GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023

Subject Code:3131103

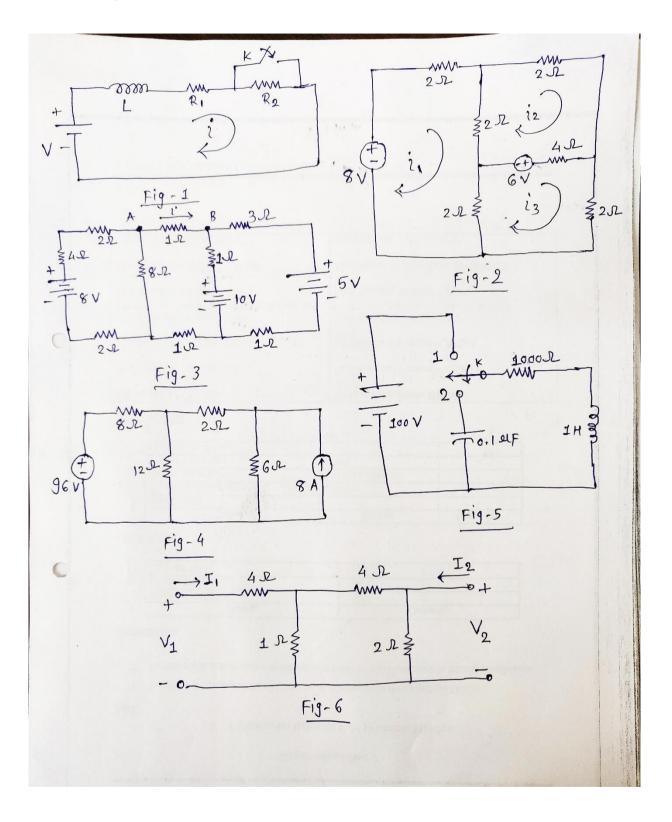
Subject Name:Network Theory

Time:02:30 PM TO 05:00 PM

Total Marks:70

Date:01-08-2023

Instructions:


- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

bDefinetion04(b)Briefly describe active, passive, lumped and distributed elements.04(c)In the network of Fig-1, the switch k is closed at t=0 and the circuit was in steady state before. Determine particular solution of current i.07(c)In the network of Fig-1, the switch k is closed at t=0 and the circuit was in steady state before. Determine particular solution of current i.03(b)Define: Tree, Connected Graph, Co-tree, Sub-graph.04(c)Determine current through 4 Ω resistor using mesh analysis for network of Fig-2.07(c)State and explain maximum power transfer theorem with necessary derivation.07(c)State and explain maximum power transfer theorem with necessary derivation.03(d)Discuss rules for source transformation.04(e)For the network of Fig-3, obtain current through 1 Ω resistor using Thevenin's theorem.07(c)Define time constant and state its importance in circuit analysis. (f)03(d)State and explain Norton's theorem with an example. (f)04(e)Determine voltage across 6Ω resistor of Fig-4 using node analysis.07(f)Give statements for Reciprocity Theorem and Superposition Theorem. (f)07(f)Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0. OR03(g)Q.4(a)Derive ABCD parameters in terms of z-parameters. (f)04(g)Derive relationship between incidence matrix, fundamental tie-set matrix	Q.1	(a)	Explain Ideal and Practical Current and Voltage sources with their characteristics and differentiate them with respect to ideality and practice.	03
(b)Define: Tree, Connected Graph, Co-tree, Sub-graph.04(c)Determine current through 4 Ω resistor using mesh analysis for network of Fig-2.07(c)State and explain maximum power transfer theorem with necessary derivation.07(c)State and explain final conditions of R, L and C elements.03(b)Discuss rules for source transformation.04(c)For the network of Fig-3, obtain current through 1 Ω resistor using Thevenin's theorem.07Q.3(a)Define time constant and state its importance in circuit analysis.03(b)State and explain Norton's theorem with an example.04(c)Determine voltage across 6Ω resistor of Fig-4 using node analysis.03(d)Give statements for Reciprocity Theorem and Superposition Theorem.04(c)Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0.07(d)Determine h-parameters in terms of z-parameters.0407(c)Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03(d)Determine h-parameters in terms of z-parameters.04			Briefly describe active, passive, lumped and distributed elements. In the network of Fig-1, the switch k is closed at t=0 and the circuit was	
(c)State and explain maximum power transfer theorem with necessary derivation.07Q.3(a)Explain Initial and final conditions of R, L and C elements. (b)03 Discuss rules for source transformation. 	Q.2	(b)	Define: Tree, Connected Graph, Co-tree, Sub-graph. Determine current through 4 Ω resistor using mesh analysis for network	04
derivation.03Q.3(a) Explain Initial and final conditions of R, L and C elements. Discuss rules for source transformation. (c) For the network of Fig-3, obtain current through 1 Ω resistor using Thevenin's theorem.03(c) For the network of Fig-3, obtain current through 1 Ω resistor using 			OR	
(b)Discuss rules for source transformation.04(c)For the network of Fig-3, obtain current through 1 Ω resistor using Thevenin's theorem.07Q.3(a)Define time constant and state its importance in circuit analysis.03(b)State and explain Norton's theorem with an example.04(c)Determine voltage across 6Ω resistor of Fig-4 using node analysis.07Q.4(a)Explain dot convention for coupled coils with suitable example.03(b)Give statements for Reciprocity Theorem and Superposition Theorem.04(c)Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0.03(c)Derive ABCD parameters in terms of z-parameters.03(b)Determine h-parameters in terms of y-parameters.04(c)Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03(c)Define: oriented graph, node, tie-set matrix.03(d)Determine h-parameters in terms of z-parameters.04		(c)	· · ·	07
(b)Discuss rules for source transformation.04(c)For the network of Fig-3, obtain current through 1 Ω resistor using Thevenin's theorem.07Q.3(a)Define time constant and state its importance in circuit analysis.03(b)State and explain Norton's theorem with an example.04(c)Determine voltage across 6Ω resistor of Fig-4 using node analysis.07Q.4(a)Explain dot convention for coupled coils with suitable example.03(b)Give statements for Reciprocity Theorem and Superposition Theorem.04(c)Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0.03(c)Derive ABCD parameters in terms of z-parameters.03(b)Determine h-parameters in terms of y-parameters.04(c)Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03(c)Define: oriented graph, node, tie-set matrix.03(d)Determine h-parameters in terms of z-parameters.04	03	(a)	Explain Initial and final conditions of P. L. and C. elements	03
(c)For the network of Fig-3, obtain current through 1 Ω resistor using Thevenin's theorem.07Q.3(a)Define time constant and state its importance in circuit analysis.03(b)State and explain Norton's theorem with an example.04(c)Determine voltage across 6Ω resistor of Fig-4 using node analysis.07Q.4(a)Explain dot convention for coupled coils with suitable example.03(b)Give statements for Reciprocity Theorem and Superposition Theorem.04(c)Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0.07Q.4(a)Derive ABCD parameters in terms of z-parameters.03(b)Determine h-parameters in terms of y-parameters.04(c)Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03Q.5(a)Define: oriented graph, node, tie-set matrix.03(b)Determine h-parameters in terms of z-parameters.04	Q.J		•	
Q.3(a) Define time constant and state its importance in circuit analysis.03(b) State and explain Norton's theorem with an example.04(c) Determine voltage across 6Ω resistor of Fig-4 using node analysis.07Q.4(a) Explain dot convention for coupled coils with suitable example.03(b) Give statements for Reciprocity Theorem and Superposition Theorem.04(c) Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0.07Q.4(a) Derive ABCD parameters in terms of z-parameters.03(b) Determine h-parameters in terms of y-parameters.04(c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03Q.5(a) Define: oriented graph, node, tie-set matrix.03(b) Determine h-parameters in terms of z-parameters.04(c) Derive relationship between incidence matrix.03(c) Derive relationship between incidence matrix.04(c) Derive relationship between incidence matrix.04			For the network of Fig-3, obtain current through 1 Ω resistor using Thevenin's theorem.	
(b)State and explain Norton's theorem with an example.04(c)Determine voltage across 6Ω resistor of Fig-4 using node analysis.07Q.4(a)Explain dot convention for coupled coils with suitable example.03(b)Give statements for Reciprocity Theorem and Superposition Theorem.04(c)Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0.07Q.4(a)Derive ABCD parameters in terms of z-parameters.03(b)Determine h-parameters in terms of y-parameters.04(c)Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03Q.5(a)Define: oriented graph, node, tie-set matrix.03(b)Determine h-parameters in terms of z-parameters.03(c)Define: oriented graph, node, tie-set matrix.03	~ ~		-	
 (c) Determine voltage across 6Ω resistor of Fig-4 using node analysis. (d) Explain dot convention for coupled coils with suitable example. (e) Give statements for Reciprocity Theorem and Superposition Theorem. (f) Give statements for Reciprocity Theorem and Superposition Theorem. (f) Find values of <i>i</i>, <i>di</i>, <i>d²i</i>, <i>d²i</i> at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0. (f) Determine h-parameters in terms of z-parameters. (g) Determine h-parameters in terms of y-parameters. (g) Detive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix. (g) Determine h-parameters in terms of z-parameters. (g) Determine h-parameters in terms of z-parameters. (g) Detime h-parameters in terms of z-parameters. 	Q.3		-	
Q.4(a) Explain dot convention for coupled coils with suitable example.03(b) Give statements for Reciprocity Theorem and Superposition Theorem.04(c) Find values of $i, \frac{di}{dt}, \frac{d^2i}{dt^2}$ at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0.07Q.4(a) Derive ABCD parameters in terms of z-parameters.03(b) Determine h-parameters in terms of y-parameters.03(c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03Q.5(a) Define: oriented graph, node, tie-set matrix.03(b) Determine h-parameters in terms of z-parameters.04(c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.03(d) Determine h-parameters in terms of z-parameters.04(e) Define: oriented graph, node, tie-set matrix.03(f) Determine h-parameters in terms of z-parameters.04			-	
 (b) Give statements for Reciprocity Theorem and Superposition Theorem. (c) Find values of <i>i</i>, <i>di</i>/<i>dt</i>, <i>d²i</i>/<i>dt²</i> at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0. OR Q.4 (a) Derive ABCD parameters in terms of z-parameters. (b) Determine h-parameters in terms of y-parameters. (c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix. Q.5 (a) Define: oriented graph, node, tie-set matrix. Q.5 (b) Determine h-parameters in terms of z-parameters. (c) Define: oriented graph, node, tie-set matrix. 		(c)	Determine voltage across 6Ω resistor of Fig-4 using node analysis.	07
 (b) Give statements for Reciprocity Theorem and Superposition Theorem. (c) Find values of <i>i</i>, <i>di</i>/<i>dt</i>, <i>d²i</i>/<i>dt²</i> at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0. OR Q.4 (a) Derive ABCD parameters in terms of z-parameters. (b) Determine h-parameters in terms of y-parameters. (c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix. Q.5 (a) Define: oriented graph, node, tie-set matrix. Q.5 (b) Determine h-parameters in terms of z-parameters. (c) Define: oriented graph, node, tie-set matrix. 	0.4	(a)	Explain dot convention for coupled coils with suitable example.	03
 (c) Find values of <i>i</i>, <i>di</i>/<i>dt</i>, <i>d²i</i>/<i>dt²</i> at t=0+. for the network of Fig-5, if switch k is changed from position 1 to 2 at t=0. OR Q.4 (a) Derive ABCD parameters in terms of z-parameters. 03 (b) Determine h-parameters in terms of y-parameters. 04 (c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix. 03 Q.5 (a) Define: oriented graph, node, tie-set matrix. 03 (b) Determine h-parameters in terms of z-parameters. 04 	x			
switch k is changed from position 1 to 2 at t=0. ORQ.4(a) Derive ABCD parameters in terms of z-parameters.03(b) Determine h-parameters in terms of y-parameters.04(c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.07Q.5(a) Define: oriented graph, node, tie-set matrix.03(b) Determine h-parameters in terms of z-parameters.04				07
switch k is changed from position 1 to 2 at t=0. ORQ.4(a) Derive ABCD parameters in terms of z-parameters.03(b) Determine h-parameters in terms of y-parameters.04(c) Derive relationship between incidence matrix, fundamental tie-set matrix and fundamental cut-set matrix.07Q.5(a) Define: oriented graph, node, tie-set matrix.03(b) Determine h-parameters in terms of z-parameters.04			Find values of $l, \frac{dt}{dt}, \frac{dt^2}{dt^2}$ at t=0+. for the network of Fig-5, if	
 (b) Determine h-parameters in terms of y-parameters. 04 (c) Derive relationship between incidence matrix, fundamental tie-set 07 matrix and fundamental cut-set matrix. 07 Q.5 (a) Define: oriented graph, node, tie-set matrix. 03 (b) Determine h-parameters in terms of z-parameters. 04 			switch k is changed from position 1 to 2 at $t=0$.	
 (b) Determine h-parameters in terms of y-parameters. 04 (c) Derive relationship between incidence matrix, fundamental tie-set 07 matrix and fundamental cut-set matrix. 07 Q.5 (a) Define: oriented graph, node, tie-set matrix. 03 (b) Determine h-parameters in terms of z-parameters. 04 	Q.4	(a)	Derive ABCD parameters in terms of z-parameters.	03
Q.5(a)Define: oriented graph, node, tie-set matrix.03(b)Determine h-parameters in terms of z-parameters.04	-	(b)	Determine h-parameters in terms of y-parameters.	04
(b) Determine h-parameters in terms of z-parameters. 04		(c)	•	07
(b) Determine h-parameters in terms of z-parameters. 04	0.5	(a)	Define: oriented graph, node, tie-set matrix	03
	×		•	

Q.5 (a) Define: Incident Matrix, cut-set, graph.

- (**b**) Briefly explain PRF.
- (c) Derive the condition for the network to be symmetrical for g- 07 parameters.

03

04