Seat	N_0 .	
Scai	110	

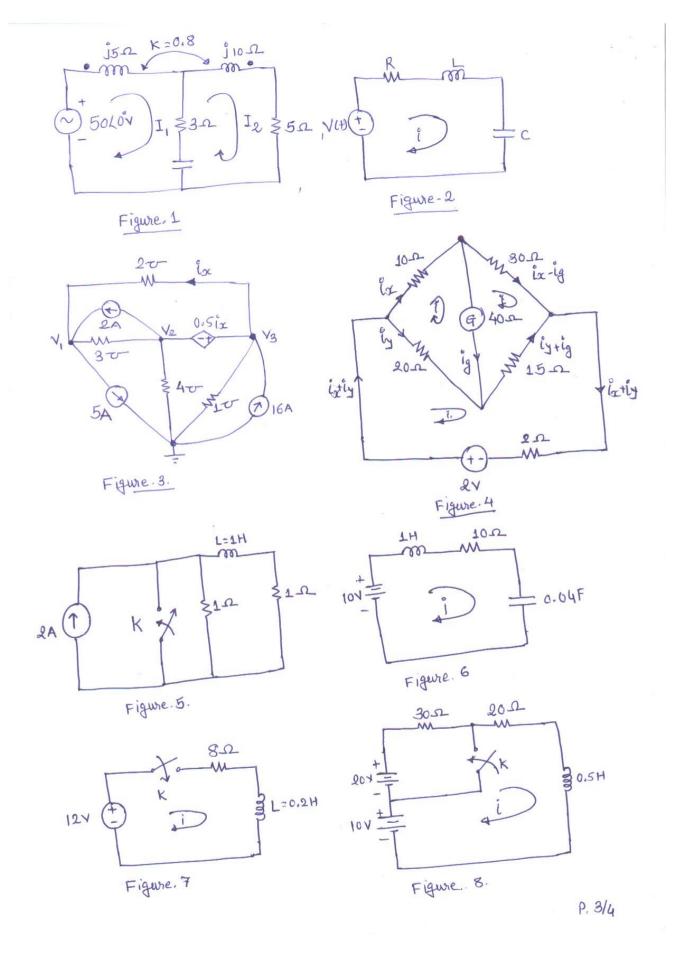
Enrolment No.

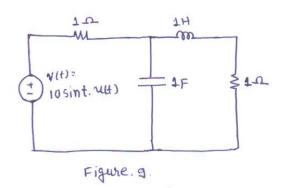
GUJARAT TECHNOLOGICAL UNIVERSITY

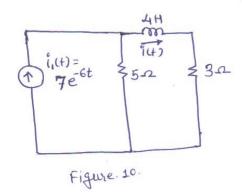
BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023

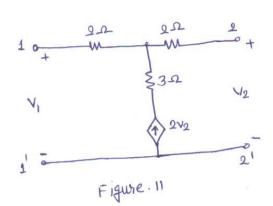
Subject Code:3130906 Date:26-07-2023

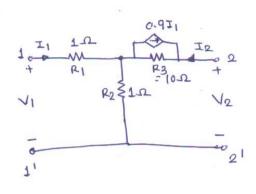
Subject Name: Electrical Circuit Analysis


Time:02:30 PM TO 05:00 PM Total Marks:70


Instructions:


- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.


			Marks
Q.1	(a)	Enlighten the interpretation of "j" operator.	03
	(b)	What do you mean by Unbalanced load? Derive the current equations for	04
		(i) unbalanced three wire star connected load	
	(.)	(ii) (ii) Unbalanced delta connected load.	07
	(c)	Calculate the voltage across 5Ω resistor using mesh analysis for a figure.1 .	07
Q.2	(a)	Explain the concept of duality and derive the dual network for series RLC circuit shown in figure.2.	03
	(b)	State and Explain the super position theorem using suitable example.	04
	(c)	Calculate the unknown node voltages V_1,V_2 and V_3 shown in figure.3 , using node analysis.	07
		OR	
	(c)	A Wheatstone bridge shown in figure.4 ABCD is arranged as follows: AB = 10Ω , BC = 30Ω , CD = 15Ω and DA = 20Ω . A 2V battery of internal resistance	07
		2Ω is connected between points A and C with A being positive. A galvanometer of resistance 40Ω is connected between B and D. Find the magnitude and direction of the galvanometer current as per given branch currents.	
Q.3	(a)	Prepare the table for equivalent branch of final conditions for R,L,C.	03
	(b)	For a given figure.5 find out the $i_1(0+)$ and $i_L(0+)$, the network has been achieve the steady state at t<0.	04
	(c)	In the circuit shown in figure.6 , a 10 volt d.c.supply is suddenly applied to series circuit. The capacitor is initially uncharged. Obtain the particular solution for the current i(t) in the circuit.	07
		OR	
Q.3	(a)	Prepare the table for equivalent branch of initial conditions for R,L,C.	03
	(b)	In the network shown in figure.7 , K is closed at $t = 0$ with zero current in the	04
		inductor. Find the values $i, \frac{di}{dt}$, at $t=0+$, for $R=8\Omega$ and $L=$	
	(c)	In the network shown in figure.8 , a steady state is reached with switch k open. At t=0 switch k closed find out the i(t) for the given numerical values and sketch the current transient.	07


Give the importance of poles and zeros. 03 **Q.4** Elaborate the zero radian frequency and zero Neper frequency. 04 **(b)** (c) For a given **figure.9** inductor current and capacitor voltage is zero at t=0-,so for **07** a given network show that its generated current $I(S) = \frac{10(s^2+s+1)}{(s^2+1)(s^2+2s+1)}$ OR Make a table for the transfer impedances for R,L and C. 03 **Q.4** (a) Calculate the step response for series R-C circuit for t>0 04 **(b)** In the network shown in **figure.10** calculate the current i(t) ,when $i_1(t)=7e^{-6t}$ A **07 (c)** for $t \ge 0$, i(0) = 0, also find out $i(\infty)$ using Laplace transforms. Q.5 (a) Derive the condition for reciprocity for z-parameters. 03 Derive relationship of z-Parameter in terms of ABCD Parameter 04 **(b)** For the network shown in **figure.11** calculate the y parameters. **07** (c) OR Derive the condition for reciprocity for ABCD parameters. **Q.5** 03 (a) Derive relationship of ABCD Parameter in terms of y-Parameters 04 **(b)** For the network shown in **figure.12** calculate the h- parameters. **07** (c)

