy z

i
2

0

1

+( )
+

∫ d  along the parabola (i) y = x2 and (ii) x = y2.

14. Evaluate log ,z z

C

d∫  where C is the circle |z| = 2.

15. Evaluate z z

C

d∫  along the curve z = t2 + it from 0 to 4 + 2i.

Part B

16. Evaluate 5 24 3z z z

C

− +( )∫ d  around (a) the circle |z| = 1, (b) the square with 

vertices at (0, 0), (1, 0) (1, 1) and (0,1) (c) the parabola y = x2 from (0, 0) to 

(1, 1) and then the parabola y2 = x from (1, 1) to (0, 0).

17. Evaluate x iy z

C

2 2−( )∫ d  (i) the parabola y = 2x2 from (1, 1) to (2, 8), (ii) the 

straight lines from (1, 1) to (1, 8) and then from (1, 8) to (2, 8), (iii) the 

straight line from (1, 1) to (2, 8).

18. Evaluate z z

C

2
2

1+( )∫ d ,  along the arc of the cycloid x = a (q − sin q), y =  

a (1 − cos q) from the point q = 0 to the point q = 2p.
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(Hint: The end points are z = 0 and z = 2πa. The integrand is an analytic function 

and hence the value of the integral does not depend on the curve joining the end 

points.)

19. Evaluate 
dz

z i
C

− −∫ 2
, where C is the boundary of (i) the square bounded by the 

real and imaginary axes and the lines x = 1 and y = 1, (ii) the rectangle bound-

ed by the real and imaginary axes and the lines x = 3 and y = 2, described in 

the counter clockwise sense.

Evaluate the following integrals using Cauchy’s integral formula.

20. 
sinh 2

4

z

z
z

C

d∫  where C is the boundary of the square whose sides lie along x = 

± 2 and y = ± 2, described in the positive sense.

21. 
sin cos

,
 z z

z z
z

C

2 2

1 2

+
+( ) +( )∫ d  where C is |z| = 3.

22. 
z

z
z

C

2

2

1

1

+
−∫ d ,  where C is the circle of unit radius with centre at (i) z = 1 and

(ii) z = i.

23. 
z

z iz
z

C

3

2

1

3

+
−∫ d , where C is |z| = 1.

24. 
1

2 12i

e

z
z

zt

C
+∫ d , where C is |z| = 3.

25. 
e

z
z

z

C

2

4
1+( )∫ d ,   where C is |z| = 2.

26. 
dz

zC
2

2

4+( )∫ , where C is |z – i| = 2.

27. 
z

z z
z

C

+
+ +∫

4

2 52
d ,  where C is |z + 1–i| = 2.

28. 
z z

z z
z

C

3

2

1

7 6

+ +
− +∫ d , where C is the ellipse 4x2 + 9y2 = 1.

29. If f a
z z

z a
z

C

( ) = + +
−∫

4 52

d , where C is |z| = 2, find the values of f (1), f (i), 

f ′ (−1) and f″ (−i).
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30. If f (z) is analytic on and inside a simple closed curve C and z0 is a point not 

lying on C, show that 
′ ( )
−

=
( )
−( )∫∫

f z

z z
z

f z z

z zCC 0 0

2
d

d
.

4.3 SERIES EXPANSIONS OF FUNCTIONS OF COMPLEX 

VARIABLE-POWER SERIES

4.3.1 Power Series

A series of the form c z a c c z a c z an

n

n

−( ) = + −( ) + −( ) +
=

∞

∑ 0 1 2

2

0

  is called a power

series in powers of (z – a), where z is a complex variable, the constants c0, c1, c2, … 

are called the coefficients and the constant a is called the centre of the series.

Most of the definitions and theorems relating to convergence of infinite series of 

real terms, with which the reader is familiar, hold good for series of complex terms 

also.

It can be proved that there exists a positive number R such that the power series 

given above converges for |z – a| < R and diverges for |z – a| > R, while it may or 

may not converge for |z – a| = R. This means that the power series converges at all 

points inside the circle |z – a| = R, diverges at all points outside the circle and may 

or may not converge on the circle. Due to this interpretation. R is called the radius 

of convergence of the above series and the circle |z – a| = R is called the circle of 

convergence.

Power series play an important role in complex analysis, since they represent 

analytic functions and conversely every analytic function has a power series 

representation, called Taylor series that are similar to Taylor series in real calculus.

Analytic functions can also be represented by another type of series, called 

Laurent’s series, which consist of positive and negative integral powers of the 

independent variable. They are useful for evaluating complex and real integrals, as 

will be seen later.

4.3.2 Taylor’s Series (Taylor’s Theorem)

If f (z) is analytic inside a circle C0 with centre at ‘a’ and radius r0, then at each point 

z inside C0,

 f z f a
f a

z a
f a

z a
f a

z a( ) = ( ) + ′ ( )
−( ) + ′′ ( )

−( ) +
′′′ ( )

−( ) + ∞
1 2 3

2 3

! ! !


Proof

Let C1 be any circle with centre at a and radius r1 < r0, containing the point z 

(Fig. 4.15). Let w be any point on C1. Then, by Cauchy’s integral formula,
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 f z
i

f w

w z
w

C

( ) = ( )
−∫

1

2
1


d  (1)

and f a
n

i

f w

w a
w

n

n

C

( )
+( ) = ( )

−( )∫
!

2 1

1


d  (2)

Now 
1 1

w z w a z a−
=

−( ) − −( )

 =
−( )

−
−
−















−
1

1

1

w a

z a

w a

 
=

−
+

−
−






+

−
−







+ +
−
−
















−
1

1

2 1

w a

z a

w a

z a

w a

z a

w a

n















 

2 1

+
−
−







⋅
−

−
−
















z a

w a z a

w a

n
1

1

∵ 1
1

1
12 1+ + + =

−
−




− −  





n
n

 and so 

 1
1

1

1

2 1+ + + +
−

=
−




− −  



 

n
n

 and so 

i.e.
1 1

2

2

3

1

w z w a

z a

w a

z a

w a

z a

w a

z a

w

n

n−
=

−
+

−

−( )
+

−( )
−( )

+ +
−( )
−( )

+
−

−



−−




 −a w z

n
1

∴
( )
−

=
( )
−( )

+ −( ) ( )
−( )∫ ∫

1

2

1

2

1

2
1 1

2  i

f w

w z
w

i

f w

w a
w z a

i

f w

w a
w

C C

d d d

CC

n

n
C

nz a
i

f w

w a
w R

1

1

1 1

2

∫

∫+ + −( ) ( )
−( )

+−



d ,

where R
i

z a

w a

f w

w z
zn

n

C

=
−
−







( )
−( )∫

1

2
1


. d

i.e. f z f a
f a

z a
f a

z a( ) = ( ) +
′( )

−( ) +
′′( )

−( ) + +
1 2

2

! !
...

 
f a

n
z

n

+ +
( )

−( )

−( )

1

1

! !
...

!
−−( ) + ( ) ( )−

a R
n

n

1
1 2'by and  (3)

Let |z – a| = r and |w – a| = r1.

C1

C0

z

a

Fig. 4.15
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∴ |w – z| = | (w – a) – (z – a)|

 ≥ r1 – r

Let M be the maximum value of |f (w)| on C1

Then R
r M

r r

r

r
w r en

n

n

i≤
−

=( )∫2 10

2

1

1

1





d
∵

i.e. =
−







r M

r r

r

r

n

1

1 1

 

Since 
r

r

r

r
Rn Rn n

n

n

1 1

1 0 0 0<








 = ∴ → → →∞

→∞
, lim .and so as

Taking limits on both sides of (3) as n → ∞, we get

 f z f a
f a

z a
f a

z a( ) = ( ) + ′ ( )
−( ) + ′′ ( )

−( ) + ∞
1 2

2

! !
  (4)

Note  For any point z inside C0, we can always find C1. So the Taylor series 

representation of f (z) is valid for any z inside C0.

The largest circle with centre at ‘a’ such that f (z) is analytic at every point inside 

it is the circle of convergence of the Taylor’s series and its radius is the radius of 

convergence of the Taylor’s series. Clearly the radius of convergence is the distance 

between ‘a’ and the nearest singularity of f (z).

2. Putting a = 0 in the Taylor’s series, we get

 f z f
f

z
f

z( ) = ( ) + ′ ( )
+

′′ ( )
+ ∞0

0

1

0

2

2

! !
  (5)

This series is called the Maclaurin’s series of f (z).

3. The Maclaurin’s series of some elementary functions, which can be derived by 

using (5), are given below:

(i) e
z z z

zz = + + + + < ∞1
1 2 3

2 3

! ! !
..., .when

(ii) sin
! !

..., .z z
z z

z= − + < ∞
3 5

3 5
when

(iii) cos
! !

..., .z
z z

z= − + < ∞1
2 4

2 4

when

(iv) sinh
! !

... , .z z
z z

z= + + + < ∞
3 5

3 5
when

(v) cosh
! !

..., .z
z z

z= + + < ∞1
2 4

2 4

when  
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(vi) (1 – z)–1 = 1+ z + z2 + z3 +…, when |z| < 1

(vii) (1 – z)–2 = 1+ 2z + 3z2 + 4z3 +…, when |z| < 1.

4.3.3 Laurent’s Series (Laurent’s Theorem)

If C1 and C2 are two concentric circles with centre at ‘a’ and radii r1 and r2 (r1>r2) 

and if f(z) is analytic on C1 and C2 and throughout the annular region R between 

them, then at each point z in R,

  
f z a z a b z an

n

n

n

nn

( ) = −( ) + −( )−
=

∞

=

∞

∑∑ ,
10

where a
i

f w

w a
w nn n

C

=
( )

−( )
=+∫

1

2
0 1 2

1

1


d , , , ,...

and b
i

f w

w a
dw nn n

C

=
( )

−( )
=− +∫

1

2
1 2

1

2


, , ,...

Proof

By Extension of Cauchy’s integral formula to a doubly connected region,

 f z
i

f w

w z
w

i

f w

w z
w

CC

( ) = ( )
−( )

−
( )
−

[ ]∫∫
1

2

1

2
4 16

21
 

d d Fig. .
 (1)

 = I1+I2, say

In I
w z w a z a

1

1 1
,

−
=

−( ) − −( )

 =
−

−
−
−















−
1

1

1

w a

z a

w a

 
=

−
+

−

−( )
+

−( )
−( )

1
2

2

3w a

z a

w a

z a

w a

+ +
−( )
−( )

+
−( )
−( ) −

( )
−


z a

w a

z a

w a w z

n

n

n

n

1
1

2

since |z – a| < |w –a| when w is on C1

In I2, −
−

=
−( ) − −( )

1 1

w z z a w a

 =
−( )

−
−
−

















−
1

1

1

z a

w a

z a

C1

C2

z

a

Fig. 4.16
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 =
−

+
−

−( )
+ +

−( )
−( )

+
−( )

−( ) −( )

−
1

2

1

z a

w a

z a

w a

z a

w a

z a z w

n

n

n

n
 ,  (3)

since |w – a| < |z – a|, when w is on C2.

Using the expansion (2) in I1, we have

I
i

f w

w a
w

z a

i

f w

w a
w

CC

1 2

1

2 2
11

=
( )
−

+
− ( )

−( )
+ +∫∫ 

d d 

z a

i

f w

w a
w R

n

n n

C

−( ) ( )
−( )

+
−

∫
1

2
1


d

 
= + −( ) + + −( ) +−

−
a a z a a z a Rn

n

n0 1 1

1
 ,

where R
z a

i

f w w

w a w z
n

n

n
C

=
−( ) ( )

−( ) −( )∫2
1



d
  (4)

Using the expansion (3) in I2, we have

 
I

i

f w

z a
w

i

w a

z a
f w w

CC

2 2

1

2

1

2
22

=
( )
−

+
−( )
−( )

( ) +∫∫ 
d d 

 +
−( ) ( )

−( )
+

−

∫
1

2

1

2
i

w a f w

z a
w S

n

n n

C

d .

 
= −( ) + −( ) + + −( ) +− − −

b z a b z a b z a Sn

n

n1

1

2

2


where 
S

i z a

w a f w

z w
wn n

n

C

=
−( )

−( ) ( )
−∫

1

2
2


d  (5)

If |z – a| = r, then r2 < r < r1.

R nn → →∞0as , as in Taylor’s theorem.

Let M be the maximum value of |f(w)| on C2.

Then | | ,S
r

r n

r r
r C w r en n

n
i≤

−
=( )∫

1

2

2

2
2 2 2

0

2


 



d on∵

i.e = M r

r r

r

r

n

2

2

2

−






∴ | | , .S S n r rn n→ → →∞ <0 0 2andso as since

Using (4) and (5) in (1) and taking limits as n → ∞, we have f z a z a bn

n

n

( ) = −( ) + −
=

∞

∑ ∑
0 1

b z an

n

n

−( ) ⋅−

=

∞

∑
1
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Note 

1. If f (z) is analytic inside C2, then the Laurent’s series reduces to the Taylor 

series of f (z) with centre a, since in this case all the coefficients of negative 

powers in Laurent’s are zero.

2. As the Taylor’s and Laurent’s expansions in the given regions are unique, 

they are not usually found by the theorems given above, but by other simpler 

methods such as use of binomial series.

3. The part a z an

n

n

−( )
=

∞

∑
0

, consisting of positive integral powers of (z – a), is

called the analytic part of the Laurent’s series, while b z an

n

n

−( )−
=

∞

∑
1

,

consisting of negative integral powers of (z – a) is called the principal part of 

the Laurent’s series.

4.4 CLASSIFICATION OF SINGULARITIES

We have stated, in Chapter 3, that a point at which f (z) is not analytic is called 

a singular point or singularity of f (z). We now consider various types of  

singularities. 

1. Isolated Singularity

The point z = a is called an isolated singularity of f (z), if there is no other singularity 

in its neighbourhood. In other words, z = a is called an isolated singularity of f (z), if 

we can find a δ > 0 such that the circle |z – a| = δ encloses no singularity other than 

a. If we cannot find any such δ, then ‘a’ is called a non-isolated singularity.

[If ‘a’ is not a singularity and we can find δ > 0 such that |z – a| = δ encloses no 

singularity, then ‘a’ is called a regular point or ordinary point of f (z).]

Note 

1. If a function has only a finite number of singularities in a region, those 

singlarities are necessarily isolated.

For example, z = 1 is an isolated singularity of f z
z

( ) =
−( )
1

1
2

 and z = 0 and 

± i are isolated singularities of f z
z

z z
( ) = +

+( )
1

13 2
 .

2. If ‘a’ is an isolated singularity of f (z), then f (z) can be expanded in Laurent’s 

series valid throughout some neighbouhood of z = a (except at z = a itself), i.e., valid 

in 0 < |z – a| < r1. Here r2 is chosen arbitrarily small.

2. Pole

If z = a is an isolated singularity of f (z) such that the principal part of the Laurent’s 

expansion of f (z) at z = a valid in 0 < |z – a| < r1 has only a finite number of terms, 

then z = a is called a pole. 
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i.e. if in f z a z a b z an

n

n

n

nn

( ) = −( ) + −( )−
=

∞

=

∞

∑∑
10

,

bm ≠ 0, bm+1=0 = bm+2...., then z = a is called a pole of order m.

A pole of order 1 is called a simple pole.

For example, z = 0 is a simple pole of f z
z z

( ) =
−( )
1

1
2

, as the Laurent’s expansion.

of f (z) valid in 0 < |z| < 1 is given by f z
z

z( ) = −( )−1
1

2

i.e. f z
z

z z( ) = + + + ∞( )1
1 2 3 2



 = + + + ∞( ) +2 3 4
12z z
z



It has only one term i.e. 1/z in the principal part.

Similarly, z =1 is a pole of order 2 of f (z), as the Laurent’s expansion of f (z), valid 

in 0 < |z – 1| < 1, is given by

 f z
z

z( ) =
−( )

+ −( ){ }−1

1
1 1

2

1

 =
−( )

− −( ) + −( ) − −( ) +{ }1

1
1 1 1 1

2

2 3

z
z z z 

 
= − −( ) + −( ) − ∞{ }+ −

−
+

−( )











1 1 1

1

1

1

1

2

2
z z

z z


Here b2 ≠ 0 and b3 = b4= ...= 0.

3. Essential Singularity

If z = a is an isolated singularity of f (z) such that principal part of the Laurent’s 

expansion of f (z) at z = a, valid in 0 < |z – a| < r1, has an infinite number of terms, 

then z= a is called an essential singularity.

For example, z = 1 is an essential singularity of f(z) = e1/(z – 1), as the Laurent’s

expansion is given by f z
z z z

( ) = +
−

+
−( )

+
−( )

+ ∞1
1

1

1

1

1

2

1

1

1

3 1
2 3! ! !

.

4. Removable Singularity

If a single-valued function f (z) is not defined at z = a, but lim
z a

f z
→

( )





 exists, then z

= a is called a removable singularity. For example, z=0 is a removable singularity of 
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f z
z

z
( ) = sin

, as f (0) is not defined, but lim
sin

z

z

z→






=

0
1. The Laurent’s expansion of

f (z) is given by

 
sin

! !

z

z z
z

z z
= − + − ∞







1

3 5

3 5



 = − + − ∞1
3 5

2 4z z

! !


Note 

1. If f (z) has a pole of order m at z = a, then its Laurent’s expansion is

f z a z a
b

z a

b

z a

b

z a
n

n m

m
n

( ) = −( ) +
−

+
−( )

+ +
−( )=

∞

∑. ,1 2

2
0



where bm ≠ 0.

 =
−( )

−( ) + + −( ) + +





+
−

=

∞

∑1
1 1

0z a
a z a b b z a b

m n

n m

m m

n



+ −( ) 


−
b z a

m

1

1

 =
−( )

( )1

z a
z

m
 ,say.

Clearly, φ  (z) is analytic everywhere that includes z = a and φ (a) = bm ≠ 0.

Thus for a function of the form
 z

z a
z a

m

( )
−( )

=,   is a pole of order m, provided that

φ  (z) is analytic everywhere and φ (a) ≠ 0.

2. A function f (z) which is analytic everywhere in the finite z-plane is called 

an entire function or integral function. An entire function can be represented by a 

Taylor’s series whose radius of convergence is ∞ and conversely a power series 

whose radius of convergence is ∞ represents an entire function. The functions ez, sin 

z, cosh z are examples of entire functions.

3. A function f (z) which is analytic everywhere in the finite plane except at a 

finite number of poles is called a meromorphic function.

For example, f z
z z

( ) =
−( )
1

1
2

 is a mermorphic function, as it has only two poles 

—a simple pole at z = 0 and a double pole at z =1.

4.4.1 Residues and Evaluation of Residues

If ‘a’ is an isolated singularity of any type for the function f (z), then the coefficient

of
1

z a−
(viz. b1) in the Laurent’s expansion of f (z) at z = a valid in 0 < |z – a| < r1 is

called the residue of f (z) at z = a.
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Fig. 4.17

C1

C

C2

r2

z

a

We know, from Laurent’s theorem, that b
i

C

1

1

2
2

= ∫ 
 f (w)dw, where C2 is any 

circle |z – a| = r2< r1, described in the anticlockwise sense. [Fig. 4.17]

Now if C is any closed curve around ‘a’ such that f (z) is analytic on and inside  

C except at ‘a’ itself, then by Extension of Cauchy’s integral theorem,

 f w w f w w

CC

( ) = ( )∫∫ d d .
2

Hence the residue of f (z) at z = a is also given by [Res. f (z)]z=a = ( )∫
1

2i
f z z

C

d ,

where C is any closed curve around ‘a’ such that f (z) is analytic on and inside it 

except at z = a itself.

4.4.2 Formulas for the Evaluation of Residues

1. If z = a is a simple pole of f (z), then

 Res. lim .f z z a f z
z a z a

( )  = −( ) ( ){ }= →

Since z = a is a simple pole of f (z), then the Laurent’s expansion of f (z) is of the 

following form:

 f z a z a
b

z a
n

n

n

( ) = −( ) +
−=

∞

∑ 1

0

∴ z a f z a z a bn

n

n

−( ) ( ) = −( ) ++

=

∞

∑ 1

1

0

∴ lim .
z a z a

z a f z b f z
→ =

−( ) ( ){ } = = ( ) 1 Res .
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2. If z = a is a simple pole of f z
P z

Q z
( ) = ( )

( )  then [Ref.f (z)]z=a

 =
( )
′ ( )






→
lim
z a

P z

Q z
..

By the previous formula,

 [ . ] limRes f z
z a P z

Q z
z a

z a
( ) =

−( ) ( )
( )












→=

→

0

0
 form

 =
−( ) ′ ( ) + ( )

′ ( )










→
lim
z a

z a P z P z

Q z
, by L’Hospital’s rule

 = 
P a

Q a

P z

Q zz a

( )
′ ( )

( )
′ ( )






→
or lim

3. If z = a is a pole of order m of f (z), then

 Res.
!
limf z

m z
z a f z

z a z a

m

m

m( )  =
−( )

−( ) ( ){ }







= →

−

−
1

1

1

1

d

d

Since z = a is a pole of order m of f (z), then the Laurent’s expansion of f (z) 

is of the following form:

f z a z a
b

z a

b

z a

b

z a

b

z a
n

n m

m

m

m
n

( ) = −( ) +
−

+
−( )

+ +
−( )

+
−( )

−
−

=

∞

∑ 1 2

2

1

1
0



∴ −( ) ( ) = −( ) + −( ) + −( ) + ++ − −

=

∞

∑z a f z a z a b z a b z a
m

n

n m m m

n

1

1

2

2

0



b z a bm m− −( ) +1 .

∴ −( ) ( ){ }







 = −( )

→

−

−lim !
z a

m

m

m

z
z a f z m b

d

d

1

1 11

∴ = ( )  =
−( )

−( ) ( ){ }
= →

−b f z
m

D z a f z
z a z a

m m

1
11

1
Res.

!
, lim

where D
z

≡
d

d
.

Note  The residue at an essential singularity of f (z) is found out using the 

Laurent’s expansion of f (z) directly.



Mathematics II4.32

4.4.3 Cauchy’s Residue Theorem

If f (z) is analytic on and inside a simple closed curve C, except for a finite number of 

singularities a1, a2,…, an lying inside C and if R1, R2,…, Rn are the residues of f (z) at 

these singularities respectively, then

 
f z z i R R Rn

C

( ) = + + +( )∫ d 2 1 2  .

Proof

We enclose the singularities ai by simple closed curves Ci, which are not overlap-

ping.

f (z) is analytic in the multiply connected region bounded by the outer curve C and 

the inner curves C1, C2,… Cn. (Fig. 4.18)

∴ By Extension of Cauchy’s Integral theorem, we have

 f z z f z z f z z f z z

CCCC n

( ) = ( ) + ( ) + ( )∫∫∫∫ d d d d
21

 = + + +( )2 1 2i R R Rn , by the property of residue at a point.

C’2

Cn

an

C’1

C

a1

a2

Fig. 4.18

Note  Cauchy’s integral formulas for f (a) and f(n) (a) can be deduced from 

Cauchy’s residue theorem.

Consider, 
f z

z a
z

C

( )
−∫ d , where f (z) is analytic on and inside C enclosing the point ‘a’.

Now
f z

z a

( )
−

 has a simple pole at z = a with residue = −( ) ( )
−( )












= ( )

→
lim .
z a

z a
f z

z a
f a  

∴ By Cauchy’s residue theorem, f z

z a
z if a

C

( )
−( )

= ( )∫ d 2 .

 
f z

z a
n

( )
−( ) +1

 has a ploe of order (n + 1) at z = a
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with residue = −( ) ( )
−( )











→

+
+

1 1

1n
D z a

f z

z az a

n n

n!
lim

 = ( )( )1

n
f a

n

!

∴ f z

z a
z i

f a

nn

n

C

( )
−( )

=
( )

+

( )

∫ 1
2d 

!

or f a
n

i

f z

z a
zn

n
C

( ) = ( )
−( ) +∫

!
.

2 1
 d

WORKED EXAMPLE 4(b)

Example 4.1 Expand each of the following functions in Taylor’s series about the 

indicated point and also determine the region of convergence in each case:

(i) e2z about z = 2i; (ii) cos z about z = –π/2;

(iii) 
z

z z

+
−( ) −( )

3

1 4
 at z = 2; (iv) log 

1

1

+
−







z

z
 at z = 0.

 (i) e2z = e2(z –2i) + 4i = e4i. e2(z – 2i)

Let f (z) = e2(z – 2i). Then f (n) (z) = 2n e2(z – 2i)

∴ f (n) (2i) = 2n; n = 1, 2,…∞.

Also f (2i) = 1.

Taylor's series of f (z) at z = 2i is given by

f z f i
f i

z i
f i

z i( ) = ( ) + ′ ( )
−( ) + ′′ ( )

−( ) +2
2

1
2

2

2
2

2

! !


∴ e e
z i z i z iz i2 4

2 2 3 3

1
2 2

1

2 2

2

2 2

3
= +

−( )
+

−( )
+

−( )
+











! ! !



The series converges in a circle whose centre is 2i and radius is the distance between 

2i and the nearest singularity of f (z) which is ∞.

∴The region of convergence of the Taylor’s series in this case is |z – 2i| < ∞.
(ii) Let f z z f z z f z z( ) = ′ ( ) = − ′′ ( ) = −cos ; sin ; cos ;

 ′′′ ( ) = ( ) =f z z f z zsin ; cos ,iv
 etc.

∴ f f f−( ) = ′ −( ) = ′′ −( ) =  / ; / ; / ;2 0 2 1 2 0

 ′′′ −( ) = − −( ) =f f / ; / ,2 1 2 0iv etc.

Taylor’s series of f (z) at z = − π/2 is given by

f z f
f

z
f

z( ) = −( ) + −( )
+( ) + ′′ −( )

+( ) +





/
' /

!
/

/

!
/2

2

1
2

2

2
2

2
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∴ cos
/

!

/

!

/

!

/

!
z

z z z z
=

+( )
−

+( )
+

+( )
−

+( )
+

   2

1

2

2

2

5

2

7

3 5 7



The region of convergence is |z + π/2| < ∞.

(iii) f z
z

z z
( ) = +

−( ) −( )
3

1 4

The Taylor’s series of f (z) at z = 2 is a series of powers of (z – 2).

Putting z – 2 = u or z = u + 2, we have

 f z
u

u u u u
( ) = +

+( ) −( )
=
−
+

+
−

5

1 2

4 3

1

7 3

2

/ /
,

on resolving into partial fractions

 
= − +( ) − −( )− −4

3
1

7

6
1 2

1 1
u u /

 
= − − + − +{ }− + + +













4

3
1

7

6
1

2 2

2 3
2

2
u u u

u u
 

 = − −( ) −
=

∞

=

∞

∑∑4

3
1

7

6 200

n n
n

n
nn

u
u

 = −( ) −







−( )+

=

∞

∑ 4

3
1

7

6

1

2
2

1

0

n

n

n

n

z.

The Taylor’s series expansion was obtained using binomial series, which are 

convergent in |u| < 1 and |u/2| < 1, i.e., in |u| < 1.

∴ The region of convergence of the Taylor’s series of f (z) is |z – 2| < 1.

Note  The singularities of f (z) are at z = 1 and z = 4 which lie outside the region 

of convergence.

(iv) log 
1

1

+
−







z

z
= log (1 + z) – log (1 – z)

Log (1 ± z) are many valued functions. We consider only those branches (values) 

which take the value zero when z = 0.

Now consider f (z) = log (1 + z)

 ′ ( ) = +( ) ′′ ( ) = − +( ) ′′′ ( ) = −( ) −( ) +( )− − −
f z z f z z f z z1 1 1 2 1

1 2 3
; ; etc.

∴ f f f f0 0 0 1 0 1 0 2( ) = ′( ) = ′′( ) = − ′′′( ) =; ; ; !, etc.

Taylor’s series of f (z) at z = 0 [or Maclaurin’s series of f (z)] is

 f z f
f

z
f

z( ) = ( ) + ′ ( )
+

′′ ( )
+0

0

1

0

2

2

! !


∴ log 1
2 3 4

2 3 4

+( ) = − + − +z z
z z z

  (1)
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The only singularity of log (1 + z) is – 1 and its distance from the origin, i.e. the 

radius of convergence of series (1) is 1.

∴ The region of convergence of series (1) is given by |z| < 1.

Changing z into – z in (1), the Taylor series of log (1 – z) at z = 0 is given by 

 log (1 – z) = – z – z2/2 – z3/3 – z4/4 – …

The region of convergence being |z| < 1

Using (1) and (2), we get

 log 
1

1
2

3 5

3 5+
−






= + + +







z

z
z

z z
 , which converges for |z| < 1.

Example 4.2 Expand each of the following functions in Laurent’s series about  

z = 0. Identify the type of singularity also.

(i) ze z− 2

 (ii) (1 – cosz)/z (iii) z–1 e–2z  (iv) 
1
3

2

z
ez

 

(v) (z – 1) sin 1

z

(i) ze z
z z zz− = − + − +













2

1
1 2 3

2 4 6

! ! !


 = − + − +z
z z z3 5 7

1 2 3! ! !
  (1)

The Laurent’s series (1) does not contain negative powers of z and the circle of 

convergence |z| = ∞ does not include any singularity ∴ z = 0 is an ordinary point 

of ze z− 2

(ii) 
1 1

1 1
2 4 6

2 4 6−
= − − + − +

























cos

! ! !
.

z

z z

z z z


 = − + −
z z z

2 4 6

3 5

! ! !
  (2)

Though z = 0 appears to be a singularity of 
1− cos z

z
, the Laurent’s series of 1− cos z

z

at z = 0 does not contain negative powers of z.

∴ z = 0 is a removable singularity of 
1− cos z

z
.

Note  The value of 
1−





cos z

z
 at z = 0 is not defined; but lim

cos
.

z

z

z→

−




=

0

1
0

(iii) z e
z

z z zz− − = − + − +











1 2

2 2 3 31
1

2

1

2

2

2

3! ! !


 = − + − +
1

2
2

2

2

3

2 3 2

z

z z

! !
  (3)
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The principal part in the Laurent’s series (3) contains the only term 
1

z
.

∴ z = 0 is a simple pole of z–1 e–2z.

(iv) 
1 1

1
1 2 33 3

2 4 6
2

z
e

z

z z zz = + + + +










! ! !


 = + + + +
1 1

2 33

3

z z

z z

! !
  (4)

The last non-vanishing term with negative powers of z in the principal part of (4)  

is 1
3z

.

∴ z = 0 is pole of order 3 for the given function.

(v) z
z

z
z z z

−( ) 




= −( ) − + −





1
1

1
1 1

3

1 1

5

1
3 5

sin
! !



 = − − + + −1
1 1

3

1 1

3

1 1

5

1
2 3 4z z z z! ! !

 (5)

The principal part consists of an infinite number of terms in the Laurent’s series (5).

∴ z = 0 is an essential singularity.

Example 4.3 Find the Laurent’s series of f z
z z

( ) =
−( )
1

1
valid in the region (i) 

|z + 1| < 1, (ii) 1 < |z + 1| < 2 and (iii) |z + 1| > 2.

f z
z z

( ) =
−( )
1

1
; Since Laurent’s series in powers of (z + 1) are required, 

put z + 1 = u or z = u – 1.

∴ f z
u u u u

( ) =
−( ) −( )

=
−

+
−

1

1 2

1

1

1

2
  (1)

(i) Since the region of convergence of required Laurent’s series is |u| < 1, the two 

terms in the R.H.S. of (1) should be rewritten as standard binomials whose 

first term is 1 and the numerator of the second term is u. Accordingly.

 f z
u u

u
u( ) = −

−
+

−





= − −( ) + −





−
−

1

1

1

2 1
2

1
1

2
1

2

1

 = − +
=

∞

=

∞

∑∑ u
un

n

n
nn

1

2 200

 = − +





+( )+
=

∞

∑ 1
1

2
1

1
0

n

n

n

z  (2)

The Laurent’s expansion (2) is valid, if |u| < 1 and |u| < 2, i.e. |z + 1| < 1.



Complex Integration 4.37

(ii) Since the region of convergence of the required Laurent’s series is given by 

|u| >1 and |u| < 2, the first term in the R.H.S. (1) should be re-written as 

a standard binomial in such a way that u occurs in the denominator of the 

second member and  the second term as a standard binomial in such a way 

that u occurs in the numerator of the second member.

Accordingly,

 f z

u
u

u
( ) =

−





+
−





1

1
1

1

2 1
2

 = −( ) + −





−
−

1
1 1

1

2
1

2

1
1

u
u

u
/

 
= +

=

∞

=

∞

∑∑1 1 1

2 200u u

u
n

n

n
nn

 =
+( )

+ +( )
+ +

=

∞

=

∞

∑∑ 1

1

1

2
1

1 1
00 z

z
n n

n

nn

 (3)

 The Laurent’s expansion (3) is valid, if

 

1
1

2
1 1 2

u

u
u u< < > <and i.e and., ,

i.e. 1< |z + 1| < 2.

(iii) Since the region of convergence of the required Laurent’s series is |u| > 2, 

both the terms in the R.H.S. of (1) should be rewritten as standard binomials 

in which u occurs in the denominator of the second member. Accordingly, 

 f z

u
u

u
u

( ) =
−





−
−





1

1
1

1

1
2

 

= −





− −





− −
1

1
1 1

1
2

1 1

u u u u
 

= −
=

∞

=

∞

∑∑1 1 1 2

00u u u un

n

n
nn

 = −
+( ) +

=

∞

∑ ( )1 2
1

1
1

0

n

n
n z

 (4)

The Laurent’s expansion (4) is valid, if

1
1

2
1 1 2 1 2

u u
u u z< < > > + >and i.e and i.e, ., ., .
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Example 4.4 Find all possible Laurent’s expansions of the function f z( ) =
4 3

1 2

−
−( ) −( )

z

z z z
 about z =0. Indicate the region of convergence in each case. Find

also the residue of f (z) at z = 0, using the appropriate Laurent’s series.

f z
z

z z z z z z
( ) = −

−( ) −( )
= +

−
+

−
4 3

1 2

2 1

1

1

2
,

on resolving into partial fractions. Various Laurent’s series about z = 0 will be series

of ascending and descending powers of z. They can be obtained by keeping 
2

z

unaltered and rewriting the other two terms as standard binomials in three different 

ways and expanding in powers of z. 

Case (i)

 f z
z

z
z( ) = + −( ) + −








−
−

2
1

1

2
1

2

1
1

 
= + +

=

∞

=

∞

∑∑2 1

2 200z
z

zn
n

n
nn

   (1) 

 = + +



 < < <+

=

∞

∑2
1

1

2
1 2 1

1
0z

z z z z
n

n

n

if and i.e, . .

But |z| < 1 includes z = 0, which is a singularity of f (z). Laurent’s series expansion 

is valid in an annular region which does not contain any singularity of the function 

expanded.

Hence the region of convergence of the Laurent’s series, in this case, is 0 < |z| <1.

Case (ii) 

f z
z z

z z( ) = − −( ) + −( )− −2 1
1 1

1

2
1 2

1 1
/ /

 = − +
=

∞

=

∞

∑∑2 1 1 1

2 200z z z

z
n

n

n
nn

 = − ++ +
=

∞

=

∞

∑∑2 1

21 1
00z z

z
n

n

n
nn

 (2)

if and i.e and
1

1
2

1 1 2
z

z
z z< < > <, .

i.e.1< |z| < 2, which represents the region of convergence of series (2).
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Case (iii)

 f z
z z z z z

( ) = − −





− −





− −
2 1

1
1 1

1
2

1 1

 = − −+ +
=

∞

=

∞

∑∑2 1 2
1 1

00z z zn

n

n
nn

 = − −( )
+

=

∞

∑2
1 2

1
1

0z z

n

n
n

 (3)

if and i.e and
1

1
2

1 1 2
z z

z z< < > >, .

i.e. |z| > 2 or 2 < |z| < ∞, which represents the region of convergence of series (3).

Since z = 0 is an isolated singularity of f (z), the residue at z = 0 is the coefficient 

of 
1

z
in the Laurent’s expansion of f (z),valid in the region 0 < |z| < 1, i.e. in the series

(1) above.

Thus [Res. f (z)]z = 0 = 2.

Example 4.5 Find the residues of f z
z

z z
( ) =

−( ) +( )

2

2
1 2

 at its isolated singularities

using Laurent’s series expansions. 

f z
z

z z z z z
( ) =

−( ) +( )
=

−
+

+
−

+( )

2

2 2
1 2

1 9

1

8 9

2

4 3

2

/ / / , on resolving into partial fractions.

Both z = 1 and z = – 2 are isolated singularities of f (z).

To find the residue of f (z) at z = 1, we have to expand f (z) in series of powers of

(z – 1), valid in 0 < |z – 1| < r and find the coefficient of 
1

1z −
in it.

Thus f z
z z z

( ) =
−

+
+ −( ) − + −( )

1 9

1

8 9

3 1

4 3

3 1 2

/ / /

{ }

 =
−

+ +
−








− +
−








− −
1 9

1

8

27
1

1

3

4

27
1

1

3

1 2
/

z

z z

 =
−

+ −( ) −( )
− −( ) +( ) −( )

=

∞

=

∞

∑∑1 9

1

8

27
1

1

3

4

27
1 1

1

300

/

z

z
n

zn
n

n

n
n

n
nn

 (1)

The expansion (1) is valid in the region z
z

−
< < − <

1

3
1 0 1 3, . .i.e

[Residue of f (z) at z =1] = coefficient of 1

1z −( )
 in (1)

 =
1

9
.
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To find the residue of f (z) at z = –2, we have to expand f (z) in series of powers 

of (z + 2), valid in 0 < |z + 2|< r and find the coefficient of 1

2z +
in it.

Thus f z
z z z

( )
/ / /

=
+( ) −

+
+

−
+( )

1 9

2 3

8 9

2

4 3

2
2

 
= − −

+







+
+

−
+( )

−
1

27
1

2

3

8 9

2

4 3

2

1

2

z

z z

/ /

 = −
+( )

+
+

−
+( )=

∞

∑1

27

2

3

8 9

2

4 3

2
2

0

z

z z

n

n
n

/ /  (2)

The expansion (2) is valid in the region

   
z

z
+

< < + <
2

3
1 0 2 3, . .i.e

[Residue of f (z) at z = –2] = Coefficient of 
1

2z +
 in (2)

 =
8

9
.

Example 4.6 Find the singularities of f z
z

z z z
( ) = +

+ +

2

3 2

4

2 2
 and the corresponding

residues.

The singularities of f (z) are given by 

 z z z3 22 2 0+ + = ,

i.e z z z z i2 2 2 0 0 1+ +( ) = = − ±. , ,i.e

For these values of z, the numerator (z2 + 4) does not vanish. Also it is analytic 

everywhere.

∴ = − ± ( )z i f z0 1, .aresimple poles of

Res. .f z z f z
z

z z
z z

( )[ ] = ⋅ ( )  =
+

+ +





 == =0 0

2

2

4

2 2
2

Res. f z z i f z
z

z z iz i z i

z

( )[ ] = + −( ) ( )[ ] =
+
+ +( )









=− + =− +
=−

1 1

2

1
4

1
11+i

 =
−

− −
= − +( )2

1

1

2
1 3

i

i
i  

Since z = –1– i is the conjugate of z = –1+ i,

Res. .f z i
z i

( )  =
−

+( )=− −1

1

2
1 3  

Example 4.7 Identify the singularities of f z
z

z z
( ) =

−( ) +( )
2

2 22 9
and also find the

residue at each singularity. The singularities of f (z) are given by
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z z z i−( ) +( ) = = ±2 9 0 2 3
2 2 , . , .i.e

Of these z = 2 is a double pole and z = ± i3 are simple poles. 

 Res
d

d
.

!
f z

z
z f z

z
( )  = −( ) ( )



=2

21

1
2

 
=

+















 =

+( )








 =

= =

d

dz

z

z

z

zz
z

2

2
2

2
2

2
9

18

9

36

169

 Res. f z z i f z
z

z z i
z i z i

( )  = −( ) ( )  =
−( ) +( )











= =3 3

2

2
3

2 3
zz i= 3

 
=

−

−( )
= −

+( )
9

6 3 2

3

2 5 122
i i

i

i

 = − +( )3

338
12 5i

 Res conjugateof. f z i
z i

( )  = − +( )= 3

3

338
12 5

 =
−

−( )3

338
12 5i

Example 4.8 Find the singularities of f z
z

z a
( ) =

+

2

4 4
 and also find the residue at

each singularity. The singularities of f (z) are given by z4 + a4 = 0, i.e., z4 = (−1) a4 = 

e i(2r + 1)π. a4 

i.e. z = ei(2r + 1)π/4 a, where r = 0, 1, 2, 3.

∴ The singularities are z a e a e a e a ei i i= ⋅ ⋅ ⋅ ⋅   / / /, ,4 3 4 7 4, and5 i/4
 all of which are 

simple poles.

 Res as is of th. lim ,/
/

f z
P z

Q z
f z

z a ei

z ei
( )[ ] =

( )
′ ( )









( )
= ⋅

→



4

4
ee form

P z

Q z

( )
( )

.

 
= 



 = = −( )

=

−1

4

1

4

1

4 2
1

4

4

z a
e

a
i

z aei

i





/

/

 Re . /
/s f z

a
e

a
i

z aei
i( )[ ] = = − +( )

=
−

3 4
3 41

4

1

4 2
1



 Re . /
/s f z

a
e

a
i

z aei
i( )[ ] = = − +( )=

−
5 4

5 41

4

1

4 2
1



 Re . /
/s f z

a
e

a
i

z aei
i( )[ ] = = +( )=

−
7 4

7 41

4

1

4 2
1
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Example 4.9 Evaluate the following integrals, using Cauchy’s residue theorem.

(i)  
cos sin

( )
, | | .

 z z

z z
z C z

C

2 2

1 2
3

+
+( ) +

=∫ d where is

(ii) 
e z

z

C z
zd

where is
2 2

2
4

+( )
=∫


, .

(iii) d
where is

z

z z
C z

C
sin

, =∫ 1

(i) cos sin
,

 z z

z z
z f z z

C C

2 2

1 2

+
+( ) +( ) = ( )∫ ∫d d say.

The singularities of f (z) are z = –1 and z = −2, which are simple poles lying within  

the circle |z| = 3. 

 
Re .

cos sin
s f z

z z

zz
z

( )  =
+
+









= −=−
=−

1

2 2

12
1

 

 Re .
cos sin

s f z
z z

zz
z

( )  =
+
+









= −=−
=−

2

2 2

21
1

 

By Cauchy’s residue theorem, 

 f z z i

C

( ) = ×∫  d 2 sum of the residues

 = − 4πi.

(ii) Let f z z
e z

z

e z

z i z i

z z

CCC

( ) =
+( )

=
−( ) +( )∫∫∫ d

d d

2 2
2 2 2

  

The singularities of f (z) are z = iπ and − iπ each of which is a double pole  

of f (z) and lies within the circle |z| = 4.

 Res
d

d
.

!
f z R

z
z i f z

z i
z i

( )  = = −( ) ( )



=

=




1

21

1

 =
+( )























 =

d

dz

e

z i

z

z i
 

2

 =
+( ) − +( )

+( )











 =

z i e e z i

z i

z z

z i

 

 

2

4

2

 =
−( )

=
−( ) −( )

−
= +( )e i

i

i

i
i

i 





 


2 2

8

1 1

4

1

43 3 3 3
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 Res. f z R i
z i

( )[ ] = = −( )
=−  

2 3

1

4

By Cauchy’s residue theorem, 

 
f z z i R R

C

( ) = +( )∫ d 2 1 2

 = × =
2

4
2

3








i i

(iii) Let 
d

d
z

z z
f z z

CC
sin

= ( )∫∫

The singularity of f (z) is given by

z z z z
z z

sin , .
! !

= − + −







=0

3 5
0

3 5

i.e 

i.e. z
z z2

2 4

1
3 5

0− + −







=

! !


i.e. z = 0, which is a double pole of f (z) lying within the circle |z| = 1.

 
Res

d

d
.

! sin
f z

z

z

z zz
z

( )[ ] =












=

=
0

2

0

1

1

 =
−





→ 



=

sin cos

sin

z z z

z z
2

0

0

0
form

 =
z

z z2 0cos
,





 =

by L’Hospital’s rule

 = 0

By Cauchy’s residue theorem.

 f z z i

C

( ) = × =∫ d 2 0 0 .

Example 4.10 Evaluate the following integrals, using Cauchy’s residue theorem.

(i) 
z z

z z
C

+( )
+ +∫

1

2 42

d
, where C is |z + 1 + i| = 2

(ii) 
12 7

1 2 3
3

2

z z

z z
C z i

C

−( )

−( ) +( )
+ =∫

d
where is,

(iii) 
d

where is
z

z

C z i

C
2

3

9

3

+( )
− =∫ ,
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(i) Let f z z
z z

z z
CC

( ) =
+( )
+ +∫∫ d

d1

2 42

(– 1 – i)

(– 1 – i   3 )

y

O
x

(– 1 + i   3 )

Fig. 4.19

The singularities of f (z) are given by

z2 + 2z + 4 = 0, i.e. (z + 1)2= −3, i.e. z = −1± i 3 , each of which is a simple pole. 

Of the two poles z = −1−i 3  alone lies inside the circle |z−(−1−i)| = 2, as shown in 

the Fig.4.19.

Res. f z
z

z i
z i

z i

( ){ } =
+

+ −








==− −
=− −

1 3
1 3

1

1 3

1

2

By Cauchy’s residue theorem, 

 f z z i i

C

( ) = × =∫ d 2
1

2
 

(ii) Let 
12 7

1 2 3
2

z

z z
z f z z

CC

−( )

−( ) +( )
= ( )∫∫ d d .

The singularities of f (z) are z = 1 

and z = −3/2. z = 1 is a double pole 

and z = −3/2 is a simple pole. Only 

the pole z = 1 lies inside the circle 

|z−(−i)|= 3 , as shown in the Fig. 

4.20.

Res.
d

d
f z

z

z

zz
z

( )[ ] =
−
+













=

=
1

1

1

1

12 7

2 3!

 =
+( )









 =

=

50

2 3
2

2

1z z

.

By Cauchy’s residue theorem,

y

x

z = – i

z = 1Oz = – 3/2

3 3

2 2

Fig. 4.20
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 f z z i i

C

( )d = × =∫ 2 2 4  .

(iii) Let f z z
z

z
CC

( )
( )

d
d

=
+∫∫ 2 39

The singularities of f (z) are z = ±3i, of which z = 3i lies inside the circle |z − i| = 3, 

as shown in Fig. 4.21.

 z = 3i is a triple pole of f (z).

∴ [ . ( )]
! ( )

Res
d

d
f z

z z i
z i

z i

=
=

=
+









3

2

2 3

3

1

2

1

3

 =
+( )











=

1

2

12

3
5

3
! z i z i

 = =
6

6

1

12965 5i i

By Cauchy's residue theorem,

 f z z i
i

C

( )d = × =∫ 2
1

1296 648




EXERCISE 4(b)

Part A

(Short Answer Questions)

1. Define radius and circle of convergence of a power series.

2. State Taylor's theorem.

3. State Laurent's theorem.

4. What do you mean by analytic part and principal part of Laurent's series of a 

function of z?

5. Define regular point and isolated singularity of f (z). Give one example for 

each.

6. Define simple pole and multiple pole of a function f (z). Give one example 

for each.

7. Define essential singularity with an example.

8. Define removable singularity with an example.

9. Define entire function with an example.

10. Define meromorphic function with an example.

11. Define the residue of a function at an isolated singularity.

12. Express the residue of a function at an isolated singularity as a contour 

integral.

y

x

z = – 3i

z = i

z = 3i

O

Fig. 4.21
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13. State two different formulas for finding the residue of a function at a simple 

pole.

14. State the formula for finding the residue of a function at a multiple pole.

15. State Cauchy's residue theorem.

16. Derive Cauchy's integral formula as a particular case of Cauchy's residue 

theorem.

Find the Taylor series for each of the following functions about the indicated 

point:

17. sin z about z = π/4

18. cos z about z = π/3

19. ez about z = –i

20. e–z  about z = 1

21. 
z

z

−1
2

 about z = 1

If each of the following functions is expanded as a Taylor's series about the 

indicated point, find the region of convergence in each case, without actually 

expanding.

22. 
z

z

−
+

1

1
 about z = 0 23. 

sin z

z2 4+
 about z = 0

24. sec πz about z = 1 25. z

z z

+
− −

3

1 4( )( )
 about z = 2

26. e

z z

z

( )−1
about z = 4i

 (Hint: The radius of convergence is the distance between the centre of the 

Taylor's series and the nearest singularity of the concerned function.)

Find the Laurent's series of each of the following functions valid in the indicated 

regions:

27. 
1

22z z( )−
,valid in 0 < | z | < 2

28. 
1

1z z( )−
, valid in 0 < | z – 1 | < 1

29. 
1

13z z( )−
, valid in | z | > 1

30. 
z

z

−1
2

, valid in | z – 1 | > 1

Find the residue at the essential singularity of each of the following functions, 

using Laurent's expansions:

31. e1/z  32 1
2

− e

z

z

   33. 
cos z

z
  34. 

sinh z

z4
  35.  1

3

− cosh z

z
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Find the residues at the isolated singularities of each of the following 

functions:

36. 
z

z z( )( )+ −1 2
 37. z

z a

.2

2 2+

38. cot z (at z = 0) 39. 
ze

z

z

( )−1 2

40. z z

z

sin

( )−  3
.

Evaluate the following integrals using Cauchy's residue theorem.

41. 
z

z z
C

+
−∫
1

1( )
 dz, where C is |z| = 2

42. 
z

z
C

2

2 1+∫  dz, where C is |z| = 2

43. 
dz

z
C

sin∫  dz, where C is |z| = 1

44. tan z z

C

d∫ , where C is |z| = 2

45. e

z
z

z

C

−

∫ 2
d , where C is |z| = 1

Part B

46. Find the Taylor's series expansion of f z
z z

( )
( )

=
−
1

1
 about z = –1. State also

the region of convergence of the series.

47. Find the Taylor's series expansion of f z
z

z z z
( )

( )( )
=

+ +1 2
 about z = i.

State also the region of convergence of the series.

48. Find the Laurent's series of f z
z

z z
( ) =

−
+ +

2

2

1

5 6
 valid in the region (i) |z| < 2,

(ii) 2 < |z| < 3, and (iii) |z| > 3.

49. Find the Laurent's series of f z
z

z z
( )

( )( )
=

− −1 2
, valid in the region (i) |z + 2| 

< 3, (ii) 3 < |z + 2| < 4, and (iii) |z + 2| > 4.

50. Find all possible Laurent's expansions of the function f z
z

z z z
( )

( )( )
=

−
− +
7 2

2 1

about z = –1. Indicate the region of convergence in each case. Find also the 

residue of f (z) at z = –1.
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51. Find all possible Laurent's expansion of the function f z( ) =
z z

z z z

3 6 1

1 3 2

− −
− − +( )( )( )

 about z = 3. Indicate the region of convergence

in each case. Find also the residue of f (z) at z = 3.

52. Find the residues of f z
z

z z
( )

( ) ( )
=

− −

2

21 2
 at its isolated singularities, using

Laurent's series expansions.

53. By finding appropriate Laurent's expansions for f z
z z

( )
( )

=
+

1

12 2
, find the 

residue at the poles of f (z).

54. Indentify the singularities of f (z) and find the corresponding residues, when 

(i) f z
z

z z
( ) =

+ +2 2 5
 (ii) f z

z z z
( )

( )
=

+ +
1

2 22 2

55. Find the singularities of the following: (i) f z
z

z z
( )

( )( )
=

+ −1 12

(ii) f z
z z

z z
( )

( ) ( )
=

−
+ +

2

2 2

2

1 4
; also find the corresponding residues.

56. Indentify the singularities of f (z) and the corresponding residues, when 

(i) f z
z

( ) =
+
1

164
 (ii) f z

z

z a
( ) =

+4 4

57. Evaluate (i) ze zz

C

1/ d∫ ; and (ii) dz

z z
C

2 sin
,∫

using Cauchy's residue theorem, where C is the circle |z| = 1 in both cases.

58. Use Cauchy's residue theorem to evaluate the following

(i) 
dz

z
C

sinh
,∫  where C is the circle | z | = 4

(ii) 
z

z
z

C
cos

,d∫ where C is the circle z − =
 

2 2

59. Use Cauchy's residue theorem to evaluate the following:

(i) 
z z

z z
C

d

( )( )− −∫
1 2 2

, where C is circle |z – 2| = 1/2

(ii) 
( )

( )( )

3

1 9

2

2

z z z

z z
C

+
− +∫

d
, where C is the circle |z – 2| = 2

(iii) 
( )

( )( )

3 1

1 3

2

2

z z z

z z
C

+ +
− +∫

d
, where C is the circle | z – i | = 2
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60. Use Cauchy's residue theorem to evaluate the following:

(i) 
( )

,
z z

z z
C

−
+ +∫

3

2 52

d
where C is the circle | z + 1 – i | = 2

(ii) 
dz

z
C

( )
,

2 34+∫ where C is the circle |z – i| = 2

(iii) 
( )

( ) ( )
,

z z

z z
C

−
+ −∫

1

1 22

d
where C is the circle |z + i| = 2

4.5 CONTOUR INTEGRATION—EVALUATION 

OF REAL INTEGRALS

The evaluation of certain types of real definite integrals can be done by expressing 

them in terms of integrals of complex functions over suitable closed paths or contours 

and applying Cauchy's residue theorem. This process of evaluation of definite 

integrals is known as contour integration.

We shall consider only three types of definite integrals which are commonly used 

in applications.

4.5.1 Type 1

Integrals of the form 
P x

Q x
x

( )

( )
,

−∞

∞

∫ d  where P(x) and Q(x) are polynomials in x. This 

integral converges (exists), if 

(i) The degree of Q(x) is at least 2 greater than the degree of P(x).

(ii) Q(x) does not vanish for any real value of x.

To evaluate this integral, we evaluate 
P z

Q z
z

C

( )

( )
,d∫  

where C is the closed contour consisting of the 

real axis from – R to + R and the semicircle S 

above the real axis having this line as diameter, 

by using Cauchy's residue theorem and then 

letting R → ∞ . The contour C is shown in Fig. 

4.22.

Now we consider a result, known as 

Cauchy's  Lemma, which will be used in 

evaluation of f z z

S

( )d∫ , where S is the semicircle |z| = R above the real axis.

Cauchy's Lemma
If f (z) is a continuous function such that

|zf (z)| → 0 uniformly as |z| → ∞ on S, then f z z

S

( ) ,d∫ → 0  as R → ∞, where S is the 

semicircle |z| = R above the real axis.

y

y

S

R

RO– R

| z | = R

Fig. 4.22
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Proof

 f z z zf z
z

z

S S

( ) ( )d d∫ ∫= ⋅
1

  ≤ ⋅ ⋅∫ zf z
z

z

S

( )
| |

1
d

i.e.  | ( ) |zf z
R

R⋅ ⋅∫
1

0

d



 [∵ When |z| = R, z = Reiθ and dz = Rieiθdθ]

∴ lim ( ) lim | ( ) |
R

S
R

f z z zf z
→∞ →∞∫ ≤ ×d 

i.e. ≤ 0, by the given condition.

∴ f z z f z z R

S S

( ) ( ) , .d and  hence d as∫ ∫= = → ∞0 0

Note  Similarly, we can shown that f z z r

S

( )d as→ →∫ 0 0

1

, where S1 is the

semicircle |z – a| = r above the real axis, provided that f (z) is a continuous function 

such that |(z – a) f (z) | → 0 as r → 0 uniformly.

4.5.2 Type 2

Integrals of the form 
P x m x

Q x
x

P x mx

Q x
x

( )sin

( )

( ) cos

( )
,d or d

−∞

∞

−∞

∞

∫ ∫  where P(x) and Q (x) are 

polynomials in x.

This integral converges (exists), if

 (i) m > 0

 (ii) the degree of Q(x) is greater than the degree of P(x)

(iii) Q(x) does not vanish for any real value of x. To evaluate this integral, we 

 evaluate
P z

Q z
e zimz

C

( )

( )
,∫ d  where C is the same contour as in Type 1, by using 

 Cauchy's residue theorem and letting R→ ∞. After getting
P x

Q x
e ximx( )

( )
,d

−∞

∞

∫  

 we find the value of the real part or the imaginary part of this integral as per 

the requirement.
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A result, known as Jordan's Lemma, which will be used in the evaluation of f z e zimz

S

( ) ,∫ d  

where S is the semicircle |z| = R above the real axis, is given as follows.

Jordan’s Lemma
If f (z) is a continuous function such that |f (z)| → 0 uniformly as |z| → ∞ on S, then 

e f z zimz

S

( )d →∫ 0  as R → ∞, where S is he semicircle |z| = R above the real axis and 

m > 0.

Proof

On the circle |z| R, z = Reiθ.

∴ e f z z e f z iReimz

S

imR i i

S

( ) . ( ).(cos sin )d d∫ ∫= +   

 ≤ +∫ e f z RimR i(cos sin ) | ( ) | 


d

0

i.e. ≤ −∫ e f z RmRsin | ( )|


d

0

i.e. ≤ −∫2

0

2

e f z RmRsin
/

| ( ) |


d  (1)

Now sin for



 ≥ ≤ ≤

2
0 2, /

∴ − ≤ − ≤ ≤mR
mR

sin , /



 

2
0 2for 

∴ e emR mR− −≤ ≤ ≤sin / , /    2 0 2for  (2)

Using (2) in (1), we have

 e f z z e f z Rimz

S

mR( ) | ( )|/
/

d d∫ ∫≤ −2 2

0

2
 





∴ lim ( ) lim ( ) lim [ ( )]

/
/

R

imz

S
R

mR

R
e f z z Re f z

→∞ →∞

−

→∞∫ ∫≤d d

0

2
22


  

i.e. ≤ ×
→∞ →∞

−∫lim [ ( )] lim /
/

R R

mRf z Re2 2

0

2
 



d

i.e. ≤ × −( )



→∞ →∞

−lim [ ( )] lim
R R

mRf z
m

e
π

1
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i.e.     ≤ ×


m
0, by the given condition.

∴  e f z z e f z zimz

S

imz

S

( ) ( )d and hence d∫ ∫= =0 0

as R → ∞.

4.5.3 Type 3

Integrals of the form 
P

Q

(sin ,cos )

(sin ,cos )

 

 




0

2

∫ d , where P and Q are polynomials in sin θ 

and cos θ.

To evaluate this integral, we take the unit circle |z| = 1 as the contour.

When |z| = 1, z = eiθ and so sin  =
− −z z

i

1

2
 and cos  =

+ −z z 1

2
. Also dz = eiθ 

idθ or d
d

 =
z

iz
. When θ varies from 0 to 2π, the point z moves once around the unit 

circle |z| = 1.

Thus 
P

Q
f z z

C

(sin ,cos )

(sin ,cos )
( ) ,

 

 




d d= ∫∫
0

2

where f (z) is a rational function of z and C is |z| = 1.

Now applying Cauchy’s residue theorem, we can evaluate the integral on the 

R.H.S.

WORKED EXAMPLE 4(c)

Example 4.1  Evaluate
x x

x a x b

2

2 2 2 2

d

+( ) +( )−∞

∞

∫ ,  using contour integration, where

a > b > 0.

Consider z z

z a z bC

2

2 2 2 2

d

+( ) +( )∫ , where C is the contour consisting of the segment 

of the real axis from − R to + R and the semicircle S above the real axis having this 

segment as diameter. The singularities of the integrand are given by

(z2 + a2) (z2 + b2) = 0

i.e. z = ± ia and z = ± ib, which are simple poles.

Of these poles, only z = ia and z = ib lie inside C. (Fig. 4.23)
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y

x

S

ROR

Fig. 4.23

Now  R1 = (Res. of the integrand)z = ia = 
z

z ia z b z ia

2

2 2+( ) +( )










=

 = 
−

−( ) = −( )
a

ia b a

a

i a b

2

2 2 2 22 2

Similarly R2 = Res. at (z = ib) = −
b

i a b2 2 2−( )

By Cauchy’s residue theorem,

 
z

z a z b
z i R R

C

2

2 2 2 2 1 22
+( ) +( ) = +∫ d  ( )

 = 
 a b

a b a b

−( )
−

=
+2 2

i.e., 
x x

x a x b

z z

z a z b a b
SR

R 2

2 2 2 2

2

2 2 2 2

d d

+( ) +( ) + +( ) +( ) = +∫∫
−

π
 (1)

( on the real axis, z = x and so dz = dx)

Now |z2 + a2| ≥ |z|2 − a2 = R2 − a2 on |z| = R.

Similarly |z2 + b2| ≥ R2 − b2 on |z| = R.

∴ z
z

z a z b

R

R a R b
.

2

2 2 2 2

3

2 2 2 2+( ) +( ) ≤
−( ) −( )

Since the limit of the R.H.S. is zero as R → ∞,

 lim . , | | .
R

z
z

z a z b
z R

→∞ +( ) +( ) = =
2

2 2 2 2
0 on

∴ By Cauchy’s lemma, 
z z

z a z bS

2

2 2 2 2
0

d

+( ) +( ) =∫  (2)

Using (2) in (1) and letting R → ∞, we get

 
x x

x a x b a b

2

2 2 2 2

d

+( ) +( ) = +
−∞

∞

∫
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Example 4.2 Evaluate
x x

x x x

2

2 2 21 2 2

d

( )( )+ + +−∞

∞

∫ , using contour integration.

Consider
z z

z z zC

2

2 2 21 2 2

d

+( ) + +( )∫ ,  where C is the same contour as in the previous 

example. The singularities of f z
z

z z z

( ) =
+( ) + +( )

2

2
2

21 2 2
 are given by (z2 + 1)2

(z2 + 2z + 2) = 0

i.e. z = ± i and z = − 1 ± i, of which z = i and z = − 1 + i lie inside C.

 z = i is double pole and z = − 1 + i is a simple pole.

 
R f z

z

z i z

z i z i z z
z i1

2 2

2 2 2

1

1 2 2
= =

− ⋅
+ − + +








=[Re . ( )

!

( )

( ) ( ) ( )
s

d

d















 =z i

 = 
( ) ( ). { ( )( ) ( ) ( )}z i z z z z z i z z z i z

z i z

+ + + − + + + + + +

+( )

2 2 2 2 2

4

2 2 2 2 2 2 2 2

22
2

2 2+ +( )













=z z i

 =
−9 12

100

i

 R f z
z

z z i

i
z i

z i

2 1

2

2
2

11 1

3 4

25
= =

+( ) + +( )













=
−

=− +

=− +

[Re . ( )]s

By Cauchy’s residue theorem,

 

z z

z z z

i R R

C

2

2
2

2
1 2

1 2 2

2
d

+( ) + +( )
= +∫  ( )

 

=
−

+
−








2
9 12

100

3 4

25
i

i i

 
=

7

50

π

i.e. 
x x

x x x

z z

z z zSR

R 2

2
2

2

2

2
2

21 2 2 1 2 2

7

50

d d

+( ) + +( )
+

+( ) + +( )
=∫∫

−


 (1)

 
lim

.
| | .

R

z z

z z z

z R
→∞ +( ) + +( )

= =
2

2
2

21 2 2

0on
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∴ By Cauchy’s Lemma, when R → ∞

 

z z

z z zS

2

2
2

1 2 2

0
d

+( ) + +( )
=∫  (2)

Letting R → ∞ in (1) and using (2), we get

 

x x

x x x

2

2
2

21 2 2

7

50

d

+( ) + +( )
=

−∞

∞

∫


Example 4.3 Evaluate 
dx

x a2 2
3

0 +( )

∞

∫ ,  using contour integration, where a > 0.

Consider 
dz

z aC
2 2

3
+( )∫ , where C is the same contour as in example 4.1.

The singularities of f z

z a

( ) =
+( )
1

2 2
3

are z = ± ia,which are poles of order 3. Of

the two poles, z = ia alone lies inside C.

R f z
z z ia

z ia

z ia

= =
+( )

























=
=

[Re . ( )]
!

s
d

d

1

2

12

2 3

 
=

+( )









 =

=

6 3

165 5
z ia a i

z ia

∴ By Cauchy’s residue theorem,

 
dz

z a

iR i
a i aC

2 2
3 5 5

2 2
3

16

3

8+( )
= = =∫  


.

i.e. 
d dx

x a

z

z a aR

R

S
2 2

3
2 2

3 5

3

8+( )
+

+( )
=

−
∫ ∫


  (1)

Now 
z

z a

R

R a

.
1

2 2
3

2 2
3

+( )
≤

−( )  and so

 lim .
R

z

z a
→∞ +( )

=
1

0
2 2

3  on |z| = R

∴ By Cauchy’s Lemma, when R → ∞,

 
dz

z aS
2 2

3
0

+( )
=∫   (2)
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Letting R → ∞ in (1) and using (2), we get

 
dx

x a a2 2
3 5

3

8+( )
=

−∞

∞

∫


.

Since the integrand 
1

2 2
3

x a+( )  is an even function of x, we have 

dx

x a a2 2
3

0
5

3

16+( )
=

∞

∫
  

Example 4.4 Use contour integration to prove that

 
x x

x a a

2

4 4

0 2 2

d

+
=

∞

∫


, where a > 0.

Consider 
z z

z a
C

2

4 4

d

+∫ , where C is the same contour as in Example 4.1.

The singularities of f z
z

z a
( ) =

+

2

4 4
are given by z4 = − a4 = ei(2r + 1)π. a4

i.e. z = ei(2r + 1)π/4. a, where r = 0, 1, 2, 3.

i.e.  z = aeiπ/4, aei3π|4, aei5π/4, aei7π/4, all of which are simple poles.

Of these poles, only z = aeiπ/4 and z = aei3π/4 lie inside C.

 R f z
z

z

P z

Q
z aei

z ae z ai1 4

2

3 14 4
= =









 ==

→ →
[ . ( )] lim lim

( )

(
/ /

Res   zz)











 
= = −−1

4

1

4 2
14

a
e

a
ii/ ( )

 
R f z

a
e

a
iz aei

i
2 3 4

3 41

4

1

4 2
1= ( ) = = − −( )=

−[ . /
/Res 


∴ By Cauchy’s residue theorem,

 

z z

z a
i

a
i i

a
C

2

4 4
2

1

4 2
1 1

2

d

+
= ⋅ − − − =∫ 


( )

i.e. 
x x

x a

z z

z a a
SR

R 2

4 4

2

4 4 2

d d

+
+

+
=∫∫

−


 (1)

Now lim . | | .
r

z
z

z a
z R

→∞ +
= =

2

4 4
0 on

∴ By Cauchy’s Lemma, when R → ∞,

 
z z

z a
s

2

4 4
0

d

+
=∫   (2)
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Letting R → ∞ in (1) and using (2), we get

 
x x

x a a

2

4 4 2

d

+
=

−∞

∞

∫


Since the integrand is even,

 x x

x a a

2

4 4

0
2 2

d

+
=

∞

∫


Example 4.5 Evaluate 
x

x a

4

6 6−−∞

∞

∫  dx, using contour integration where a > 0.

Consider 
z

z a
z

C

4

6 6−∫ d , where C is the same contour as in example 4.1, with some

modifications explained below.

The singularities of f z
z

z a
( ) =

−

4

6 6
are given by

 z6 = a6 = ei2rπ a6, i.e. z = ae

r
i


3 , r = 0, 1, 2, 3, 4, 5.

i.e.  z = a, aeπi/3, ae2πi/3, − a, ae4πi/3, ae5πi/3.

Of these singularities (simple poles),

z = aeπi/3 and z = ae2πi/3 lie inside C, but z = a and z = − a lie on the real axis. But 

for the evaluation of the integrals of type 1, no singularity of f (z) should lie on the 

real axis. To avoid them, we modify C by introducing small indents, i.e., semi-circle 

of small radius at z = ± a, as shown in Fig. 4.24.

y

x

S

S1

z = – a z =  a

S2

RO– R

Fig. 4.24

Now the modified contour C contains only the simple poles

 z = aeπi/3 and ae2πi/3

 R f z
z ae i1 3=
=

[Re . ( )] /s 

 =






= −z

z a
e i

4

5

3

6

1

6

 /

 = −






1

6

1

2

3

2a
i
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Similarly, R
a

e
a

ii
2

2 31

6

1

6
1 2

3

2
= = − −







− 

By Cauchy’s residue theorem,

 z

z a
z

i

a
i i

C

4

6 6

2

6
1 2

3

2
1 2

3

2−
= − − −





∫ d



 =


3a

i.e. x6 – a6 z6 – a6 x6 – a6 z6 – a6
– R – a + rS1 S2

– a – r a – r'

x4 z4 x4 z4

dx d z d x d z+ + +

 +
−

+
−

=
+ ′
∫ ∫

x

x a
x

z

z a
z

a
a r

R

S

4

6 6

4

6 6 3
d d


  (1)

where r and r' are the radii of the semicircles S1 and S2 whose equations are |z + a| = r 

and |z – a| = r'. These two integrals taken along S1 and S2 vanish as r → 0 and r' → 0, 

by the note under Cauchy’s Lemma.

z

z a
S

4

6 6
0

−
=∫ , as R→∞, by Cauchy’s lemma.

Now, letting r → 0, r' → 0 and R → ∞ in (1),

We get 
+ +

−
=

∞

−−∞

−

∫∫∫
x x

x a a
aa

aa 4

6 6 3

d 

i.e. x

x a
x

a

4

6 6 3−
=

−∞

∞

∫ d


Example 4.6 Evaluate
x x

x a
x

sin
2 2

0
+

∞

∫ d , by contour integration.

Consider
ze

z a
z

iz

C

2 2+∫ d , where C is the same contour as in Example 4.1.

The singularities of f z
ze

z a

iz

( ) .=
+2 2

 are z = ± ia, which are simple poles. Of

these poles, only z = ia lies inside C.

[Res. f (z)]z = ia =
1

.
2

iz
a

z ia

ze
e

z ia

−

=

 
= + 
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By Cauchy’s residue theorem,

 
ze

z a
z i e ie

iz
a a

C
2 2

2
1

2+
= =− −∫ d  .

i.e. 
xe

x a
x

ze

z a
z ie

ix iz
a

SR

R

2 2 2+
+

+
= −

−
∫∫ d d   (1)

Now 
z

z a

R

R a2 2 2 2+
≤

−
Since the limit of the R.H.S. is zero as R → ∞,

 lim
R

z

z a→∞ +
=

2 2
0 on |z| = R.

∴ By Jordan’s Lemma, 
ze

z a
z

iz

S
2 2+∫ d  → 0 as R → ∞,  (2)

Letting R→∞ in (1) and using (2), we get

 
xe

x a
x i e

ix
a

2 2+
= −

−∞

∞

∫ d 

i.e. 
x

x a
x i x x i e a

2 2+
+ = −

−∞

∞

∫ (cos sin ) .d 

Equating the imaginary parts on both sides,

we get 
x x

x a
x e asin

.
2 2+

= −

−∞

∞

∫ d 

Since the integrand is an even function of x,

x x

x a
x e asin

.
2 2

0
2+

= −
∞

∫ d


Example 4.7  Evaluate
cos

.
x x

x a x b

d

2 2 2 2+( ) +( )−∞

∞

∫ , using contour integration, where 

a > b > 0.

Consider 
e

z a z b
z

iz

C
2 2 2 2+( ) +( )∫ d , where C is the same contour as in Example 4.1.

The singularities of the integrand f (z) are given by z = ± ia and z = ± ib, which are  

simple poles. Of these poles, z = ia and z = ib only lie inside C.
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R f z
e

z ia z b
z ia

iz

z ia

1 2 2
= =

+( ) +( )












=

=

[ . ( )]Res

 =
− −( )

−e

ia a b

a

2 2 2

R f z
e

ib a b
z ib

b

2 2 22
= =

−
=

−

[ . ( )]
( )

Res

By Cauchy’s residue theorem,

e

z a z b
z i R R

iz

C
2 2 2 2 1 22
+( ) +( )

= +( )∫ d 

 
=

−( ) −






− −

a b

e

b

e

a

b a

2 2

i.e. 
e

x a x b
x

e

z a z b
z

ix iz

SR

R

2 2 2 2 2 2 2 2+( ) +( )
+

+( ) +( )∫∫
−

d d

 =
−

−






− −

a b

e

b

e

a

b a

2 2
 (1)

Now 1 1

2 2 2 2 2 2 2 2z a z b R a R b+( ) +( )
≤

− −( )( )

R.H.S. → 0 as R → ∞. Hence

 lim
R z a z b→∞ +( ) +( )

=
1

0
2 2 2 2

on |z| = R.

∴ By Jordan’s Lemma, 
e

z a z b
z

iz

S
2 2 2 2

0
+( ) +( )

→∫ d , as R → ∞ (2)

Letting R→∞ in (1) and using (2), we get

e

x a x b
x

a b

e

b

e

a

ix b a

2 2 2 2 2 2+( ) +( )
=

−( )
−







− −

−∞

∞

∫ d


Equating the real parts on both sides, we get

cos x

x a x b
x

a b

e

b

e

a

b a

2 2 2 2 2 2+( ) +( )
=

−( )
−







− −

−∞

∞

∫ d


.
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Example 4.8 Evaluate 
cos

( ) ,
ax

x b
x

b
ab e ab

2 2 3

0
4

1
+( ) = + −

∞

∫ d


 where a > 0 and b > 0.

Consider 
e

z b

z
iaz

C
2 2

2
+( )∫ d ,  where C is the same contour as in Example 4.1.

The singularities of f z
e

z b

iaz

( ) =
+( )2 2

2
 are z = ± ib, which are double poles. Of these

poles, only z = ib lies inside C.

 Res
d

d
. ( )

!
f z

z

e

z ib
z ib

iaz

z ib

[ ] =
+( )



















=
=

1

1 2

 =
+ −

+( )










=

( )z ib ia e e

z ib

iaz iaz

z ib

2
3

 = +( ) −1

4
1

3ib
ab e ab.

By Cauchy's residue theorem,

 e

x b

x
e

z b

z i
ib

ab e
iax iaz

ab

SR

R

2 2
2

2 2
2 3

2
1

4
1

+( )
+

+( )
= × + −

−
∫∫ d d  ( )

 = + −

2
1

3b
ab e ab( )

 (1)

Now 1 1

2 2
2

2 2
2

z b R b+( ) −( )
≤

Since the R.H.S.→ 0 as R → ∞, L.H.S. also → 0 as R → ∞ on |z| = R.

∴ By Jordan's Lemma,

 
e

z b

z R
iaz

S
2 2

2
0

+( )
→ →∞∫ d as ,  since a > 0 (2)

Letting R → ∞ in (1) and using (2), we get

e

x b

x
b

ab e
iax

ab

2 2
2 32

1

+( )
= +( )

−∞

∞
−∫ d


.
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Equating the real parts on both sides and noting that 
cos ax

x b2 2
2

+( )
 is an even function 

of x, we get

cos
.

ax

x b

x
b

ab e ab

2 2
2

0
34

1

+( )
= +( )

∞
−∫ d



Example 4.9 Use contour integration to prove that

 
sin

,
mx

x
xd

0
2

∞

∫ =


 when m > 0.

Consider
e

z
z

imz

C

d ,∫ where C is the usual semicircular contour, but with an indent i.e.

a small semicircle at the origin, which is introduced to avoid the singularity z = 0, 

which lies on the real axis. The modified contour is shown in Fig. 4.25.

y

x

S

S'

RrO– R – r

Fig. 4.25

The modified contour C does not include any singularity of f z
e

z

imz

( ) .=
∴ By Cauchy's residue theorem,

 

– R S' Sr

– r R
eimx eimz eimx eimz

x z zx
dx dz dx dz+ + + = 0  (1)

The Eqn. of S′ is |z| = r. ∴ z = reiθ and dz = reiө idθ.

As S′ is described in the clockwise sense, θ varies from πto 0.

Thus 

e

z
z

e

re
re i

imz

S

imre

i

i

i

d d

′
∫ ∫=






 

0

∴ lim lim
r

imz

S
r

imr ee

z
z e i i

i

→
′

→∫ ∫= ( )





= −
0 0

0

d d  




   (2)

 
1 1

0
z R
= → as R → ∞ on |z| = R. 

∴ By Jordan’s Lemma, e

z
z

imz

S

d∫ → 0  as R → ∞, since m > 0 (3)
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Letting r → 0 and R → ∞ in (1) and using (2) and (3),

we get 
e

x
x i

e

x
x

imx imx

d d

−∞

∞

∫ ∫− + =
0

0

0

i.e. 
e

x
x i

imx

d

−∞

∞

∫ = 

Equating  the  imaginary  parts  on both sides and noting that 
sin mx

x
 is an even 

function of x, we get 
sin

.
mx

x
xd

0
2

∞

∫ =


Example 4.10 Evaluate
sin

,
x x

x x a

d
2 2

0 +( )
∞

∫ using contour integrations where a > 0.

Consider
e

z z a
z

iz

C
2 2+( )∫ d ,  where C is the same modified contour as in Example

4.9, which includes the only pole z = ia of f z
e

z z a

iz

( ) =
+( )2 2

 
[ ( )]Res. f z

e

z z ia

e

a
z ia

iz

z ia

a

=
=

−

=
+( )









 =

−2 2

By Cauchy's residue theorem,

 

–r
eix eiz

s' r

R

eix eiz

dx dz
 x2 + a2

+ + dx dz+

–R x  z2 + a2z  x2 + a2x  z2 + a2zs

 = − −i

a
e a

2  (1)

 
e

z z a
z

e re i

re r e a

iz

S

ir e i

i i

i

2 2 2 2 2

0

+( ) =
+( )′

∫ ∫d
d



 

 


.

∴ lim lim
r

iz

S
r

ir e

i

e

z z a
z

e

r e a
i

i

→
′

→+( ) =
+











∫ ∫

0 2 2 0 2 2 2

0

d d








 = −
i

a2

 (2)

 1 1
2 2 2 2z z a R R a+( ) ≤

−( )
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Since R.H.S. → 0 as R → ∞ on |z| = R, L.H.S. also tends to 0 as R → ∞.

∴  By Jordan's Lemma, 

 e

z z a
z R

iz

S
2 2

0
+( ) → →∞∫ d  as ,

 (3)

Letting r → 0 and R → ∞ in (1) and using (2) and (3), we get

e

x x a
x

i

a

i

a
e

ix
a

2 2 2 2+( ) = −
−∞

∞
−∫ d

 
.

Equating imaginary parts on both sides and noting that 
sin x

x x a2 2+( )  is an even

function of x, we get,
sin

( ).
x

x x a
x

a
e a

2 2
0

22
1

+( ) = −
∞

−∫ d


Example 4.11  Evaluate 
d





1 2
0 1

2

0

2

− +
< <∫

x x
x

sin
( ),  using contour integration.

On the circle |z| = 1, z = eiθ, dz = ieiθ dθ or d
d

 =
z

iz
 and sin . =

−
=

−z
z

i

z

iz

1

2

1

2

2

∴ The given integral I
z iz

x
z

iz
xC

=

−
−



 +

∫
d

1 2
1

2

2
2

,  where C is |z| = 1

i.e. I
z

iz xz x ix z
C

=
− + +∫

d
2 2

 = −
− +



 −

= −
−( ) −





∫ ∫
1

1
1

1

2x

z

z i x
x

z
x

z

z ix z
i

x
C C

d d
 (1)

The singularities of 
1

z ix z
i

x
−( ) −





 are z = ix and z
i

x
= ,  which are simple poles

Now |ix| = |x| < 1, as 0 < x < 1

∴ The pole z = ix lies inside C, but z
i

x
=  lies outside C.

 

Res. 
1 1

1 1 2z ix z i x
i x

x

ix

x
z ix

−( ) −( )
















 =

−




=

−=
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Using Cauchy's residue theorem, from (1) we get

I
x

i
ix

x x
= − × ×

−
=

−
1

2
1

2

12 2



.

Note  We have integrated w.r.t. θ and x is a parameter.

Example 4.12  Evaluate 
d 





a b
a b

+
> >∫ cos

( ),

0

2

0  using contour integration.

Deduce the value of 
d





a b+( )∫
cos

.
2

0

2

 On the circle |z| = 1, z = eiθ, d
d

 =
z

iz
 and  

cos  =
+z

z

2 1

2
.

∴ =
+

=
+

+
= −

+ +







∫ ∫∫I
a b

z iz

a b
z

z

i

b

z

z
a

b
zCC

d d d





cos
0

2

2
21

2

2

2
1

 (1) 

where C is |z| = 1.

The singularities of the integrand are given by z
a

b
z2 2

1 0+ + = ,  

i.e.  z
a

b

a

b
= − ± −

2

2
1,  which are simple poles.

Since a b
a

b
> >, 1 and hence − − − >

a

b

a

b

2

2
1 1  and so z

a

b

a

b
= − − −

2

2
1  lies

outside |z| = 1.

 z
a

b

a

b
= − + −

2

2
1  lies inside |z| = 1.

 

Res. of

1

2
12

1
2

2

z
a

b
z

z
a

b

a

b

+ +





























=− + −

 

=
+

















=− + −

1

2 2

2
1

z
a

b z
a

b

a

b  (2)

 =
−

b

a b2 2 2
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By Cauchy's residue theorem and using (2) in (1), we get

I
i

b
i

b

a b a b
= − ×

−
=

−

2
2

2

2

2 2 2 2




i.e. 
d






a b a b+
=

−
∫ cos
0

2

2 2

2
 (3)

Differentiating both sides of (3) partially with respect to ‘a’, we get

 
−

+( )
= −

−( )∫
d






a b

a

a bcos
2

0

2

2 2
3 2

2

∴ 

d






a b

a

a b+( )
=

−( )∫
cos

2
0

2

2 2
3 2

2

Example 4.13 Evaluate 
sin

cos
,

2

0

2

5 3








−∫ d  using contour integration.

On the circle |z| = 1, z = eiθ, d
d

 =
z

iz
,  sin  =

−z

iz

2 1

2
 and cos . =

+z

z

2 1

2

∴ I

z

z

z

iz

z

z

C

=
−

=

−( )
−

−
+( )∫ ∫

sin

cos

.

,
2

0

2

2
2

2

25 3

1

4

5
3 1

2








d

d

where C is |z| = 1

 = −
−( )

−( ) −( )∫
i z z

z z z
C

6

1

3 1 3

2
2

2

d  (1)

The singularities of the integrand which lie within C are z = 0 and z = 1/3.

z = 0 is a double pole and z =
1

3
 is a simple pole.

 R1 = [Res. of the integrand f (z)]z = 0

 =
−( )

− +

































=

=

1

1

1

10

3
1

10

3

2
2

2

0

!

d

dz

z

z z
z

 R f z
z

z z
z

z

2 1 3

2
2

2

1 3

1

3

8

3
= =

−( )
−













= −=
=

[ ( )]
( )

Res. 
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By Cauchy's residue theorem, from (1), we get

I
i

i R R= − × +( ) = −



 =6

2
3

10

3

8

3

2

9
1 2

 
.

Example 4.14  Evaluate cos

cos
,

2

1 2 2

0

2
 




d

− +∫
a a

 using contour integration, where 

a2 < 1.

On the circle |z| = 1, z = eiθ, d
d

 =
z

iz
,  cos =

+z

z

2 1

2
 and cos .2 =s .

2

2 2 + −e ei i

s .
1

2

2 2 4

2

 

=
+e e z

z

i i

∴  The given integral I

z

z

z

iz

a
z

z
aC

=

+

−
+



 +

∫

4

2

2
2

1

2

1
1

d

,  where C is |z| = 1

 
=

+( )

− +



 +









∫
i

a

z z

z z a
a

zC
2

1

1
1

4

2 2

d

 =
+( )

−( ) −( )∫
i

a

z z

z z a z a
C

2

1

1

4

2

d

/

 (1)

The singularities of the integrand which lie inside C are z = 0 and z = a (∵a2 < 1)  

z = 0 is a double pole and z = a is a simple pole.

R1 = [Res. of the integrand]z = 0

 = +
− +( ) +



















=

1

1

1

1 1

4

2
0

! /

d

dz

z

z a a z
z

 = +a
a

1

R
a

a a a
z a2

4

2

1

1
= =

+
−( )=(

/
Res. of the integrand)

∴ R R a
a

a

a a a
1 2

4

2

1 1

1
+ = + +

+
−( )/

 =
−

2

1

3

2

a

a

By Cauchy's residue theorem and from (1), we get

I
i

a
i

a

a

a

a
= × ×

−
=

−2
2

2

1

2

1

3

2

2

2
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Example 4.15 Evaluate 
cos

cos
,

3

5 4
0

2







+∫ d  using contour integration

On the circle |z| = 1, z = eiθ, d
d

 =
z

iz
,  cos =

+z

z

2 1

2
 and 

3 3 6 1
cos3

2 2

i ie e z

z

−

3

+ +
=

θ θ

θ = .

∴ The given integral I

z

z

z

iz

z

z

C

=

+

+ +







∫

6

3

2

1

2

5 4 1

2

.

,

d

where C is |z| = 1.

i.e. I
i z z

z z zC

= −
+( )

+( ) +( )∫4

1

2 1 2

6

3

d

/

The singularities of the integrand f (z) which lie inside C are the simple pole 

 z = –1/2 and the triple pole z = 0.

R1 = (Res. of the integrand)z = –1/2 =
+
+( )









= −
=−

z

z z z

6

3
1 2

1

2

65

12
/

 

R2, the residue at z = 0 is found out as the coefficient of 1

z
 in the Laurent’s

expansion of the integrand.

 f z z
z

z
z( ) = +





+



 +( )3

3

1
1

2
1 2

 = +





− + −








− + −{ }z
z

z z
z z3

3

2
21

1
2 4

1 2 4 

 = +





− + −{ }z
z

z z3

3

21
1

5

2

21

4


∴ R2 = Coefficient of 
1

z
 in this expansion =

21

4
.

By Cauchy’s residue theorem.

 I i i= − × − +



 = −/ 4 2

65

12

21

4 12
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EXERCISE 4(c)

Part A

(Short Answer Questions)

1. Give the forms of the definite integrals which can be evaluated using the 

infinite semi-circular contour above the real axis.

2. Explain how to convert f (sin ,cos )  



d

0

2

∫  into a contour integral, where f is 

a rational function.

3. Sketch the contour to be used for the evaluation of 
sin mx

x
xd

0

∞

∫ .

Part B

Evaluate the following integrals by contour integration technique.

 4. 
x x

x x

2

2 2
0 1 4

d

+( ) +( )
∞

∫   5. 
x x

x x

2

2
2

2
0 4 9

d

+( ) +( )

∞

∫

 6. 
x x

x x
x

2

4 2

2

10 9

− +
+ +−∞

∞

∫ d   7. 
dx

x a
x

4 4

0
+

∞

∫ d

 8. 
x x

x

2

2
3

0 1

d

+( )

∞

∫   9. 
x

x
x

2

6

0
1+

∞

∫ d

10. 
x x

x

4

6

0
1

d

+

∞

∫  11. 
cos

( ; )
ax

x b
x a b

2 2
0 0

+
> >

−∞

∞

∫ d

12. 
cos x x

x x

d

2 24 9+( ) +( )−∞

∞

∫  13. 
x x

x
x

sin
4

0
1+

∞

∫ d

14. 
x x

x x
x

sin
2 21 4+( ) +( )

−∞

∞

∫ d  15. 
x x

x

x
sin

2
2

1+( )−∞

∞

∫ d

16. 
sin x x

x x

d
2 4 5+ +−∞

∞

∫  17. 
x x

x x
x

cos
2 2 5+ +−∞

∞

∫ d

18. 
sin x

x x

x
2

2

0 1+( )

∞

∫ d  19. 
d





1 2
0 1

2

0

2

− +
< <∫

p p
p

cos
,
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20. 
d





a b
a b

+
> >∫ sin

( )

0

2

0  21. 
sin

cos
( )

2

0

2

0







a b
a b

+
> >∫ d

22. 
a

a
a

d





2 2
0

2

0
+

>∫
sin

( )  23. 
cos

cos

2

5 4
0

2
 




d

+∫

24. 
cos

cos

3

5 4
0

2
 




d

−∫  25. 
cos

cos

2

0

2
3

5 4 2








−∫ d

ANSWERS

Exercise 4(a)

 8. 10

3
3( )+ i   9. 3 – i2

10. 4πi 11. − +
4

3

8

3
i

12. πi

13. (i) –1/6 + i5/6;  (ii) − +1 6
13

15
i

14. 4πi 15. 10
8

3
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Transforms
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5.1 INTRODUCTION

The Laplace transform is a powerful mathematical technique useful to the 

engineers and scientists, as it enables them to solve linear differential equations 

with given initial conditions by using algebraic methods. The Laplace transform 

technique can also be used to solve systems of differential equations, partial 

differential equations and integral equations. Starting with the definition of Laplace 

transform, we shall discuss below the properties of Laplace transforms and derive 

the transforms of some functions which usually occur in the solution of linear 

differential equations.

5.1.1  Definition

If f (t) is a function of t defined for all t ≥ 0, e f t tst−
∞

∫
0

d( ) is defined as the Laplace

transform of f(t), provided the integral exists.

Clearly the integral is a function of the parameters s. This function of s is denoted 

as f (s) or F(s) or f(s). Unless we have to deal with the Laplace transforms of more 

than one function, we shall denote the Laplace transform of f (t) as f(s). Sometimes 

the letter ‘p’ is used in the place of s.

The Laplace transform of f (t) is also denoted as L{f (t)}, where L is called the

Laplace transform operator.

Thus 
 
L f t s e f t tst( ) ( ) ( ) .{ }= = −

∞

∫φ

0

d

The operation of multiplying f (t) by e−st and integrating the product with respect 

to t between 0 and • is called Laplace transformation.

The function f (t) is called the Laplace inverse transform of f(s) and is denoted

by L−1{φ (s)}.

Thus f (t) = L−1{f (s)}, when L {f (t)} = f (s)
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Note 

 1. The parameter s used in the definition of Laplace transform is a real or com-

plex number, but we shall assume it to be a real positive number sufficiently 

large to ensure the existence of the integral that defines the Laplace trans-

form.

 2. Laplace transforms of all functions do not exist. For example, L (tan t) and

 L et( )
2

 do not exist. We give below the sufficient conditions (without proof)

 for the existence of Laplace transform of a function f (t):

Conditions for the existence of Laplace transform If the function f (t) defined 

for t ≥ 0 is

 (i) piecewise continuous in every finite interval in the range t ≥ 0, and

(ii) of the exponential order, then L{ f (t)} exists.

Note  

 1. A function f (t) is said to be piecewise continuous in the finite interval a ≤ t ≤ 

b, if the interval can be divided into a finite number of sub-intervals such that 

(i) f (t) is continuous at every point inside each of the sub-intervals and  

(ii) f (t) has finite limits as t approaches the end points of each sub-interval 

from the interior of the sub-interval.

 2. A function f (t) is said to be of the exponential order, if | f (t)| ≤ M eαt, for all t ≥ 0 and 

some constants M and α or equivalently, if lim{ ( )} a finitequantity.
t

te f t
→∞

− =α

Most of the functions that represent physical quantities and that we encounter in 

differential equations satisfy the conditions stated above and hence may be assumed 

to have Laplace transforms.

5.2 LINEARITY PROPERTY OF LAPLACE AND  

INVERSE LAPLACE TRANSFORMS

 L{k
1
 f

1
(t) ± k

2
 f

2
(t)} = k

1
L{f

1
(t)} ± k

2 
L{ f

2
(t)},

where k
1
 and k

2
 are constants.

Proof:  L k f t k f t k f t k f t e tst{ ( ) ( )} { ( ) ( )}1 1 2 2 1 1 2 2

0

± = ± −
∞

∫ d

 

= ⋅ ± ⋅

= ⋅ ± ⋅

− −
∞∞

∫∫k f t e t k f t e t

k L f t k L f t

st st

1 1 2 2

00

1 1 2 2

( ) ( )

( )} { (

d d

{ ))}.

Thus L is a linear operator.

As a particular case of the property, we get

 L{k f (t)} = kL{f(t)}, where k is a constant.
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If we take L{f
1
(t)} = φ

1
(s) and L{ f

2
(t)} = φ

2
(s), 

the above property can be written in the following form.

 L{k
1
 f

1
(t) ± k

2
 f

2
(t)} = k

1
φ

1
(s) ± k

2
φ

2
(s).

∴ L−1 {k
1
φ

1
(s) ± k

2
 φ

2
(s)} = k

1
∙ f

1
(t) ± k

2
∙ f

2
(t)

 = k
1
∙L−1{φ

1
(s) ± k

2
∙L−1{φ

2
(s)}

Thus L−1 is also a linear operator

As a particular case of this property, we get

 L−1{kf(s)} = k L−1{f (s)}, where k is a constant.

Note 

1. L{f
1
(t) . f

2
(t)} ≠ L{f

1
(t)} . L{f

2
(t)} and

 L−1{φ
1
(s) . φ

2
(s)} ≠ L−1(φ

1
(s)} × L−1{φ

2
(s)}

2. Generalising the linearity properties,

we get (i)  L k f t k L f tr r

r

n

r r

r

n

( ) { ( )}
= =
∑ ∑












= ⋅

1 1

 (ii)  L k s k L sr r

r

n

r r

r

n
−

=

−

=
∑ ∑












= ⋅1

1

1

1

φ φ( ) { ( )}

Using (i), we can find Laplace transform of a function which can be expressed as

a linear combination of elementary functions whose transforms are known.

Using (ii), we can find inverse Laplace transform of a function which can be

expressed as a linear combination of elementary functions whose inverse transforms 

are known.

5.3 LAPLACE TRANSFORMS OF SOME 

ELEMENTARY FUNCTIONS

1. L k
k

s
{ }= , s > 0, where k is a constant,

 L k k e tst{ }= −
∞

∫ d

0

,by definition.

 

=
−













− ∞

k
e

s

st

0

 =
−

− → → ∞−k

s
e t sst( )[ , ]0 1 0 as if  > 0

 =
k

s
.
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In particular, L(0) = 0 and L
s

( ) =1
1

∴  L
s

− 









=1 1
1 .

2. L e
s a

at{ }− =
+
1

, where a is a constant,

  
L e e e tat st at{ } d− −

∞
−= ⋅∫

0

 
= =

− +













− +
∞ − + ∞

∫ e t
e

s a

s a t
s a t

( )
( )

d
( )

0 0

  =
− +

−
1

0 1
( )

( )
s a

, if (s + a) > 0

  =
+
1

s a
, if s > −a.

Inverting, we get L
s a

e at− −

+










=1 1

.

3. L e
s a

at{ }=
−
1

, where a is a constant, if s −a > 0 or s > a.

Changing a to − a in (2), this result follows. The corresponding inverse result is

 L
s a

eat−

−







=

1 1

4.  L t
n

s

n

n
( ) =

( )+
+

1
1

, if s > 0 and n > − 1.

 

L t e t tn st n( ) = d−
∞

∫ ⋅
0

  =






 ⋅−

∞

∫ e
x

s

x

s

x

n

0

d
, on putting st = x 

  

= +
−

∞

∫
1

1

0
s

e x x
n

x n d
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 =
+
+

( )n

sn

1
1

, if s > 0 and n + 1 > 0

 [by definition of Gamma function]

In particular, if n is a positive integer,

 ( ) !n n+ =1

∴  L t
n

s

n

n
( )

!
= +1

, if s > 0 and n is a positive integer.

  Inverting, we get L
n

s
t

n

n−
+










=1

1

!
 or

 
L

s n
t

n

n−
+










=1

1

1 1

!

  Changing n to n − 1, we get L
s n

t
n

n− −








=

−
1 11 1

1( )!
, if n is a positive integer.

If n > 0, then L
s n

t
n

n− −








=1 11 1

( )

In particular, L t
s

( ) =
1
2

  or  L
s

t− 





=

1

2

1
.

5.  L at
a

s a
(sin ) =

+2 2

 

L at e at tst(sin ) sin d= −
∞

∫
0

 

=
+

− −












− ∞
e

s a
s at a at

st

2 2

0

( sin cos )

 
=−

+
( ) −

+
( )− ∞ − ∞s

s a
e at

a

s a
e atst st

2 2 0 2 2 0
sin cos

 
=

+
a

s a2 2

 [ e−st sin at and e−st cos at tend to zero at t → ∞, if s > 0]

Inverting this result we get L
a

s a
at−

+










=1

2 2
sin . 
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6. L at
s

s a
(cos ) =

+2 2

 

L at e at tst(cos ) cos d= −
∞

∫
0

   

=
+

− +












− ∞
e

s a
s at a at

st

2 2

0

( cos sin )

   =−
+

( ) +
+

( )− ∞ − ∞s

s a
e at

a

s a
e atst st

2 2 0 2 2 0
cos sin

   =
+
s

s a2 2
, as per the results stated above.

Inverting the above result we get L
s

s a
at−

+










=1

2 2
cos .

Aliter

 L(cos at + i sin at) = L(eiat)

 =
−
1

s ia
, by result (3).

=
+
+

s ia

s a2 2

i.e., L at iL at
s

s a
i

a

s a
(cos ) + (sin ) =

+
+

+2 2 2 2
, by linearity property.

Equating the real parts, we get L at
s

s a
(cos ) =

+2 2
.

Equating the imaginary parts, we get L at
a

s a
(sin ) =

+2 2

7. L at
a

s a
(sinh ) =

2 2−

 L at L e eat at(sinh ) ( )= −












−1

2

 = −





−1

2
L e L eat at( ) ( ) , by linearity property.

 =
−

−
+











1

2

1 1

s a s a
, if s > a and s > − a.

 =
−
a

s a2 2
, if s > |a|
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Aliter

L(sinh at) = − iL(sin i at) [

∴

 sin iθ = i sinh θ]

 =− ⋅
+

i
ia

s i a2 2 2
, by result (5)

 =
−
a

s a2 2

Inverting the above result we get L
a

s a
at−

−










=1

2 2
sinh .

8.  L at
s

s a
(cosh ) =

−2 2

 L at L e eat at(cosh ) = +( )











−1

2

 = ( )+ ( )





−1

2
L e L eat at , by linearity property,

 =
−

+
+









1

2

1 1

s a s a
, if s > |a|.

 =
−
s

s a2 2
, if s > |a|.

Aliter

 L(cosh at) = L(cos iat) [ cos iq = cosh q]

 =
+

s

s i a2 2 2 , by result (6)

 =
−
s

s a2 2

Inverting the above result we get L
s

s a
at−

−










=1

2 2
cosh .

5.4 LAPLACE TRANSFORMS OF SOME SPECIAL 

FUNCTIONS

5.4.1  Definition

The function f t
t a

t a a
( )

, when

, when , where
=

<
>




 ≥
0

1 0
, is called Heavyside’s unit step 

function and is denoted by u
a
 (t) or u (t − a)
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In particular, u t
t

t
0

1

0

0
( )

0,

,

when

when
=

<
>






Now L u t e u t ta

s t

a{ ( )} ( ) d= −
∞

∫
0

 = +− −
∞

∫ ∫e u t t e u t ts t

a

a

s t

a

a

0

( ) d ( ) d

 = −
∞

∫ e tst

a

d , by the definition of u
a 
(t)

 =










=
−

−

∞ −e est

S

a

a s

S
, assuming that s > 0.

In particular, L u t
S

{ ( )}0

1
=  , which is the same as L(1).

Inverting the above result, we get L
e

s
u t

as

a
−

−










=1 ( ) .

5.4.2  Definition

lim ( )
h

f t
→

{ }
0

, where f (t) is defined by

 f t h
a

h
t a

h

( )
, when

, otherwise

= − ≤ ≤ +







1

2 2
0

 is called Unit Impulse

Function or Dirace Delta Function and is denoted by δ
a
(t) or δ (t − a).

Now L t L f ta
h

{ ( )} lim ( )δ = { }



→0
,where f(t) is taken as given in the definition

 =
→

lim { ( )}
h

L f t
0

 =
→

−
∞

∫lim ( ) d
h

s te f t t
0

0

 = ⋅
→

−

−

+

∫lim d
h

s t

a
h

a
h

e
h

t
0

2

2
1

 

= ⋅
−





























→

−

−

+

lim
h

s t

a
h

a
h

h

e

s0

2

21
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=
−

















→

− −






 − +









lim
h

s a
h

e

s a
h

e

sh0

2 2






=
−















=

−

→

−

−

→

e
e e

sh

e

sh

a s

h

s h
s h

a s

h

lim

lim

sinh

0

2
2

0

2

/
/

22































sh

 =































−

→
e

s
sh

s

a s

h
lim

cosh

0

2 , by L’ Hospital’s rule.

 
=












=−

→

−e
sh

ea s

h

a slim cosh
0 2

Aliter

 
f t

h
u t u t

a
h

a
h( ) ( ) ( )= −











− +

1

2 2

, since
 

u t
a

h
−

2

( ) = 1, when t a
h

> −
2

 and u t
a

h
+

2

0( ) = ,

when t a
h

< +
2

 and hence u t u t
a

h
a

h
− +

− =
2 2

1( ) ( )

when a
h

t a
h

− < < +
2 2

∴ L f t
h

L u t L u t
a

h
a

h{ ( )} ( ) ( )=











−















− +

1

2 2





= −

− − ⋅⋅






 − + ⋅⋅









1 2 2

h

e

s

e

s

a
h

s a
h

s



















=









−e

sh

sh

a s

2
2

sinh
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∴
  

L t L f t e

sh

s h
a

h

as

h
δ ( ) lim ( ) lim

sinh

0 0
{ }= { }= ⋅
















→

−

→

2
2
















= −e as

Inverting the above result, we get

 L−1{e−as}= δ
a
(t). When a → 0, L−1 {1} = δ (t).

5.5 PROPERTIES OF LAPLACE TRANSFORMS

1.  Change of Scale Property

If L{ f(t)} = φ (s), then L f at
a

s

a
{ ( )}=

1
φ







  and L f

t

a
a as



















= ( )φ .

Proof

By definition, φ( ) { ( )}= ( )ds L f t e f t tst= −
∞

∫
0

 (1)

and L f at e f at tst{ ( )}= ( )d−
∞

∫
0

 [ f(at) is a function of t]

=
−

∞

∫ e f x
x

a

s
x

a

0

( )
d , putting x = at and making necessary changes.

= ⋅−
∞

∫
1

0
a

e f x xs a x( ) ( ) d/  (2)

 = ⋅−
∞

∫
1

0
a

e f t ts a t( ) ( ) d/ , changing the dummy variable x as t.

Now, comparing (1) and (2), we note that the integral in (2) is the same as the 

integral in (1) except that ‘s’ in integral in (1) is replaced by 
s

a







  in the integral 

in (2).

∴ When the integral in (1) is equal to φ (s), that in (2) is equal to φ (s/a).

Thus L f at
a

s a{ ( )} ( )=
1
φ   (3)

Changing a to 
1

a
in (3) or proceeding as in the proof given above, we have

 L f t a a as{ ( )} ( )= φ .
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2.  First Shifting Property

If L{ f (t)} = φ (s), then L{e−at f (t)} = φ (s + a)

and  L{eat f (t)} = φ (s − a).

Proof

By definition, L f t e f t t sst{ ( )} ( )d ( )= =−
∞

∫
0

φ  (1)

and L e f t e e f t tat st at{ ( )} [ ( )]d− −
∞

−=∫
0

[ e−at f (t) is a function of t]

 = − +
∞

∫ e f t ts a t( ) ( ) d

0

 (2)

 = +φ ( )s a , comparing the integrals in (1) and (2)

Changing a to − a in the above result,

we get L e f t s aat{ ( )}= ( )φ − .

Note 

 1. The above property can be rewritten as a working rule (formula) in the fol-

lowing way:

 

L e f t s a

s

L f t

at

s s a

s s a

{ ( )}= ( )

=[ ( )]

{ ( )}

+

+

− +

→
= →

φ

φ

‘s → s + a’ means that s is replaced by (s + a).

Thus, to find the Laplace transform of the product of two factors, one of

which is e−at, we ignore e−at, find the Laplace transform of the other factor as

a function of s and change s into (s + a) in it.

Similarly,

 L{eat f (t)} = L{f (t)
s → s −a

 2. The above property can be stated in terms of the inverse Laplace operator as 

follows:

 If L s f t−1 { ( )}= ( )φ , then L s a e f tat− −+ ⋅1 { ( )}= ( )φ

 From this form of the property, we get the following working rule:

 L s a e L sat− − −+ ⋅1 1{ ( )}= { ( )}φ φ

This means that if we wish to find the Laplace inverse transform of a function 

that can be identified as a function of (s + a), we have to find the Laplace 

inverse transform of the corresponding function of s and multiply it with e−at. 

Similarly,

 L s a e L sat− −−1 1{ ( )}= { ( )}φ φ .
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 3. The above property is called so, as it concerns shifting on the s-axis by a (or 

− a), i.e., replacing s by s + a (or s − a).
The second shifting property, that follows, concerns shifting on the t-axis by 

−a i.e., replacing t by t − a.

3.  Second Shifting Property

If  L{ f (t)} = φ (s), then L{ f (t − a)u
a
(t)} = e−asφ (s),

where a is a positive constant and u
a
(t) is the unit step function.

Proof

By definition, L f t a u t e f t a u t ta

st

a{ ( ) ( )}= ( ) ( )d− −−
∞

∫
0

 = − + −− −
∞

∫ ∫e f t a u t t e f t a u t tst

a

a

st

a

a

0

( ) ( )d ( ) ( )d

 = −−
∞

∫ e f t a tst

a

( )d , by the definition of u
a
(t).

 = − +
∞

∫ e f x xs x a( ) ( ) d

0

, putting t − a = x and effecting consequent changes

 = − −
∞

∫e e f t tas st

0

( )d , changing the dummy variable x as t.

 
= −e sasφ ( )

Note 

 1. Rewriting the above property, we get the following working rule:

L{f (t − a) u
a
(t)} = e−as L{f (t)}

 2. The above property can be stated in terms of the inverse Laplace operator as 

follows:

 If L−1{φ (s)} = f (t), then L−1{e−as φ (s)} = f (t − a) u
a
(t).

 From this form of the property, we get the following working rule.

 L−1{e−as φ (s)} = L−1 {φ (s)}
t → t − a

 · u
a
(t).

Thus if we wish to find the Laplace inverse transform of the product of two factors, 

one of which is e−as, we ignore e−as, find the Laplace inverse transform of the other 

factor as a function of t, replace t by (t − a) in it and multiply by u
a
(t).

Example 5.1 Find the Laplace transforms of the following functions:

WORKED EXAMPLE 5(a)
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(i) f t
t t

t
( )

, for

, for 0<
= −( ) >

<







1 1

0 1

2

(ii) f t
e t a

t a

k t

( )
, for

, for 
=

< <
>







0

0

(iii) f t

t t

t

( )=
< <

>











sin , for

, for 

ω
π

ω

π

ω

0

0

(iv) f t
t t

t

L f t e f t tst

( )
, for

, for 

{ ( )} ( )d

=
< <
>






= −
∞

∫

0 4

5 4

0

(i) L f t e o t t e t

t
e

s

st st

st

{ ( )} d d= ⋅ + −( )

= −( ) ⋅
−











− −
∞

−

∫ ∫
0

1
2

1

2

1

1 
− −( )










+

−






















− −

2 1 2
2 3

t
e

s

e

s

st st



= + =

∞

− −

1

3 3
0

2 2

s
e

s
es s

Aliter

 

t u t
t

t t
−( ) =

<

−( )






1

0 1

1

2

1 2( )
for 0<

for >1

,

Thus f (t) = (t − 1)2 u
1 
(t)

∴  L{f (t)} = e−s · L(t2), by the second shifting property.

 
= −2

3s
e s

(ii) L f t e e t e t

e

s k

st

a

kt st

a

s k t

{ ( )} d d= ⋅ + ⋅

=
− −( )













− −
∞

− −( )

∫ ∫
0

0

00

1
1

a

a s k

s k
e=

−
− − −( )

{ }
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Aliter

Consider  e u t
e t a

t a

kt

a

k t

{ ( )}
, for 0< <

, for
1

0
− =

>






Thus  f (t) = e k t − e k t u
a 
(t)

 = e k t −e k (t − a) + ka ·
 
u

a 
(t)

∴  L{f (t)} = L(e k t) −e ak  · L{e k (t − a) · u
a
(t)}

 =
−

− ⋅ ⋅−1

s k
e e L eak as kt{ } , by the second shifting property

 =
−

− ⋅
−

=
−

−

− −( )

− −( )

1 1

1
1

s k
e

s k

s k
e

a s k

a s k
{ }.

(iii) L f t e t t

e

s
s t t

st

st

{ ( )} sin d

sin cos

=

=
+

− −( )












−

−

∫ ω

ω
ω ω ω

π ω

0

2 2

0

ππ ω

π ωω

ω
=

+
+( )−

s
e s

2 2
1

(iv) L f t te t e t

t
e

s

e

s

st st

st st

{ ( )} d d= +

= ⋅
−










−

− −
∞

− −

∫∫ 5

40

4

2

.





















 +

−











=− −

− ∞

−

0

4

4

4

2

5

4 1

e

s

s
e

s
e

st

s −− −

− −

+ +

= − +

4

2

4

4

2

4

2

1 5

1 1 1

s s

s s

s s
e

s
e

s
e

s

Aliter

 
t u t u t

t t

t
{ ( )} ( )

, for 0<

, for
1 5

4

5 4
4 4− + =

<
>






Thus f (t) = t − (t − 5) u
4
(t)

 = t − (t − 4) u
4
(t) + u

4
(t)
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∴ L f t L t e L t L u t

s s
e

s
e

s

s s

( ( )} ( ) ( ) { ( )}= − ⋅ +

= − +

−

− −

4

4

2 2

4 41 1 1
.

Example 5.2 Find the Laplace transforms of the following functions:

(i) 
1 2+ t

t
, (ii) sin t , (iii) 

cos t

t
.

(i) L
t

t
L t L t

s s

s

1 2
2

1 2
2

3 2

2

1 2 1 2

1 2 3 2

+








= +

=
( )

+
( )

= +

−( ) ( )

π
⋅⋅

( )= +( )= ( )





= +








1

2 1 2 1

1
1

π

π

π

s s
n n n

s s

∵ and

.

(ii) sin
! !

! !

t t
t t

t t t

= −
( )

+
( )

− ∞

= − + − ∞

3 5

1 2 3 2 5 2

3 5

1

3

1

5

....

....

∴ L t L t L t L t

s s

sin ( )
!

( )
!

( )

!

( )= − + − ∞

=
( )

−
( )

1 2 3 2 5 2

3 2 5

1

3

1

5

3 2 1

3

5 2

....

22 7 2

1

5

7 2
+

( )
− ∞

! s
....

 = ( )− ⋅ ⋅ ( )⋅ + ⋅ ⋅ ( )⋅ − ∞






1 1

2
1 2

1

3

3

2

1

2
1 2

1 1

5

5

2

3

2

1

2
1 2

1
3 2 2s s s! !

....






= − ⋅









+ ⋅











−
π

2
1

1

1

1

4

1

2

1

43 2

2

s s s! !
......∞

















= −π

2 3 2

1 4

s
e s

(iii) cos

! !

! !

t

t t

t t

t t

= −
( )

+
( )

− ∞



















= − +−

1
1

2 4

1

2

1

4

2 4

1 2 1 2

.....

tt3 2 − ∞.....
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∴  L
t

t
L t L t L t

cos
( )

! !










= − ( )+ ( )− ∞

=

−1 2 1 2 3 21

2

1

4

1 2

/ .....

(( )
−

( )
+

( )
− ∞

= − +
⋅

⋅
−

s s s

s s s

1 2 3 2 5 2

2

1

2

3 2 1

4

5 2

1
1

2

1

4

3 1

2 2

! !

! 2 !

.....

π
......

.

∞












= − ⋅






+ ⋅







 −

π

s s s
1

1

1

1

4

1

2

1

4

2

! !
.....∞

















= −π

s
e s1 4

Example 5.3 Find the Laplace transforms of the following functions:

  (i) (t3 + 3e2t − 5 sin 3t)e−t  (ii) (1 + te−t)3

(iii) e−2t cosh3 2t  (iv) cosh at cos at

 (v) sinh sin
t

t
2

3

2

(i)  L{(t3 + 3e2t − 5 sin 3t)e−t}

 = L(t3 + 3e2t − 5 sin 3t)
s → s + 1

, by first shifting property.

 
= +

−
− ⋅

+











=
+( )

+
−( )

−
+

→ +

3

4

3

2
5

3

9

6

1

3

1

15

2

2

1

4 2

!

s s s

s s s s

s s

++10

(ii) L(1 + te−t)3 = L(1 + 3t e−t + 3t2 e−2t + t3 e−3t)

 = L(1) + 3L(t)
s → s + 1

 + 3L(t2)
s → s + 2

 + L(t3)
s → s + 3

 = +
+

+
+

+
+

1 3

1

6

2

6

32 3 4s s s s( ) ( ) ( )

(iii) L e t L e
e et t

t t

( cosh )2− −
−

= ⋅
+






















3 2
2 2

3

2
2 

 

= + + +

= + + +

− − −

− −

1

8
3 3

1

8
3 3

1

8

1

2 6 2 2 6

4 4 8

L e e e e e

L e e e

t t t t t

t t t

{ ( )}

{ }

= 
ss s s s−

+ +
+

+
+









4

3 3

4

1

8
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(iv)
 

L at at L
e e

at
at at

cosh cos cos( )= +





















−

2

 
= ( ) + ( )





=
−

−( ) +
+

+

+

→ − → +

1

2

1

2 2 2

L at L at

s a

s a a

s a

s a

s s a s s a
cos cos

(( ) +

















=
−

+ −
+

+
+ +













=

2 2

2 2 2 2

1

2 2 2 2 2

1

2

a

s a

s a as

s a

s a as

(( ) ( )s a s a as s a s a as

s a a s

− + +( )+ + + −( )
+( ) −










2 2 2 2

2 2
2

2 2

2 2 2 2

2 4 






=
+
s

s a

3

4 44
.

(v) L
t

t(sinh sin )
2

3

2

 

=
−





















=





−

L
e e

t

L t

t t2 2

2

3

2

1

2

3

2

sin

sin





 →

−








 →



















=

− +s s s s

L t
1

2

1

2

3

2

1

2

3

sin

22

1 2 3 4

3 2

1 2 3 4

3

4

1

1

1

1

2 2

2 2

s s

s s s s

−( ) +
−

+( ) +

















=
− +

−
+ +













= ⋅
+ +

3

2 14 2

s

s s

Example 5.4 Find the Laplace transforms of the following functions:

 (i) eat cos (bt + c) (ii) e−2t cos2 3t (iii) et sin3 2t

(iv) e−t sin 2t cos 3t (v) e3t sin 2t sin t

(i) L{eatcos (bt + c)}= L{cos (bt + c)}
s → s − a

 = L{cos c cos bt − sin c sin bt}
s→ s − a

 

=
−
− +

−
− +

( ) cos

( )

sin

( )

s a c

s a b

b c

s a b2 2 2 2
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 (ii) L{e−2t cos2 3t}= L(cos2 3t)
s → s

 
+
 
2

 

= +( )










=
+

+
+

+( ) +










→ +

L t

s

s

s

s s

1

2
1

1

2

1

2

2

2 36

2

2

cos 6







 (iii) L{et sin3 2t} = L(sin3 2t)
s → s

 
−
 
1

 

= −










= ⋅
+

− ⋅
+






→ −

L t t

s s

s s

3

4
2

1

4
6

3

4

2

4

1

4

6

36

1

2 2

sin sin







=
− +

−
− +











→ −s s

s s s s

1

2 2

3

2

1

2 5

1

2 37

 (iv) L{e−t sin 2t cos 3t} = L(sin 2t cos 3t)
s → s + 1

 

= −( )










=
+

−
+













→ +
L t t

s s

s s

1

2
5

1

2

5

25

1

1

1

2 2

sin sin

ss s

s s s s

→ +

=
+ +

−
+ +











1

2 2

1

2

5

2 26

1

2 2

 (v) L{e3t sin 2t sin t} = L(sin 2t sin t)
s → s − 3

 

= −( )










=
+

−
+









→ −

L t t

s

s

s

s

s s

1

2
3

1

2 1 9

3

2 2

cos cos




=
−

− +
−

−
− +











→ −s s

s

s s

s

s s

3

2 2

1

2

3

6 10

3

6 18

Example 5.5 Find the Laplace transforms of the following functions:

(i) (t − 1)2 · u
1
(t)  (ii) sin t · u

π
(t)  (iii) e−3t · u

2
(t)

(i)  L{(t − 1)2 u
1
(t)} = e−s · L{t2}, by the second shifting property

 
= −2

3s
e s

(ii)  L{sint · u
π
(t)} = L{sin (t − π + π) · u

π
(t)}

 = −L{sin (t − π) · u
π
(t)}
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 = − e−sp L(sin t)

 
=−

+

−e

s

sπ

2 1

 (iii) L{e−3t u
2
(t)} = L{e−3(t−2)−6 ⋅ u

2
(t)}

 

= ⋅ ⋅
+

− − −
− +( )

e e L e
e

s

s t

s

6 2 3

2 6

3
{ }=

Example 5.6 Find the Laplace transforms of the following functions:

(i) t sin at  (ii) t cos at  (iii) te−4t sin 3t

(i)  L (t sin at) = L{t × I.P. of e iat}

 = I.P. of L{t e iat}

 = I.P. of L(t)
s → s − ia

 

=
−( )

=
+( )
+( )

=
−

+( )
+

I.P. of I.P. of

I.P. of

2

2

2

2

1

2 2

2 2

2 2

s ia

s ia

s a

s a

s a
ii

as

s a

as

s a

2

2

2 2

2 2

+( )



















=
+( )

2

2

(ii)  L(t cos at) = R.P. of L{te iat}

 
=

−

+( )
s a

s a

2 2

2 2
2

(iii)  L(t e−4t sin 3t) = I.P. of L {t e −4t e i3t}

 = I.P. of L {t · e−(4 − i3)t}

 = I.P. of L(t)
s → (s + 4 − i3)

 

=
+ −( )

=
+ +( )

+( ) +{ }

=
+( ) −

I.P. of I.P. of

I.P. of

1

4 3

4 3

4 9

4

2

2

2
2

2

s i

s i

s

s 99 6 4

4 9

6 4

4 9

2
2

2
2

{ }+ +( )

+( ) +{ }
=

+( )

+( ) +{ }

i s

s

s

s
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Example 5.7

(i)  Assuming L(sin t) and L(cos t), find the Laplace transforms of L
t

sin
2







 and 

L(cos 3t).

(ii) Given that L t t
s

s
sin( )=

+( )
2

12
2

 and L t t
s

s
cos( )= −

+( )

2

2
2

1

1
, find L(t sin at) and

 L t
t

a
cos







 .

(i) L t
s

sin( )=
+
1

12

∴ L
t

s
sin

2
2

1

2 1
2







= ⋅

( ) +

 

∵L f
t

a
a L f t

s as


















= ⋅ { } →

( ) ,by the charge of sccale property












 
=

+
2

4 12s

 
L t

s

s
cos( )=

+2 1

∴ L t
s

s
cos3

1

3

3

3 1
2

( )= ⋅
( ) +

/

/

 
∵ L f a t

a
L f t

s
s

a

( ){ }= ( ){ } →












1
, by the charge of scale property

 
=

+
s

s2 9
.

(ii) Given that L t t
s

s
sin( )=

+( )
2

12
2

∴ L t at
a

L at at

a a

s a

s a

( sin ) ( sin )

, by change of scal

=

= ⋅ ⋅
+( )

1

1 1 2

12 2
2

/

/
ee property⋅

=
+( )
2

2 2
2

as

s a
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Given that L t t
s

s
cos( )= −

+( )

2

2
2

1

1

∴ L t
t

a
a L

t

a

t

a
cos cos







= ⋅









 
= ⋅ ⋅

( ) −

( ) +





a a
as

as

2

2
2

1

1

, by change of scale property

 =
a s a

a s

4 2 2

2 2
2

1

−

+( )
 or 

s
a

s
a

2

2

2

2

2

1

1

−

+








.

Example 5.8 Find the inverse Laplace transforms of the following functions:

(i) 
1

2
5 2

s
e s

+( )
−

/
  (ii) 

e

s

s−

−( )

2

3
2 3

  (iii) 
s e

s

s−

−( )3
5

  (iv) 
3 4

2 2

a s

s a
e bs

−( )
+

−

(v) 
s

s
e s

+( )
−

−4

42

4

(i) From the second shifting property, we have

 L−1 {e−as φ (s)} = L−1 {φ (s)
t → t − a

 ⋅ u
a
(t)

∴ L e
s

L
s

s− − −⋅
+( )














=

+( )









1

5 2

1

5 2

1

2

1

2
/ /




→

⋅
−t t

u t

1

1( )  (1)

 Now L
s

e L
s

t− − −

+( )














= ⋅











1

5 2

2 1

5 2

1

2

1
/ /

[ L−1 {φ (s + 2) = e−2t L−1 {φ (s)}, by the first shifting property.]

 

= ⋅
( )

⋅−e tt2 3 21

5 2/

/

 

∵L
s n

t
n

n− −=
( )































1 11 1

 

= ⋅
⋅ ⋅ ( )

⋅−e tt2 3 21

3

2

1

2
1 2/

/

 

∵ n n n( )= −( ) −( )





1 1

 

= −4

3

3

2 2

π
t e t

 
∵ 1 2/( )=




π

  (2)

 Inserting (2) in (1), we have

L e
s

t e u ts t− − − −( )

+( )














= −( ) ⋅1

5 2

3 2 2 1

1

1

2

4

3
1

/

/

π
( ))
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or  =
<

− ⋅ >









− −

0 1

4

3
12 1

, when

( 1) , when3/2 ( )

t

t e tt

π

(ii) L
e

s
L

s

s

t t

−
−

−

−−










=

−









→

1
2

3

1

32 3

1

2 3( ) ( )
22

2⋅u t( )  (1)

Now L
s

L
s

e

− −

−










=

−











=

1

3

1

3

1

2 3

1

8

1

3 2

1

8

( ) ( )3

22 1

3

3

2 2

3

2 2

1

1

8

1

2

1

16

t

t t

L
s

e t e t

− 









= ⋅ =
!

  

(2)

 Using (2) in (1), we get

 

L
e

s
e t u t

s
t−

− −

−










= − ⋅1

2 3

2
2

2

2
2 3

1

16
2

( )
( ) ( )

3

( )

(iii) L
s e

s
L

s

s

s

t t

−
−

−

−−










=

−









→

⋅1 1

1
3 3( ) ( )5 5

uu t1( )  (1)

Now L
s

s
L

s

s

e

− −

−










=

−
−











=

1 1

3

3

3

3( )

( ) +3

( )5 5

tt

t

t

L
s

s

e L
s s

e

−

−

+









= +










=

1

5

3 1

4 5

3

3

1 3

1

3!! !

( )

t t

e t tt

3 4

3 3 4

3
1

4

1

24
4 3

+ ⋅










= +

  

(2)

Using (2) in (1), we have

L
s

s
e e t t us t− − −

−










= − + − ⋅1 3 1 3 4

3

1

24
4 1 3 1

( )
{ ( ) ( ) }

5

( )

1(( )t

(iv) L
a s

s a
e L

a s

s a

bs− − −−
+










=

−
+








1

2 2

1

2 2

3 4 3 4( )

→
⋅

−t t b

bu t( )   (1)
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Now L
a s

s a
L

a

s a
L

s− − −−
+










=

+










−1

2 2

1

2 2

13 4
3 4

ss a2 2+











 = 3 sin at − 4 cos at  (2)

Using (2) in (1), we have

L
a s

s a
e a t b a t b ubs− −−

+










= − − −1

2 2

3 4
3 4

( )
[ sin ( ) cos ( )] bb t( )

(v)  L
s

s
e L

s

s

s

t t

− − −+
−










=

+
−









→

1

2

4 1

2

4

4

4

4

( )

−−

⋅
4

4u t( ) (1)

Now L
s

s
L

s

s
L

s

− − −+
−










=

−










+

−


1

2

1

2

1

2

4

4 4
2

2

4









 = cosh 2t + 2 sinh 2t (2)

Using (2) in (1), we have

L
s

s
e t t us− −+

−










= − + − ⋅1

2

4

4

4

4
2 4 2 2 4

( )
{cosh ( ) sinh ( )} (( )t

Example 5.9 Find the inverse Laplace transforms of the following functions:

(i) 
e

s s

s−

− +( ) ( )2 3
 (ii) 

e

s s

s−

+

2

2 2 1( )
 (iii) 

e

s s

s−

+( )2 4
 (iv)

e

s s

s−

+ +

3

2 4 13

(v) 
( )s e

s s

s+
+ +

−1

2 52

π

(i) L
e

s s
L

s s

s
−

−
−

− +










=

− +











1 1

2 3

1

2 3( ) ( ) ( ) ( )→
⋅

−t t

u t

1

1( )  (1)

 Now to find L
s s

−

− +











1 1

2 3( ) ( )
, we resolve 

1

2 3( ) ( )s s− +
 into partial fractions

and then use the linearity property of L−1 operator.

Let  
1

2 3 2 3( ) ( )s s

A

s

B

s− +
=

−
+

+

Then  A (s + 3) + B (s − 2) = 1

By the usual procedure, we get A=
1

5
, B=−

1

5

∴

 

L
s s

L
s s

− −

−( ) +( )












=

−
−

+











1 11

2 3

1 5

2

1 5

3
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=

−










−

+











− −1

5

1

2

1

5

1

3

1 1L
s

L
s

 = − −1

5
( )e et t2 3

 
(2)

Putting (2) in (1), we have

 

L
e

s s
e e u t

s
t t−

−
− − −

− +










= −{ }⋅1 2 1 3 1

1
2 3

1

5( ) ( )
( )( ) ( )

(ii) L
e

s s
L

s s

s

t

−
−

−

+










=

+









→

1
2

2 2

1

2 21

1

1( ) ( )
tt

u t

−

⋅
2

2 ( )   (1)

Now  
1

1

1

1

1 1

1

1 1

12 2 2 2s s u u u u s s( ) ( )+
=

+
= −

+
= −

+

∴

 

L
s s

L
s

L
s

− − −

+










=







− +






1

2 2

1

2

1

2

1

1

1 1

1( )






 = t − sin t  (2)

Inserting (2) in (1), we get

L
e

s s
t t u t

s
−

−

+










= − − −1

2

2 2 2
1

2 2
( )

{( ) sin ( } ( )

(iii)    L
e

s s
L

s s

s

t t

−
−

−

−
+










=

+









→

1

2

1

2

1
4

1

4( ) ( )
⋅⋅u t1( )

 
(1)

Let  
1

4 42 2s s

A

s

B s C

s( )+
= +

+
+

Then  A(s2 + 4) + s (Bs + c) = 1

∴

 

A B= =−
1

4

1

4
,  and C = 0

∴ L
s s

L
s

s

s

− −

+










= −

+





















1

2

1

2

1

4

1

4

1

4

4( )

 = −
1

4
1 2( cos )t

 
(2)
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Using (2) in (1), we have

 

L
e

s s
t u t

s
−

−

+










= − − ⋅1

2 1
4

1

4
1 2 1

( )
{ cos ( )} ( )

(iv)   L
e

s s
L

s s

s

t

−
−

−

+ +










=

+ +









→

1
3

2

1

24 13

1

4 13
tt

u t
−

⋅
3

3 ( )  (1)

Now  L
s s

L
s

− −

+ +










=

+ +











1

2

1

2 2

1

4 13

1

2 3( )

 = ⋅
+











− −e L
s

t2 1

2 2

1

3
, by the shifting property

 

=
+











− −1

3

3

3

2 1

2 2
e L

s

t

 = −1

3
32e tt sin   (2)

Using (2) in (1), we get

L
e

s s
e t u t

s
t−

−
− −

+ +










= ⋅ − ⋅1

3

2

2 3

3
4 13

1

3
3 3( ) sin ( ) ( )

(v)  L
s e

s s
L

s

s s

s
−

−
−+

+ +










=

+
+ +








1

2

1

2

1

2 5

1

2 5

( ) π

→
⋅

−t t

u t
π

π ( )  (1)

Now L
s

s s
L

s

s

− −+
+ +










=

+
+ +











1

2

1

2 2

1

2 5

1

1 2

( )

( ) 

= ⋅
+











− −e L
s

s

t 1

2 22
, by the shifting property

 = e−t cos 2t  (2)

Using (2) in (1), we have

 

L
s e

s s
e t u t

s
t−

−
− −+

+ +










= ⋅ − ⋅1

2

1

2 5
2

( )
cos ( ) ( )( )

π
π

ππ

Example 5.10 Find the inverse Laplace transforms of the following functions:

(i)  
s s

s s s

2 2

3 2

+ −
+ −( ) ( )

  (ii) 
2 5 2

2

2

4

s s

s

+ +
−( )

  (iii) 
s

s s( ) ( )+ +1 12 2

(iv)  
1

1 92 2 2s s s( ) ( )+ +
  (v) 

s

s s s( ) ( ) ( )2 2 21 4 9+ + +
.
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(i) To find L
s s

s s s

− + −
+ −











1
2 2

3 2( ) ( )
, we resolve the given function of s into partial

fractions and then use the linearity property of L−1 operator.

Let 
s s

s s s

A

s

B

s

C

s

2 2

3 2 3 2

+ −
+ −

= +
+

+
−( ) ( )

We find, by the usual procedure, that

 A=
1

3
, B=

4

15
  and  C=

2

5
.

∴  L
s s

s s s
L

s s s

− −+ −
+ −










= +

+
+

−


1

2
12

3 2

1 3 4 15

3

2 5

2( ) ( )

/ / /











 
= + +−1

3

4

15

2

5

3 2e et t

(ii) To resolve 
2 5 2

2

2

4

s s

s

+ +
−( )

 into partial fractions, we put s − 2 = x, so that 

 s = x + 2.

Then  
2 5 2

2

2 2 5 2 22

4

2

4

s s

s

x x

x

+ +
−

=
+ + + +

( )

( ) ( )

 

=
+ +

= + +

=
−

+
−

+
−

2 13 20

2 13 20

2

2

13

2

20

2

2

4

2 3 4

2 3 4

x x

x

x x x

s s s( ) ( ) ( )

∴ L
s s

s
L

s

− −+ +

−
=

−
+





















1
2

4

1

2

2 5 2

2
2

1

2( ) ( )
113

1

2
20

1

2

1

3

1

4
L

s
L

s

− −

−
+

−



















( ) ( )

 

= ⋅ + ⋅ + ⋅− − −













2

1
13

1
20

12 1

2

2 1

3

2 1

4
e L

s
e L

s
e L

s

t t t 



















= ⋅ + +

= + +

e t t t

e t t t

t

t

2 2 3

2 2 3

2
13

2

20

3

2
13

2

10

3

! !
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= + +

1

6
12 39 202 2 3e t t tt ( )

(iii) Let 
s

s s

A

s

B

s

C s D

s( ) ( )2+ +( )
=

+
+

+
+

+
+1 1 1 1 12 2 2

∴ A(s + 1) (s2 + 1) + B(s2 + 1) + (Cs + D) (s + 1)2 = s

By the usual procedure, we find that

 A = 0; B =−
1

2
; C = 0 and D =

1

2

∴  L
s

s
L

s s

− −

+ +( )













=

−
+

+
+


1 1

1 1

1 2

1

1 2

1( ) s ( )2 2 2 2

/ /







     

=− ⋅






+ +









=− +

− − −

−

1

2

1 1

2

1

1

2

1

2

1

2

1

2
e L

s
L

s

t
e

t

t sin  t

(iv) Since 
1

1 92 2 2s s s+( ) +( )
 is a function of s2, we put s2 = u, we resolve

 
1

1 9u u u( ) ( )+ +
 into partial fractions and then replace u by s2.

Now let  
1

1 9 1 9u u u

A

u

B

u

C

u( ) ( )+ +
= +

+
+

+

By the usual procedure, we find that A B= =−
1

9

1

8
,   and C =

1

72

∴  L
s s s

L
s s

− −

+( ) +( )













= −

+
+1

2 2 2

1

2 2

1

1 9

1 9 1 8

1

1 72/ / /

ss2 9+











     
= − +

1

9

1

8

1

216
t t t sin  sin 3

(v) To resolve 
s

s s s2 2 21 4 9+( ) +( ) +( )
 into partial fractions, we first resolve

 
1

1 4 92 2 2s s s+( ) +( ) +( )
into partial fractions as shown in (iv).

Thus  
1

1 4 9

1

1 4 92 2 2s s s u u u+( ) +( ) +( )
=

+ + +( ) ( ) ( )

 
=

+
+

+
+

+
A

u

B

u

C

u1 4 9
, say.
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We find that A B= =−
1

24

1

15
,    and C =

1

40
.

∴ 
1

1 4 9

1 24

1

1 15

4

1 40

92 2 2 2 2 2
s s s s s s+( ) +( ) +( )

=
+

−
+

+
+

/ / /

∴ 
s

s s s

s

s

s

s

s

s2 2 2 2 2 2
1 4 9

1

24 1

1

15 4

1

40 9+( ) +( ) +( )
= ⋅

+
− ⋅

+
+ ⋅

+

∴ L
s

s s s
L

s

s

− −

+( ) +( ) +( )













=

+






1

2 2 2

1

2
1 4 9

1

24 1
− +







+

−1

15 4

1

2
L

s

s

 

1

40 9

1

2
L

s

s

−

+









 
= − +

1

24

1

15

1

40
 cos  cos 2  cos 3t t t

Example 5.11 Find the inverse Laplace transforms of the following functions:

(i) 
14 10

49 28 132

s

s s

+
+ +

 (ii) 
2 4 1

2

3 2

2 2

s s s

s s s

+ − +

− +( )

(iii) 
1

3 3s a−
 (iv) 

1

44s +

(v) 
s

s s4 2 1+ +

(i) L
s

s s
L

s

s s

− −+
+ +










=

+

+ +


1

2

1

2

14 10

49 28 13

14

49

5

7
4

7

13

49

















 

=
+

+






 +
























−2

7

5

7

2

7

3

7

1

2 2
L

s

s







=
+







+

+






 +





−2

7

2

7

3

7

2

7

3

7

1

2
L

s

s
























= ⋅
+

+

− −

2

2

7 1

2

2

7

3

7

3

7

e L

s

s

t





























2
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= +








−2

7

3

7

3

7

2

7e t t
t

cos sin

(ii) Let 
2 4 1

2 2

3 2

2 2 2 2

s s s

s s s

A

s

B

s

Cs D

s s

+ − +
− +

= + +
+

− +( )

∴ As(s2 − s + 2) + B(s2 − s + 2) + (Cs + D)s2 = 2s3 + 4s2 − s + 1.

By the usual procedure, we find that

A B C= = =
1

4

1

2

9

4
, ,  and D =

13

4

∴ L
s s s

s s s
L

s

− −+ − +

− +( )













=−








1
3 2

2 2

12 4 1

2

1

4

1+






+

+

− +















− −1

2

1

9

4

13

4

2

1

2

1

2
L

s
L

s

s s






 

=− + +
−







+

−






 +











−1

4 2

9

4

1

2

35

8

1

2

7

2

1

2

t
L

s

s 





















=− + + ⋅−

2

2 11

4 2

9

4

t
e Lt / ss

s s2

2

2

2

7

2

5 7

4

7

2

7

2
+











+
⋅

+






























=− + + +





1

4 2

9

4

7

2

5 7

4

7

2

2t
e t tt / cos sin






(iii)  
1 1

3 3 2s a s a s as a−
=

− + +( )( ) 2

∴ Let 
1

3 3 2 2s a

A

s a

Bs C

s as a−
=

−
+

+
+ +

∴ A(s2 + as + a2) + (s − a)(Bs + C) = 1

By the usual procedure, we find that

A
a

B
a

= =−
1

3

1

32 2
,   and  C

a
=−

2

3
.
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∴ L
s a a

L
s a

L a
s

− − −

−










=

−







+

− −
1

3 3 2

1 1
21 1

3

1

1

3

2

3aa

s as a2 2+ +



















 

= −
+

+






 +
















−1

3

1

3

2

2

3

2

2 2

1

2 2a
e

a
L

s a

s
a a

at

















= − ⋅
+

− −1

3

1

3

3

2
2 2

2 1

a
e

a
e L

s a

s

at

at

22

2

3

2

1

3

+






























=

a

a22
2

3

2
3

3

2
e e at atat

at

− +




























−
cos  sin

(iv)  
1

4

1

4 4 4

1

2 2
4 4 2 2 2

2s s s s s s+
=

+ +( )−
=

+( ) − ( )2

 

=
+ +( ) − +( )

1

2 2 2 22 2s s s s

∴Let 
1

4 2 2 2 24 2 2s

As B

s s

Cs D

s s+
=

+
+ +

+
+

− +

∴ (As + B) (s2 − 2s + 2) + (Cs + D)(s2 + 2s + 2) = 1

By the usual procedure, we get

 A = 1/8,  B = 1/4,  C = −1/8  and  D = 1/4

∴ L
s

L

s

s s

− −

+










=

+

+ +














1

4

1

2

1

4

1

8

1

4

2 2






−
−

− +



















−L

s

s s

1

2

1

8

1

4

2 2

 

=
+ +
+ +










−

− −
− +


− −1

8

1

1

1

8

1

1

1 1L
s

s
L

s

s

( ) 1

( ) 1

( ) 1

( ) 12 2









= ⋅
+
+










− ⋅

−
+

− − −1

8

1

1

1

1

1

2

1

2
e L

s

s
e L

s

s

t t
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= + − −





= +



−

−

1

8

1

4 2

e t t e t t

e e

t t

t t

 (cos sin )  (cos sin )



 − −




















=

−

sin cos

 (sin  cosh 

t
e e

t

t

t t

2

1

4
tt t t−cos  sinh )

(v)  
s

s s

s

s s s

s

s s
4 2 4 2 2 2

2
21 2 1 1+ +

=
+ +( )−

=
+( ) −

 

=
+ +( ) − +( )

s

s s s s2 21 1

∴Let 
s

s s

As B

s s

Cs D

s s4 2 2 21 1 1+ +
=

+
+ +

+
+

− +

∴ (As + B) (s2 − s + 1) + (Cs + D) (s2 + s + 1) = s

By the usual procedure, we get

 A = 0, B =
−1

2
,  C = 0  and  D =

1

2
.

∴ L
s

s s
L

s s
L− − −

+ +










=

− +











−1

4 2

1

2

1

1

1

2

1

1

1

2

11

12s s+ +











 

=

−






 +























−1

2

1

1

2

3

2

1

2 2
L

s







−

+






 +

















−1

2

1

1

2

3

2

1

2 2
L

s

















=

+










−1

2

1

3

2

2 1

2

e L

s

t /























− ⋅

+





− −
2

2 1

2

1

3

2

e L

s

t /













































2










= ⋅ −( )












=

−1

2

2

3

3

2

2

3

3

2

2 2e e t

t

t t/ / sin

sin sinnh 
t

2
.

.

Example 5.12

(i) If L
s

s

t
t−

+( )














=1

2
2

1 2
sin , find L

s

s a

−

+( )















1

2 2
2
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(ii) Given that L
s

s
t t− +

−( )














=1

2

2
2

4

4
cosh 2 , find L

s

s

− +

−( )















1
2

2
2

1

1

(iii) Given that L
s

t t t−

+( )














= −1

2
2

1

4

1

16
2(sin 2 cos 2 ) , find L

s

−

+( )















1

2
2

1

9
.

(i) By change of scale property,

 
L f at

a

s

a
{ ( )}=

1
φ








∴ L−1 {f (s/a)} = a L−1{f (s)}
t → at  

(1)

Given L
s

s

t
t−

+( )














=1

2
2

1 2
sin

∴  L
s a

s

a

a−

+






























= ⋅1

2

2

2

1

/ aat
at

2
sin , by (1)

i.e.,  a L
s

s a

a
t at3 1

2 2
2

2

2

−

+( )














= sin

∴  L
s

s a

t

a
at−

+( )














=1

2 2
2 2

sin .

(ii)  By change of scale property,

 L{ f (t/a)} = a f (as)

∴    L as
a

L s t t a

− −
→

1 11
{ ( )}= ( ( )}φ φ /

  (2)

Given L
s

s
t t− +

−( )














=1

2

2
2

4

4
cosh 2  

∴ L
s

s

t
t− +

−










= ⋅1

2

2 2

2 4

2 4

1

2 2

( )

[( ) ]
cosh , by (2)

i.e.,  
1

4

1

1 4

1
2

2
2

L
s

s

t
t− +

−( )














= cosh

∴ L
s

s
t t− +

−( )














=1

2

2
2

1

1
cosh .
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(iii) Given L
s

t t t−

+( )














= −1

2
2

1

4

1

16
2(sin 2 cos 2 )

∴ L

s

−







 +



































1

2
2

1

2

3
4



=
+( )















−

→

3

2

1

4

1

2
2

3

2

L
s

t t

, by (2)

i.e. 
81

16

1

9

3

32
31

2
2

L
s

t t t−

+( )














= −(sin 3 cos3 )

∴ L
s

t t t−

+( )














= −1

2
2

1

9

1

54
3(sin 3 cos3 )

EXERCISE 5(a)

Part A

(Short Answer Questions)

1. Define Laplace transform.

2. State the conditions for the existence of Laplace transform of a function.

3. Give two examples for a function for which Laplace transform does not exist.

4. State the change of scale property in Laplace transformation.

5. State the first shifting property in Laplace transformation.

6. State the second shifting property in Laplace transformation.

7. Find the Laplace transform of unit step function.

8. Find the Laplace transforms of unit impulse function.

9. Find L{ f (t)}, if f t
e t

t

t

( )
,   for 0<

, for
=

<
>







2 1

0 1

10. Find L{ f (t)}, if f t

t

t t

t

( )

, for0<

, for

, for

=
<

< <
>










0 1

1 2

0 2

11. Find L{ f (t)}, if f t
t t

t
( )

sin , for 0<

, for
=

<
>






2

0

π

π

12. Find L{ f (t)}, if f t
t t

t
( )

cos , for 0<

, for
=

<
>






2

0 2

π

π
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13. Find L{ f (t)}, if f t

t

t t

( )=

, for 0<

cos , for

0
2

3

2

3

2

3

<

−






 >











π

π π

14. Find L{ f (t)}, if f t
t t

t t
( )=

sin , for 0< <

, for

π

π>






15. Find L t( )  and L
t

1

π













16. Find L{(t − 3) u
3
(t)} and L{u

1
(t) sin p (t − 1)}.

17. Find L{t2u
2 
(t)}

Find the Laplace transforms of the following functions:

18. (at + b)3 19. sin (wt + q)

20. sin2 3t 21. cos3 2t

22. sin 2t cos t 23. cos 3t cos 2t

24. sinh3 t 25. cosh2 2t

26. (t + 1)2 e−t 27. e t tt− −








2 2

3
cos3 sin 3

28. e t tt cosh 2 sinh 2+








1

2
 29. sin t sinh t

30. t2 cosh t 31. e t3( + 2)

Find the Laplace inverse transforms of the following functions:

32. e−as/s2 (a > 0). 33. (e−2s − e−3s)/s

34. 
e

s

s−

−

2

3
 35. 

se

s

s−

+2 9

36. 
1

12

+
+

−e

s

sπ

Find f (t) if L{ f (t)} is given by the following functions:

37. 
1

1( )3/2s +
 38. 

s s

s

2

3

2 3+ +

39. 
1

2 3
4

s−( )
 40. 

s

s−( )2
5

41. 
2 3

42

s

s

+
+

 42. 
s

s

+
−

6

92

43. 
1

s s a( + )
 44. 

1

2 52s s+ +

45. 
s

s s

−
− +

3

6 102
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Part B

Find the Laplace transforms of the following functions:

46. e3t(2t + 3)3 47. e at tat( )1 2+ /

48. e−t sinh3 t 49. sin at cosh at − cos at sinh at

50. (et sin t)2 51. 
cos 2

3
t

et









52. e−kt sin (wt + q) 53. e−t sin 3t cos t

54. et cost cos 2t cos 3t 55. e−2t sin 2t sin 3t sin 4t

56. t cos 2t 57. te−t cos t

58. t e2t sin 3t

59. Given that L t t
s

s
( sin )2

4

42
2

=
+( )

, find L(t sin t).

60. Given that L t t
s

s
( cos )3

9

9

2

2
2

=
−

+( )
, find L(t cos 2t).

Find the Laplace inverse transforms of the following function:

61. 
s

s s s

2

3 2

1

3 2

+
+ +  62. 

4 3 5

1 3 2

2

2

s s

s s s

− +

+( ) − +( )

63. 
s s

s

2

3

3 5

1

− +

+( )  64. 
7 11

1 2
2

s

s s

−

+( ) −( )

65. 
1

2
2

s s+( )
 66. 

s s

s s s

4 2

2 2 2

8 31

1 4 9

− +

+( ) +( ) +( )

67. 
2

1 2 32 2 2

s

s s s+( ) +( ) +( )
 68. 

2 9

6 342

s

s s

−
+ +

69. 
s

s s

+
+ +

1

12  70. 
ls m

as bs c

+
+ +2

71. 
3 16 26

4 13

2

2

s s

s s s

− +

+ +( )
 72. 

1

13s +

73. 
1

44 4s a+
 74. 

s

s4 4+

75. 
s

s

2

4 64+  76. 
4

4 1

3

4

s

s +

77. 
s

s s

2

4 2

1

1

+
+ +
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78. If L
s

s
t t−

−( )














=1

2
2

1

1

2
sinh , find L

s

s a

−

−( )















1

2 2
2

79. If L
s

t t t−

+( )














= −1

2
2

1

9

1

54
3 3(sin cos 3 ), find L

s

−

+( )















1

2
2

1

1
.

80. Given that L
s

s

t
t−

+( )














=1

2
2

9 6
3sin , find L

s

s

−

+( )















1

2
2

4

5.6 LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

5.6.1  Definition

A function f (t) is said to be a periodic function, if there exists a constant P (> 0) such 

that f (t + P) = f (t), for all values of t. Now f (t + 2P) = f (t + P + P) = f (t + P) = f (t), for 

all t. In general, f (t + nP) = f (t), for all t, when n is an integer (positive or negative).

P is called the period of the function.

Unlike other functions whose Laplace transforms are expressed in terms of an 

integral over the semi-infinite interval 0 ≤ t < ∞, the Laplace transform of a periodic 

function f (t) with period P can be expressed in terms of the integral of e−st f (t) over 

the finite interval (0, P), as established in the following theorem.

Theorem

If f (t) is a piecewise continuous periodic function with period P, then

 

L f t
e

e f t t
Ps

st

P

( ) ( )d{ }=
−

⋅−
−∫

1

1
0

.

Proof:

By definition, L f t e f t t

e f t t e f t t

st

st st

P

P

( ) ( )d

( )d ( )d

{ }=

= +

−
∞

− −
∞

∫

∫∫

0

0

  

(1)

In the second integral in (1), put t = x + P,  ∴ dt = dx and the limits for x become 0 and ∞.

∴ e f t t e f x P xst

P

s x P−
∞

− +( )
∞

= +∫ ∫( )d ( )d

0

 = ⋅ ( )− −
∞

∫e e f x xsP sx d

0

 [ f(x + P) = f(x)]
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 = − −
∞

∫e e f t tsP st ( )d

0

, on changing the dummy variable x to t.

 = ⋅ { }−e L f tsP ( )  (2)

 By putting (2) in (1), we have

 

L f t e f t t e L f tst

P

sP( ) ( )d ( ){ }= + ⋅ { }− −∫
0

∴ ( ) ( ) ( )d1

0

− { }=− −∫e L f t e f t tPs st

P

∴ 
L f t

e
e f t t

Ps

st

P

( ) ( )d{ }=
− −

−∫
1

1
0

5.7 DERIVATIVES AND INTEGRALS OF TRANSFORMS

The following two theorems, in which we differentiate and integrate the transform

function f (s) = L{f (t)} with respect to s, will help us to find L{t f (t)} and L
t

f t
1

( )










respectively. Repeated differentiation and integration of f (s) will enable us to find

 L{tn f (t)} and L
t

f t
n

1 ( )










, where n is a positive integer.

Theorem

If  L{f (t)} = f (s), then L{t f (t)} = − f' (s).

Proof :

Given: L{f (t)} = f (s)

i.e. 
e f t t sst−

∞

=∫ ( )d ( )φ

0

 (1)

Differentiating both sides of (1) with respect to s,

 
d

d
( )d

d

d
( )

s
e f t t

s
sst−

∞

=∫ φ

0

 (2)

Assuming that the conditions for interchanging the two operations of integration 

with respect to t and differentiation with respect to s in (2) are satisfied, we have

d

d
( )d ( )

s
e f t t sst−

∞

{ } = ′∫ φ

0



5.40 Mathematics II

i.e. − = ′−
∞

∫ t e f t t sst

0

( )d ( )φ

i.e. e t f t t sst−
∞

∫ =− ′
0

[ ( )]d ( )φ

i.e. L t f t s{ ( )} ( )=− ′φ

Corollary

Differentiating both sides of (1) n times with respect to s, we get

 L t f t
s

sn n
n

n
{ ( )} ( )

d

d
( )= −1 φ  or ( ) ( )( )−1 n n sφ .

Note 

1. The above theorem can be rewritten as a working rule in the following manner

 

L t f t
s

s

s
L f t

{ ( )}
d

d
( )

d

d
{ ( )}

=−

=−

φ

Thus, to find the Laplace transform of the product of two factors, one of which is ‘t’, 

we ignore ‘t’ and find the Laplace transform of the other factor as a function of s; 

then we differentiate this function of s with respect to s and multiply by (− 1).

Extending the above rule,

 L t f t
s

L f t{ ( )} ( )
d

d
{ ( )}2

2
2

2
1= −  and in general

 

L t f t
s

L f tn n
n

n
{ ( )} ( )

d

d
{ ( )}= −1 .

 2. The above theorem can be stated in terms of the inverse Laplace operator as 

follows:

If L−1{φ (s)} = f (t),

then L−1{φ ′(s)} = −t f (t).

From this form of the theorem, we get the following working rule:

 
L s

t
L s− −=− ′1 11

{ ( )} { ( )}φ φ

This rule is applied when the inverse transform of the derivative of the given function 

can be found out easily. In particular, the inverse transforms of functions of s that 

contain logarithmic functions and inverse tangent and cotangent functions can be 

found by the application of this rule.
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Theorem

If L f t s{ ( )} ( )=φ , then L
t

f t s s

s

1
( ) ( )d










=

∞

∫ φ , provided lim ( )
0t t

f t
→











1
exists.

Proof:
Given: L{ f (t)} = φ (s)

i.e. e f t t sst−
∞

=∫ ( )d ( )φ

0

 (1)

Integrating both sides of (1) with respect to s between the limits s and ∞ , we have

 e f t t s s sst

ss

−
∞ ∞∞

∫ ∫∫
















=( )d d ( )d

0

φ  (2)

Assuming that the conditions for the change of order of integration in the double 

integral on the left side of (2) are satisfied, we have

 

e s f t t s sst

s s

−
∞ ∞∞

∫ ∫∫
















=d ( )d ( )dφ

0

i.e. e

t
f t t s s

st

s s

s

s

−

=

=∞ ∞∞

−











 = ∫∫ ( )d ( )dφ

0

i.e.  − − =−
∞∞

∫∫
1

0

0
t

e f t t s sst

s

( ) ( )d ( )dφ ,

assuming that s > 0

i.e. e
f t

t
t s sst

s

−
∞∞ 











= ∫∫
( )

d ( )dφ

0

i.e. L
f t

t
s s

s

( )
( )d










=

∞

∫ φ

Corollary

 

L
t

f t L
t t

f t

s

1 1 1
2

( ) ( )

(










=























= φ )) d

( )d d

d s s

s s s

ss

ss

∞∞

∞∞

∫∫

∫∫

















= φ

Generalising this result, we get

 

L
t

f t s s
n

s

n

ss

1
( ) ( ) (d )










=

∞ ∞∞

∫ ∫∫ … φ
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Note 

 1. The above theorem can be rewritten as a working rule as given below:

 

L
t

f t L f t s

s

1
( ) { ( )}d










=

∞

∫

Thus, to find the Laplace transform of the product of two factors, one of which is 
1

t
,

we ignore  
1

t
, find the Laplace transform of the other factor as a function of s and 

integrate this function of s with respect to s between the limits s and ∞ .

Extending the above rule. We get;

 L
t

f t L f t s s

ss

1
2

( ) { ( )}d d









=

∞∞

∫∫  and in general

 
L

t
f t L f t s

n

s s

n

s

1
( ) { ( )}(d )










=

∞ ∞∞

∫ ∫∫ … .

 2. The above theorem can be stated in terms of the inverse Laplace operator as 

follows:

If  L s f t− =1{ ( )} ( )φ ,

then  L s s
t

f t

s

−
∞

∫















=1 1

φ ( )d ( ) .

From this form of the theorem, we get the following working rule:

L s t L s s

s

− −
∞

= ⋅
















∫1 1{ ( )} ( )dφ φ

This rule is applied when the inverse transform of the integral of the given function 

with respect to s between the limits s and ∞  can be found out easily.

In particular, the inverse transforms of proper rational functions whose numerators 

are first degree expressions in s and denominators are squares of second degree 

expressions in s can be found by applying this rule

WORKED EXAMPLE 5(b)

Example 5.1 Find the Laplace transform of the “saw-tooth wave” function f (t) 

which is periodic with period 1 and defined as f (t) = kt, in 0 < t < 1.

The graph of f (t) is shown in Fig. 5.1 below. If the period of the function f (t) is

P, the function will be defined as f t
k

P
t( ) =  in 0 < t < P.
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0 1 2 3

f (t)

k

t

Fig. 5.1

By the formula for the Laplace transform of a periodic function f (t) with period P,

 
L f t

e
e f t t

Ps

st

P

{ ( )} ( ) d=
− −

−∫
1

1
0

∴ For the given function,

 

L f t
e

kt e t

k

e
t

e

s

e

s

st

s

st st

{ ( )} d=
−

=
− −










− ⋅

−
−

−

− −

∫
1

1

1
1

0

1

ss

k

e

e

s

e

s ss

s s

2

0

1

2 21

1























=
−

− − +












=

−

− −

kk

e

e

s

e

s

k

s

ke

s e

s

s s

s

s

1

1

1

2

2

−

−( )
−

















= −
−

−

− −

−

−( )

Example 5.2 Find the Laplace transform of the “square wave” function f (t)  

defined by

 f (t) = k in 0 ≤ t ≤ a

  = − k in a ≤ t ≤ 2a

and  f (t +2a) = f (t) for all t.

f (t + 2a) = f (t) means that f (t) is periodic with period 2a. The graph of the function 

is shown in Fig. 5.2.

For a periodic function f (t) with period P,

 L f t
e

e f t t
Ps

st

P

{ ( )} = ( ) d
1

1
0

− −
−∫
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O a 2a 3a 4a

f (t)

k

– k

t

Fig. 5.2

∴ For the given function;

 

L f t
e

k e t k e t

k

e

as

st st

a

aa

{ ( )} d ( ) d=
−

+ −
















=
−

−
− −

−

∫∫
1

1

1

2

2

0

2aas

st
a

st

a

a

e

s

e

s

k

s

− −

−











−
−



























=

0

2

(( )
[1  ]

=
(1  )

(1  ) (1 

2

1 2

2

−
− − +

−
−

−
− − −

−

−

e
e e e

k e

s e

as

as as as

as

as ++ )

(1  )

(1 + )

( )

(

e

k e

s e

k

s

e e

e e

as

as

as

as as

as a

−

−

−

−

−=
−

=
−
+

/ /

/

2 2

2 ss

k

s

as

/ 2

2

)

tanh=








Example 5.3 Find the Laplace transform of “triangular wave function f (t) whose 

graph is given below in Fig. 5.3.

O a

A

y = [= f (t)]

B

a

2a 3a 4a 5a
t

Fig. 5.3

From the graph it is obvious that f (t) is periodic with period 2a.

Let us find the value of f (t) in 0 ≤ t ≤ 2a, by finding the equations of the lines OA 

and AB.
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OA passes through the origin and has a slope 1.

∴ Equation of OA is y = t, in 0 ≤ t ≤ a

AB passes through the point B(2a, 0) and has a slope − 1.

∴  Equation of AB is y − 0 = (− 1) (t − 2a)

or  y = 2a − t in a ≤ t ≤ 2a.

Thus the definition of f(t) [= y] can be taken as

 f(t) = t, in 0 ≤ t ≤ a

 = 2a − t, in a ≤ t ≤ 2a

and  f(t + 2a) = f(a).

Now  L f t
e

e f t t

e
te t a t e

a s

st

a

a s

st

a

{ ( )} = ( ) d

d ( )

1

1

1

1
2

2

0

2

2

0

−

=
−

+ −

−
−

−
− −

∫

∫ sst

a

a

a s

s t st

t

e
t

e

s

e

s

2

2 2

1

1
1

∫
















=
− −










− ⋅



−

− −

d



















+ −

−










+ ⋅

− −

0

2 1

a
st s

a t
e

s

e
( )

tt

a

a

a s

a

s

e

a

s
e

2

2

2

1

1







































=
−

−−
− ss

a s a s
a s

a s

a s a s

e

s s

e

s

a

s
e

e

s

e e

s

− + + + −












=
− +

− −
−

−

− −

2 2

2

2 2

2

1

1 2
22 2 2

2

1

1

1 1

1 1

1

( )

( )

( ) ( )

( )

(

2

−
=

−
− +

=
−
+

−

−

− −

−

−

e

e

s e e

e

s e

a s

a s

a s a s

a s

a s ))

tanh

=
−
+











=




−

−

1

1

2

2

2 2

2 2

2

s

e e

e e

s

as

a s a s

a s a s

/ /

/ /





Example 5.4 Find the Laplace transform of the “half-sine wave rectifier” function 

f (t) whose graph is given in Fig. 5.4.

O π/ω 2π/ω
2ω

3π/ω 4π/ω

f (t)

a

t
π

Fig. 5.4
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From the graph, it is obvious that f(t) is a periodic function with period 2π/ω. The

graph of f (t) in 0 ≤ t ≤ π/ω is a sine curve that passes through (0, 0), 
π

ω2
,a









and

π

ω
,0











∴ The definition of f (t) is given by

 f (t) = a sin ω t, in 0 ≤ t ≤ π/ ω

 = 0, in π/ ω ≤ t ≤ 2π/ ω

and  f t f t+








=

2π

ω
( ) .

Now  L f t
e

e f t t

a

e
e t t

s

st

s

st

{ }( ) ( )d

sin d

=
−

=
−

=

−
−

−
−

∫

∫
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2
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s
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s

s

st

1

1

2 2 2
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2 2

−
⋅

+
− −













=
+ −

−

−

π ω

π ω

ω
ω ω ω

ω

( sin cos

( ) ( ee
e

a e

s e

a

s

s

s

s

s

−
−

−

−

+





=
+( )

+ −( )
=

+

2

2 2 2 2

1

1

π ω

π ω

π ω

π ω

ω ω

ω

ω

ω

)

( ) ( ωω π ω2 1) −( )−e s

Example 5.5 Find the Laplace transform of the “full-sine wave rectifier” function 

f (t), defined as

 f (t) = |sin ω t|, t ≥ 0

We note that  f (t + π/ ω) = |sin ω (t + π/ ω)|

 = |sin ω t|

 = f (t)

∴ f (t) is periodic with period π/ ω.

Also f (t) is always positive. The graph of f (t) is the sine curve as shown in 

Fig. 5.5.

O π/ω 2π/ω 3π/ω

1

t

Fig. 5.5
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Now L f t
e

e t t

e
e t t

s

st

s

st

{ } | |( ) sin d

sin d [

=
−

=
−

−
−

−
−

∫

∫

1

1

1

1

0

0

π ω

π ω

π ω
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ω ∵∵sin in ]

( sin cos )

ω π ω

ω
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=
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1 2 2
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−
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e
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+
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ω
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e e

e e

s s

s s2 2

2 2

2 2
, on integration and simplification

 

=
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ω

ω

π

ωs

s
2 2 2

coth

Example 5.6 Find the Laplace transforms of the following functions:

(i)  t cosh3 t (ii) t cos 2t cos t (iii) t sin3 t (iv) (t sin at)2

(i)  L t t L t
e e

L t

t t

{ cosh }

{ (

3

3

2

1

8

=
+























=

−

ee e e et t t t3 33 3+ + +− − )}

 

(1)

 

=− + + +
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−

+
−

+
+

+
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8
3 3

1

8

1

3

3
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3

3 3d
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d
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L e e e e
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t t t t








=
−

+
−

+
+

+
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1

8

1

3

3

1

3

1

1

32 2 2 2( ) ( ) ( ) ( )s s s s

Note  

  

After getting step (1), we could have applied the first shifting property and 

got the same result.

(ii)
  

L t t t L
t

t t

s
L t

( cos cos ) (cos cos )

d

d
(cos

2
2

3

1

2
3

= +










= − +ccos )

d

d

t

s

s

s

s

s
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+

+
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1

2 9 12 2
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=
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2
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Example 5.7 Use Laplace transforms to evaluate the following;

(i) te t tt−
∞

∫ 2

0

3sin d  (ii) te t tt−
∞

∫ 3

0

2cos d

(i)  e t t t L t tst−
∞

∫ =
0

3 3( sin )d ( sin )  (by definition) (1) 
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Now L t t
s

L t

s s

s

s

( sin ) (sin )

( )

3 3

3

9

6

9

2

2 2

=−

=−
+











=
+

d

d

d

d

 

(2)

Putting (2) in (1), we have

 
te t t

s

s
sst−

∞

=
+

>∫ sin
( )

,3
6

92 2

0

d 0
 

(3)

Putting s = 2 in (3), we get

 

te t tt−
∞

∫ =2 3
12

169
sin d

0

.

(ii) e t t t L t tst−
∞

=∫ ( cos )d ( cos )

0

2 2 , by definition (1)

Now  L t t
s

L t

s

s

s

s

s

( cos ) (cos )

( )

2 2

4

4

4

2

2

2 2
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=−
+











=
−
+

d

d

d

d

  

(2)

Inserting (2) in (1), we have

 

te t t
s

s
sst−

∞

∫ =
−
+

>cos
( )

,2
4

4
0

2

2 2
d 0

  
(3)

Putting s = 3 in (3), we get

 

te t tt−
∞

=∫ 3 2
5

169
cos d

0

.

Example 5.8 Find the Laplace transforms of the following functions:

(i)  te−4t sin 3t;  (ii) t cosh t cos t;  (iii) te−2t sinh 3t  (iv) t 2e−t cos t.

(i) L te t L t tt

s s{ sin } [ ( sin )]−
→ +=4

43 3  (1)

(by the first shifting property)
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Now  L t t
s

L t

s s

s

s

( sin ) (sin )

( )

3 3

3

9

6

9

2

2 2

=−

=−
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=
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d

d

d

d
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Using (2) in (1), we have
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s
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{ sin }
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( )
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=
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2 2

4

2 2

3
6

9

6 4

8 25

Note  The same problem has been solved by using an alternative method in 

Worked Example (6) in Section 5(a).

(ii) L t t t L
t

e e t

L t t

t t

s s

{ cosh cos } ( )cos

[ ( cos )
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−
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=
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Using (2) in (1), we have

 

L t ht t
s

s s

s

s s
( cos cos )

( )

( )

( )

( )
=

− −
− +

+
+ −
+ +







1

2

1 1

2 2

1 1

2 2

2

2 2

2

2 2





=
−

− +
+

+
+ +













1

2

2

2 2

2

2 2

2

2 2

2

2 2

s s

s s

s s

s s( ) ( )

(iii)  L{t e−2t sinh 3t}= L{t sinh 3 t}
s → s + 2  

(1)

Now  L t t
s

L t

s s

s

s

( sinh ) (sinh )
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6
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Using (2) in (1), we have
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Using (2) in (1), we have
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Example 5.9 Find the inverse Laplace transforms of the following functions:

(i) log 1−








a

s
 (ii) log

s a
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+
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(iii) log
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Note 
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Example 5.10 Find the inverse Laplace transforms of the following functions:

 (i) cot–1 (as) (ii) tan− +
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Using (3) in (2), we have
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Example 5.11 Find the Laplace transforms of the following functions:

(i) 
sinh t

t
;  (ii)  

e e

t
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=
+

+































 →

1

2

1
1

1 9

2

2
log

/

s

s

s ∞∞

+
+
+











= +
+
+











1

2

9

1

1

2
1

1

2

9

1

2

2

2

2

log

log log

s

s

s

s


=
+
+











1

2

9

1

2

2
log

s

s

(v) L
f t

t
L f t s s

ss

( )
{ ( )}

2










=

∞∞

∫∫ d d   (2)

∴ L
t

t
L t s s

ss

sin
(sin )

2

2

2











=

∞∞

∫∫ d d

 

=
−










= −
+











∞∞

∫∫ L
t

s s

s

s

s

ss

s

1 2

2

1

2

1

42

cos
d d

∞∞∞

∞

∫∫

∫=
+









d d

d

s s

s

s
s

s

s

1

2

1

2

42

2
log ,

by putting a = 0 and b = 2 in (iii) above.

 

=
+




















−

+
−





∞ ∞

∫
1

4

4 2

4

22

2 2
s

s

s
s

s

s s
s s

log 























ds

by integrating by parts.

=
+

























−
+









→∞

s s

s

s s

s
s

4

4

4

42

2

2

2
log log 

+
+

∞

∫
1

4

8

42s
s

s

d

 = +
+










−











−
∞

L
s s

s

s

s4 4 2

2

2

1log cot , say

 = +
+










+











−L
s s

s

s

4 4 2

2

2

1log cot  (3)

Now  L
s

s

= +






log

/

1
4
2

4
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= +
























log

/

1
4
2

4

1
2

s

s s

 

lim ( ) log lim

/

s s

s s

L
s→∞ →∞

= +






















1
4
2

4

1
2





















= = =log ( ) loge0 1 0

  

(4)

Using (4) in (3), we have

 

L
t

t

s s

s

ssin
log cot

2

2

2

2

1

4 4 2










=

+










+






−


.

Example 5.12 Use Laplace transforms to evaluate the following:

 (i)  
e t

t
t

t−∞

∫
sin

d
3

0

 (ii)  
sin

d
2

0

t

t e
t

t

∞

∫

 (iii)  
cos cos

d
at bt

t
t

−









∞

∫
0

 (iv) 
e e

t
t

t t− −∞ −







∫

2 4

0

d .

(i)  
e t

t
t e

t

t
t

L

t
st

s

−∞
−

∞

=

∫ ∫=


























=

sin
d

sin
d

3 3

0 0 1

ssin 3

1

t

t
s











=

 

 

(1)

Now  L
t

t
L t s

s
s

s

s

sin
(sin )

( )

3
3

3

3

3
1

3

2 2










=

=
+

= −





∞

∞

∫

∫

d

d





























= +










−

∞

−

cot

cot

1

1

3

0
3

s

s

s



  

(2)

Using (2) in (1), we have

 

e t

t
t

s

−∞
−∫ =










=

1
13 1

3 3

sin
cotd

π
.
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(ii)    
sin

d
sin

sin

2

0

2

0

2

t

t e
t e

t

t
t

e
t

t

t

t

st

∞
−

∞

−

∫ ∫=










=







d




















=










∞

=

=

∫
0 1

2

1

dt

L
t

t

s

s

sin

  

(1)

Now  L
t

t
L

t

t

L t s

s

sin cos

( cos )

2 1 2

2

1

2
1 2










=

−









= − d

∞∞

∞

∫

∫= −
+











=
+















1

2

1

4

1

2 4

2

2

s

s

s
s

s

s

s

d

log















=
+












−

+







∞

→ ∞

s

s

s

s

s

s

1

2 4

1

2 4

2

2 2
log log









=
+











+
+







→ ∞

1

2

1

1 4

1

2

4
2

2

log
/

log
s

s

s
s 



= +
+











=
+





1

2
1

1

2

4

1

2

4

2

2

log log

log

s

s

s

s







  

(2)

Using (2) in (1), we have

 

sin
log log

2

0

1

2
5

1

4
5

t

t e
t

t

∞

∫ = =d

(iii)  
cos cos cos cosat bt

t
t e

at bt

t
tst−









=
−







∞
−

∞

∫ ∫
0 0

d d 
















=
−










=

=

s

s

L
at bt

t

0

0

cos cos

  

(1)
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Now   L
at bt

t
L at bt s

s

s a

s

s

s

cos cos
(cos cos )d

−








= −

=
+

−

∞

∫

2 2 2 ++











=
+
+























∞

∫ b
s

s a

s b

s

2

2 2

2 2

1

2

d

log


=
+
+























−
+

∞

→∞

s

s

s a

s b

s a

s

1

2

1

2

2 2

2 2

2 2

2
log log

++











=
+
+

b

s b

s a

2

2 2

2 2
log

  

(2)

Using (2) in (1), we have

 

cos cos
d log

at bt

t
t

b

a

−





 =









∞

∫
0

(iv)   
e e

t
t e

e e

t

t t
st

t t− −∞
−

∞ − −−









=
−







∫ ∫

2 4

0 0

2 4

d dtt

L
e e

t

s

t t

s

















=
−









=

− −

=

0

2 4

0

 

(1)

Now  L
e e

t
L e e s

s s

t t
t t

s

− −
− −

∞−








= −

=
+

−
+








∫
2 4

2 4

1

2

1

4

( )d




=
+
+























=
+
+






∞

∞

∫
s

s

s

s

s

s

s

d

log

log

2

4

2

4



















−
+
+











=
+
+






→∞s

s

s

s

s

log

log

2

4

4

2







  

(2)

Using (2) in (1), we have

 
e e

t
t

t t− −∞ −









=∫
2 4

0

2d log
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Example 5.13 Find the inverse Laplace transforms of the following functions:

 (i)  
s

s a( )22 2+
 (ii)  

s

s( )22 4−

 (iii)  
4 1

2 52

( )

( )2

s

s s

−
− +

 (iv) 
s

s s

2

2

3

4 5

−
+ +( )2

 (v)  
s

s s

+
+ −

1

2 82( )2

(i)   L s t L s s

s

− −
∞

⋅ ∫1 1{ ( )} = ( )dφ φ  (1)

∴  L
s

s a
t L

s

s a
s

s

− −
∞

+











⋅
+∫1

2 2

1

2( )
=

( )
d

2 2 2

 = −

+

∞

∫t L
x

x
s a

1

2

1

22 2

d
, on putting s2 + a2 = x

 

= −








=
+











=

−

+

∞

−

t
L

x

t
L

s a

t

a
at

s a2

1

2

1

2

1

1

2 2

2 2

sin ..

(ii)  L
s

s
t L

s

s
s

t
L

s

s

− −
∞

−

−










= ⋅

−

=
−






∫1 1

2

1

2

4 4

2

1

4

( ) ( )
d

2 2 2






, as in (i) above.

 
=

t
t

4
sinh 2

Note  The inverse transform in this case can also found out by resolving the 

given function into partial fractions.

(iii)   L
s

s s
L

s

s

− −−
− +










=

−

−






1

2

14 1

2 5
4

1( )

( ) ( 1) + 2
2

2 2
2













 = 4
2

1

2 2
e L

s

s

t −

+









( )2

, by the first shifting property
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 = 4
4

2e
t

tt sin , as in problem (i)

 = tet sin 2t.

(iv)  L
s

s s
L

s s s

s s

− −−
+ +










=

+ − +
+ +

1
2

2 2

1

2

3

4 5

4 5 4 8

4( )

( + ) ( )

(

2

55 2)













 =
+ +










−

+
+ +











− −L
s s

L
s

s s

1

2

1

2 2

1

4 5
4

2

4 5( )

==
+ +










−

+











=

− −

−

L
s

L
s

s

e

1 11

2 1
4

2

( ) {( + 2) +1}2 2 2

22 24
2

t tt e
t

tsin sin , as in problem (i)− −

 = e−2t (1−2t) sin t.

(v) L
s

s s
L

s

s

− −+
+ −










=

+
+ −







1

2

1

2 2

1

2 8

1

1 3( ) [( ) ]2 2




 = ⋅
−











= ⋅

− −

−

e L
s

s

e
t

t

t

t

1

2 23

6
3

( )

sinh proceeding as

2

,   in problem (ii)

, 

 
= −t

e tt

6
3sinh

EXERCISE 5(b)

Part A

(Short Answer Questions)

1.  State the formula for the Laplace transform of a periodic function.

2.  Find the Laplace transform of f(t) = t, in 0 < t < 1 if f (t + 1) = f(t)

3.  State the relation between the Laplace transforms of f(t) and t · f(t).

4.  State the relation between the inverse Laplace transforms of φ (s) and φ′ (s).

5.  State the relation between the Laplace transforms of f(t) and 
1

t
f t( ) .

6.  State the relation between the inverse Laplace transform of φ (s) and its 

integral.

   Find the Laplace transforms of the following functions:

7.  
1

2a
t atsin  8. t cos at  9. sin kt − kt cos kt
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10.  sin kt + kt cos kt  11. 
t

a
at

2
(1 cos )−

12.  cos sinkt kt kt−
1

2
.

Find the inverse Laplace transforms of the following functions:

13.  log
s

s

+
−









1

1
  14.  log

s

s

+







1
  15.  log 1+









a

s

16.  log
s a

s b

+
+







   17. log

s

s−







1

  18.  log
s

s

2

2

1

4

+
+











19.  cot−1 s  20. tan−1 a

s

Find the Laplace transforms of the following functions:

21.  
sin at

t
  22. 

1− −e

t

t

  23.  
1−e

t

t

24.  
1−cos at

t
  25.  

sin2t

t

Part B

Find the Laplace transforms of the following periodic functions:

26.   f t E t
E

E
t

n

( ) , in 0 <

, in

= ≤

= ≤ <

1

0
1 2π

given that  f t
n

f t+






= ( )2π

27.  f t E t
T

( ) = , in 0 <≤
2

 = − E, in T/2 ≤ t < T

given that f (t + T) = f (t)

28.  f (t) = et, in 0 < t < 2π and f (t + 2π) = f (t)

29.  f t
t

( ) = sin
2







 , in 0 < t < 2 π and f (t + 2π) = f (t)

30.  f (t) = |cos ωt|, t ≥ 0

Hint: ( )is periodic with period ( )and cos | df t e t t est sπ ω ω

π ω

− −∫ =|

/

0

tt t tcos dω

π ω

0

2/

∫








+ −








−∫ e t tst ( cos ) dω

π ω

π ω

/

/

2
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31.   f(t) = t, in 0 < t < π

  = 0, in π < t < 2π,

given that   f(t + 2π) = f(t)

32.   f(t) = sin t, in 0 < t < π 

   = 0, in π < t < 2π,

given that   f(t +2π) = f(t).

33.   f t

t t

( ) 0, in 0 < t

sin , in

= <

= - < <

p

w

w
p

w

p

w

2
,

given that   f t f t+ÊËÁ
ˆ
¯̃
=2p

w
( ) .

34.    f(t) = t, in 0 < t < π

  = 2π − t, in π < t < 2π,

given that   f(t + 2π) = f(t).

35.   f(t) = t, in 0 < t < π

  = π − t, in π < t < 2π,

given that   f(t + 2π) = f(t).

Find the Laplace transforms of the following functions:

36.  t sinh3 t  37.  t cos3 2t  38.  t sin 3t sin 5t

39.  t sin 5t cos t  40.  (t cos 2t)2  41.  t2 sin t cos 2t

42.  t2 e−2t sin 3t  43.  te3t cos 4t  44.  t2 e−3t cosh 2t

45.  t sinh 2t sin 3t

Find the inverse Laplace transforms of the following functions:

46. log 1
2

2
+









a

s
  47. log

s a

s b

2 2

2

+

+( )
 48. log

s

s

−( )

+
2

1

2

2

49. s
s a

s a
alog

−
+







+    50. tan− 








1 1

2s
  51. tan− +








1 2

3

s

52. cot−

+









1 a

s b
    53. tan-1 (s2)

Find the values of the following integrals, using Laplace transforms:

54. t e t tt−
∞

∫ 2

0

cos 2 d  55. t e t tt2

0

−
∞

∫ sin d   56. 
e e

t
t

t t− −∞
−






∫

3

0

d
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57. 
(1 cos )

d
− −∞

∫
t e

t
t

t

0

  58. 
e bt

t
t

at−∞
−






∫ cos

d

0

  59. 
e t t

t
t

t−∞

∫
2

0

sin sinh
d

Find the Laplace transforms of the following functions:

60. 
1− −e

t

t

 61. 
1−cosat

t
  62. 

sin2t

t











2

63. 
sin sin3t t

t
  64. 

1
2

−cost

t

Find the Laplace inverse transforms of the following functions:

65. 
s

s( )2 21+   66. 
s

s a( )2 2 2−
 67. 

s

s s

−
− +

2

4 52 2( )

68. 
( )

( )

2

2

s a

s a

−
−2 2

  69. 
s s

s s

2

2

8 16

6 10

+ +
+ +( )2   70. 

s

s s

+
+ +

4

8 152( )2

5.8  LAPLACE TRANSFORMS OF DERIVATIVES 

AND INTEGRALS

In the following two theorems we find the Laplace transforms of the derivatives and 

integrals of a function f(t) in terms of the Laplace transform of f(t). These results will 

be used in solving differential and integral equations using Laplace transforms.

Theorem

If f(t) is continuous in t ≥ 0, f ′(t) is piecewise continuous in every finite interval in 

the range t ≥ 0 and f(t) and f ′(t) are of the exponential order, then

L{f ′(t)} = sL{f(t)} − f(0)

Proof:

The given conditions ensure the existence of the Laplace transforms of f(t) and f ′(t).

By definition, L f t e f t t

e f t

st
s

st

st

e f t

{ ( )} = ( ) d

d [ ( )]

( )

′ ′

=

= −
⋅ − −(

−
∞

−
∞

∞

∫

∫

 

0

0

0

)) −
∞

∫ e f t tst

0

( ) d ,on integration by parts.

 
= − ⋅

→∞

−li [ ( )] (0) + { ( )}
t

ste f t f s L f t

 = 0 − f(0) + sL {f(t)} [ f(t) is of the exponential order]

 =sL {f(t)} − f(0)  (1)
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Corollary 1

In result (1) if we replace f (t) by f ′(t) we get

 L{f″ (t)}= sL {f ′ (t)} − f ′(0)

 = s [sL {f(t)} − f (0)] −f ′(0),  again by (1)

 = s2 L{f (t)}−s f (0) −f ′(0)  (2)

Note 

 1. Result (2) holds good, if f(t) and f′(t) are continuous in t ≥ 0,f″ (t) is piecewise 

continuous in every finite interval in the range t ≥ 0 and f(t), f ′ (t) and f″ (t) are 

of the exponential order.

Corollary 2

Repeated application of (1) gives the following result:

 L{ f(n)(t)} = sn L{f(t)}−s n−1 f (0) −sn−2 f ′ (0) −  − f (n−1) (0)  (3)

Note 

 2. Result (3) holds good, if f(t) and its first (n − 1) derivatives are continuous in 

t ≥ 0, f(n) (t) is piecewise continuous in every finite interval in the range t ≥ 0 

and f(t), f ′(t), … , f (n) (t) are of the exponential order.

 3. If we take L { f (t)}= f (s), result (1) becomes

 L{ f ′ (t)} = sf (s) − f (0)  (4)

 If we further assume that f (0) = 0, the result becomes

 L{ f ′ (t)}= sf (s)  (5)

 In terms of the inverse Laplace operator, (5) becomes

 L−1 {sf (s)}= f ′ (t)  (6)

 From result (6), we get the following working rule:

 L s s
t

L s− −1 1{ ( ) =
d

d
{ ( )φ φ , provided that

 f(0) = L−1 {f (s)}
t = 0

 = 0.

Thus, to find the inverse transform of the product of two factors, one of 

which is ‘s’, we ignore ‘s’, and find the inverse transform of the other factor; 

we call it f (t), verify that f (0) = 0 and get f ′(t), which is the required inverse 

transform.

 4. In a similar manner, from result (2) we get

 L s s
t

L s− −1
2

2

1{ ( )} =
d

d
{ ( )}2φ φ , provided that

 f(0) = 0 and f ′(0) = 0, where

 f(t) = L−1 {f (s)}.

Theorem

If f(t) is piecewise continuous in every finite interval in the range t ≥ 0 and is of the 

exponential order, then
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L f t t
s

L f t

t

( ) d { ( )}

0

1
∫















= .

Proof:

Let  
g t f t t

t

( ) = ( ) d

0

∫

∴  g′(t) = f (t)

Under the given conditions, it can be shown that the Laplace transforms of both f(t)

and g(t) exist.

Now by the previous theorem,

 L{g′(t)}=sL{g(t)} − g(0)

i.e., 
s L f t t f t t L f t

t

⋅















− =∫ ∫( ) d ( )d { ( )}

0 0

0

∴  L f t t
s

L f t

t

( ) d { ( )}

0

1
∫















=   (1)

Corollary

L f t t t
s

L f t

tt

( ) d d { ( )}

00

2

1
∫∫
















= , as explained below.

Let  
f t t g t

t

( ) d ( )

0

∫ =
. 

Then, by result (1) above,

 

L g t t
s

L g t

t

( ) d { ( )}=∫
1

0

i.e.,  L f t t t
s

L f t t

tt t

( ) d d ( )d

00 0

1
∫∫ ∫
















=

 = ⋅
1 1

s s
L f t{ ( )}, again by (l) 

 =
1
2s

L f t{ ( )}   (2)

Generalising (2), we get

 

L f t t
s

L f tn

ttt

n
 ( ) (d ) { ( )}

000

1
∫∫∫
















=

  
(3)
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Note 

1. If we put L{ f (t)} = f (s), result (1) becomes

  
L f t t

s
s

t

( ) d ( )

0

1
∫















= φ

 
(4)

Result (4) can be expressed, in terms of L−1 operator, as

 L
s

s f t t

t

− 








= ∫1

0

1
φ ( ) ( )d  

(5) 

From (5), we get the following rule:

 

L
s

s L s t

t

− −








= ∫1 1

0

1
φ φ( ) { ( )} d .

Thus, to find the inverse Laplace transform of the product of two factors, one of

which is 
1

s
, we ignore 

1

s
, find the inverse transform of the other factor and integrate

it with respect to t between the limits 0 and t.

2. In a similar manner, from (2) above, we get

 

L
s

s L s t t

tt

− −








= ∫∫1

2

1

00

1
φ φ( ) { ( )} d d .

3.   
L f t t

s
L f t

s
f t t

a

t

a

( ) d { ( )} + ( ) d∫ ∫















=

1 1
0

If we let  
g t f t t g t f t

a

t

( ) = ( ) d and ( ) = ( )∫ ′ ,

we get  L g t sL g t g{ ( )} = { ( )} (0)′ −

i.e., L f t sL f t t f t t

a

t

a

{ ( )}= ( ) d ( ) d∫ ∫















−

0

or  L f t t
s

L f t
s

f t t

a

t

a

( ) d { ( )} + ( ) d∫ ∫















=

1 1
0

.

5.9 INITIAL AND FINAL VALUE THEOREMS

We shall now consider two results, which are derived by applying the theorem on 

Laplace transform of the derivative of a function.
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The first result, known as the initial value theorem, gives a relation between

lim[ ( )] and lim[ ( )], where ( ) = { ( )}
t s

f t s s s L f t
→ →∞0

φ φ

The second result, known as the final value theorem, gives a relation between

 lim[ ( )] and lim[ ( )]
t s

f t s s
→ →∞ 0

φ .

5.9.1  Initial Value Theorem

If the Laplace transforms of f (t) and f ′(t) exist and L{ f(t)} = f (s), then

 lim[ ( )] = lim[ ( )]
t s

f t s s
→ →∞0

φ

Proof:

We know that  L{f ′(t)} = sf (s) − f (0)

∴  sf (s) = L{f ′(t)} + f (0)

 

= ′ +−
∞

∫ e f t t fst

0

( ) d (0)

∴ lim [ ( ) = lim ( ) d (0)
s s

sts s e f t t f
→ →

−
∞

∞ ∞
′ +∫φ

0

,

 

= ′ +
→∞

−
∞

∫ lim { ( )} d (0)
s

ste f t t f

0

,

assuming that the conditions for the interchange of the operations of integration 

and taking limit hold.

i.e.  lim [ ( )] = 0 + (0)

= lim[ ( )].

s

t

s s f

f t

→∞

→

φ

0

5.9.2  Final Value Theorem

If the Laplace transforms of f(t) and f ′(t) exist and L{f (t)} = f (s), then

 lim [ ( )] = lim[ ( )]
t s

f t s s
→∞ →0

φ , provided all the singularities of {sf (s)] are in the left

half plane Rl(s)< 0.

Proof:

We know that  L{f ′(t)} = sf (s) − f (0) 

∴  sf (s) = L{ f ′(t)}+f (0)

 

= ′ +−
∞

∫ e f t t fst ( ) d (0)

0
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∴ lim [ ( )] = lim ( )d ( )
s s

sts s e f t t f
→ →

− ′ +
∞

∫
0 0

0

0φ

 = ′ +
→

−
∞

∫ lim{ ( )}d ( )
s

ste f t t f
0

0

0 , assuming that the conditions for 

the interchange of the operations of integration and taking limit hold.

i.e.  lim [ ( )] ( )d ( )
s

s s f t t f
→

∞

= ′ +∫0
0

0φ

 
= +∞[ ( )] ( )f t f0 0

 
= −

→∞
lim ( )] ( )+ ( )
t

f t f f[ 0 0

Thus  lim [ ( )] = lim [ ( )]
t s

f t s s
→∞ →0

φ

5.10 THE CONVOLUTION

Another result, which is of considerable practical importance, is the convolution

theorem that enables us to find the inverse Laplace transform of the product of f s( )  

and g s( )  in terms of the inverse transforms of f s( )  and g s( ) .

Definition The convolution or convolution integral of two function f (t) and g (t), 

defined in t ≥ 0, is defined as the integral

 

f u g t u u

t

( ) ( ) d−∫
0

It is denoted as f (t) * g (t) or (f * g) (t)

i.e.  f t g t f u g t u u

t

( ) * ( ) = ( ) ( )d−∫
0

 = − − −∫ f t u g t t u u

t

( ) [ ( )] d

0

, on using the result

 

φ φ( )d ( )d

( ) ( )d

( ) ( ).

u u t u u

g u f t u u

g t f t

t t

t

0 0

0

∫ ∫

∫

= −

= −

= *
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Thus the convolution product is commutative.

5.10.1  Convolution Theorem

If f (t) and g (t) are Laplace transformable,

then  L{f (t) * g(t)} = L{f (t)}∙L{g (t)}

Proof:

By definition, L f t g t e f t g t t

e f u g t u u

st

st

t

{ ( )* ( )} { ( ) ( )} d

( ) ( )d

=

= −




−
∞

−
∞

∫

∫ ∫

*

0

0 0












dt,

,

by the definition of convolution.

 = −−
∞

∫∫ e f u g t u u tst

t

( ) ( )d d

00

  (1)

The region of integration for the double integral (1) is bounded by the lines u = 0,  

u = t, t = 0 and t = ∞ and is shown in the Fig. 5.6.

u = 0

(u, u)

u 
=
 t

(∞, u)

t = ∞
 t = 0

u

t

Fig. 5.6

Changing the order of integration in (1), we get,

 L f t g t e f u g t u t ust

u

{ ( ) ( )} ( ) ( ) d d* = −−
∞∞

∫∫
0

  (2)

In the inner integral in (2), on putting t − u = v and making the consequent changes, 

we get,

 

L f t g t e f u g v v u

e f u e

s u v

su sv

{ ( ) ( )} ( ) ( ) d d( )*

( )

=

=

− +
∞∞

−
∞

−
∞

∫∫

∫ ∫

00

0 0

gg v v u( )d d
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= ⋅−
∞

−
∞

∫ ∫e f u u e g v vsu sv

0 0

( )d ( )d

 

= ⋅−
∞

−
∞

∫ ∫e f t t e g t tst st

0 0

( )d ( )d ,

on changing the dummy variables u and v.

 = L{f (t)}·L{g (t)}

Note   If L f t f s{ }( ) ( )=  and L g t g s{ ( )} ( )= , the convolution theorem can be put as

 L f t g t f s g s{ ( ) ( )} ( ) ( )* = ⋅  (3)

In terms of the inverse Laplace operator, result (3) can be written in the following 

way.

 L f s g s f t g t− ⋅ =1{ ( ) ( )} ( ) ( )*

 = −∫ f u g t u u

t

( ) ( ) d

0

  (4)

Result (4) means that the inverse Laplace transform of the ordinary product of two 

functions of s is equal to the convolution product of the inverses of the individual 

functions.

WORKED EXAMPLE 5(c)

Example 5.1 Using the Laplace transforms of derivatives, find the Laplace 

transforms of

   (i)  e−at  (ii)  sin at

   (iii)  cos2 t  (iv)  t n (n is a positive integer)

(i)   L{f ′(t)} = sL{f(t)} − f (0)  (1)

Putting  f (t) = e−at in (1), we get

 L (−ae−at) = sL (e−at) − 1

i.e. (s + a) L(e−at) = 1

∴  L e
s a

at( )− =
+
1

(ii)   L{f″(t)} = s2 L{f(t)} − sf (0) − f ′(0)  (2)

Putting  f (t) = sin at in (2), we get

 L (−a2 sin at) = s2L (sin at) − s × 0 − a
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i.e.  (s2 + a2) L (sin at) = a

∴  L at
a

s a
(sin ) =

+2 2

(iii)   Putting f(t) = cos2 t in (1), we get

 L (− 2 cos t sin t) = sL (cos2 t) − 1

i.e.  s·L (cos2 t) = 1 − L (sin 2t)

 
= −

+
1

2

42s

 
=

+
+

s

s

2

2

2

4

∴  L t
s

s s
(cos )

( )

2
2

2

2

4
=

+
+

(iv)   L f t s L f t s f s f fn n n n n{ ( )} { ( )} ( ) ( ) ( )( ) ( )= − − ′ −− − −1 2 10 0 0   (3)

Putting f (t) = tn in (3) and nothing that f (n) (t) = n!

and  f f f n( ) ( ) ( )( )0 0 0 01= ′ = = =−
 , we get

 L{n!} = sn L (tn)

i.e.  n!L (1) = sn L (tn)

i.e.  n
s

s L tn n! ( )
1
=

∴  L t
n

s

n

n
( )

!
= +1

Example 5.2 Find the Laplace transform of 
t

π
 and hence find L

t

1

π











.

 

L
t

L t
sπ π π












= = =

1 1 3 21 2

3 2
( )

( )/

/

/

 
= ⋅ =

1

1

2
2

1

23 2 3 2
π

(1 )/

/ /s s  

 (1/2) =( )π

In the result L{f ′(t)} = sL {f(t)} − f (0), we put

 f t
t

( ) =
π

, we get

 
L

t
s

s

1

2

1

2
0

3 2
π










= ⋅ −

/
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=

1

2 s

∴  L
t s

1 1

π










= .

Aliter

 

L
t

L
t

t

L t s

s

s

1 1

1

2 3

π
π

π










= ⋅











=

=

∞

∫

/

/( ) d

//

.

2

1 1

 ds

s s

s

s

∞

∞

∫

= −








 =

Example 5.3 Using the Laplace transforms of the derivatives, find

(i)  L(t cos at) and hence L(sin at – at cos at) and L(cos at – at sin at)

(ii)  L(t sinh at) and hence L (sinh at + at cosh at) and L at at at(cosh  sinh )+
1

2

 (i) L f t s L f t sf f′′{ }= { }− ′( ) ( ) (0)- (0)2
  (1)

Put  f(t) = t cos at in (1)

Then  f ′(t) = cos at − at sin at and f ′(0) = 1

 f ″(t) = − a2 t cos at − 2a sin at.

∴  L{− a2 t cos at − 2a sin at} = s2 L {t cos at} − 1

[
∴

 f(0) = 0] and f ′(0) = 1

i.e.  (s2 + a2) L(t cos at) = 1 − 2a L(sin at)

 

= −
+

=
−
+

1
2 2

2 2

2 2

2 2

a

s a

s a

s a

∴  L t at
s a

s a
(  cos )

( )2
=

−
+

2 2

2 2

Now  L at at at
a

s a

a s a

s a
(sin cos )

( )

( )

2

2 2
− =

+
−

−
+2 2

2

2
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=
− −{ }

+

=
+

a s a s a

s a

a

s a

( + ) ( )

( )

( )

2 2 2 2

2

2

2 2

3

2 2

2

Taking  f (t) = t cos at in the result

 L{f ′(t)} = sL{f(t)} − f(0), we get

 L{cos at − at sin at} = sL (t cos at) − 0

 
=

−
+

s s a

s a

( )

( )

2 2

2 22

(ii)   Put f (t) = t sinh at in (1).

Then  f ′(t) = sinh at + at cosh at and f ′(0) = 0

 f ′′(t) = a2t sinh at + 2a cosh at

∴ L{a2t sinh at + 2a cosh at}

 =s2L(t sinh at) [ f(0) = 0 = f ′(0)]

i.e.  (s2 − a2) L(t sinh at) = 2a L(cosh at)

 
=

−
2

2 2

as

s a

∴ L t at
as

s a
(  sinh )

( )2
=

−
2

2 2

In the result  L{f ′(t)} = sL {f(t)} − f(0), if we put f(t) = t sinh at, we 

have

 L at at at
as

s a
(sinh  cosh )=

( )2 2 2
+

−
2 2

 [  f(0) = 0]

Now  L at at at(cosh  sinh )+
1

2

 

= +

−
+ ⋅

−

=
−

L at
a

L t at

s

s a

a as

s a

s s a

(cosh ) (  sinh ) 

=
( )

( )

2

2 2

2

2

2
2 2 2 2

++
−

=
−

a s

s a

s

s a

2

2( ) ( )2 2

3

2 2 2
.

Example 5.4 Find the inverse Laplace transforms of the following functions:

 (i) 
s

s( )+2 4
  (ii)  

s

s

2

2( )3−
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 (iii)  
s

s s2 4 5+ +
 (iv) 

s

s s( 2)( )+ +3

 (v)  
s

s s( 1)( 4)2 2+ +

(i)  L s s
t

L s− −{ }= { }1 1φ φ( )
d

d
( ) , provided L−1{f (s)} vanishes at t = 0  (1)

To find L
s

s

−

+











1

2( )4
, let us first find f t L

s
( )

( )4
=

+











−1 1

2
 and then apply 

rule (1)

Now  f t e L
s

t( ) =








− −2 1

4

1

 
= =− −e t t et t2 3 3 21

3

1

6!

We note that f(0) = 0

∴ By (1),  L
s

s t
t e t− −

+










=









1 3 2

2

1

6( )

d

d4

    

= − +

−

− −

−

1

6

1

6

2 2

2 2

( 2 3 )

= (3 2 ).

3 2t e t e

t e t

t t

t

(ii)  L s s
t

L s− −{ }= { }1 2
2

2

1φ φ( )
d

d
( ) , provided

 f(0) = 0 f ′(0) = 0, where f(t) = L−1 {f (s)}.  (2)

To find L
s

s

−

−











1
2

2( )3
, we shall find f t L

s
( )

( )

-1

3
=

−











1

2
 and then apply rule (2).

Now  f t e L
s

t( ) =








−2 1

3

1

 

= ⋅ =

′

e t t e

f t t e te

t t

t t

2 2 2 21

2

1

2

1

2
2

!

( ) = (2 + )2 2 2

We note that f(0) = 0 and f ′(0) = 0

∴ By (2),  L
s

s t
t e t−

−










=











1
2

2 21

2( 2)

d

d3

2

2
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= +

= + + +

= + +

d

d
[( ) ]

2( ) ( )

( )

t
t t e

t t e t e

t t e

t

t t

t

2 2

2 2 2

2 2

2 1

2 4 1

(iii) To find L
s

s s

−

+ +











1

2 4 5
,

we shall find  f t L
s s

( )= −

+ +










1

2

1

4 5
 and then apply the rule (1).

Now  f t L
s

( )
( )2

=
+ +











−1 1

2 1

 = e−2t sin t

and  f(0) = 0.

∴ By (l),    L
s

s s t
e tt− −

+ +









=1

2

2

4 5

d

d
( sin )

 = e−2t cos t − 2e−2t sin t

 = e−2t (cos t − 2 sin t)

(iv) To find L
s

s s

−

+ +











1

2 3( ) ( )
, we shall find f t L

s s
( )

( ) ( )
=

+ +











−1 1

2 3
 and

 then apply the rule (1).

Now  f t L
s s

( )
( ) ( )

=
+ +











−1 1

2 3

 
=

+
−

+











−L
s s

1 1

2

1

3
,

by resolving the function into partial fractions.

 = e−2t − e−3t

and  f(0) = 0.

∴Βy (1), L
s

s s t
e et t− − −

+ +










= −1 2 3

2 3( ) ( )

d

d
( )

 = 3e−3t − 2e−2t

(v) To find L
s

s s

−

+ +











1

2 21 4( ) ( )
, we shall find f t L

s s
( )

( ) ( )
=

+ +











−1

2 2

1

1 4
 

   and then apply the rule (1).
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Now  f t
s s

( )=L 1−

+
−

+











1 3

1

1 3

42 2

/ /
,

by resolving the function into partial fractions.

 
= −

1

3

1

6
2sin sin t t

and  f(0) = 0

∴ By (1), L
s

s s t
t t−

+ +










= −






1

2 21 4

1

3

1

6
2

( ) ( )

d

d
sin sin 






 
= −

1

3
2(cos cos )t t

Note   We have solved the problems in the above example by using the working 

rule derived from the theorem on Laplace transforms of derivatives. They can be 

solved by elementary methods, such as partial fraction methods, discussed in Section 

5(a) also.

Example 5.5 Find the inverse Laplace transforms of the following functions.

 (i)  
s

s a

2

2 2 2( )+
 (ii)  

s

s a

3

2 2( )2+

 (iii)  
( )

( )

2

2

s

s s

+
+ +

1

2 52
 (iv)  

s

s

2

2 4( )2−

 (v)  
( )

( )

2s

s s

−
− +

3

6 52 2

 (i) Let f t L
s

s a
( )

( )2
=

+











−1

2 2

 =
t

a
at

2
sin  [Refer to Worked Example (13) (i) in Section 5(b)]

We note that f (0) = 0

Now  L s s
t

L s− −=1 1{ ( )}
d

d
{ ( )}φ φ , provided f (0) = 0,

where  f(t) = L−1 {φ (s)}  (1)

∴  L
s

s a
L s

s

s a

− −

+










= ⋅

+











1
2

2 2

1

2 2( ) ( )2 2

 =








d

d
sin 

t

t

a
at

2
, by rule (1)
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 = +
1

2a
at at at(sin  cos )   (2)

(ii) Let   f t L
s

s a
( )

( )

1

2
=

+













−
2

2 2

 = +
1

2a
at at at(sin  cos ) , by (2)

we note that f(0) = 0

Now  L
s

s a
L s

s

s a

− −

+










= ⋅

+











1
3

2 2

1
2

2 2( ) ( )2 2

 = +












d

d
(sin  cos )

t a
at at at

1

2
, by rule (l)

 
= −

1

2
2( cos  sin )at at at .

(iii)   L
s

s s
L

s

s

− −+
+ +










=

+
+ +




1

2

2 2

1
2

2 2

1

2 5

1

1 2

( )

( )

( )

{( ) }2






 =
+











− −e L
s

s

t 1
2

2 2 22( )
, by the first shifting property

 = +−1

4
2 2 2e t t tt (sin  cos ) , by (2)

(iv) Let   f t L
s

s
( )

( )

1

2
=

−











−
2 4

 
=

t
t

4
2sinh 

[Refer to Worked Example (13) (ii) in Section 5(b)]

We note that  f(0) = 0.

Now  L
s

s
L s

s

s

− −

−










= ⋅

−











1
2

2 2

1

2 24 4( ) ( )

 =
−











−d

d ( )t
L

s

s

1

2 24
, by rule (1)

 
=









d

d
sinh 

t

t
t

4
2

 = +
1

4
2 2 2(sinh  cosh )t t t   (3)
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(v) L
s

s s
L

s

s

− −−
− +











 =

−
− −








1

2

2 2

1
2

2 2

3

6 5

3

3 4

( )

( )

( )

{( ) }




 =
−













−e L
s

s

t3 1
2

2 24( )
, by the first shifting property.

 = +
1

4
2 2 23e t t tt (sinh  cosh ) , by (3).

Example 5.6 Find the Laplace transforms of the following functions:

 (i)  te t tt

t

−∫ 4

0

3 sin  d  (ii)  e t t tt

t

− ∫4

0

3 sin  d

 (iii)  t e t tt

t

−∫ 4

0

3 sin  d  (iv)  
e t

t
t

tt −

∫
 sin 

d

0

 (v)  e
t

t
tt

t

− ∫
sin 

d

0

 (vi)  
1

0
t

e t tt

t

−∫ sin  d

 (i) L f t t
s

L f t

t

( ) d { ( )}

0

1
∫















=  (1),

by the theorem on Laplace transform of integral

∴   L t e t tt

t

−∫
















4

0

3sin  d

 
= −1

34

s
L te tt{  sin }

 
=

+
+ +
6 4

8 252 2

( )

( )

s

s s s

[Refer to Worked Example 8(i) in Section 5(b)].

(ii)  L e t t t L t t tt

t t

s s

−

→

∫ ∫















=

















4

0 0

3 3 sin  d  sin  d

++4

 (2), by the first shifting property

Now  L t t t
s

L t t

t

0

3
1

3∫ = sin  d ( sin ) , by rule (l)

 
= −













1
3

s s
L t

d

d
(sin )

 
=− ⋅

+









1 3

92s s s

d

d
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 =− ×
− ×

+
=

+
1 3 2

9

6

92 2 2 2s

s

s s( ) ( )
  (3)

Using (3) in (2), we get

 

L e t t t
s

s s

t

t

− ∫















=

+ +

=
+ +

4

0

2 2

2 2

3
6

4 9

6

8 25

sin  d
{( ) }

( )

(iii) L t e t tt

t

⋅
















−∫ 4

0

3 sin  d

 =−
















−∫
d

d
d

s
L e t tt

t

4

0

3sin  (4)

Now  L e t t
s

L e tt t

t

− −=∫ 4 4

0

3
1

3sin  d (  sin ) , by (1)

 =

= ⋅
+ +

=
+ +

→ +

1
3

1 3

4 9

3

8 25

4

2

3 2

s
L t

s s

s s s

s s[ (sin )]

( )

  

(5)

Using (5) in (4), we get

 

L t e t t
s s s s

t

t

−∫















=−

+ +











4

0

3 2
3

3

8 25
sin  d

d

d

==
+ +

+ +

=
+ +
+ +

3 3 16 25

8 25

3 3 16 25

8 25

2

3 2

2

2 2 2

( )

( )

( )

( )

s s

s s s

s s

s s s

(iv)   L
e t

t
t

s
L

e t

t

tt t− −

∫ =










sin 
 d

sin 

0

1
, by (1)  (6)

Now  L
e t

t
L e t s

s

s

t
t

s

s

−
−

∞

∞










=

=
+ +

∫

∫

sin 
( sin ) d

d

( )1 12
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= − +

= +

− ∞

−

{ cot ( )}

cot ( )

1

1

1

1

s

s

s
  (7)

Using (7) in (6), we get

 

L
e t

t
t

s
s

tt −
−= +∫

 sin 
d  cot ( )

1
1

0

1

(v)   L e
t

t
t L

t

t
tt

t t

s s

−

→ +

∫ ∫















=

















sin 
d

sin 
 d

0 0 1

  (8)

Now  L
t

t
t

s
L

t

t

t
sin 

d
sin 

=






∫

1

0

, by (1)

 =

=
+

=

∞

−
∞

∫

∫

1

1

1

1
2

1

s
L t s

s

s

s s
s

s

s

(sin ) d

d
cot

  

(9)

Using (9) in (8), we get

 

L e
t

t
t

s
st

t

− −∫















=

+
+

sin 
 d  cot ( )

0

11

1
1

(vi)   L
t

e t t L e t t st

t

t

t

s

1

0 0

− −
∞

∫ ∫∫















=

















sin  d sin  d d   (10)

Now  L e t t
s

L e tt

t

t− −∫ =sin  d { sin }

0

1
, by (1)

 = ⋅
+ +

1 1

1 12s s( )
  (11)

Using (11) in (10), we get

 

L
t

e t t
s

s s s

s

s

s s

t

t

s

1

2 2

1

2

1 2

2

0

2

2

−
∞

∫ ∫















=

+ +

= −
+

+ +

sin  d
d

( )

22













∞

∫
s

s d ,

on resolving the integrand into partial fractions.

 

= −
+

+ +
−

+ +













∞

∫
1

2

1 1

1 1

1

1 12 2s

s

s s
s

s
( ) ( )

d
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= − + + + +












=
+

−
∞

1

2

1

2
1 1 1

1

2 2

2 1

2

log log {( ) } cot ( )s s s

s

s s

s

log
++











+ +

















=
+ +




−

∞

2
1

1

4

2 2

1

2

2

cot ( )

log

s

s s

s

s







− +−1

2
11cot ( ).s

Example 5.7 Find the inverse Laplace transforms of the following functions:

 (i)  
1

2 3s s( )+
; (ii)  

54

33s s( )− ; (iii)  
1

4 52s s s( )+ +
.

 (iv)  
1

2 2 2s s a( )+
; (v)  

1 1

12 2s

s

s

+
+







 ; (vi)  

5 2

1 22

s

s s s

−
− +( )( )

;

 (vii)  
1

2 4 132( ) ( )s s s+ + +

Note  All the problems in this example may be solved by resolving the given 

functions into partial fractions and applying elementary methods. However we shall 

solve them by applying the following working rule and its extensions.

 L
s

s L s t

t

− −








= ∫1 1

0

1
φ φ( ) ( ( ) d   (1)

(i) L
s s

L
s

t

t

− −

+











 = +











∫1

3

1

3

0

1

2

1

2( ) ( )
d , by (1)

 

=








=

=
−






− −

−

−

∫

∫

e L
s

t

e t t

t
e

t

t

t

t

t

2 1

3

0

2 2

0

2
2

1

1

2

1

2 2

d

 d





−










+

−























− −

2
4

2
8

2 2

0

t
e et t

tt

by Bernoulli’s formula.

 

= − + +









+













= − + +

−1

2 2 2

1

4

1

4

1

8
1 2 2 1

2
2

2

e
t t

t t

t

[ ( )ee t−2 ]
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(ii)  L
s s

L
s

t t t
ttt

−

−











 =

−∫
−









∫∫1

3
000

54

3
54 1 1

3( )
d d d , by the extension of rule (1).

 

=

=










=

∫∫∫

∫∫

54

54
3

18

3

000

3

0 00

3

e t t t

e
t t

e

t

ttt

tt tt

d d d

d d

( tt

tt

t
tt

t

t

t t

e
t t

e t

−

= −










= − −

∫∫

∫

∫

1

18
3

6 3 1

00

3

00

3

0

)d d

d

( )ddt

e t
t

e t t

t
t

t

= − −










= − − −

6
3

3

2

2 9 6 2

3 2

0

3 2 .

Aliter

We can avoid the multiple integration by using the following alternative method.

 

L
s s

L

s s

e Lt

− −

−











 = − +( ) −



















=

1

3

1

3

3

54

3

54

3 3 3

54

( ) ( )

−−

+











1 1

3s s( )
,

3

by the first shifting property.

 = ⋅
+











−∫54
1

3

3 1

0

e L
s

tt

t

( )
d

3
, by rule (1)

 

= ⋅










=

− −

−

∫

∫

54
1

54
1

2

3 3

0

1

3

3 2 3

0

e e L
s

t

e t e t

t t

t

t t

t

d

d
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=
−










−










+

−






− − −

27
3

2
9

2
27

3 2
3 3 3

e t
e

t
e et

t t t




















= − + +

= − − −

−

0

3 3 2

2

9 6 2

9 6 2

t

t t

t

e e t t

e t t

[2 ( )]

2 3

(iii)   L
s s s

L
s s

t

t

− −

+ +










=

+ +











∫1

2

1

0

2

1

4 5

1

4 5(
d ,  

by rule (1).

 

=
+ +











=

=
−

−

−

−

∫

∫

L
s

t

e t t

e

t

t

t

t

1

0

2

2

0

2

1

2 1

5

( )
d

sin d

(2sin tt t

e t t

t

t

+cos )

[ ( sin cos )]













= − +−

0

21

5
1 2

 

(iv)   L
s s a

L
s a

t

tt

− −

+










=

+









∫∫1

2 2 2

1

0

2 2

0

1 1

( )
d dtt ,

 by the extension of rule (1).

 

=

=
−








= −

∫∫

∫

1

1

1
1

00

00

2

a
at t t

a

at

a
t

a
at

tt

tt

sin d d

cos
d

( cos )dd

sin

( sin ).

t

a
t

at

a

a
at at

t

t

0

2

0

3

1

1

∫

= −








= −
 

(v)   L
s

s

s
L

s

s

t

− −+
+






















=

+
+




∫1

2 2

1

0

2

1 1

1

1

1



∫

0

t

t td d ,

 by the extension of rule (1).
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= +

= −

= − +

∫∫

∫

(cos sin ) d d

(sin cos ) d

(sin cos ) d

t t t t

t t t

t t t

tt

t

t

00

0

0

0

1

tt

tt t t

t t t

∫
= − − +

= + − −

( cos sin )

cos sin

0

1 .

(vi)   L
s

s s s
L

s

s s

− −−
− +










=

−
− +






1

2

15 2

1 2

5 2

1 2( ) ( ) ( ) ( )






∫∫ d d ,t t

tt

00

by the extension of rule (1).

 =
−

+
+











−∫∫ L
s s

t t

tt

1

00

1

1

4

2
d d ,

by resolving the function into partial fractions.

 

= +

= −

= − +

=

−

−

−

∫∫

∫

∫

( ) d d

( ) d

( ) d

e e t t

e e t

e e t

t t

tt

t t t

t

t t

t

4

2

2 1

2

00

2

0

0

2

0

(( )e e t e e tt t t t t+ + = + + −− −2

0

2 2

(vii)    L
s s s

−

+ + +













1

2

1

2 4 13( ) ( )

 

=
+ + +













= ⋅
+













−

− −

L
s s

e L
s s

t

1

2

2 1

2

1

2 2 9

1

9

( ){( ) }

( )
, by tthe first shifting property.

 =
+











− −∫e L
s

tt

t

2 1

2

0

1

9
d , by rule (1),

 = − ∫
1

3
32

0

e t tt

t

sin d
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=
−








= −

−

−

1

3

3

3

1

9
1 3

2

0

2

e
t

e t

t

t

t

cos

( cos )

Example 5.8 Find the inverse Laplace transforms of the following functions:

 (i)  
1

2 2 2( )s a+
;   (ii)  

1
2 2 2s s a( )+

;  (iii) 

1

2 52 2( )s s+ + ;

 (iv)  
1

42 2( )s −
;  (v)  

1

42 2s s( )−
;  (vi)  

1

2 32 2( )s s− −
.

(i)   L
s a

L
s

s

s a

L
s

s

− −

−

+










= ⋅

+













=

1

2 2 2

1

2 2 2

1

2

1 1

( ) ( )

( ++











∫ a
t

t

2 2

0
)

d ,as

 L
s

s L s t

t

− −








= ∫1 1

0

1
φ φ( ) { ( )} d   (1)

 

= ∫
t

a
at t

t

2
0

sin d

 

[Refer to Worked Example 13(i) in Section 5(b)]

 =
−






−

−



















=

1

2

1

2

2

0

3

a
t

at

a

at

a

a

t

cos sin

(siin cos )at at at−

  

(2)

(ii)   L
s s a

L
s

s

s a

L
s

t t

− −

−

+












= ⋅

+













=∫ ∫

1

2 2 2

1

2 2 2 2

0 0

1

1 1

( ) ( )

(ss a
t t

2 2 2+









)

d d ,

by the extension of rule (1)

 =

= −

∫∫

∫

t

a
at t t

a
at at at t

tt

t

2

1

2

00

3

0

sin d d

(sin cos ) d ,

 

by (2)



5.88 Mathematics II

 

=
−

−






−

−












1

2 3 2a

at

a
a t

at

a

at

a

cos sin cos
















= − −

= − −

0

4 0

4

1

2
2

1

2
2 2

t

t

a
at at at

a
at at

( cos sin )

( cos ssin ).at

(iii)   L
s s

L
s

− −

+ +










=

+ +














1

2 2

1

2
2

1

2 5

1

1 4( ) ( )






 = ⋅
+











= −

− −

−

e L
s

e t t t

t

t

1

2 2

1

4

1

16
2 2 2

( )

(sin cos ),

 

by problem (i)

(iv)   L
s

L
s

s

s

− −

−










= ⋅

−











1

2 2

1

2 2

1

4

1

4( ) ( )
 

 =
−











−∫ L
s

s
t

t

1

2 2

0
4( )

d , by rule (1)

 

=∫
t

t t

t

4
2

0

sinh d

[Refer to Worked Example 13 (ii) in Section 5(b)]

 

=








−























1

4

2

2

2

4
0

t
t t

t

cosh sinh

 = −
1

16
2 2 2( cos sin )t h t h t   (3)

(v)   L
s s

L
s

s

s

L

− −

−










= ⋅

−











=

1

2 2

1

2 2 2

1

4

1

4( ) ( )

−−∫∫ −











1

0

2 2

0
4

tt
s

s
t t

( )
,d d

by the extension of rule (1).

 

= ∫∫
t

t t t

tt

4
2

00

sinh d d

 = −∫
1

16
2 2 2

0

t

t t t t( cosh sinh ) ,d  by (3)
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= −








−













=

1

16
2

2

2

2

4

2

2

1

16

0

t
t t t

t

t

sinh cosh cosh

[ sinnh cosh ]

( sinh cosh )

2 2

1

16
1 2 2

0t t

t t t

t−

= + −

(vi)   L
s s

L
s

e

− −

− −










=

− −{ }



















=

1

2 2

1

2
2

1

2 3

1

1 4( ) ( )

tt L
s

⋅
−













−1

2 2

1

4( )
,

by the first shifting property.

 = −
1

16
2 2 2e t t tt ( cosh sinh ), by problem (iv).

Example 5.9

(i)  Verify the initial and final value theorems when (a) f(t)  =  (t  +  2)2 e−t; (b) 

f t L
s s

( )
( )

=
+











−1

2

1

2

(ii)  If L(e−t cos2 t) = f (s), find lim [ ( )]
s

s s
→0

φ  and lim [ ( )]
s

s s
→∞

φ .

(iii)  If L f t
s s s

{ ( )}
( )( )

=
+ +

1

1 2
, find lim[ ( )]

t
f t

→0
 and lim [ ( )]

t
f t

→∞
.

(i) (a)  f(t)  =  (t2  + 4t + 4)e−t

∴ φ ( ) { ( )}
( ) ( )

s L f t
s s s

= =
+

+
+

+
+

2

1

4

1

4

13 2

∴ s s
s

s

s

s

s

s
φ ( )

( ) ( )
=

+
+

+
+

+
2

1

4

1

4

13 2

Now  lim [ ( )]
t

f t
→

=
0

4 and lim [ ( )]
s

s s
→∞

= + + =φ 0 0 4 4

Hence the initial value theorem is verified.

Also  lim [ ( )]
t

f t
→∞

=0  and lim[ ( )]
s

s s
→

=
0

0φ

Hence the final value theorem is verified.

(i) (b) 
  

f t L
s s

L
s

t

( )
( ) ( )

=
+










=

+











− −∫1

2

1

0

2

1

2

1

2
dd

d

t

te t

t

= −∫ 21

0
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=
−










−























= −

− −

t
e e

t

t t
t

2 2

0
2 4

1

4
1 2( ee et t− −−2 2 )

 
s s

s
φ ( )

( )
=

+
1

2 2

Now  lim[ ( )] lim [ ( )]
t s

f t s s
→ →∞

= =
0

0 φ

and  lim [ ( )] lim[ ( )]
t s

f t s s
→∞ →

= =
1

4 0
φ

Hence the initial and final value theorems are verified.

(ii)   L(e−t cos2 t) = f (s)

i.e.,  f (t) = e−t cos2 t

By the final value theorem,

 
lim [ ( )] lim [ cos ]
s t

ts s e t
→ →∞

−= =
0

2 0φ

By the initial value theorem,

 
lim [ ( )] lim [ cos ]
s t

ts s e t
→∞ →

−= =φ
0

2 1
 

(iii)   L f t
s s s

{ ( )}
( )( )

=
+ +

1

1 2

∴  s s
s s

φ ( )
( )( )

=
+ +

1

1 2

By the initial value theorem,

 lim[ ( )] lim [ ( )]
t s

f t s s
→ →∞

= =
0

0φ  

By the final value theorem,

 lim [ ( )] lim[ ( )]
t s

f t s s
→∞ →

= =
0

1

2
φ

Example 5.10 Use convolution theorem to evaluate the following

(i)  u e ua t u

t

2

0

− −∫ ( ) d    (ii)  sin cos ( )u t u u

t

0

∫ − d

(i) u e ua t u

t

2

0

− −∫ ( ) d  is of the form f u g t u u

t

( )

0

∫ −( ) d
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where  f(t) = t2 and g(t) = e−at

i.e.  u e u t ea t u

t

at2

0

2− − −∫ =( ) ( )*( )d

∴ By convolution theorem,

 

L u e u L t L e

s s a

a t u

t

at2

0

2

3

2 1

− − −∫















= ⋅

= ⋅
+

( ) ( ) ( )d

 

u e u L
s s a

a t u

t

2

0

1

3

2− − −∫ =
+











( )

( )
d

 

= ⋅
−











=
−









− −

− −∫

e L
s s a

e L
s a

at

at

t

1

3

1

0

3

2

2

( )

( )




=

= − +












−

−

∫

d

d

t

e t e t

e t
e

a
t

e

a

e

a

at

t

at

at
at at at

2

0

2

2 3

0

2 2

tt

at
at at at

e
t e

a

t e

a

e

a a

a
a t at

= − + −










= − +

−
2

2 3 3

3

2 2

2 2 2

1
2{ 22 2− −e at }

(ii)  sin cos ( )u t u u

t

−∫ d

0

 is of the form f u g t u u

t

( ) ( )−∫ d

0

,

where  f(t) = sin t and g(t) = cos t

i.e.  sin cos ( ) (sin ) * (cos )u t u u t t

t

− =∫ d

0

∴ By convolution theorem,

 L u t u u L t L t

t

sin cos ( ) (sin ) (cos )−















= ⋅∫ d

0
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=

+
s

s( )2 21

∴ sin cos ( )
( )

u t u u L
s

s

t

− =
+











−∫ d 1

2 2

0
1

 =
t

t
2

sin , by Worked Example 13(i) of Section 5(b).

Example 5.11 Use convolution theorem to find the inverse Laplace transforms of 

the following functions:

 (i)  
1

1 2( ) ( )s s+ +
 (ii)  

s

s a( )2 2 2+
  (iii)  

s

s a s b

2

2 2 2 2( ) ( )+ +

 (iv)  
4

2 52 2( )s s+ +
 (v) 

s s

s s s

2

2 21 2 2

+
+ + +( ) ( )

(i)  L
s s

L
s

L
s

− − −

+
⋅

+










=

+









 +




1 1 11

1

1

2

1

1

1

2

*







, by convolution theorem

 

=

= ⋅

=

= − = −

− −

− − −

−

− − −

∫

∫

e e

e e u

e e u

e e e e

t t

u

t

t u

t u

t

t t t

*

( )

( )

2

0

2

2

0

2 21

d

d

tt

(ii) L
s

s a
L

s a

s

s a

− −

+










=

+
⋅

+











1

2 2 2

1

2 2 2 2

1

( )

 =
+









 +











− −L
s a

L
s

s a

1

2 2

1

2 2

1
* , by convolution theorem

 

=








= −

=

∫

1

1

1

2

0

a
at at

a
au a t u u

a
at

t

sin * (cos )

sin cos ( )

[sin

d

++ −

= −
−











∫ sin ( )]

(sin )
cos( )

2

1

2

2

2

0

0

au at u

a
at u

au at

a

t

t

d
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= − −












=

1

2

1

2

1

2

a
t at

a
at at

a
t at

sin (cos cos )

sin .

(iii)  L
s

s a s b
L

s

s a

s

s b

− −

+ +










=

+
⋅

+







1

2

2 2 2 2

1

2 2 2 2( )( )




 

=
+









 +











− −L
s

s a
L

s

s b

1

2 2

1

2 2( )
* , by convollution theorem

= ( ) * ( )

d

cos cos

cos cos ( )

{cos

at bt

au b t u u

t

= ⋅ −

=

∫
0

1

2
[[( ) ] cos[( ) ]}

sin{( )

a b u bt a b u bt u

a b
a b u bt

a b

t

− + + + −

=
−

− + +
+

∫ d

0

1

2

1 1
ssin{( ) }

(sin sin ) (sin s

a b u bt

a b
at bt

a b
at

t

+ −












=
−

− +
+

+

0

1

2

1 1
iin )

sin

bt

a b a b
at

a b a b













=
−

+
+









 +

+
+

−






1

2

1 1 1 1 
















=
−

−
−













sin

sin sin

bt

a

a b
at

b

a b
bt

1

2

2 2
2 2 2 2

==
−

−
1

2 2a b
a at b bt( sin sin ).

(iv)  L
s s

L
s s s s

− −

+ +( )


















=

+ +( )
⋅

+ +( )












1

2
2

1

2 2

4

2 5

2

2 5

2

2 5





 =
+ +









 + +











− −L
s

L
s

1

2

1

2

2

1 4

2

1 4( )
*

( )
,

by convolution theorem.

 

=

= ⋅ ⋅ −

− −

− − −∫

( sin )*( sin )

sin sin ( )( )

e t e t

e u e t u u

t t

u t u

t

2 2

2 2

0

d
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= − −

=
−

− ⋅




−

−

∫
1

2
4 2 2

1

2

4 2

4
2

0

e u t t v

e
u t

t u

t

t

t

[cos ( ) cos ]

sin ( )
(cos )

d










= + −












= −

−

−

0

1

2

1

4
2 2 2

1

4
2

t

t

t

e t t t t

e t

(sin sin ) cos

(sin 22 2t tcos ).

(v)  L
s s

s s s
L

s

s s

s

s

− −+

+( ) + +( )















=

+
+ +

⋅
+











1
2

2 2

1

2 2
1 2 2

1

2 2 1



 

=
+

+ +









 +











=

− −

−

L
s

s
L

s

s

e t

1

2

1

2

1

1 1 1( )
*

( cos tt t

e u t u u

e t u t u

u

t

u

t

)*(cos )

cos cos ( )

[cos cos ( )]

= −

= + −

−

−

∫

∫

0

0

1

2
2

d

d

== −( ) + ⋅ − − + −





=

− −1

2

1

2

1

5
2 2 2

1

0 0
cos { cos ( ) sin ( )}t e e u t u tu

t
u

t

22
1

1

10
2 2

1

5

cos ( ) ( sin cos ) ( sin cos )

(

t e e t t t t

e

t t

t

− + − + +





=

− −

− ssin cos ) (sin cos ).t t t t− + +3
1

5
3

EXERCISE 5(c)

Part A

(Short Answer Questions)

 1. State the relation between the Laplace transforms of f (t) and f ′(t). Under 

what conditions does this relation hold good?

 2. Express L−1 {sφ (s)} interms of L−1 {φ (s)}. State the condition for the validity 

of your answer.

 3. Express L f t t t

tt

( )d d

00

∫∫















 in terms of L{f(t)}.
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 4.  State the relation between L−1 {f (s)} and L
s

s− 









1

2

1
φ ( ) .

 5.  State the initial value theorem in Laplace transforms.

 6.  State the final value theorem in Laplace transforms.

 7.  Define the convolution product of two functions and prove that it is com-

mutative.

 8.  Verify whether 1 * g (t) = g (t), when g (t) = t.

 9.  State convolution theorem in Laplace transforms.

 Using the Laplace transforms of the derivatives find the Laplace transforms 

of  the following functions:

10.  e at   11. cos a t  12.  sin2 t 

    Find the inverse Laplace transforms of the following functions:

13.   
s

s( )3+2
  14. 

s

s

2

1( )3−

15.  
s

s a b( ) +2 2−
     16. 

s

s s( ) ( )+ +1 2

 Find the Laplace transforms of the following functions:

17.  
sin

d
t

t
t

t

0

∫     18.  
1

d
−

∫
e

t
t

tt

0

   19.  
1 cos

d
−

∫
2

0

t

t
t

t

20.  t e tt

t

−∫
0

d     21.  e t tt

t

−∫ sin d

0

   22.  t t t

t

sin d

0

∫

 Find the inverse Laplace transforms of the following functions:

23.  
1

s s a( )+
      24. 

1

12s s( )+

25.  
1

2 2s s a( )−
     26. 

1

12s s( )+

27.  If L f t
s

s s
( )

( ) ( )
{ }= +

+ +
3

1 2
, find lim ( ( )}

t
f t

→0
 and lim{ ( )}

t
f t

→∞
.

28.  If L s e et t− − −− +1 21

2
2{ ( )}= (1 )φ , find lim ( ( )}

s
s s

→0
φ  and lim { ( )}

s
s s

→∞
φ .

29.  Show that 1 1 1 1
1

1

* * * ......* ( times) =
( )!

n
t

n

n−

−
, where * denotes Convolu-

tion.

30.  If L f t
s

( ){ }=
+

1

12
, evaluate f u f t u u

t

( ) ( )d

0

∫ − .
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   Use convolution theorem to find the inverse Laplace transforms of the 

following functions:

 31.  
1

1 3( ) ( )s s− +
    32. 

1

1( )2s−

 33.  
1

s s a( + ) 2 2     34. 
1

2s s( +1)

 35.  2 / (s +1) (s2 + 1).

Part B

 36.  Using the Laplace transforms of the derivatives find L (t sin a t) and hence  

   find L (2 cos at − a t sin a t) and L (sin a t + a t cos a t).

 37.  Using the Laplace transforms of the derivatives, find L (t cosh a t) and

   hence find L (sinh a t + a t cosh a t) and L (a t cosh a t − sinh a t).

 38.  Find L
s a s b

−










1 1

( + ) ( + )
 and hence find L

s

s a s b

−










1

( + ) ( + )
.

 39.  Find L
s s s

−

− − −











1 1

1 2 3( ) ( ) ( )
 and hence find L

s

s s s

−

− − −













1
2

1 2 3( ) ( ) ( )
.

 40.  Find L
s a s b

−

+( ) +( )















1

2 2 2 2

1
 and hence find L

s

s a s b

−

+( ) +( )















1

2 2 2 2

 and L
s

s a s b

−

+( ) +( )















1
2

2 2 2 2
.

 41.  Given that L
s

s

t
t−

+( )
















=1

2
2

4 4
sin 2 , find

   

L
s

s
L

s

s

− −

+( )















 +( )
















1
2

2
2

1
3

2
2

4 4
,



+

+ +( )

















−and
( )2

L
s

s s

1

2
2

3

6 13

 42.  Given that L
s

s a

t

a
at−

−( )
















=1

2 2
2 2

sinh , find 

 

L
s

s a
L

s

s a

− −

−( )















 −( )














1
2

2 2
2

1
3

2 2
2

, 




+
+











−and
( )

L
s a

s s a

1

2

2
.

 43.  Given that L
s

t t t t−

+











−1

4

1

4

1

4
= (sin cosh cos sinh ) , find L

s

s

−

+











1

4 4
,
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L
s

s
L

s

s

− −

+











 +













1
2

4

1
3

44 4
 and .

 
Find the Laplace transforms of the following functions:

44.  t e t tt

t

0

∫ sin d    45 . e t t tt

t

0

∫ sin d

46.  t e t tt

t

0

∫ sin d    47.  
e t

t
t

tt −

∫
2

0

 sin 3
d

48.  e
t

t
tt

t

− ∫2

0

sin 3
d    49.  

1 2

0
t

e t tt

t

−∫ sin 3 d

 Find the inverse Laplace transforms of the following functions:

50.  
1 1

12s

s

s

−
+









   Hint: Consider the function as 

( )

s

s s s

−
+













1
2

51.  
4 7

3 52

s

s s s

+
+ + (2 ) (3 )

   52.  
1

6 252s s s( )+ +

53.  
1

1 2 22( ) ( )s s s+ + +
   54. 

1 2

42 2s

s

s

−
+









       55.  

1

( + 9)2 2s

56.  
1

s s( + 9)2 2    57.  
1

( + 6  + 10)2 2s s
  58.  

1
2( )2 2s a−

 

59.  
1

2s s a( )2 2−
   60. 

1

4( )2 2s s+

 Verify the initial and final value theorems when 

61.  f (t) = (2t + 3)2 e−4t   62. f t L
s s

( )
( )3

=
+











−1 1

4

63.  Use convolution theorem to evaluate

  e t u uu

t

−∫ −
0

 sin ( ) d

64.  Evaluate cos cosh ( ) d a u a t u u

t

−∫
0

, using convolution theorem.

 Use convolution theorem to find the inverse of the following functions:

65.  
s

s s( + 4) (  + 9)22    66. 
s

s a

2

2 2( + )2

67.  
1

(  + 4)2 2s
   68. 

10

( + 1) (  + 4)2s s
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69.  
1

12 3s s( )+
   70.  

1

44s +

5.11 SOLUTIONS OF DIFFERENTIAL  

AND INTEGRAL EQUATIONS

As mentioned in the beginning, Laplace transform technique can be used to solve 

differential (both ordinary and partial) and integral equations. We shall apply this 

method to solve only ordinary linear differential equations with constant coefficients 

and a few integral and intergo-differential equations. The advantage of this method 

is that it gives the particular solution directly. This means that there is no need 

to first find the general solution and then evaluate the arbitrary constants as in 

the classical approach.

5.11.1  Procedure

1.  We take the Laplace transforms of both sides of the given differential equa-

tion in y (t), simultaneously using the given initial conditions. This gives an 

algebraic equation in y s L y t( ) = { ( )} .

Note   L y t s y s s y s y yn n n n n{ ( )} = ( ) (0) (0) (0).( ) ( )− − ′− − −1 2 1........

2.  We solve the algebraic equation to get y s( )  as a function of s.

3.  Finally we take L y s−1 { ( )}  to get y(t). The various methods we have dis-

cussed in the previous sections will enable us to find L y s−1 { ( )} .

 The procedure is illustrated in the worked examples given below:

WORKED EXAMPLE 5(d)

Example 5.1 Using Laplace transform, solve the following equation

 L
i

t
Ri E e a td

d
+ = − ; i (0) = 0, where L, R, E and a are constants.

 Taking Laplace transforms of both sides of the given equation, we get,

 L L i t RL i t EL e at⋅ ′ −{ ( )} + { ( )} = { }

i.e.,  L s i s i Ri s
E

s a
i s L i t{ ( ) (0)} + ( ) , where ( ) = { ( )}− =

+

i.e.,  ( ) ( )Ls R i s
E

s a
+ =

+

∴  i s
E

s a Ls R
( )

( ) ( )
=

+ +
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=
−











+
+

−










+

















E
R aL

s a

aL R

s R L

1 1 





Taking inverse Laplace transforms

 

i t
E

R aL
L

s a
L

s R L
( ) =

− +










−

+

















− −1 11 1









=
−

−− −E

R aL
e eat Rt L( )

Example 5.2 Solve  y″ − 4y′ + 8y = e 2 t,  y (0) = 2  and  y′ (0) = − 2.

Taking Laplace transforms of both sides of the given equation, we get

 

[ ( ) ( ) ( )] [ ( ) ( )] ( )s y s s y y s y s y y s
s

2 0 0 4 0 8
1

2
− − ′ − − + =

−

i.e.,  ( ) ( ) ( )s s y s
s

s2 4 8
1

2
2 10− + =

−
+ −

∴  y s
s s s

s

s s

A

s

Bs C

s s

s

s

( )
( )

=
− − +( )

+
−

− +

=
−

+
+

− +
+

−

1

2 4 8

2 10

4 8

2 4 8

2 10

2 2

2 2 −− +

=
−

+
− +

− +
+

−
− +

=
−

+
−

−

4 8

1

4

2

1

4

1

2

4 8

2 10

4 8

1

4

2

7

4

19

2

4

2 2

2

s

s

s

s s

s

s s

s

s

s ss

s

s

s

y L
s

e Lt

+

=
−

+
− −

− +

=
−










+− −

8

1

4

2

7

4
2 6

2 4

1

4

1

2

7

2

1 2 1

( )

( )

44
6

4

1

4

7

4
2 3 2

2

2 2

s

s

e e tt t

−

+



















= + −cos sin tt

e t tt









= + −
1

4
1 7 2 12 22 ( cos sin )
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Example 5.3 Solve y″ − 2y′ + y = (t + 1)2, y (0) = 4 and y′ (0) = −2.

Taking Laplace transforms of both sides of the given equation, we get,

 [ ( ) ( ) ( )] [ ( ) ( )]+ ( ) = ( )s y s sy y s y s y y s L t t2 20 0 2 0 2 1− − ′ − − + +

i.e.,  ( ) ( )s s y s s
s s s

2

3 2
2 1 4 10

2 2 1
− + − + = + +

i.e.,  y s
s

s s s s s s s
( ) =

( ) ( ) ( ) ( )2

4 10

1

1

1

2

1

2

12 2 2 3 2

−
−

+
−

+
−

+
−

       
=

( ) ( ) ( ) ( )

4

1

6

1

1

1

2

1

2

12 2 2 2 3 2s s s s s s s s−
−

−
+

−
+

−
+

−

∴ y e te t e t t e t t t e t t t

e

t t t

t

t

tt ttt

t

t

= − + + +

=

∫ ∫∫ ∫∫∫4 6 2 2

4

0 00 000

d d d d d d

−− + − + − + + − +

=

∫ ∫∫6 1 1 2 1

3

0 00

t e t e e t e e t t e e t tt t t

t

t t

tt

t t( ) + 2 ( )d ( )d d

ee t e t e e t t e e t t

e t e t

t t t t t

t

t

t t

− + + − + + − + +

=− − + +

∫5 1 2 2 2 2 2

3 2

0

( ) + 2 ( )d

55 2 3
2

2 3

6 11

2

2

+ − + + +

− − + + +

( )

= 7

t e e
t

t

e t e t t

t t

t t

Example 5.4 Solve y″ + 4 y = sin wt, y (0) = 0 and y′(0) = 0.

  Taking Laplace transforms of both sides of the equation, we get

 
[ ( ) ( ) ( )]+ 4 ( ) =2s y s sy y y s

s
− − ′

+
0 0

2 2

ω

ω

∴  y s
s s

s s

( ) =
ω

ω

ω

ω ω

2 2 2

2 2 2 2

4

4

1

4

1

+( ) +( )

=
− +

−
+









  (1)

Inverting, we have,

 
y t t=

−
−









1

4 2
2

2ω

ω
ωsin sin , if w ≠ 2.

If w = 2, from (1), we have

 
y s

s
( ) =

( )

2

42 2+

∴  y L
s

= 2
( )

−

+











1

2 2

1

4
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= −

1

8
2(sin 2 cos 2 )t t t

[Refer to Worked Example 8(i) in Section 5(c).

Example 5.5 Solve the equation y″ + y′ − 2y = 3 cos 3t −11 sin 3t, y (0) = 0  

and y′(0) = 6.

Taking Laplace transforms and using the giving initial conditions, we get

 

( ) ( ) =s s y s
s

s s

s s

s

2

2 2

2

2

2
3

9

33

9
6

6 3 21

9

+ −
+

−
+

+

=
+ +

+

∴  y s
s s

s s s

As B

s

C

s

D

s

s s

( ) =
( ) ( 1)

6 3 21

9 2

9 2 1

3

9

1

2

2

2

2

+ +

+( ) + −

=
+
+

+
+

+
−

=
+

−
++

+
−2

1

1s

, 

by the usual procedure

∴  y = sin 3t − e−2t + et.

Example 5.6 Solve the equation (D2 + 4D + 13) y = e−t sin t, y = 0 and 

D y = 0 at t = 0, where D
t

≡
d

d
.

Taking Laplace transforms and using the given initial conditions, we get

 
( ) ( ) =2

2
s s y s

s s
+ +

+ +
4 13

1

2 2

∴  y s
s s s s

As B

s s

Cs D

s s

s

( ) =
2 2

1

2 2 4 13

2 2 4 13

1

85

2

2 2

+ +( ) + +( )

=
+

+ +
+

+
+ +

=
− +77

2 2

2 3

4 132 2s s

s

s s+ +
+

−
+ +












,

on finding the constants A, B, C, D by the usual procedure.

 
=

− +
+ +

+
+ −

+ +













1

85

2 1

1 1

2 2

2 9

( ) +9

( )

( ) 7

( )2 2

s

s

s

s

∴  y e t t e t tt t= − + −













 − −1

85
9 2

7

3

2{ 2cos sin }+ cos3 sin 3
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Example 5.7 Solve the equation (D2 + 6D + 9) x = 6 t2 e−3t, x = 0   and   Dx  

= 0 at t = 0.

Taking Laplace transforms and using the initial conditions, use get,

 

( ) ( ) =
( )3

s s x s
s

2 6 9
12

3
+ +

+

∴  x s
s

( ) =
( )5

12

3+

∴  x e L
s

t e

t

t

= ⋅

=

− −

−

3 1

5

4 3

12

1

2

.

Example 5.8 Solve the equation y″ + 9y = cos 2t, y (0) = 1 and y (p/2) = −1.

Note  In all the problems discussed above the values of y and y’ at t = 0 were 

given. Hence they are called initial conditions. In fact, the differential equation with 

such initial conditions is called an initial value problem.

But in this problem, the value of y at t = 0 and t = p/2 are given. Such conditions 

are called boundary conditions and the differential equation itself is called a boundary 

value problem.

As y′(0) is not given, it will be assumed as a constant, which will be evaluated 

towards the end using the condition y (p/2) = −1.

Taking Laplace transforms, we get

 
s y s s y y y s

s

s

2

2
0 0 9

4
( ) ( ) ( ) + ( ) =− − ′

+

i.e.  ( ) ( ) =s y s
s

s
s A2

2
9

4
+

+
+ + , where A = y′(0).

∴  y s
s

s s

s

s

A

s

s

s

s

s

( ) =
2 2 2 2

2 2

4 9 9 9

1

5 4 9

+( ) +( )
+

+
+

+

=
+

−
+










++

+
+

+
s

s

A

s2 29 9

∴  y t t
A

t= + +
1

5

4

5 3
cos 2 cos3 sin 3

Given  y
π

2
1







=−

i.e.  − =− −1
1

5 3

A
 ∴ A =

12

5

∴ y t t t= + +
1

5

4

5

4

5
cos 2 cos3 sin 3 .
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Example 5.9 Find the general solution of the following equation

 y″ − 2ky′ + k2y = f(t).

Taking Laplace transforms, we get

 [ ( ) ( ) ( )] [ ( ) ( )]+ ( ) = ( )2 2s y s sy y k s y s y k y s f s− − ′ − −0 0 2 0

i.e. ( ) ( ) = ( ) +[ ( ) ( )]+ ( )s ks k y s sy y ky f s2 22 0 0 2 0− + ′ −

i.e.  ( ) ( ) = + ( )2s k y s As B f s− +

[As y (0) and y′(0) are not given, they are assumed as arbitrary contants]

∴  y s
As

s k

B

s k

f s

s k

A k Ak B

s k

f s

( ) =
( ) ( )

( )

( )

(s ) + ( )

( )

( )

(

2 2 2

2

−
+

−
+

−

=
− +

−
+

ss k

C

s k

C

s k

f s

s k

−

=
−

+
−

+
−

)

( )

( )

( )

2

2 2

1 2 , where C
1 
= A and C

2
 = Ak

 
+ B

∴  y C e C t e L f s
s k

kt kt= + + ⋅
−











−
1 2

1 1
( )

( )2

i.e.  y = (C
1 
+ C

2
t) ekt + f (t) * t ekt

i.e.  y C C t e f t u ue ukt

t

ku= + −∫( + ) ( ) d21

0

.

Example 5.10 Solve the equation (D3 + D) x = 2, x = 3, D x = 1 and D2x = −2  

at t = 0.

Taking Laplace transforms and using the initial conditions, we get

 
( ) ( ) =3s s y s s s

s

3 2 1
2

+ + + +

∴ y s
s

s s s s s s
( ) =

3

1

1

1

1

1

2

1
2 2 2 2 2+

+
+

+
+( )

+
+( )

∴ y t t t dt t t t

t t t

t tt

= + + +

= + + −

∫ ∫∫3 2

3

0 00

cos sin sin sin d d

cos sin (1 cos ) ++ 2 ( cos )d

cos sin ( sin )

= cos sin

0

1

2 1 2

2 1 2

t

t t

t t t t

t t t

∫ −

= + + + −
− + + .
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Example 5.11 Solve the equation 
d

d

d

d

4

4

3

3
0

y

x

y

x
− = , y

y

x
= =

d

d
2  and 

d

d

d

d

2 3y

x

y

x2 3
1= =  

at x = 0.

Note   Change in the independent variable from t to x makes no difference in the 

procedure.)

Taking Laplace transforms and using the initial conditions, we get

 
( ) ( )s s y s s s4 3 32− = −

∴  y s
s

s s

A

s

B

s

C

s
( )=

−
−( )

= + +
−

2 1

1 1

2

2 2
.

i.e.  y s
s s s

( )= + +
−

1 1 1

12

∴  y = 1 + t + et

Example 5.12 Solve the simultaneous differential equation 
d

d
sin

y

t
x t+ =2 2

and 
d

d
cos

y

t
x t+ =2 2 , x (0) = 1, y (0) = 0.

Taking Laplace transforms of both sides of the given equation and using the given 

initial conditions, we get

 sy s x s
s

( ) ( )+ =
+

2
2

42
  (1)

and  sx s y s
s

s
( ) ( )− =

+
+2

4
1

2
  (2)

Solving (1) and (2), we have

 x s
s

s

s
( )=

+
+

+
1

4 42 2
 and y s

s
( )=−

+
2

42

∴  x t t= +
1

2
2 2sin cos  and y = − sin 2 t.

Example 5.13 Solve the simultaneous equations

 2x′ − y′ + 3x = 2t and x′ + 2y′ − 2x − y = t2 − t, x (0) = 1 and y (0) = 1.

Taking Laplace transforms of both the equations, we get

 2 1 1 3
2

2
[ ( ) ] [ ( ) ] ( )sx s sy s x s

s
− − − + =  and
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[ ( ) ] [ ( ) ] ( ) ( )sx s s y s x s y s

s s
− + − − − = −1 2 1 2

2 1
3 2

i.e.  ( ) ( ) ( )2 3
2

1
2

s x s sy s
s

+ − = +   (1)

and  ( ) ( ) ( ) ( )s x s s y s
s s

− + − = − +2 2 1
2 1

3
3 2   (2)

Solving (1) and (2), we have

 

x s
s s s

s

s s

s s s

( )=
+( ) −( )

+
−

+( ) −( )

=
−

+
+

+
−






3

1 5 3

5 1

1 5 3

1 3 8

1

25 8

5 3





+

+
+

−











=− +
+

+
−

3 4

1

5 4

5 3

1 9 8

1

7 8

3 5

s s

s s s

∴  x e et t=− + +−1
9

8

7

8

3 5   (3)

Eliminating y′ from the given equations,

we get  5x′ + 4x − y = t2 + 3t

∴  y = 5x′ + 4x − t2 − 3t

 

= − +









+ − + +











− −5
9

8

21

40
4 1

9

8

7

8

3

5

3

5e e e et
t

t
t



 − t2 − 3t,   on using (3)

i.e.  y e e t tt
t

=− + − − −−9

8

49

8
3 4

3

5 2
.

Example 5.14 Solve the simultaneous equations

 Dx + Dy = t  and D2x − y = e−t; nx = 3,

 Dx = − 2 and y = 0 at t = 0.

Taking Laplace transformed of both the equations, we get

 sx s sy s
s

( ) ( )− + =3
1
2

 and

 

s x s s y s
s

2 3 2
1

1
( ) ( )− + − =

+

i.e.  x s y s
s s

( ) ( )+ = +
1 3
3   (1)

and  s x s y s
s

s2 1

1
3 2( ) ( )− =

+
+ −   (2)
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Solving (1) and (2), we have

 
x s

s s s s s s

s

s

s

s

( )
( )

=
+ +

+
+

+
+

+
−

+

=
+

+
−

( ) ( ) ( )
1

1 1

3

1

1

1

3 2

1

1

2

1

1

2

1

2

2 2 3 2 2









( ) ( )+
+

+
+

+
+

+
−

+

=
+

−

s s s s s

s

s s

s s

2 2 3 2 2 2

2

1

3

1

1

1

3

1

2

1

1

2

1

3

2

++
+

+
+

+
+

+( ) ( )1

5

2

1

3

1

1

1
2 2 3 2

s

s s s s s

∴  x e t t t t t t t t

e

t

t ttt

= − + + +

=

− ∫ ∫∫∫
1

2

3

2

5

2
3

1

2

0 000

 sin  cos sin d sin d d d

−− − + + −( )+ + −t t t t
t

t
3

2

5

2
3 1

2
1

2

 sin  cos cos cos

i.e.  x e t t
tt= − + + +−1

2

3

2

1

2 2
2

2

.
sin cos   (3)

∴  ′′= + − +−x e t tt1

2

3

2

1

2
1sin cos   (4)

From the given second equation we have

 y = x″ − e−t

 
= − + −−1

1

2

3

2

1

2
e t tt sin cos .

Example 5.15 Solve the simultaneous equations

 D2x − Dy = cos t and Dx + D2y = − sin t; x = 1,

 Dx = 0, y = 0, Dy = 1 at t = 0.

Taking the Laplace transforms of both equations, we get

 s x s sy s
s

s
s2

2 1
( ) ( )− =

+
+   (1)

and  sx s s y s
s

( ) ( )+ = −
+

2

2
2

1

1
 (2)

Solving (1) and (2), we have

 

x s
s

s s s

s

s s s

s

s s s

s

( )=
+

+
+( )

+
+( )

−
+( )

=
+

+
+( )

+
−

2 2 2
2

2
2

2 2

2

1

2

1 1

1

1

1

2

1

1

ss s2
2

1+( )
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and  y s
s

s

( )=
+

−

+( )
1

1

2

1
2

2
2

∴ x t t t L
s

L
s

t

= + +
+










−

+( )






∫ − −cos sin d2

1

1
2

1

10

1

2

1

2
2










= + −( )+ − +( )

= +

∫

∫

d

cos cos sin sin cos d

t

t t t t t t t

t

t

0

0

2 1

1 tt tsin

and y t t t t= − × −( )sin sin cos2
1

2

 = t cos t.

Example 5.16 Show that the solution of the equation

L
i

t
Ri

C
i t E

t
d

d
d+ + =∫

1

0

,i (0) = 0 [where L, R, E are constants] is given by

 

i

E

L
e t

E

L
te

E

kL
e kt

at

at

at

=

>

=

<

Ï

Ì

Ô
Ô

-

-

-

w
w w

w

w

sin , if

, if

sinh ,if

2

2

0

0

0

ÔÔ

Ó

Ô
Ô
Ô

where  a
R

L LC

R

L
= = -

2

1

4

2
2

2
, w   and  k2 = −w2.

Note   The given equation is an integro-differential equation, as the unknown 

(dependent variable) i occurs within the integral and differential operations.]

Taking Laplace transforms of the given equation, we get

 
Lsi s Ri s

Cs
i s

E

s
( ) ( ) ( )+ + =

1

i.e. LCs RCs i s EC2 1+ +( ) =( )

∴ i s
EC

LCs RCs

E

L
s

R

L
s

LC

( ) =
+ +

= ⋅
+ +

2

2

1

1

1
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= ◊

+Ê
ËÁ

ˆ
¯̃
+ -
Ê

ËÁ
ˆ

¯̃

= ◊
+ +

>

E

L
s

R

L LC

R

L

E

L s a

1

2

1

4

1
0

2 2

2

2 2( )
, if 2

w
w

∴ i t
E

L
e tat( ) = sin

w
w◊ -

If  ω = 0,

 
i s

E

L s a
( )= ⋅

+
1

2( )

∴ i t
E

L
te at( )= −

I f   ω2  <  0   a n d  ω2 =  − k 2,

 
i s

E

L s a k
( )

( )
= ⋅

+ −
1

2 2

∴ i t
E

Lk
e ktat( ) sinh= −

.

Example 5.17 Solve the simultaneous equations

 3x′ + 2y′ + 6x =0 and

 ′+ + = +∫y y x t t t

t

3 3

0

d cos sin , x (0) = 2 and y (0) = − 3.

Taking Laplace transforms of both the equations, we get

 

3 2 2 3 6 0

3
3

12

[ ( ) ] [ ( ) ] ( ) and

 ( ) ( ) ( )

s x s s y s x s

s y s y s
s

x s
s

s

− + + + =

+ + + =
+

++
+
3

12s

i.e. ( ) ( ) ( )3 6 2 0s x s s y s+ + =  (1)

and 
3

1
3

1
3

2s
x s s y s

s

s
( ) ( ) ( )+ + =

+
+

−  (2)

Solving (1) and (2) for x s( ), we have

 
[ ( ) ( ) ] ( )

( )
3 2 1 6

2 3

1
6

2
s s x s

s s

s
s+ + − =−

+
+

+

i.e. x s
s s

( )=− ⋅
+

+
+

2

3

1

1

2

32
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∴ x t e t=− + −2

3
2 3sin .

Solving (1) and (2) for y s( ) , we have

 
y s

s s

s s s

s

s
( )

( )
=

+ −

+ +( )
=−

+
+

−
+













3 5 2

3 1

1

3

2 1

1

2

2 2

∴  y = − e−3t − 2 cos t + sin t.

Example 5.18 Solve the integral equation

 
y t

t
u y t u u

t

( ) = ( )d
2

0
2
− −∫

Noting that the integral in the given equation is a convolution type integral and 

taking Laplace transforms, we get

 

y s
s

L t L y t

s s
y s

( ) = ( ) { ( )}

( )

1

1 1

3

3 2

− ⋅

= −

∴ 
1 12

2 3

+









=
s

s
y s

s
( )  or y s

s s
( ) =

+( )
1

1 2

∴ y t t t

t

( ) sin d=∫
0

 = 1 − cos t.

Example 5.19 Solve the integral equation

 
y t a t y u t u u

t

( ) sin ( ) cos ( )d= − −∫2

0

.

Taking Laplace transforms,

 y s
a

s
L y t L t( ) { ( )} (cos )=

+
− ⋅

2 1
2

i.e. y s
a

s

s

s
y s( ) ( )=

+
−

+
⋅

2 21

2

1

i.e. 
( )

( )
s

s
y s

a

s

+
+

=
+

1

1 1

2

2 2
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i.e. y s
a

s
( ) =

+( )1
2

∴ y t a t e t( ) = − .

Example 5.20 Solve the integro-differential equation

 
′ = + − =∫y t t y t u u u y

t

( ) ( ) cos d , ( )0 4

0

Taking Laplace transforms,

 
s y s

s

s

s
y s( ) ( )− = +

+
4

1

12 2

i.e. s
s

y s
s

1
1

1

1
4

2 2
−

+











= +( )

i.e. y s
s s

s

s s s

( ) =
+( ) +( )

= + +

2 2

5

3 5

1 1 4

4 5 1

∴ y t t t( ) = + +4
5

2

1

24

2 4.

EXERCISE 5(d)

Part A

(Short Answer Questions)

 Using Laplace transforms, solve the following equations:

 1.  ′x  + x = 2 sin t, x (0) = 0

 2.  ′x  − x = et , x (0) = 0

 3.  ′y  − y = t, y (0) = 0

 4.  ′y  + y = 1, y (0) = 0

 5.  y y t t e t

t

+ = −∫ ( )d

0

 6.  x x u u t t

t

+ = +∫ ( )d

0

2 2
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 7. x x t t t t

t

+ = +∫ ( )d cos sin

0

 8. x x t t

t

− =∫2 1

0

( )d

 9. y e y t u uu

t

= + −−∫1 2 2

0

( )d

10. y y u t u u

t

= + −∫1

0

( ) sin ( )d

11. f t t e f t u uu

t

( ) cos ( )d= + −−∫
0

12. y t t u y t u u

t

( ) sin ( )d= + −∫
0

Part B

Solve the following differential equations, using Laplace transforms:

13. x″ + 3x′ +2x = 2 (t2 +t + 1), x (0) = 2,x′ (0) = 0

14. y″ − 3y′ − 4y = 2e−t, y (0) = y′ (0)=1

15. x″ + 4x′ + 3x = 10 sin t, x (0) = x′ (0) = 0

16. (D2 + D − 2) y = 20 cos 2t, y = − 1, Dy = 2 at t = 0

17. x″+ 4x′ + 5x = e−2t (cos t − sin t), x (0) = 1, x′ (0) = −3

18. y″ + 2y′ + 2y = 8 et sin t, y (0)= y′ (0) = 0

19. x″ − 2x′ + x = t 2 et, x (0) = 2, x′ (0) = 3

20. y″ + y = t cos 2t, y (0) = y′ (0) = 0

21. x″ + 9x=18t, x (0) = 0, x (π/2) = 0

22. y″ + 4y′ = cos 2t, y (π) = 0, y′ (π) = 0

23. (D2 + a2) x = f (t)

24. (D3 − D) y = 2 cos t, x = 3, Dx = 2, D2x = 1 at t = 0

25. x′″ − 3x″ + 3x′ − x =16 e3t, x (0) = 0, x′ (0) = 4, x″ (0) = 6

26. (D4 − a4) y = 0, y (0) = 1, y′ (0) = y″(0) = y′″ (0) = 0

Solve the following simultaneous equations, using Laplace transforms:

27. x′ − y = et; y′ + x = sin t, given that x (0)= 1 and y (0) = 0

28. x′ − y = sin t; y′ − x = − cos t, given that x = 2 and y = 0 for t = 0

29. x′ + 2 x − y = − 6 t; y′ − 2x + y = − 30 t, given that x = 2 and y = 3 at t = 0

30. Dx + Dy + x − y = 2; D2x + Dx − Dy = cos t, given that x = 0, Dx = 2 and y = 1 

at t = 0

31. D2x + y = − 5 cos 2t; D2y + x = 5 cos2t, given that x = Dx = Dy = 1 and 

y = − 1 at t = 0
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32. ′+ ′− = + ′ + + = +− ∫x y x e e x y y t e tt t t

t

2 3 2 3

0

; 2 d ( ) , given that x (0) =

− 1 and y (0) =2

Solve the following integral equations, using Laplace transforms:

33. ′ + + = =∫x x x t t x

t

3 2 0 0

0

d , ( )

34. ′ + + = =−∫y y y t e yt

t

4 5 0 0

0

d , ( )

35. ′ + + = =∫x x x t t x

t

2 0 1

0

d cos , ( )

36. ′ + + = =−∫y y y t e t yt

t

4 13 3 0 32

0

d sin 3 , ( )

37. x t t x u t u u

t

( ) ( ) sin ( ) d= − −∫4 3

0

38. y t e y u t u ut

t

( ) ( ) cos ( ) d= − −− ∫2

0

39. 
x u

t u
u t t

t
( )

d
−

= + +∫
0

21

40. y u y t u u y t t

t

( ) ( ) d ( ) +

0

2 2∫ − = −

ANSWERS

Exercise 5(a)

 3. tan ;t et 2

  9. 
1

2
1 2

s
e s

−
− − −{ }( )

10. 
1 1 2 1

2 2

2

s s
e

s s
es s+







 − +









− −

11. ( )1
2

42
− ⋅

+
−e

s

sπ  12. ( )1
2

1

2

2
− ⋅

+
−e

s

sπ
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13. 
s

s
e s

2

2 3

1+
⋅ − π /

 14. 
1

1

1
2 2s

e
s s

es s

+
+









− −(1 + ) +π ππ

15. 
1

2

1

s s s

π
;  16. 

1
2

3

2 2s
e

s
es s− −

+
;

π

π

17. 
2 4 4
3 2

2

s s s
e s+ +









−
 18. 

6 6 33

4

2

3

2

2

3a

s

a b

s

ab

s

b

s
+ + +

19. 
1

2 2s
s

+ω
ω θ θ( cos + sin ) 20. 

1

2

1

362s

s

s
−

+











21. 
1

4

3

4 362 2

s

s

s

s+
−

+









  22. 

1

2

3

9

1

12 2s s+
−

+











23. 
1

2 25 12 2

s

s

s

s+
+

+









 24. 

1

8

1

3

1

1

3

1

1

3s s s s−
−

−
+

+
−

+











25. 
1

4

1

2

3

2

2

s s s−
+

+
+









  26. 

2

1

2

1

1

13 2( ) ( )s s s+
+

+
+

+

27. 
s

s( )+ +2 92  28. 
1

4

3

3

1

1s s−
+

+











29. 
2

44

s

s +
 30. 

1

1

1

13 3( ) ( )s s−
+

+

31. 
2

2 3

3e

s −
 32. (t − a) u

a 
(t)

33. u
2 
(t) − u

3 
(t) 34. e3(t −2). u

2 
(t)

35. cos 3 (t −1) u
1
 (t) 36. sin t + sin (t − π) u

π
(t)

37. 2
t

e t

π

−
 38. 

1

2
2 4 3 2( )+ +t t

39. 
1

96

3 3 2t e t /
 40. 

1

12
23 2t t e t( )+

41. 2
3

2
cos 2 sin 2t t+  42. cosh 3t + 2 sinh 3t

43. 
1

1
a

e at( )− −  44. 
1

2
e tt− sin 2

45. e3t cos t 46. 
8

3

12

3

9

33 2( ) ( )s s s−
+

−
+

−

47. 
π

s a

s

s a−
⋅

−
 48. 

1

8

1

2

3 3

2

1

4s s s s−
− +

+
−

+
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49. 
4

4

3

4 4

a

s a+
 50. 

2

2 4 82( )s s s− − +( )

51. 
( )

( ) ( )

s

s s

+
− +

+
+ +











3

4

3

3 4

1

3 362 2

52. 
w q q

w

cos + ( + ) sin

( )2

s k

s k+ 2  53. 
3 2 9

2 5 2 17

2

2 2

s s

s s s s

+ +( )
+ +( ) + +( )

54. 
( )

( ) ( ) ( 1) ( )

s

s s s s

−
−

+
− +

+
− +

+
+ +











1

4

1

1

1

1 4

1

16

1

1 362 2 2 2



55. 
1

4

1

2

3

2 9

5

2 25

9

2 812 2 2 2( ) ( ) ( ) ( )s s s s+
+

+ +
+

+ +
−

+ +











56. 
s

s

2

2
2

4

4

−

+( )
 57. 

s s

s s

( )+

+ +( )
2

2 22
2

58. 
6 2

4 132
2

( )s

s s

−

− +( )
 59. 

2

12
2

s

s +( )

60. 
s

s

2

2
2

4

4

−

+( )
 61. 

1

2
2

5

2

2− + −e et t

62. 2e − t − 3et + 5e2t 63. 1 5
9

2

2− +








−t t e t

64. − 2e − t + 2e2t + te2t 65. − 2 + t + 2e−t + t e−t

66. sin sin 2 sin 3t t t− +
1

2

1

3
 67. cos cos cost t t− +2 2 3

68. e − 3t (2 cos 5t − 3 sin 5t) 69. 
1

3
3

3

2

3

2

2e t tt− +










/ cos sin

70. 
1

2 2

2

2

2

a
e

t

a

m

l

b

a

a t

a

bt a− ⋅






+ −







⋅



/ cos sin

λ

λ

λ
















 if b2  − 4ac < 0 and = − λ2

 1

2 2

2

2

2

a
e

kt

a

m

l

b

a

a

k

kt

a

bt a− ⋅






+ −







⋅


/ cosh sinh


















,

 if b2  − 4ac > 0 and = k2

 
1

1
2

2

a
e

m

l

b

a
tbt a− + −



















/ , if b2  − 4ac = 0
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71. 2 + e − 2t (cos 3t + 2 sin 3t)

72. 
1

3

3

2
3

3

2

2e e t tt t− − −


























/ cos sin

73. 
1

4 3a
 (sin at cosh at − cos at sinh at)

74. 
1

2
 sin t sinh t

75. 
1

4
 (sinh 2t cos 2t + cosh 2t sin 2t)

76. cos cosh
t t

2 2
 77. 

2

3

3

2 2
sin cosht

t

78. 
1

2a
t atsinh  79. 

1

2
(sin cos )t t t−

80. 
1

4
2t tsin

Exercise 5(b)

 2. 
1 1

1
2s s es
−

−( )   7. 

s

s a2 2
2

−( )

 8. 
s a

s a

2 2

2 2
2

−

+( )   9. 

2 3

2 2
2

k

s k+( )

10. 
2 2

2 2
2

ks

s k+( )
 11. 

3 2 2

2 2 2
2

s a

s s a

+

+( )

12. 
s

s k

3

2 2
2

+( )
 13. 

2sinht

t

14. 
1− −e

t

t

 15. 
1− −e

t

at

16. 
e e

t

bt at− −−
. 17. 

e

t

t −1

18. 
2

t
t tcos 2 cos−( )  19. 

sin t

t

20. 
sin at

t
 21. cot − 1 (s/a)
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22. log 
s

s

+







1
 23. log 

s

s

−







1

24. 
1

2

2 2

2
log 

s a

s

+







  25. 

1

4

42

2
log 

s

s

+









26. 
E e

s e

s E

s n

1

1 2

−( )
−( )

−

−

/

/π
 27. 

E

s

sT
 tanh 

4









28. [1 − e−2π(s − 1)]/(s − 1) (1 − e−2πs)

29. 
2

4 12s +
coth ( s)π  30. 

1

22 2s
s

s

+
+ Ê

ËÁ
ˆ
¯̃

Ï
Ì
Ó

¸
˝
˛w

w
p

w
cosech 

31. 
1

1

1
1

2 2−
−( )−










−
− −

e s
e

s
e

s

s s

π

π ππ

32. 1/(s2 + 1) (1 − e−πs) 33. ω/(s2 + ω2) (eπ s/ω − 1)

34. 
1

2
2s

s
 tanh 

π







35. 
1

1 1 12

2 2

s
e

s
e e es s s s− − − −−( ) + −( )











 −( )π π π π

π
/

36. 
1

8

1

3

3

1

3

1

1

3( ) ( ) ( ) ( )2 2 2 2s s s s−
−

−
+

+
−

+













37. 
1

4

3 4

4

36

36

2

2
2

2

2
2

s

s

s

s

−( )

+( )
+ −( )

+( )













38. 
1

2

4

4

64

64

2

2
2

2

2
2

s

s

s

s

−( )

+( )
− −( )

+( )













39. s
s

s

s

s2
2

2
2

36 4+( )
+

+( )










  40. 

1 48

16
3

2

2
3s

s s

s
− −( )

+( )

41. 
9 3

9

1 3

1

2

2
3

2

2
3

s

s

s

s

−( )

+( )
+

−

+( )
 42. 

18 4 1

4 13

2

2

( )

( )3

s s

s s

+ +
+ +

43. 
s s

s s

2

2

6 7

6 25

− −
− +( )2  44. 

1

1

1

5( ) ( )3 3s s+
+

+

45. 3
2

4 13

2

4 132 2

s

s s

s

s s

−
− +

−
+

+ +











( ) ( )2 2
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46. 
2

1
t

a t( cos )−

47. 
2

t
e a tbt( cos )− −  48. 

2 2

t
t e t(cos )−

49. 
2 2
2t

a t
a

t
at a t sinh  cosh  ( )− + δ  50. 

1

2t

t
 sin 









51. − ⋅ −1 2

t
e tt  sin 3  52. − −1

t
e atbt  sin 

53. −
2

2 2t

t t
 sin  sinh  54. 0

55. 
1

2
 56. log 3

57. 
1

2
 log 2  58. log

b

a









59. 
π

8
 60. log 

s

s

+







1

61. 
1

2

2 2

2
log 

s a

s

+





 62. 

1

4

162

2
log 

s

s

+







63. 
1

4

16

4

2

2
log 

s

s

+
+









 64. s

s

s
slog cot

2

1

1+
+ −

65. 
t

t
2

 sin  66. 
t

a
at

2
 sinh 

67. 
t

e tt

2

2 sin  68. 
1

sin sin
a

at t a t−

69. e−3t(1 + t) sin t 70. 
t

e tt

2

4−  sinh .

Exercise 5(c)

 8. No; 1
2

2

* t
t

t= ≠  10. 
1

s a−
 11. 

s

s a2 2+

12. 
2

42s s +( )
 13. t (1 − t) e−2t 14. e

t
t

t
2

2
2 1+ +









15. 
1

b
e a bt b btat( sin cos )+   16. 2 e−2t − e−t
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17. 
1 1

s
s cot−  18. 

1 1

s

s

s
 log

−





  19. 

1 12

s

s

s
 log

+







20. 
1

1s s( )2+
 21. 

1

2 22s s s( )+ +
. 22. 

2

12s +( )2

23. 
1

1
a

e at( ).− −
 24. e−at + t − 1 25. 

1
1

2a
a t(cosh )−

26. 1 − cos t 27. 1;0 28. 
1

2
30; 0 sin. t

31. 
1

4

3( ).e et t− −
 32. t et 33. 

1
1

2a
a t( cos )−

34. e −t + t − 1 35. sin t − cos t + e −t

36. 
2 2 2

2 2
2

3

2 2
2

2

2 2
2

a s

s a

s

s a

a s

s a+( ) +( ) +( )
; ;

37. 
s a

s a

a s

s a

a

s a

2 2

2 2
2

2

2 2
2

3

2 2
2

2 2+

−( ) −( ) −( )
; ;

38. 
1 1

a b
e e

a b
a e bebt at at bt

−
−

−
−− − − −( ); ( )

39. 
1

2

1

2

1

2
4

9

2

2 3 2 3e e e e e et t t t t t− + − +;

40. 
1 1 1 1

2 2 2 2a b b
bt

a
a t

a b
bt a t

−
−







 −

−sin sin ; (cos cos );

 
1

2 2a b
a at b bt

−
−( sin sin )

41. 
1

4
2

4

3(sin 2 sin 2 ); (cos 2 sin 2 ); sin 2t t t t t t
t

e tt+ − −

42. 
1

2

1

2
2

2a
a t a t a t a t a t a t

t

a
e at (sinh cosh ); (  sinh cosh );  si+ + − nnh at

43. 
1

2

1

2
 sin sinh ;  (sin cosh cos sinh ); cos  cosh t t t t t t t t+

44. 
2 1

2 22
2

( )s

s s s

−

− +( )
 45. 

2

2 22
2

s s− +( )
 46. 

3 4 2

2 2

2

2 2
2

s s

s s s

− +

− +( )

47. 
1 2

3

1

s

s
cot−

+





  48. 

1

2

2

3

1

s

s

+
+








−cot

49. 
3

26

4 13 6

13

2

3

2

2

1 log cot
s s

s

s+ +





−

+







−
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50. 2 − t − 2 e−t

51. 
4

9

3

25

7

15

73

225

3 5e e tt t− −− + −/2 /3

52. 
1

100
4 3 43[ ( sin 4 cos 4 )]− +−e t tt

53. e − t (1 − cos t) 54. 
1

4
1 2 2( cos 2 sin )− − +t t t

55. 
1

54
3(sin 3 cos 3 )t t t−  56. 

1

162
2 2 3( cos 3 sin 3 )− −t t t

57. 
1

2

3e t t tt− −(sin cos )  58. 
1

2 3a
a t a t a t( cosh sinh )−

59. 
1

2
2

4a
a t a t a t(2 cosh sinh )− +

60. 
1

16
22e t t tt− −( cosh 2 sinh 2 )

63. 
1

2
(cos sin )t t e t− − −

 64. 
1

2a
a t a t(sin sinh )+

65. 
1

5
(cos 2 cos 5 )t t−  66. 

1

2a
a t a t a t(sin cos )+

67. 
1

16
2 2 2(sin cos )t t t−  68. 2 e  − t + sin 2 t − 2 cos 2 t

69. 
e

t t t
t−

+ + + −
2

4 6 32( )  70. 
1

4
(sin  cosh cos  sinh )t t t t−

Exercise 5(d)

 1. x = e − t − cos t + sin t  2. x = t e t  3. y = e t − t − 1

 4. y = 1 − e −t  5. y = (1 − t)e −t  6. x = 2t

 7. x = cos t  8. x = e 2 t  9. y = 1 + 2t

10. y
t

= +1
2

2

 11. f  (t) = cos t + sin t 12. y t
t

= +
3

6

13. x = t 2 − 2t + 3 − e −2t 14. y e t e et t t= − +− −1

25
13 10 12 4( )

15. x e e t tt t= − − +− −5

2

1

2
23 cos sin 

16. y e e t tt t= + − +−2

3

4

3
32 cos 2 sin 2

17. x e t t
t

t t
t= − + +












−2 3

2 2
cos sin (sin cos )
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18.  y = 2 (sin t cosh t − cos t sinh t)

19. x
t

t e t= + +










4

12
2  20. y t t

t
t=− + −

5

9

4

9
2

3
2sin sin cos

21.  x = 2 t + π sin 3 t 22. y t t= −
1

4
2( ) sinπ

23. x A a t B a t
a

au f t u u

t

= + + ⋅ −∫cos sin sin ( )d
1

0

24.  y = 3 sinh t + cosh t − sint + 2

25.  x = 2e 3 t − 5t 2 e t − 2e t 26. y a t a t= +
1

2
(cos cosh ).

27. x e t t t tt= + −
1

2
( +2sin cos cos );

 y e t t t tt= − − + +−1

2
( sin cos sin )

28.  x = 2 cosh t; y = 2 sinh t − sin t

29.  x = 1 + 2t − 6t 2 + e−3t; y = 4 − 2t − 12t 2 − e −3t

30.  x = t + sin t;  y = t + cos t

31.  x = sin t + cos 2t;  y = sin t − cos 2 t

32.  x = t e t − e −t;  y = e t + e −t

33. x e et t= −− −1

2

2(1+ )  34. y e e t tt t=− + +− −1

2

1

2
32 (cos sin )

35. x t e tt= − +−1

2
1{( ) cos }

36. y e t t t t t tt= − + +










−2 3 3
7

3
3

3

2
3 3cos sin sin cos

37. x t t= +
3

2
2sin  38. y (t) = e −t (1− t)2

39. x t t t t( )= + +








−1
2

8

3

1 2 1 2 3 2

π

40.  y (t) = 1
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