GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023 Date:28-07-2023 Subject Code:3130507 Subject Name: Chemical Engineering Thermodynamics I Time:02:30 PM TO 05:00 PM **Total Marks:70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed. 4 MARKS (a) Show that $C_P - C_V = R$ for an ideal gas. 0.1 03 (b) Discuss the state and properties of thermodynamics system. 04 (c) It is desired to compress isothermally one kmol of ammonia from 07 initial state of 30 m^3 / kmol and 300 K to final state of 5 m^3 / kmol. It is known that the ammonia obey the relation as given below. $\left(P + \frac{a}{V^2}\right)(V - b) = RT$ and $dU = C_v dT + \frac{a}{V^2} dV$ where $a = 423.3 \text{ kPa} / (\text{m}^3/\text{kmol})^2$, $b = 0.0373 \text{ m}^3 / \text{kmol}$, R = 8.314kJ/kmol K. Calculate heat and work interaction with compression process. (a) Explain the various limiting conditions satisfied by equation of state. 03 **O.2** (b) Write short note on virial equation of state. 04 Calculate the molar volume of ammonia at 373 K and 10 bar using (i) 07 (c) The van der Waals equation; given that, $a = 4.225 \text{ lit}^2 \text{ bar/mol}^2$ and b = 0.0371 lit/mol. (ii) The Redlich – Kwong equation; given that, the critical temperature is 405.5 K and the critical pressure is 112.8 bar for ammonia. OR A mass of 500 gm of gaseous ammonia is contained in a 30,000 cm³ 07 (c) vessel immersed in a constant temperature bath at 65 °C. Calculate the pressure of gas by each of the following. (i) The ideal gas equation (ii) The Redlich – Kwong equation (iii) The generalized virial coefficient correlation. Take: $T_C = 405.7$ K, $P_C = 112.8$ bar and $\omega = 0.253$ Q.3 **(a)** How is the Hess's law of constant heat summation useful in 03 thermochemical calculations? (b) What is the adiabatic flame temperature? How is it estimated? What 04 influence does excess air have on its value? Oil at 500 K is to be cooled at a rate of 5000 kg/h in a counter-current 07 (c) exchanger using cold water available at 295 K. A temperature

approach of 10 K is to be maintained at both ends of the exchanger.

The specific heats of oil and water are 3.2 kJ/kg K and 4.2 kJ/kg K respectively. Determine the total entropy change in the process.

OR

	ŬŇ	
(a)	Write Kelvin – Planck and Clausius statements.	03
(b)	A steel casting ($C_P = 0.88 \text{ kJ/kg K}$) at a temperature 725 K and weighing 35 kg is quenched in oil ($C_P = 2.50 \text{ kJ/kg K}$) at 275 K. If there are no heat losses and final temperature achieved by casting and oil is 300 K. Calculate the mass of oil.	04
(c)	Discuss effect of temperature on standard heat of reaction.	07
(a)	What is the change in entropy when 1- kmol of an ideal gas at 335 K and 10 bar is expanded irreversibly to 300 K and 1 bar? Take $C_P = 29.3 \text{ kJ/kmol K}$.	03
(b)	Differentiate between reference properties, energy properties, and derived properties.	04
(c)	How would you obtain the Clapeyron equation from Maxwell's equations? What are the assumptions involved in the derivation of Clausius – Clapeyron equation from the Clapeyron equation? OR	07
(a)	expansion of mercury at 273 K and 1 bar are 3.9×10^{-6} (bar) ⁻¹ and 1.8×10^{-4} K ⁻¹ respectively. Calculate Cv for mercury given that Cp	03
(b)	Calculate vapour pressure of water at 363 K, if the vapour pressure at 373 K is 101.3 kPa. The mean heat of vaporization in this temperature	04
(c)	Discuss the different types of thermodynamic diagram with neat sketch and also, list their respective fields of application.	07
(a)	Derive the equation of continuity for control volume.	03
(b)	Discuss the construction and working of ejector.	04
(c)	Discuss vapor compression cycle with neat sketch.	07
	OR	
(a)	What are the desirable properties of a refrigerant?	03
(b)	Explain the working principle of a heat pump.	04
(c)	The maximum velocity attainable for isentropic flow of fluid in a uniform cross section pipe is equal to speed of sound in the fluid.	07
	 (b) (c) (a) (b) (b) 	 (b) A steel casting (C_P = 0.88 kJ/kg K) at a temperature 725 K and weighing 35 kg is quenched in oil (C_P = 2.50 kJ/kg K) at 275 K. If there are no heat losses and final temperature achieved by casting and oil is 300 K. Calculate the mass of oil. (c) Discuss effect of temperature on standard heat of reaction. (a) What is the change in entropy when 1- kmol of an ideal gas at 335 K and 10 bar is expanded irreversibly to 300 K and 1 bar? Take C_P = 29.3 kJ/kmol K. (b) Differentiate between reference properties, energy properties, and derived properties. (c) How would you obtain the Clapeyron equation from Maxwell's equations? What are the assumptions involved in the derivation of Clausius – Clapeyron equation from the Clapeyron equation? OR (a) The coefficient of compressibility and coefficient of volume expansion of mercury at 273 K and 1 bar are 3.9 × 10⁻⁶ (bar)⁻¹ and 1.8 × 10⁻⁴ K⁻¹ respectively. Calculate Cv for mercury given that Cp = 0.14 kJ/kg K and density = 13.569 × 10³ kg/m³. (b) Calculate vapour pressure of water at 363 K, if the vapour pressure at 373 K is 101.3 kPa. The mean heat of vaporization in this temperature range is 2275 kJ/kg. (c) Discuss the different types of thermodynamic diagram with neat sketch and also, list their respective fields of application. (a) Derive the equation of continuity for control volume. (b) Discuss the construction and working of ejector. (c) Discuss vapor compression cycle with neat sketch. OR (a) What are the desirable properties of a refrigerant? (b) Explain the working principle of a heat pump. (c) The maximum velocity attainable for isentropic flow of fluid in a
