CULLADAT TECHNOLOCICAL

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION - SUMMER 2021				
Subject Code:3130507 Date:11/0			9/2021	
Subject Name:Chemical Engineering Thermodynamics I Time:10:30 AM TO 01:00 PM Total Marks:70				
				Instructio
1.	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 			
2. 3.				
4.	Sim	ple and non-programmable scientific calculators are allowed.		
Q.1	(a)	Define and explain "Reversible Process".	03	
	(b)	Differentiate between (i) Macroscopic Vs Microscopic approach (ii) Intensive Vs Extensive Properties	04	
	(c)	State and explain first law of thermodynamics. Also, derive energy balance equation for closed system.	07	
Q.2	(a)	What is Cubic EOS? List some of them.	03	
-	(b)	Explain Virial expansions, Virial coefficients and compressibility factor.	04	
	(c)	Explain PVT behavior of a pure substance with the help of PT and PV diagram in brief.	07	
	(c)	One kmol of an ideal gas, initially at 30° C and 1 bar undergoes the following mechanically reversible changes. It is compressed isothermally to a point such that when it is heated at constant volume to 120° C its final pressure is 12 bar. Calculate Q, W Δ U and Δ H for the process. Take $C_p = (7/2)R$ and $C_v = (5/2)R$.	07	
0.3	(a)	Mention various statements of the second law of thermodynamics.	03	
· ·	(b)	Explain various equations proposed for predicting latent of pure substances.	04	
	(c)	Derive Carnot equations for a Carnot cycle using an ideal gas. OR	07	
Q.3	(a)	State Carnot theorem and its corollary.	03	
	(b)	Explain effect of temperature on heat of reaction.	04	
	(c)	A steel casting $[Cp = 0.5 \text{ kJ kg}^{-1} \text{ K}^{-1}]$ weighing 40 kg and at a temperature of 450°C is quenched in 150 kg of oil $[Cp = 2.5 \text{ kJ kg}^{-1} \text{ K}^{-1}]$ at 25°C. If there are no heat losses, what is the change in entropy of (i) the casting (ii) the oil, and (iii) both considered together?	07	
0.4	(a)	Define heat capacity and explain its temperature dependency	03	
×	(b)	Explain heat effects of some industrial reactions.	04	
	(c)	Write down Maxwell's equations and derive one of them. OR	07	
Q.4	(a)	What are residual properties? Explain.	03	
	(b)	Explain thermodynamic diagrams.	04 07	
	(c)	 (1) Sensible heat (2) Standard heats of formation, reaction and combustion. 	U'/	

Q.5 (a) What are the factors (properties) affects the choice of a refrigerant? 03

- (b) Derive an equation for the Co-efficient of performance (COP) of 04 Carnot refrigeration cycle.
- (c) Starting from energy balance equation and the continuity relation, 07 show that the maximum velocity attained by a gas in steady state adiabatic flow in a horizontal pipe of a constant cross-sectional area is: -

$$u_{\max}^{2} = -V^{2} \left(\frac{\partial P}{\partial V}\right)_{S}$$
OR

- Q.5 (a) Explain "Critical Pressure Ratio" in case of a fluid flowing through 03 nozzle.
 - (b) Write a short note on ejectors.

- 04
- (c) Describe Vapor compression refrigeration cycles with neat diagrams. 07