Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(NEW) EXAMINATION – SUMMER 2023

Subject Code:3130907 Date:28-07-2023

Subject Name: Analog & Digital Electronics

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Define Slew Rate, CMRR, & Input Offset Voltage.	03
	(b)	What is cross over distortion in power amplifier?	04
	(c)	Sketch the block schematic of a typical operational amplifier and briefly explain the function of each block.	07
Q.2	(a)	List applications of instrumentation amplifier.	03
	(b)	Design an R-C phase shift oscillator to produce a sinusoidal output at 1KHz, using capacitor value 0.1 μF.	04
	(c)	Draw integrator circuit with example of input and output Waveforms. Derive expression for output voltage. OR	07
	(c)	Draw & explain in detail the logic diagram & the truth table of clocked SR flip-flop.	07
Q.3	(a)	For an inverting amplifier, $V1 = 1V$, $V2 = 3V$, $V3 = 2V$ with $R1 = R2 = R3 = 2K\Omega$ and $RF = 3K\Omega$. Determine the output voltage.	03
	(b)	Implement the following function using 8:1 Multiplexer. $F(A,B,C,D) = \overline{A}B\overline{D} + ACD + \overline{B}CD + \overline{A}\overline{C}D$	04
	(c)	Explain the circuit diagram of op-amp as a Peak detector. OR	07
Q.3	(a)	Simplify $\overline{A}BC\overline{D} + BC\overline{D} + B\overline{C}\overline{D} + B\overline{C}D$.	03
	(b)	Classify digital logic gates. Draw truth table and symbols of basic logic gates.	04
	(c)	Prove that NAND and NOR gates are universal gates.	07
Q.4	(a)	Design D FF using SR FF. Write truth table of D FF.	03
	(b)	Explain Master-Slave J-K flip-flop configuration.	04
	(c)	Simplify the Boolean function $F(A,B,C,D) = \Sigma m$ (1,5,6,12,13,14), $\Sigma d=(2,4)$ using K-map method. Implement	07
		using basic logic gates. OR	
Q.4	(a)	Design half subtractor logic circuit.	03
	(b)	Write short note on Gray code.	04
	(c)	Explain Half Adder circuit .Explain Full adder circuit with the help of two Half adder.	07
Q.5	(a)	Compare RC phase shift and Wien bridge oscillator.	03
	(b)	Explain R-2R ladder DAC with necessary diagram.	04
	(c)	Explain the working of Zero crossing Detector.	07

OR

Q.5	(a)	Define following	03
		a) Attenuation b) Pass Band c) Cut of frequency	
	(b)	Draw Schmitt trigger circuit. Plot input and output waveforms.	04
	(c)	List out various commonly used A/D converters. Draw & explain	07
		Flash A/D converter with necessary decoding table. Also mention pros & cons of the same.	
