GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) EXAMINATION – SUMMER 2021

Subject Code:3130305

Subject Name:Advanced Electronics Time:10:30 AM TO 01:00 PM

Total Marks:70

Date:11/09/2021

Instructions:

- **1.** Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

- Q.1 (a) What is hybrid relay? With neat diagram explain working of hybrid 03 relay, mention advantage of hybrid relay over SSR relay.
 - (b) Draw the circuit diagram of op-amp based voltage series feedback 04 amplifier and derive expression of its voltage gain. What will happen if we short R_1 and R_f ?
 - (c) Design a first order low pass filter for a high cut-off frequency of 07 2KHz and pass band gain of 2.
- Q.2 (a) Draw the circuit of a V-I converter and derive an expression for the 03 output current in terms of input voltage.
 - (b) With help of small signal NPN transistor design a simple switching 04 circuit to operate a relay which in turn switches a BULB ON and OFF. Mention the type of transistor configuration used.
 - (c) Design a $\pm 5V$ dual regulated power supply. Considering dc load 07 current of 10 mA and capacitor of 1000 μ F calculate Vrip.

OR

- (c) Design a $\pm 12V$ dual regulated power supply. Considering dc load 07 current of 10 mA and capacitor of 470 μ F calculate Vrip.
- Q.3 (a) Draw the circuit diagram of op-amp differentiator and derive an expression for the output in terms of the input. Write down steps to design a workable/practical differentiator circuit.
 - (b) Explain the following terms related to a practical Op-Amp in brief and 04 equations wherever necessary,
 - a) Band Width b) Slew Rate c) Input Offset Voltage d) Common Mode Rejection Ratio (CMRR) e) Input Bias Current f) Input Offset Current.
 - (c) Design a second order active high pass filter for a cutoff frequency of 5 KHz

OR

- Q.3 (a) Draw the sample and hold circuit using op-amp. Explain its working 03 and show input and output waveform.
 - (b) Draw circuit for differential amplifier with three op-amps and derive 04 equation for voltage gain.
 - (c) Design a second order active low pass filter for a cutoff frequency of 2 KHz.
- Q.4 (a) Explain Phase lock loop with schematic and necessary waveforms. 03
 - (b) Draw and explain triangular wave oscillator circuit with waveforms. 04

(c)	Design a phase shift oscillator so that fo (frequency of oscillation)	07
	=200.Assume gain of 29.	

OR

		UN	
Q.4	(a)	For a 555 astable multivibrator circuit with $R_A=3.9K\Omega$, $R_B=2.2K\Omega$ and $C=0.1\mu$ F find out positive pulse width tc, negative pulse width td	03
		and free running frequency fo.	
	(b)		04
	(b)	Draw and explain Wein bridge oscillator circuit with waveforms.	-
	(c)	Design a square wave oscillator so that fo=1KHz. The op-amp is 741	07
		with dc power supply= ± 18 V.	
Q.5	(a)	With neat diagram explain working of shockley diode.	03
	(b)	With neat diagram explain operation of CLASS B power amplifier	04
		and derive equation for power gain.	
	(c)	Draw and explain construction and working of SCR. Explain various	07
	(C)	SCR turn-on and turn-off methods.	07
		OR	
05	(\mathbf{a})	•	03
Q.5	(a)	With neat diagram explain basic construction and operation of UJT.	
	(b)	With neat diagram explain operation of CLASS A power amplifier	04
		and derive equation for power gain.	
	(c)	Draw and explain construction and working of TRIAC. Also design a	07
		simple AC power control circuit using TRIAC.	