Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - SUMMER 2020

Subject Code: 3130005 Date:27/10/2020

Subject Name: Complex Variables and Partial Differential Equations

Time: 02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			Marks
Q.1	(a)	If $u = x^3 - 3xy$ is find the corresponding analytic function $f(z) = u + iv$.	03
	(b)	Find the roots of the equation $z^2 - (5+i)z + 8 + i = 0$.	04
	(c)	(i) Determine and sketch the image of $ z = 1$ under the transformation	03
		$w = z + i.$ (ii) Find the neal and inversion matter of $c(z)$ $\frac{1}{2} + 2$	04
		(ii) Find the real and imaginary parts of $f(z) = z^2 + 3z$.	V 4
Q.2	(a)	Evaluate $\int_C (x^2 - iy^2) dz$ along the parabola $y = 2x^2$ from (1,2) to (2,8).	03
	(b)	Find the bilinear transformation that maps the points $z = \infty, i, 0$ into	04
		$w = 0, i, \infty$.	
	(c)	(i) Evaluate $\oint_C \frac{e^{-z}dz}{z+1}$, where C is the circle $ z = 1/2$.	03
		(ii) Find the radius of convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} z^n$.	04
		OR	
	(c)	(i) Find the fourth roots of -1 .	03
		(ii) Find the roots of $\log z = i\frac{\pi}{2}$.	04
Q.3	(a)	Find $\oint \frac{1}{z} dz$, where $C: z = 1$.	03

Q.3 (a) Find
$$\oint_C \frac{1}{z^2} dz$$
, where $C: |z| = 1$.

(b) For
$$f(z) = \frac{1}{(z-1)^2(z-3)}$$
, find Residue of $f(z)$ at $z=1$.

(c) Expand
$$f(z) = \frac{1}{(z+2)(z+4)}$$
 in a Laurent series for the regions $(i)|z| < 2$, $(ii)2 < |z| < 4$, $(iii)|z| > 4$.

Q.3 (a) Find
$$\oint_C \frac{z+4}{z^2+2z+5} dz$$
, where $C: |z+1| = 1$.

(b) Evaluate using Cauchy residue theorem
$$\int_C \frac{e^{2z}}{(z+1)^3} dz$$
; C: $4x^2 + 9y^2 = 16$.

(c) Expand
$$f(z) = \frac{1}{z(z-1)(z-2)}$$
 in Laurent's series for the regions $(i)|z| < 1$, $(ii)1 < |z| < 2$, $(iii)|z| > 2$.

03 (a) Solve xp + yq = x - y. 0.4 Derive partial differential equation by eliminating the arbitrary constants 04 a and b from z = ax + by + ab. (i) Solve the p.d.e. 2r + 5s + 2t = 0. 03 (c) (ii) Find the complete integral of $p^2 = qz$. 04 Find the solution of $x^2p + y^2q = z^2$. 03 **Q.4** (b) Form the partial differential equation by eliminating the arbitrary function 04 ϕ from $z = \phi \left(\frac{y}{x} \right)$. (i) Solve the p.d.e. $(D^2 - D'^2 + D - D')z = 0$. 03 **(c)** (ii) Solve by Charpit's method $yzp^2 - q = 0$. 04 Solve $(2D^2 - 5DD' + 2D'^2)z = 24(y - x)$. 03 Q.5 (b) Solve the p.d.e. $u_x + u_y = 2(x + y)u$ using the method of separation of 04 variables. (c) Find the solution of the wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le \pi$ with the **07** and boundary conditions $u(0,t) = u(\pi,t) = 0; t > 0,$ $u(x,0) = k(\sin x - \sin 2x), u_{\epsilon}(x,0) = 0; 0 \le x \le \pi. \ (c^2 = 1)$ OR (a) Solve the p.d.e. r + s + q - z = 0. Q.5 03 **(b)** Solve $2u_x = u_t + u$ given $u(x,0) = 4e^{-3x}$ using the method of separation 04 of variables. **07** Find the solution of $u_t = c^2 u_{xx}$ together with the initial and boundary (c) conditions $u(0,t) = u(2,t) = 0; t \ge 0$ and $u(x,0) = 10; 0 \le x \le 2$.