GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(NEW) EXAMINATION – SUMMER 2023 Dde:3131102 Date:28-07-2023

Subject Code:3131102 Subject Name:Digital System Design

Time:02:30 PM TO 05:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

			Marl
Q.1	(a)	Convert the following numbers form given base to the base indicates. (1) $(AEF2.B6)_{16} = (\)_2$ (2) $(674.12)_8 = (\)_{10}$ (3) $(110110.1011)_2 = (\)_{16}$	03
	(b) (c)	Sate and prove DeMorgan's Theorem. simplify the following Boolean function, $f(w,x,y,z)=\sum m(2,6,8,9,10,11,14,15)$ using Quine-McClukey tabular Method.	04 07
Q.2	(a)	Obtain canonical Sum of Product form of following function:	03
		F=AB+ACD.	
	(b)	Show that NAND & NOR are universal gates.	04
	(c)	Implement the following Boolean functions with a multiplexer and Decoder. $F(w, x, y, z) = \Sigma (2, 3, 5, 6, 11, 14, 15)$ OR	07
	(c)	Design and implement binary to gray code converter.	07
03	(a)	Implement 8x1 MUX using 4x1 MUX	03
V 10	(b)	Give the comparison between synchronous and asynchronous counters.	04
	(c)	Explain JK flip flop with its characteristic table and excitation table. OR	07
Q.3	(a)	What is race around condition in JK flip flop?	03
-	(b)	Implement 4x16 decoder using two 3x8 decoder.	04
	(c)	Explain Master Slave JK flip-flop with truth table and circuit diagram	07
Q.4	(a)	Define following terms w.r.t Digital Logic Family: 1. Figure of merit 2. Noise Margin 3. Power Dissipation	03
	(b)	Describe General State Machine Architecture with suitable diagrams.	04
	(c)	Compare ROM PLA and PAI	07
	(0)	OR	07
0.4	(a)	Define following terms w.r.t State Machine	03
C		1. State Table 2. State Diagram	
	(b)	Give classification of logic families. Also list the characteristics of digital IC.	04
	(c)	Explain Moore machine.	07

Q.5	(a)	List the steps in VLSI Design flow.	03
	(b)	Design Modulo-8 counter using T flip flop.	04

	(c)	With neat sketch design 4-bit bidirectional shift register.	07
Q.5	(a)	Explain the problem associate of an asynchronous state machine with the help of one example.	03
	(b) (c)	Design 3-bit synchronous up counter using T flip flop. Design 4-bit ripple counter using negative edge triggered JK flip flop.	04 07
