GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (NEW) EXAMINATION - SUMMER 2022

Subject Code:3130502 Date:11-07-2022

Subject Name:Fluid Flow Operations

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

		• •	
			Marks
Q.1	(a)	Define mass velocity, ideal fluid, and real fluid.	03
	(b)		04
	(c)	Develop the Bernoulli equation for incompressible fluid.	07
Q.2	(a)	Classify fluid.	03
	(b)	Define laminar and turbulent flow.	04
	(c)	Develop equation of pressure difference for inclined tube manometer. OR	07
	(c)	Develop mathematical expression for hydrostatic equilibrium.	07
Q.3	(a)	Define potential flow, streamline and stream tubes.	03
	(b)		04
	(c)	Discuss about pressure drop in fluidization.	07
		OR	0.0
Q.3	(a)	Write the significance of Mach number and acoustic velocity.	03
	(b)	Explain centrifugal decanter.	04
	(c)	Discuss flow of compressible fluid through convergent-divergent nozzles.	07
Q.4	(a)	Give barometric equation with nomenclature.	03
	(b)	Describe pump work in Bernoulli's equation	04
	(c)	Explain construction and working of the Gate valve. OR	07
Q.4	(a)	Define viscosity and write down its unit.	03
	(b)	Describe correction for friction in Bernoulli's equation	04
	(c)	Explain the construction and working of the Globe valve.	07
Q.5	(a)	Define Newtonian and Non-Newtonian fluid.	03
V. C	(b)	Water is flowing through a 25 mm internal diameter pipe at the rate of 1	04
	(6)	kg/s. Calculate the pressure drop over a length of 100 meters.	0.
		Data: Friction factor 'f' = 0.0001	
		Data:	
		Friction factor 'f' = 0.0001	
		Density of water = 1000 kg/m^3	
		Viscosity of water = 8.0×10^{-4} Pa.s	
	(c)	Crude oil has a specific gravity of 0.91 and a viscosity of 0.124 Pa s is	07
		pumped at a rate of 7 l/s through a pipeline 75 mm diameter having a	
		length of 62 m and whose outlet is 3 m higher than its inlet. Determine the	
		power required for the pump if its efficiency is 60%.	

OR

Q.5	(a) (b)	Define Compressible and Incompressible fluid. Acetic acid is to be pumped at a rate of 0.02 m ³ /s through a 75 mm ID pipeline. Calculate the pressure drop in the pipeline over a length of 70 m.	03 04
	(c)	Data: Density of acetic acid = 1060 kg/m^3 Viscosity of acetic acid = 0.0025 (N.s)/m^2 A venturi meter is to be fitted in a pipe of 250 mm diameter where the pressure head is 7.6 m of flowing fluid and the flow rate is 8.1 m3/min. Determine the diameter of the throat. Take the coefficient of venturi meter as 0.96.	07
