GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(NEW) EXAMINATION – SUMMER 2023

Code:3130608 EXAMINATION – SUMMER 2023 Date:03-08-2023

Subject Code:3130608

Subject Name: Mechanics of Solids

Time:02:30 PM TO 05:00 PM

1. Attempt all questions.

Total Marks:70

Instructions:

	2. 3. 4.	Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	Explain free body diagram with neat sketch.	03
	(b)	Write various systems of forces and explain coplanar concurrent force system.	04
	(c)	Determine magnitude and direction of resultant force of the force system shown in Fig1 .	07
Q.2	(a)	Write the assumption made in analysis of truss.	03
	(b)	Define shear force and bending moment with sign conventions.	04
	(c)	Determine magnitude, direction and position of resultant force of the force	07
		system given in Fig2 with reference to point A.	
		OR	
	(c)	Draw shear force and bending moment diagram for the beam shown in Fig3.	07
Q.3	(a)	Differentiate in-between centre of gravity & centroid.	03
	(b)	Write equation of moment of inertia for rectangular section and triangular	04
		section about its neutral axis and base of section.	
	(c)	Determine the centroid of the plane area shown in Fig4 .	07
		OR	
Q.3	(a)	Write assumption made in the theory of torsion.	03
	(b)	Find out radius of gyration for square section. Consider side dimension is 'B'	04
		mm.	
	(c)	Find the moment of inertia about both centroidal axes of Z section as shown in Fig5 .	07
Q.4	(a)	Write assumptions made in theory of pure bending.	03
	(b)	Draw shear stress distribution diagram for hollow rectangular, hollow circle and H section.	04
	(c)	Calculate the diameter of the shaft required to transmit 45 kW at 120 rpm. The maximum torque is likely to exceed the mean by 30% for a maximum permissible shear stress of 55 N/mm ² . Calculate also the angle of twist for a length of 2 m. $G = 80x \ 10^3 \ N/mm^2$.	07
		OR	
Q.4	(a)	Define composite beam and give main objectives of it.	03
	(b)	A simply supported beam 300 mm x 600 mm of 6 m. span is subjected to UDL	04
		of 15 kN/m throughout the span. Find the maximum bending stress in the beam.	
	(c)	Determine the shear stress at the junction of the flange & web of an 'I' section as shown in Fig6. Consider shear force 20 kN.	07

Q.5 (a) Define with sketch (i) tensile stress (ii) compressive stress (iii) shear stress 03

- (b) State Hook's low. Explain stress-strain behavior of mild steel with sketch.
- (c) Determine the magnitudes & directions of principal stresses for two 07 dimensional body as shown in Fig.-7.

OR

- **Q.5** (a) Explain deformation of uniform bar section under self weight.
 - (b) Determine change in volume of a steel bar of 100 mm dia. and 500 mm length, when it is subjected to axial pull of 50 kN. Take Es = 200 GPa. & poission ratio 0.25.
 - (c) Calculate change in volume of a rectangular block 525 mm x 230 mm x 115
 07 mm is subjected to load as shown in Fig.-8. Consider poission ratio 0.25 and E is 2 x 10⁵ N/mm².

04

03

Fig. - 8