
PROGRAMMING

fOR

PRObleM SOlvING

Gujarat Technological University - 2018

E Balagurusamy, is presently the Chairman of EBG Foundation, Coimbatore. In the past he has also held

the positions of member, Union Public Service Commission, New Delhi and Vice-Chancellor, Anna University,

Chennai. He is a teacher, trainer and consultant in the fields of Information Technology and Management.

He holds an ME (Hons) in Electrical Engineering and PhD in Systems Engineering from the Indian Institute

of Technology, Roorkee. His areas of interest include Object-Oriented Software Engineering, E-Governance:

Technology Management, Business Process Re-engineering and Total Quality Management.

A prolific writer, he has authored a large number of research papers and several books.

A recipient of numerous honors and awards, he has been listed in the Directory of Who's Who of Intellectuals

and in the Directory of Distinguished Leaders in Education.

About the Author

E Balagurusamy

Chairman

EBG Foundation

Coimbatore

McGraw Hill Education (India) Private Limited
CHENNAI

McGraw Hill Education Offices

Chennai New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

PROGRAMMING

fOR

PRObleM SOlvING

Gujarat Technological University - 2018

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

444/1, Sri Ekambara Naickr Industrial Estate, Alapakkam, Porur, Chennai-600 116

Programming for Problem Solving

Copyright © 2019 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited.

Print Edition

ISBN (13 digit): 978-93-5316-278-8

ISBN (10 digit): 93-5316-278-5

E-book Edition

ISBN (13 digit): 978-93-5316-279-5

ISBN (10 digit): 93-5316-279-3

1 2 3 4 5 6 7 8 9 D101417 22 21 20 19 18

Printed and bound in India.

Director—Science & Engineering Portfolio: Vibha Mahajan

Senior Portfolio Manager—Science & Engineering: Hemant K Jha

Associate Portfolio Manager —Science & Engineering: Tushar Mishra

Production Head: Satinder S Baveja

Copy Editor: Taranpreet Kaur

Assistant Manager—Production: Suhaib Ali

General Manager—Production: Rajender P Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be

reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any

information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors,

omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw

Hill Education (India) and its authors are supplying information but are not attempting to render engineering or other

professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apartment, Paschim Vihar, New Delhi 110 063 and printed at

Cover Printer:

Cover Designer: APS Compugraphics

Cover Image Source: Shutterstock

Visit us at: www.mheducation.co.in

Write to us at: info.india@mheducation.com

CIN: U22200TN1970PTC111531

Toll Free Number: 1800 103 5875

P
rogramming for Problem Solving requires a deep understanding of C. C is a powerful, flexible, portable

and elegantly structured programming language. Since C combines the features of high-level language

with the elements of the assembler, it is suitable for both systems and applications programming. It

is undoubtedly the most widely used general-purpose language today in operating systems, and embedded

system development. Its influence is evident in almost all modern programming languages. Since its

standardization in 1989, C has undergone a series of changes and improvements in order to enhance the

usefulness of the language.

Organization of the Book
Programming for Problem Solving starts with an Introduction to Computer Programming, Chapter 2 discusses

fundamentals of C. Control Structures in C is presented in Chapter 3. Chapter 4 deals with Arrays and

Strings. Chapter 5 discusses Functions. In Chapter 6 students can study Pointers. While Chapter 7 details

Structure. Dynamic Memory Allocation is discussed in Chapter 8. Chapter 9 details on File Management.

Salient Features of the Book
∑ Learning Objectives

∑ Key Concepts

∑ Content Tagged with LO

∑ Worked Out Problems

∑ Tips

∑ Closing Vignette

∑ Review Exercises – True False, Fill in the blanks, Questions, Programming Exercises – categorized into

LO and Difficulty level (E for Easy, M for Medium and H for High)

Acknowledgements
I owe special thanks to the entire team of McGraw Hill Education India.

A note of acknowledgement is due to the following reviewers for their valuable feedback.

Ms. Kalpana Mudaliar Gandhinagar Institute of Technology, Gandhinagar, Gujarat

H K Patnaik Kalinga Institute of Industrial Technology, KIIT University, Bhubaneswar

T V Gopal College of Engineering, Anna University, Chennai, Tamil Nadu

Unnati Nitin Chaudhari Tolani Maritime Institute, Pune, Maharashtra

Tanveer Ahmed Jamia Millia Islamia, Delhi

Ravindra Divekar KJ Somaiya College of Engineering, Mumbai, Maharashtra

SC Dutta Birsa Institute of Technology, Sindri, Dhanbad, Jharkhand

D Lakshmi Adithya Institute of Technology, Coimbatore, Tamil Nadu

Preface

vi Preface

This book is my sincere attempt to make a footprint on the immensely vast and infinite sands of knowledge.

I would request the readers to utilize this book to the maximum extent.

E Balagurusamy

Publisher’s Note

McGraw Hill Education (India) invites suggestions and comments from you, all of which can be sent to info.

india@mheducation.com (kindly mention the title and author name in the subject line).

Piracy-related issues may also be reported.

About the Author ii

Preface v

1. Introduction to Computer and Programming 1

 Learning Objectives 1

 Introduction 1

 Generations of Computers 2

 Classification of Computers 5

 Basic Anatomy of a Computer System 7

 Input Devices 8

 Processor 9

 Output Devices 10

 Memory Management 12

 Types of Computer Software 13

 Overview of Operating System 14

 MS Word 19

 MS Excel System 21

 MS Powerpoint System 22

 Networking Concepts 23

 Network Topologies 25

 Network Protocols and Software 29

 Decimal System 31

 Binary System 32

 Hexadecimal System 33

 Octal System 34

 Conversion of Numbers 35

 Binary Arithmetic Operations 44

 Logic Gates 52

 Programming Languages 55

Contents

viii Contents

 Translator Programs 58

 Problem-Solving Techniques 59

 Using the Computer 70

 Learning Outcomes 70

 Key Concepts 71

 Review Questions 73

 Discussion Questions 84

2. Fundamentals of C 87

 Learning Objectives 87

 History of C 87

 Importance of C 89

 Sample Program 1: Printing a Message 89

 Sample Program 2: Adding Two Numbers 92

 Sample Program 3: Interest Calculation 93

 Sample Program 4: Use of Subroutines 95

 Sample Program 5: Use of Math Functions 96

 Basic Structure of C Programs 97

 Programming Style 98

 Executing a ‘C’ Program 99

 UNIX System 99

 MS-DOS System 102

 Key Concepts 102

 Always Remember 103

 Review Questions 103

 Debugging Exercises 105

 Programming Exercises 105

3. Control Structure in C 107

 Learning Objectives 107

 Introduction 107

 Decision Making with if Statement 108

 Simple If Statement 108

 The If.....Else Statement 111

 Nesting of If....Else Statements 114

 The Else If Ladder 117

 The Switch Statement 121

 The ? : Operator 125

 The goto Statement 129

 Key Concepts 132

Contents ix

 Always Remember 132

 Brief Cases 132

 Review Questions 137

 Debugging Exercises 141

 Programming Exercises 141

4. Array & String 145

 Learning Objectives 145

 Introduction 145

 One-Dimensional Arrays 147

 Declaration of One-dimensional Arrays 148

 Initialization of One-dimensional Arrays 151

 Two-Dimensional Arrays 156

 Initializing Two-dimensional Arrays 161

 Multi-dimensional Arrays 168

 Dynamic Arrays 169

 More About Arrays 170

 Declaring and Initializing String Variables 170

 Reading Strings from Terminal 171

 Writing Strings to Screen 177

 Arithmetic Operations on Characters 181

 Putting Strings Together 183

 Comparison of Two Strings 184

 String-Handling Functions 184

 Table of Strings 190

 Other Features of Strings 192

 Key Concepts 192

 Always Remember 193

 Brief Cases 194

 Review Questions 210

 Debugging Exercises 214

 Programming Exercises 215

5. Functions 220

 Learning Objectives 220

 Introduction 220

 Need for User-Defined Functions 221

 A Multi-Function Program 221

 Elements of User-Defined Functions 224

x Contents

 Definition of Functions 224

 Return Values and Their Types 227

 Function Calls 228

 Function Declaration 229

 Category of Functions 231

 No Arguments and No Return Values 231

 Arguments but No Return Values 233

 Arguments with Return Values 236

 No Arguments but Returns a Value 241

 Functions that Return Multiple Values 242

 Nesting of Functions 243

 Recursion 244

 Passing Arrays to Functions 245

 Passing Strings to Functions 250

 The Scope, Visibility and Lifetime of Variables 251

 Multifile Programs 260

 Key Concepts 262

 Always Remember 262

 Brief Cases 263

 Review Questions 266

 Debugging Exercises 270

 Programming Exercises 270

6. Pointers 273

 Learning Objectives 273

 Introduction 273

 Understanding Pointers 274

 Accessing the Address of a Variable 276

 Declaring Pointer Variables 277

 Initialization of Pointer Variables 278

 Accessing a Variable Through its Pointer 279

 Chain of Pointers 281

 Pointer Expressions 282

 Pointer Increments and Scale Factor 284

 Pointers and Arrays 284

 Pointers and Character Strings 288

 Array of Pointers 290

 Pointers as Function Arguments 291

 Functions Returning Pointers 294

Contents xi

 Pointers to Functions 295

 Pointers and Structures 297

 Troubles with Pointers 299

 Key Concepts 300

 Always Remember 300

 Brief Cases 301

 Review Questions 306

 Debugging Exercises 309

 Programming Exercises 309

7. Structure 311

 Learning Objectives 311

 Introduction 311

 Defining a Structure 312

 Declaring Structure Variables 313

 Accessing Structure Members 315

 Structure Initialization 316

 Copying and Comparing Structure Variables 318

 Operations on Individual Members 320

 Arrays of Structures 320

 Arrays within Structures 323

 Structures within Structures 324

 Structures and Functions 326

 Unions 329

 Size of Structures 330

 Bit Fields 330

 Key Concepts 333

 Always Remember 333

 Brief Cases 334

 Review Questions 338

 Debugging Exercises 341

 Programming Exercises 341

8. Dynamic Memory Allocation 344

 Learning Objectives 344

 Introduction 344

 Dynamic Memory Allocation 344

 Allocating a Block of Memory: malloc 345

 Allocating Multiple Blocks of Memory: calloc 347

xii Contents

 Releasing the Used Space: free 348

 Altering the Size of a Block: realloc 348

 Concepts of Linked Lists 350

 Advantages of Linked Lists 353

 Types of Linked Lists 354

 Pointers Revisited 354

 Creating a Linked List 356

 Inserting an Item 360

 Deleting an Item 363

 Application of Linked Lists 365

 Key Concepts 365

 Always Remember 366

 Brief Cases 366

 Review Questions 372

 Debugging Exercises 374

 Programming Exercises 374

9. File Management 376

 Learning Objectives 376

 Introduction 376

 Defining and Opening a File 377

 Closing a File 378

 Input/Output Operations on Files 379

 Error Handling During I/O Operations 385

 Random Access to Files 387

 Command Line Arguments 394

 Key Concepts 396

 Always Remember 396

 Review Questions 397

 Debugging Exercises 398

 Programming Exercises 398

Roadmap to the Syllabus

Programming For Problem Solving

Code: 3110003

Introduction to computer and programming: Introduction, Basic block diagram and functions of various

components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter,

Concepts of Machine level, Assembly level and high level programming, Flowcharts and Algorithms

Fundamentals of C: Features of C language, structure of C Program, comments, header files, data types,

constants and variables, operators, expressions, evaluation of expressions, type conversion, precedence

and associativity, I/O functions

Control structure in C: Simple statements, Decision making statements, Looping statements, Nesting of

control structures, break and continue, goto statement

Array & String: Concepts of array, one and two dimensional arrays, declaration and initialization of arrays,

string, string storage, Built-in-string functions

Recursion: Recursion, as a different way of solving problems. Example programs, such as Finding

Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

GO TO

GO TO

GO TO

GO TO

Chapter 1 Introduction to Computer and Programming

Chapter 2 Fundamentals of C

Chapter 3 Control Structure in C

Chapter 4 Array & String

xiv Roadmap to the Syllabus

Functions: Concepts of user defined functions, prototypes, definition of function, parameters, parameter

passing, calling a function, recursive function, Macros, Pre-processing

Pointers: Basics of pointers, pointer to pointer, pointer and array, pointer to array, array to pointer, function

returning pointer

Structure: Basics of structure, structure members, accessing structure members, nested structures, array

of structures, structure and functions, structures and pointers

Dynamic memory allocation: Introduction to Dynamic memory allocation, malloc, calloc

File management: Introduction to file management and its functions

GO TO

GO TO

GO TO

GO TO

GO TO

Chapter 5 Functions

Chapter 6 Pointers

Chapter 7 Structure

Chapter 8 Dynamic Memory Allocation

Chapter 9 File Management

Introduction to
Computer and
Programming

Chapter

1

LEARNING OBJECTIVES

 LO 1.1 Identi fy the various generati ons of computers

 LO 1.2 Classify computers on the basis of diff erent criteria

 LO 1.3 Describe the computer system

 LO 1.4 Classify various computer soft ware

 LO 1.5 Discuss various operati ng systems

 LO 1.6 Discuss Microsoft soft ware

 LO 1.7 Know various networking concepts and protocols

 LO 1.8 Identi fy the various positi onal number systems

 LO 1.9 Carry out number conversions from one number system to another

 LO 1.10 Explain how binary arithmeti c operati ons are performed

 LO 1.11 Describe primary logic gates

 LO 1.12 Discuss various levels of programming languages

 LO 1.13 Know various problem solving techniques and computer applicati ons

introduction
A computer is an electronic machine that takes input from the user, processes the given input and generates

output in the form of useful information. A computer accepts input in different forms such as data, programs

and user reply. Data refer to the raw details that need to be processed to generate some useful information.

Programs refer to the set of instructions that can be executed by the computer in sequential or non-

sequential manner. User reply is the input provided by the user in response to a question asked by the

computer.

A computer includes various devices that function as an integrated system to perform several tasks

described above (Fig. 1.1). These devices are:

Central Processing Unit (CPU)

It is the processor of the computer that is responsible for controlling and executing instructions in the computer.

It is considered as the most signifi cant component of the computer.

introduction
A computer is an electronic machine

output in the form of useful information. A computer accepts input in different forms such as data, programs

2 Programming for Problem Solving

Monitor

It is a screen, which displays information in visual form, after receiving the video signals from the computer.

Keyboard and Mouse

These are the devices, which are used by the computer, for receiving input from the user.

Fig. 1.1 The components of computer

Computers store and process numbers, letters and words that are often referred to as data.

l How do we communicate data to computers?

l How do the computers store and process data?

Since the computers cannot understand the Arabic numerals or the English alphabets, we should use

some ‘codes’ that can be easily understood by them.

In all modern computers, storage and processing units are made of a set of silicon chips, each contain-

ing a large number of transistors. A transistor is a two-state device that can be put ‘off’ and ‘on’ by passing

an electric current through it. Since the transistors are sensitive to currents and act like switches, we can

communicate with the computers using electric signals, which are represented as a series of ‘pulse’ and

‘no-pulse’ conditions. For the sake of convenience and ease of use, a pulse is represented by the code ‘1’

and a no-pulse by the code ‘0’. They are called bits, an abbreviation of ‘binary digits’. A series of 1s and

0s are used to represent a number or a character and thus they provide a way for humans and computers

to communicate with one another. This idea was suggested by John Von Neumann in 1946. The numbers

represented by binary digits are known as binary numbers. Computers not only store numbers but also

perform operations on them in binary form.

In this chapter, we discuss how the numbers are represented using what are known as binary codes, how

computers perform arithmetic operations using the binary representation, how digital circuits known as logic

gates are used to manipulate data, how instructions are designed using what are known as programming

languages and how algorithms and fl ow charts might help us in developing programs.

generations of computers
The history of computer development is often discussed in terms of different

 generation of computers, as listed below.

l First generation computers

l Second generation computers

l Third generation computers

l Fourth generation computers

l Fifth generation computers

In this chapter, we discuss how the numbers are represented using what are known as binary codes, how

computers perform arithmetic operations using the binary representation, how digital circuits known as logic

 are used to manipulate data, how instructions are designed using what are known as programming

might help us in developing programs.

LO 1.1

Identi fy the various

generati ons

of computers

Introduction to Computer and Programming 3

These computers used the vacuum tubes

technology (Fig. 1.2) for calculation as well as

for storage and control purposes. Therefore,

these computers were also known as vacuum

tubes or thermionic valves based machines.

Some examples of fi rst generation computers

are ENIAC, EDVAC, EDSAC and UNIVAC.

Advantages

l Fastest computing devices of their time.

l Able to execute complex mathematical

problems in an effi cient manner.

Disadvantages

l These computers were not very easy to

program being machine dependent.

l They were not very fl exible in running

different types of applications as designed

for special purposes.

l The use of vacuum tube technology made

these computers very large and bulky and

also required to be placed in cool places.

l They could execute only one program at a

time and hence, were not very productive.

l They generated huge amount of heat and

hence were prone to hardware faults.

These computers use transistors in place of vacuum tubes in building

the basic logic circuits. A transistor is a semiconductor device that is

used to increase the power of the incoming signals by preserving the

shape of the original signal (Fig. 1.3).

Some examples of second generation computers are PDP-8, IBM

1401 and IBM 7090.

Advantages

l Fastest computing devices of their time.

l Easy to program because of the use of assembly language.

l Small and light weight computing devices.

l Required very less power in carrying out operations.

Disadvantages

l Input and output media for these computers were not improved

to a considerable extent.

l Required to be placed in air-conditioned places.

Fig. 1.2 A vacuum tube

Fig. 1.3 A transistor

4 Programming for Problem Solving

l Very expensive and beyond the reach of home users.

l Being special-purpose computers they could execute only specifi c applications.

The major characteristic feature of third generation

computer systems was the use of Integrated Circuits

(ICs). ICs are the circuits that combine various electronic

components, such as transistors, resistors, capacitors, etc.

onto a single small silicon chip.

Some examples of third generation computers are NCR

395, B6500, IBM 370, PDP 11 and CDC 7600.

Advantages
l Computational time for these computers was usually

in nanoseconds hence were the fastest computing

devices

l Easily transportable because of their small size.

l They used high-level languages which is machine

independent hence very easy to use.

l Easily installed and required less space.

l Being able to execute any type of application (business and scientifi c) these were considered as

general-purpose computers.

Disadvantages
l Very less storage capacity.

l Degraded performance while executing complex computations because of the small storage capacity.

l Very expensive.

The progress in LSI and VLSI technologies led to the development of microprocessor, which became the

major characteristic feature of the fourth generation

computers. The LSI and VLSI technology allowed

thousands of transistors to be fi tted onto one small silicon

chip.

A microprocessor incorporates various components

of a computer—such as CPU, memory and Input/Output

(I/O) controls—onto a single chip. Some popular later

microprocessors include Intel 386, Intel 486 and Pentium.

Some of the examples of fourth generation computers

are IBM PC, IBM PC/AT, Apple and CRAY-1.

Advantages
l LSI and VLSI technologies made them small,

cheap, compact and powerful.

l high storage capacity

l highly reliable and required very less maintenance.

Fig. 1.4 An integrated circuit

Fig. 1.5 The Intel P4004 microprocessor chip

Introduction to Computer and Programming 5

l provided a user-friendly environment with the development of GUIs and interactive I/O devices.

l programs written on these computers were highly portable because of the use of high-level languages.

l very versatile and suitable for every type of applications.

l required very less power to operate.

Disadvantages
l the soldering of LSI and VLSI chips on the wiring board was complicated

l still dependent on the instructions given by the programmer.

Fifth generation computers are based on the Ultra Large Scale Integration (ULSI) technology that allows

almost ten million electronic components to be fabricated on one small chip.

Advantages
l faster, cheaper and most effi cient computers till date.

l They are able to execute a large number of applications at the same time and that too at a very high

speed.

l The use of ULSI technology helps in decreasing the size of these computers to a large extent.

l very comfortable to use because of the several additional multimedia features.

l versatile for communications and resource sharing.

Disadvantage
They are not provided with an intelligent program that could guide them in performing different operations.

Figure 1.6 shows a tree of computer family that illustrates the area-wise developments during the last

four decades and their contributions to the various generations of computers.

classification of computers
Computers can be classifi ed into several categories depending on their

computing ability and processing speed. These include

l Microcomputer

l Minicomputer

l Mainframe computers

l Supercomputers

 Microcomputers
A microcomputer is defi ned as a computer that has a microprocessor as its CPU and can perform the

following basic operations:

l Inputting — entering data and instructions into the microcomputer system.

l Storing — saving data and instructions in the memory of the microcomputer system, so that they can

be use whenever required.

l Processing — performing arithmetic or logical operations on data, where data, such as addition,

subtraction, multiplication and division.

l Outputting — It provides the results to the user, which could be in the form of visual display and/or

printed reports.

l Controlling — It helps in directing the sequence and manner in which all the above operations are

performed.

 Minicomputers
A minicomputer is a medium-sized computer that is more powerful than a microcomputer. It is usually

designed to serve multiple users simultaneously, hence called a multiterminal, time-sharing system.

LO 1.2

Classify computers on

the basis of diff erent

criteria

6 Programming for Problem Solving

Fig. 1.6 Tree of computer family

Introduction to Computer and Programming 7

Minicomputers are popular among research and business organizations today. They are more expensive

than microcomputers.

Mainframe Computers
Mainframe computers help in handling the information processing of various organizations like banks,

insurance companies, hospitals and railways. Mainframe computers are placed on a central location and

are connected to several user terminals, which can act as access stations and may be located in the same

building. Mainframe computers are larger and expensive in comparison to the workstations.

Supercomputers
In supercomputers, multiprocessing and parallel processing technologies are used to promptly solve

complex problems. Here, the multiprocessor can enable the user to divide a complex problem into smaller

problems. A supercomputer also supports multiprogramming where multiple users can access the computer

simultaneously. Presently, some of the popular manufacturers of supercomputers are IBM, Silicon Graphics,

Fujitsu, and Intel.

Basic anatomy of a computer system
A computer system comprises hardware and software components. Hardware refers to the physical

parts of the computer system and software is the set of instructions or programs that are necessary for the

functioning of a computer to perform certain tasks. Hardware includes the following components:

l Input devices — They are used for accepting the data on which the operations are to be performed.

The examples of input devices are keyboard, mouse and track ball.

Output
Media

Magnetic
Tape

Magnetic
Disk

EXTERNAL STORAGE UNITS

Memory
Unit

Arithmetic
Unit

Output
Unit

Input
Unit

Input
Media

Control
Unit

CPU

Data and results flow

Control Instructions to units

Instructions to control unit

Fig. 1.7  Interaction among hardware components

8 Programming for Problem Solving

l Processor — Also known as CPU, it is used to perform the calculations and information processing

on the data that is entered through the input device.

l Output devices — They are used for providing the output of a program that is obtained after

performing the operations specifi ed in a program. The examples of output devices are monitor and

printer.

l Memory — It is used for storing the input data as well as the output of a program that is obtained

after performing the operations specifi ed in a program. Memory can be primary memory as well as

secondary memory. Primary memory includes Random Access Memory (RAM) and secondary

memory includes hard disks and fl oppy disks.

Software supports the functioning of a computer system internally and cannot be seen. It is stored on

secondary memory and can be an application software as well as system software. The application

software is used to perform a specifi c task according to requirements and the system software (operating

system and networking system) is mandatory for running application software.

input DeVices

Input devices are electromechanical devices that are used to provide data

to a computer for storing and further processing, if necessary. Depending

upon the type or method of input, the input device may belong to one of the

following categories:

Keyboard is used to type data and text and execute commands. A standard keyboard, as shown in Fig. 1.8,

consists of the following groups of keys:

Fig. 1.8 The presently used keyboard

Alphanumeric Keys include the number keys and alphabet keys arranged in QWERTY layout.

Function Keys help perform specifi c tasks, such as searching a fi le or refreshing a web page.

Central Keys include arrow keys (for moving the cursor) and modifi er keys such as SHIFT, ALT and CTRL

(for modifying the input).

LO 1.3

Describe the computer

system

Introduction to Computer and Programming 9

Numeric Keypad looks like a calculator’s keypad with its 10 digits and mathematical operators.

Special Purpose Keys The special purpose keys help perform a certain kind of operation, like exiting a

program (Escape) or deleting some characters (Delete) in a document, etc.

Mouse is a small hand-held pointing device that basically controls the two-dimensional movement of the

cursor on the displayed screen. It is an important part of the Graphical User Interface (GUI) based Operating

Systems (OS) as it helps in selecting a portion of the screen and copying and pasting the text.

The mouse, on moving, also moves the pointer appearing on the display device (Fig. 1.9).

Wheel

Right Button

Left Button

Fig. 1.9 A mechanical mouse

Scanning devices are the input devices that can electronically

capture text and images, and convert them into computer readable

form (Fig. 1.10).

There are the following types of scanners that can be used to

produce digitized images:

l Flatbed scanner — It contains a scanner head that moves

across a page from top to bottom to read the page and

converts the image or text available on the page in digital

form. The fl atbed scanner is used to scan graphics, oversized

documents, and pages from books.

l Drum scanner — In this type of scanner, a fi xed scanner

head is used and the image to be scanned is moved across

the head. The drum scanners are used for scanning prepress

materials.

l Slide scanner — It is a scanner that can scan photographic slides directly to produce fi les

understandable by the computer.

l Handheld scanner — It is a scanner that is moved by the end user across the page to be scanned.

This type of scanner is inexpensive and small in size.

processor
The CPU consists of Control Unit (CU) and ALU. CU stores the instruction set, which specifi es the

operations to be performed by the computer. CU transfers the data and the instructions to the ALU for

Fig. 1.10 A Scanner

10 Programming for Problem Solving

an arithmetic operation. ALU performs arithmetical or logical operations on the data received. The CPU

registers store the data to be processed by the CPU and the processed data also. Apart from CU and ALU,

CPU seeks help from the following hardware devices to process the data:

 Motherboard
It refers to a device used for connecting the CPU with the input and output devices. The components on the

motherboard are connected to all parts of a computer and are kept insulated from each other. Some of

the components of a motherboard are:

l Buses: Electrical pathways that transfer data and instructions among different parts of the computer.

For example, the data bus is an electrical pathway that transfers data among the microprocessor,

memory and input/output devices connected to the computer.

l System clock: It is a clock used for synchronizing the activities performed by the computer. The

electrical signals that are passed inside a computer are timed, based on the tick of the clock.

l Microprocessor: CPU component that performs the processing and controls the activities performed

by the different parts of the computer.

l ROM: Chip that contains the permanent memory of the computer that stores information, which cannot

be modifi ed by the end user.

 RAM
It refers to primary memory of a computer that stores information and programs, until the computer is used.

RAM is available as a chip that can be connected to the RAM slots in the motherboard.

 Video Card/Sound Card
The video card is an interface between the monitor and the CPU. Video cards also include their own RAM

and microprocessors that are used for speeding up the processing and display of a graphic. A sound card is

a circuit board placed on the motherboard and is used to enhance the sound capabilities of a computer.

 output DeVices
The main task of an output device is to convert the machine-readable information into human-readable form

which may be in the form of text, graphics, audio or video.

A monitor produces visual displays generated by the computer. The monitor is connected to the video card

placed on the expansion slot of the motherboard.

Fig. 1.11 A CRT monitor and the internal components of a CRT

Introduction to Computer and Programming 11

The monitors can be classifi ed as cathode ray tube (CRT) monitors or liquid crystal display (LCD)

monitors. The CRT monitors are large, occupy more space in the computer, whereas LCD monitors are thin,

light weighted, and occupy lesser space. Both the monitors are available as monochrome, gray scale and

color models.

A monitor can be characterized by its monitor size and resolution. The monitor size is the length of the

screen that is measured diagonally. The resolution of the screen is expressed as the number of picture

elements or pixels of the screen. The resolution of the monitor is also called the dot pitch. The monitor with a

higher resolution produces a clearer image.

The printer is an output device that transfers the text displayed on the screen, onto paper sheets that can

be used by the end user. Printers can be classifi ed based on the technology they use to print the text and

images:

l Dot matrix printers — Dot matrix printers are impact printers that use perforated sheet to print the

text. Dot matrix printers are used to produce multiple copies of a print out.

l Inkjet printers — Inkjet printers are slower than dot matrix printers and are used to generate high

quality photographic prints.

l Laser printers — The laser printer may or may not be connected to a computer, to generate an

output. These printers consist of a microprocessor, ROM and RAM, which can be used to store the

textual information.

These systems record the simple messages in human speech form and then combine all these simple

messages to form a single message. The voice response system is of two types—one uses a reproduction

of human voice and other sounds, and the other uses speech synthesis.

The basic application of a voice output system is in Interactive Voice Response (IVR) systems, which are

used by the customer care or customer support departments of an organization, such as telecommunication

companies, etc.

A projector is a device that is connected to a

computer or a video device for projecting an

image from the computer or video device onto

the big white screen. The images projected

by a projector are larger in size as compared

to the original images. A projector consists of

an optic system, a light source and displays,

which contain the original images. Projectors

were initially used for showing fi lms but now

they are used on a large scale for displaying

presentations in business organizations and for

viewing movies at home. Fig. 1.12 A portable projector

12 Programming for Problem Solving

memory management
The memory unit of a computer is used to store data, instructions for processing data, intermediate results

of processing and the fi nal processed information. The memory units of a computer are classifi ed as primary

and secondary memory. Computers also use a third type of storage location known as the internal process

memory. This memory is placed either inside the CPU or near the CPU (connected through special fast

bus).

Fig. 1.13 Memory unit categories of computer

The primary memory is available in the computer as a built-in unit of the computer. The primary memory is

represented as a set of locations with each location occupying 8 bits. Each bit in the memory is identifi ed by

a unique address. The data is stored in the machine-understandable binary form in these memory locations.

The commonly used primary memories are as follows:

l ROM — ROM represents Read Only Memory that stores data and instructions, even when the

computer is turned off. It is the permanent memory of the computer where the contents cannot be

modifi ed by an end user. ROM is a chip that is inserted into the motherboard. It is generally used to

store the Basic Input/Output system (BIOS), which performs the Power On Self Test (POST).

l RAM — RAM is the read/write memory unit in which the information is retained only as long as there

is a regular power supply. When the power supply is interrupted or switched off, the information stored

in the RAM is lost. RAM is volatile memory that temporarily stores data and applications as long as

they are in use. When the use of data or the application is over, the content in RAM is erased.

l Cache memory — Cache memory is used to store the data and the related application that was last

processed by the CPU. When the processor performs processing, it fi rst searches the cache memory

and then the RAM, for an instruction. The cache memory can be either soldered into the motherboard

or is available as a part of RAM.

Introduction to Computer and Programming 13

Secondary memory represents the external storage devices that are connected to the computer. They

provide a non-volatile memory source used to store information that is not in use currently. A storage

device is either located in the CPU casing of the computer or is connected externally to the computer. The

secondary storage devices can be classifi ed as:

l Magnetic storage device — The magnetic storage devices store information that can be read,

erased and rewritten a number of times. These include fl oppy disk, hard disk and magnetic tapes.

l Optical storage device — The optical storage devices are secondary storage devices that use laser

beams to read the stored data. These include CD-ROM, rewritable compact disk (CD-RW), digital

video disks with read only memory (DVD-ROM), etc.

l Magneto-optical storage device — The magneto-optical devices are generally used to store

information, such as large programs, fi les and back-up data. The end user can modify the information

stored in magneto-optical storage devices multiple times. These devices provide higher storage

capacity as they use laser beams and magnets for reading and writing data to the device.

types of computer software
A computer program is basically a set of logical instructions, written in a

computer programming language that tells the computer how to accomplish

a task. The software is therefore an essential interface between the hardware

and the user (Fig. 1.14).

A computer software performs two distinctive tasks. The fi rst task is to control and coordinate the

hardware components and manage their performances and the second one is to enable the users to

accomplish their required tasks. The software that is used to achieve the fi rst task is known as the system

software and the software that is used to achieve the second task is known as the application software.

Fig. 1.14  Layers of software and their interactions

System software consists of many different programs that manage and support different tasks. Depending

upon the task performed, the system software can be classifi ed into two major groups (Fig. 1.15):

l System management programs used for managing both the hardware and software systems. They

include:

 ∑ Operating system

LO 1.4

 Classify various computer

soft ware

14 Programming for Problem Solving

 ∑ Utility programs

 ∑ Device drivers

l System development programs are used for developing and executing application software. These

are:

 ∑ Language translators

 ∑ Linkers

 ∑ Debuggers

 ∑ Editors

Fig. 1.15  Major categories of computer software

Application software includes a variety of programs that are designed to meet the information processing

needs of end users. They can be broadly classifi ed into two groups:

l Standard application programs that are designed for performing common application jobs. Examples

include:

 ∑ Word processor

 ∑ Spreadsheet

 ∑ Database Manager

 ∑ Desktop Publisher

 ∑ Web Browser

l Unique application programs that are developed by the users themselves to support their specifi c

needs. Examples include:

 ∑ Managing the inventory of a store

 ∑ Preparing pay-bills of employees in an organization

 ∑ Reserving seats in trains or airlines

oVerView of operating system
An operating system (OS) is a software that makes the computer hardware

to work. While the hardware provides ‘raw computer power’, the OS is

responsible for making the computer power useful for the users. OS is the

main component of system software and therefore must be loaded and

activated before we can accomplish any other task. The main functions

include:

l Operates CPU of the computer.

l Controls input/output devices that provide the interface between the user and the computer.

LO 1.5

Discuss various operati ng

systems

Introduction to Computer and Programming 15

Fig. 1.16 The roles of an operating system

l Handles the working of application programs with the hardware and other software systems.

l Manages the storage and retrieval of information using storage devices such as disks.

Based on their capabilities and the types of applications supported, the operating systems can be divided

into the following six major categories:

l Batch operating system — This is the earliest operating system, where only one program is allowed

to run at one time. We cannot modify any data used by the program while it is being run. If an error

is encountered, it means starting the program from scratch all over again. A popular batch operating

system is MS DOS.

l Interactive operating system — This operating system comes after the batch operating system,

where also only one program can run at one time. However, here, modifi cation and entry of data

are allowed while the program is running. An example of an interactive operating system is Multics

(Multiplexed Information and Computing Service).

l Multiuser operating system — A multiuser operating system allows more than one user to use a

computer system either at the same time or at different times. Examples of multiuser operating

systems include Linux and Windows 2000.

l Multi-tasking operating system — A multi-tasking operating system allows more than one program

to run at the same time. Examples of multi-tasking operating systems include Unix and Windows 2000.

l Multithreading operating system — A multithreading operating system allows the running of

different parts of a program at the same time. Examples of multithreading operating system include

UNIX and Linux.

l Real-time operating systems — These operating systems are specially designed and developed for

handling real-time applications or embedded applications. Example include MTOS, Lynx, RTX

l Multiprocessor operating systems — The multiprocessor operating system allows the use of

multiple CPUs in a computer system for executing multiple processes at the same time. Example

include Linux, Unix, Windows 7.

l Embedded operating systems — The embedded operating system is installed on an embedded

computer system, which is primarily used for performing computational tasks in electronic devices.

Example include Palm OS, Windows CE

 MS DOS or Microsoft Disk Operating System, which is marketed by Microsoft Corporation and is one of the

most commonly used members of the DOS family of operating systems. MS DOS is a command line user

interface, which was fi rst introduced in 1981 for IBM computers. Although MS DOS, nowadays, is not used

as a stand-alone product, but it comes as an integrated product with the various versions of Windows.

16 Programming for Problem Solving

In MS DOS, unlike Graphical User Interface (GUI)-based operating systems, there is a command line

interface, which is known as MS DOS prompt. Here, we need to type the various commands to perform

the operations in MS DOS operating system. The MS DOS commands can be broadly categorized into the

following three classes:

l Environment command — These commands usually provide information on or affects operating

system environment. Some of these commands are:

 ∑ CLS: It allows the user to clear the complete content of the screen leaving only the MS-DOS

prompt.

 ∑ TIME: It allows the user to view and edit the time of the computer.

 ∑ DATE: It allows the user to view the current date as well as change the date to an alternate date.

 ∑ VER: It allows us to view the version of the MS-DOS operating system.

l File manipulation command — These commands help in manipulating fi les, such as copying a fi le or

deleting a fi le. Some of these commands include:

 ∑ COPY: It allows the user to copy one or more fi les from one specifi ed location to an alternate

location.

 ∑ DEL: It helps in deleting a fi le from the computer.

 ∑ TYPE: It allows the user to view the contents of a fi le in the command prompt.

 ∑ DIR: It allows the user to view the fi les available in the current and/or parent directories.

l Utilities — These are special commands that perform various useful functions, such as formatting a

diskette or invoking the text editor in the command prompt. Some of these commands include:

 ∑ FORMAT: It allows the user to erase all the content from a computer diskette or a fi xed drive.

 ∑ EDIT: It allows the user to view a computer fi le in the command prompt, create and modify the

computer fi les.

Windows Architecture
The architecture of Windows operating system comprises a modular structure that is compatible with a

variety of hardware platforms. Figure 1.17 shows the architecture of Windows 2000; the later releases of

Windows operating systems are based on similar architecture.

At a high level, the architecture is divided into three layers, viz.

l User mode: Comprises application and I/O specifi c software components

l Kernel mode: Has complete access to system resources and hardware

l Hardware: Comprises underlying hardware platform

User Mode
The various subsystems in the user mode are divided into the following two categories:

l Environment subsystems: Comprise subsystems that run applications written for other operating

systems. These subsystems cannot directly request hardware access; instead such requests are

processed by virtual memory manager present in the kernel mode. The three main environment

subsystems include Win32, OS/2 and POSIX. Each of these subsystems possess dynamic link

libraries for converting user application calls to Windows calls.

l Integral subsystems: Takes care of the operating system specifi c functions on behalf of the

environment subsystems. The various integral subsystems include workstation service, server service

and security.

Introduction to Computer and Programming 17

Fig. 1.17  The architecture of Windows 2000

Kernel Mode
The kernel mode comprises various components with each component managing specifi c system function.

Each of the components is independent and can be removed, upgraded or replaced without rewriting the

entire system. The various kernel-mode components include:

l Executive: Comprises the core operating system services including memory management, process

management, security, I/O, inter process communication etc.

l Kernel: Comprises the core components that help in performing fundamental operating system

operations including thread scheduling, exception handling, interrupt handling, multiprocessor

synchronization, etc.

l HAL: Acts as a bridge between generic hardware communications and those specifi c to the underlying

hardware platform. It helps in presenting a consistent view of system bus, DMA, interrupt controllers,

timers, etc. to the kernel.

l I/O manager: Handles requests for accessing I/O devices by interacting with the relevant device

drivers.

l Security reference monitor: Performs access validation and audit checks for Windows objects

including fi les, processes, I/O devices, etc.

l Virtual Memory Manager: Performs virtual memory management by mapping virtual addresses to

actual physical pages in computer’s memory.

l Process Manager: Creates and deletes objects and threads throughout the life cycle of a process.

l PnP manager: Supports plug-and-play devices by determining the correct driver for a device and

further loading the driver.

18 Programming for Problem Solving

l Power manager: Performs power management for the various devices. It also optimizes power

utilization by putting the devices to sleep that are not in use.

l GDI: Stands for Graphics Device Interface and is responsible for representing graphical objects in

Windows environment. It also transfers the graphical objects to the output devices such as printer and

monitor.

l Object manager: Manages Windows Executive objects and abstract data types that represent the

various resources such as processes, threads, etc.

 UNIX operating system was developed by a group of AT&T employees at Bell Labs in the year 1969. UNIX

is primarily designed to allow multiple users access the computer at the same time and share resources.

The UNIX operating system is written in C language. The signifi cant properties of UNIX include:

l Multi-user capability

l Multi-tasking capability

l Portability

l Flexibility

l Security

 Architecture of UNIX
UNIX has a hierarchical architecture consisting of several layers, where each layer provides a unique

function as well as maintains interaction with its lower layers. The layers of the UNIX operating system are:

l Kernel

l Service

l Shell

l User applications

Figure 1.18 shows the various layers of the UNIX operating system.

l Kernel Kernel is the core of the UNIX operating system and it gets loaded into memory whenever

we switch on the computer. Three components of kernel are:

 ∑ Scheduler — It allows scheduling the processing of various jobs.

 ∑ Device driver — It helps in controlling the Input/Output devices attached to the computer.

 ∑ I/O buffer — It controls the I/O operations in the computer.

 Various functions performed by the kernel are:

 ∑ Initiating and executing different programs at the same time

 ∑ Allocating memory to various user and system processes

 ∑ Monitoring the fi les that reside on the disk

 ∑ Sending and receiving information to and from the network

l Service In the service layer, requests are received from the shell and they are then transformed

into commands to the kernel. The service layer, which is also known as the resident module layer, is

indistinguishable from the kernel and consists of a collection of programs providing various services,

which include:

 ∑ Providing access to various I/O devices, such as keyboard and monitor

 ∑ Providing access to storage devices, such as disk drives

 ∑ Controlling different fi le manipulation activities, such as reading from a fi le and writing to a fi le

Introduction to Computer and Programming 19

User Applications

Shell

Service Layer

Kernel

Hardware

(Scheduler, Device Driver, I/O Buffers)

(Library Routines)

(Process Management, Memory Management, I/O
services, and File System

Fig. 1.18 The layers of UNIX operating system

l Shell The third layer in the UNIX architecture is the shell, which acts as an interface between a user

and the computer for accepting the requests and executing programs. The shell is also known as the

command interpreter that helps in controlling the interaction with the UNIX operating system. The

primary function of the shell is to read the data and instructions from the terminal, and then execute

commands and fi nally display the output on the monitor. The shell is also termed as the utility layer as

it contains various library routines for executing routine tasks. The various shells that are found in the

UNIX operating system are:

 ∑ Bourne shell

 ∑ C shell

 ∑ Korn shell

 ∑ Restricted shell

l User applications The last layer in the UNIX architecture is the user applications, which are used to

perform several tasks and communicating with other users of UNIX. Some of the important examples

of user applications include text processing, software development, database management and

electronic communication.

ms worD
MS Word is application software that can be used to create, edit, save

and print personal as well as professional documents in a very simple and

effi cient manner. MS Word is an important tool of the MS offi ce suite that is

mainly designed for word processing. Other word processing applications

available are, Open Offi ce Writer and Google Docs.

LO 1.6

Discuss Microsoft soft ware

20 Programming for Problem Solving

For working in MS Word, we need to install MS Offi ce in a computer system. After installing MS Offi ce, we

can start MS Word by using any of the following two ways:

l Start menu

l Run command

We can start MS Word by performing the following steps using the Start menu:

1. Select Start Æ All Programs Æ Microsoft Offi ce,

2. Select the Microsoft Offi ce Word 2007 option to display the Graphical User Interface (GUI) of MS

Word, as shown in Fig. 1.19.

Fig. 1.19  The Document1 – Microsoft Word window

Using Run command We can also start MS Word by performing the following steps using the Run

command:

1. Select Start Æ All Programs Æ Accessories Æ Run to display the Run dialog box.

2. Type winword in the Open text box and click OK to display the Document1 – Microsoft Word window.

The following are the key operations that we can perform in MS Word:

l Creating a document

l Saving a document

l Editing a document

l Formatting a document

l Printing a document

Introduction to Computer and Programming 21

ms eXcel system
MS Excel is an application program that allows us to create spreadsheets, which are represented in the form

of a table containing rows and columns. The horizontal sequence in which the data is stored is referred to as

a row. The vertical sequence in which the data is stored is referred to as a column. In a spreadsheet, a row

is identifi ed by a row header and a column is identifi ed by a column header. Each value in a spreadsheet

is stored in a cell, which is the intersection of rows and columns. A cell can contain either numeric value

or a character string. We can also specify the contents of a cell using formulas. In a spreadsheet, we can

perform various mathematical operations using formulas, such as addition, subtraction, multiplication,

division, average, percentage, etc.

MS Excel also allows us to represent the complex data pictorially in the form of graphs. These are

generally used to represent the information with the help of images, colours, etc., so that their presentation

is simple and more meaningful. Some of the graphs available in spreadsheet are bar graphs, line graphs,

3-D graphs, area graphs, etc.

For working with MS Excel, we fi rst need to install MS Offi ce in our computer system. After installing MS

Offi ce, we can start MS Excel using any of the following two ways:

l Start menu

l Run command

Using Start menu We can start MS Excel by performing the following steps using the Start menu:

1. Select Start Æ All Programs Æ Microsoft Offi ce, as shown in Fig. 1.20.

2. Select the Microsoft Offi ce Excel 2007 option to display the GUI of MS Excel,

Fig. 1.20  The Microsoft Excel—Book1 window

22 Programming for Problem Solving

Figure 1.20 shows the initial workbook of MS Excel, which in turn contains worksheets. Each worksheet

contains rows and columns where we can enter data.

Using Run command We can also start MS Excel by performing the following steps using the Run

command:

1. Select Start Æ All Programs Æ Accessories Æ Run to display the Run dialog box.

2. Type excel in the Open text box and click OK to display the Microsoft Excel – Book1 window.

Worksheet is the actual working area consisting of rows and columns. The worksheets are also known as

the spreadsheets. A workbook in MS Excel is a combination of several worksheets. Each workbook of MS

Excel contains three worksheets by default. The key operations that are performed in MS Excel include:

l Creating a worksheet

l Saving a worksheet

l Modifying a worksheet

l Renaming a worksheet

l Deleting a worksheet

l Moving a worksheet

l Editing a worksheet

ms powerpoint system
MS PowerPoint is a software application included in the MS Offi ce package that allows us to create

presentations. PowerPoint provides a GUI with the help of which we can create attractive presentations

quickly and easily. The presentation may include slides, handouts, notes, outlines, graphics and animations.

A slide in PowerPoint is a combination of images, text, graphics, charts, etc., that is used to convey some

meaning information. The presentations in MS PowerPoint are usually saved with the extension .ppt.

The interface of MS PowerPoint is similar to the other interfaces of MS Offi ce applications. PowerPoint

presentations are commonly used in business, schools, colleges, training programmes, etc.

For working in MS PowerPoint, we need to fi rst install the MS Offi ce package in our computer system. After

installing MS Offi ce, we can start MS PowerPoint using any of the following two ways:

l Start menu

l Run command

Using Start menu We can start MS PowerPoint by performing the following steps using the Start menu:

1. Select Start Æ All Programs Æ Microsoft Offi ce,

2. Select the Microsoft Offi ce PowerPoint 2007 option to display the GUI of MS PowerPoint, as shown in

Fig. 1.21.

Using Run command We can also start MS PowerPoint by performing the following steps using the Run

command:

1. Select Start Æ All Programs Æ Accessories Æ Run to display the Run dialog box.

2. Type powerpnt in the Open text box and click OK to display the Microsoft PowerPoint –

[Presentation1] window.

Introduction to Computer and Programming 23

Fig. 1.21  The Microsoft PowerPoint—[Presentation1] Window

The following are the key operations that can be performed in MS PowerPoint:

l Creating a new presentation

l Designing the presentation

l Saving a new presentation

l Adding slides to the presentation

l Printing the presentation

networking concepts
Computer network is a system of interconnected computers that enable

the computers to communicate with each other and share their resources,

data and applications. The physical location of each computer is tailored to

personal and organisational needs. A network may include only personal

computers or a mix of PCs, minis and mainframes spanning a particular

geographical area. Computer networks that are commonly used today may be classifi ed as follows:

l Based on geographical area:

 ∑ Local Area Networks (LANs)

 ∑ Wide Area Networks (WANs)

 ∑ Metropolitan Area Networks (MANs)

 ∑ International Network (Internet)

 ∑ Intranet

LO 1.7

Know various networking

concepts and protocols

24 Programming for Problem Solving

l Based on how computer nodes are used:

 ∑ Client Server Networks (CSNs)

 ∑ Peer-to-peer Networks (PPNs)

 ∑ Value-added Networks (VANs)

LAN is a group of computers, as shown in Fig. 1.22, that are connected in a small area such as building,

home, etc. Through this type of network, users can easily communicate with each other by sending and

receiving messages. LAN is generally used for connecting two or more personal computers through some

medium such as twisted pair, coaxial cable, etc. Though the number of computers connected in a LAN is

limited, the data is transferred at an extremely faster rate.

Fig. 1.22 A LAN

WAN is a group of computers that are connected in a large area such as continent, country, etc. WAN

is generally used for connecting two or more LANs through some medium such as leased telephone

lines, microwaves, etc. In WAN, data is transferred at slow rate. A typical WAN network is shown in Fig. 1.23.

MAN is a network of computers that covers a large area like a city. The size of the MAN generally lies

between that of LAN and WAN, typically covering a distance of 5 km to 50 km. The geographical area

covered by MAN is comparatively larger than LAN but smaller than WAN. MAN is generally owned by

private organisations. MAN is generally connected with the help of optical fi bres, copper wires etc. One of

the most common example of MAN is cable television network within a city as shown in Fig. 1.24. A network

device known as router is used to connect the LANs together. The router directs the information packets to

the desired destination.

Introduction to Computer and Programming 25

Fig. 1.23 A WAN system

Fig. 1.24 A typical MAN system

network topologies
Network topology refers to the arrangement of computers connected in a network through some physical

medium such as cable, optical fibre etc. Topology generally determines the shape of the network and the

communication path between the various computers (nodes) of the network. The various types of network

topologies are as follows:

l Hierarchical topology

l Bus topology

26 Programming for Problem Solving

l Star topology

l Ring topology

l Mesh topology

l Hybrid topology

The hierarchical topology is also known as tree topology, which is divided into different levels connected

with the help of twisted pair, coaxial cable or fi bre optics. Figure 1.25 shows the arrangement of computers

in hierarchical topology.

Fig. 1.25 The hierarchical topology

Advantages of hierarchical topology are:

l The hierarchical topology is generally supported by most hardware and software.

l In the hierarchical topology, data is received by all the nodes effi ciently because of point-to-point link.

The following are the disadvantages of hierarchical topology:

l In the hierarchical topology, when the root node fails, the whole network crashes.

l The hierarchical topology is diffi cult to confi gure.

In the linear bus topology, all the nodes are connected to the single backbone or bus with some medium

such as twisted pair, coaxial cable, etc. Figure 1.26 shows the arrangement of computers in the linear bus

topology.

Advantages of linear bus topology are:

l The linear bus topology usually requires less cabling.

l The linear bus topology is relatively simple to confi gure and install.

l In the linear bus topology, the failure of one computer does not affect the other computers in the

network.

Introduction to Computer and Programming 27

The following are the disadvantages of linear bus topology:

l In the linear bus topology, the failure of the backbone cable results in the breakdown of entire network.

l Addition of computers in the linear bus topology results in the performance degradation of the network.

l The bus topology is diffi cult to reconstruct in case of faults.

Fig. 1.26 A linear bus topology Fig. 1.27 A star topology

In the star topology, all the nodes are connected to a common device known as hub. Nodes are connected

with the help of twisted pair, coaxial cable or optical fi bre. Figure 1.27 shows the arrangement of computers

in star topology.

Advantages of star topology are:

l This topology allows easy error detection and correction.

l In the star topology, the failure of one computer does not affect the other computers in the network.

l Star topology is easy to install.

The following are the disadvantages of star topology:

l In the star topology, the hub failure leads to the overall network crash.

l The star topology requires more amount of cable for connecting the nodes.

l It is expensive due to the cast of hub.

In the ring topology, the nodes are connected in the form of a ring with the help of twisted pair. Each node is

connected directly to the other two nodes in the network. Figure 1.28 shows the arrangement of computers

in the ring topology.

28 Programming for Problem Solving

Fig. 1.28 A ring topology

Advantages of ring topology are:

l Each node has an equal access to other nodes in the network.

l Addition of new nodes does not degrade the performance of the network.

l Ring topology is easy to confi gure and install.

The following are the disadvantages of ring topology:

l It is relatively expensive to construct the ring topology.

l The failure of one node in the ring topology affects the other nodes in the ring.

In mesh topology, each computer is connected to every other computer in point-to-point mode as shown in

Fig. 1.29. If we have n computers, we must

have n(n – 1)/2 links.

Advantages of mesh topology are:

l Message delivery is more reliable.

l Network congestion is minimum due to

large number of links.

The following are the disadvantages:

l It is very expensive to implement.

l It is very diffi cult to confi gure and install.

The hybrid topology is the combination of

multiple topologies, used for constructing a

single large topology. Figure 1.30 shows a

typical arrangement of computers in hybrid

topology. Fig. 1.29 Mesh topology

Introduction to Computer and Programming 29

Fig. 1.30 A hybrid topology

Advantages of hybrid topology are:

l The hybrid topology is more effective as it uses multiple topologies.

l The hybrid topology contains the best and effi cient features of the combined topologies from which it is

constructed.

The following are the disadvantages of hybrid topology:

l The hybrid topology is relatively more complex than the other topologies.

l The hybrid topology is diffi cult to install and confi gure.

network protocols anD software
In order to share data between computers, it is essential to have appropriate network protocols and

software. With the help of network protocol, computers can easily communicate with each other and can

share data, resources, etc.

Network protocols are the set of rules and regulations that are generally used for communication between

two networks. Using network protocol, the following tasks can be performed:

l Identifi cation of the type of the physical connection used

l Error detection and correction of the improper message

l Initiation and termination of the communication session

l Message formatting

Some of the commonly used network protocols are Hyper Text Transfer protocol (HTTP), Simple Mail

Transfer Protocol (SMTP), File Transfer Protocol (FTP), Transmission Control Protocol/Internet Protocol

(TCP/IP), Telecommunications Network (Telnet), Domain Name System (DNS) etc.

30 Programming for Problem Solving

HTTP
Hyper Text Transfer Protocol (HTTP) is the communication protocol used by the World Wide Web. It acts as

a request-response protocol where the client browser and the Web server interact with each other through

HTTP protocol rules. These rules define how messages are formatted and transmitted and what actions

should the browser and Web server take in response to these messages. For example, when we type a

URL in the address bar of a browser, then an HTTP request is sent to the Web server to fetch the requested

Web page. The Web page details are transmitted to the client browser and rendered on the browser window

through HTML.

In a typical situation, the client browser submits an HTTP request to the server and the server processes

the request and returns an HTTP response to the client. The response contains status information pertaining

to the request as well as the requested content (Figs 1.31–1.32).

 Fig. 1.31 HTTP Request Message format Fig. 1.32 HTTP Response Message format

HTTP protocol supports various methods that are used by the client browsers to send request messages

to the server. Some of the common HTTP methods are:

l GET: Gets information from the specified resource

l HEAD: Gets only the HTTP headers

l POST: Posts information to the specified resource

l DELETE: Deletes the specified resource

l OPTIONS: Returns the list of HTTP methods that are supported by the Web server

l TRACE: Returns a diagnostic trace of the actions taken at the server end

The first line in an HTTP response object comprises a status line, which carries the response status code

indicating the outcome of the HTTP request processed by the server. The status code is a 3-digit number

and carries specific meaning, as described below:

l 1xx: Comprises information status messages indicating that the server is still processing the request

l 2xx: Comprises success status messages indicating that the request was received, accepted and

processed by the server

l 3xx: Comprises redirection status messages indicating that further action needs to be taken in order to

process the request

l 4xx: Comprises error status messages indicating error at client side, for example incorrect request

syntax

l 5xx: Comprises error status messages indicating error at server side, for example inability of the

server to process the request

SMTP
Simple Mail Transfer Protocol (SMTP) is an e-mail protocol that is widely used for sending e-mail messages

between mail servers. While SMTP supports capabilities for both sending and receiving e-mail messages,

e-mail systems primarily used SMTP protocol for sending e-mail messages. For receiving, they use other

protocols such as POP3 of IMAP. In Unix-based systems, sendmail is the most widely used SMTP server for

e-mail. In Windows-based systems, Microsoft Exchange comes with an SMTP server and can be configured

to include POP3 support.

Introduction to Computer and Programming 31

FTP
File Transfer Protocol (FTP) is a standard protocol used for sharing files over the Internet. FTP is based

on the client-server architecture and uses Internet’s TCP/IP protocol for file transfer. The users need to

authenticate themselves by specifying user name/password in order to establish a connection with the

FTP server. However, some FTP sites also support anonymous login where users are not required to enter

their credentials. To facilitate secure transfer of user’s credentials and file contents over the Internet, FTP

encrypts the content using cryptographic protocols such as TLS/SSL.

The following steps illustrate how file transfer happens through FTP:

1. The client machine uses Internet to connect to the FTP server’s IP address.

2. User authentication happens by entering relevant user name and password.

3. Once the connection is established, the client machine sends FTP commands to access and transfer

files. Now-a-days, various GUI-based FTP software are available that enable transfer of files through

simple operations, such as drag and drop.

Telnet
Telnet is a protocol that allows users to connect to remote computers over a TCP/IP network, such as

intranet or internet. While HTTP and FTP protocols are used for transferring Web pages and files over the

Internet, the Telnet protocol is used for logging onto a remote computer and performing operations just as a

normal user. The users need to enter their credentials before logging on the remote host machine.

Command-line based telnet access is available in major operating systems such as Windows, Mac OS,

Unix and Linux. Generic format of the telnet command is given below:

Telnet host port

Here,

l telnet: Is the command that establishes telnet connection

l host: Is the address of the host machine

l port: Is the port number on which telnet services are available on the host machine

Decimal system
The decimal system is the most common number system used by human beings. It is a positional number

system that uses 10 as a base to represent different values. Therefore, this number system is also known

as base10 number system. In this system, 10 symbols are available for representing the values. These

symbols include the digits from 0 to 9. The common operations performed in the decimal system are

addition (+), subtraction (–), multiplication (×) and division (/).

The decimal system can be used to represent both the integer as well as floating point values. The

floating point values are generally represented in this system by using a period called decimal point.

The decimal point is used to separate the integer part and the fraction part of the given floating point

number. However, there is no need to use a decimal point for representing integer values. The value of any

number represented in the decimal system can be determined by first multiplying the weight associated with

each digit in the given number with the digit itself and then adding all these values produced as a result of

multiplication operation. The weight associated with any digit depends upon the position of the digit itself in

the given number. The most common method to determine the weight of any digit in any number system is

to raise the base of the number system to a power that initially starts with a 0 and then increases by 1 as we

move from right to left in the given number. To understand this concept, let us consider the following floating

point number represented in the decimal system:

32 Programming for Problem Solving

In the above example, the value 6543, which comes before the decimal point, is called integer value

and the value 124, which comes after the decimal point, is called fraction value. Table 1.1 lists the weights

associated with each digit in the given decimal number.

Table 1.1 Place Values in Decimal System

Digit 6 5 4 3 . 1 2 4

Weight 103 102 101 100 10–1 10–2 10–3

The above table shows that the powers to the base increases by 1 towards the left for the integer part

and decreases by 1 towards the right for the fraction part. Using the place values, the floating point number

6543.124 in decimal system can be computed as:

 6 ¥ 103 + 5 ¥ 102 + 4 ¥ 101 + 3 ¥ 100 + 1 ¥ 10–1 + 2 ¥ 10–2 + 4 ¥ 10–3

 = 6000 + 500 + 40 + 3 + 0.1 + 0.02 + 0.004

 = 6543.124

Binary system
Among all the positional number systems, the binary system is the most dominant number system that is

employed by almost all the modern digital computer systems. The binary system uses base 2 to represent

different values. Therefore, the binary system is also known as base-2 system. As this system uses base 2,

only two symbols are available for representing the different values in this system. These symbols are 0 and

1, which are also known as bits in computer terminology. Using binary system, the computer systems can

store and process each type of data in terms of 0s and 1s only.

The following are some of the technical terms used in binary system:

l Bit. It is the smallest unit of information used in a computer system. It can either have the value 0 or 1.

Derived from the words Binary digit.

l Nibble. It is a combination of 4 bits.

l Byte. It is a combination of 8 bits. Derived from words ‘by eight’.

l Word. It is a combination of 16 bits.

l Double word. It is a combination of 32 bits.

l Kilobyte (KB). It is used to represent the 1024 bytes of information.

l Megabyte (MB). It is used to represent the 1024 KBs of information.

l Gigabyte (GB). It is used to represent the 1024 MBs of information.

We can determine the weight associated with each bit in the given binary number in the similar manner

as we did in the decimal system. In the binary system, the weight of any bit can be determined by raising

2 to a power equivalent to the position of bit in the number. To understand this concept, let us consider the

following binary number:

In binary system, the point used to separate the integer and the fraction part of a number is known as

binary point. Table 1.2 lists the weights associated with each bit in the given binary number.

Table 1.2 Place Values in Binary System

Digit 1 0 1 0 0 1 . 0 1 0 1

Weight 25 24 23 22 21 20 2–1 2–2 2–3 2–4

Introduction to Computer and Programming 33

Like the decimal system, the powers to the base increases by 1 towards the left for the integer part

and decreases by 1 towards the right for the fraction part. The value of the given binary number can be

determined as the sum of the products of the bits multiplied by the weight of the bit itself. Therefore, the

value of the binary number 101001.0101 can be obtained as:

 1 ¥ 25 + 0 ¥ 24 + 1 ¥ 23 + 0 ¥ 22 + 0 ¥ 21 + 1 ¥ 20 + 0 ¥ 2–1 + 1 ¥ 2–2 + 0 ¥ 2–3 + 1 ¥ 2–4

 = 32 + 8 + 1 + 0.25 + 0.0625

 = 41.3125

The binary number 101001.0101 represents the decimal value 41.3125.

Table 1.3 lists the 4-bit binary representation of decimal numbers 0 through 15.

Table 1.3 Binary Representation of First 16 Numbers

Decimal Number 4-bit Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

 heXaDecimal system
The hexadecimal system is a positional number system that uses base 16

to represent different values. Therefore, this number system is known as

base-16 system. As this system uses base 16, 16 symbols are available for

representing the values in this system. These symbols are the digits 0–9 and

the letters A, B, C, D, E and F. The digits 0–9 are used to represent the decimal values 0 through 9 and the

letters A, B, C, D, E and F are used to represent the decimal values 10 through 15.

The weight associated with each symbol in the given hexadecimal number can be determined by

raising 16 to a power equivalent to the position of the digit in the number. To understand this concept, let us

consider the following hexadecimal number:

LO 1.8

Identi fy the various

positi onal number systems

34 Programming for Problem Solving

In hexadecimal system, the point used to separate the integer and the fraction part of a number is

known as hexadecimal point. Table 1.4 lists the weights associated with each digit in the given hexadecimal

number.

Table 1.4 Place Values in Hexadecimal System

Digit 4 A 9 . 2 B

Weight 162 161 160 16–1 16–2

The value of the hexadecimal number can be computed as the sum of the products of the symbol

multiplied by the weight of the symbol itself. Therefore, the value of the given hexadecimal number is:

 4 ¥ 162 + 10 ¥ 161 + 9 ¥ 160 + 2 ¥ 16–1 + 11 ¥ 16–2

 = 1024 + 160 + 9 + 0.125 + 0.0429

 = 1193 + 0.1679

 = 1193.1679

The hexadecimal number 4A9. 2B represents the decimal value 1193.1679.

octal system
The octal system is the positional number system that uses base 8 to represent different values. Therefore,

this number system is also known as base-8 system. As this system uses base 8, eight symbols are

available for representing the values in this system. These symbols are the digits 0 to 7.

The weight associated with each digit in the given octal number can be determined by raising 8 to a

power equivalent to the position of digit in the number. To understand this concept, let us consider the

following octal number:

In octal system, the point used to separate the integer and the fraction part of a number is known as

octal point. Table 1.5 lists the weights associated with each digit in the given octal number.

Table 1.5 Place Values in Octal System

Digit 2 1 5 . 4 3

Weight 82 81 80 8–1 8–2

Using these place values, we can now determine the value of the given octal number as:

 2 ¥ 82 + 1 ¥ 81 + 5 ¥ 80 + 4 ¥ 8–1 + 3 ¥ 8–2

 = 128 + 8 + 5 + 0.5 + 0.0469

 = 141 + 0.5469

 = 141.5469

The octal number 215.43 represents the decimal value 141.5469.

Table 1.6 lists the octal representation of decimal numbers 0 through 15.

Introduction to Computer and Programming 35

Table 1.6 Octal Representation of First 16 Numbers

Decimal Number Octal Representation

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 10

9 11

10 12

11 13

12 14

13 15

14 16

15 17

 conVersion of numBers
The computer systems accept the data in decimal form, whereas they

store and process the data in binary form. Therefore, it becomes necessary

to convert the numbers represented in one system into the numbers

represented in another system. The different types of number system

conversions can be divided into the following major categories:

l Non-decimal to decimal

l Decimal to non-decimal

l Octal to hexadecimal

The non-decimal to decimal conversions can be implemented by taking the concept of place values into

consideration. The non-decimal to decimal conversion includes the following number system conversions:

l Binary to decimal conversion

l Hexadecimal to decimal conversion

l Octal to decimal conversion

Binary to decimal conversion A binary number can be converted to equivalent decimal number by

calculating the sum of the products of each bit multiplied by its corresponding place value.

LO 1.9

Carry out number

conversions from one

number system to another

36 Programming for Problem Solving

Example 1.1 Convert the binary number 10101101 into its corresponding decimal number.

Solution
The given binary number is 10101101.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 27) + (0 ¥ 26) + (1 ¥ 25) + (0 ¥ 24) + (1 ¥ 23) + (1 ¥ 22) + (1 ¥ 21) + (1 ¥ 20)

 = 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1

 = 173

Therefore, the binary number 10101101 is equivalent to 173 in the decimal system.

Example 1.2 Convert the binary number 1101 into its equivalent in decimal system.

Solution
The given binary number is 1101.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 23) + (1 ¥ 22) + (1 ¥ 21) + (1 ¥ 20)

 = 8 + 4 + 1

 = 13

Therefore, the binary number 1101 is equivalent to 13 in the decimal system.

Example 1.3 Convert the binary number 10110001 into its equivalent in decimal system.

Solution
The given binary number is 10110001.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 27) + (1 ¥ 26) + (1 ¥ 25) + (1 ¥ 24) + (0 ¥ 23) + (0 ¥ 22) + (0 ¥ 21) + (0 ¥ 20)

 = 128 + 0 + 32 + 16 + 0 + 0 + 0 + 1

 = 177

Therefore, the binary number 10110001 is equivalent to 177 in the decimal system.

Example 1.4 Convert the binary number 1011.010 into its equivalent in decimal system.

Solution
The given binary number is 1011.010.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 23) + (0 ¥ 22) + (1 ¥ 21) + (1 ¥ 20) + (0 ¥ 2–1) + (1 ¥ 2–2) + (0 ¥ 2–3)

= + + +8 2 1

1

4

 = 11 + 0.25

 = 11.25

Therefore, the binary number 1011.010 is equivalent to 11.25 in the decimal system.

Example 1.5 Convert the binary number 11011.0110 to its equivalent in decimal system.

Solution
The given binary number is 11011.0110.

Now, calculate the sum of the products of each bit multiplied by its place value as:

 (1 ¥ 24) + (1 ¥ 23) + (0 ¥ 22) + (1 ¥ 21) + (1 ¥ 20) + (0 ¥ 2–1) + (1 ¥ 2–2) + (1 ¥ 2–3) + (0 ¥ 2–4)

= + + + +16 8 1

1

4

1

8

Introduction to Computer and Programming 37

 = 27 + 0.25 + 0.125

 = 27.375

Therefore, the binary number 11011.0110 is equivalent to 27.375 in the decimal system.

Hexadecimal to decimal conversion A hexadecimal number can be converted into its equivalent

number in decimal system by calculating the sum of the products of each symbol multiplied by its

corresponding place value.

Example 1.6 Convert the hexadecimal number A53 into its equivalent in decimal system.

Solution
The given hexadecimal number is A53.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (10 ¥ 162) + (5 ¥ 161) + (3 ¥ 160)

 = 2560 + 80 + 3

 = 2643

Therefore, the hexadecimal number A53 is equivalent to 2643 in the decimal system.

Example 1.7 Convert the hexadecimal number 6B39 into its equivalent in the decimal system.

Solution
The given hexadecimal number is 6B39.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (6 ¥ 163) + (11 ¥ 162) + (3 ¥ 161) + (9 ¥ 160)

 = 24576 + 2816 + 48 + 9

 = 27449

Therefore, the hexadecimal number 6B39 is equivalent to 27449 in the decimal system.

Example 1.8 Convert the hexadecimal number 5A6D into its equivalent in the decimal system.

Solution
The given hexadecimal number is 5A6D.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (5 ¥ 163) + (10 ¥ 162) + (6 ¥ 161) + (13 ¥ 160)

 = 20480 + 2560 + 96 + 13

 = 23149.

Therefore, the hexadecimal number 5A6D is equivalent to 23149 in the decimal system.

Example 1.9 Convert the hexadecimal number AB21.34 into its equivalent in the decimal system.

Solution
The given hexadecimal number is AB21.34.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (10 ¥ 163) + (11 ¥ 162) + (2 ¥ 161) + (1 ¥ 160) + (3 ¥ 16–1) + (4 ¥ 16–2)

= + + + + +40960 2816 32 1

3

16

4

256

 = 43809 + 0.1875 + 0.015625

 = 43809.203

Therefore, the hexadecimal number AB21.34 is equivalent to 43809.203 in the decimal system.

38 Programming for Problem Solving

Example 1.10 Convert the hexadecimal number 6A11.3B into its equivalent in the decimal system.

Solution
The given hexadecimal number is 6A11.3B.

Now, calculate the sum of the products of each symbol multiplied by its place value as:

 (6 ¥ 163) + (10 ¥ 162) + (1 ¥ 16–1) + (1 ¥ 160) + (3 ¥ 16–1) + (11 ¥ 16–2)

= + + + + +24576 2560 16 1

3

16

11

256

 = 27153 + 0.1875 + 0.043

 = 27153.2305

Therefore, the hexadecimal number 6A11.3B is equivalent to 27153.2305 in the decimal system.

Octal to decimal conversion An octal number can be converted into its equivalent number in decimal

system by calculating the sum of the products of each digit multiplied by its corresponding place value.

Example 1.11 Convert the octal number 5324 into its equivalent in decimal system.  

Solution
The given octal number is 5324.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (5 ¥ 83) + (3 ¥ 82) + (2 ¥ 81) + (4 ¥ 80)

 = 2560 + 192 + 16 + 4

 = 2772

Therefore, the octal number 5324 is equivalent to 2772 in the decimal system.

Example 1.12  Convert the octal number 13256 into its equivalent in decimal system.

Solution
The given octal number is 13256.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (1 ¥ 84) + (3 ¥ 83) + (2 ¥ 82) + (5 ¥ 81) + (6 ¥ 80)

 = 4096 + 1536 + 128 + 40 + 6

 = 5806

Therefore, the octal number 13256 is equivalent to 5806 in the decimal system.

Example 1.13 Convert the octal number 4567 into its equivalent in decimal system.

Solution
The given octal number is 4567.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (4 ¥ 83) + (5 ¥ 82) + (6 ¥ 81) + (7 ¥ 80)

 = 2048 + 320 + 48 + 7

 = 2423

Therefore, the octal number 4567 is equivalent to 2423 in the decimal system.

Example 1.14 Convert the octal number 325.12 into its equivalent in decimal system.

Solution
The given octal number is 325.12.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (3 ¥ 82) + (2 ¥ 81) + (5 ¥ 80) + (1 ¥ 8–1) + (2 ¥ 8–2)

Introduction to Computer and Programming 39

= + + + +192 16 5

1

8

2

64

 = 213 + 0.125 + 0.03125

 = 213.15625

Therefore, the octal number 325.12 is equivalent to 213.15625 in the decimal system.

Example 1.15 Convert the octal number 7652.01 into its equivalent in decimal system.

Solution
The given octal number is 7652.01.

Now, calculate the sum of the products of each digit multiplied by its place value as:

 (7 ¥ 83) + (6 ¥ 82) + (5 ¥ 81) + (2 ¥ 80) + (0 ¥ 8–1) + (1 ¥ 8–2)

= + + + +3584 384 40 2

1

64

 = 4010 + 0.015625

 = 4010.0156

Therefore, the octal number 7652.01 is equivalent to 4010.0156 in the decimal system.

The decimal to non-decimal conversions are carried out by continually dividing the decimal number by

the base of the desired number system till the decimal number becomes zero. After the decimal number

becomes zero, we may note down the remainders calculated at each successive division from last to fi rst

to obtain the decimal number into the desired system. The decimal to non-decimal conversion includes the

following number system conversions:

l Decimal to binary conversion

l Decimal to hexadecimal conversion

l Decimal to octal conversion

Decimal to binary conversion The decimal to binary conversion is performed by repeatedly dividing

the decimal number by 2 till the decimal number becomes zero and then reading the remainders from last

to fi rst to obtain the binary equivalent of the given decimal number. The following examples illustrate the

method of converting decimal number to its binary equivalent:

Example 1.16 Convert the decimal number 30 into its equivalent binary number.

Solution

The given decimal number is 30.

The following table lists the steps showing the conversion of the given decimal number to its binary

equivalent:

Decimal Number Divisor Quotient Remainder

30 2 15 0

15 2 7 1

7 2 3 1

3 2 1 1

1 2 0 1

40 Programming for Problem Solving

Now, read the remainders calculated in the above table in upward direction to obtain the binary

equivalent, which is 11110.

Therefore, the binary equivalent of the decimal number 30 is 11110.

Example 1.17 Convert the decimal number 111 into its equivalent binary number.

Solution

The given decimal number is 111.

The following table lists the steps showing the conversion of the given decimal number to its binary

equivalent:

Decimal Number Divisor Quotient Remainder

111 2 55 1

55 2 27 1

27 2 13 1

13 2 6 1

6 2 3 0

3 2 1 1

1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary

equivalent, which is 1101111.

Therefore, the binary equivalent of the decimal number 111 is 1101111.

Example 1.18 Convert the decimal number 215 into its equivalent binary number.

Solution
The given decimal number is 215.

The following table lists the steps showing the conversion of the given decimal number to its binary

equivalent:

Decimal Number Divisor Quotient Remainder

215 2 107 1

107 2 53 1

53 2 26 1

26 2 13 0

13 2 6 1

6 2 3 0

3 2 1 1

1 2 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the binary

equivalent, which is 11010111.

Therefore, the binary equivalent of the decimal number 215 is 11010111.

Introduction to Computer and Programming 41

The procedure of converting the fractional part of the given decimal number to its binary equivalent is

different. In this procedure, we need to continually multiply the fractional part by 2 and then note down the

whole number part of the result. The multiplication process will terminate when the fractional part becomes

zero or when we have achieved the desired number of bits.

Example 1.19 Convert the decimal number 45796 to its equivalent octal number.

Solution
The given decimal number is 45796.

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal Number Divisor Quotient Remainder

45796 8 5724 4

5724 8 715 4

715 8 89 3

89 8 11 1

11 8 1 3

1 8 0 1

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 131344.

Therefore, the corresponding octal equivalent of 45796 is 131344.

Example 1.20 Convert the decimal number 9547 into its equivalent octal number.

Solution
The given decimal number is 9547.

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal Number Divisor Quotient Remainder

9547 8 1193 3

1193 8 149 1

149 8 18 5

18 8 2 2

2 8 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 22513.

Therefore, the corresponding octal equivalent of 9547 is 22513.

Example 1.21 Convert the decimal number 1567 into its equivalent hexadecimal number.

Solution
The given decimal number is 1567.

42 Programming for Problem Solving

The following table lists the steps showing the conversion of the given decimal number to its hexadecimal

equivalent:

Decimal Number Divisor Quotient Remainder

1567 16 97 15

97 16 6 1

6 16 0 6

Now, read the remainders calculated in the above table in upward direction to obtain the hexadecimal

equivalent, which is 61F.

Therefore, the hexadecimal equivalent of the given decimal number is 61F.

Example 1.22 Convert the decimal number 9463 into its equivalent hexadecimal number.

Solution

The given decimal number is 9463.

The following table lists the steps showing the conversion of the given decimal number to its hexadecimal

equivalent:

Decimal Number Divisor Quotient Remainder

9463 16 591 7

591 16 36 15

36 16 2 4

2 16 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the hexadecimal

equivalent, which is 24F7.

Therefore, the hexadecimal equivalent of the given decimal number is 24F7.

Decimal to octal conversion The decimal to octal conversion is performed by repeatedly dividing the

decimal number by 8 till the decimal number becomes zero and reading the remainders from last to first to

obtain the octal equivalent of the given decimal number. The following examples illustrate the method of

converting decimal number to its octal equivalent:

Example 1.23 Convert the decimal number 45796 to its equivalent octal number.

Solution

The given decimal number is 45796.

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal Number Divisor Quotient Remainder

45796 8 5724 4

5724 8 715 4

715 8 89 3

89 8 11 1

11 8 1 3

1 8 0 1

Introduction to Computer and Programming 43

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 131344.

Therefore, the corresponding octal equivalent of 45796 is 131344.

Example 1.24 Convert the decimal number 9547 into its equivalent octal number.

Solution

The given decimal number is 9547.

The following table lists the steps showing the conversion of the given decimal number to its octal

equivalent:

Decimal number Divisor Quotient Remainder

9547 8 1193 3

1193 8 149 1

149 8 18 5

18 8 2 2

2 8 0 2

Now, read the remainders calculated in the above table in upward direction to obtain the octal equivalent,

which is 22513.

Therefore, the corresponding octal equivalent of 9547 is 22513.

The given octal number can be converted into its equivalent hexadecimal number in two different steps.

Firstly, we need to convert the given octal number into its binary equivalent. After obtaining the binary

equivalent, we need to divide the binary number into 4-bit sections starting from the LSB.

The octal to binary conversion is a simple process. In this type of conversion, we need to represent each

digit in the octal number to its equivalent 3-bit binary number. Table 1.7 lists the binary representation of all

the digits used in an octal system.

Table 1.7 Binary Representation of Octal Symbols

Octal Binary Representation

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

44 Programming for Problem Solving

Example 1.25 Convert the octal number 365 into its equivalent hexadecimal number.

Solution
Octal number: 3 6 5

 Ø Ø Ø Ø
Binary equivalent: 011 110 101 Step 1

 Ø
Regrouping into 4-bit sections: 0000 1111 0101 Step 2

 Ø Ø Ø Ø
Hexadecimal equivalent: 0 F 5 Step 3

Hexadecimal number is F5

Example 1.26 Convert the octal number 6251 into its equivalent hexadecimal number.

Solution
Octal number: 6 2 5 1

 Ø Ø Ø Ø Ø
Binary equivalent: 110 010 101 001 Step 1

 Ø
4-bits grouping: 1100 1010 1001 Step 2

 Ø Ø Ø Ø
Hexadecimal equivalent: C A 9 Step 3

Hexadecimal number is CA9

Binary arithmetic operations
The computer arithmetic is also referred as binary arithmetic because the

computer system stores and processes the data in the binary form only.

Various binary arithmetic operations can be performed in the same way

as the decimal arithmetic operations, but by following a predefi ned set of

rules. Each binary arithmetic operation has an associated set of rules that

should be adhered to while carrying out that operation. The binary arithmetic

operations are usually simpler to carry out as compared to the decimal

operations because one needs to deal with only two digits, 0 and 1, in the binary operations. The different

binary arithmetic operations performed in a computer system are:

l Binary addition

l Binary multiplication

l Binary subtraction

l Binary division

Binary addition is the simplest arithmetic operation performed in the computer system. Like decimal system,

we can start the addition of two binary numbers column-wise from the right-most bit and move towards the

left-most bit of the given numbers. However, we need to follow certain rules while carrying out the binary

addition of the given numbers. Table 1.8 lists the rules for binary addition.

LO 1.10

Explain how binary

arithmeti c operati ons are

performed

Introduction to Computer and Programming 45

Table 1.8 Binary Addition Rules

A B A + B Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

In the above table, the fi rst three entries do not generate any carry. However, a carry would be generated

when both A and B contain the value, 1. The carry, if it is generated, while performing the binary addition in a

column would be forwarded to the next most signifi cant column.

Example 1.27  Perform the binary addition operation on the following binary numbers:

0 0 1 0

0 1 1 1

Solution
The given binary numbers are 0010 and 0111.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 0 1 0 2

 0 1 1 1 7

 1 0 0 1 9

Therefore, the result of the binary addition performed on 0010 and 0111 is 1001.

 Note In the above example, a carry is generated in the 2nd and the 3rd column only.

Example 1.28 Perform the binary addition of the following binary numbers: 

1 0 1 0 1 0

0 1 0 0 1 1

Solution

The given binary numbers are 101010 and 010011.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 1 0 1 0 1 0 42

 0 1 0 0 1 1 19

 1 1 1 1 0 1 61

Therefore, the result of the binary addition performed on 101010 and 010011 is 111101.

 Note In the above example, a carry is generated in the 2nd column only.

Example 1.29 Evaluate the binary sum of the following numbers:

0 0 0 1 1 0 1 0

1 0 0 0 1 1 0 0

Solution
The given binary numbers are 00011010 and 10001100.

46 Programming for Problem Solving

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 0 0 1 1 0 1 0 26

 1 0 0 0 1 1 0 0 140

 1 0 1 0 0 1 1 0 166

Therefore, the result of the binary addition performed on 00011010 and 10001100 is 10100110.

 Note In the above example, a carry is generated in the 4th and the 5th column only.

We can also perform the binary addition on more than two binary numbers. Table 1.9 lists the rules for

adding three binary numbers.

Table 1.9 Rules for Adding Three Binary Numbers

A B C A + B + C Carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

To understand the concept of triple binary addition, let us consider the following examples:

Example 1.30  Perform the binary addition operation on the following three numbers:

0 0 1 0

0 0 0 1

0 1 1 1

Solution
The given binary numbers are 0010, 0001 and 0111.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 0 1 0 2

 0 0 0 1 1

 0 1 1 1 7

 1 0 1 0 10

Therefore, the result of the binary addition performed on 0010, 0001 and 0111 is 1010.

 Note In the above example, a carry is generated in the 1st and the 2nd column only.

Example 1.31  Evaluate the binary sum of the following numbers: 

0 1 0 1 0

0 0 1 1 0

0 1 1 1 1

Introduction to Computer and Programming 47

Solution
The given binary numbers are 01010, 00110 and 01111.

Now, perform the binary addition of the given numbers as:

 Binary number Decimal value

 0 1 0 1 0 10

 0 0 1 1 0 6

 0 1 1 1 1 15

 1 1 1 1 1 31

Therefore, the result of the binary addition performed on 01010, 00110 and 01111 is 11111.

 Note In the above example, a carry is generated in the 2nd, 3rd and 4th column only.

The multiplication of two binary numbers can be carried out in the same manner as the decimal

multiplication. However, unlike decimal multiplication, only two values are generated as the outcome of

multiplying the multiplicand bit by 0 or 1 in the binary multiplication. These values are either 0 or 1. The binary

multiplication can also be considered as repeated binary addition. For instance, when we are multiplying

7 with 3, it simply means that we are adding 7 to itself 3 times. Therefore, the binary multiplication is

performed in conjunction with the binary addition operation. Table 1.10 lists the rules for binary multiplication.

Table 1.10 Binary Multiplication Rules

A B A ¥ B

0 0 0

0 1 0

1 0 0

1 1 1

The above table clearly shows that binary multiplication does not involve the concept of carry. To

understand the concept of binary multiplication, let us consider the following examples:

Example 1.32 Perform the binary multiplication of the decimal numbers 12 and 10.

Solution
The equivalent binary representation of the decimal number 12 is 1100.

The equivalent binary representation of the decimal number 10 is 1010.

Now, perform the binary multiplication of the given numbers as:

 1 1 0 0 Multiplicand

 1 0 1 0 Multiplier

 0 0 0 0 First partial product

 1 1 0 0

 0 0 0 0

1 1 0 0

1 1 1 1 0 0 0 Final product

Therefore, the result of the binary multiplication performed on the decimal numbers 12 and 10 is 1111000.

48 Programming for Problem Solving

Example 1.33 Evaluate the binary product of the decimal numbers 15 and 14.

Solution
The equivalent binary representation of the decimal number 15 is 1111.

The equivalent binary representation of the decimal number 14 is 1110.

Now, perform the binary multiplication of the given numbers as:

 1 1 1 1 Multiplicand

 1 1 1 0 Multiplier

 0 0 0 0 First partial product

 1 1 1 1

 1 1 1 1

 1 1 1 1

1 1 0 1 0 0 1 0 Final product

Therefore, the result of the binary multiplication performed on the decimal numbers 15 and 14 is

11010010.

Example 1.34 Perform the binary multiplication of the following numbers:

1101

111

Solution
The given binary numbers are 1101 and 111.

Now, perform the binary multiplication of the given numbers as:

 1 1 0 1 Multiplicand

 1 1 1 Multiplier

 1 1 0 1 First partial product

 1 1 0 1

 1 1 0 1

1 0 1 1 0 1 1 Final product

Therefore, the result of the binary multiplication performed on the numbers 1101 and 111 is 1011011.

Example 1.35 Evaluate the binary product of the following numbers:

100010

10010

Solution
The given binary numbers are 100010 and 10010.

Now, perform the binary multiplication of the given numbers as:

 1 0 0 0 1 0 Multiplicand

 1 0 0 1 0 Multiplier

 0 0 0 0 0 0 First partial product

 1 0 0 0 1 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 1 0 0 0 1 0

 1 0 0 1 1 0 0 1 0 0 Final product

Introduction to Computer and Programming 49

Therefore, the result of the binary multiplication performed on the numbers 100010 and 10010 is

1001100100.

The binary subtraction is performed in the same way as the decimal subtraction. Like binary addition and

binary multiplication, binary subtraction is also associated with a set of rules that need to be followed while

carrying out the operation. Table 1.11 lists the rules for binary subtraction.

Table 1.11 Binary Subtraction Rules

A B A – B Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

The above table shows that the binary subtraction like the decimal subtraction uses the borrow method

to subtract one number from another. To understand the concept of binary subtraction, let us consider the

following examples:

Example 1.36 Subtract the following binary numbers:

0 1 0 1

0 0 1 0

Solution
The given binary numbers are 0101 and 0010.

Now, perform the binary subtraction of the given numbers as:

 1 Borrow

0 1 0 1 Minuend

0 0 1 0 Subtrahend

0 0 1 1 Difference

Therefore, the result of the binary subtraction performed on the numbers 0101 and 0010 is 0011.

Example 1.37 Perform the binary subtraction of the following numbers:

1 0 1 0 1

0 1 1 1 0

Solution
The given binary numbers are 10101 and 01110.

Now, perform the binary subtraction of the given numbers as:

 1 1 1 Borrow

1 0 1 0 1 Minuend

0 1 1 1 0 Subtrahend

0 0 1 1 1 Difference

Therefore, the result of the binary subtraction performed on the numbers 10101 and 01110 is 00111

50 Programming for Problem Solving

Example 1.38 Perform the binary subtraction of the following numbers:

10111011

01001001

Solution
The given binary numbers are 10111011 and 01001001.

Now, perform the binary subtraction of the given numbers as:

 1 Borrow

1 0 1 1 1 0 1 1 Minuend

0 1 0 0 1 0 0 1 Subtrahend

0 1 1 1 0 0 1 0 Difference

Therefore, the result of the binary subtraction performed on the numbers 10111011 and 01001001 is

1110010.

Example 1.39 Perform the binary subtraction of the following numbers:

101110101010

001111011100

Solution
The given binary numbers are 101110101010 and 001111011100.

Now, perform the binary subtraction of the given numbers as:

 1 1 1 1 1 1 1 1 Borrow

1 0 1 1 1 0 1 0 1 0 1 0 Minuend

0 0 1 1 1 1 0 1 1 1 0 0 Subtrahend

0 1 1 1 1 1 0 0 1 1 1 0 Difference

Therefore, the result of the binary subtraction performed on the numbers 101110101010 and

001111011100 is 11111001110.

Binary division is also performed in the same way as we perform decimal division. Like decimal division, we

also need to follow the binary subtraction rules while performing the binary division. The dividend involved in

binary division should be greater than the divisor. The following are the two important points, which need to

be remembered while performing the binary division:

l If the remainder obtained by the division process is greater than or equal to the divisor, put 1 in the

quotient and perform the binary subtraction.

l If the remainder obtained by the division process is less than the divisor, put 0 in the quotient and

append the next most signifi cant digit from the dividend to the remainder.

Example 1.40 Divide 14 by 7 in binary form.

Solution
The equivalent binary representation of the decimal number 14 is 1110.

The binary representation of 7 is 111.

Now, perform the binary division of the given numbers as:

1 1 1) 1 1 1 0 (10 (Quotient)

 1 1 1

 0 0 0 0

Therefore, the result of the binary division performed on the decimal numbers 14 and 7 is 10.

Introduction to Computer and Programming 51

Example 1.41 Perform the binary division of the decimal numbers 18 and 8.

Solution
The equivalent binary representation of the decimal number 18 is 10010.

The equivalent binary representation of the decimal number 8 is 1000.

Now, perform the binary division of the given numbers as:

1 0 0 0) 1 0 0 1 0 (1 0 (Quotient)

 1 0 0 0

 0 0 0 1 0

 0 0 0 0 0

 0 0 0 1 0 (Remainder)

Therefore, the result of the binary division performed on the decimal numbers 18 and 8 is 10 with a

remainder of 10.

Example 1.42 Perform the binary division of the decimal numbers 11011 and 1001.

Solution
The given binary numbers are 11011 and 1001.

Now, perform the binary division of the given binary numbers as:

1 0 0 1) 1 1 0 1 1 (1 1 (Quotient)

 1 0 0 1

 1 0 0 1

 1 0 0 1

 0 0 0 0

Therefore, the result of the binary division performed on the numbers 11011 and 1001 is 11.

Example 1.43 Perform the binary division of 217 and 12.

Solution
The equivalent binary representation of the decimal number 217 is 11011001.

The equivalent binary representation of the decimal number 12 is 1100.

Now, perform the binary division of the given numbers as:

1 1 0 0) 1 1 0 1 1 0 0 1 (1 0 0 1 0 (Quotient)

 1 1 0 0

 0 0 0 1 1

 0 0 0 0 0

 0 1 1 0

 0 0 0 0

 1 1 0 0

 1 1 0 0

 0 0 0 1 (Remainder)

Therefore, the result of the binary division performed on the decimal number 217 and 12 is 10010 with a

remainder of 1.

52 Programming for Problem Solving

logic gates
Logic gates are the basic building blocks of a digital computer. In general, all

the logic gates have two input signals and one output signal. These two input

signals are nothing but two binary values, 0 or 1 that helps represent different

voltage levels. In all logic gates, the binary value 0 represents the low state

of voltage that is approximately 0 volt and the binary value 1 represents the high state of voltage that is

approximately +5 volts. The three basic logic gates are:

l AND

l OR

l NOT

All logic gates have a logical expression, symbol, and truth table. The logical expression helps fi nd the

output of the logic gate on the basis of its inputs. A symbol is the pictorial presentation of a logic gate that

can have one or more than one input and one output. The truth table helps fi nd the fi nal logical state, such

as true/false or 1/0 of the logic gate in the form of its output.

The AND gate is one of the basic logic gates that give an output signal of value 1 only when all its input

signals are of value 1. In other words, the AND gate gives an output signal of value 0 whenever its one input

signal is of value 0.

 Logical Expression

The logical expression for the AND function is:

F = A.B

where, F is the output that depends on inputs, A and B.

Symbol

The symbol of the AND gate is shown in Fig. 1.33.

Fig. 1.33 AND gate

Truth Table

Table 1.12 Truth Table for AND Gate

Input A Input B Output F

0 0 0

0 1 0

1 0 0

1 1 1

LO 1.11

Describe primary logic gates

Introduction to Computer and Programming 53

Example 1.44 Consider the following system that has two AND gates:

I1

I2

O1

I3

O2

Solution
Assuming

 I1 = 1, I2 = 0 and I3 = 0

Outputs would be

 O1 = I1◊I2 = 1◊0 = 0

 O2 = I3◊O1 = 0◊0 = 0

Example 1.45 Consider the following system with three AND gates:

I1

I2

O1

I3

O2

I4

O3

Solution
Assuming

 I1 = 1, I2 = 1, I3 = 1 and I4 = 1

Outputs would be:

 O1 = I1◊I2 = 1◊1 = 1

 O2
 = I3◊O1 = 1◊1 = 1

 O3
 = I4◊O2 = 1◊1 = 1

The OR gate is another basic logic gate that gives an output signal of value 1 whenever its one input signal

is of value 1. In other words, the OR gate gives an output signal of value 0 when all its input signals are of

value 0.

Logical Expression

The logical expression for the OR function is:

F = A + B

where, F is the output that depends on inputs A and B.

Symbol

The symbol of the OR gate is shown in Fig. 1.34.

54 Programming for Problem Solving

Fig. 1.34 OR Gate

Truth Table

Table 1.13 Truth Table for OR Gate

Input A Input B Output F

0 0 0

0 1 1

1 0 !

1 1 1

Example 1.46 Consider the following confi guration of OR gates:

I1

I2

O1

I3

O2

Solution
When

 I1 = 1, I2 = 0 and I3 = 1

Outputs

 O1 = I1◊I2 = 1◊0 = 1

 O2 = I3◊O1 = 1◊1 = 1

Example 1.47 Consider the following system three OR gates,

I1

I2

O1

I3

O2

O3
I4

Solution

Assuming

 I1 = 0, I2 = 0, I3 = 1 and I4 = 1

Outputs O1, O2 and O3 would be

 O1 = I1◊I2 = 0◊0 = 0

 O2 = I3◊O1 = 1◊0 = 1

 O3 = I4◊O2 = 1◊1 = 1

The third basic logic gate is NOT gate which produces an output of the opposite state to its input. This logic

gate always has only one input signal and one output signal.

Introduction to Computer and Programming 55

Logical Expression

The logical expression for the NOT function is:

F = A
–

where, F is the output that depends on input, A.

Symbol

The symbol of the NOT gate is shown in Fig. 1.35.

Fig. 1.35 NOT gate

Truth Table

Table 1.14 Truth Table for NOT Gate

Input A Input F

0 1

1 0

Example 1.48 Consider two NOT gates confi gured is shown below:

I1
O1 2= I O2

Solution
If I1 = 1, then O1 = I

–
1 = 1 = 0

and therefore

 I2 = O1= 0

 O2 = I
–
1 = 0 = 1

 programming languages
The operations of a computer are controlled by a set of instructions (called a

computer program). These instructions are written to tell the computer:

1. what operation to perform

2. where to locate data

3. how to present results

4. when to make certain decisions

The communication between two parties, whether they are machines or human beings, always needs

a common language or terminology. The language used in the communication of computer instructions is

known as the programming language. The computer has its own language and any communication with the

computer must be in its language or translated into this language.

LO 1.12

Discuss various levels of

programming languages

56 Programming for Problem Solving

Three levels of programming languages are available. They are:

1. machine languages (low level languages)

2. assembly (or symbolic) languages

3. procedure-oriented languages (high level languages)

As computers are made of two-state electronic devices they can understand only pulse and no-pulse (or ‘1’

and ‘0’) conditions. Therefore, all instructions and data should be written using binary codes 1 and 0. The

binary code is called the machine code or machine language.

Computers do not understand English, Hindi or Tamil. They respond only to machine language. Added

to this, computers are not identical in design, therefore, each computer has its own machine language.

(However, the script 1 and 0, is the same for all computers). This poses two problems for the user.

First, it is diffi cult to understand and remember the various combinations of 1s and 0s representing

numerous data and instructions. Also, writing error-free instructions is a slow process.

Secondly, since every machine has its own machine language, the user cannot communicate with other

computers (If he does not know its language). Imagine a Tamilian making his fi rst trip to Delhi. He would

face enormous obstacles as the language barrier would prevent him from communicating.

Machine languages are usually referred to as the fi rst generation languages.

The Assembly language, introduced in 1950s, reduced programming complexity and provided some

standardization to build an application. The assembly language, also referred to as the second-generation

programming language, is also a low-level language. In an assembly language, the 0s and 1s of machine

language are replaced with abbreviations or mnemonic code.

The main advantages of an assembly language over a machine language are:

l As we can locate and identify syntax errors in assembly language, it is easy to debug it.

l It is easier to develop a computer application using assembly language in comparison to machine

language.

l Assembly language operates very effi ciently.

An assembly language program consists of a series of instructions and mnemonics that correspond to a

stream of executable instructions. An assembly language instruction consists of a mnemonic code followed

by zero or more operands. The mnemonic code is called the operation code or opcode, which specifi es the

operation to be performed on the given arguments. Consider the following machine code:

10110000 01100001

Its equivalent assembly language representation is:

mov al, 061h

In the above instruction, the opcode “move” is used to move the hexadecimal value 61 into the processor

register named ‘al’. The following program shows the assembly language instructions to subtract two

numbers:

ORG 500 /Origin of program is location 500

LDA SUB /Load subtrahend to AC

CMA /Complement AC

INC /Increment AC

ADD MIN /Add minuend to AC

Introduction to Computer and Programming 57

STA DIF /Store difference

HLT /Halt computer

MIN, DEC 56 /Minuend

SUB, DEC -2 /subtrahend

DIF, HEX 0 /Difference stored here

END /End of symbolic program

It should be noted that during execution, the assembly language program is converted into the

machine code with the help of an assembler. The simple assembly language statements had one-to-one

correspondence with the machine language statements. This one-to-one correspondence still generated

complex programs. Then, macroinstructions were devised so that multiple machine language statements

could be represented using a single assembly language instruction. Even today programmers prefer to use

an assembly language for performing certain tasks such as:

l To initialize and test the system hardware prior to booting the operating system. This assembly

language code is stored in ROM

l To write patches for disassembling viruses, in anti-virus product development companies

l To attain extreme optimization, for example, in an inner loop in a processor-intensive algorithm

l For direct interaction with the hardware

l In extremely high-security situations where complete control over the environment is required

l To maximize the use of limited resources, in a system with severe resource constraints

High level languages further simplifi ed programming tasks by reducing the number of computer operation

details that had to be specifi ed. High level languages like COBOL, Pascal, FORTRAN, and C are more

abstract, easier to use, and more portable across platforms, as compared to low-level programming

languages. Instead of dealing with registers, memory addresses and call stacks, a programmer can

concentrate more on the logic to solve the problem with the help of variables, arrays or Boolean

expressions. For example, consider the following assembly language code:

LOAD A

ADD B

STORE C

Using FORTRAN, the above code can be represented as:

C = A + B

The above high-level language code is executed by translating it into the corresponding machine

language code with the help of a compiler or interpreter.

High-level languages can be classifi ed into the following three categories:

l Procedure-oriented languages (third generation)

l Problem-oriented languages (fourth generation)

l Natural languages (fi fth generation)

Procedure-oriented Languages

High-level languages designed to solve general-purpose problems are called procedural languages

or third-generation languages. These include BASIC, COBOL, FORTRAN, C, C++, and JAVA, which are

designed to express the logic and procedure of a problem. Although, the syntax of these programming

languages is different, they use English-like commands that are easy to follow. Another major advantage

of third-generation languages is that they are portable. We can put the compiler (or interpreter) on any

computer and create the object code. The following program represents the source code in the C language:

58 Programming for Problem Solving

 if(n>10)

 {

 do

 {

 n++;

 }while (n<50);

 }

Problem-oriented Languages

Problem-oriented languages are used to solve specifi c problems and are known as the fourth-generation

languages. These include query Languages, Report Generators and Application Generators which have

simple, English-like syntax rules. Fourth-generation languages (4 GLs) have reduced programming efforts

and overall cost of software development. These languages use either a visual environment or a text

environment for program development similar to that of third-generation languages. A single statement in

a fourth-generation language can perform the same task as multiple lines of a third-generation language.

Further, the programmer just needs to drag and drop from the toolbar, to create various items like buttons,

text boxes, labels, etc. Also, the programmer can quickly create the prototype of the software application.

Natural Languages

Natural languages are designed to make a computer to behave like an expert and solve problems. The

programmer just needs to specify the problem and the constraints for problem-solving. Natural languages

such as LISP and PROLOG are mainly used to develop artifi cial intelligence and expert systems. These

languages are widely known as fi fth generation languages.

 translator programs

An assembler is a computer program that translates assembly language statements into machine language

codes. The assembler takes each of the assembly language statements from the source code and generates

a corresponding bit stream using 0s and 1s. The output of the assembler in the form of sequence of 0s and

1s is called object code or machine code. This machine code is fi nally executed to obtain the results.

A modern assembler translates the assembly instruction mnemonics into opcodes and resolves symbolic

names for memory locations and other entities to create the object code. Several sophisticated assemblers

provide additional facilities that control the assembly process, facilitate program development, and aid

debugging. The modern assemblers like Sun SPARC and MIPS based on RISC architectures, optimizes

instruction scheduling to attain effi cient utilization of CPU. The modern assemblers generally include a

macro facility and are called macro assemblers.

Assemblers can be classifi ed as single-pass assemblers and two-pass  assemblers. The single-pass

assembler was the fi rst assembler that processes the source code once to replace the mnemonics with

the binary code. The single-pass assembler was unable to support advanced source-code optimization. As

a result, the two-pass assembler was developed that read the program twice. During the fi rst pass, all the

variables and labels are read and placed into the symbol table. On the second pass, the label gaps are fi lled

from the table by replacing the label name with the address. This helps to attain higher optimization of the

source code. The translation process of an assembler consists of the following tasks:

l Replacing symbolic addresses like LOOP, by numeric addresses

l Replacing symbolic operation code by machine operation codes

l Reserving storage for the instructions and data

l Translating constants into their machine representation

Introduction to Computer and Programming 59

The compiler is a computer program that translates the source code written in a high-level language into

the corresponding object code of the low-level language. This translation process is called compilation. The

entire high-level program is converted into the executable machine code fi le. A program that translates from

a low-level language to a high-level one is a decompiler. Compiled languages include COBOL, FORTRAN,

C, C++, etc.

In 1952, Grace Hopper wrote the fi rst compiler for the A-0 programming language. In 1957, John Backus

at IBM introduced the fi rst complete compiler. With the increasing complexity of computer architectures

and expanding functionality supported by newer programming languages, compilers have become more

and more complex. Though early compilers were written in assembly languages, nowadays it has become

common practice to implement a compiler in the language it compiles. Compilers are also classifi ed as

single-pass compilers and multi-pass compilers. Though single-pass compilers are generally faster than

multi-pass compilers, for sophisticated optimization, multi-pass assemblers are required to generate high-

quality code.

The interpreter is a translation program that converts each high-level program statement into the

corresponding machine code. This translation process is carried out just before the program statement is

executed. Instead of the entire program, one statement at a time is translated and executed immediately.

The commonly used interpreted language is BASIC and PERL. Although, interpreters are easier to create as

compared to compilers, the compiled languages can be executed more effi ciently and are faster.

proBlem-solVing techniQues
In today’s world, a computer is used to solve various types of problems

because it takes very less time as compared to a human being. The following

steps are performed while solving a problem:

1. Analyse the given problem.

2. Divide the process used to solve the problem in a series of elementary

tasks.

3. Formulate the algorithm to solve the problem.

4. Express the algorithm as a precise notation, which is known as a computer program.

5. Feed the computer program in the computer. CPU interprets the given program, processes the data

accordingly, and generates the result.

6. Send the generated result to the output unit, which displays it.

Algorithms and fl ow charts are two important techniques that help users in solving problems or

accomplishing tasks using a computer.

An algorithm is a complete, detailed, and precise step-by-step method for solving a problem independently

of the software or hardware of the computer. Algorithms are very essential, as they instruct the computer

what specifi c steps it needs to perform to carry out a particular task or to solve a problem. To understand

how an algorithm works, let us consider the following example:

Let us assume that XYZ company gives each of its salespersons `5000 at the starting of the month for

covering various expenses, such as food, lodge, and travel. At the end of the month, the salesperson must

submit the receipts of his/her total expenditures to the company. If the amount is less than `5000, then the

remaining amount must be returned to the company. Now, a simple algorithm can be developed to fi nd out

how much money, if any, should be returned to the company.

LO 1.13

Know various problem

solving techniques and

computer applicati ons

60 Programming for Problem Solving

1. Calculate the total expense receipts of the month.

2. Subtract this amount from `5000.

3. If the remainder is greater than 0, return the amount to the company.

The top-down approach of an algorithm to solve a given problem is also known as divide and conquer. In

this approach, the given problem is divided into two or more sub problems, each of which resembles the

original problem. The solution of each sub problem is taken out independently. Finally, the solution of all sub

problems is combined to obtain the solution of the main problem. One of the most common examples of the

implementation of top-down approach is binary search.

Binary search is a method, which helps search the required data from a given list of data. This method

involves comparing the data to be searched and the data present at the middle position of the list. If the

data available at the middle position of the list is similar to the data to be searched, the search is considered

successful. Otherwise, the list is divided into two parts, left half and right half. The data to be searched is

compared with the data present at the mid position. If it is lesser than the data available at the mid position,

the left half of the list is searched and if it is greater than the data at the mid position, the right half of the

list is searched. This process is repeated until the data to be searched is found or the whole list has been

searched. If the data to be searched is found then the search is successful, otherwise the search becomes

unsuccessful.

Computer programs are regarded as formal mathematical objects and the properties of these computer

programs are subjected to mathematical proofs. Program verifi cation refers to the use of formal,

mathematical techniques to debug a program and its specifi cations. For example, suppose we have coded

a program for implementing binary search. Now, we want to verify whether the coded program is correct or

not. This can be verifi ed by implementing the program on a given list of data.

Consider an array of 11 elements X[11] = {8,18,26,40,47,69,84,115,126,136,177}. Use the binary search

technique to fi nd whether the element ‘26’ is present in this array or not. Now, perform the steps of binary

search method to search the required elements. Here, ‘Low’ represents the location of the fi rst element in

the list, ‘High’ represents the location of the last element in the list, and ‘Mid’ represents the location of the

element available at the middle position in the list. First, search the element ‘26’ in the given array. During

the fi rst iteration, the values of Low, High, and Mid are as follows:

l Low = 1

l High = 11

l Mid = 6

The element at the 6th position is ‘69’, which is not the required element. Since, the value of the element

at the 6th position is greater than ‘26’, the algorithm searches the left half of the array. During the second

iteration, the values of Low, High, and Mid are as follows:

l Low = 1

l High = 5

l Mid = 3

The element at the 3rd position is ‘26’, which is the required element. Thus, the search is successful as

the element ‘26’ is present in the array.

Implement the same program twice or thrice on the given list for different elements. If the program gives

the correct result, then it is verifi ed that the program is correct.

Introduction to Computer and Programming 61

Effi ciency of an algorithm means how fast it can produce the correct result for the given problem. The

effi ciency of an algorithm depends upon its time complexity and space complexity. The complexity of an

algorithm is a function that provides the running time and space for data, depending on the size provided by

us. The two important factors for judging the complexity of an algorithm are as follows:

l Space complexity

l Time complexity

Space complexity of an algorithm refers to the amount of memory required by the algorithm for its

execution and generation of the fi nal output.

Time complexity of an algorithm refers to the amount of computer time required by an algorithm for

its execution. This time includes both compile time and run time. The compile time of an algorithm does

not depend on the instance characteristics of the algorithm. The run time of an algorithm is estimated by

determining the number of various operations, such as addition, subtraction, multiplication, division, load,

and store, executed by it.

 Analysis of Algorithm The analysis of an algorithm determines the amount of resources, such as time

and space required by it for its execution. Generally, the algorithms are formulated to work with the inputs

of arbitrary length. Algorithm analysis provides theoretical estimates required by an algorithm to solve a

problem.

In theoretical notation, the complexity of an algorithm is estimated in asymptotic notations. Asymptotic

notations are used to represent the asymptotic run time of an algorithm. These notations are represented

in terms of function T(n), where n is the set of natural numbers, 1, 2, 3, 4,…, n. The basic notations used to

represent the complexity of an algorithm are:

l Q-notation — It is used to represent the worst case running time of an algorithm.

l O-notation — It is used to provide upper boundary constraints over a given function.

l W-notation — It is used to provide an asymptotic lower bound on the given function.

l o-notation — It is used to denote asymptotic loose upper bound.

l w-notation — It is used to denote asymptotic loose lower bound.

Now to visualize the working of an algorithm, one needs to take the help of a fl ow chart, which is the pictorial

representation of the algorithm depicting the fl ow of the various steps. If we consider the above example

of the expenses of the salesperson, then the fl ow chart of the algorithm can be represented, as shown in

Fig. 1.36.

Example 1.49 Write an algorithm for fi nding greatest among three numbers.

 Let x, y and z be the numbers. Now, we can follow the algorithm below to determine the greatest number

among the three:

 1. Read the three numbers.

 2. If x > y

a. If x > z, then x is the greatest number.

b. Else, z is the greatest number

 3. Else,

a. If y > z, then y is the greatest number.

b. Else, z is the greatest number.

62 Programming for Problem Solving

Example 1.50 Write the algorithm for converting the degree in Celsius from Fahrenheit

 Let us consider x to be the temperature given in Celsius. Now, we need to follow the algorithm below to

determine the temperature in Fahrenheit:

 1. Read x

 2. Multiply x with 9/5.

 3. Add 32 to the multiplied result.

 4. Print the final value which is the temperature in Fahrenheit.

Example 1.51 Write the algorithm for calculating the average of n integers.

The algorithm for calculating the average of n integers is as follows:

 1. Read n integers.

 2. Calculate the sum of the integers.

 3. Divide the sum by the total number of integers, that is, n.

 4. Print the final value which is the average of n integers.

Example 1.52 Write the algorithm for checking whether a number is odd or even.

The following is the algorithm to determine whether a number is odd or even:

 1. Read the given number, say x.

 2. Divide x by 2.

 3. If the remainder is 1, then print x is odd.

 4. Else, print x is even.

Example 1.53 Write the algorithm to determine whether a number is positive, negative or zero.

 1. Read the given number, say x.

Tital
expenses

Start

Yes

No

If
expenses
< Rs 5000

Subtract
expenses from
Rs 5000

Print ‘‘Due
amount’’

Stop

Print ‘‘No
dues’’

Stop

Fig. 1.36  Flow chart representation of an algorithm

Introduction to Computer and Programming 63

 2. If x π 0,

a. If x > 0, the value of x is positive.

b. Else, the value of x is negative.

 3. Else, the value of x is zero.

Example 1.54 Write an algorithm to find the factorial of a given number.

 The factorial of a non-negative integer n, which is denoted by n! is the product of all positive integers less

than or equal to 1. The algorithm for determining the factorial of a given number is:

 1. Read the given number, say x.

 2. Multiply the number x with x-1, and store the resultant, say m.

 3. Repeat the step 2, until the value of x becomes 1.

 4. Print the final value, which gives the factorial of the given number.

Example 1.55 Write an algorithm to generate the Fibonacci series.

The Fibonacci series is defined by the following expression:

 F(n) =

0 if = 0;

1 if = 1;

F(-1) + F(-2) if > 1;

n

n

n n n

Ï ¸
Ô Ô
Ì ˝
Ô Ô
Ó ˛

The above expression states that after two starting values, each number is the sum of two preceding

numbers. The algorithm for generating the Fibonacci series is:

 1. Read the number of terms in the series, say n.

 2. Set a = 0 and b = 1.

 3. Print the value of a and b.

 4. Set count = 2.

 5. While count £ n, c = a + b.

 6. Print the value of c.

 7. Set a = b and b = c.

 8. Increase the value of count by 1.

 9. Repeat steps 5 to 8, until count becomes equal to n.

Example 1.56 Write an algorithm to find the factors of a given number.

 1. Read a number, say num.

 2. If num<=0, then go to step 11.

 3. Set i=1.

 4. Repeat step 5 to 10.

 5. If i> num, then go to 10.

 6. Else

 7. Divide num by i.

 8. If the remainder of the division is 0, print i.

 9. Increment i by 1 and go to step 5.

10. Endif.

11. Exit.

A program to implement this algorithm using C language is given in Fig. 1.37

64 Programming for Problem Solving

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int num,i,j;

 clrscr();

 printf(“Enter a number to find its factors: “);

 scanf(“%d”,&num);

 printf(“\nFactors of the number %d are: “,num);

 for(i=1;i<=num;i++)

 {

 if(num%i==0)

 printf(“%d\t”,i);

 }

 getch();

 }

 Output

 Enter a number to find its factor:12

 Factors of the number 12 are:1 2 3 4 6 12

Fig. 1.37  Program to find factors of a given number

Example 1.57 Write an algorithm to find the prime factor of a number.

 1. Read a number, say n.

 2. If n<=1, then go to step 12.

 3. Set x=2.

 4. Repeat step 5 to 11.

 5. If n<=x num, then go to 12

 6. Else

 7. Divide n by x.

 8. If the remainder of the division is 0, print x.

 9. Set n=n/x.

10. Increment x by 1 and go to step 5.

11. Endif

12. Exit.

A program to implement this algorithm using C language is given in Fig. 1.38

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int n,x;

 clrscr();

Introduction to Computer and Programming 65

 printf(“Enter a number to find its prime factors:”);

 scanf(“%d”,&n);

 if(n<=1)

 {

 printf(“Enter a value greater than 1.”);

 getch();

 exit(0);

 }

 x=2;

 do

 {

 if(n%x==0)

 {

 printf(“%d\t”,x);

 n/=x;

 }

 else

 x++;

 }

 while (x<=n);

 getch();

 }

 Output

 Enter a number to find its prime factors:

 72

 The prime factors of 72 are:

 2 2 2 3 3

 Enter a number to find its prime factors:

 1

 Enter a value greater than 1.

Fig. 1.38  Program to find prime factors of a given number

Example 1.58 Write an algorithm to find the square root of a number.

 1. Read a number, say s.

 2. If s<0, then go to step 16.

 3. Else if s=0

 4. Print the value of sq as 0.

 5. Else

 6. Set n=1.

 7. While (!(s>=n*n && s<(n+1)*(n+1))

 8. Do increment n by 1

 9. End while

66 Programming for Problem Solving

10. d=s-(n*n)

11. P=(double)d/(2*n).

12. a=(double)n+p

13. root=(double)a-((p*p)/(2*a));

14. Print the value of root.

15. Endif

16. Exit.

The program in Fig. 1.39 implements above algorithm in C language.

 Program

 #include <stdio.h>

 int main()

 {

 int s,n;

 double d,p,a,root;

 clrscr();

 printf(“Enter a number:”);

 scanf(“%d”,&s);

 if(s<0)

 printf(“Enter a positive integer value.”);

 else if(s==0)

 printf(“Square root of 0 is 0”);

 else

 {

 n=1;

 while(!(s>=n*n && s<(n+1)*(n+1)))

 {

 n++;

 }

 d=s-(n*n);

 p=(double)d/(2*n);

 a=(double)n+p;

 root=(double)a-((p*p)/(2*a));

 printf(“\nSquare root of %d is %.3f”,s,root);

 }

 getch();

 }

 Output

 Enter a number:16

 Square root of the 16 is 4.000.

Fig. 1.39  Program to find square root of a given number

Introduction to Computer and Programming 67

Example 1.59 Write an algorithm to find whether the given number is prime or not. 

1. Read a number, say n up to which you want to print the prime numbers.

2. Since 1 and 2 are prime numbers, so print them.

3. Check each number up to n whether it is prime number or not.

4. Print all the prime numbers up to n.

The program in Fig. 1.40 illustrates the implementation of this algorithm.

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <math.h>

 void main()

 {

 int n,i,j;

 clrscr();

 printf(“Enter a number up to which you want prime numbers:”);

 scanf(“%d”,&n);

 if(n<=1)

 {

 printf(“Enter a number greater than 1.”);

 getch();

 exit(0);

 }

 printf(“Prime numbers between 1 and %d are:”,n);

 printf(“\n2”);

 for(i=3;i<=n;i++)

 {

 for(j=2;j<=sqrt(i);j++)

 {

 if(i%j==0)

 break;

 }

 if(j>sqrt(i))

 printf(“\n%d”,i);

 }

 getch();

 }

 Output

 Enter a number up to which you want prime numbers:

 5

 Prime numbers between 1 and 5 are:

 2

 3

 5

Fig. 1.40  Program to find prime numbers up to a given number

68 Programming for Problem Solving

Example 1.60 Give a flow chart for addition of two numbers.

Input
Input

x

y

Sum = +x y

Print
Sum

Stop

Start

Example 1.61 Give a flow chart to print he average of three numbers.

Print
Average

Input
Input

x

y

Input z

Sum = + +
Average = Sum/3

x y z

Stop

Start

Introduction to Computer and Programming 69

Example 1.62 Give a flow chart for Example 1.49

Input
Input

x
y

Start

Print
is the
largest
number

x Yes Yes

No No

Print
z is the
largest
number

If
>x z

If
>x Y

If
>y z

Yes

No

Print
z is the
largest
number

Stop

Print
y is the
largest
number

Example 1.63 Give a flow chart for Example 1.52

Input x

Start

If
remainder
= 1

Yes Print
is oddx

No

Stop

Divide by
2, i.e. /2

x

x

Print
x is even

70 Programming for Problem Solving

Example 1.64 Give a flow chart to determine the average of 10 numbers.

i = 0
Sum = 0

Start

False

True

Is
< 10
?

i
average =
sum/10

Print average
Input x

sum = + sum
is incremented by 1

x

iStop

using the computer
Computers can be used to solve specific problems that may be scientific or commercial in nature. In either

case, there are some basic steps involved in using the computers. These are as follows:

l Problem analysis Identify the known and unknown parameters and state the constraints under

which the problem is to be solved. Select a method of solution.

l Collecting information Collect data, information and the documents necessary for solving the

problem and also plan the layout of output results.

l Preparing the computer logic Identify the sequence of operations to be performed in the process

of solving the problem and plan the program logic, preferably using a program flow chart.

l Writing the computer program Write the program of instructions for the computer in a suitable

language.

l Testing the program There are usually errors(bugs) in it. Remove all these errors which may be

either in using the language or in the logic.

l Preparing the data Prepare input data in the required form.

l Running the program This may be done either in batch mode or interactive mode. The

computations are performed by the computer and the results are given out.

The use of a particular input/output device depends upon the nature of the problem, type of input data in

the form of output required.

Learning OutcOmes

∑ There are five generations of computer development which have seen tremendous shift in technology,

size, and speed. [LO 1.1]

∑ On the basis of the size and capability, computers are categorized into microcomputers, mini

computers, super computers and mainframe computers. [LO 1.2]

Introduction to Computer and Programming 71

∑ Input devices help in inputting the data from any outside source into the computer system and output

devices are used to pass on the processed data to the end users. [LO 1.3]

∑ Computer systems use two types of memory, namely primary memory and secondary memory. [LO 1.3]

∑ System software is responsible for managing and controlling the hardware resources of a computer

system. Application software is specially designed to cater the information processing needs of end

users. [LO 1.4]

∑ Operating system is system software installed on a computer system that performs several key tasks,

such as process management, memory management, device management, file management, etc.

[LO 1.5]

∑ MS Word is used for creating professional as well as personal documents, MS Excel is a spreadsheet

application program and MS PowerPoint is application software for creating presentations. [LO 1.6]

∑ A cluster of computers connected together in order to share resources is termed as a computer

network. The computers connected in a network generally communicate with the help of network

protocols. [LO 1.7]

∑ Computer codes help the computer system to convert the data received in a different number system to

the data in the binary form so that it can be stored and processed in an efficient manner. [LO 1.8]

∑ In computer terminology, the number system used to represent data is generally known as positional

number system, because the value of the number represented in this system depends upon the

position of the digits in the given number. [LO 1.8]

∑ The positional number system can be of four different types, namely, decimal system, binary system,

hexadecimal system and octal system. [LO 1.8]

∑ We can easily convert the number represented in one system to its equivalent in another system. The

major number system conversions are non-decimal to decimal, decimal to non-decimal and octal to

hexadecimal. [LO 1.9]

∑ The basic arithmetic operations performed by the computer system are binary addition, binary

multiplication, binary subtraction and binary division. [LO 1.10]

∑ The basic unit of the hardware components of a computer system is the logic gate. [LO 1.11]

∑ There are three Basic Logic gates – AND gate, OR gate and NOT gate. [LO 1.11]

∑ Three levels of programming languages are available – machine languages, assembly languages and

procedure-oriented languages. [LO 1.12]

∑ Algorithms and flow charts are two important techniques that help in solving problem using a computer.

[LO 1.13]

key cOncepts

∑ Transistor: A semiconductor device that is used to increase the power of the incoming signals by

preserving the shape of the original signal. [LO 1.1]

∑ Microprocessor: An integrated circuit that contains the entire central processing unit of a computer on

a single chip. [LO 1.1]

∑ Vacuum Tube: An electron tube from which all or most of the gas has been removed, permitting

electrons to move with low interaction with any remaining gas molecules. [LO 1.1]

∑ LSI: Large Scale Integration. [LO 1.1]

∑ VLSI: Very large-scale integration (VLSI) refers to an IC or technology with many devices on one

chip. [LO 1.1]

∑ ICs: The circuits that combine various electronic components, such as transistors, resistors, capacitors,

etc. onto a single small silicon chip. [LO 1.1]

∑ Microcomputer: A small digital computer that is designed to be used by individuals. [LO 1.2]

72 Programming for Problem Solving

∑ Super computer: The fastest type of computer that can perform complex operations at a very high

speed. [LO 1.2]

∑ Mainframe computer: A very large computer that is employed by large business organisations for

handling major applications, such as financial transaction processing applications and ERP. [LO 1.2]

∑ Input device: It is an electromechanical device that is generally used for entering information into a

computer system. [LO 1.3]

∑ Keyboard: It is a computer input device consisting of keys or buttons arranged in the similar fashion as

they are arranged in a typewriter. [LO 1.3]

∑ Mouse: It is a pointing device that basically controls the two-dimensional movement of the cursor on

the displayed screen. [LO 1.3]

∑ Scanning devices: These are the input devices that electronically capture text and images and convert

them into computer readable form. [LO 1.3]

∑ Monitor: Monitor is the most commonly used output device, which displays the soft copy output of text

and graphics to the users. [LO 1.3]

∑ Printers: Printers are the output devices that are used to produce a hard copy output of the text or the

documents stored in a computer. [LO 1.3]

∑ Speakers: Speakers are the output devices used to generate output in an audio format from the

computer. [LO 1.3]

∑ Projectors: Projectors are the output devices that are used to project big picture of the data stored on

some storage device such as CD and DVD on a white screen. [LO 1.3]

∑ Primary memory: It refers to the storage locations that are used to hold the programs and data

temporarily in a computer system. The primary memory is usually known as memory. [LO 1.3]

∑ Secondary memory: It refers to the storage locations that are used to hold the data and programs

permanently. The secondary memory of a computer system is popularly known as storage. [LO 1.3]

∑ Application software: The programs, which are designed to perform a specific task for the user.

[LO 1.4]

∑ System software: The programs, which are designed to control the different operations of the

computer system. [LO 1.4]

∑ Operating system: Operating system is a set of various small system software, which control the

execution of various sub processes in a computer system. [LO 1.5]

∑ MS-DOS: It is an operating system that makes use of Command Line Interface (CLI) for interacting with

the users. [LO 1.5]

∑ Command: It can be defined as an instruction provided by a user in order to perform some specific task

on the computer system. [LO 1.5]

∑ MS Word: It is an application software bundled in MS Office package that allows us to create edit, save

and print personal as well as professional documents in a very simple and efficient manner. [LO 1.6]

∑ MS Excel: MS Excel is a spreadsheet application program that enables the users to create the

spreadsheets. [LO 1.6]

∑ MS PowerPoint: MS PowerPoint is an application software included in the MS Office package that

allows us to create presentations. [LO 1.6]

∑ Data communication: It is the process of transmission of data from the source computer to the

destination computer. [LO 1.7]

∑ Network topology: The network topology is the physical arrangement of the computers connected with

each other in a network such as ring, star, bus, hierarchical and hybrid. [LO 1.7]

∑ Network protocol: The network protocol is the standard according to which different computers over

the network communicate with each other. [LO 1.7]

∑ Computer codes: The computer codes are the codes that help in converting the data entered by the

users into the binary form. [LO 1.8]

Introduction to Computer and Programming 73

∑ Positional number system: The positional number system is a system in which numbers are

represented using certain symbols called digits and the values of these numbers is determined by

taking the position of digits into consideration. [LO 1.8]

∑ Decimal system: The decimal system is a positional number system that uses base 10 to represent

different values. [LO 1.8]

∑ Binary system: The binary system is a positional number system that uses base 2 to represent

different values. [LO 1.8]

∑ Hexadecimal system: The hexadecimal system is a positional number system that uses base 16 to

represent different values. [LO 1.8]

∑ Octal system: The octal system is a positional number system that uses base 8 to represent different

values. [LO 1.8]

∑ Number system conversions: The different type of number system conversions can be divided into

three major categories: non-decimal to decimal, decimal to non-decimal and octal to hexadecimal.

[LO 1.9]

∑ ALU: ALU is an important component of CPU that is used to perform various arithmetic and logical

operations in the computer system. [LO 1.10]

∑ Integer arithmetic: Integer arithmetic refers to various arithmetic operations involving integer operands

only. [LO 1.10]

∑ Floating-point arithmetic: Floating-point arithmetic refers to various arithmetic operations involving

floating-point operands only. [LO 1.10]

∑ Unsigned binary number: Unsigned binary number is the number with a magnitude of either zero or

greater than zero. [LO 1.10]

∑ Basic logic gates: Basic logic gates are the building blocks of digital circuits that perform logical

operations such as AND, OR and NOT, on the binary inputs. [LO 1.11]

∑ Machine Language: The computer instructions written using binary codes 1 and 0 are machine code

or machine language. [LO 1.12]

∑ Assembly Language: In an assembly language, the 0s and 1s of machine language are replaced with

abbreviations or mnemonic code. [LO 1.12]

∑ High Level Language: High level language code is executed by translating it into corresponding

machine language code with the help of a compiler or interpreter. [LO 1.12]

∑ Algorithms: An algorithm is a complete, detailed and precise step-by-step method for solving a

problem independently of the software or hardware of the computer. [LO 1.13]

∑ Flow charts: A flow chart is the pictorial representation of the algorithm depicting the flow of the various

steps. [LO 1.13]

review QuestiOns

1. Fill in the blanks in the following statements.

 1.1 A ___________ is an electronic machine that takes input from the user and stores and processes the

given input to generate the output in the form of useful information to the user. [LO 1.1 E]

 1.2 The raw details that need to be processed to generate some useful information is known as

___________. [LO 1.1 M]

 1.3 The set of instructions that can be executed by the computer is known as ___________. [LO 1.1 M]

E for Easy, M for Medium and H for High

74 Programming for Problem Solving

 1.4 ___________ is the processor of the computer that is responsible for controlling and executing the

various instructions. [LO 1.1 M]

 1.5 ___________ is a screen, which displays the information in visual form, after receiving the video

signals from the computer. [LO 1.1 E]

 1.6 ___________ computers were also known as vacuum tubes or thermionic valves based

machines. [LO 1.1 M]

 1.7 A ___________ is a semiconductor device that is used to increase the power of the incoming signals

by preserving the shape of the original signal. [LO 1.1 H]

 1.8 ___________ is a low-level language that allows the programmer to use simple English words, called

mnemonics, to represent different instructions in a program. [LO 1.1 M]

 1.9 The main characteristic feature of third generation computers was the use of ___________.

[LO 1.1 E]

 1.10 The invention of ___________ and ___________ technology led to the development of the fourth

generation computers. [LO 1.1 M]

 1.11 The fifth generation computers are based on the ___________ technology that allows almost ten

million electronic components to be fabricated on one small chip. [LO 1.1 M]

 1.12 ___________, also known as digital information processing system, is a type of computer that stores

and processes data in digital form. [LO 1.2 M]

 1.13 A ___________ is the fastest type of computer that can perform complex operations at a very high

speed. [LO 1.2 M]

 1.14 The term ___________ refers to the programs and instructions that help the computer in carrying out

their processing. [LO 1.2 E]

 1.15 The programs, which are designed to perform a specific task for the user, are known as

___________. [LO 1.4 M]

 1.16 The programs, which are designed to control the different operations of the computer, are known as

___________. [LO 1.4 M]

 1.17 An input device generally acts as an interface between ___________ and __________. [LO 1.3 E]

 1.18 The arrow keys used for controlling the movement of ___________ are known as ___________

keys. [LO 1.3 M]

 1.19 Keyboards are also classified as ___________ and ___________ keyboards, based on additional

keys present on them. [LO 1.3 E]

 1.20 ____________ devices are used for changing the position of the cursor on the screen. [LO 1.3 E]

 1.21 A mechanical mouse basically consists of _____________, ___________ and __________

buttons. [LO 1.3 M]

 1.22 An optical mouse consists of ________________, ___________________ and ___________ for

moving the position of the pointer on the screen. [LO 1.3 H]

 1.23 Hand-held scanners are also called ______________. [LO 1.3 M]

 1.24 The methods used for recognising the voice of the users are ___________ and _____________.

 [LO 1.3 M]

 1.25 Computer software is classified into two categories, namely, ______________ and

______________. [LO 1.4 E]

 1.26 System software consists of two groups of programs: ______________ and ______________.

 [LO 1.4 M]

 1.27 ______________ is responsible for managing the allocation of devices and resources to the various

processes. [LO 1.4 M]

Introduction to Computer and Programming 75

 1.28 Application software includes two types programs: ______________ and ______________.

[LO 1.4 M]

 1.29 ____________ is a system software that allows the users to interact with the hardware and other

resources of a computer system. [LO 1.5 E]

 1.30 In ___________ operating system, jobs are grouped into groups called batches and assigned to the

computer system with the help of a card reader. [LO 1.5 M]

 1.31 In ____________ operating system, multiple users can make use of computer system’s resources

simultaneously. [LO 1.5 M]

 1.32 UI facilitates communication between a _________ and its ______ by acting as an intermediary

between them. [LO 1.5 H]

 1.33 ___________ is the central part of the UNIX operating system that manages and controls the

communication between the various hardware and software components. [LO 1.5 H]

 1.34 MS-DOS is an operating system that makes use of ___________ interface. [LO 1.5 H]

 1.35 _________ commands are stored in the command interpreter of MS-DOS. [LO 1.5 H]

 1.36 RD, TYPE and DEL are __________ commands. [LO 1.5 H]

 1.37 _________ and _________ are external commands. [LO 1.5 H]

 1.38 _____________ is an application software included in MS Office for working with documents.

[LO 1.6 M]

 1.39 MS Word can be accessed either using ___________ or _____________. [LO 1.6 M]

 1.40 MS Word uses a ___________ interface to interact with the users. [LO 1.6 M]

 1.41 The horizontal bar at the top of the MS Word window is called ___________. [LO 1.6 E]

 1.42 The blinking bar in MS Word that indicates the position of the next key stroke or the character to be

inserted is called ___________. [LO 1.6 H]

 1.43 _________________ is a spreadsheet application program that is widely used in business

applications. [LO 1.6 E]

 1.44 The horizontal sequence of data stored in a spreadsheet is known as ______________. [LO 1.6 E]

 1.45 The vertical sequence of data stored in a spreadsheet is known as _______________. [LO 1.6 E]

 1.46 _____________ is an application software included in MS Office package for creating

presentations. [LO 1.6 M]

 1.47 The presentations in the MS PowerPoint are usually saved with the ___________ extension.

[LO 1.6 H]

 1.48 When computers are connected together in order to share resources, they are said to be in a

__________. [LO 1.7 M]

 1.49 ____________ is used for connecting the computers within a few kilometres of area. [LO 1.7 M]

 1.50 ____________ is used for connecting the computers in a large geographical area. [LO 1.7 M]

 1.51 The size of the MAN generally lies between that of LAN and WAN, typically covering a distance of

____________ to _______________. [LO 1.7 M]

 1.52 Hierarchical topology is also known as _______________. [LO 1.7 M]

 1.53 ____________ is the common point where all the nodes of the network are connected in the bus

topology. [LO 1.7 M]

 1.54 ____________ is used for connecting the nodes in the star topology. [LO 1.7 H]

 1.55 The combination of multiple topologies connected in a network is known as ______________.

[LO 1.7 M]

 1.56 ______________ is the set of rules and regulations based on which computers in a network

communicate. [LO 1.7 M]

76 Programming for Problem Solving

 1.57 _____________ is one of the tasks that can be performed using network protocol. [LO 1.7 M]

 1.58 _____________ is used for transferring files from one computer to another over the network.

[LO 1.7 M]

 1.59 The most common system used by computer systems is _________. [LO 1.8 E]

 1.60 The weight of any digit in the number system generally depends upon its _________ in the given

number. [LO 1.8 M]

 1.61 The binary system represents each type of data in the form of _________ and _________. [LO 1.8 E]

 1.62 The digits in binary system are referred as _________. [LO 1.8 E]

 1.63 The base of any number system depends upon the number of _________ in the system. [LO 1.8 M]

 1.64 Computer designers and professionals generally deal with _________ number system. [LO 1.8 M]

 1.65 The octal system is also known as _________ system. [LO 1.8 M]

 1.66 The octal number 5624 is equivalent to _________ in decimal system. [LO 1.9 H]

 1.67 The binary number 1001010 represents a decimal value of _________. [LO 1.9 H]

 1.68 The hexadecimal system consists of _________ symbols. [LO 1.9 E]

 1.69 Human beings usually supply data to the computer system in the _________ form. [LO 1.9 M]

 1.70 Computer codes help computer systems convert the decimal data into _________ data. [LO 1.9 M]

 1.71 The hexadecimal number B45A is equivalent to _________ in decimal system. [LO 1.9 M]

 1.72 The hexadecimal representation of the octal number 2564 is _________. [LO 1.9 H]

 1.73 The arithmetic operations are usually performed in the computer system by _________ and

_________ unit of the CPU. [LO 1.10 E]

 1.74 The computer arithmetic is also referred to as the _________ arithmetic. [LO 1.10 M]

 1.75 The binary multiplication can be considered as the _________ process of binary _________.

[LO 1.10 M]

 1.76 Unsigned binary number is a number with a magnitude of either _________ or _________.

[LO 1.10 M]

 1.77 The different arithmetic laws hold true for _________ as well _________ operations. [LO 1.10 M]

 1.78 Logic gates are the building blocks of digital circuits that perform various ______________ on the

binary input. [LO 1.11 E]

 1.79 The values of the input and the corresponding output of the logic gates can be represented using a

table called ______________ . [LO 1.11 E]

 1.80 The output of the ______________ gate is true if any one of the inputs is true. [LO 1.11 M]

 1.81 The ______________ inverts the value of the input for producing the output. [LO 1.11 M]

 1.82 The output of ______________ gate is true if both the inputs are same. [LO 1.11 M]

 1.83 The ___________ is a translation program that converts each high-level program statement into the

corresponding machine code. [LO 1.12 M]

 1.84 An __________is a complete, detailed and precise step-by-step method for solving a problem

independently of the software or hardware of the computer. [LO 1.13 E]

 1.85 A flow chart is the __________ of the algorithm depicting the flow of the various steps. [LO 1.13 M]

2. Multiple Choice Questions

 1.1 Which component of the computer is known as the brain of computer? [LO 1.1 M]

 A. Monitor B. CPU

 C. Memory D. None of the above

Introduction to Computer and Programming 77

 1.2 Which of the following is an input device? [LO 1.1 M]

 A. Printer B. Monitor

 C. Mouse D. None of the above

 1.3 Which of the following is a characteristic of the modern digital computer? [LO 1.1 M]

 A. High speed B. Large storage capacity

 C. Greater accuracy D. All of the above

 1.4 Who is known as the father of modern digital computers? [LO 1.1 E]

 A. Gottfried Wilhem Von Leibriz B. Charles Babbage

 C. Alan Mathison D. John Mauchly

 1.5 What are the different number of computer generations? [LO 1.1 E]

 A. Four B. Five

 C. Six D. Seven

 1.6 Which technology was used in the first generation computers? [LO 1.1 M]

 A. Transistors B. Vacuum tubes

 C. ICs D. None of the above

 1.7 Which technology was used in the second generation computers? [LO 1.1 M]

 A. Transistors B. Vacuum tubes

 C. Microprocessors D. ICs

 1.8 Which technology was used in the third generation computers? [LO 1.1 M]

 A. Transistors B. Vacuum tubes

 C. ICs D. All of the above

 1.9 Which technology was used in the fourth generation computers? [LO 1.1 M]

 A. Microprocessors B. Vacuum tubes

 C. ICs D. Transistors

 1.10 Which semiconductor device is used to increase the power of the incoming signals by preserving the

shape of the original signal? [LO 1.1 H]

 A. Sand table B. Transistor

 C. Vacuum tubes D. None of the above

 1.11 In which generation of computers, assembly language was introduced? [LO 1.1 H]

 A. First B. Second

 C. Third D. Fourth

 1.12 Which generation uses the ULSI technology? [LO 1.1 E]

 A. Second B. Third

 C. Fourth D. Fifth

 1.13 On what basis computers can be classified? [LO 1.1 E]

 A. Operating principles B. Applications

 C. Size and capability D. All of the above

 1.14 What is the main function of an input device in a computer? [LO 1.3 M]

 A. Receiving data from a computer B. Providing data to a computer

 C. Storing data for processing D. Processing the data

 1.15 Which of the following devices is not an input device? [LO 1.3 E]

 A. Scanner B. Keyboard

 C. Disk D. Joystick

 1.16 Which one of the following is a modifier key? [LO 1.3 H]

 A. Tab B. ALT

 C. Insert D. Pause

78 Programming for Problem Solving

 1.17 Which of the following belongs to the category of special purpose keys? [LO 1.3 M]

 A. Tab B. SHIFT

 C. ALT D. CTRL

 1.18 Which of the following statements is not true for a mouse? [LO 1.3 E]

 A. It controls the two-dimensional movement of the cursor on the displayed screen.

 B. It is usually of two different types: mechanical mouse and optical mouse.

 C. It can be used as an alternate to keyboard for all purposes.

 D. It is an input device.

 1.19 What is the other name of a hand-held scanner? [LO 1.3 M]

 A. Drum scanner B. Slide scanner

 C. Half page scanner D. Full page scanner

 1.20 Which of the following devices is not an optical recognition device? [LO 1.3 E]

 A. MICR B. OMR

 C. OCR D. Microphone

 1.21 What does MICR stand for? [LO 1.3 H]

 A. Magnetic Ink Character Recognition B. Magnetic Input Column Reader

 C. Magnetic Ink Column Recognition D. Magnetic Ink Character Reader

 1.22 Which of the following devices are used for recognising the characters in the supermarkets?

[LO 1.3 M]

 A. OCR device B. OMR device

 C. MICR device D. Bar code reader

 1.23 Which of the following is not an output device? [LO 1.3 E]

 A. Scanner B. Plotter

 C. Printer D. Speaker

 1.24 Which of the following monitors are commonly used with desktop computers? [LO 1.3 E]

 A. CBT monitors B. CRT monitors

 C. CPT monitors D. None of the above

 1.25 Which of the following are the properties of a printer? [LO 1.3 M]

 A. Resolution B. Speed

 C. Pages per minute D. All of the above

 1.26 Which of the following is a hard copy output device? [LO 1.3 E]

 A. Printer B. Speaker

 C. Display monitor D. Projector

 1.27 Which of the following is an impact printer? [LO 1.3 M]

 A. Dot matrix printer B. Ink-jet printer

 C. Laser printer D. All of the above

 1.28 Which of the following is a non-impact printer? [LO 1.3 M]

 A. Daisy wheel printer B. Dot matrix printer

 C. Laser printer D. All of the above

 1.29 Which of the following is one of the components of a CRT? [LO 1.3 M]

 A. Toner B. Liquid crystals

 C. Electromagnetic coils D. None of the above

 1.30 Which of the following are the components of a projector? [LO 1.3 H]

 A. Optic system B. Displays

 C. Electron beam D. Both A and B

 1.31 Which of the following are portable projectors? [LO 1.3 M]

 A. Conference room projectors B. Fixed installation projectors

 C. Ultralight projectors D. All of the above

Introduction to Computer and Programming 79

 1.32 Which of the following devices are included in a terminal? [LO 1.3 M]

 A. Monitor and printer B. Printer and keyboard

 C. Keyboard and monitor D. All of the above

 1.33 Which of the following is a type of terminal? [LO 1.3 E]

 A. Intelligent terminal B. Dumb terminal

 C. Both A and B D. All of the above

 1.34 Which of the following can be considered as both an input and an output device? [LO 1.3 E]

 A. Printer B. Projector

 C. Terminal D. Plotter

 1.35 Which of the following display device uses an electron given as one of the components for generating

the output? [LO 1.3 M]

 A. CRT monitor B. TFT monitor

 C. LCD monitor D. None of the above

 1.36 Which of the following is not a system software? [LO 1.4 M]

 A. Linkers B. Device drivers

 C. Operating system D. Word processor

 1.37 Which of the following software helps the users to detect the errors while executing a program?

 [LO 1.4 H]

 A. Language Translator B. Debugger

 C. Loader D. Linker

 1.38 A software, which links different elements of an object code with the library files, is known as:

[LO 1.4 H]

 A. Editor B. Linker

 C. Loader D. Debugger

 1.39 Which of the following options is not a utility system? [LO 1.4 H]

 A. Virus scanner B. System profiler

 C. Disk defragmenter D. Debugger

 1.40 Which of the following is a system tool provided by Windows operating system for making necessary

changes in the registry? [LO 1.4 E]

 A. System profiler B. Disk Defragmenter

 C. Registry Editor D. Registry Manager

 1.41 Which of the following is not an example of unique application program? [LO 1.4 M]

 A. Inventory Management System B. Pay-roll system

 C. Income tax calculator D. Database Management System

 1.42 Which of the following activities are performed by a user while solving a problem using a

computer? [LO 1.4 E]

 A. Identifying parameters and constraints B. Identifying logical structure

 C. Debugging the program D. All of the above

 1.43 Which of the following program is essential for the functioning of a computer system? [LO 1.5 M]

 A. MS Word B. Operating system

 C. MS Excel D. System software

 1.44 Which of the following operating systems makes use of CLI? [LO 1.5 M]

 A. MS-DOS B. Windows 2000

 C. Windows Server 2003 D. None of the above

 1.45 Which of the following operating systems makes use of GUI? [LO 1.5 M]

 A. Windows 2000 B. Windows Server 2003

 C. Windows Vista D. All of the above

80 Programming for Problem Solving

 1.46 Which of the following operating systems makes use of both command line interface and GUI?

 [LO 1.5 M]

 A. Windows 2000 B. Linux

 C. Windows Vista D. None of the above

 1.47 Which one of the following types of the operating systems allows multiple users to work

simultaneously? [LO 1.5 H]

 A. Multi-tasking operating system B. Multi-user operating system

 C. Multiprocessor operating system D. None of the above

 1.48 Which of the following type of UI allows a user to enter commands at command line? [LO 1.5 H]

 A. GUI B. CLI

 C. Both GUI and CLI D. Neither GUI nor CLI

 1.49 Which of the following is a part of MS-DOS? [LO 1.5 H]

 A. DOS.SYS B. CONFIGURATION.SYS

 C. EXEC.BAT D. COMMAND.COM

 1.50 Which of the following is the core component of UNIX? [LO 1.5 M]

 A. Command shell B. Kernel

 C. Directories and programs D. None of the above

 1.51 Which of the following is a feature of MS-DOS operating system? [LO 1.6 M]

 A. 16-bit B. Single-user

 C. Single tasking D. All of the above

 1.52 Which of the following commands are used in MS-DOS operating system? [LO 1.6 M]

 A. Internal commands B. External commands

 C. Batch commands D. All of the above

 1.53 Which of the following commands is used for viewing the contents of a file in MS-DOS operating

system? [LO 1.6 H]

 A. DIR B. TYPE

 C. MD D. CD

 1.54 Which of the following commands is used to print a message on the command prompt? [LO 1.6 H]

 A. %DIGIT B. %VARIABLE%

 C. ECHO D. REM

 1.55 Which of the following makes use of CLI? [LO 1.6 M]

 A. MS Excel B. MS PowerPoint

 C. MS-DOS D. MS Access

 1.56 Which one of the following is typed in the Run dialog box to access MS Word? [LO 1.6 E]

 A. winword B. word

 C. msword D. wordprogram

 1.57 Which of the following is a word processing program? [LO 1.6 E]

 A. MS Excel B. MS-DOS

 C. MS Word D. MS PowerPoint

 1.58 Which of the following is a spreadsheet application program? [LO 1.6 E]

 A. MS Access B. MS Word

 C. MS Excel D. MS-DOS

 1.59 MS Word is basically used for _______. [LO 1.6 E]

 A. Analysing the data B. Preparing the various documents

 C. Preparing the slides D. None of the above

 1.60 What text should be typed in the Run dialog box for accessing MS Excel? [LO 1.6 M]

 A. msexcel B. excel

 C. xcel D. msspreadsheet

Introduction to Computer and Programming 81

 1.61 What text should be typed in the Run dialog box for accessing MS PowerPoint? [LO 1.6 M]

 A. powerpoint B. powerpnt

 C. mspowerpnt D. ppt

 1.62 What is the name of the task pane used for designing slides in MS PowerPoint? [LO 1.6 M]

 A. Slide Design B. Slide Layout

 C. Design Slide D. None of the above

 1.63 What is the intersection of row and column called in MS Excel? [LO 1.6 E]

 A. Cell B. Worksheet

 C. Workbook D. None of the above

 1.64 What is correct expansion of MS DOS? [LO 1.6 H]

 A. Microsoft Data Operating system B. Microsoft Disk Operating system

 C. Microsoft Digital Operating system D. None of the above

 1.65 What is the combination of worksheets in MS Excel called? [LO 1.6 M]

 A. Workbook B. Spread sheet

 C. Excel sheet D. None of the above

 1.66 Which one of the following uses light pulses for carrying information? [LO 1.7 M]

 A. Satellite B. Microwave

 C. Optical fibre D. Coaxial cable

 1.67 Which of the following network is used for connecting the computers in a small geographical area?

 [LO 1.7 M]

 A. MAN B. WAN

 C. LAN D. Internet

 1.68 What is the full form of TCP? [LO 1.7 M]

 A. Transfer Control Protocol B. Transmission Control Protocol

 C. Transmit Control Protocol D. Transfer Communication Protocol

 1.69 Which one of the following Internet services provides one to one communication? [LO 1.7 M]

 A. Online chat B. Online messaging

 C. E-mail D. Usenet

 1.70 A network that is restricted to use by a single organisation is referred to as: [LO 1.7 M]

 A. LAN B. WAN

 C. Internet D. Intranet

 1.71 Which type network cannot work under heavy load? [LO 1.7 M]

 A. MAN B. LAN

 C. PPN D. VAN

 1.72 Which topology is arranged in the form of a tree structure? [LO 1.7 E]

 A. Hybrid topology B. Bus topology

 C. Star topology D. Hierarchical topology

 1.73 Which one of the following topologies is not easy to reconstruct when a fault occurs? [LO 1.7 H]

 A. Star topology B. Bus topology

 C. Ring topology D. Hybrid topology

 1.74 Which one of the following topologies allow easy error detection and correction? [LO 1.7 H]

 A. Linear bus topology B. Hybrid topology

 C. Ring topology D. Star topology

 1.75 Which device is used for connecting the computers in a star topology? [LO 1.7 H]

 A. Router B. Bridge

 C. Hub D. Repeater

82 Programming for Problem Solving

 1.76 Which topology is the combination of multiple topologies? [LO 1.7 M]

 A. Star topology B. Bus topology

 C. Hybrid topology D. Mesh topology

 1.77 In which topology data is transferred in a circular pattern? [LO 1.7 E]

 A. Star topology B. Ring topology

 C. Bus topology D. Hybrid topology

 1.78 Which of the following topologies is the most complex but efficient? [LO 1.7 M]

 A. Star topology B. Bus topology

 C. Ring topology D. Hybrid topology

 1.79 What is the technique used for routing the packets to the destination according to their

addresses? [LO 1.7 H]

 A. Circuit switching B. Packet switching

 C. Routing D. None of the above

 1.80 Which one of the following is not a network protocol? [LO 1.7 H]

 A. FTP B. HTTP

 C. SMTP D. NMP

 1.81 A set of rules that are used for communication between two networks is referred to as: [LO 1.7 E]

 A. Network software B. Network media

 C. Network protocol D. Network operating system

 1.82 Which of the following is not a positional number system? [LO 1.8 E]

 A. Octal system B. Decimal system

 C. Binary system D. Roman number system

 1.83 Human beings usually employ the following number system for their routine computations: [LO 1.8 E]

 A. Decimal system B. Octal system

 C. Binary system D. Hexadecimal system

 1.84 The number system with base 2 is known as: [LO 1.8 E]

 A. Decimal system B. Binary system

 C. Octal system D. Hexadecimal system

 1.85 The 4-bit binary equivalent of the decimal number 6 is: [LO 1.9 M]

 A. 0111 B. 1000

 C. 0010 D. 0110

 1.86 The octal representation of 15 is: [LO 1.9 M]

 A. 17 B. 16

 C. 15 D. 14

 1.87 Which of the following form of data is processed more efficiently by the computer system? [LO 1.9 M]

 A. Binary data B. Octal data

 C. Hexadecimal data D. Decimal data

 E. Hexadecimal point F. None of the above

 1.88 The system implemented by the computer systems to convert the decimal numbers into equivalent

binary numbers is known as: [LO 1.9 M]

 A. BCD system B. Octal system

 C. Weighted system D. Gray code system

 1.89 Which of the following codes is a type of digital code? [LO 1.9 M]

 A. ASCII code B. Packed code

 C. 8421 code D. None of the above

 1.90 Which of the following is not a valid computer number system conversion? [LO 1.9 E]

 A. Non-decimal to decimal B. Decimal to non-decimal

 C. Octal to hexadecimal D. Roman to decimal

Introduction to Computer and Programming 83

 1.91 The hexadecimal equivalent of the octal number 4263 is: [LO 1.9 H]

 A. 8B3 B. A42

 C. 923 D. BA31

 1.92 Which of the following is not an appropriate operand for arithmetic operations? [LO 1.10 H]

 A. Integers B. Strings

 C. Real D. None of the above

 1.93 Which of the following is not a valid binary addition rule? [LO 1.10 H]

 A. 0 + 0 = 0 B. 1 + 0 = 1

 C. 1 + 1 = 0 with a carry 1 D. 1 + 1 = 0 with no carry

 1.94 What is the result of the binary addition performed on the numbers 1001 and 0101? [LO 1.10 M]

 A. 0010 B. 1110

 C. 1010 D. 1111

 1.95 The binary multiplication can be considered as the repetitive process of: [LO 1.10 E]

 A. Binary addition B. Binary subtraction

 C. Binary division D. Binary multiplication

 1.96 Which of the following is not a valid binary multiplication rule? [LO 1.10 H]

 A. 0 × 0 = 1 B. 0 × 1 = 0

 C. 1 × 1 = 1 D. 1 × 0 = 0

 1.97 What is the result of the binary multiplication performed on the numbers 12 and 10? [LO 1.10 M]

 A. 101011 B. 0111101

 C. 1111000 D. 1010000

 1.98 Which of the following is not a valid binary subtraction rule? [LO 1.10 H]

 A. 0 – 0 = 0 B. 1 – 0 = 1 with no borrow

 C. 1 – 1 = 0 D. 0 – 1 = 1 with no borrow

 1.99 What is the result of binary subtraction performed on the numbers 1001 and 0101? [LO 1.10 M]

 A. 0001 B. 0101

 C. 1000 D. 0011

 1.100 Binary division is closely related with the arithmetic operation: [LO 1.10 E]

 A. Binary addition B. Binary subtraction

 C. Binary multiplication D. Binary division

 E. Whether the number is zero F. None of the above

 1.101 Which of the following is not an arithmetic law? [LO 1.10 H]

 A. Identity law B. Distributive law

 C. Commutative law D. Law of negation

 1.102 Which of the following components is actually responsible for executing an instruction? [LO 1.11 E]

 A. Software B. Hardware

 C. Flip-flops D. Counter

 1.103 Which of the following are the building blocks of digital circuit? [LO 1.11 E]

 A. Flip-flops B. Logic gates

 C. Register D. None of the above

 1.104 Which of the following types of operations can be performed by logic gates? [LO 1.11 E]

 A. Assignment operation B. Arithmetical operation

 C. Logical operation D. Shift operation

 1.105 Which of the following digital circuits is used to add binary numbers? [LO 1.11 M]

 A. Register B. Logic gates

 C. Adder D. All of the above

 1.106 Which of the following logic gates is also known as inverter? [LO 1.11 M]

 A. AND B. OR

 C. NAND D. NOT

84 Programming for Problem Solving

DiscussiOn QuestiOns

 1.1 What are the different components of a computer? Explain, each of them. [LO 1.1 M]

 1.2 Discuss briefly the various generations of a computer. [LO 1.1 M]

 1.3 Describe the various types of computers on the basis of size and capability. [LO 1.2 M]

 1.4 Draw the block diagram of a microcomputer. [LO 1.2 H]

 1.5 What is meant by an input device? What is the importance of an input device in a computer

system? [LO 1.3 M]

 1.6 List different categories of input devices. [LO 1.3 E]

 1.7 Explain all the categories of keys found on a typical keyboard with the help of a diagram. [LO 1.3 H]

 1.8 Explain the basic functioning of mechanical and optical mouses with the help of sketches. [LO 1.3 M]

 1.9 What are scanning devices? Explain the basic characteristics of these devices. [LO 1.3 M]

 1.10 What does voice recognition system mean? [LO 1.3 H]

 1.11 Explain the different methods used for identifying the voice of the user in the voice recognition

system. [LO 1.3 H]

 1.12 What is an output device? Why is it a vital part of computer hardware? [LO 1.3 M]

 1.13 Name some of the output devices, which are commonly used with the computer system. [LO 1.3 E]

 1.14 Define a display monitor. [LO 1.3 M]

 1.15 Name the different types of monitors available in the market. [LO 1.3 M]

 1.16 Explain the use of a printer in a computer system. [LO 1.3 E]

 1.17 What are the advantages and disadvantages of a CRT monitor? [LO 1.3 M]

 1.18 Which is a better monitor—a CRT or a TFT? State the reasons as well. [LO 1.3 H]

 1.19 What is a voice response system? List the different types of voice response systems that are used

today. [LO 1.3 H]

 1.20 What is a projector? Why is it needed? [LO 1.3 E]

 1.21 Explain the different types of computer software. [LO 1.4 M]

 1.22 What do you understand by the term system software? [LO 1.4 M]

 1.23 Explain the major functions of an operating system. [LO 1.4 H]

 1.24 Explain the application of system development programs. [LO 1.4 M]

 1.25 What does utility program mean? [LO 1.4 H]

 1.26 What is an operating system? Explain briefly with the help of examples. [LO 1.5 M]

 1.27 Briefly explain the various functions of an operating system. [LO 1.5 M]

 1.28 Explain the core components of UNIX operating system. [LO 1.5 H]

 1.29 Briefly explain why Windows operating system is one of the most popular operating systems.

[LO 1.5 M]

 1.30 Explain the features of MS-DOS operating system. [LO 1.6 M]

 1.31 Differentiate between internal and external commands of MS-DOS. [LO 1.6 M]

 1.32 What do you mean by command interpreter? [LO 1.6 M]

 1.33 Write a short note on the following commands: [LO 1.6 E]

 A. DIR B. COPY

 C. MD D. TREE

 E. COMP.

Introduction to Computer and Programming 85

 1.34 What is the basic use of MS Word? Explain with the help of an example. [LO 1.6 E]

 1.35 What are the different methods of accessing MS Word? [LO 1.6 M]

 1.36 What are the basic operations performed on a word document? Explain all of them in detail.

[LO 1.6 E]

 1.37 What do you mean by MS-Excel? Explain the different ways of starting MS-Excel from our computer

system? [LO 1.6 M]

 1.38 What are the different operations possible on a worksheet in MS-Excel? [LO 1.6 E]

 1.39 What are the different methods of accessing MS PowerPoint? [LO 1.6 M]

 1.40 What is the difference between creating and designing a new presentation in MS PowerPoint?

[LO 1.6 H]

 1.41 How can a new slide be added to a presentation in MS PowerPoint? [LO 1.6 E]

 1.42 What is a computer network? [LO 1.7 M]

 1.43 Describe different types of computer networks with the help of illustrations. [LO 1.7 M]

 1.44 What is the difference between LAN and WAN? [LO 1.7 H]

 1.45 What is network topology? [LO 1.7 E]

 1.46 What are the different types of network topologies? Explain any two network topologies through

suitable illustrations. [LO 1.7 H]

 1.47 How network protocol helps in the communication of messages over the network? [LO 1.7 H]

 1.48 What is the difference between ring topology and bus topology? [LO 1.7 M]

 1.49 Differentiate among ring, star, bus and hybrid topology with the help of diagrams. [LO 1.7 M]

 1.50 What do you understand by positional number system and why is it called a positional system?

[LO 1.8 E]

 1.51 What are the different types of positional number systems? Which of the positional systems is mostly

used by the computer systems? [LO 1.8 M]

 1.52 Explain the different technical terms associated with the binary system. [LO 1.8 H]

 1.53 What is the weight of digit 5 in the decimal number 9536? [LO 1.8 M]

 1.54 What is the 4-bit binary representation of the decimal number 12? [LO 1.9 E]

 1.55 Explain in detail the concept of hexadecimal system. [LO 1.9 M]

 1.56 Why are binary codes used by computer systems [LO 1.9 M]

 1.57 What do you understand by digital codes? Explain the two different types of digital codes. [LO 1.9 M]

 1.58 Why are the number system conversions implemented in a computer system? [LO 1.9 M]

 1.59 Explain in detail the different categories of number system conversions. [LO 1.9 M]

 1.60 How is binary number converted into its decimal equivalent? [LO 1.9 E]

 1.61 What is the hexadecimal representation of octal number 6235? [LO 1.9 H]

 1.62 What is the binary equivalent of 859.238? [LO 1.9 H]

 1.63 What do you understand by computer arithmetic? Are the rules for performing computer arithmetic

and decimal arithmetic same? [LO 1.10 M]

 1.64 What are the different computer arithmetic operations? Explain all of them with their associated set of

rules. [LO 1.10 M]

 1.65 Perform the binary addition of 1000010, 0111010 and 11110101. [LO 1.10 M]

 1.66 Why is binary multiplication considered as the process of repetitive addition? [LO 1.10 H]

 1.67 Perform the binary multiplication of 15 and 17. [LO 1.10 H]

 1.68 Perform the binary division of 141 and 21. [LO 1.10 H]

 1.69 What are the different laws of arithmetic? [LO 1.10 E]

86 Programming for Problem Solving

 1.70 What are logic gates? Why are they important? [LO 1.11 E]

 1.71 Explain the different types of basic logic gates. [LO 1.11 E]

 1.72 Explain the basic concept of truth table and also describe the truth tables of all the basic logic

gates. [LO 1.11 M]

 1.73 Explain the basic steps required to convert a Boolean expression into logic gates. [LO 1.11 M]

 1.74 What is assembly language? What are its main advantages? [LO 1.12 M]

 1.75 What is high level language? What are the different types of high level languages? [LO 1.12 M]

 1.76 What do we understand by a compiler and an assembler? [LO 1.12 H]

 1.77 What is flow chart? How is it different from an algorithm? [LO 1.13 H]

 1.78 What are the functions of a flow chart? [LO 1.13 E]

LEARNING OBJECTIVES

LO 2.1 Produce an overview of C programming language

LO 2.2 Exemplify the elementary C concepts through sample programs

LO 2.3 Illustrate the use of user-defi ned functi ons and math functi ons through sample programs

LO 2.4 Describe the basic structure of C program

LO 2.5 Recognize the programming style of C language

LO 2.6 Describe how a C program is compiled and executed

hisTorY of C

‘C’ seems a strange name for a programming language. But this strange sounding language is one of the most

popular computer languages today because it is a structured, high-level, machine independent language. It

allows software developers to develop programs without worrying about the hardware platforms where they will

be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was the fi rst computer

language to use a block structure. Although it never became popular in USA, it was widely used in Europe.

ALGOL gave the concept of structured programming to the computer science community. Computer

scientists like Corrado Bohm, Guiseppe Jacopini and Edsger Dijkstra popularized this concept during 1960s.

Subsequently, several languages were announced.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming Language)

primarily for writing system software. In 1970, Ken Thompson created a language using many features of BCPL

and called it simply B. B was used to create early versions of UNIX operating system at Bell Laboratories. Both

BCPL and B were “typeless” system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at the Bell Laboratories in 1972. C uses many

concepts from these languages and added the concept of data types and other powerful features. Since it was

developed along with the UNIX operating system, it is strongly associated with UNIX. This operating system,

which was also developed at Bell Laboratories, was coded almost entirely in C. UNIX is one of the most

popular network operating systems in use today and the heart of the Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the release of many

C compilers for commercial use and the increasing popularity of UNIX, it began to gain widespread support

among computer professionals. Today, C is running under a variety of operating system and hardware platforms.

Fundamentals of C
Chapter

2

88 Programming for Problem Solving

During 1970s, C had evolved into what is now known as “traditional C”. The language became more

popular after publication of the book ‘The C Programming Language’ by Brian Kerningham and Dennis

Ritchie in 1978. The book was so popular that the language came to be known as “K&R C” among

the programming community. The rapid growth of C led to the development of different versions of the

language that were similar but often incompatible. This posed a serious problem for system developers.

To assure that the C language remains standard, in 1983, American National Standards Institute

(ANSI) appointed a technical committee to define a standard for C. The committee approved a version

of C in December 1989 which is now known as ANSI C. It was then approved by the International

Standards Organization (ISO) in 1990. This version of C is also referred to as C89.

During 1990’s, C++, a language entirely based on C, underwent a number of improvements and

changes and became an ANSI/ISO approved language in November 1977. C++ added several new

features to C to make it not only a true object-oriented language but also a more versatile language.

During the same period, Sun Microsystems of USA created a new language Java modelled on C and

C++.

All popular computer languages are dynamic in nature. They continue to improve their power and

scope by incorporating new features and C is no exception. Although C++ and Java were evolved out

of C, the standardization committee of C felt that a few features of C++/Java, if added to C, would

enhance the usefulness of the language. The result was the 1999 standard for C. This version is

usually referred to as C99. The history and development of C is illustrated in Fig. 2.1.

Fig. 2.1 History of ANSI C

Fundamentals of C 89

Although C99 is an improved version, still many commonly available compilers do not support all of the new

features incorporated in C99.

imporTanCe of C

The increasing popularity of C is probably due to its many desirable qualities. It is

a robust language whose rich set of built-in functions and operators can be used

to write any complex program. The C compiler combines the capabilities of an

assembly language with the features of a high-level language and therefore it is

well suited for writing both system software and business packages. In fact, many

of the C compilers available in the market are written in C.

Programs written in C are effi cient and fast. This is due to its variety of data types and powerful operators.

It is many times faster than BASIC. For example, a program to increment a variable from 0 to 15000 takes

about one second in C while it takes more than 50 seconds in an interpreter BASIC.

There are only 32 keywords in ANSI C and its strength lies in its built-in functions. Several standard

functions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on another with little

or no modifi cation. Portability is important if we plan to use a new computer with a different operating system.

C language is well suited for structured programming, thus requiring the user to think of a problem in terms

of function modules or blocks. A proper collection of these modules would make a complete program. This

modular structure makes program debugging, testing and maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a collection of functions

that are supported by the C library. We can continuously add our own functions to C library. With the availability

of a large number of functions, the programming task becomes simple.

Before discussing specifi c features of C, we shall look at some sample C programs, and analyze and

understand how they work.

sample program 1: prinTing a message

Consider a very simple program given in Fig. 2.2.

main()
{
/*…………printing begins………………*/
 printf(“I see, I remember”);
/*………………printing ends…………………*/
}

 Fig. 2.2 A program to print one line of text

This program when executed will produce the following output:

 I see, I remember

Let us have a close look at the program. The fi rst line informs the system that the name of the program is

main and the execution begins at this line. The main() is a special function used by the C system to tell the

computer where the program starts. Every program must have exactly one main function. If we use more than

one main function, the compiler cannot understand which one marks the beginning of the program.

Lo 2.1

produce an overview

of C programming

language

Lo 2.2

exemplify the elementary

C concepts through

sample programs

90 Programming for Problem Solving

The empty pair of parentheses immediately following main indicates that the function main has no

arguments (or parameters). The concept of arguments will be discussed in detail later when we discuss

functions (in Chapter 5).

The opening brace “{ ” in the second line marks the beginning of the function main and the closing brace

“}” in the last line indicates the end of the function. In this case, the closing brace also marks the end of the

program. All the statements between these two braces form the function body. The function body contains a

set of instructions to perform the given task.

In this case, the function body contains three statements out of which only the printf line is an executable

statement. The lines beginning with /* and ending with */ are known as comment lines. These are used

in a program to enhance its readability and understanding. Comment lines are not executable statements

and therefore anything between /* and */ is ignored by the compiler. In general, a comment can be inserted

wherever blank spaces can occur—at the beginning, middle or end of a line—“but never in the middle of a

word”.

Although comments can appear anywhere, they cannot be nested in C. That means, we cannot have

comments inside comments. Once the compiler finds an opening token, it ignores everything until it finds a

closing token. The comment line

/* = = = =/* = = = = */ = = = = */

is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we should use

them liberally in our programs. They help the programmers and other users in understanding the various

functions and operations of a program and serve as an aid to debugging and testing. We shall see the use of

comment lines more in the examples that follow.

Let us now look at the printf() function, the only executable statement of the program.

printf(“I see, I remember”);

printf is a predefined standard C function for printing output. Predefined means that it is a function that has

already been written and compiled, and linked together with our program at the time of linking. The concepts

of compilation and linking are explained later in this chapter. The printf function causes everything between

the starting and the ending quotation marks to be printed out. In this case, the output will be:

I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a semicolon (;) mark.

Suppose we want to print the above quotation in two lines as

I see,

I remember!

This can be achieved by adding another printf function as shown below:

 printf(”I see, \n”);

 printf(“I remember !”);

The information contained between the parentheses is called the argument of the function. This argument

of the first printf function is “I see, \n” and the second is “I remember !”. These arguments are simply strings

of characters to be printed out.

Notice that the argument of the first printf contains a combination of two characters \ and n at the end

of the string. This combination is collectively called the newline character. A newline character instructs the

computer to go to the next (new) line. It is similar in concept to the carriage return key on a typewriter. After

printing the character comma (,) the presence of the newline character \n causes the string “I remember !” to

be printed on the next line. No space is allowed between \ and n.

If we omit the newline character from the first printf statement, then the output will again be a single line

as shown below.

I see, I remember !

Fundamentals of C 91

This is similar to the output of the program in Fig. 2.2. However, note that there is no space between, and I.

It is also possible to produce two or more lines of output by one printf statement with the use of newline

character at appropriate places. For example, the statement

printf(“I see,\n I remember !”);

will output

I see,

I remember !

while the statement

 printf(“I\n.. see,\n… … … I\n… … … remember !”);

will print out

I

.. see,

… … … I

… … … remember !

 Note Some authors recommend the inclusion of the statement.

#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this is not necessary for

the functions printf and scanf which have been defi ned as a part of the C language.

Before we proceed to discuss further examples, we must note one important point. C does make a

distinction between uppercase and lowercase letters. For example, printf and PRINTF are not the same.

In C, everything is written in lowercase letters. However, uppercase letters are used for symbolic names

representing constants. We may also use uppercase letters in output strings like “I SEE” and “I REMEMBER”.

The above example that printed I see, I remember is one of the simplest programs. Figure 2.3 highlights

the general format of such simple programs. All C programs need a main function.

main () Function name

Program statements

End of program

Start of program

Fig. 2.3 Format of simple C programs

the main functi on

The main is a part of every C program. C permits different forms of main statement. Following forms are

allowed. ∑ main()

 ∑ int main()

 ∑ void main()

 ∑ main(void)

92 Programming for Problem Solving

 ∑ void main(void)

 ∑ int main(void)

The empty pair of parentheses indicates that the function has no arguments. This may be explicitly indicated

by using the keyword void inside the parentheses. We may also specify the keyword int or void before the

word main. The keyword void means that the function does not return any information to the operating system

and int means that the function returns an integer value to the operating system. When int is specified, the last

statement in the program must be “return 0”. For the sake of simplicity, we use the first form in our programs.

sample program 2: adding Two numbers

Consider another program, which performs addition on two numbers and displays the result. The complete

program is shown in Fig. 2.4.

 /* Programm ADDITION line-1 */

 /* Written by EBG line-2 */

 main() /* line-3 */

 { /* line-4 */

 int number; /* line-5 */

 float amount; /* line-6 */

 /* line-7 */

 number = 100; /* line-8 */

 /* line-9 */

 amount = 30.75 + 75.35; /* line-10 */

 printf(“%d\n”,number); /* line-11 */

 printf(“%5.2f”,amount); /* line-12 */

 } /* line13 */

Fig. 2.4 Program to add two numbers

This program when executed will produce the following output:

100

106.10

The first two lines of the program are comment lines. It is a good practice to use comment lines in the

beginning to give information such as name of the program, author, date, etc. Comment characters are also

used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data. The numeric data

may be either in integer form or in real form. In C, all variables should be declared to tell the compiler what the

variable names are and what type of data they hold. The variables must be declared before they are used.

In lines 5 and 6, the declarations

 int number;

 float amount;

tell the compiler that number is an integer (int) and amount is a floating (float) point number. Declaration

statements must appear at the beginning of the functions as shown in Fig. 2.4. All declaration statements end

with a semicolon; C supports many other data types.

Fundamentals of C 93

The words such as int and float are called the keywords and cannot be used as variable names.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10. In line-8, an integer

value 100 is assigned to the integer variable number and in line-10, the result of addition of two real numbers

30.75 and 75.35 is assigned to the floating point variable amount. The statements

number = 100;

amount = 30.75 + 75.35;

are called the assignment statements. Every assignment statement must have a semicolon at the end.

The next statement is an output statement that prints the value of number. The print statement

printf(“%d\n”, number);

contains two arguments. The first argument “%d” tells the compiler that the value of the second argument

number should be printed as a decimal integer. Note that these arguments are separated by a comma. The

newline character \n causes the next output to appear on a new line.

The last statement of the program

printf(“%5.2f”, amount);

prints out the value of amount in floating point format. The format specification %5.2f tells the compiler that

the output must be in floating point, with five places in all and two places to the right of the decimal point.

sample program 3: inTeresT CalCulaTion

The program in Fig. 2.5 calculates the value of money at the end of each year of investment, assuming an

interest rate of 11 percent and prints the year, and the corresponding amount, in two columns. The output is

shown in Fig. 2.6 for a period of 10 years with an initial investment of 5000.00. The program uses the following

formula:

 Value at the end of year = Value at start of year (1 + interest rate)

In the program, the variable value represents the value of money at the end of the year while amount

represents the value of money at the start of the year. The statement

amount = value ;

makes the value at the end of the current year as the value at start of the next year.

 /*—————————— INVESTMENT PROBLEM ——————————*/

 #define PERIOD 10

 #define PRINCIPAL 5000.00

 /*—————————— MAIN PROGRAM BEGINS ——————————*/

 main()

 { /*————————— DECLARATION STATEMENTS ————————*/

 int year;

 float amount, value, inrate;

 /*————————— ASSIGNMENT STATEMENTS —————————*/

 amount = PRINCIPAL;

 inrate = 0.11;

 year = 0;

 /*————————— COMPUTATION STATEMENTS —————————*/

 /*——————— COMPUTATION USING While LOOP ————————*/

 while(year <= PERIOD)

 { printf(“%2d %8.2f\n”,year, amount);

94 Programming for Problem Solving

 value = amount + inrate * amount;

 year = year + 1;

 amount = value;

 }

 /*——————————— while LOOP ENDS ——————————*/

 }

 /*———————————— PROGRAM ENDS ——————————*/

Fig. 2.5 Program for investment problem

Let us consider the new features introduced in this program. The second and third lines begin with #defi ne

instructions. A #defi ne instruction defi nes value to a symbolic constant for use in the program. Whenever a

symbolic name is encountered, the compiler substitutes the value associated with the name automatically.

To change the value, we have to simply change the defi nition. In this example, we have defi ned two symbolic

constants PERIOD and PRINCIPAL and assigned values 10 and 5000.00 respectively. These values remain

constant throughout the execution of the program.

 0 5000.00

 1 5550.00

 2 6160.50

 3 6838.15

 4 7590.35

 5 8425.29

 6 9352.07

 7 10380.00

 8 11522.69

 9 12790.00

 10 14197.11

Fig. 2.6 Output of the investment program

the #defi ne directi ve

A #defi ne is a preprocessor compiler directive and not a statement. Therefore #defi ne lines should not end

with a semicolon. Symbolic constants are generally written in uppercase so that they are easily distinguished

from lowercase variable names. #defi ne instructions are usually placed at the beginning before the main()

function. Symbolic constants are not declared in declaration section.

We must note that the defi ned constants are not variables. We may not change their values within the program

by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;

is illegal.

The declaration section declares year as integer and amount, value and inrate as fl oating point numbers.

Note all the fl oating-point variables are declared in one statement. They can also be declared as

Fundamentals of C 95

fl oat amount;

fl oat value;

fl oat inrate;

When two or more variables are declared in one statement, they are separated by a comma.

All computations and printing are accomplished in a while loop. while is a mechanism for evaluating

repeatedly a statement or a group of statements. In this case as long as the value of year is less than or equal

to the value of PERIOD, the four statements that follow while are executed. Note that these four statements

are grouped by braces. We exit the loop when year becomes greater than PERIOD. The concept and types

of loops are discussed in Chapter 3.

C supports the basic four arithmetic operators (–, +, *, /) along with several others.

sample program 4: use of subrouTines

So far, we have used only printf function that has been provided for us by

the C system. The program shown in Fig. 2.7 uses a user-defi ned function.

A function defi ned by the user is equivalent to a subroutine in FORTRAN or

subprogram in BASIC.

Figure 2.7 presents a very simple program that uses a mul () function. The

program will print the following output.

Multiplication of 5 and 10 is 50

 /*————————— PROGRAM USING FUNCTION —————————*/

 int mul (int a, int b); /*——— DECLARATION ——————*/

 /*—————————— MAIN PROGRAM BEGINS ——————————*/

 main ()

 {

 int a, b, c;

 a = 5;

 b = 10;

 c = mul (a,b);

 printf (“multiplication of %d and %d is %d”,a,b,c);

 }

 /* —————————— MAIN PROGRAM ENDS

 MUL() FUNCTION STARTS —————————————*/

 int mul (int x, int y)

 int p;

 {

 p = x*y;

 return(p);

 }

 /* —————————————— MUL () FUNCTION ENDS ————————————*/

 Fig. 2.7 A program using a user-defi ned function

Lo 2.3

illustrate the use of user-

defi ned functi ons and

math functi ons through

sample programs

96 Programming for Problem Solving

The mul () function multiplies the values of x and y and the result is returned to the main () function when

it is called in the statement

 c = mul (a, b);

The mul () has two arguments x and y that are declared as integers. The values of a and b are passed

on to x and y respectively when the function mul () is called. User-defined functions are considered in detail

in chapter 5.

sample program 5: use of maTh funCTions

We often use standard mathematical functions such as cos, sin, exp, etc. We shall see now the use of a

mathematical function in a program. The standard mathematical functions are defined and kept as a part of

C math library. If we want to use any of these mathematical functions, we must add an #include instruction

in the program. Like #define, it is also a compiler directive that instructs the compiler to link the specified

mathematical functions from the library. The instruction is of the form

#include <math.h>

math.h is the filename containing the required function. Figure 2.8 illustrates the use of cosine function. The

program calculates cosine values for angles 0, 10, 20………….180 and prints out the results with headings.

 /*——————— PROGRAM USING COSINE FUNCTION ——————— */

 #include <math.h>

 #define PI 3.1416

 #define MAX 180

 main ()

 {

 int angle;

 float x,y;

 angle = 0;

 printf(“ Angle Cos(angle)\n\n”);

 while(angle <= MAX)

 {

 x = (PI/MAX)*angle;

 y = cos(x);

 printf(“%15d %13.4f\n”, angle, y);

 angle = angle + 10;

 }

 }

 Output

 Angle Cos(angle)

 0 1.0000

 10 0.9848

 20 0.9397

 30 0.8660

 40 0.7660

 50 0.6428

Fundamentals of C 97

 60 0.5000

 70 0.3420

 80 0.1736

 90 –0.0000

 100 –0.1737

 110 –0.3420

 120 –0.5000

 130 –0.6428

 140 –0.7660

 150 –0.8660

 160 –0.9397

 170 –0.9848

 180 –1.0000

 Fig. 2.8 Program using a math function

Another #include instruction that is often required is

#include <stdio.h>

stdio.h refers to the standard I/O header fi le containing standard input and output functions

the #include directi ve

As mentioned earlier, C programs are divided into modules or functions. Some functions are written by users,

like us, and many others are stored in the C library. Library functions are grouped category-wise and stored in

different fi les known as header fi les. If we want to access the functions stored in the library, it is necessary to

tell the compiler about the fi les to be accessed.

This is achieved by using the preprocessor directive #include as follows:

#include<fi lename>

fi lename is the name of the library fi le that contains the required function defi nition. Preprocessor directives

are placed at the beginning of a program.

basiC sTruCTure of C programs

The examples discussed so far illustrate that a C program can be viewed as

a group of building blocks called functions. A function is a subroutine that may

include one or more statements designed to perform a specifi c task. To write a

C program, we fi rst create functions and then put them together. A C program

may contain one or more sections as shown in Fig. 2.9.

The documentation section consists of a set of comment lines giving the name of the program, the author

and other details, which the programmer would like to use later. The link section provides instructions to the

compiler to link functions from the system library. The defi nition section defi nes all symbolic constants.

There are some variables that are used in more than one function. Such variables are called global variables

and are declared in the global declaration section that is outside of all the functions. This section also declares

all the user-defi ned functions.

Lo 2.4

describe the basic

structure of C program

98 Programming for Problem Solving

Fig. 2.9 An overview of a C program

Every C program must have one main() function section. This section contains two parts, declaration part

and executable part. The declaration part declares all the variables used in the executable part. There is at

least one statement in the executable part. These two parts must appear between the opening and the closing

braces. The program execution begins at the opening brace and ends at the closing brace. The closing brace

of the main function section is the logical end of the program. All statements in the declaration and executable

parts end with a semicolon(;).

The subprogram section contains all the user-defi ned functions that are called in the main function. User-

defi ned functions are generally placed immediately after the main function, although they may appear in any

order.

All sections, except the main function section may be absent when they are not required.

programming sTYle

Unlike some other programming languages (COBOL, FORTRAN, etc.,) C is a

free-form_language. That is, the C compiler does not care, where on the line

we begin typing. While this may be a licence for bad programming, we should

try to use this fact to our advantage in developing readable programs. Although

several alternative styles are possible, we should select one style and use it

with total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program statements are

written in lowercase letters. Uppercase letters are used only for symbolic constants.

Braces, group program statements together and mark the beginning and the end of functions. A proper

indentation of braces and statements would make a program easier to read and debug. Note how the braces

are aligned and the statements are indented in the program of Fig. 2.5.

Lo 2.5

Recognize the

programming style of C

language

Fundamentals of C 99

Since C is a free-form language, we can group statements together on one line. The statements

 a = b;

 x = y + 1;

 z = a + x;

can be written on one line as

a = b; x = y+1; z = a+x;

The program

 main()

 {

 printf(“hello C”);

 }

may be written in one line like

 main() {printf(“Hello C”)};

However, this style make the program more diffi cult to understand and should not be used. In this book,

each statement is written on a separate line.

The generous use of comments inside a program cannot be overemphasized. Judiciously inserted

comments not only increase the readability but also help to understand the program logic. This is very important

for debugging and testing the program.

eXeCuTing a ‘C’ program

Executing a program written in C involves a series of steps. These are:

 1. Creating the program;

 2. Compiling the program;

 3. Linking the program with functions that are needed from the C library; and

 4. Executing the program.

Figure 2.10 illustrates the process of creating, compiling and executing a C program. Although these steps

remain the same irrespective of the operating system, system commands for implementing the steps and

conventions for naming fi les may differ on different systems.

An operating system is a program that controls the entire operation of a computer system. All input/output

operations are channeled through the operating system. The operating system, which is an interface between

the hardware and the user, handles the execution of user programs.

The two most popular operating systems today are UNIX (for minicomputers) and MS-DOS (for

microcomputers). We shall discuss briefl y the procedure to be followed in executing C programs under both

these operating systems in the following sections.

uniX sYsTem

Creati ng the program

Once we load the UNIX operating system into the memory, the computer is ready to

receive program. The program must be entered into a fi le. The fi le name can consist

of letters, digits and special characters, followed by a dot and a letter c. Examples

of valid fi le names are:

Lo 2.6

describe how a C

program is compiled

and executed

100 Programming for Problem Solving

System Ready

Program Code

C Compiler

System Library

Source Program

Object Code

No Errors

No

Executable Object Code

Yes

Logic Error

Enter Program

Edit
Source Program

Compile
Source Program

Link with
System Library

Execute
Object Code

Input Data

CORRECT OUTPUT

Stop

Syntax
Errors ?

Logic and Data
Errors ?

Data Error

Fig. 2.10 Process of compiling and runnig a C program

hello.c

program.c

ebg1.c

The file is created with the help of a text editor, either ed or vi. The command for calling the editor and

creating the file is

ed filename

If the file existed before, it is loaded. If it does not yet exist, the file has to be created so that it is ready

to receive the new program. Any corrections in the program are done under the editor. (The name of your

system’s editor may be different. Check your system manual.)

When the editing is over, the file is saved on disk. It can then be referenced any time later by its file name.

The program that is entered into the file is known as the source program, since it represents the original form

of the program.

Fundamentals of C 101

Compiling and Linking

Let us assume that the source program has been created in a fi le named ebg1.c. Now the program is ready

for compilation. The compilation command to achieve this task under UNIX is

cc ebg1.c

The source program instructions are now translated into a form that is suitable for execution by the

computer. The translation is done after examining each instruction for its correctness. If everything is alright,

the compilation proceeds silently and the translated program is stored on another fi le with the name ebg1.o.

This program is known as object code.

Linking is the process of putting together other program fi les and functions that are required by the program.

For example, if the program is using exp() function, then the object code of this function should be brought

from the math library of the system and linked to the main program. Under UNIX, the linking is automatically

done (if no errors are detected) when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed out and the

compilation process ends right there. The errors should be corrected in the source program with the help of

the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored automatically in

another fi le named a.out.

Note that some systems use different compilation command for linking mathematical functions.

cc fi lename - lm

is the command under UNIPLUS SYSTEM V operating system.

executi ng the program

Execution is a simple task. The command

a.out

would load the executable object code into the computer memory and execute the instructions. During

execution, the program may request for some data to be entered through the keyboard. Sometimes the

program does not produce the desired results. Perhaps, something is wrong with the program logic or data.

Then it would be necessary to correct the source program or the data. In case the source program is modifi ed,

the entire process of compiling, linking and executing the program should be repeated.

Creati ng your own executable file

Note that the linker always assigns the same name a.out. When we compile another program, this fi le will

be overwritten by the executable object code of the new program. If we want to prevent from happening, we

should rename the fi le immediately by using the command.

 mv a.out name

We may also achieve this by specifying an option in the cc command as follows:

cc –o name source-fi le

This will store the executable object code in the fi le name and prevent the old fi le a.out from being destroyed.

Multi ple Source files

To compile and link multiple source program fi les, we must append all the fi les names to the cc command.

cc fi lename-1.c …. fi lename-n.c

These fi les will be separately compiled into object fi les called

fi lename-i.o

and then linked to produce an executable program fi le a.out as shown in Fig. 2.11.

102 Programming for Problem Solving

.C .C

a.out

.C

Compiler and
preprocessor

.O .O .O Library

Linker

Fig. 2.11 Compilation of multiple files

It is also possible to compile each file separately and link them later. For example, the commands

cc –c mod1.c

cc –c mod2.c

will compile the source files mod1.c and mod2.c into objects files mod1.o and mod2.o. They can be linked

together by the command

 cc mod1.o mod2.o

we may also combine the source files and object files as follows:

cc mod1.c mod2.o

Only mod1.c is compiled and then linked with the object file mod2.o. This approach is useful when one of

the multiple source files need to be changed and recompiled or an already existing object files is to be used

along with the program to be compiled.

ms-dos sYsTem

The program can be created using any word processing software in non-document mode. The file name

should end with the characters “.c” like program.c, pay.c, etc. Then the command

MSC pay.c

under MS-DOS operating system would load the program stored in the file pay.c and generate the object

code. This code is stored in another file under name pay.obj. In case any language errors are found, the

compilation is not completed. The program should then be corrected and compiled again.

The linking is done by the command

LINK pay.obj

which generates the executable code with the filename pay.exe. Now the command

pay

would execute the program and give the results.

key ConCeptS

• #define: (is a preprocessor compiler directive.) [Lo 2.2]

• pRintf: (is a predefined standard C function that writes the output to the stdout (standard output)

stream.) [Lo 2.2]

• SCAnf: (is a predefined standard C function that reads formatted input from stdin (standard input)

stream.) [Lo 2.2]

• PROGRAM: (is a sequence of instructions written to perform a specific task in the computer.) [Lo 2.4]

Fundamentals of C 103

ALWAyS ReMeMBeR

∑ C is a structured, high-level, machine independent language. [Lo 2.1]

∑ ANSI C and C99 are the standardized versions of C language. [Lo 2.1]

∑ C combines the capabilities of assembly language with the features of a high level language. [Lo 2.1]

∑ C is robust, portable and structured programming language. [Lo 2.1]

∑ Every C program requires a main() function (Use of more than one main() is illegal). The place main is

where the program execution begins. [Lo 2.2]

∑ The execution of a function begins at the opening brace of the function and ends at the corresponding

closing brace. [Lo 2.2]

∑ C programs are written in lowercase letters. However, uppercase letters are used for symbolic names and

output strings. [Lo 2.2]

∑ All the words in a program line must be separated from each other by at least one space, or a tab, or a

punctuation mark. [Lo 2.2]

∑ Every program statement in a C language must end with a semicolon. [Lo 2.2]

∑ All variables must be declared for their types before they are used in the program. [Lo 2.2]

∑ A comment can be inserted almost anywhere a space can appear. Use of appropriate comments in proper

places increases readability and understandability of the program and helps users in debugging and

testing. Remember to match the symbols /* and * appropriately. [Lo 2.2]

∑ Compiler directives such as define and include are special instructions to the compiler to help it compile

a program. They do not end with a semicolon. [Lo 2.2]

∑ The sign # of compiler directives must appear in the first column of the line. [Lo 2.2]

∑ We must make sure to include header files using #include directive when the program refers to special

names and functions that it does not define. [Lo 2.3]

∑ The structure of a C program comprises of various sections including Documentation, Link, Definition,

Global Declaration, main () function and Sub program section. [Lo 2.4]

∑ C is a free-form language and therefore a proper form of indentation of various sections would improve

legibility of the program. [Lo 2.5]

∑ The execution of a C program involves a series of steps including: creating the program, compiling the

program, linking the program with functions from C library and executing the program. [Lo 2.6]

∑ The command used for running a C program in UNIX system is a.out. [Lo 2.6]

∑ The command used for running a C program in MS-DOS system is file.exe where file is the name of the

program that has already been compiled. [Lo 2.6]

∑ When braces are used to group statements, make sure that the opening brace has a corresponding

closing brace. [Lo 2.6]

RevieW QueStionS

 2.1 State whether the following statements are true or false.

 (a) Every line in a C program should end with a semicolon. [LO 2.2 E]

 (b) The closing brace of the main() in a program is the logical end of the program. [LO 2.2 E]

 (c) Comments cause the computer to print the text enclosed between /* and */ when executed.
[LO 2.2 E]

 (d) Every C program ends with an END word. [LO 2.2 M]

 (e) A printf statement can generate only one line of output. [LO 2.2 M]

E for Easy, M for Medium and H for High

104 Programming for Problem Solving

 (f) The purpose of the header file such as stdio.h is to store the source code of a program.

[LO 2.3 M]

 (g) A line in a program may have more than one statement. [LO 2.5 M]

 (h) Syntax errors will be detected by the compiler. [LO 2.6 M]

 (i) In C language lowercase letters are significant. [LO 2.2 H]

 (j) main() is where the program begins its execution. [LO 2.2 H]

 2.2 Which of the following statements are true?

 (a) Every C program must have at least one user-defined function. [LO 2.3 E]

 (b) Declaration section contains instructions to the computer. [LO 2.4 E]

 (c) Only one function may be named main(). [LO 2.2 M]

 2.3 Which of the following statements about comments are false?

 (a) Comments serve as internal documentation for programmers. [LO 2.2 E]

 (b) In C, we can have comments inside comments. [LO 2.2 M]

 (c) Use of comments reduces the speed of execution of a program. [LO 2.2 H]

 (d) A comment can be inserted in the middle of a statement. [LO 2.2 H]

 2.4 Fill in the blanks with appropriate words in each of the following statements.

 (a) Every program statement in a C program must end with a ___________. [LO 2.2 E]

 (b) The ____________ Function is used to display the output on the screen. [LO 2.2 E]

 (c) The ____________ header file contains mathematical functions. [LO 2.3 M]

 (d) The escape sequence character ____________ causes the cursor to move to the next line on the

screen. [LO 2.2 H]

 2.5 Remove the semicolon at the end of the printf statement in the program of Fig. 2.2 and execute it.

What is the output? [LO 2.2 M]

 2.6 In the Sample Program 2, delete line-5 and execute the program. How helpful is the error message?
[LO 2.2 H]

 2.7 Modify the Sample Program 3 to display the following output: [LO 2.2 M]

 Year Amount

 1 5500.00

 2 6160.00

 — ————————

 — ————————

 10 14197.11

 2.8 Why and when do we use the #define directive? [LO 2.2 E]

 2.9 Why and when do we use the #include directive? [LO 2.3 M]

 2.10 What does void main(void) mean? [LO 2.2 H]

 2.11 Distinguish between the following pairs:

 (a) main() and void main(void) [LO 2.2 H]

 (b) int main() and void main() [LO 2.2 M]

 2.12 Why do we need to use comments in programs? [LO 2.2 E]

 2.13 Why is the look of a program is important? [LO 2.5 E]

 2.14 Where are blank spaces permitted in a C program? [LO 2.5 M]

 2.15 Describe the structure of a C program. [LO 2.4 M]

 2.16 Describe the process of creating and executing a C program under UNIX system. [LO 2.6 M]

 2.17 How do we implement multiple source program files? [LO 2.6 H]

Fundamentals of C 105

DebuGGinG exeRcises

 2.1 Find errors, if any, in the following program: [LO 2.2 E]

 /* A simple program

 int main()

 {

 /* Does nothing */

 }

 2.2 Find errors, if any, in the following program: [LO 2.2 M]

 #include (stdio.h)

 void main(void)

 {

 print(“Hello C”);

 }

 2.3 Find errors, if any, in the following program: [LO 2.3 H]

 Include <math.h>

 main { }

 (

 FLOAT X;

 X = 2.5;

 Y = exp(x);

 Print(x,y);

)

PROGRAMMinG exeRcises

 2.1 Write a program to display the equation of a line in the form

 ax + by = c

 for a = 5, b = 8 and c = 18. [LO 2.2 E]

 2.2 Write a program that will print your mailing address in the following form: [LO 2.2 M]

 First line : Name

 Second line : Door No, Street

 Third line : City, Pin code

 2.3 Write a program to output the following multiplication table: [LO 2.2 M]

 5 ¥ 1 = 5

 5 ¥ 2 = 10

 5 ¥ 3 = 15

 ∑ ∑

 ∑ ∑

 5 ¥ 10 = 50

 2.4 Given the values of three variables a, b and c, write a program to compute and display the value of x,

where

 x =
a

b c-

106 Programming for Problem Solving

 Execute your program for the following values:

 (a) a = 250, b = 85, c = 25 [LO 2.2 M]

 (b) a = 300, b = 70, c = 70 [LO 2.2 M]

 Comment on the output in each case.

 2.5 Relationship between Celsius and Fahrenheit is governed by the formula

 F =
9

5
32

C
+

 Write a program to convert the temperature

 (a) from Celsius to Fahrenheit and [LO 2.2 M]

 (b) from Fahrenheit to Celsius. [LO 2.2 M]

 2.6 Given the radius of a circle, write a program to compute and display its area. Use a symbolic constant

to define the p value and assume a suitable value for radius. [LO 2.3 M]

 2.7 Given two integers 20 and 10, write a program that uses a function add() to add these two numbers

and sub() to find the difference of these two numbers and then display the sum and difference in the

following form: [LO 2.3 M]

 20 + 10 = 30

 20 – 10 = 10

 2.8 Modify the above program to provide border lines to the address. [LO 2.2 H]

 2.9 Write a program using one print statement to print the pattern of asterisks as shown below:

[LO 2.2 H]

 *
 * *
 * * *
 * * * *

 2.10 Write a program that will print the following figure using suitable characters. [LO 2.2 H]

 2.11 Area of a triangle is given by the formula

 A = S(S-a) (S-b) (S-c)

 Where a, b and c are sides of the triangle and 2S = a + b + c. Write a program to compute the area of

the triangle given the values of a, b and c. [LO 2.2 H]

 2.12 Write a program to display the following simple arithmetic calculator [LO 2.2 H]

 x = y =

 sum Difference =

 Product = Division =

 2.13 Distance between two points (x1, y1) and (x2, y2) is governed by the formula

 D2 = (x2 – x1)2 + (y2 – y1)2

 Write a program to compute D given the coordinates of the points. [LO 2.3 H]

 2.14 A point on the circumference of a circle whose center is (o, o) is (4,5). Write a program to compute

perimeter and area of the circle. (Hint: use the formula given in the Ex. 2.11) [LO 2.3 H]

 2.15 The line joining the points (2,2) and (5,6) which lie on the circumference of a circle is the diameter of

the circle. Write a program to compute the area of the circle. [LO 2.3 H]

LEARNING OBJECTIVES

LO 3.1 Discuss decision making with if statement

LO 3.2 Describe if...else statement

LO 3.3 Explain switch statement

LO 3.4 Know conditi onal operator

LO 3.5 Illustrate how goto statement is used for unconditi onal branching

introduction
We have seen that a C program is a set of statements which are normally executed sequentially in the order

in which they appear. This happens when no options or no repetitions of certain calculations are necessary.

However, in practice, we have a number of situations where we may have to change the order of execution

of statements based on certain conditions, or repeat a group of statements until certain specifi ed conditions

are met. This involves a kind of decision making to see whether a particular condition has occurred or not

and then direct the computer to execute certain statements accordingly.

C language possesses such decision-making capabilities by supporting the following statements:

 1. if statement

 2. switch statement

 3. Conditional operator statement

 4. goto statement

These statements are popularly known as decision-making statements. Since these statements ‘control’

the fl ow of execution, they are also known as control statements.

We have already used some of these statements in the earlier examples. Here, we shall discuss their

features, capabilities and applications in more detail.

We have already used some of these statements in the earlier examples. Here, we shall discuss their

introduction
We have seen that a C program is a set of statements which are normally executed sequentially in the order

in which they appear. This happens when no options or no repetitions of certain calculations are necessary.

Control Structure in C
Chapter

3

108 Programming for Problem Solving

DECISIOn MAKInG WITH IF STATEMEnT

The if statement is a powerful decision-making statement and is used to control

the fl ow of execution of statements. It is basically a two-way decision statement

and is used in conjunction with an expression. It takes the following form

if (test expression)

It allows the computer to evaluate the expression fi rst and then, depending on whether the value of the

expression (relation or condition) is ‘true’ (or non-zero) or ‘false’ (zero), it transfers the control to a particular

statement. This point of program has two paths to follow, one for the true condition and the other for the false

condition as shown in Fig. 3.1.

Some examples of decision making, using if statements are:

 1. if (bank balance is zero)

 borrow money

 2. if (room is dark)

 put on lights

 3. if (code is 1)

 person is male

 4. if (age is more than 55)

 person is retired

The if statement may be implemented in different forms

depending on the complexity of conditions to be tested. The

different forms are:

 1. Simple if statement

 2. if.....else statement

 3. Nested if....else statement

 4. else if ladder.

We shall discuss each one of them in the next few section.

SIMPLE IF STATEMEnT

The general form of a simple if statement is

 if (test expression)

 {

 statement-block;

 }

 statement-x;

The ‘statement-block’ may be a single statement or

a group of statements. If the test expression is true, the

statement-block will be executed; otherwise the statement-

block will be skipped and the execution will jump to the

statement-x. Remember, when the condition is true both

the statement-block and the statement-x are executed in

sequence. This is illustrated in Fig. 3.2.

Lo 3.1

Discuss decision making

with if statement

False

True

Entry

test expression
?

Fig. 3.1 Two-way branching

Fig. 3.2 Flowchart of simple if control

Control Structure in C 109

Consider the following segment of a program that is written for processing of marks obtained in an entrance

examination.

 if (category == SPORTS)
 {
 marks = marks + bonus_marks;
 }
 printf(“%f”, marks);

The program tests the type of category of the student. If the student belongs to the SPORTS category,

then additional bonus_marks are added to his marks before they are printed. For others, bonus_marks are

not adde.

workeD-out proBLem 3.1 e

The program in Fig. 3.3 reads four values a, b, c, and d from the terminal and evaluates the ratio of (a+b)

to (c–d) and prints the result, if c–d is not equal to zero.

 The program given in Fig. 3.3 has been run for two sets of data to see that the paths function properly. The

result of the fi rst run is printed as,

Ratio = –3.181818

 Program

 main()
 {
 int a, b, c, d;
 fl oat ratio;

 printf(“Enter four integer values\n”);
 scanf(“%d %d %d %d”, &a, &b, &c, &d);

 if (c-d != 0) /* Execute statement block */
 {
 ratio = (fl oat)(a+b)/(fl oat)(c-d);
 printf(“Ratio = %f\n”, ratio);
 }
 }

 Output

 Enter four integer values
 12 23 34 45
 Ratio = -3.181818

 Enter four integer values
 12 23 34 34

 Fig. 3.3 Illustration of simple if statement

E for Easy, M for Medium and H for High

110 Programming for Problem Solving

The second run has neither produced any results nor any message. During the second run, the value of

(c–d) is equal to zero and therefore, the statements contained in the statement-block are skipped. Since no

other statement follows the statement-block, program stops without producing any output.

Note the use of fl oat conversion in the statement evaluating the ratio. This is necessary to avoid truncation

due to integer division. Remember, the output of the fi rst run –3.181818 is printed correct to six decimal

places. The answer contains a round off error. If we wish to have higher accuracy, we must use double or

long double data type.

The simple if is often used for counting purposes. The Worked-Out Problem 3.2 illustrates this.

workeD-out proBLem 3.2 m

The program in Fig. 3.4 counts the number of boys whose weight is less than 50 kg and height is greater

than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using the compound

relation

 if (weight < 50 && height > 170)

This would have been equivalently done using two if statements as follows:

 if (weight < 50)

 if (height > 170)

 count = count +1;

If the value of weight is less than 50, then the following statement is executed, which in turn is another if

statement. This if statement tests height and if the height is greater than 170, then the count is incremented

by 1.

 Program

 main()

 {

 int count, i;

 fl oat weight, height;

 count = 0;

 printf(“Enter weight and height for 10 boys\n”);

 for (i =1; i <= 10; i++)

 {

 scanf(“%f %f”, &weight, &height);

 if (weight < 50 && height > 170)

 count = count + 1;

 }

 printf(“Number of boys with weight < 50 kg\n”);

 printf(“and height > 170 cm = %d\n”, count);

 }

Control Structure in C 111

 Output

 Enter weight and height for 10 boys

 45 176.5

 55 174.2

 47 168.0

 49 170.7

 54 169.0

 53 170.5

 49 167.0

 48 175.0

 47 167

 51 170

 Number of boys with weight < 50 kg

 and height > 170 cm =3

 Fig. 3.4 Use of if for counting

applying De morgan’s rule

While designing decision statements, we often come across a situation where the logical NOT operator

is applied to a compound logical expression, like !(x&&y||!z). However, a positive logic is always

easy to read and comprehend than a negative logic. In such cases, we may apply what is known as

De Morgan’s rule to make the total expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every logical expression component, while

complementing the relational operators”

That is,

 x becomes !x

 !x becomes x

 && becomes ||

 || becomes &&

Examples:

 !(x && y || !z) becomes !x || !y && z

 !(x < = 0 || !condition) becomes x >0&& condition

THE IF.....ELSE STATEMEnT

The if...else statement is an extension of the simple if statement. The general form

is

 If (test expression)
 {
 True-block statement(s)
 }
 else

 {
 False-block statement(s)
 }
 statement-x

Lo 3.2

Describe if...else

statement

112 Programming for Problem Solving

If the test expression is true, then the true-block statement(s), immediately following the if statements

are executed; otherwise, the false-block statement(s) are executed. In either case, either true-block or false-

block will be executed, not both. This is illustrated in Fig. 3.5. In both the cases, the control is transferred

subsequently to the statement-x.

Fig. 3.5 Flowchart of if......else control

Let us consider an example of counting the number of boys and girls in a class. We use code 1 for a boy

and 2 for a girl. The program statement to do this may be written as follows:

 if (code == 1)

 boy = boy + 1;

 if (code == 2)

 girl = girl+1;

The first test determines whether or not the student is a boy. If yes, the number of boys is increased by 1

and the program continues to the second test. The second test again determines whether the student is a girl.

This is unnecessary. Once a student is identified as a boy, there is no need to test again for a girl. A student

can be either a boy or a girl, not both. The above program segment can be modified using the else clause as

follows:

 if (code == 1)

 boy = boy + 1;

 else

 girl = girl + 1;

 xxxxxxxxxx

Control Structure in C 113

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is transferred

to the statement xxxxxx, after skipping the else part. If the code is not equal to 1, the statement

boy = boy + 1; is skipped and the statement in the else part girl = girl + 1; is executed before the control

reaches the statement xxxxxxxx.

Consider the program given in Fig. 3.3. When the value (c–d) is zero, the ratio is not calculated and the

program stops without any message. In such cases we may not know whether the program stopped due

to a zero value or some other error. This program can be improved by adding the else clause as follows:

 if (c-d != 0)

 {

 ratio = (fl oat)(a+b)/(fl oat)(c-d);

 printf(“Ratio = %f\n”, ratio);

 }

 else

 printf(“c-d is zero\n”);

workeD-out proBLem 3.3 h

A program to evaluate the power series.

ex = 1 + x +
x x

3!

x

n!

2 n2

2!
+ + + , 0 < x < 1

is given in Fig. 3.6. It uses if......else to test the accuracy.

The power series contains the recurrence relationship of the type

 Tn = Tn-1
x

n

Ê
ËÁ
ˆ
¯̃

 for n > 1

 T1 = x for n = 1

 T0 = 1

If Tn-1 (usually known as previous term) is known, then Tn (known as present term) can be easily found by

multiplying the previous term by x/n. Then

 ex = T0 + T1 + T2 + + Tn = sum

 Program

 #defi ne ACCURACY 0.0001
 main()
 {
 int n, count;
 fl oat x, term, sum;
 printf(“Enter value of x:”);
 scanf(“%f”, &x);
 n = term = sum = count = 1;

114 Programming for Problem Solving

 while (n <= 100)
 {
 term = term * x/n;
 sum = sum + term;
 count = count + 1;
 if (term < ACCURACY)
 n = 999;
 else
 n = n + 1;
 }
 printf(“Terms = %d Sum = %f\n”, count, sum);
 }

 Output

 Enter value of x:0
 Terms = 2 Sum = 1.000000
 Enter value of x:0.1
 Terms = 5 Sum = 1.105171
 Enter value of x:0.5
 Terms = 7 Sum = 1.648720
 Enter value of x:0.75
 Terms = 8 Sum = 2.116997
 Enter value of x:0.99
 Terms = 9 Sum = 2.691232
 Enter value of x:1
 Terms = 9 Sum = 2.718279

 Fig. 3.6 Illustration of if...else statement

The program uses count to count the number of terms added. The program stops when the value of the

term is less than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, the value of n is

set equal to 999 (a number higher than 100) and therefore the while loop terminates. The results are printed

outside the while loop.

nESTInG OF IF....ELSE STATEMEnTS

When a series of decisions are involved, we may have to use more than one if...else statement in nested form

as shown below:

(test condition-1)

if (test condition-2);

statement -1;

statement -2;

statement -3;

statement -x;

else

else

if

Control Structure in C 115

The logic of execution is illustrated in Fig. 3.7. If the condition-1 is false, the statement-3 will be executed;

otherwise it continues to perform the second test. If the condition-2 is true, the statement-1 will be evaluated;

otherwise the statement-2 will be evaluated and then the control is transferred to the statement-x.

Fig. 3.7 Flow chart of nested if…else statements

A commercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The policy

is as follows: A bonus of 2 per cent of the balance held on 31st December is given to every one, irrespective

of their balance, and 5 per cent is given to female account holders if their balance is more than `5000. This

logic can be coded as follows:

 if (sex is female)
 {
 if (balance > 5000)
 bonus = 0.05 * balance;
 else
 bonus = 0.02 * balance;
 }
 else
 {
 bonus = 0.02 * balance;
 }
 balance = balance + bonus;

116 Programming for Problem Solving

When nesting, care should be exercised to match every if with an else. Consider the following alternative

to the above program (which looks right at the fi rst sight):

 if (sex is female)
 if (balance > 5000)
 bonus = 0.05 * balance;
 else

 bonus = 0.02 * balance;
 balance = balance + bonus;

There is an ambiguity as to over which if the else belongs to. In C, an else is linked to the closest non-

terminated if. Therefore, the else is associated with the inner if and there is no else option for the outer if. This

means that the computer is trying to execute the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.

Consider another alternative, which also looks correct:

 if (sex is female)

 {

 if (balance > 5000)

 bonus = 0.05 * balance;

 }

 else

 bonus = 0.02 * balance;

 balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the male account

holders. However, bonus for the female account holders, whose balance is equal to or less than 5000 is not

calculated because of the missing else option for the inner if.

workeD-out proBLem 3.4 h

The program in Fig. 3.8 selects and prints the largest of the three numbers using nested if....else statements.

 Program

 main()
 {
 fl oat A, B, C;
 printf(“Enter three values\n”);
 scanf(“%f %f %f”, &A, &B, &C);
 printf(“\nLargest value is “);
 if (A>B)
 {
 if (A>C)
 printf(“%f\n”, A);
 else
 printf(“%f\n”, C);
 }

Control Structure in C 117

 else
 {
 if (C>B)
 printf(“%f\n”, C);
 else
 printf(“%f\n”, B);
 }
 }

 Output

 Enter three values
 23445 67379 88843
 Largest value is 88843.000000

 Fig. 3.8 Selecting the largest of three numbers

Dangling else problem

One of the classic problems encountered when we start using nested if….else statements is the dangling else.

This occurs when a matching else is not available for an if. The answer to this problem is very simple. Always

match an else to the most recent unmatched if in the current block. In some cases, it is possible that the false

condition is not required. In such situations, else statement may be omitted

 “else is always paired with the most recent unpaired if”

THE ELSE IF LADDER

There is another way of putting ifs together when multipath decisions are involved. A multipath decision is a

chain of ifs in which the statement associated with each else is an if. It takes the following general form:

if (condition 1)

else if (condition 2)

else if (condition 3)

else if (condition n)

else

statement-1;

statement-2;

statement-3;

statement-n;

default-statement;

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from the top (of the ladder),

downwards. As soon as a true condition is found, the statement associated with it is executed and the control

is transferred to the statement-x (skipping the rest of the ladder). When all the n conditions become false, then

the fi nal else containing the default-statement will be executed. Fig. 3.9 shows the logic of execution of else

if ladder statements.

118 Programming for Problem Solving

statement - x

next statement

False

False

False

False

True

True

True

True

Entry

Condition-1

Condition-2

Condition-3

Condition-n

statement-2

statement-3

statement-n default
statement

statement-1

Fig. 3.9 Flow chart of else..if ladder

Let us consider an example of grading the students in an academic institution. The grading is done

according to the following rules:

 Average marks Grade

 80 to 100 Honours

 60 to 79 First Division

 50 to 59 Second Division

 40 to 49 Third Division

 0 to 39 Fail

This grading can be done using the else if ladder as follows:

 if (marks > 79)

 grade = “Honours”;

 else if (marks > 59)

 grade = “First Division”;

 else if (marks > 49)

 grade = “Second Division”;

 else if (marks > 39)

 grade = “Third Division”;

 else

Control Structure in C 119

 grade = “Fail”;

 printf (“%s\n”, grade);

Consider another example given below:

 — — — —
 — — — —
 if (code == 1)
 colour = “RED”;
 else if (code == 2)
 colour = “GREEN”;
 else if (code == 3)
 colour = “WHITE”;
 else

 colour = “YELLOW”;
 — — —
 — — —

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results can be

obtained by using nested if...else statements.

 if (code != 1)
 if (code != 2)
 if (code != 3)
 colour = “YELLOW”;
 else

 colour = “WHITE”;
 else

 colour = “GREEN”;
 else

 colour = “RED”;

In such situations, the choice is left to the programmer. However, in order to choose an if structure that

is both effective and effi cient, it is important that the programmer is fully aware of the various forms of an if

statement and the rules governing their nesting.

workeD-out proBLem 3.5 h

An electric power distribution company charges its domestic consumers as follows:

 Consumption Units Rate of Charge

 0 – 200 `0.50 per unit

 201 – 400 `100 plus `0.65 per unit excess of 200

 401 – 600 `230 plus `0.80 per unit excess of 400

 601 and above `390 plus `1.00 per unit excess of 600

The program in Fig. 3.10 reads the customer number and power consumed and prints the amount to be paid

by the customer.

 Program

 main()

 {

 int units, custnum;

120 Programming for Problem Solving

 fl oat charges;

 printf(“Enter CUSTOMER NO. and UNITS consumed\n”);

 scanf(“%d %d”, &custnum, &units);

 if (units <= 200)

 charges = 0.5 * units;

 else if (units <= 400)

 charges = 100 + 0.65 * (units - 200);

 else if (units <= 600)

 charges = 230 + 0.8 * (units - 400);

 else

 charges = 390 + (units - 600);

 printf(“\n\nCustomer No: %d: Charges = %.2f\n”,

 custnum, charges);

 }

 Output

 Enter CUSTOMER NO. and UNITS consumed 101 150

 Customer No:101 Charges = 75.00

 Enter CUSTOMER NO. and UNITS consumed 202 225

 Customer No:202 Charges = 116.25

 Enter CUSTOMER NO. and UNITS consumed 303 375

 Customer No:303 Charges = 213.75

 Enter CUSTOMER NO. and UNITS consumed 404 520

 Customer No:404 Charges = 326.00

 Enter CUSTOMER NO. and UNITS consumed 505 625

 Customer No:505 Charges = 415.00

 Fig. 3.10 Illustration of else..if ladder

rules for indentati on

When using control structures, a statement often controls many other statements that follow it. In such situations

it is a good practice to use indentation to show that the indented statements are dependent on the preceding

controlling statement. Some guidelines that could be followed while using indentation are listed below:

 ∑ Indent statements that are dependent on the previous statements; provide at least three spaces of

indentation.

 ∑ Align vertically else clause with their matching if clause.

 ∑ Use braces on separate lines to identify a block of statements.

 ∑ Indent the statements in the block by at least three spaces to the right of the braces.

 ∑ Align the opening and closing braces.

 ∑ Use appropriate comments to signify the beginning and end of blocks.

 ∑ Indent the nested statements as per the above rules.

 ∑ Code only one clause or statement on each line.

Control Structure in C 121

THE SWITCH STATEMEnT

We have seen that when one of the many alternatives is to be selected, we can use

an if statement to control the selection. However, the complexity of such a program

increases dramatically when the number of alternatives increases. The program

becomes diffi cult to read and follow. At times, it may confuse even the person who

designed it. Fortunately, C has a built-in multiway decision statement known as a

switch. The switch statement tests the value of a given variable (or expression) against a list of case values

and when a match is found, a block of statements associated with that case is executed. The general form of

the switch statement is as shown below:

 switch (expression)

 {

 case value-1:

 block-1

 break;

 case value-2:

 block-2

 break;

 default:

 default-block

 break;

 }

 statement-x;

The expression is an integer expression or characters. Value-1, value-2 are constants or constant

expressions (evaluable to an integral constant) and are known as case labels. Each of these values should

be unique within a switch statement. block-1, block-2 are statement lists and may contain zero or more

statements. There is no need to put braces around these blocks. Note that case labels end with a colon (:).

When the switch is executed, the value of the expression is successfully compared against the values

value-1, value-2,.... If a case is found whose value matches with the value of the expression, then the block of

statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit from

the switch statement, transferring the control to the statement-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression does not

match with any of the case values. If not present, no action takes place if all matches fail and the control goes

to the statement-x. (ANSI C permits the use of as many as 257 case labels).

The selection process of switch statement is illustrated in the fl ow chart shown in Fig. 3.11.

Lo 3.3

explain switch

statement

122 Programming for Problem Solving

Entry

statement-x

statement-x
switch

expression

Expression = value-1 block1

block2

default
block

Expression = value-2

(no match) default

Fig. 3.11 Selection process of the switch statement

The switch statement can be used to grade the students as discussed in the last section. This is illustrated

below:

 — — —

 — — —

 index = marks/10

 switch (index)

 {

 case 10:

 case 9:

 case 8:

 grade = “Honours”;
 break;
 case 7:

 case 6:

 grade = “First Division”;
 break;
 case 5:

 grade = “Second Division”;
 break;
 case 4:

 grade = “Third Division”;
 break;
 default:

 grade = “Fail”;
 break;
 }
 printf(“%s\n”, grade);

 — — —

 — — —

Control Structure in C 123

Note that we have used a conversion statement

index = marks / 10;

where, index is defined as an integer. The variable index takes the following integer values.

 Marks Index

 100 10

 90 - 99 9

 80 - 89 8

 70 - 79 7

 60 - 69 6

 50 - 59 5

 40 - 49 4

 . .

 . .

 0 0

This segment of the program illustrates two important features. First, it uses empty cases. The first three

cases will execute the same statements

grade = “Honours”;

break;

Same is the case with case 7 and case 6. Second, default condition is used for all other cases where marks

is less than 40.

The switch statement is often used for menu selection. For example:

 — — — —
 — — — —
 printf(“ TRAVEL GUIDE\n\n”);
 printf(“ A Air Timings\n”);
 printf(“ T Train Timings\n”);
 printf(“ B Bus Service\n”);
 printf(“ X To skip\n”);
 printf(“\n Enter your choice\n”);
 character = getchar();
 switch (character)
 {
 case ‘A’ :
 air-display();
 break;
 case ‘B’ :
 bus-display();
 break;
 case ‘T’ :
 train-display();
 break;
 default :
 printf(“ No choice\n”);
 }
 — — — —
 — — — —

124 Programming for Problem Solving

It is possible to nest the switch statements. That is, a switch may be part of a case statement. ANSI C

permits 15 levels of nesting.

rules for Switch Statement

 ∑ The switch expression must be an integral type.

 ∑ Case labels must be constants or constant expressions.

 ∑ Case labels must be unique. No two labels can have the same value.

 ∑ Case labels must end with colon.

 ∑ The break statement transfers the control out of the switch statement.

 ∑ The break statement is optional. That is, two or more case labels may belong to the same statements.

 ∑ The default label is optional. If present, it will be executed when the expression does not fi nd a matching

case label.

 ∑ There can be at most one default label.

 ∑ The default may be placed anywhere but usually placed at the end.

 ∑ It is permitted to nest switch statements.

workeD-out proBLem 3.6 e

Write a complete C program that reads a value in the range of 1 to 12 and print the name of that month and

the next month. Print error for any other input value.

 Program

 #include<stdio.h>

 #include<conio.h>

 #include<stdlib.h>

 void main()

 {

 char month[12][20] = {“January”,”February”,”March”,”April”,”May”,”June”,

 ”July”,”August”,”September”,”October”,”November”,”December”};

 int i;

 printf(“Enter the month value: ”);

 scanf(“%d”,&i);

 if(i<1 || i>12)

 {

 printf(“Incorrect value!!\nPress any key to terminate the program...”);

 getch();

 exit(0);

 }

 if(i!=12)

Control Structure in C 125

 printf(“%s followed by %s”,month[i-1],month[i]);

 else

 printf(“%s followed by %s”,month[i-1],month[0]);

 getch();

 }

 Output

 Enter the month value: 6

 June followed by July

 Fig. 3.12 Program to read and print name of months in the range of 1 and 12

THE ? : OPERATOR

The C language has an unusual operator, useful for making two-way decisions. This

operator is a combination of ? and :, and takes three operands. This operator is

popularly known as the conditional operator. The general form of use of the conditional

operator is as follows:

conditional expression ? expression1 : expression2

The conditional expression is evaluated fi rst. If the result is non-zero, expression1 is evaluated and is

returned as the value of the conditional expression. Otherwise, expression2 is evaluated and its value is

returned. For example, the segment

 if (x < 0)

 fl ag = 0;

 else

 fl ag = 1;

can be written as

fl ag = (x < 0) ? 0 : 1;

Consider the evaluation of the following function:

 y = 1.5x + 3 for x £ 2

 y = 2x + 5 for x > 2

This can be evaluated using the conditional operator as follows:

 y = (x > 2) ? (2 * x + 5) : (1.5 * x + 3);

The conditional operator may be nested for evaluating more complex assignment decisions. For example,

consider the weekly salary of a salesgirl who is selling some domestic products. If x is the number of products

sold in a week, her weekly salary is given by

 Salary =

4 100 40

300 40

4 5 150 40

x x

x

x x

+ <

=

+ <

Ï

Ì
Ô

Ó
Ô

for

for

for.

This complex equation can be written as

 salary = (x != 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

Lo 3.4

know conditi onal

operator

126 Programming for Problem Solving

The same can be evaluated using if...else statements as follows:

 if (x <= 40)

 if (x < 40)

 salary = 4 * x+100;

 else

 salary = 300;

 else

 salary = 4.5 * x+150;

When the conditional operator is used, the code becomes more concise and perhaps, more effi cient.

However, the readability is poor. It is better to use if statements when more than a single nesting of conditional

operator is required.

workeD-out proBLem 3.7 m

An employee can apply for a loan at the beginning of every six months, but he will be sanctioned the

amount according to the following company rules:

Rule 1: An employee cannot enjoy more than two loans at any point of time.

Rule 2: Maximum permissible total loan is limited and depends upon the category of the employee.

A program to process loan applications and to sanction loans is given in Fig. 3.13.

 Program

 #defi ne MAXLOAN 50000

 main()

 {

 long int loan1, loan2, loan3, sancloan, sum23;

 printf(“Enter the values of previous two loans:\n”);

 scanf(“ %ld %ld”, &loan1, &loan2);

 printf(“\nEnter the value of new loan:\n”);

 scanf(“ %ld”, &loan3);

 sum23 = loan2 + loan3;

 sancloan = (loan1>0)? 0 : ((sum23>MAXLOAN)?

 MAXLOAN - loan2 : loan3);

 printf(“\n\n”);

 printf(“Previous loans pending:\n%ld %ld\n”,loan1,loan2);

 printf(“Loan requested = %ld\n”, loan3);

 printf(“Loan sanctioned = %ld\n”, sancloan);

 }

 Output

 Enter the values of previous two loans:

 0 20000

 Enter the value of new loan:

 45000

Control Structure in C 127

 Previous loans pending:

 0 20000

 Loan requested = 45000

 Loan sanctioned = 30000

 Enter the values of previous two loans:

 1000 15000

 Enter the value of new loan:

 25000

 Previous loans pending:

 1000 15000

 Loan requested = 25000

 Loan sanctioned = 0

 Fig. 3.13 Illustration of the conditional operator

The program uses the following variables:

loan3 - present loan amount requested

loan2 - previous loan amount pending

loan1 - previous to previous loan pending

sum23 - sum of loan2 and loan3

sancloan - loan sanctioned

The rules for sanctioning new loan are:

 1. loan1 should be zero.

 2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.

workeD-out proBLem 3.8 m

Write a program to determine the Greatest Common Divisor (GCD) of two numbers.

 Algorithm

 Step 1 – Start

 Step 2 – Accept the two numbers whose GCD is to be found (num1, num2)

 Step 3 – Call function GCD(num1,num2)

 Step 4 – Display the value returned by the function call GCD(num1, num2)

 Step 5 – Stop

 GCD(a,b)

 Step 1 – Start

 Step 2 – If b > a goto Step 3 else goto Step 4

 Step 3 – Return the result of the function call GCD(b,a) to the calling function

 Step 4 – If b = 0 goto Step 5 else goto Step 6

 Step 5 – Return the value a to the calling function

 Step 6 – Return the result of the function call GCD(b,a mod b) to the calling function

128 Programming for Problem Solving

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <math.h>

 int GCD(int m, int n);

 void main()

Start

Read num1,.num2

Call GCD (num1, num2)

Stop

Display the return value of
GCD (num1, num2)

GCD (num1, num2)

Return
GCD (b, a%b)

Is b>a?

No

Is b=a? Return a

Return
GCD (b, a)

Yes

Yes

No

 {

 int num1,num2;

 clrscr();

 printf(“Enter the two numbers whose GCD is to be found: “);

 scanf(“%d %d”,&num1,&num2);

 printf(“\nGCD of %d and %d is %d\n”,num1,num2,GCD(num1,num2));

 getch();

 }

 int GCD(int a, int b)

 {

 if(b>a)

 return GCD(b,a);

 if(b==0)

 return a;

 else

 return GCD(b,a%b);

 }

Control Structure in C 129

 Output

 Enter the two numbers whose GCD is to be found: 18 12

 GCD of 18 and 12 is 6

 Fig. 3.14 Program to determine GCD of two numbers

Some guidelines for writi ng multi way Selecti on Statements

Complex multiway selection statements require special attention. The readers should be able to understand the

logic easily. Given below are some guidelines that would help improve readability and facilitate maintenance.

 ∑ Avoid compound negative statements. Use positive statements wherever possible.

 ∑ Keep logical expressions simple. We can achieve this using nested if statements, if necessary (KISS -

Keep It Simple and Short).

 ∑ Try to code the normal/anticipated condition fi rst.

 ∑ Use the most probable condition fi rst. This will eliminate unnecessary tests, thus improving the effi ciency

of the program.

 ∑ The choice between the nested if and switch statements is a matter of individual’s preference.

A good rule of thumb is to use the switch when alter-native paths are three to ten.

 ∑ Use proper indentations (See Rules for Indentation).

 ∑ Have the habit of using default clause in switch statements.

 ∑ Group the case labels that have similar actions.

THE GOTO STATEMEnT

So far we have discussed ways of controlling the fl ow of execution based on certain

specifi ed conditions. Like many other languages, C supports the goto statement to

branch unconditionally from one point to another in the program. Although it may not

be essential to use the goto statement in a highly structured language like C, there

may be occasions when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be

made. A label is any valid variable name, and must be followed by a colon. The label

is placed immediately before the statement where the control is to be transferred. The general forms of goto

and label statements are shown below:

goto label;

goto label;

label:
statement;

Forward jump Backward jump

label:
statement;

The label: can be anywhere in the program either before or after the goto label; statement.

During running of a program when a statement like

goto begin;

is met, the fl ow of control will jump to the statement immediately following the label begin:. This happens

unconditionally.

Lo 3.5

illustrate how goto

statement is used

for unconditi onal

branching

130 Programming for Problem Solving

Note that a goto breaks the normal sequential execution of the program. If the label: is before the statement

goto label; a loop will be formed and some statements will be executed repeatedly. Such a jump is known as a

backward jump. On the other hand, if the label: is placed after the goto label; some statements will be skipped

and the jump is known as a forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to read further

data. Consider the following example:

 main()

 {

 double x, y;

 read:

 scanf(“%f”, &x);

 if (x < 0) goto read;

 y = sqrt(x);

 printf(“%f %f\n”, x, y);

 goto read;

 }

This program is written to evaluate the square root of a series of numbers read from the terminal. The

program uses two goto statements, one at the end, after printing the results to transfer the control back to the

input statement and the other to skip any further computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred back to the input

statement. In fact, this program puts the computer in a permanent loop known as an infi nite loop. The computer

goes round and round until we take some special steps to terminate the loop. Such infi nite loops should be

avoided. Worked-Out Problem 3.9 illustrates how such infi nite loops can be eliminated.

workeD-out proBLem 3.9 e

Program presented in Fig. 3.15 illustrates the use of the goto statement. The program evaluates the

square root for fi ve numbers. The variable count keeps the count of numbers read. When count is less than

or equal to 5, goto read; directs the control to the label read; otherwise, the program prints a message

and stops.

 Program

 #include <math.h>

 main()

 {

 double x, y;

 int count;

 count = 1;

 printf(“Enter FIVE real values in a LINE \n”);

 read:

 scanf(“%lf”, &x);

 printf(“\n”);

 if (x < 0)

 printf(“Value - %d is negative\n”,count);

Control Structure in C 131

 else

 {

 y = sqrt(x);

 printf(“%lf\t %lf\n”, x, y);

 }

 count = count + 1;

 if (count <= 5)

 goto read;

 printf(“\nEnd of computation”);

 }

 Output

 Enter FIVE real values in a LINE

 50.70 40 -36 75 11.25

 50.750000 7.123903

 40.000000 6.324555

 Value -3 is negative

 75.000000 8.660254

 11.250000 3.354102

 End of computation

 Fig. 3.15 Use of the goto statement

Another use of the goto statement is to transfer the control out of a loop (or nested loops) when certain

peculiar conditions are encountered. Example:

 — — — —

 — — — —

 while (— — — —)

 {

 for (— — — —)

 {

 — — — —

 — — — —

 if (— — — —)goto end_of_program;

 — — — —

 } Jumping

 — — — — out of

 — — — — loops

 }

 end_of_program:

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it to enhance the

readability of the program or to improve the execution speed.

132 Programming for Problem Solving

key ConCeptS

• DeCiSion-making StatementS: Are the statements that control the flow of execution in a program.

[Lo 3.1]

• SwitCh Statement: Is a multi-way decision making statement that chooses the statement block to be executed

by matching the given value with a list of case values. [Lo 3.3]

• ConDitionaL operator: Is a two-way decision making statement that returns one of the two expression values

based on the result of the conditional expression. [Lo 3.4]

• goto Statement: Is used for unconditional branching. It transfers the flow of control to the place where

matching label is found. [Lo 3.5]

• infinite Loop: Is a condition where a set of instructions is repeatedly executed. [Lo 3.5]

aLwayS rememBer

∑ Be aware of any side effects in the control expression such as if(x++). [Lo 3.1]

∑ Check the use of =operator in place of the equal operator = =. [Lo 3.1]

∑ Do not give any spaces between the two symbols of relational operators = =, !=, >= and <=. [Lo 3.1]

∑ Writing !=, >= and <= operators like =!, => and =< is an error. [Lo 3.1]

∑ Remember to use two ampersands (&&) and two bars (| ||) for logical operators. Use of single operators

will result in logical errors. [Lo 3.1]

∑ Do not forget to place parentheses for the if expression. [Lo 3.1]

∑ It is an error to place a semicolon after the if expression. [Lo 3.1]

∑ Do not use the equal operator to compare two floating-point values. They are seldom exactly equal.

 [Lo 3.1]

∑ Avoid using operands that have side effects in a logical binary expression such as (x– –&&++y). The

second operand may not be evaluated at all. [Lo 3.1]

∑ Be aware of dangling else statements. [Lo 3.2]

∑ Use braces to encapsulate the statements in if and else clauses of an if…. else statement. [Lo 3.2]

∑ Do not forget to use a break statement when the cases in a switch statement are exclusive.

[Lo 3.3]

∑ Although it is optional, it is a good programming practice to use the default clause in a switch statement.

[Lo 3.3]

∑ It is an error to use a variable as the value in a case label of a switch statement. (Only integral constants

are allowed.) [Lo 3.3]

∑ Do not use the same constant in two case labels in a switch statement. [Lo 3.3]

∑ Try to use simple logical expressions. [Lo 3.4]

∑ Be careful while placing a goto label in a program as it may lead to an infinite loop condition.

 [Lo 3.5]

Brief CaSeS

1. Range of Numbers [LO 3.1, 3.2 M]

Problem: A survey of the computer market shows that personal computers are sold at varying costs by the

vendors. The following is the list of costs (in hundreds) quoted by some vendors:

Control Structure in C 133

 35.00, 40.50, 25.00, 31.25, 68.15,

 47.00, 26.65, 29.00 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series of values.

The range of any series is the difference between the highest and the lowest values in the series. That is

Range = highest value – lowest value

It is therefore necessary to find the highest and the lowest values in the series.

Program: A program to determine the range of values and the average cost of a personal computer in the

market is given in Fig. 3.16.

 Program

 main()

 {

 int count;

 float value, high, low, sum, average, range;

 sum = 0;

 count = 0;

 printf(“Enter numbers in a line :

 input a NEGATIVE number to end\n”);

 input:

 scanf(“%f”, &value);

 if (value < 0) goto output;

 count = count + 1;

 if (count == 1)

 high = low = value;

 else if (value > high)

 high = value;

 else if (value < low)

 low = value;

 sum = sum + value;

 goto input;

 Output:

 average = sum/count;

 range = high - low;

 printf(“\n\n”);

 printf(“Total values : %d\n”, count);

 printf(“Highest-value: %f\nLowest-value : %f\n”,

 high, low);

 printf(“Range : %f\nAverage : %f\n”,

 range, average);

 }

134 Programming for Problem Solving

 Output

 Enter numbers in a line : input a NEGATIVE number to end

 35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

 Total values : 10

 Highest-value : 68.150002

 Lowest-value : 25.000000

 Range : 43.150002

 Average : 41.849998

 Fig. 3.16 Calculation of range of values

When the value is read the first time, it is assigned to two buckets, high and low, through the statement

high = low = value;

For subsequent values, the value read is compared with high; if it is larger, the value is assigned to high.

Otherwise, the value is compared with low; if it is smaller, the value is assigned to low. Note that at a given

point, the buckets high and low hold the highest and the lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is transferred out of

the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;

Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations [LO 3.2, 3.5 M]

Problem: A manufacturing company has classified its executives into four levels for the benefit of certain

perks. The levels and corresponding perks are shown below:

Level
Perks

Conveyance allowance Entertainment allowance

1 1000 500

2 750 200

3 500 100

4 250 –

An executive’s gross salary includes basic pay, house rent allowance at 25% of basic pay and other perks.

Income tax is withheld from the salary on a percentage basis as follows:

Gross salary Tax rate

Gross <= 2000 No tax deduction

2000 < Gross <= 4000 3%

4000 < Gross <= 5000 5%

Gross > 5000 8%

Write a program that will read an executive’s job number, level number, and basic pay and then compute the net salary

after withholding income tax.

Control Structure in C 135

Problem analysis:

Gross salary = basic pay + house rent allowance + perks

Net salary = Gross salary – income tax.

The computation of perks depends on the level, while the income tax depends on the gross salary. The

major steps are:

 1. Read data.

 2. Decide level number and calculate perks.

 3. Calculate gross salary.

 4. Calculate income tax.

 5. Compute net salary.

 6. Print the results.

Program: A program and the results of the test data are given in Fig. 3.17. Note that the last statement should

be an executable statement. That is, the label stop: cannot be the last line.

 Program

 #define CA1 1000

 #define CA2 750

 #define CA3 500

 #define CA4 250

 #define EA1 500

 #define EA2 200

 #define EA3 100

 #define EA4 0

 main()

 {

 int level, jobnumber;

 float gross,

 basic,

 house_rent,

 perks,

 net,

 incometax;

 input:

 printf(“\nEnter level, job number, and basic pay\n”);

 printf(“Enter 0 (zero) for level to END\n\n”);

 scanf(“%d”, &level);

 if (level == 0) goto stop;

 scanf(“%d %f”, &jobnumber, &basic);

 switch (level)

 {

 case 1:

 perks = CA1 + EA1;

 break;

136 Programming for Problem Solving

 case 2:

 perks = CA2 + EA2;

 break;

 case 3:

 perks = CA3 + EA3;

 break;

 case 4:

 perks = CA4 + EA4;

 break;

 default:

 printf(“Error in level code\n”);

 goto stop;

 }

 house_rent = 0.25 * basic;

 gross = basic + house_rent + perks;

 if (gross <= 2000)

 incometax = 0;

 else if (gross <= 4000)

 incometax = 0.03 * gross;

 else if (gross <= 5000)

 incometax = 0.05 * gross;

 else

 incometax = 0.08 * gross;

 net = gross - incometax;

 printf(“%d %d %.2f\n”, level, jobnumber, net);

 goto input;

 stop: printf(“\n\nEND OF THE PROGRAM”);

 }

 Output

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 1 1111 4000

 1 1111 5980.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 2 2222 3000

 2 2222 4465.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 3 3333 2000

 3 3333 3007.00

 Enter level, job number, and basic pay

Control Structure in C 137

 Enter 0 (zero) for level to END

 4 4444 1000

 4 4444 1500.00

 Enter level, job number, and basic pay

 Enter 0 (zero) for level to END

 0

 END OF THE PROGRAM

 Fig. 3.17 Pay-bill calculations

review QueStionS

 3.1 State whether the following are true or false:

 (a) A switch expression can be of any type. [LO 3.3 E]

 (b) A program stops its execution when a break statement is encountered. [LO 3.3 E]

 (c) Each case label can have only one statement. [LO 3.3 E]

 (d) The default case is required in the switch statement. [LO 3.3 E]

 (e) When if statements are nested, the last else gets associated with the nearest if without an else.
[LO 3.2 M]

 (f) One if can have more than one else clause. [LO 3.2 M]

 (g) Each expression in the else if must test the same variable. [LO 3.2 M]

 (h) A switch statement can always be replaced by a series of if..else statements. [LO 3.3 M]

 (i) Any expression can be used for the if expression. [LO 3.1 H]

 (j) The predicate !((x >= 10)¦(y = = 5)) is equivalent to (x < 10) && (y !=5). [LO 3.1 H]

 3.2 Fill in the blanks in the following statements.

 (a) The _______ operator is true only when both the operands are true. [LO 3.1 E]

 (b) Multiway selection can be accomplished using an else if statement or the __________ statement.
[LO 3.3 E]

 (c) The ______ statement when executed in a switch statement causes immediate exit from the

structure. [LO 3.3 E]

 (d) The expression ! (x ! = y) can be replaced by the expression ________. [LO 3.1 M]

 (e) The ternary conditional expression using the operator ?: could be easily coded using ______

statement. [LO 3.4 M]

 3.3 The following is a segment of a program: [LO 3.1 M]

 x = 1;

 y = 1;

 if (n > 0)

 x = x + 1;

 y = y - 1;

 printf(“ %d %d”, x, y);

 What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.

 3.4 Rewrite each of the following without using compound relations:

 (a) if (grade <= 59 && grade >= 50) [LO 3.1 E]

 second = second + 1;

138 Programming for Problem Solving

 (b) if (number > 100 || number < 0) [LO 3.2 M]

 printf(“ Out of range”);

 else

 sum = sum + number;

 (c) if ((M1 > 60 && M2 > 60) || T > 200) [LO 3.2 M]

 printf(“ Admitted\n”);

 else

 printf(“ Not admitted\n”);

 3.5 Assuming x = 10, state whether the following logical expressions are true or false. [LO 3.1 H]

 (a) x = = 10 && x > 10 && !x (b) x = = 10 || x > 10 && ! x

 (c) x = = 10 && x > 10 || ! x (d) x = = 10 || x > 10 || !x

 3.6 Find errors, if any, in the following switch related statements. Assume that the variables x and y are of

int type and x = 1 and y = 2 [LO 3.3 H]

 (a) switch (y);

 (b) case 10;

 (c) switch (x + y)

 (d) switch (x) {case 2: y = x + y; break};

 3.7 Simplify the following compound logical expressions [LO 3.1 M]

 (a) !(x <=10) (b) !(x = = 10) ||! ((y = = 5) || (z < 0))

 (c) ! ((x +y = = z) && !(z > 5) (d) !((x <=5) && (y = = 10) & & (z < 5))

 3.8 Assuming that x = 5, y = 0, and z = 1 initially, what will be their values after executing the following code

segments? [LO 3.2 M]

 (a) if (x && y)

 x = 10;

 else

 y = 10;

 (b) if (x || y || z)

 y = 10;

 else

 z = 0;

 (c) if (x)

 if (y)

 z = 10;

 else

 z = 0;

 (d) if (x = = 0 || x & & y)

 if (!y)

 z = 0;

 else

 y = 1;

Control Structure in C 139

 3.9 Assuming that x = 2, y = 1 and z = 0 initially, what will be their values after executing the following code

segments? [LO 3.3 M]

 (a) switch (x)

 {

 case 2:

 x = 1;

 y = x + 1;

 case 1:

 x = 0;

 break;

 default:

 x = 1;

 y = 0;

 }

 (b) switch (y)

 {

 case 0:

 x = 0;

 y = 0;

 case 2:

 x = 2;

 z = 2;

 default:

 x = 1;

 y = 2;

 }

 3.10 What is the output of the following program? [LO 3.2 M]

 main ()

 {

 int m = 5 ;

 if (m < 3) printf(“%d” , m+1) ;

 else if(m < 5) printf(“%d”, m+2);

 else if(m < 7) printf(“%d”, m+3);

 else printf(“%d”, m+4);

 }

 3.11 What is the output of the following program? [LO 3.2 M]

 main ()

 {

 int m = 1;

 if (m==1)

 {

 printf (“ Delhi “) ;

 if (m == 2)

 printf(“Chennai”) ;

 else

 printf(“Bangalore”) ;

 }

140 Programming for Problem Solving

 else;

 printf(“ END”);

 }

 3.12 What is the output of the following program? [LO 3.4 M]

 main()

 {

 int m ;

 for (m = 1; m<5; m++)

 printf(%d\n”, (m%2) ? m : m*2);

 }

 3.13 What is the output of the following program? [LO 3.5 M]

 main()

 {
 int m, n, p ;
 for (m = 0; m < 3; m++)
 for (n = 0; n<3; n++)
 for (p = 0; p < 3;; p++)
 if (m + n + p == 2)
 goto print;

 print :
 printf(“%d, %d, %d”, m, n, p);
 }

 3.14 What will be the value of x when the following segment is executed? [LO 3.4 E]

 int x = 10, y = 15;

 x = (x<y)? (y+x) : (y-x) ;

 3.15 What will be the output when the following segment is exe cuted? [LO 3.2 M]

 int x = 0;

 if (x >= 0)

 if (x > 0)

 printf(“Number is positive”);

 else

 printf(“Number is negative”);

 3.16 What will be the output when the following segment is exe cuted? [LO 3.3 M]

 char ch = ‘a’ ;

 switch (ch)

 {

 case ‘a’ :

 printf(“A”) ;

 case‘b’:

 Printf (“B”) ;

 default :

 printf(“ C “) ;

 }

Control Structure in C 141

 3.17 What will be the output of the following segment when exe cuted? [LO 3.2 E]

 int x = 10, y = 20;

 if((x<y) || (x+5) > 10)

 printf(“%d”, x);

 else

 printf(“%d”, y);

 3.18 What will be output of the following segment when executed? [LO 3.2 M]

 int a = 10, b = 5;

 if (a > b)

 {

 if(b > 5)

 printf(“%d”, b);

 }

 else

 printf(“%d”, a);

DeBugging exerCiSeS

 3.1 Find errors, if any, in each of the following segments:

 (a) if (x + y = z && y > 0) [LO 3.1 E]

 printf(“ “);

 (b) if (p < 0) || (q < 0) [LO 3.1 E]

 printf (“ sign is negative”);

 (c) if (code > 1); [LO 3.2 M]

 a = b + c

 else

 a = 0

 3.2 Find the error, if any, in the following statements: [LO 3.1 H]

 (a) if (x > = 10) then

 printf (“\n”) ;

 (b) if x > = 10

 printf (“OK”) ;

 (c) if (x = 10)

 printf (“Good”) ;

 (d) if (x = < 10)

 printf (“Welcome”) ;

programming exerCiSeS

 3.1 Write a program to determine whether a given number is ‘odd’ or ‘even’ and print the message

 NUMBER IS EVEN

 or

 NUMBER IS ODD

 (a) without using else option [LO 3.1 E], and (b) with else option. [LO 3.2 E]

142 Programming for Problem Solving

 3.2 Write a program to find the number of and sum of all integers greater than 100 and less than 200 that

are divisible by 7. [LO 3.1 M]

 3.3 A set of two linear equations with two unknowns x1 and x2 is given below: [LO 3.2 H]

 ax1 + bx2 = m

 cx1 + dx2 = n

 The set has a unique solution

 x1 =
md bn

ad cb

-

-

 x2 =
na mc

ad cb

-

-

 provided the denominator ad – cb is not equal to zero.

 Write a program that will read the values of constants a, b, c, d, m, and n and compute the values of x1 and

x2. An appropriate message should be printed if ad – cb = 0.

 3.4 Given a list of marks ranging from 0 to 100, write a program to compute and print the number of

students: [LO 3.2 M]

 (a) who have obtained more than 80 marks,

 (b) who have obtained more than 60 marks,

 (c) who have obtained more than 40 marks,

 (d) who have obtained 40 or less marks,

 (e) in the range 81 to 100,

 (f) in the range 61 to 80,

 (g) in the range 41 to 60, and

 (h) in the range 0 to 40.

 The program should use a minimum number of if statements.

 3.5 Admission to a professional course is subject to the following conditions: [LO 3.2 M]

 (a) Marks in Mathematics >= 60

 (b) Marks in Physics >= 50

 (c) Marks in Chemistry >= 40

 (d) Total in all three subjects >= 200

 or

 Total in Mathematics and Physics >= 150

 Given the marks in the three subjects, write a program to process the applications to list the eligible

candidates.

 3.6 Write a program to print a two-dimensional Square Root Table as shown below, to provide the square

root of any number from 0 to 9.9. For example, the value x will give the square root of 3.2 and y the

square root of 3.9. [LO 3.2 H]

Square Root Table

Number 0.0 0.1 0.2 0.9

0.0

1.0

2.0

3.0 x y

9.0

Control Structure in C 143

 3.7 Shown below is a Floyd’s triangle. [LO 3.2 H]

 1

 2 3

 4 5 6

 7 8 9 10

 11 15

 .

 .

 79 91

 (a) Write a program to print this triangle.

 (b) Modify the program to produce the following form of Floyd’s triangle.

 1

 0 1

 1 0 1

 0 1 0 1

 1 0 1 0 1

 3.8 A cloth showroom has announced the following seasonal discounts on purchase of items:

[LO 3.1, 3.3 H]

Purchase amount Discount

Mill cloth Handloom items

0 – 100 – 5%

101 – 200 5% 7.5%

201 – 300 7.5% 10.0%

Above 300 10.0% 15.0%

 Write a program using switch and if statements to compute the net amount to be paid by a customer.

 3.9 Write a program that will read the value of x and evaluate the following function

 y =

1 0

0 0

1 0

for x

for x

for x

<

=

- <

Ï

Ì
Ô

Ó
Ô

 using

 (a) nested if statements, [LO 3.1 M]

 (b) else if statements, and [LO 3.2 M]

 (c) conditional operator ? : [LO 3.4 M]

 3.10 Write a program to compute the real roots of a quadratic equation [LO 3.2 H]

 ax2 + bx + c = 0

 The roots are given by the equations

 x1 = – b +
b ac

a

2
4

2

-

 x2 = – b –
b ac

a

2
4

2

-

144 Programming for Problem Solving

 The program should request for the values of the constants a, b and c and print the values of x1 and

x2. Use the following rules:

 (a) No solution, if both a and b are zero

 (b) There is only one root, if a = 0 (x = –c/b)

 (c) There are no real roots, if b2 – 4 ac is negative

 (d) Otherwise, there are two real roots

 Test your program with appropriate data so that all logical paths are working as per your design.

Incorporate appropriate output messages.

 3.11 Write a program to read three integer values from the keyboard and displays the output stating that

they are the sides of right-angled triangle. [LO 3.2 M]

 3.12 An electricity board charges the following rates for the use of electricity: [LO 3.2 H]

 For the first 200 units: 80 P per unit

 For the next 100 units: 90 P per unit

 Beyond 300 units: `1.00 per unit

 All users are charged a minimum of `100 as meter charge. If the total amount is more than Rs. 400,

then an additional surcharge of 15% of total amount is charged.

 Write a program to read the names of users and number of units consumed and print out the charges

with names.

 3.13 Write a program to compute and display the sum of all inte gers that are divisible by 6 but not divisible

by 4 and lie between 0 and 100. The program should also count and display the number of such

values. [LO 3.2 M]

 3.14 Write an interactive program that could read a positive integer number and decide whether the number

is a prime number and display the output accordingly. [LO 3.2 M]

 Modify the program to count all the prime numbers that lie bet ween 100 and 200.

 NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.

 3.15 Write a program to read a double-type value x that repre sents angle in radians and a character-type

variable T that represents the type of trigonometric function and display the value of

 (a) sin(x), if s or S is assigned to T,

 (b) cos (x), if c or C is assigned to T, and

 (c) tan (x), if t or T is assigned to T

 using (i) if......else statement [LO 3.2 M], and (ii) switch statement. [LO 3.3 M]

Array & String
Chapter

4

LEARNING OBJECTIVES

 LO 4.1 Defi ne the concept of arrays

 LO 4.2 Determine how one-dimensional array is declared and initi alized

 LO 4.3 Know the concept of two-dimensional arrays

 LO 4.4 Discuss how two-dimensional array is declared and initi alized

 LO 4.5 Describe multi -dimensional arrays

 LO 4.6 Explain dynamic arrays

 LO 4.7 Discuss how string variables are declared and initi alized

 LO 4.8 Explain how strings are read from terminal

 LO 4.9 Describe how strings are writt en to screen

 LO 4.10 Illustrate how strings are manipulated

introduction
So far we have used only the fundamental data types, namely char, int, fl oat, double and variations of int and

double. Although these types are very useful, they are constrained by the fact that a variable of these types

can store only one value at any given time. Therefore, they can be used only to handle limited amounts of

data. In many applications, however, we need to handle a large volume of data in terms of reading, processing

and printing. To process such large amounts of data, we need a powerful data type that would facilitate

effi cient storing, accessing and manipulation of data items. C supports a derived data type known as array

that can be used for such applications.

An array is a fi xed-size sequenced collection of elements of the same data type. It is simply a grouping

of like-type data. In its simplest form, an array can be used to represent a list of numbers, or a list of names.

Some examples where the concept of an array can be used:

 ∑ List of temperatures recorded every hour in a day, or a month, or a year.

 ∑ List of employees in an organization.

 ∑ List of products and their cost sold by a store.

 ∑ Test scores of a class of students.

 ∑ List of customers and their telephone numbers.

 ∑ Table of daily rainfall data.

and so on.

introduction
So far we have used only the fundamental data types, namely

double. Although these types are very useful, they are constrained by the fact that a variable of these types

146 Programming for Problem Solving

Since an array provides a convenient structure for representing data, it is classifi ed as one of the data

structures in C. Other data structures include structures, lists, queues and trees. A complete discussion of all

data structures is beyond the scope of this text. However, we shall consider structures in Chapter 7 and lists

in Chapter 8.

As we mentioned earlier, an array is a sequenced collection of related data items that share a common

name. For instance, we can use an array name salary to represent a set of salaries of a group of employees

in an organization. We can refer to the individual salaries by writing a number called index or subscript in

brackets after the array name. For example,

 salary [10]
represents the salary of 10th employee. While the complete set of values is referred to as an array, individual

values are called elements.

The ability to use a single name to represent a collection of items and to refer to an item by specifying the

item number enables us to develop concise and effi cient programs. For example, we can use a loop construct,

discussed earlier, with the subscript as the control variable to read the entire array, perform calculations, and

print out the results.

We can use arrays to represent not only simple lists of values but also tables of data in two, three or more

dimensions.

In this chapter, we introduce the concept of an array and discuss how to use it to create and apply the

following types of arrays.

 ∑ One-dimensional arrays

 ∑ Two-dimensional arrays

 ∑ Multidimensional arrays

A string is a sequence of characters that is treated as a single data item. We have used strings in a number of

examples in the past. Any group of characters (except double quote sign) defi ned between double quotation

marks is a string constant. Example:

Character strings are often used to build meaningful and readable programs. The common operations

performed on character strings include the following:

“Man is obviously made to think.”

If we want to include a double quote in the string to be printed, then we may use it with a back slash as

shown below.

 “\” Man is obviously made to think,\” said Pascal.”

For example,

printf (“\” Well Done !”\”);
will output the string

“ Well Done !”
while the statement

printf(“ Well Done !”);
will output the string

Well Done!

 ∑ Reading and writing strings.

 ∑ Combining strings together.

 ∑ Copying one string to another.

 ∑ Comparing strings for equality.

 ∑ Extracting a portion of a string.

In this chapter, we shall discuss these operations in detail and examine library functions that implement

them.

In this chapter, we shall discuss these operations in detail and examine library functions that implement

Array & String 147

data Structures

C supports a rich set of derived and user-defi ned data types in addition to a variety of fundamental types as

shown below:

 - Arrays - Integral Types - Structures

 - Functions - Float Types - Unions

 - Pointers - Character Types - Enumerations

Arrays and structures are referred to as structured data types because they can be used to represent

data values that have a structure of some sort. Structured data types provide an organizational scheme

that shows the relationships among the individual elements and facilitate effi cient data manipulations. In

programming parlance, such data types are known as data structures.

In addition to arrays and structures, C supports creation and manipulation of the following data structures:

 ∑ Linked Lists

 ∑ Stacks

 ∑ Queues

 ∑ Trees

ONe-DIMeNSIONAL ARRAYS

A list of items can be given one variable name using only one subscript and such

a variable is called a single-subscripted variable or a one-dimensional array.

In mathematics, we often deal with variables that are single-subscripted. For

instance, we use the equation

A =

x

n

i

i =

n

1

Â

to calculate the average of n values of x. The subscripted variable xi refers to the ith element of x. In C, single-

subscripted variable xi can be expressed as

x[1], x[2], x[3],.........x[n]

The subscript can begin with number 0. That is

x[0]

is allowed. For example, if we want to represent a set of fi ve numbers, say (35, 40, 20, 57, 19), by an array

variable number, then we may declare the variable number as follows

int number[5];
and the computer reserves fi ve storage locations as shown below:

Lo 4.1

defi ne the concept of

arrays

148 Programming for Problem Solving

number [0]

number [1]

number [2]

number [3]

number [4]

The values to the array elements can be assigned as follows:

 number[0] = 35;

 number[1] = 40;

 number[2] = 20;

 number[3] = 57;

 number[4] = 19;
This would cause the array number to store the values as shown below:

number [0]

number [1]

number [2]

number [3]

number [4]

35
40
20
57
19

These elements may be used in programs just like any other C variable. For example, the following are

valid statements:

 a = number[0] + 10;

 number[4] = number[0] + number [2];

 number[2] = x[5] + y[10];

 value[6] = number[i] * 3;
The subscripts of an array can be integer constants, integer variables like i, or expressions that yield

integers. C performs no bounds checking and, therefore, care should be exercised to ensure that the array

indices are within the declared limits.

DeCLARATION OF ONe-DIMeNSIONAL ARRAYS

Like any other variable, arrays must be declared before they are used so that

the compiler can allocate space for them in memory. The general form of array

declaration is

type variable-name[size];

The type specifi es the type of element that will be contained in the array,

such as int, fl oat, or char and the size indicates the maximum number of elements that can be stored inside

the array. For example,

fl oat height[50];
declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are valid. Similarly,

int group[10];
declares the group as an array to contain a maximum of 10 integer constants. Remember:

 ∑ Any reference to the arrays outside the declared limits would not necessarily cause an error. Rather,

it might result in unpredictable program results.

 ∑ The size should be either a numeric constant or a symbolic constant.

Lo 4.2

determine how one-

dimensional array is

declared and initi alized

Array & String 149

The C language treats character strings simply as arrays of characters. The size in a character string

represents the maximum number of characters that the string can hold. For instance,

char name[10];
declares the name as a character array (string) variable that can hold a maximum of 10 characters. Suppose

we read the following string constant into the string variable name.

“WELL DONE”

Each character of the string is treated as an element of the array name and is stored in the memory as follows:

‘W’

‘E’

‘L’

‘L’

‘ ‘

‘D’

‘O’

‘N’

‘E’

‘\0’

When the compiler sees a character string, it terminates it with an additional null character. Thus, the

element name[10] holds the null character ‘\0’. When declaring character arrays, we must allow one extra

element space for the null terminator.

worked-out proBLem 4.1 e

Write a program using a single-subscripted variable to evaluate the following expressions:

Total = x
i

i =

2

1

10

Â
The values of x1,x2,....are read from the terminal.

Program in Fig. 4.1 uses a one-dimensional array x to read the values and compute the sum of their squares.

 Program

 main()

 {

 int i ;

 fl oat x[10], value, total ;

 /*READING VALUES INTO ARRAY */

 printf(“ENTER 10 REAL NUMBERS\n”) ;

E for Easy, M for Medium and H for High

150 Programming for Problem Solving

 for(i = 0 ; i < 10 ; i++)

 {

 scanf(“%f”, &value) ;

 x[i] = value ;

 }

 /*COMPUTATION OF TOTAL*/

 total = 0.0 ;

 for(i = 0 ; i < 10 ; i++)

 total = total + x[i] * x[i] ;

 /*. . . . PRINTING OF x[i] VALUES AND TOTAL . . . */

 printf(“\n”);

 for(i = 0 ; i < 10 ; i++)

 printf(“x[%2d] = %5.2f\n”, i+1, x[i]) ;

 printf(“\ntotal = %.2f\n”, total) ;

 }

 Output

 ENTER 10 REAL NUMBERS

 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10

 x[1] = 1.10

 x[2] = 2.20

 x[3] = 3.30

 x[4] = 4.40

 x[5] = 5.50

 x[6] = 6.60

 x[7] = 7.70

 x[8] = 8.80

 x[9] = 9.90

 x[10] = 10.10

 Total = 446.86

 Fig. 4.1 Program to illustrate one-dimensional array

 Note C99 permits arrays whose size can be specifi ed at run time.

Array & String 151

INITIALIZATION OF ONe-DIMeNSIONAL ARRAYS

After an array is declared, its elements must be initialized. Otherwise, they will contain “garbage”. An array can

be initialized at either of the following stages:

 ∑ At compile time

 ∑ At run time

Compile time initi alizati on

We can initialize the elements of arrays in the same way as the ordinary variables when they are declared.

The general form of initialization of arrays is:

type array-name[size] = { list of values };

The values in the list are separated by commas. For example, the statement

int number[3] = { 0,0,0 };

will declare the variable number as an array of size 3 and will assign zero to each element. If the number of

values in the list is less than the number of elements, then only that many elements will be initialized. The

remaining elements will be set to zero automatically. For instance,

fl oat total[5] = {0.0,15.75,–10};

will initialize the fi rst three elements to 0.0, 15.75, and –10.0 and the remaining two elements to zero.

The size may be omitted. In such cases, the compiler allocates enough space for all initialized elements.

For example, the statement

int counter[] = {1,1,1,1};
will declare the counter array to contain four elements with initial values 1. This approach works fi ne as long

as we initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus, the statement

char name[] = {‘J’,‘o’, ‘h’, ‘n’, ‘\0’};
declares the name to be an array of fi ve characters, initialized with the string “John” ending with the null

character. Alternatively, we can assign the string literal directly as under:

char name [] = “John”;

Compile time initialization may be partial. That is, the number of initializers may be less than the declared

size. In such cases, the remaining elements are inilialized to zero, if the array type is numeric and NULL if the

type is char. For example,

int number [5] = {10, 20};
will initialize the fi rst two elements to 10 and 20 respectively, and the remaining elements to 0. Similarly, the

declaration.

char city [5] = {‘B’};
will initialize the fi rst element to ‘B’ and the remaining four to NULL. It is a good idea, however, to declare the

size explicitly, as it allows the compiler to do some error checking.

Remember, however, if we have more initializers than the declared size, the compiler will produce an error.

That is, the statement

int number [3] = {10, 20, 30, 40};
will not work. It is illegal in C.

run time initi alizati on

An array can be explicitly initialized at run time. This approach is usually applied for initializing large arrays.

For example, consider the following segment of a C program.

152 Programming for Problem Solving

 – – ––– – ––

 – – ––– – ––

 for (i = 0; i < 100; i = i+1)

 {

 if i < 50

 sum[i] = 0.0; /* assignment statement */

 else

 sum[i] = 1.0;

 }

 – – ––– – ––

 – – ––– – ––
The fi rst 50 elements of the array sum are initialized to zero while the remaining 50 elements are initialized

to 1.0 at run time.

We can also use a read function such as scanf to initialize an array. For example, the statements

 int x [3];

 scanf(“%d%d%d”, &x[0], &[1], &x[2]);
will initialize array elements with the values entered through the keyboard.

worked-out proBLem 4.2 m

Given below is the list of marks obtained by a class of 50 students in an annual examination.

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74 81 49 37

40 49 16 75 87 91 33 24 58 78 65 56 76 67 45 54 36 63 12 21

73 49 51 19 39 49 68 93 85 59

Write a program to count the number of students belonging to each of following groups of marks: 0–9,

10–19, 20–29,.....,100.

The program coded in Fig. 4.2 uses the array group containing 11 elements, one for each range of marks.

Each element counts those values falling within the range of values it represents.

For any value, we can determine the correct group element by dividing the value by 10. For example,

consider the value 59. The integer division of 59 by 10 yields 5. This is the element into which 59 is counted.

 Program

 #defi ne MAXVAL 50

 #defi ne COUNTER 11

 main()

 {

 fl oat value[MAXVAL];

 int i, low, high;

 int group[COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

 /*READING AND COUNTING*/

 for(i = 0 ; i < MAXVAL ; i++)

 {

 /*.READING OF VALUES */

 scanf(“%f”, &value[i]) ;

 /*.COUNTING FREQUENCY OF GROUPS. */

 ++ group[(int) (value[i]) / 10] ;

Array & String 153

 }

 /*PRINTING OF FREQUENCY TABLE*/

 printf(“\n”);

 printf(“ GROUP RANGE FREQUENCY\n\n”) ;

 for(i = 0 ; i < COUNTER ; i++)

 {

 low = i * 10 ;

 if(i == 10)

 high = 100 ;

 else

 high = low + 9 ;

 printf(“ %2d %3d to %3d %d\n”,

 i+1, low, high, group[i]) ;

 }

 }

 Output

 43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74

 81 49 37 40 49 16 75 87 91 33 24 58 78 65 56 76 67 (Input data)

 45 54 36 63 12 21 73 49 51 19 39 49 68 93 85 59

 GROUP RANGE FREQUENCY

 1 0 to 9 2

 2 10 to 19 4

 3 20 to 29 4

 4 30 to 39 5

 5 40 to 49 8

 6 50 to 59 8

 7 60 to 69 7

 8 70 to 79 6

 9 80 to 89 4

 10 90 to 99 2

 11 100 to 100 0

 Fig. 4.2 Program for frequency counting

Note that we have used an initialization statement.

int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};
which can be replaced by

int group [COUNTER] = {0};
This will initialize all the elements to zero.

worked-out proBLem 4.3 h

The program shown in Fig. 4.3 shows the algorithm, fl owchart and the complete C program to fi nd the two’s

compliment of a binary number.

154 Programming for Problem Solving

 Algorithm

 Step 1 – Start

 Step 2 – Read a binary number string (a[])

 Step 3 – Calculate the length of string str (len)

 Step 4 – Initialize the looping counter k=0

 Step 5 – Repeat Steps 6-8 while a[k] != ‘\0’

 Step 6 – If a[k]!= 0 AND a[k]!= 1 goto Step 7 else goto Step 8

 Step 7 – Display error “Incorrect binary number format” and terminate the program

 Step 8 – k = k + 1

 Step 9 – Initialize the looping counter i = len - 1

 Step 10 – Repeat Step 11 while a[i]!=’1’

 Step 11 – i = i - 1

 Step 12 – Initialize the looping counter j = i - 1

 Step 13 – Repeat Step 14-17 while j >= 0

 Step 14 – If a[j]=1 goto Step 15 else goto Step 16

 Step 15 – a[j]=’0’

 Step 16 – a[j]=’1’

 Step 17 – j = j - 1

 Step 18 – Display a[] as the two’s compliment

 Step 19 – Stop

 Flowchart

Start

Read binary number a[]

Is
a[k]!='\0'?

Yes

No

Is a[k]!=0
& a[k]!=1?

len = strlen(a)
k = 0

Display "Incorrect
binary number format"

Display a[] as
the two's compliment

Stop

No

Yes

k = k + 1

i = len – 1

i = i – 1

Yes

No

j = j – 1

No

j = i – 1

Is a[i]!=1?

Is j>=0?

Is a[j]=1?

Yes

a[j]= 0 a[j] = 1

Yes

No

Array & String 155

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

 {

 char a[16];

 int i,j,k,len;

 clrscr();

 printf(“Enter a binary number: “);

 gets(a);

 len=strlen(a);

 for(k=0;a[k]!=’\0’; k++)

 {

 if (a[k]!=’0’ && a[k]!=’1’)

 {

 printf(“\nIncorrect binary number format...the program will quit”);

 getch();

 exit(0);

 }

 }

 for(i=len-1;a[i]!=’1’; i--)

 ;

 for(j=i-1;j>=0;j--)

 {

 if(a[j]==’1’)

 a[j]=’0’;

 else

 a[j]=’1’;

 }

 printf(“\n2’s compliment = %s”,a);

 getch();

 }

 Output

 Enter a binary number: 01011001001

 2’s compliment = 10100110111

 Fig. 4.3 Algorithm, flowchart and C program to find two’s compliment of a binary number

156 Programming for Problem Solving

Searching and Sorti ng

Searching and sorting are the two most frequent operations performed on arrays. Computer Scientists have

devised several data structures and searching and sorting techniques that facilitate rapid access to data

stored in lists.

Sorting is the process of arranging elements in the list according to their values, in ascending or descending

order. A sorted list is called an ordered list. Sorted lists are especially important in list searching because they

facilitate rapid search operations. Many sorting techniques are available. The three simple and most important

among them are:

 ∑ Bubble sort

 ∑ Selection sort

 ∑ Insertion sort

Other sorting techniques include Shell sort, Merge sort and Quick sort.

Searching is the process of fi nding the location of the specifi ed element in a list. The specifi ed element is often

called the search key. If the process of searching fi nds a match of the search key with a list element value, the

search said to be successful; otherwise, it is unsuccessful. The two most commonly used search techniques

are:

∑ Sequential search

∑ Binary search

TWO-DIMeNSIONAL ARRAYS

So far we have discussed the array variables that can store a list of values.

There could be situations where a table of values will have to be stored.

Consider the following data table, which shows the value of sales of three

items by four sales girls:

Item1 Item2 Item3

Salesgirl #1 310 275 365

Salesgirl #2 210 190 325

Salesgirl #3 405 235 240

Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a matrix consisting

of four rows and three columns. Each row represents the values of sales by a particular salesgirl and each

column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such as vij. Here v

denotes the entire matrix and vij refers to the value in the ith row and jth column. For example, in the above

table v23 refers to the value 325.

C allows us to defi ne such tables of items by using two-dimensional arrays. The table discussed above can

be defi ned in C as

v[4][3]

Lo 4.3

know the concept of two-

dimensional arrays

Array & String 157

Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

Note that unlike most other languages, which use one pair of parentheses with commas to separate array

sizes, C places each size in its own set of brackets.

Two-dimensional arrays are stored in memory, as shown in Fig. 4.4. As with the single-dimensional arrays,

each dimension of the array is indexed from zero to its maximum size minus one; the fi rst index selects the

row and the second index selects the column within that row.

Column0

Row 0

Row 2

Row 1

Row 3

Column1 Column2

0 0 00 1 2

1

3

2

310

405

10

310

275

235

190

275

365

240

325

365

1

3

2

1

3

2

0

0

0

1

1

1

2

2

2

[[[[[[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[[[[[[

[

[

[

[

[

[[

[

[

[

[

[

[

[

[

[

[

[

[

Fig. 4.4 Representation of a two-dimensional array in memory

worked-out proBLem 4.4 e

Write a program to compute and print a multiplication table for numbers 1 to 5 as shown below.

1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 . . .

4 4 8 . . .

5 5 10 . . 25

The program shown in Fig. 4.5 uses a two-dimensional array to store the table values. Each value is calculated

using the control variables of the nested for loops as follows:

product[i] [j] = row * column

158 Programming for Problem Solving

where i denotes rows and j denotes columns of the product table. Since the indices i and j range from 0 to 4,

we have introduced the following transformation:

 row = i+1

 column = j+1

 Program

 #define ROWS 5

 #define COLUMNS 5

 main()

 {

 int row, column, product[ROWS][COLUMNS] ;

 int i, j ;

 printf(“ MULTIPLICATION TABLE\n\n”) ;

 printf(“ “) ;

 for(j = 1 ; j <= COLUMNS ; j++)

 printf(“%4d” , j) ;

 printf(“\n”) ;

 printf(“——————————————————————————————\n”);

 for(i = 0 ; i < ROWS ; i++)

 {

 row = i + 1 ;

 printf(“%2d |”, row) ;

 for(j = 1 ; j <= COLUMNS ; j++)

 {

 column = j ;

 product[i][j] = row * column ;

 printf(“%4d”, product[i][j]) ;

 }

 printf(“\n”) ;

 }

 }

 Output

 MULTIPLICATION TABLE

 1 2 3 4 5

 1 1 2 3 4 5

 2 2 4 6 8 10

 3 3 6 9 12 15

 4 4 8 12 16 20

 5 5 10 15 20 25

 Fig. 4.5 Program to print multiplication table using two-dimensional array

Array & String 159

worked-out proBLem 4.5 h

Write a program using a two-dimensional array to compute and print the following information from

the table of data discussed above:

 (a) Total value of sales by each girl.

 (b) Total value of each item sold.

 (c) Grand total of sales of all items by all girls.

The program and its output are shown in Fig. 4.6. The program uses the variable value in two-dimensions

with the index i representing girls and j representing items. The following equations are used in computing the

results:

 (a) Total sales by mth girl =

j = 0

2

Â value [m][j] (girl_total[m])

 (b) Total value of nth item =

i = 0

3

Â value [i][n] (item_total[n])

 (c) Grand total =

i j= =0

3

0

2

Â Â value[i][j]

 =

i = 0

3

Â girl_total[i]

 =

j = 0

2

Â item_total[j]

 Program

 #defi ne MAXGIRLS 4

 #defi ne MAXITEMS 3

 main()

 {

 int value[MAXGIRLS][MAXITEMS];

 int girl_total[MAXGIRLS] , item_total[MAXITEMS];

 int i, j, grand_total;

 /*.......READING OF VALUES AND COMPUTING girl_total ...*/

 printf(“Input data\n”);

 printf(“Enter values, one at a time, row-wise\n\n”);

 for(i = 0 ; i < MAXGIRLS ; i++)

 {

 girl_total[i] = 0;

160 Programming for Problem Solving

 for(j = 0 ; j < MAXITEMS ; j++)

 {

 scanf(“%d”, &value[i][j]);

 girl_total[i] = girl_total[i] + value[i][j];

 }

 }

 /*.......COMPUTING item_total..........................*/

 for(j = 0 ; j < MAXITEMS ; j++)

 {

 item_total[j] = 0;

 for(i =0 ; i < MAXGIRLS ; i++)

 item_total[j] = item_total[j] + value[i][j];

 }

 /*.......COMPUTING grand_total.........................*/

 grand_total = 0;

 for(i =0 ; i < MAXGIRLS ; i++)

 grand_total = grand_total + girl_total[i];

 /*PRINTING OF RESULTS...........................*/

 printf(“\n GIRLS TOTALS\n\n”);

 for(i = 0 ; i < MAXGIRLS ; i++)

 printf(“Salesgirl[%d] = %d\n”, i+1, girl_total[i]);

 printf(“\n ITEM TOTALS\n\n”);

 for(j = 0 ; j < MAXITEMS ; j++)

 printf(“Item[%d] = %d\n”, j+1 , item_total[j]);

 printf(“\nGrand Total = %d\n”, grand_total);

 }

 Output

 Input data

 Enter values, one at a time, row_wise

 310 257 365

 210 190 325

 405 235 240

 260 300 380

 GIRLS TOTALS

 Salesgirl[1] = 950

 Salesgirl[2] = 725

 Salesgirl[3] = 880

 Salesgirl[4] = 940

 ITEM TOTALS

Array & String 161

 Item[1] = 1185

 Item[2] = 1000

 Item[3] = 1310

 Grand Total = 3495

Fig. 4.6 Illustration of two-dimensional arrays

INITIALIZING TWO-DIMeNSIONAL ARRAYS

A Like the one-dimensional arrays, two-dimensional arrays may be initialized

by following their declaration with a list of initial values enclosed in braces. For

example,

int table[2][3] = { 0,0,0,1,1,1};
initializes the elements of the fi rst row to zero and the second row to one. The

initialization is done row by row. The above statement can be equivalently written as

int table[2][3] = {{0,0,0}, {1,1,1}};
by surrounding the elements of the each row by braces.

We can also initialize a two-dimensional array in the form of a matrix as shown below:

 int table[2][3] = {

 {0,0,0},

 {1,1,1}

 };
Note the syntax of the above statements. Commas are required after each brace that closes off a row,

except in the case of the last row.

When the array is completely initialized with all values, explicitly, we need not specify the size of the fi rst

dimension. That is, the statement

 int table [] [3] = {

 { 0, 0, 0},

 { 1, 1, 1}

 };
is permitted.

If the values are missing in an initializer, they are automatically set to zero. For instance, the statement

 int table[2][3] = {

 {1,1},

 {2}

 };
will initialize the fi rst two elements of the fi rst row to one, the fi rst element of the second row to two, and all

other elements to zero.

When all the elements are to be initialized to zero, the following short-cut method may be used.

int m[3][5] = { {0}, {0}, {0}};
The fi rst element of each row is explicitly initialized to zero while other elements are automatically initialized

to zero. The following statement will also achieve the same result:

int m [3] [5] = { 0, 0};

Lo 4.4

discuss how two-

dimensional array is

declared and initi alized

162 Programming for Problem Solving

worked-out proBLem 4.6 m

A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin and Maruti) was conducted in four

cities (Bombay, Calcutta, Delhi and Madras). Each person surveyed was asked to give his city and the type

of car he was using. The results, in coded form, are tabulated as follows:

 M 1 C 2 B 1 D 3 M 2 B 4

 C 1 D 3 M 4 B 2 D 1 C 3

 D 4 D 4 M 1 M 1 B 3 B 3

 C 1 C 1 C 2 M 4 M 4 C 2

 D 1 C 2 B 3 M 1 B 1 C 2

 D 3 M 4 C 1 D 2 M 3 B 4

Codes represent the following information:

 M – Madras 1 – Ambassador

 D – Delhi 2 – Fiat

 C – Calcutta 3 – Dolphin

 B – Bombay 4 – Maruti

Write a program to produce a table showing popularity of various cars in four cities.

A two-dimensional array frequency is used as an accumulator to store the number of cars used, under

various categories in each city. For example, the element frequency [i][j] denotes the number of cars of type

j used in city i. The frequency is declared as an array of size 5 × 5 and all the elements are initialized to zero.

The program shown in Fig. 4.7 reads the city code and the car code, one set after another, from the terminal.

Tabulation ends when the letter X is read in place of a city code.

 Program

 main()

 {

 int i, j, car;

 int frequency[5][5] = { {0},{0},{0},{0},{0} };

 char city;

 printf(“For each person, enter the city code \n”);

 printf(“followed by the car code.\n”);

 printf(“Enter the letter X to indicate end.\n”);

 /*. TABULATION BEGINS */

 for(i = 1 ; i < 100 ; i++)

 {

 scanf(“%c”, &city);

 if(city == ‘X’)

 break;

 scanf(“%d”, &car);

 switch(city)

 {

 case ‘B’ : frequency[1][car]++;

 break;

Array & String 163

 case ‘C’ : frequency[2][car]++;

 break;

 case ‘D’ : frequency[3][car]++;

 break;

 case ‘M’ : frequency[4][car]++;

 break;

 }

 }

 /*.TABULATION COMPLETED AND PRINTING BEGINS. . . .*/

 printf(“\n\n”);

 printf(“ POPULARITY TABLE\n\n”);

 printf(“——————————————————————————————–————–\n”);

 printf(“City Ambassador Fiat Dolphin Maruti \n”);

 printf(“———————————————————————————————————–\n”);

 for(i = 1 ; i <= 4 ; i++)

 {

 switch(i)

 {

 case 1 : printf(“Bombay “) ;

 break ;

 case 2 : printf(“Calcutta “) ;

 break ;

 case 3 : printf(“Delhi “) ;

 break ;

 case 4 : printf(“Madras “) ;

 break ;

 }

 for(j = 1 ; j <= 4 ; j++)

 printf(“%7d”, frequency[i][j]) ;

 printf(“\n”) ;

 }

 printf(“——\n”);

 /*. PRINTING ENDS.*/

 }

 Output

 For each person, enter the city code

 followed by the car code.

 Enter the letter X to indicate end.

 M 1 C 2 B 1 D 3 M 2 B 4

 C 1 D 3 M 4 B 2 D 1 C 3

 D 4 D 4 M 1 M 1 B 3 B 3

 C 1 C 1 C 2 M 4 M 4 C 2

 D 1 C 2 B 3 M 1 B 1 C 2

 D 3 M 4 C 1 D 2 M 3 B 4 X

164 Programming for Problem Solving

 POPULARITY TABLE

 City Ambassador Fiat Dolphin Maruti

 Bombay 2 1 3 2

 Calcutta 4 5 1 0

 Delhi 2 1 3 2

 Madras 4 1 1 4

 Fig. 4.7 Program to tabulate a survey data

memory Layout

The subscripts in the defi nition of a two-dimensional array represent rows and columns. This format maps

the way that data elements are laid out in the memory. The elements of all arrays are stored contiguously in

increasing memory locations, essentially in a single list. If we consider the memory as a row of bytes, with

the lowest address on the left and the highest address on the right, a simple array will be stored in memory

with the fi rst element at the left end and the last element at the right end. Similarly, a two-dimensional array is

stored “row-wise, starting from the fi rst row and ending with the last row, treating each row like a simple array.

This is illustrated below.

Column

3 3 array¥

0

0

1

1

2

2

30

60

10 20

5040

8070 90

row

row 0 row 1 row 2

10 40 7020 50 8030 60 90

[0][0] [0][1] [0][2] 1][[0] [1][1] [1][2] [2][0] [2][1] [2][2]
1 2 3 4 5 6 7 8 9

Memory Layout

For a multi-dimensional array, the order of storage is that the fi rst element stored has 0 in all its subscripts,

the second has all of its subscripts 0 except the far right which has a value of 1 and so on.

The elements of a 2 x 3 x 3 array will be stored as under

...

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

000 001 002 010 011 012 020 021 022

100 101 102 110 111 112 120 121 122
...

The far right subscript increments fi rst and the other subscripts increment in order from right to left. The

sequence numbers 1, 2,……, 18 represents the location of that element in the list.

Array & String 165

worked-out proBLem 4.7 e

The program in Fig. 4.8 shows how to fi nd the transpose of a matrix.

 Algorithm

 Step 1 – Start

 Step 2 – Read a 3 X 3 matrix (a[3][3])

 Step 3 – Initialize the looping counter i = 0

 Step 4 – Repeat Steps 5-9 while i<3

 Step 5 – Initialize the looping counter j = 0

 Step 6 – Repeat Steps 7-8 while j<3

 Step 7 – b[i][j]=a[j][i]

 Step 8 – j = j + 1

 Step 9 – i = i + 1

 Step 10 – Display b[][] as the transpose of the matrix a[][]

 Step 11 – Stop

 Flowchart

 Program

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int i,j,a[3][3],b[3][3];

 clrscr();

 printf(“Enter a 3 X 3 matrix:\n”);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf(“a[%d][%d] = “,i,j);

 scanf(“%d”,&a[i][j]);

 }

 }

 printf(“\nThe entered matrix

 is: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,a[i][j]);

 }

 }

Start

Read a[3][3]

Is i < 3?

j = 0

Is j < 3?

Display b[] [] as the
transpose of a[] []

No

b[i][j]=a[j][i]

Yes

Yes

i = 0

j = j + 1

i = i + 1

Stop
No

166 Programming for Problem Solving

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 b[i][j]=a[j][i];

 }

 printf(“\n\nThe transpose of the matrix is: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,b[i][j]);

 }

 }

 getch();

 }

 Output

 Enter a 3 X 3 matrix:

 a[0][0] = 1

 a[0][1] = 2

 a[0][2] = 3

 a[1][0] = 4

 a[1][1] = 5

 a[1][2] = 6

 a[2][0] = 7

 a[2][1] = 8

 a[2][2] = 9

 The entered matrix is:

 1 2 3

 4 5 6

 7 8 9

 The transpose of the matrix is:

 1 4 7

 2 5 8

 3 6 9

Fig. 4.8 Program to fi nd transpose of a matrix

worked-out proBLem 4.8 m

The program in Fig. 4.9 shows how to multiply the elements of two N ¥ N matrices.

Array & String 167

 Program

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int a1[10][10],a2[10][10],c[10][10],i,j,k,a,b;

 clrscr();

 printf(“Enter the size of the square matrix\n”);

 scanf (“%d”, &a);

 b=a;

 printf(“You have to enter the matrix elements in row-wise fashion\n”);

 for(i=0;i<a;i++)

 {

 for(j=0;j<b;j++)

 {

 printf(“\nEnter the next element in the 1st matrix=”);

 scanf(“%d”,&a1[i][j]);

 }

 }

 for(i=0;i<a;i++)

 {

 for(j=0;j<b;j++)

 {

 printf(“\n\nEnter the next element in the 2nd matrix=”);

 scanf(“%d”,&a2[i][j]);

 }

 }

 printf(“\n\nEntered matrices are\n”);

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,a1[i][j]);

 }

 printf(“\n”);

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,a2[i][j]);

 }

 printf(“\n\nProduct of the two matrices is\n”);

 for(i=0;i<a;i++)

 for(j=0;j<b;j++)

168 Programming for Problem Solving

 {

 c[i][j]=0;

 for(k=0;k<a;k++)

 c[i][j]=c[i][j]+a1[i][k]*a2[k][j];

 }

 for(i=0;i<a;i++)

 { printf(“\n”);

 for(j=0;j<b;j++)

 printf(“ %d “,c[i][j]);

 }

 getch();

 }

 Output

 Enter the size of the square matrix

 2

 You have to enter the matrix elements in row-wise fashion

 Enter the next element in the 1st matrix=1

 Enter the next element in the 1st matrix=0

 Enter the next element in the 1st matrix=2

 Enter the next element in the 1st matrix=3

 Enter the next element in the 2nd matrix=4

 Enter the next element in the 2nd matrix=5

 Enter the next element in the 2nd matrix=0

 Enter the next element in the 2nd matrix=2

 Entered matrices are

 1 0

 2 3

 4 5

 0 2

 Product of the two matrices is

 4 5

 8 16

Fig. 4.9 Program for N ¥ N matrix multiplication

MULTI-DIMeNSIONAL ARRAYS

C allows arrays of three or more dimensions. The exact limit is determined by the

compiler. The general form of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

where si is the size of the ith dimension. Some example are:

int survey[3][5][12];

fl oat table[5][4][5][3];

Lo 4.5

describe multi -

dimensional arrays

Array & String 169

survey is a three-dimensional array declared to contain 180 integer type elements. Similarly table is a four-

dimensional array containing 300 elements of fl oating-point type.

The array survey may represent a survey data of rainfall during the last three years from January to

December in fi ve cities.

If the fi rst index denotes year, the second city and the third month, then the element survey[2][3][10]

denotes the rainfall in the month of October during the second year in city-3.

Remember that a three-dimensional array can be represented as a series of two-dimensional arrays as

shown below:

 month city 1 2 …………… 12

1

.

Year 1 .

.

.

5

 month city 1 2 …………… 12

1

.

Year 2 .

.

.

5

ANSI C does not specify any limit for array dimension. However, most compilers permit seven to ten

dimensions. Some allow even more.

DYNAMIC ARRAYS

So far, we created arrays at compile time. An array created at compile time by specifying

size in the source code has a fi xed size and cannot be modifi ed at run time. The process

of allocating memory at compile time is known as static memory allocation and the

arrays that receive static memory allocation are called static arrays. This approach

works fi ne as long as we know exactly what our data requirements are.

Consider a situation where we want to use an array that can vary greatly in size. We must guess what will

be the largest size ever needed and create the array accordingly. A diffi cult task in fact! Modern languages like

C do not have this limitation. In C it is possible to allocate memory to arrays at run time. This feature is known

as dynamic memory allocation and the arrays created at run time are called dynamic arrays. This effectively

postpones the array defi nition to run time.

Lo 4.6

explain dynamic

arrays

170 Programming for Problem Solving

Dynamic arrays are created using what are known as pointer variables and memory management functions

malloc, calloc and realloc. These functions are included in the header fi le <stdlib.h>. The concept of

dynamic arrays is used in creating and manipulating data structures such as linked lists, stacks and queues.

We discuss in detail pointers and pointer variables in Chapter 6 and creating and managing linked lists in

Chapter 8.

MORe ABOUT ARRAYS

What we have discussed in this chapter are the basic concepts of arrays and their applications to a limited

extent. There are some more important aspects of application of arrays. They include:

 ∑ using printers for accessing arrays;

 ∑ passing arrays as function parameters;

 ∑ arrays as members of structures;

 ∑ using structure type data as array elements;

 ∑ arrays as dynamic data structures; and

 ∑ manipulating character arrays and strings.

These aspects of arrays are covered later in the following chapters:

Chapter 5 : Functions

Chapter 7 : Structures

Chapter 6 : Pointers

Chapter 8 : Linked Lists

DeCLARING AND INITIALIZING STRING VARIABLeS

C does not support strings as a data type. However, it allows us to represent

strings as character arrays. In C, therefore, a string variable is any valid C variable

name and is always declared as an array of characters. The general form of

declaration of a string variable is:

char string_name[size];

The size determines the number of characters in the string_name. Some examples are as follows:

char city[10];

char name[30];
When the compiler assigns a character string to a character array, it automatically supplies a null character

(‘\0 ‘) at the end of the string. Therefore, the size should be equal to the maximum number of characters in

the string plus one.

Like numeric arrays, character arrays may be initialized when they are declared. C permits a character

array to be initialized in either of the following two forms:

char city [9] = “ NEW YORK “;

char city [9]={‘N’,‘E’,‘W’,‘ ‘,‘Y’,‘O’,‘R’,‘K’,‘\0’};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 characters and

one element space is provided for the null terminator. Note that when we initialize a character array by listing

its elements, we must supply explicitly the null terminator.

C also permits us to initialize a character array without specifying the number of elements. In such cases,

the size of the array will be determined automatically, based on the number of elements initialized. For

example, the statement

char string [] = {‘G’,‘O’,‘O’,‘D’,‘\0’};

defi nes the array string as a fi ve element array.

Lo 4.7

discuss how string

variables are declared

and initi alized

Array & String 171

We can also declare the size much larger than the string size in the initializer. That is, the statement.

char str[10] = “GOOD”;
is permitted. In this case, the computer creates a character array of size 10, places the value “GOOD” in

it, terminates with the null character, and initializes all other elements to NULL. The storage will look like

G O O D 0 0 0 0 0 0\ \ \ \ \ \

However, the following declaration is illegal.

char str2[3] = “GOOD”;
This will result in a compile time error. Also note that we cannot separate the initialization from declaration.

That is,

char str3[5];

str3 = “GOOD”;
is not allowed. Similarly,

char s1[4] = “abc”;

char s2[4];

s2 = s1; /* Error */
is not allowed. An array name cannot be used as the left operand of an assignment operator.

terminati ng null Character

You must be wondering, “why do we need a terminating null character?” As we know, a string is not a data

type in C, but it is considered a data structure stored in an array. The string is a variable-length structure and

is stored in a fi xed-length array. The array size is not always the size of the string and most often it is much

larger than the string stored in it. Therefore, the last element of the array need not represent the end of the

string. We need some way to determine the end of the string data and the null character serves as the “end-

of-string” marker.

ReADING STRINGS FROM TeRMINAL

Using scanf Function
The familiar input function scanf can be used with %s format specifi cation to read in

a string of characters. Example:

char address[10]

scanf(“%s”, address);
The problem with the scanf function is that it terminates its input on the fi rst white space it fi nds. A white

space includes blanks, tabs, carriage returns, form feeds, and new lines. Therefore, if the following line of text

is typed in at the terminal:

NEW YORK

then only the string “NEW” will be read into the array address, since the blank space after the word ‘NEW’ will

terminate the reading of string.

The scanf function automatically terminates the string that is read with a null character and therefore, the

character array should be large enough to hold the input string plus the null character. Note that unlike previous

scanf calls, in the case of character arrays, the ampersand (&) is not required before the variable name.

The address array is created in the memory as shown below:

N

0 1 2 3 4 5 6 7 8 9

E W 0 ?? ? ? ? ?\

Lo 4.8

explain how strings

are read from

terminal

172 Programming for Problem Solving

Note that the unused locations are fi lled with garbage.

If we want to read the entire line “NEW YORK”, then we may use two character arrays of appropriate sizes.

That is,

char adr1[5], adr2[5];

scanf(“%s %s”, adr1, adr2);
with the line of text

NEW YORK

will assign the string “NEW” to adr1 and “YORK” to adr2.

worked-out proBLem 4.9 e

Write a program to read a series of words from a terminal using scanf function.

The program shown in Fig. 4.10 reads four words and displays them on the screen. Note that the string ‘Oxford

Road’ is treated as two words while the string ‘Oxford-Road’ as one word.

 Program

 main()

 {

 char word1[40], word2[40], word3[40], word4[40];

 printf(“Enter text : \n”);

 scanf(“%s %s”, word1, word2);

 scanf(“%s”, word3);

 scanf(“%s”, word4);

 printf(“\n”);

 printf(“word1 = %s\nword2 = %s\n”, word1, word2);

 printf(“word3 = %s\nword4 = %s\n”, word3, word4);

 }

 Output

 Enter text :

 Oxford Road, London M17ED

 word1 = Oxford

 word2 = Road,

 word3 = London

 word4 = M17ED

 Enter text :

 Oxford-Road, London-M17ED United Kingdom

 word1 = Oxford-Road

 word2 = London-M17ED

 word3 = United

 word4 = Kingdom

Fig. 4.10 Reading a series of words using scanf function

Array & String 173

We can also specify the fi eld width using the form %ws in the scanf statement for reading a specifi ed

number of characters from the input string. Example:

scanf(“%ws”, name);
Here, the two following things may happen:

 1. The width w is equal to or greater than the number of characters typed in. The entire string will be

stored in the string variable.

 2. The width w is less than the number of characters in the string. The excess characters will be truncated

and left unread.

Consider the following statements:

char name[10];

scanf(“%5s”, name);
The input string RAM will be stored as:

R

0 1 2 3 4 5 6 7 8 9

A M 0 ?? ? ? ? ?\

The input string KRISHNA will be stored as:

K

0 1 2 3 4 5 6 7 8 9

R I 0H ? ? ? ?\S

Reading a Line of Text
We have seen just now that scanf with %s or %ws can read only strings without whitespaces. That is, they

cannot be used for reading a text containing more than one word. However, C supports a format specifi cation

known as the edit set conversion code %[. .] that can be used to read a line containing a variety of characters,

including whitespaces. Recall that we have used this conversion code in Chapter 4. For example, the program

segment

char line [80];

scanf(”%[^\n]”, line);

printf(“%s”, line);

will read a line of input from the keyboard and display the same on the screen. We would very rarely use this

method, as C supports an intrinsic string function to do this job. This is discussed in the next section.

Using getchar and gets Functions
A single character can be read from the terminal, using the function getchar. We can use this function

repeatedly to read successive single characters from the input and place them into a character array. Thus,

an entire line of text can be read and stored in an array. The reading is terminated when the newline character

(‘\n’) is entered and the null character is then inserted at the end of the string. The getchar function call takes

the following form:

char ch;

ch = getchar();

Note that the getchar function has no parameters.

worked-out proBLem 4.10 m

Write a program to read a line of text containing a series of words from the terminal.

The program shown in Fig. 4.11 can read a line of text (up to a maximum of 80 characters) into the string line

using getchar function. Every time a character is read, it is assigned to its location in the string line and then

tested for newline character. When the newline character is read (signalling the end of line), the reading loop

is terminated and the newline character is replaced by the null character to indicate the end of character string.

174 Programming for Problem Solving

When the loop is exited, the value of the index c is one number higher than the last character position in

the string (since it has been incremented after assigning the new character to the string). Therefore, the index

value c-1 gives the position where the null character is to be stored.

 Program

 #include <stdio.h>

 main()

 {

 char line[81], character;

 int c;

 c = 0;

 printf(“Enter text. Press <Return> at end\n”);

 do

 {

 character = getchar();

 line[c] = character;

 c++;

 }

 while(character != ‘\n’);

 c = c - 1;

 line[c] = ‘\0’;

 printf(“\n%s\n”, line);

 }

 Output

 Enter text. Press <Return> at end

 Programming in C is interesting.

 Programming in C is interesting.

 Enter text. Press <Return> at end

 National Centre for Expert Systems, Hyderabad.

 National Centre for Expert Systems, Hyderabad.

 Fig. 4.11 Program to read a line of text from terminal

Another and more convenient method of reading a string of text containing whitespaces is to use the library

function gets available in the <stdio.h> header file. This is a simple function with one string parameter and

called as under:

gets (str);

str is a string variable declared properly. It reads characters into str from the keyboard until a new-line

character is encountered and then appends a null character to the string. Unlike scanf, it does not skip

whitespaces. For example the code segment

char line [80];

gets (line);

printf (“%s”, line);

reads a line of text from the keyboard and displays it on the screen.

The last two statements may be combined as follows:

printf(“%s”, gets(line));

Array & String 175

(Be careful not to input more character that can be stored in the string variable used. Since C does not check

array-bounds, it may cause problems.)

C does not provide operators that work on strings directly. For instance we cannot assign one string to

another directly. For example, the assignment statements.

string = “ABC”;
string1 = string2;

are not valid. If we really want to copy the characters in string2 into string1, we may do so on a character-

by-character basis.

worked-out proBLem 4.11 m

Write a program to copy one string into another and count the number of characters copied.

The program is shown in Fig. 4.12. We use a for loop to copy the characters contained inside string2 into the

string1. The loop is terminated when the null character is reached. Note that we are again assigning a null

character to the string1.

 Program

 main()

 {

 char string1[80], string2[80];

 int i;

 printf(“Enter a string \n”);

 printf(“?”);

 scanf(“%s”, string2);

 for(i=0 ; string2[i] != ‘\0’; i++)

 string1[i] = string2[i];

 string1[i] = ‘\0’;

 printf(“\n”);

 printf(“%s\n”, string1);

 printf(“Number of characters = %d\n”, i);

 }

 Output

 Enter a string

 ?Manchester

 Manchester

 Number of characters = 10

 Enter a string

 ?Westminster

 Westminster

 Number of characters = 11

Fig. 4.12 Copying one string into another

176 Programming for Problem Solving

worked-out proBLem 4.12 h

The program in Fig. 4.13 shows how to write a program to fi nd the number of vowels and consonants in a

text string. Elucidate the program and fl owchart for the program.

 Algorithm

 Step 1 – Start

 Step 2 – Read a text string (str)

 Step 3 – Set vow = 0, cons = 0, i = 0

 Step 4 – Repeat steps 5-8 while (str[i]!=’\0’)

 Step 5 – if str[i] = ‘a’ OR str[i] = ‘A’ OR str[i] = ‘e’ OR str[i] = ‘E’ OR str[i] = ‘i’
OR str[i] = ‘I’ OR str[i] = ‘o’ OR str[i] = ‘O’ OR str[i] = ‘u’ OR str[i] = ‘U’
goto Step 6 else goto Step 7

 Step 6 – Increment the vowels counter by 1 (vow=vow+1)

 Step 7 – Increment the consonants counter by 1 (cons=cons+1)

 Step 8 – i = i + 1

 Step 9 – Display the number of vowels and consonants (vow, cons)

 Step 10 – Stop
 Flowchart

Start

Read text string str

Is str[]= \0 ?

No

vow = 0
cons = 0

i = 0

i = i + 1

No

vow = vow + 1 cons = cons + 1

Display vow
Display cons

Stop

Is str[i] = a OR
str[i] = A OR
str[i] = e OR
str[i] = E OR
str[i] = i OR
str[i] = I OR
str[i] = o OR
str[i] = O OR
str[i] = u OR
str[i] = U ?

Yes

Yes

Array & String 177

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

 {

 char str[30];

 int vow=0,cons=0,i=0;

 clrscr();

 printf(“Enter a string: “);

 gets(str);

 while(str[i] != ‘\0’)

 {

 if(str[i]== a’ || str[i]==‘A’ || str[i]==‘e’ || str[i]==‘E’ || str[i]==‘i’

 || str[i]==‘I’ || str[i]==‘o’ || str[i]==‘O’ || str[i]==‘u’ || str[i]==‘U’)

 vow++;

 else

 cons++;

 i++;

 }

 printf(“\nNumber of Vowels = %d”,vow);

 printf(“\nNumber of Consonants = %d”,cons);

 getch();

 }

 Output

 Enter a string: Chennai

 Number of Vowels = 3

 Number of Consonants = 4

 Fig. 4.13 Program to fi nd the number of vowel and consonants in a text string

WRITING STRINGS TO SCReeN

Using printf Function
We have used extensively the printf function with %s format to print strings to

the screen. The format %s can be used to display an array of characters that is

terminated by the null character. For example, the statement

printf(“%s”, name);
can be used to display the entire contents of the array name.

We can also specify the precision with which the array is displayed. For instance, the specifi cation

%10.4
indicates that the fi rst four characters are to be printed in a fi eld width of 10 columns.

Lo 4.9

describe how

strings are writt en

to screen

178 Programming for Problem Solving

However, if we include the minus sign in the specifi cation (e.g., %-10.4s), the string will be printed left-

justifi ed. The Program 4.4 illustrates the effect of various %s specifi cations.

worked-out proBLem 4.13 m

Write a program to store the string “United Kingdom” in the array country and display the string under

various format specifi cations.

The program and its output are shown in Fig. 4.14. The output illustrates the following features of the %s

specifi cations.

 1. When the fi eld width is less than the length of the string, the entire string is printed.

 2. The integer value on the right side of the decimal point specifi es the number of characters to be printed.

 3. When the number of characters to be printed is specifi ed as zero, nothing is printed.

 4. The minus sign in the specifi cation causes the string to be printed left-justifi ed.

 5. The specifi cation % .ns prints the fi rst n characters of the string.

 Program
 main()

 {

 char country[15] = “United Kingdom”;

 printf(“\n\n”);

 printf(“*123456789012345*\n”);

 printf(“ — — – – – \n”);

 printf(“%15s\n”, country);

 printf(“%5s\n”, country);

 printf(“%15.6s\n”, country);

 printf(“%-15.6s\n”, country);

 printf(“%15.0s\n”, country);

 printf(“%.3s\n”, country);

 printf(“%s\n”, country);

 printf(“——––– \n”);

 }

 Output
 123456789012345
 — — – – –
 United Kingdom
 United Kingdom
 United
 United
 Uni
 United Kingdom
 — — – – –

Fig. 4.14 Writing strings using %s format

The printf on UNIX supports another nice feature that allows for variable fi eld width or precision. For

instance

printf(“%*.*s\n”, w, d, string);
prints the fi rst d characters of the string in the fi eld width of w.

This feature comes in handy for printing a sequence of characters. Program 4.5 illustrates this.

Array & String 179

worked-out proBLem 4.14 m

Write a program using for loop to print the following output:

C

CP

CPr

CPro

.....

.....

CProgramming

CProgramming

.....

.....

CPro

CPr

CP

C

The outputs of the program in Fig. 4.15, for variable specifi cations %12.*s, %.*s, and %*.1s are shown in Fig.

4.16, which further illustrates the variable fi eld width and the precision specifi cations.

 Program
 main()
 {
 int c, d;
 char string[] = “CProgramming”;
 printf(“\n\n”);
 printf(“— — — — — — — — — — — — \n”);
 for(c = 0 ; c <= 11 ; c++)
 {
 d = c + 1;
 printf(“|%-12.*s|\n”, d, string);
 }
 printf(“|— — — — — — — — — — — — |\n”);
 for(c = 11 ; c >= 0 ; c— —)
 {
 d = c + 1;
 printf(“|%-12.*s|\n”, d, string);
 }
 printf(“— — — — — — — — — — — — \n”);
 }

 Output
 C
 CP
 CPr
 CPro
 CProg
 CProgr

180 Programming for Problem Solving

 CProgra
 CProgram
 CProgramm
 CProgrammi
 CProgrammin
 CProgramming
 CProgramming
 CProgrammin
 CProgrammi
 CProgramm
 CProgram
 CProgra
 CProgr
 CProg
 CPro
 CPr
 CP
 C

 Fig. 4.15 Illustration of variable field specifications by printing sequences of characters

 C

 CP

 CPr

 CPro

 CProg

 CProgr

 CProgra

 CProgram

 CProgramm

 CProgrammi

 CProgrammin

CProgramming

CProgramming

 CProgrammin

 CProgrammi

 CProgramm

 CProgram

 CProgra

 CProgr

 CProg

 CPro

 CPr

 CP
 C

C|

CP|

CPr|

CPro|

CProg|

CProgr|

CProgra|

CProgram|

CProgramm|

CProgrammi|

CProgrammin|

CProgramming|

CProgramming|

CProgrammin|

CProgrammi|

CProgramm|

CProgram|

CProgra|

CProgr|

CProg|

CPro|

CPr|

CP|
C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|

 C|
C|

 (a) %12.*s (b) %.*s (c) %*.1s

 Fig. 4.16 Further illustrations of variable specifications

Array & String 181

Using putchar and puts Functions
Like getchar, C supports another character handling function putchar to output the values of character

variables. It takes the following form:

 char ch = ‘A’;
putchar (ch);

The function putchar requires one parameter. This statement is equivalent to

printf(“%c”, ch);
putchar function is used to write characters to the screen. We can use this function repeatedly to output a

string of characters stored in an array using a loop. Example:

char name[6] = “PARIS”
for (i=0, i<5; i++)
 putchar(name[i];
putchar(‘\n’);

Another and more convenient way of printing string values is to use the function puts declared in the

header fi le <stdio.h>. This is a one parameter function and invoked as under

puts (str);
where str is a string variable containing a string value. This prints the value of the string variable str and then

moves the cursor to the beginning of the next line on the screen. For example, the program segment

char line [80];
gets (line);
puts (line);

reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very simple

compared to using the scanf and printf statements.

ARITHMeTIC OPeRATIONS ON CHARACTeRS

C allows us to manipulate characters the same way we do with numbers.

Whenever a character constant or character variable is used in an expression, it

is automatically converted into an integer value by the system. The integer value

depends on the local character set of the system.

To write a character in its integer representation, we may write it as an integer.

For example, if the machine uses the ASCII representation, then,

x = ‘a’;
printf(“%d\n”,x);

will display the number 97 on the screen.

It is also possible to perform arithmetic operations on the character constants and variables. For example,

x = ‘z’–1;
is a valid statement. In ASCII, the value of ‘z’ is 122 and therefore, the statement will assign the value 121 to

the variable x.

We may also use character constants in relational expressions. For example, the expression

ch >= ‘A’ && ch <= ‘Z’
would test whether the character contained in the variable ch is an upper-case letter.

We can convert a character digit to its equivalent integer value using the following relationship:

x = character - ‘0’;
where x is defi ned as an integer variable and character contains the character digit. For example, let us

assume that the character contains the digit ‘7’,

Lo 4.10

illustrate how strings

are manipulated

182 Programming for Problem Solving

Then,

 x = ASCII value of ‘7’ – ASCII value of ‘0’

 = 55 – 48

 = 7

The C library supports a function that converts a string of digits into their integer values. The function takes

the form

x = atoi(string);

x is an integer variable and string is a character array containing a string of digits. Consider the following

segment of a program:

number = “1988”;

year = atoi(number);
number is a string variable which is assigned the string constant “1988”. The function atoi converts the string

“1988” (contained in number) to its numeric equivalent 1988 and assigns it to the integer variable year. String

conversion functions are stored in the header fi le <std.lib.h>.

worked-out proBLem 4.15 e

Write a program which would print the alphabet set a to z and A to Z in decimal and character form.

The program is shown in Fig. 4.17. In ASCII character set, the decimal numbers 65 to 90 represent upper case

alphabets and 97 to 122 represent lower case alphabets. The values from 91 to 96 are excluded using an if

statement in the for loop.

 Program

 main()

 {

 char c;

 printf(“\n\n”);

 for(c = 65 ; c <= 122 ; c = c + 1)

 {

 if(c > 90 && c < 97)

 continue;

 printf(“|%4d - %c “, c, c);

 }

 printf(“|\n”);

 }
 Output
 | 65 - A | 66 - B | 67 - C | 68 - D | 69 - E | 70 - F

 | 71 - G | 72 - H | 73 - I | 74 - J | 75 - K | 76 - L

 | 77 - M| 78 - N| 79 - O| 80 - P| 81 - Q| 82 - R

 | 83 - S| 84 - T| 85 - U| 86 - V| 87 - W| 88 - X

 | 89 - Y| 90 - Z| 97 - a| 98 - b| 99 - c| 100 - d

 |101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 - j

 | 107 - k| 108 - l| 109 - m| 110 - n| 111 - o| 112 - p

 | 113 - q| 114 - r| 115 - s| 116 - t| 117 - u| 118 - v

 | 119 - w| 120 - x| 121 - y| 122 - z|

Fig. 4.17 Printing of the alphabet set in decimal and character form

Array & String 183

PUTTING STRINGS TOGeTHeR

Just as we cannot assign one string to another directly, we cannot join two strings together by the simple

arithmetic addition. That is, the statements such as

string3 = string1 + string2;

string2 = string1 + “hello”;
are not valid. The characters from string1 and string2 should be copied into the string3 one after the other.

The size of the array string3 should be large enough to hold the total characters.

The process of combining two strings together is called concatenation. Program 4.18 illustrates the

concatenation of three strings.

worked-out proBLem 4.16 m

The names of employees of an organization are stored in three arrays, namely fi rst_name, second_

name, and last_name. Write a program to concatenate the three parts into one string to be called name.

The program is given in Fig. 4.18. Three for loops are used to copy the three strings. In the fi rst loop, the

characters contained in the fi rst_name are copied into the variable name until the null character is reached.

The null character is not copied; instead it is replaced by a space by the assignment statement

name[i] = ‘ ’ ;
Similarly, the second_name is copied into name, starting from the column just after the space created by the

above statement. This is achieved by the assignment statement

name[i+j+1] = second_name[j];
If fi rst_name contains 4 characters, then the value of i at this point will be 4 and therefore the fi rst character

from second_name will be placed in the fi fth cell of name. Note that we have stored a space in the fourth cell.

In the same way, the statement

name[i+j+k+2] = last_name[k];
is used to copy the characters from last_name into the proper locations of name.

At the end, we place a null character to terminate the concatenated string name. In this example, it is

important to note the use of the expressions i+j+1 and i+j+k+2.

 Program
 main()

 {

 int i, j, k ;

 char fi rst_name[10] = {“VISWANATH”} ;

 char second_name[10] = {“PRATAP”} ;

 char last_name[10] = {“SINGH”} ;

 char name[30] ;

 /* Copy fi rst_name into name */

 for(i = 0 ; fi rst_name[i] != ‘\0’ ; i++)

 name[i] = fi rst_name[i] ;

 /* End fi rst_name with a space */

 name[i] = ‘ ‘ ;

184 Programming for Problem Solving

 /* Copy second_name into name */

 for(j = 0 ; second_name[j] != ‘\0’ ; j++)

 name[i+j+1] = second_name[j] ;

 /* End second_name with a space */

 name[i+j+1] = ‘ ‘ ;

 /* Copy last_name into name */

 for(k = 0 ; last_name[k] != ‘\0’; k++)

 name[i+j+k+2] = last_name[k] ;

 /* End name with a null character */

 name[i+j+k+2] = ‘\0’ ;

 printf(“\n\n”) ;

 printf(“%s\n”, name) ;

 }
 Output

 VISWANATH PRATAP SINGH

 Fig. 4.18 Concatenation of strings

COMPARISON OF TWO STRINGS

Once again, C does not permit the comparison of two strings directly. That is, the statements such as

if(name1 == name2)

if(name == “ABC”)
are not permitted. It is therefore necessary to compare the two strings to be tested, character by character.

The comparison is done until there is a mismatch or one of the strings terminates into a null character,

whichever occurs first. The following segment of a program illustrates this.

 i=0;

 while(str1[i] == str2[i] && str1[i] != ‘\0’

 && str2[i] != ‘\0’)

 i = i+1;

 if (str1[i] == ‘\0’ && str2[i] == ‘\0’)

 printf(“strings are equal\n”);

 else

 printf(“strings are not equal\n”);

STRING-HANDLING FUNCTIONS

Fortunately, the C library supports a large number of string-handling functions that can be used to carry out

many of the string manipulations discussed so far. Following are the most commonly used string-handling

functions:

Function Action

strcat() concatenates two strings

strcmp() compares two strings

strcpy() copies one string over another

strlen() finds the length of a string

We shall discuss briefly how each of these functions can be used in the processing of strings.

Array & String 185

strcat() Function
The strcat function joins two strings together. It takes the following form:

strcat(string1, string2);

string1 and string2 are character arrays. When the function strcat is executed, string2 is appended to

string1. It does so by removing the null character at the end of string1 and placing string2 from there. The

string at string2 remains unchanged. For example, consider the following three strings:

0

0

0

Part1 =

Part2 =

Part3 =

Execution of the statement

01

1

1

12

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7 8 9

0\V E R Y

0

0

\

\

G

B

O

A

O

D

D

strcat(part1, part2);

0

0

Part1 =

will result in:

Part2 =

while the statement

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\G O O D

0\GV E R Y O O D

0

0

Part1 =

will result in:

Part3 =

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\B A D

0\BV E R Y A D

We must make sure that the size of string1 (to which string2 is appended) is large enough to accommodate

the final string.

strcat function may also append a string constant to a string variable. The following is valid:

strcat(part1,”GOOD”);

186 Programming for Problem Solving

C permits nesting of strcat functions. For example, the statement

strcat(strcat(string1,string2), string3);
is allowed and concatenates all the three strings together. The resultant string is stored in string1.

strcmp() Function
The strcmp function compares two strings identifi ed by the arguments and has a value 0 if they are equal.

If they are not, it has the numeric difference between the fi rst nonmatching characters in the strings. It takes

the form:

strcmp(string1, string2);

string1 and string2 may be string variables or string constants. Examples are:

strcmp(name1, name2);
strcmp(name1, “John”);
strcmp(“Rom”, “Ram”);

Our major concern is to determine whether the strings are equal; if not, which is alphabetically above. The

value of the mismatch is rarely important. For example, the statement

strcmp(“their”, “there”);
will return a value of –9 which is the numeric difference between ASCII “i” and ASCII “r”. That is, “i” minus “r”

in ASCII code is –9. If the value is negative, string1 is alphabetically above string2.

strcpy() Function
The strcpy function works almost like a string-assignment operator. It takes the following form:

strcpy(string1, string2);

and assigns the contents of string2 to string1. string2 may be a character array variable or a string constant.

For example, the statement

strcpy(city, “DELHI”);
will assign the string “DELHI” to the string variable city. Similarly, the statement

strcpy(city1, city2);
will assign the contents of the string variable city2 to the string variable city1. The size of the array city1

should be large enough to receive the contents of city2.

strlen() Function
This function counts and returns the number of characters in a string. It takes the form

n = strlen(string);

Where n is an integer variable, which receives the value of the length of the string. The argument may be

a string constant. The counting ends at the fi rst null character.

worked-out proBLem 4.17 m

s1, s2, and s3 are three string variables. Write a program to read two string constants into s1 and s2 and

compare whether they are equal or not. If they are not, join them together. Then copy the contents of s1 to

the variable s3. At the end, the program should print the contents of all the three variables and their lengths.

The program is shown in Fig. 4.19. During the fi rst run, the input strings are “New” and “York”. These strings

are compared by the statement

x = strcmp(s1, s2);
Since they are not equal, they are joined together and copied into s3 using the statement

strcpy(s3, s1);

The program outputs all the three strings with their lengths.

Array & String 187

During the second run, the two strings s1 and s2 are equal, and therefore, they are not joined together. In

this case all the three strings contain the same string constant “London”.

 Program

 #include <string.h>

 main()

 { char s1[20], s2[20], s3[20];

 int x, l1, l2, l3;

 printf(“\n\nEnter two string constants \n”);

 printf(“?”);

 scanf(“%s %s”, s1, s2);

 /* comparing s1 and s2 */

 x = strcmp(s1, s2);

 if(x != 0)

 { printf(“\n\nStrings are not equal \n”);

 strcat(s1, s2); /* joining s1 and s2 */

 }

 else

 printf(“\n\nStrings are equal \n”);

 /* copying s1 to s3

 strcpy(s3, s1);

 /* Finding length of strings */

 l1 = strlen(s1);

 l2 = strlen(s2);

 l3 = strlen(s3);

 /* output */

 printf(“\ns1 = %s\t length = %d characters\n”, s1, l1);

 printf(“s2 = %s\t length = %d characters\n”, s2, l2);

 printf(“s3 = %s\t length = %d characters\n”, s3, l3);

 }

 Output
 Enter two string constants
 ? New York
 Strings are not equal
 s1 = NewYork length = 7 characters
 s2 = York length = 4 characters
 s3 = NewYork length = 7 characters
 Enter two string constants
 ? London London
 Strings are equal
 s1 = London length = 6 characters
 s2 = London length = 6 characters

 s3 = London length = 6 characters

 Fig. 4.19 Illustration of string handling functions

188 Programming for Problem Solving

worked-out proBLem 4.18 m

The program in Fig. 4.20 shows how to write a C program that reads a string and prints if it is a palindrome

or not.

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main()

 {

 char chk=’t’, str[30];

 int len, left, right;

 printf(“\nEnter a string:”);

 scanf(“%s”, &str);

 len=strlen(str);

 left=0;

 right=len-1;

 while(left < right && chk==’t’)

 {

 if(str[left] == str[right])

 ;

 else

 chk=’f’;

 left++;

 right-;

 }

 if(chk==’t’)

 printf(“\nThe string %s is a palindrome”,str);

 else

 printf(“\nThe string %s is not a palindrome”,str);

 getch();

 }

 Output

 Enter a string: nitin

 The string nitin is a palindrome

 Fig. 4.20 Program to check if a string is palindrome or not

Other String Functions
The header fi le <string.h> contains many more string manipulation functions. They might be useful in certain

situations.

Array & String 189

strncpy

In addition to the function strcpy that copies one string to another, we have another function strncpy that

copies only the left-most n characters of the source string to the target string variable. This is a three-parameter

function and is invoked as follows:

strncpy(s1, s2, 5);
This statement copies the first 5 characters of the source string s2 into the target string s1. Since the first 5

characters may not include the terminating null character, we have to place it explicitly in the 6th position of

s2 as shown below:

s1[6] =’\0’;
Now, the string s1 contains a proper string.

strncmp

A variation of the function strcmp is the function strncmp. This function has three parameters as illustrated

in the function call below:

 strncmp (s1, s2, n);
this compares the left-most n characters of s1 to s2 and returns.

 (a) 0 if they are equal;

 (b) negative number, if s1 sub-string is less than s2; and

 (c) positive number, otherwise.

strncat

This is another concatenation function that takes three parameters as shown below:

strncat (s1, s2, n);
This call will concatenate the left-most n characters of s2 to the end of s1. Example:

S1 :

S2 :

S :1

After (s1, s2, 4); execution:strncat

0

0

\

\

G

B

U

A

U

A

S

G

M

R

R

L

A

U

Y

U

0\B A L A

strstr

It is a two-parameter function that can be used to locate a sub-string in a string. This takes the following forms:

strstr (s1, s2);

strstr (s1, “ABC”);
The function strstr searches the string s1 to see whether the string s2 is contained in s1. If yes, the function

returns the position of the first occurrence of the sub-string. Otherwise, it returns a NULL pointer. Example:

 if (strstr (s1, s2) == NULL)
 printf(“substring is not found”);
 else
 printf(“s2 is a substring of s1”);

We also have functions to determine the existence of a

character in a string. The function call

strchr(s1, ‘m’);

190 Programming for Problem Solving

will locate the fi rst occurrence of the character ‘m’ and the call

 strrchr(s1, ‘m’);
will locate the last occurrence of the character ‘m’ in the string s1.

 warning
∑ When allocating space for a string during declaration, remember to count the terminating

null character.

∑ When creating an array to hold a copy of a string variable of unknown size, we can compute

the size required using the expression

 strlen (stringname) +1.

 ∑ When copying or concatenating one string to another, we must ensure that the target (destination)

string has enough space to hold the incoming characters. Remember that no error message will

be available even if this condition is not satisfi ed. The copying may overwrite the memory and the

program may fail in an unpredictable way.

 ∑ When we use strncpy to copy a specifi c number of characters from a source string, we must ensure

to append the null character to the target string, in case the number of characters is less than or

equal to the source string.

TABLe OF STRINGS

We often use lists of character strings, such as a list of the names of students in a class, list of the names of employees in

an organization, list of places, etc. A list of names can be treated as a table of strings and a two-dimensional character

array can be used to store the entire list. For example, a character array student[30][15] may be used to store a list of

30 names, each of length not more than 15 characters. Shown below is a table of fi ve cities:

C

A

H

M

B

h

h

y

a

o

a

m

d

d

m

n

e

e

r

b

d

d

r

a

a

i

a

a

s

y

g

b

b

a

a

a

r

d

d

h

This table can be conveniently stored in a character array city by using the following declaration:

 char city[] []
 {
 “Chandigarh”,
 “Madras”,
 “Ahmedabad”,
 “Hyderabad”,
 “Bombay”

 } ;
To access the name of the ith city in the list, we write

city[i-1]

Array & String 191

and therefore, city[0] denotes “Chandigarh”, city[1] denotes “Madras” and so on. This shows that once an

array is declared as two-dimensional, it can be used like a one-dimensional array in further manipulations.

That is, the table can be treated as a column of strings.

worked-out proBLem 4.19 h

Write a program that would sort a list of names in alphabetical order.

A program to sort the list of strings in alphabetical order is given in Fig. 4.21. It employs the method of bubble

sorting.

 Program

 #defi ne ITEMS 5
 #defi ne MAXCHAR 20
 main()
 {
 char string[ITEMS][MAXCHAR], dummy[MAXCHAR];
 int i = 0, j = 0;
 /* Reading the list */
 printf (“Enter names of %d items \n “,ITEMS);
 while (i < ITEMS)
 scanf (“%s”, string[i++]);
 /* Sorting begins */
 for (i=1; i < ITEMS; i++) /* Outer loop begins */
 {
 for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/
 {
 if (strcmp (string[j-1], string[j]) > 0)
 { /* Exchange of contents */
 strcpy (dummy, string[j-1]);
 strcpy (string[j-1], string[j]);
 strcpy (string[j], dummy);
 }
 } /* Inner loop ends */
 } /* Outer loop ends */
 /* Sorting completed */
 printf (“\nAlphabetical list \n\n”);
 for (i=0; i < ITEMS ; i++)
 printf (“%s”, string[i]);
 }

 Output

 Enter names of 5 items
 London Manchester Delhi Paris Moscow
 Alphabetical list
 Delhi
 London
 Manchester
 Moscow
 Paris

 Fig. 4.21 Sorting of strings in alphabetical order

192 Programming for Problem Solving

Note that a two-dimensional array is used to store the list of strings. Each string is read using a scanf

function with %s format. Remember, if any string contains a white space, then the part of the string after

the white space will be treated as another item in the list by the scanf. In such cases, we should read the

entire line as a string using a suitable algorithm. For example, we can use gets function to read a line of text

containing a series of words. We may also use puts function in place of scanf for output.

OTHeR FeATUReS OF STRINGS

Other aspects of strings we have not discussed in this chapter include the following:

 ∑ Manipulating strings using pointers.

 ∑ Using string as function parameters.

 ∑ Declaring and defining strings as members of structures.

These topics will be dealt with later when we discuss functions, structures, and pointers.

key ConCeptS

• ArrAy: Is a fixed-size sequenced collection part of elements of the same data type. [Lo 4.1]

• one-dimenSionAL ArrAy: Is a list of items that has one variable name and one subscript to access the

items. [Lo 4.1]

• StruCtured dAtA typeS: Represent data values that have a structure of some sort. For example, arrays,

structures, etc. [Lo 4.1]

• SeArChing: Is the process of finding the location of the specified element in the list. [Lo 4.2]

• Sorting: Is the process of rearranging elements in the list as per ascending or descending order. [Lo 4.2]

• two-dimenSionAL ArrAy: Is an array of arrays that has two subscripts for accessing its values. It is used to

represent table or matrix data. [Lo 4.3]

• muLti-dimenSionAL ArrAy: Is an array with more than one dimension. Examples of multi-dimensional arrays

are two-dimensional array, three-dimensional array and so on. [Lo 4.5]

• dynAmiC ArrAyS: Are the arrays declared using dynamic memory allocation technique. [Lo 4.6]

• dynAmiC memory ALLoCAtion: Is the process of allocating memory at run time. [Lo 4.6]

• StAtiC ArrAyS: Are the arrays declared using static memory allocation technique. [Lo 4.6]

• StAtiC memory ALLoCAtion: Is the process of allocating memory at compile time. [Lo 4.6]

• String: Is a sequence of characters that is considered as a single data item. [Lo 4.7]

• StrCAt: Concatenates two strings. [Lo 4.10]

• StrCmp: Compares two strings and determines whether they are equal or not. [Lo 4.10]

• StrCpy: Copies one string into another. [Lo 4.10]

• StrStr: Determines whether one string is a subset of another. [Lo 4.10]

Array & String 193

ALwAyS rememBer

∑ We need to specify three things, namely, name, type and size, when we declare an array. [Lo 4.1]

∑ Use of invalid subscript is one of the common errors. An incorrect or invalid index may cause unexpected

results. [Lo 4.1]

∑ Always remember that subscripts begin at 0 (not 1) and end at size –1. [Lo 4.2]

∑ Defining the size of an array as a symbolic constant makes a program more scalable. [Lo 4.2]

∑ Be aware of the difference between the “kth element” and the “element k”. The kth element has a subscript

k-1, whereas the element k has a subscript of k itself. [Lo 4.2]

∑ Do not forget to initialize the elements; otherwise they will contain “garbage”. [Lo 4.2]

∑ Supplying more initializers in the initializer list is a compile time error. [Lo 4.2]

∑ When using expressions for subscripts, make sure that their results do not go outside the permissible

range of 0 to size –1. Referring to an element outside the array bounds is an error. [Lo 4.2]

∑ When using control structures for looping through an array, use proper relational expressions to eliminate

“off-by-one” errors. For example, for an array of size 5, the following for statements are wrong:

for (i = 1; i < =5; i+ +)

for (i = 0; i < =5; i+ +)

for (i = 0; i = =5; i+ +)

for (i = 0; i < 4; i+ +) [Lo 4.2]

∑ Referring a two-dimensional array element like x[i, j] instead of x[i][j] is a compile time error. [Lo 4.3]

∑ Leaving out the subscript reference operator [] in an assignment operation is compile time error. [Lo 4.3]

∑ When initializing character arrays, provide enough space for the terminating null character. [Lo 4.4]

∑ Make sure that the subscript variables have been properly initialized before they are used. [Lo 4.4]

∑ During initialization of multi-dimensional arrays, it is an error to omit the array size for any dimension other

than the first. [Lo 4.5]

∑ While using static arrays, choose the array size in such a way that the memory space is efficiently utilized

and there is no overflow condition. [Lo 4.6]

∑ Character constants are enclosed in single quotes and string constants are enclosed in double quotes.

[Lo 4.7]

∑ Allocate sufficient space in a character array to hold the null character at the end. [Lo 4.7]

∑ Avoid processing single characters as strings. [Lo 4.7]

∑ It is a compile time error to assign a string to a character variable. [Lo 4.7]

∑ The header file <stdio.h> is required when using standard I/O functions. [Lo 4.7]

∑ The header file <stdlib.h> is required when using general utility functions. [Lo 4.7]

∑ Using the address operator & with a string variable in the scanf function call is an error. [Lo 4.8]

∑ Use %s format for printing strings or character arrays terminated by null character. [Lo 4.9]

∑ Using a string variable name on the left of the assignment operator is illegal. [Lo 4.10]

∑ When accessing individual characters in a string variable, it is logical error to access outside the array

bounds. [Lo 4.10]

∑ Strings cannot be manipulated with operators. Use string functions. [Lo 4.10]

∑ Do not use string functions on an array char type that is not terminated with the null character. [Lo 4.10]

∑ Do not forget to append the null character to the target string when the number of characters copied is

less than or equal to the source string. [Lo 4.10]

∑ Be aware the return values when using the functions strcmp and strncmp for comparing strings.

[Lo 4.10]

194 Programming for Problem Solving

∑ When using string functions for copying and concatenating strings, make sure that the target string has

enough space to store the resulting string. Otherwise memory overwriting may occur. [Lo 4.10]

∑ The header file <ctype.h> is required when using character handling functions. [Lo 4.10]

∑ The header file <string.h> is required when using string manipulation functions. [Lo 4.10]

Brief CASeS

1. Median of a List of Numbers [LO 4.2, M]

When all the items in a list are arranged in an order, the middle value which divides the items into two parts

with equal number of items on either side is called the median. Odd number of items have just one middle

value while even number of items have two middle values. The median for even number of items is therefore

designated as the average of the two middle values.

The major steps for finding the median are as follows:

 1. Read the items into an array while keeping a count of the items.

 2. Sort the items in increasing order.

 3. Compute median.

The program and sample output are shown in Fig. 4.22. The sorting algorithm used is as follows:

 1. Compare the first two elements in the list, say a[1], and a[2]. If a[2] is smaller than a[1], then interchange

their values.

 2. Compare a[2] and a[3]; interchange them if a[3] is smaller than a[2].

 3. Continue this process till the last two elements are compared and interchanged.

 4. Repeat the above steps n–1 times.

In repeated trips through the array, the smallest elements ‘bubble up’ to the top. Because of this bubbling

up effect, this algorithm is called bubble sorting. The bubbling effect is illustrated below for four items.

80

Initial
values

35

After
step 1

35

After
step 2

35

After
step 3

35 80 65 65

65

Trip-1

65 80 15

10 10 10 80

35 35 35

65 80 80

10

Trip-2

65 65

80 10 10

Array & String 195

35 10

10 35

65

Trip-3

65

80 80

During the first trip, three pairs of items are compared and interchanged whenever needed. It should be

noted that the number 80, the largest among the items, has been moved to the bottom at the end of the

first trip. This means that the element 80 (the last item in the new list) need not be considered any further.

Therefore, trip-2 requires only two pairs to be compared. This time, the number 65 (the second largest value)

has been moved down the list. Notice that each trip brings the smallest value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process will be over

when a trip contains only one step. If the list contains n elements, then the number of comparisons involved

would be n(n–1)/2.

 Program

 #define N 10

 main()

 {

 int i,j,n;

 float median,a[N],t;

 printf(“Enter the number of items\n”);

 scanf(“%d”, &n);

 /* Reading items into array a */

 printf(“Input %d values \n”,n);

 for (i = 1; i <= n ; i++)

 scanf(“%f”, &a[i]);

 /* Sorting begins */

 for (i = 1 ; i <= n–1 ; i++)

 { /* Trip-i begins */

 for (j = 1 ; j <= n–i ; j++)

 {

 if (a[j] <= a[j+1])

 { /* Interchanging values */

 t = a[j];

 a[j] = a[j+1];

 a[j+1] = t;

 }

 else

 continue ;

 }

 } /* sorting ends */

196 Programming for Problem Solving

 /* calculation of median */

 if (n % 2 == 0)

 median = (a[n/2] + a[n/2+1])/2.0 ;

 else

 median = a[n/2 + 1];

 /* Printing */

 for (i = 1 ; i <= n ; i++)

 printf(“%f “, a[i]);

 printf(“\n\nMedian is %f\n”, median);

 }

 Output

 Enter the number of items

 5

 Input 5 values

 1.111 2.222 3.333 4.444 5.555

 5.555000 4.444000 3.333000 2.222000 1.111000

 Median is 3.333000

 Enter the number of items

 6

 Input 6 values

 3 5 8 9 4 6

 9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

 Median is 5.500000

 Fig. 4.22 Program to sort a list of numbers and to determine median

2. Calculation of Standard Deviation [LO 4.2, M]

In statistics, standard deviation is used to measure deviation of data from its mean. The formula for calculating

standard deviation of n items is

 s = variance

where

 variance =
1

n
 ()x mi

i =

n

-Â 2

1

and

 m = mean =
1

1
n

x
i

i =

n

Â

The algorithm for calculating the standard deviation is as follows:

 1. Read n items.

 2. Calculate sum and mean of the items.

 3. Calculate variance.

 4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 4.23.

Array & String 197

Program

 #include <math.h>

 #define MAXSIZE 100

 main()

 {

 int i,n;

 float value [MAXSIZE], deviation,

 sum,sumsqr,mean,variance,stddeviation;

 sum = sumsqr = n = 0 ;

 printf(“Input values: input –1 to end \n”);

 for (i=1; i< MAXSIZE ; i++)

 {

 scanf(“%f”, &value[i]);

 if (value[i] == -1)

 break;

 sum += value[i];

 n += 1;

 }

 mean = sum/(float)n;

 for (i = 1 ; i<= n; i++)

 {

 deviation = value[i] – mean;

 sumsqr += deviation * deviation;

 }

 variance = sumsqr/(float)n ;

 stddeviation = sqrt(variance) ;

 printf(“\nNumber of items : %d\n”,n);

 printf(“Mean : %f\n”, mean);

 printf(“Standard deviation : %f\n”, stddeviation);

 }

 Output

 Input values: input -1 to end

 65 9 27 78 12 20 33 49 -1

 Number of items : 8

 Mean : 36.625000

 Standard deviation : 23.510303

 Fig. 4.23 Program to calculate standard deviation

198 Programming for Problem Solving

3. Evaluating a Test [LO 4.2, H]

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct answers and

student responses are tabulated as shown below:

1

Student 1

Correct

answers

Student 2

Student 3

0 1 22 33 44 5

Items

5 66 77 88 99 0 1 2 3 4 5

The algorithm for evaluating the answers of students is as follows:

 1. Read correct answers into an array.

 2. Read the responses of a student and count the correct ones.

 3. Repeat step-2 for each student.

 4. Print the results.

A program to implement this algorithm is given in Fig. 4.24. The program uses the following arrays:

 key[i] - To store correct answers of items

 response[i] - To store responses of students

 correct[i] - To identify items that are answered correctly.

 Program

 #define STUDENTS 3

 #define ITEMS 25

 main()

 {

 char key[ITEMS+1],response[ITEMS+1];

 int count, i, student,n,

 correct[ITEMS+1];

 /* Reading of Correct answers */

 printf(“Input key to the items\n”);

 for(i=0; i < ITEMS; i++)

 scanf(“%c”,&key[i]);

 scanf(“%c”,&key[i]);

 key[i] = ‘\0’;

 /* Evaluation begins */

 for(student = 1; student <= STUDENTS ; student++)

 {

 /*Reading student responses and counting correct ones*/

 count = 0;

Array & String 199

 printf(“\n”);

 printf(“Input responses of student-%d\n”,student);

 for(i=0; i < ITEMS ; i++)

 scanf(“%c”,&response[i]);

 scanf(“%c”,&response[i]);

 response[i] = ‘\0’;

 for(i=0; i < ITEMS; i++)

 correct[i] = 0;

 for(i=0; i < ITEMS ; i++)

 if(response[i] == key[i])

 {

 count = count +1 ;

 correct[i] = 1 ;

 }

 /* printing of results */

 printf(“\n”);

 printf(“Student-%d\n”, student);

 printf(“Score is %d out of %d\n”,count, ITEMS);

 printf(“Response to the items below are wrong\n”);

 n = 0;

 for(i=0; i < ITEMS ; i++)

 if(correct[i] == 0)

 {

 printf(“%d “,i+1);

 n = n+1;

 }

 if(n == 0)

 printf(“NIL\n”);

 printf(“\n”);

 } /* Go to next student */

 /* Evaluation and printing ends */

 }

 Output

 Input key to the items

 abcdabcdabcdabcdabcdabcda

 Input responses of student-1

 abcdabcdabcdabcdabcdabcda

 Student-1

 Score is 25 out of 25

 Response to the following items are wrong

 NIL

 Input responses of student-2

200 Programming for Problem Solving

 abcddcbaabcdabcdddddddddd

 Student-2

 Score is 14 out of 25

 Response to the following items are wrong

 5 6 7 8 17 18 19 21 22 23 25

 Input responses of student-3

 aaaaaaaaaaaaaaaaaaaaaaaaa

 Student-3

 Score is 7 out of 25

 Response to the following items are wrong

 2 3 4 6 7 8 10 11 12 14 15 16 18 19 20 22 23 24

Fig. 4.24 Program to evaluate responses to a multiple-choice test

4. Production and Sales Analysis [LO 4.3, 4.4, H]

A company manufactures five categories of products and the number of items manufactured and sold are

recorded product-wise every week in a month. The company reviews its production schedule at every month-

end. The review may require one or more of the following information:

 (a) Value of weekly production and sales.

 (b) Total value of all the products manufactured.

 (c) Total value of all the products sold.

 (d) Total value of each product, manufactured and sold.

Let us represent the products manufactured and sold by two two-dimensional arrays M and S respectively.

Then,

M11 M12 M13 M14 M15

M = M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

S11 S12 S13 S14 S15

S = S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

where Mij represents the number of jth type product manufactured in ith week and Sij the number of jth product

sold in ith week. We may also represent the cost of each product by a single dimensional array C as follows:

C = C1 C2 C3 C4 C5

where Cj is the cost of jth type product.

We shall represent the value of products manufactured and sold by two value arrays, namely, Mvalue and

Svalue. Then,

 Mvalue[i][j] = Mij x Cj

 Svalue[i][j] = Sij x Cj

Array & String 201

A program to generate the required outputs for the review meeting is shown in Fig. 4.25. The following

additional variables are used:

 Mweek[i] = Value of all the products manufactured in week i

 =

J 1

5

=

Â Mvalue[i][j]

 Sweek[i] = Value of all the products in week i

 =

J 1

5

=

Â Svalue[i][j]

 Mproduct[j] = Value of jth type product manufactured during the month

 =

i 1

4

=

Â Mvalue[i][j]

 Sproduct[j] = Value of jth type product sold during the month

 =

i 1

4

=

Â Svalue[i][j]

 Mtotal = Total value of all the products manufactured during the month

 =

i 1

4

=

Â Mweek[i] =

j 1

5

=

Â Mproduct[j]

 Stotal = Total value of all the products sold during the month

 =

i 1

4

=

Â Sweek[i] =

j 1

5

=

Â Sproduct[j]

 Program

 main()

 {

 int M[5][6],S[5][6],C[6],

 Mvalue[5][6],Svalue[5][6],

 Mweek[5], Sweek[5],

 Mproduct[6], Sproduct[6],

 Mtotal, Stotal, i,j,number;

 /* Input data */

 printf (“ Enter products manufactured week_wise \n”);

 printf (“ M11,M12,——, M21,M22,—— etc\n”);

 for(i=1; i<=4; i++)

 for(j=1;j<=5; j++)

 scanf(“%d”,&M[i][j]);

 printf (“ Enter products sold week_wise\n”);

 printf (“ S11,S12,——, S21,S22,—— etc\n”);

202 Programming for Problem Solving

 for(i=1; i<=4; i++)

 for(j=1; j<=5; j++)

 scanf(“%d”, &S[i][j]);

 printf(“ Enter cost of each product\n”);

 for(j=1; j <=5; j++)

 scanf(“%d”,&C[j]);

 /* Value matrices of production and sales */

 for(i=1; i<=4; i++)

 for(j=1; j<=5; j++)

 {

 Mvalue[i][j] = M[i][j] * C[j];

 Svalue[i][j] = S[i][j] * C[j];

 }

 /* Total value of weekly production and sales */

 for(i=1; i<=4; i++)

 {

 Mweek[i] = 0 ;

 Sweek[i] = 0 ;

 for(j=1; j<=5; j++)

 {

 Mweek[i] += Mvalue[i][j];

 Sweek[i] += Svalue[i][j];

 }

 }

 /* Monthly value of product_wise production and sales */

 for(j=1; j<=5; j++)

 {

 Mproduct[j] = 0 ;

 Sproduct[j] = 0 ;

 for(i=1; i<=4; i++)

 {

 Mproduct[j] += Mvalue[i][j];

 Sproduct[j] += Svalue[i][j];

 }

 }

Array & String 203

 /* Grand total of production and sales values */

 Mtotal = Stotal = 0;

 for(i=1; i<=4; i++)

 {

 Mtotal += Mweek[i];

 Stotal += Sweek[i];

 }

 /***

 Selection and printing of information required

 ***/

 printf(“\n\n”);

 printf(“ Following is the list of things you can\n”);

 printf(“ request for. Enter appropriate item number\n”);

 printf(“ and press RETURN Key\n\n”);

 printf(“ 1.Value matrices of production & sales\n”);

 printf(“ 2.Total value of weekly production & sales\n”);

 printf(“ 3.Product_wise monthly value of production &”);

 printf(“ sales\n”);

 printf(“ 4.Grand total value of production & sales\n”);

 printf(“ 5.Exit\n”);

 number = 0;

 while(1)

 { /* Beginning of while loop */

 printf(“\n\n ENTER YOUR CHOICE:”);

 scanf(“%d”,&number);

 printf(“\n”);

 if(number == 5)

 {

 printf(“ G O O D B Y E\n\n”);

 break;

 }

 switch(number)

 { /* Beginning of switch */

 /* V A L U E M A T R I C E S */

 case 1:

 printf(“ VALUE MATRIX OF PRODUCTION\n\n”);

 for(i=1; i<=4; i++)

 {

 printf(“ Week(%d)\t”,i);

 for(j=1; j <=5; j++)

 printf(“%7d”, Mvalue[i][j]);

204 Programming for Problem Solving

 printf(“\n”);

 }

 printf(“\n VALUE MATRIX OF SALES\n\n”);

 for(i=1; i <=4; i++)

 {

 printf(“ Week(%d)\t”,i);

 for(j=1; j <=5; j++)

 printf(“%7d”, Svalue[i][j]);

 printf(“\n”);

 }

 break;

 /* W E E K L Y A N A L Y S I S */

 case 2:

 printf(“ TOTAL WEEKLY PRODUCTION & SALES\n\n”);

 printf(“ PRODUCTION SALES\n”);

 printf(“ — — — — — — — \n”);

 for(i=1; i <=4; i++)

 {

 printf(“ Week(%d)\t”, i);

 printf(“%7d\t%7d\n”, Mweek[i], Sweek[i]);

 }

 break;

 /* P R O D U C T W I S E A N A L Y S I S */

 case 3:

 printf(“ PRODUCT_WISE TOTAL PRODUCTION &”);

 printf(“ SALES\n\n”);

 printf(“ PRODUCTION SALES\n”);

 printf(“ — — — — — — — \n”);

 for(j=1; j <=5; j++)

 {

 printf(“ Product(%d)\t”, j);

 printf(“%7d\t%7d\n”,Mproduct[j],Sproduct[j]);

 }

 break;

 /* G R A N D T O T A L S */

 case 4:

 printf(“ GRAND TOTAL OF PRODUCTION & SALES\n”);

 printf(“\n Total production = %d\n”, Mtotal);

 printf(“ Total sales = %d\n”, Stotal);

 break;

 /* D E F A U L T */

 default :

Array & String 205

 printf(“ Wrong choice, select again\n\n”);

 break;

 } /* End of switch */

 } /* End of while loop */

 printf(“ Exit from the program\n\n”);

 } /* End of main */

 Output

 Enter products manufactured week_wise

 M11, M12, — — – –, M21, M22, ——–– etc

 11 15 12 14 13

 13 13 14 15 12

 12 16 10 15 14

 14 11 15 13 12

 Enter products sold week_wise

 S11,S12,— — – –, S21,S22,——–– etc

 10 13 9 12 11

 12 10 12 14 10

 11 14 10 14 12

 12 10 13 11 10

 Enter cost of each product

 10 20 30 15 25

 Following is the list of things you can

 request for. Enter appropriate item number

 and press RETURN key

 1.Value matrices of production & sales

 2.Total value of weekly production & sales

 3.Product_wise monthly value of production & sales

 4.Grand total value of production & sales

 5.Exit

 ENTER YOUR CHOICE:1

 VALUE MATRIX OF PRODUCTION

 Week(1) 110 300 360 210 325

 Week(2) 130 260 420 225 300

 Week(3) 120 320 300 225 350

 Week(4) 140 220 450 185 300

 VALUE MATRIX OF SALES

 Week(1) 100 260 270 180 275

 Week(2) 120 200 360 210 250

 Week(3) 110 280 300 210 300

 Week(4) 120 200 390 165 250

206 Programming for Problem Solving

 ENTER YOUR CHOICE:2

 TOTAL WEEKLY PRODUCTION & SALES

 PRODUCTION SALE

 Week(1) 1305 1085

 Week(2) 1335 1140

 Week(3) 1315 1200

 Week(4) 1305 1125

 ENTER YOUR CHOICE:3

 PRODUCT_WISE TOTAL PRODUCTION & SALES

 PRODUCTION SALES

 Product(1) 500 450

 Product(2) 1100 940

 Product(3) 1530 1320

 Product(4) 855 765

 Product(5) 1275 1075

 ENTER YOUR CHOICE:4

 GRAND TOTAL OF PRODUCTION & SALES

 Total production = 5260

 Total sales = 4550

 ENTER YOUR CHOICE:5

 G O O D B Y E

 Exit from the program

 Fig. 4.25 Program for production and sales analysis

5. Counting Words in a Text [LO 4.7, 4.8 M]

One of the practical applications of string manipulations is counting the words in a text. We assume that a word

is a sequence of any characters, except escape characters and blanks, and that two words are separated by

one blank character. The algorithm for counting words is as follows:

 1. Read a line of text.

 2. Beginning from the first character in the line, look for a blank. If a blank is found, increment words by 1.

 3. Continue steps 1 and 2 until the last line is completed.

The implementation of this algorithm is shown in Fig. 4.26. The first while loop will be executed once for

each line of text. The end of text is indicated by pressing the ‘Return’ key an extra time after the entire text has

been entered. The extra ‘Return’ key causes a newline character as input to the last line and as a result, the

last line contains only the null character.

The program checks for this special line using the test

 if (line[0] == ‘\0’)

and if the first (and only the first) character in the line is a null character, then counting is terminated. Note the

difference between a null character and a blank character.

Array & String 207

 Program

 #include <stdio.h>

 main()

 {

 char line[81], ctr;

 int i,c,

 end = 0,

 characters = 0,

 words = 0,

 lines = 0;

 printf(“KEY IN THE TEXT.\n”);

 printf(“GIVE ONE SPACE AFTER EACH WORD.\n”);

 printf(“WHEN COMPLETED, PRESS ‘RETURN’.\n\n”);

 while(end == 0)

 {

 /* Reading a line of text */

 c = 0;

 while((ctr=getchar()) != ‘\n’)

 line[c++] = ctr;

 line[c] = ‘\0’;

 /* counting the words in a line */

 if(line[0] == ‘\0’)

 break ;

 else

 {

 words++;

 for(i=0; line[i] != ‘\0’;i++)

 if(line[i] == ‘ ‘ || line[i] == ‘\t’)

 words++;

 }

 /* counting lines and characters */

 lines = lines +1;

 characters = characters + strlen(line);

 }

 printf (“\n”);

 printf(“Number of lines = %d\n”, lines);

 printf(“Number of words = %d\n”, words);

 printf(“Number of characters = %d\n”, characters);

 }

208 Programming for Problem Solving

 Output

 KEY IN THE TEXT.

 GIVE ONE SPACE AFTER EACH WORD.

 WHEN COMPLETED, PRESS ‘RETURN’.

 Admiration is a very short-lived passion.

 Admiration involves a glorious obliquity of vision.

 Always we like those who admire us but we do not

 like those whom we admire.

 Fools admire, but men of sense approve.

 Number of lines = 5

 Number of words = 36

 Number of characters = 205

Fig. 4.26 Counting of characters, words and lines in a text

The program also counts the number of lines read and the total number of characters in the text. Remember,

the last line containing the null string is not counted.

After the first while loop is exited, the program prints the results of counting.

6. Processing of a Customer List [LO 4.7, 4.8, 4.9, 4.10 M]

Telephone numbers of important customers are recorded as follows:

 Full name Telephone number

 Joseph Louis Lagrange 869245

 Jean Robert Argand 900823

 Carl Freidrich Gauss 806788

 – – –– – – – –– –

 – – –– – – – –– –

It is desired to prepare a revised alphabetical list with surname (last name) first, followed by a comma and

the initials of the first and middle names. For example,

Argand, J.R

We create a table of strings, each row representing the details of one person, such as first_name, middle_

name, last_name, and telephone_number. The columns are interchanged as required and the list is sorted on

the last_name. Figure 4.27 shows a program to achieve this.

 Program
 #define CUSTOMERS 10

 main()

 {

 char first_name[20][10], second_name[20][10],

 surname[20][10], name[20][20],

 telephone[20][10], dummy[20];

 int i,j;

Array & String 209

 printf(“Input names and telephone numbers \n”);

 printf(“?”);

 for(i=0; i < CUSTOMERS ; i++)

 {

 scanf(“%s %s %s %s”, first_name[i],

 second_name[i], surname[i], telephone[i]);

 /* converting full name to surname with initials */

 strcpy(name[i], surname[i]);

 strcat(name[i], “,”);

 dummy[0] = first_name[i][0];

 dummy[1] = ‘\0’;

 strcat(name[i], dummy);

 strcat(name[i], “.”);

 dummy[0] = second_name[i][0];

 dummy[1] = ‘\0’;

 strcat(name[i], dummy);

 }

 /* Alphabetical ordering of surnames */

 for(i=1; i <= CUSTOMERS-1; i++)

 for(j=1; j <= CUSTOMERS-i; j++)

 if(strcmp (name[j-1], name[j]) > 0)

 {

 /* Swaping names */

 strcpy(dummy, name[j-1]);

 strcpy(name[j-1], name[j]);

 strcpy(name[j], dummy);

 /* Swaping telephone numbers */

 strcpy(dummy, telephone[j-1]);

 strcpy(telephone[j-1],telephone[j]);

 strcpy(telephone[j], dummy);

 }

 /* printing alphabetical list */

 printf(“\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n”);

 for(i=0; i < CUSTOMERS ; i++)

 printf(“ %-20s\t %-10s\n”, name[i], telephone[i]);

 }

210 Programming for Problem Solving

 Output

 Input names and telephone numbers

 ?Gottfried Wilhelm Leibniz 711518

 Joseph Louis Lagrange 869245

 Jean Robert Argand 900823

 Carl Freidrich Gauss 806788

 Simon Denis Poisson 853240

 Friedrich Wilhelm Bessel 719731

 Charles Francois Sturm 222031

 George Gabriel Stokes 545454

 Mohandas Karamchand Gandhi 362718

 Josian Willard Gibbs 123145

 CUSTOMERS LIST IN ALPHABETICAL ORDER

 Argand,J.R 900823

 Bessel,F.W 719731

 Gandhi,M.K 362718

 Gauss,C.F 806788

 Gibbs,J.W 123145

 Lagrange,J.L 869245

 Leibniz,G.W 711518

 Poisson,S.D 853240

 Stokes,G.G 545454

 Sturm,C.F 222031

Fig. 4.27 Program to alphabetize a customer list

review QueStionS

 4.1 State whether the following statements are true or false.

 (a) An array can store infinite data of similar type. [LO 4.1 E]

 (b) In declaring an array, the array size can be a constant or variable or an expression.

[LO 4.2 E]

 (c) The declaration int x[2] = {1,2,3}; is illegal. [LO 4.2 E]

 (d) When an array is declared, C automatically initializes its elements to zero. [LO 4.2, 4.5 M]

 (e) An expression that evaluates to an integral value may be used as a subscript. [LO 4.1, 4.2 M]

 (f) In C, by default, the first subscript is zero. [LO 4.1, 4.2 M]

 (g) When initializing a multidimensional array, not specifying all its dimensions is an error.
[LO 4.1, 4.2 M]

 (h) When we use expressions as a subscript, its result should be always greater than zero.
[LO 4.1, 4.2 M]

 (i) In C, we can use a maximum of 4 dimensions for an array. [LO 4.1, 4.2 M]

 (j) Accessing an array outside its range is a compile time error. [LO 4.2 H]

Array & String 211

 (k) A char type variable cannot be used as a subscript in an array. [LO 4.2 H]

 (l) An unsigned long int type can be used as a subscript in an array. [LO 4.2 H]

 (m) When initializing a string variable during its declaration, we must include the null character as

part of the string constant, like “GOOD\0”. [LO 4.7 M]

 (n) The gets function automatically appends the null character at the end of the string read from the

keyboard. [LO 4.8 E]

 (o) When reading a string with scanf, it automatically inserts the terminating null character.

[LO 4.8 E]

 (p) The input function gets has one string parameter. [LO 4.8 E]

 (q) The function scanf cannot be used in any way to read a line of text with the white-spaces.

[LO 4.8 M]

 (r) The function getchar skips white-space during input. [LO 4.8 M]

 (s) In C, strings cannot be initialized at run time. [LO 4.8 H]

 (t) String variables cannot be used with the assignment operator. [LO 4.10 E]

 (u) We cannot perform arithmetic operations on character variables. [LO 4.10 E]

 (v) The ASCII character set consists of 128 distinct characters. [LO 4.10 E]

 (w) In the ASCII collating sequence, the uppercase letters precede lowercase letters. [LO 4.10 M]

 (x) In C, it is illegal to mix character data with numeric data in arithmetic operations. [LO 4.10 M]

 (y) The function call strcpy(s2, s1); copies string s2 into string s1. [LO 4.10 M]

 (z) The function call strcmp(“abc”, “ABC”); returns a positive number. [LO 4.10 M]

 (aA) We can assign a character constant or a character variable to an int type variable. [LO 4.10 H]

 4.2 Fill in the blanks in the following statements.

 (a) The variable used as a subscript in an array is popularly known as _________ variable.
[LO 4.1 E]

 (b) An array that uses more than two subscript is referred to as ______ array. [LO 4.2 E]

 (c) _______ is the process of arranging the elements of an array in order. [LO 4.3 E]

 (d) An array can be initialized either at compile time or at ________. [LO 4.6 M]

 (e) An array created using malloc function at run time is referred to as ______ array. [LO 4.6 M]

 (f) We can use the conversion specification _______in scanf to read a line of text. [LO 4.8 E]

 (g) The function _______does not require any conversion specification to read a string from the

keyboard. [LO 4.8 E]

 (h) The printf may be replaced by ______function for printing strings. [LO 4.9 E]

 (i) The function strncat has _____ parameters. [LO 4.10 E]

 (j) The function _______ is used to determine the length of a string. [LO 4.10 E]

 (k) We can initialize a string using the string manipulation function_______. [LO 4.8 M]

 (l) To use the function atoi in a program, we must include the header file ____. [LO 4.10 M]

 (m) The _________string manipulation function determines if a character is contained in a string.

[LO 4.10 M]

 (n) The function call strcat (s2, s1); appends _____ to ______. [LO 4.10 M]

 (o) The function _____is used to sort the strings in alphabetical order. [LO 4.10 H]

 4.3 Write a for loop statement that initializes all the diagonal elements of an array to one and others to

zero as shown below. Assume 5 rows and 5 columns. [LO 4.4 M]

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

.

212 Programming for Problem Solving

.

.

.

.

0 0 0 0 0 1

 4.4 We want to declare a two-dimensional integer type array called matrix for 3 rows and 5 columns.

Which of the following declarations are correct? [LO 4.4 M]

 (a) int maxtrix [3],[5];
 (b) int matrix [5] [3];
 (c) int matrix [1+2] [2+3];
 (d) int matrix [3,5];
 (e) int matrix [3] [5];

 4.5 Which of the following initialization statements are correct? [LO 4.2 H]

 (a) char str1[4] = “GOOD”;
 (b) char str2[] = “C”;
 (c) char str3[5] = “Moon”;
 (d) char str4[] = {‘S’, ‘U’, ‘N’};
 (e) char str5[10] = “Sun”;

 4.6 What is a data structure? Why is an array called a data structure? [LO 4.1 E]

 4.7 What is a dynamic array? How is it created? Give a typical example of use of a dynamic array.
[LO 4.6 M]

 4.8 What happens when an array with a specified size is assigned [LO 4.2 H]

 (a) with values fewer than the specified size; and

 (b) with values more than the specified size.

 4.9 Discuss how initial values can be assigned to a multidimen sional array. [LO 4.5 E]

 4.10 Describe the limitations of using getchar and scanf functions for reading strings. [LO 4.8 M]

 4.11 Character strings in C are automatically terminated by the null character. Explain how this feature

helps in string manipulations. [LO 4.10 H]

 4.12 Strings can be assigned values as follows: [LO 4.7, 4.8, 4.10 E]

 (a) During type declaration char string[] = {“.......”};

 (b) Using strcpy function strcpy(string, “.......”);

 (c) Reading using scanf function scanf(“%s”, string);

 (d) Reading using gets function gets(string);

 Compare them critically and describe situations where one is superior to the others.

 4.13 Assuming the variable string contains the value “The sky is the limit.”, determine what output of the

following program segments will be. [LO 4.9 H]

 (a) printf(“%s”, string);

 (b) printf(“%25.10s”, string);

 (c) printf(“%s”, string[0]);

 (d) for (i=0; string[i] != “.”; i++)

 printf(“%c”, string[i]);

 (e) for (i=0; string[i] != ‘\0’; i++;)

 printf(“%d\n”, string[i]);

Array & String 213

 (f) for (i=0; i <= strlen[string]; ;)

 {

 string[i++] = i;

 printf(“%s\n”, string[i]);

 }

 (g) printf(“%c\n”, string[10] + 5);

 (h) printf(“%c\n”, string[10] + 5’)

 4.14 Which of the following statements will correctly store the concatenation of strings s1 and s2 in string

s3? [LO 4.10 M]

 (a) s3 = strcat (s1, s2);

 (b) strcat (s1, s2, s3);

 (c) strcat (s3, s2, s1);

 (d) strcpy (s3, strcat (s1, s2));

 (e) strcmp (s3, strcat (s1, s2));

 (f) strcpy (strcat (s1, s2), s3);

 4.15 What will be the output of the following statement? [LO 4.9 M]

printf (“%d”, strcmp (“push”, “pull”));

 4.16 Assume that s1, s2 and s3 are declared as follows: [LO 4.10 H]

 char s1[10] = “he”, s2[20] = “she”, s3[30], s4[30];

 What will be the output of the following statements executed in sequence?

 printf(“%s”, strcpy(s3, s1));

 printf(“%s”, strcat(strcat(strcpy(s4, s1), “or”), s2));

 printf(“%d %d”, strlen(s2)+strlen(s3), strlen(s4));

 4.17 What will be the output of the following segment? [LO 4.10 E]

 char s1[] = “Kolkotta” ;

 char s2[] = “Pune” ;

 strcpy (s1, s2) ;

 printf(“%s”, s1) ;

 4.18 What will be the output of the following segment? [LO 4.10 E]

 char s1[] = “NEW DELHI” ;

 char s2[] = “BANGALORE” ;

 strncpy (s1, s2, 3) ;

 printf(“%s”, s1) ;

 4.19 What will be the output of the following code? [LO 4.10 E]

 char s1[] = “Jabalpur” ;

 char s2[] = “Jaipur” ;

 printf(strncmp(s1, s2, 2));

 4.20 What will be the output of the following code? [LO 4.10 E]

 char s1[] = “ANIL KUMAR GUPTA”;

 char s2[] = “KUMAR”;

 printf (strstr (s1, s2));

214 Programming for Problem Solving

 4.21 Compare the working of the following functions: [LO 4.10 M]

 (a) strcpy and strncpy;

 (b) strcat and strncat; and

 (c) strcmp and strncmp.

deBugging exerCiSeS

 4.1 Identify errors, if any, in each of the following array declaration statements, assuming that ROW and

COLUMN are declared as symbolic constants:

 (a) int score (100); [LO 4.2, 4.4 E]

 (b) float values [10,15]; [LO 4.2, 4.4 E]

 (c) char name[15]; [LO 4.2, 4.4 E]

 (d) float average[ROW],[COLUMN]; [LO 4.2, 4.4 M]

 (e) double salary [i + ROW] [LO 4.2, 4.4 M]

 (f) long int number [ROW] [LO 4.2, 4.4 M]

 (g) int sum[]; [LO 4.2, 4.4 H]

 (h) int array x[COLUMN]; [LO 4.2, 4.4 H]

 4.2 Identify errors, if any, in each of the following initialization statements.

 (a) int number[] = {0,0,0,0,0}; [LO 4.2, 4.4 M]

 (b) float item[3][2] = {0,1,2,3,4,5}; [LO 4.2, 4.4 M]

 (c) char word[] = {‘A’,‘R’, ‘R’, ‘A’, ‘Y’}; [LO 4.2, 4.4 M]

 (d) int m[2,4] = {(0,0,0,0)(1,1,1,1)}; [LO 4.2, 4.4 M]

 (e) float result[10] = 0; [LO 4.2 H]

 4.3 Assume that the arrays A and B are declared as follows:

 int A[5][4];

 float B[4];

 Find the errors (if any) in the following program segments.

 (a) for (i=1; i<4; i++)
 scanf(“%f”, B[i]); [LO 4.2 E]

 (b) for (i=1; i<=5; i++)
 for(j=1; j<=4; j++)
 A[i][j] = 0; [LO 4.2, 4.4 M]

 (c) for (i=0; i<=4; i++)
 B[i] = B[i]+i; [LO 4.2, 4.4 M]

 (d) for (i=4; i>=0; i– –)
 for (j=0; j<4; j++)
 A[i][j] = B[j] + 1.0; [LO 4.2, 4.4 M]

 4.4 What is the error in the following program? [LO 4.2 M]

 main ()

 {

 int x ;

 float y [] ;

 }

 4.5 What is the output of the following program? [LO 4.2 M]

 main ()

 {

Array & String 215

 int m [] = { 1,2,3,4,5 }

 int x, y = 0;

 for (x = 0; x < 5; x++)

 y = y + m [x];

 printf(“%d”, y) ;

 }

 4.6 What is the output of the following program? [LO 4.2 M]

 main ()

 {

 chart string [] = “HELLO WORLD” ;

 int m;

 for (m = 0; string [m] != ‘\0’; m++)

 if ((m%2) == 0)

 printf(“%c”, string [m]);

 }

 4.7 Find errors, if any, in the following code segments: [LO 4.10 M]

 (a) char str[10]

 strncpy(str, “GOD”, 3);

 printf(“%s”, str);

 (b) char str[10];

 strcpy(str, “Balagurusamy”);

 (c) if strstr(“Balagurusamy”, “guru”) = = 0);

 printf(“Substring is found”);

 (d) char s1[5], s2[10],

 gets(s1, s2);

progrAmming exerCiSeS

 4.1 Write a program for fitting a straight line through a set of points (xi, yi), i = 1,....,n. [LO 4.4 H]

 The straight line equation is

 y = mx + c

 and the values of m and c are given y

 m =
n x y x y

n x x

1 i 1 i

i
2

i

2

S S S

S S

() - ()()

() - ()

 c =
1

n
(S yi – m S xi)

 All summations are from 1 to n.

 4.2 The daily maximum temperatures recorded in 10 cities during the month of January (for all 31 days)

have been tabulated as follows: [LO 4.4 M]

216 Programming for Problem Solving

City

Day 1 2 3 - 10

1 -

2

3

–

–

–

–

31

 Write a program to read the table elements into a two-dimensional array temperature, and to find the

city and day corresponding to

 (a) the highest temperature and

 (b) the lowest temperature.

 4.3 An election is contested by 5 candidates. The candidates are numbered 1 to 5 and the voting is done

by marking the candidate number on the ballot paper. Write a program to read the ballots and count

the votes cast for each candidate using an array variable count. In case, a number read is outside

the range 1 to 5, the ballot should be considered as a ‘spoilt ballot’ and the program should also count

the number of spoilt ballots. [LO 4.2 M]

 4.4 The following set of numbers is popularly known as Pascal’s triangle. [LO 4.5 H]

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

 – – – – – – –

 – – – – – – – –

 If we denote rows by i and columns by j, then any element (except the boundary elements) in the

triangle is given by

 pij = p i–1, j–1 + p i–1, j

 Write a program to calculate the elements of the Pascal triangle for 10 rows and print the results.

 4.5 The annual examination results of 100 students are tabulated as follows: [LO 4.2 M]

Roll No. Subject 1 Subject 2 Subject 3

.

.

.

 Write a program to read the data and determine the following:

 (a) Total marks obtained by each student.

 (b) The highest marks in each subject and the Roll No. of the student who secured it.

 (c) The student who obtained the highest total marks.

 4.6 Given are two one-dimensional arrays A and B which are sorted in ascending order. Write a program

to merge them into a single sorted array C that contains every item from arrays A and B, in ascending

order. [LO 4.2 H]

Array & String 217

 4.7 Two matrices that have the same number of rows and columns can be multiplied to produce a third

matrix. Consider the following two matrices. [LO 4.4 M]

 A =

a aa

a aa

. .

. .

. .

a a

11 12 1n

12 22 2n

n1 nn

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙̇
˙
˙
˙
˙
˙
˙
˙

 B =

b bb

b bb

. .

. .

. .

b b

11 12 1n

12 22 2n

n1 nn

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙̇
˙
˙
˙
˙
˙
˙
˙

 The product of A and B is a third matrix C of size n¥n where each element of C is given by the

following equation.

Cij

k 1

n

=

Â = aikbkj

 Write a program that will read the values of elements of A and B and produce the product

matrix C.

 4.8 Write a program that fills a five-by-five matrix as follows: [LO 4.4 M]

 ∑ Upper left triangle with +1s

 ∑ Lower right triangle with –1s

 ∑ Right to left diagonal with zeros

 Display the contents of the matrix using not more than two printf statements

 4.9 Selection sort is based on the following idea:

 Selecting the largest array element and swapping it with the last array element leaves an unsorted

list whose size is 1 less than the size of the original list. If we repeat this step again on the unsorted

list we will have an ordered list of size 2 and an unordered list size n–2 . When we repeat this until the

size of the unsorted list becomes one, the result will be a sorted list.

 Write a program to implement this algorithm. [LO 4.2 M]

 4.10 Develop a program to implement the binary search algorithm. This technique compares the search

key value with the value of the element that is midway in a “sorted” list. Then;

 (a) If they match, the search is over.

 (b) If the search key value is less than the middle value, then the first half of the list contains the key

value.

 (c) If the search key value is greater than the middle value, then the second half contains the key

value.

 Repeat this “divide-and-conquer” strategy until we have a match. If the list is reduced to one non-

matching element, then the list does not contain the key value.

 Use the sorted list created in Exercise 4.9 or use any other sorted list. [LO 4.2 H]

218 Programming for Problem Solving

 4.11 Write a program that will compute the length of a given character string. [LO 4.2 E]

 4.12 Write a program that will count the number occurrences of a specified character in a given line of text.

Test your program. [LO 4.2 E]

 4.13 Write a program to read a matrix of size m ¥ n and print its transpose. [LO 4.2 E]

 4.14 Every book published by international publishers should carry an International Standard Book

Number (ISBN). It is a 10 character 4 part number as shown below.

 0-07-041183-2

 The first part denotes the region, the second represents pub lisher, the third identifies the book and

the fourth is the check digit. The check digit is computed as follows:

 Sum = (1 ¥ first digit) + (2 ¥ second digit) + (3 ¥ third digit) + - - - - + (9 ¥ ninth digit).

 Check digit is the remainder when sum is divided by 11. Write a program that reads a given ISBN

number and checks whether it represents a valid ISBN. [LO 4.2 M]

 4.15 Write a program to read two matrices A and B and print the following: [LO 4.4 L]

 (a) A + B; and

 (b) A – B.

 4.16 Write a program, which reads your name from the keyboard and outputs a list of ASCII codes, which

represent your name. [LO 4.10 M]

 4.17 Write a program to do the following: [LO 4.9 M]

 (a) To output the question “Who is the inventor of C ?”

 (b) To accept an answer.

 (c) To print out “Good” and then stop, if the answer is correct.

 (d) To output the message ‘try again’, if the answer is wrong.

 (e) To display the correct answer when the answer is wrong even at the third attempt and stop.

 4.18 Write a program to extract a portion of a character string and print the extracted string. Assume that

m characters are extracted, starting with the nth character. [LO 4.10 M]

 4.19 Write a program which will read a text and count all occurrences of a particular word. [LO 4.10 H]

 4.20 Write a program which will read a string and rewrite it in the alphabetical order. For example, the word

STRING should be written as GINRST. [LO 4.10 H]

 4.21 Write a program to replace a particular word by another word in a given string. For example, the

word “PASCAL” should be replaced by “C” in the text “It is good to program in PASCAL language.”

[LO 4.10 H]

 4.22 A Maruti car dealer maintains a record of sales of various vehicles in the following form: [LO 4.10 M]

 Vehicle type Month of sales Price

 MARUTI-800 02/01 210000

 MARUTI-DX 07/01 265000

 GYPSY 04/02 315750

 MARUTI-VAN 08/02 240000

 Write a program to read this data into a table of strings and output the details of a particular vehicle

sold during a specified period. The program should request the user to input the vehicle type and the

period (starting month, ending month).

 4.23 Write a program that reads a string from the keyboard and determines whether the string is a

palindrome or not. (A string is a palindrome if it can be read from left and right with the same meaning.

For example, Madam and Anna are palindrome strings. Ignore capitalization). [LO 4.10 M]

 4.24 Write program that reads the cost of an item in the form RRRR.PP (Where RRRR denotes Rupees

and PP denotes Paise) and converts the value to a string of words that expresses the numeric value

in words. For example, if we input 125.75, the output should be “ONE HUNDRED TWENTY FIVE

AND PAISE SEVENTY FIVE”. [LO 4.9 H]

Array & String 219

 4.25 Develop a program that will read and store the details of a list of students in the format [LO 4.10 H]

 Roll No. Name Marks obtained

 and produce the following output list:

 (a) Alphabetical list of names, roll numbers and marks obtained.

 (b) List sorted on roll numbers.

 (c) List sorted on marks (rank-wise list)

 4.26 Write a program to read two strings and compare them using the function strncmp () and print a

message that the first string is equal, less, or greater than the second one. [LO 4.10 E]

 4.27 Write a program to read a line of text from the keyboard and print out the number of occurrences of a

given substring using the function strstr (). [LO 4.10 M]

 4.28 Write a program that will copy m consecutive characters from a string s1 beginning at position n into

another string s2. [LO 4.10 E]

 4.29 Write a program to create a directory of students with roll numbers. The program should display the

roll number for a speci fied name and vice-versa. [LO 4.10 M]

 4.30 Given a string

char str [] = “123456789” ;

 Write a program that displays the following: [LO 4.9 M]

 1

 2 3 2

 3 4 5 4 3

 4 5 6 7 6 5 4

 5 6 7 8 9 8 7 6 5

LEARNING OBJECTIVES

LO 5.1 Outline user-defi ned functi ons

LO 5.2 Identi fy the elements of user-defi ned functi ons

LO 5.3 Explain the diff erent categories of functi ons

LO 5.4 Know the concept of recursion

LO 5.5 Describe how arrays are passed to functi ons

LO 5.6 Discuss the relevance of storage classes on scope, visibility and lifeti me of variables

introduction
We have mentioned earlier that one of the strengths of C language is C functions. They are easy to defi ne

and use. We have used functions in every program that we have discussed so far. However, they have been

primarily limited to the three functions, namely, main, printf, and scanf. In this chapter, we shall consider in

detail the following:

 ∑ How a function is designed?

 ∑ How a function is integrated into a program?

 ∑ How two or more functions are put together? and

 ∑ How they communicate with one another?

C functions can be classifi ed into two categories, namely, library functions and user-defi ned functions.

main is an example of user-defi ned functions. printf and scanf belong to the category of library functions.

We have also used other library functions such as sqrt, cos, strcat, etc. The main distinction between these

two categories is that library functions are not required to be written by us whereas a user-defi ned function

has to be developed by the user at the time of writing a program. However, a user-defi ned function can later

become a part of the C program library. In fact, this is one of the strengths of C language.

two categories is that library functions are not required to be written by us whereas a user-defi ned function

has to be developed by the user at the time of writing a program. However, a user-defi ned function can later

become a part of the C program library. In fact, this is one of the strengths of C language.

introduction
We have mentioned earlier that one of t

and use. We have used functions in every program that we have discussed so far. However, they have been

Functions
Chapter

5

Functions 221

NEED FOR USER-DEFINED FUNCTIONS
As pointed out earlier, main is a specially recognized function in C. Every

program must have a main function to indicate where the program has to begin its

execution. While it is possible to code any program utilizing only main function, it

leads to a number of problems. The program may become too large and complex

and as a result the task of debugging, testing, and maintaining becomes diffi cult.

If a program is divided into functional parts, then each part may be independently coded and later combined

into a single unit. These independently coded programs are called subprograms that are much easier to

understand, debug, and test. In C, such subprograms are referred to as ‘functions’.

There are times when certain type of operations or calculations are repeated at many points throughout

a program. For instance, we might use the factorial of a number at several points in the program. In such

situations, we may repeat the program statements wherever they are needed. Another approach is to design

a function that can be called and used whenever required. This saves both time and space.

This “division” approach clearly results in a number of advantages.

 1. It facilitates top-down modular programming as shown in Fig. 5.1. In this programming style, the

high level logic of the overall problem is solved fi rst while the details of each lower-level function are

addressed later.

 2. The length of a source program can be reduced by using functions at appropriate places. This factor is

particularly critical with microcomputers where memory space is limited.

 3. It is easy to locate and isolate a faulty function for further investigations.

 4. A function may be used by many other programs. This means that a C programmer can build on what

others have already done, instead of starting all over again from scratch.

Main Program

Function
A

Function
C

Function
B

B1 B2

Fig. 5.1 Top-down modular programming using functions

A MULTI-FUNCTION PROGRAM
A function is a self-contained block of code that performs a particular task. Once a function has been designed

and packed, it can be treated as a ‘black box’ that takes some data from the main program and returns a

value. The inner details of operation are invisible to the rest of the program. All that the program knows about

a function is: What goes in and what comes out. Every C program can be designed using a collection of these

black boxes known as functions.

Lo 5.1

outline user-defi ned

functi ons

222 Programming for Problem Solving

Consider a set of statements as shown below:

 void printline(void)

 {

 int i;

 for (i=1; i<40; i++)

 printf(“–”);

 printf(“\n”);

 }

The above set of statements defines a function called printline, which could print a line of 39-character

length. This function can be used in a program as follows:

 void printline(void); /* declaration */

 main()

 {

 printline();

 printf(“This illustrates the use of C functions\n”);

 printline();

 }

 void printline(void)

 {

 int i;

 for(i=1; i<40; i++)

 printf(“–”);

 printf(“\n”);

 }

This program will print the following output:

 ———————————————————————————————————————-

 This illustrates the use of C functions

 ———————————————————————————————————————-
The above program contains two user-defined functions:

 main() function

 printline() function

As we know, the program execution always begins with the main function. During execution of the main,

the first statement encountered is

 printline();
which indicates that the function printline is to be executed. At this point, the program control is transferred

to the function printline. After executing the printline function, which outputs a line of 39 character length,

the control is transferred back to the main. Now, the execution continues at the point where the function call

was executed. After executing the printf statement, the control is again transferred to the printline function

for printing the line once more.

The main function calls the user-defined printline function two times and the library function printf once.

We may notice that the printline function itself calls the library function printf 39 times repeatedly.

Functions 223

Any function can call any other function. In fact, it can call itself. A ‘called function’ can also call another

function. A function can be called more than once. In fact, this is one of the main features of using functions.

Figure 5.2 illustrates the flow of control in a multi-function program.

Except the starting point, there are no other predetermined relationships, rules of precedence, or hierarchies

among the functions that make up a complete program. The functions can be placed in any order. A called

function can be placed either before or after the calling function. However, it is the usual practice to put all the

called functions at the end. See the box “Modular Programming”.

 Fig. 5.2 Flow of control in a multi-function program

224 Programming for Problem Solving

modular programming

Modular programming is a strategy applied to the design and development of software systems. It is defi ned

as organizing a large program into small, independent program segments called modules that are separately

named and individually callable program units. These modules are carefully integrated to become a software

system that satisfi es the system requirements. It is basically a “divide-and-conquer” approach to problem

solving.

Modules are identifi ed and designed such that they can be organized into a top-down hierarchical structure

(similar to an organization chart). In C, each module refers to a function that is responsible for a single task.

Some characteristics of modular programming are as follows:

 1. Each module should do only one thing.

 2. Communication between modules is allowed only by a calling module.

 3. A module can be called by one and only one higher module.

 4. No communication can take place directly between modules that do not have calling-called relationship.

 5. All modules are designed as single-entry, single-exit systems using control structures.

ELEMENTS OF USER-DEFINED FUNCTIONS
We have discussed and used a variety of data types and variables in our

programs so far. However, declaration and use of these variables were primarily

done inside the main function. Functions are classifi ed as one of the derived

data types in C. We can therefore defi ne functions and use them like any other

variables in C programs. It is therefore not a surprise to note that there exist

some similarities between functions and variables in C.

 ∑ Both function names and variable names are considered identifi ers and therefore, they must adhere to

the rules for identifi ers.

 ∑ Like variables, functions have types (such as int) associated with them.

 ∑ Like variables, function names and their types must be declared and defi ned before they are used in a

program.

In order to make use of a user-defi ned function, we need to establish three elements that are related to

functions.

 1. Function defi nition.

 2. Function call.

 3. Function declaration.

The function defi nition is an independent program module that is specially written to implement the

requirements of the function. In order to use this function we need to invoke it at a required place in the

program. This is known as the function call. The program (or a function) that calls the function is referred to as

the calling program or calling function. The calling program should declare any function (like declaration of a

variable) that is to be used later in the program. This is known as the function declaration or function prototype.

DEFINITION OF FUNCTIONS
A function defi nition, also known as function implementation shall include the following elements:

 1. function name;

 2. function type;

Lo 5.2

identi fy the elements of

user-defi ned functi ons

Functions 225

 3. list of parameters;

 4. local variable declarations;

 5. function statements; and

 6. a return statement.

All the six elements are grouped into two parts, namely,

 ∑ function header (First three elements); and

 ∑ function body (Second three elements).

A general format of a function defi nition to implement these two parts is given below:

 function_type function_name(parameter list)

 {

 local variable declaration;

 executable statement1;

 executable statement2;

 return statement;

 }

The fi rst line function_type function_name(parameter list) is known as the function header and the

statements within the opening and closing braces constitute the function body, which is a compound statement.

Functi on Header

The function header consists of three parts: the function type (also known as return type), the function name,

and the formal parameter list. Note that a semicolon is not used at the end of the function header.

name and type

The function type specifi es the type of value (like fl oat or double) that the function is expected to return to the

program calling the function. If the return type is not explicitly specifi ed, C will assume that it is an integer type.

If the function is not returning anything, then we need to specify the return type as void. Remember, void is one

of the fundamental data types in C. It is a good programming practice to code explicitly the return type, even

when it is an integer. The value returned is the output produced by the function.

The function name is any valid C identifi er and therefore must follow the same rules of formation as other

variable names in C. The name should be appropriate to the task performed by the function. However, care

must be exercised to avoid duplicating library routine names or operating system commands.

Formal parameter List

The parameter list declares the variables that will receive the data sent by the calling program. They serve

as input data to the function to carry out the specifi ed task. Since they represent the actual input values, they

are often referred to as formal parameters. These parameters can also be used to send values to the calling

programs. This aspect will be covered later when we discuss more about functions. The parameters are also

known as arguments.

226 Programming for Problem Solving

The parameter list contains declaration of variables separated by commas and surrounded by parentheses.

Examples:

fl oat quadratic (int a, int b, int c) {. . . . }

double power (double x, int n) {.}

fl oat mul (fl oat x, fl oat y) {. . . . }

int sum (int a, int b) {. . . . }

Remember, there is no semicolon after the closing parenthesis. Note that the declaration of parameter

variables cannot be combined. That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program. In such cases, functions have no formal

parameters. To indicate that the parameter list is empty, we use the keyword void between the parentheses

as in

 void printline (void)

 {

 }

This function neither receives any input values nor returns back any value. Many compilers accept an

empty set of parentheses, without specifying anything as in

void printline ()

But, it is a good programming style to use void to indicate a nill parameter list.

Functi on Body

The function body contains the declarations and statements necessary for performing the required task. The

body enclosed in braces, contains three parts, in the order given below:

 1. Local declarations that specify the variables needed by the function.

 2. Function statements that perform the task of the function.

 3. A return statement that returns the value evaluated by the function.

If a function does not return any value (like the printline function), we can omit the return statement.

However, note that its return type should be specifi ed as void. Again, it is nice to have a return statement

even for void functions.

Some examples of typical function defi nitions are:

 (a) fl oat mul (fl oat x, fl oat y)

 {

 fl oat result; /* local variable */

 result = x * y; /* computes the product */

 return (result); /* returns the result */

 }

 (b) void sum (int a, int b)

 {

 printf (“sum = %s”, a + b); /* no local variables */

 return; /* optional */

 }

Functions 227

 (c) void display (void)

 { /* no local variables */

 printf (“No type, no parameters”);

 /* no return statement */

 }

 Note

 1. When a function reaches its return statement, the control is transferred back to the calling

program. In the absence of a return statement, the closing brace acts as a void return.

 2. A local variable is a variable that is defi ned inside a function and used without having any role

in the communication between functions.

RETURN VALUES AND THEIR TYPES
As pointed out earlier, a function may or may not send back any value to the calling function. If it does, it is

done through the return statement. While it is possible to pass to the called function any number of values,

the called function can only return one value per call, at the most.

The return statement can take one of the following forms:

 return;

 or

 return(expression);
The fi rst, the ‘plain’ return does not return any value; it acts much as the closing brace of the function.

When a return is encountered, the control is immediately passed back to the calling function. An example of

the use of a simple return is as follows:

 if(error)

 return;

 Note C99, if a function is specifi ed as returning a value, the return must have value associated

with it.

The second form of return with an expression returns the value of the expression. For example, the

function

 int mul (int x, int y)
 {
 int p;
 p = x*y;
 return(p);

 }
returns the value of p which is the product of the values of x and y. The last two statements can be combined

into one statement as follows:

 return (x*y);
A function may have more than one return statements. This situation arises when the value returned is

based on certain conditions. For example:

 if(x <= 0)
 return(0);
 else
 return(1);

228 Programming for Problem Solving

What type of data does a function return? All functions by default return int type data. But what happens if

a function must return some other type? We can force a function to return a particular type of data by using a

type specifier in the function header as discussed earlier.

When a value is returned, it is automatically cast to the function’s type. In functions that do computations

using doubles, yet return ints, the returned value will be truncated to an integer. For instance, the function

 int product (void)

 {

 return (2.5 * 3.0);

 }

will return the value 7, only the integer part of the result.

FUNCTION CALLS
A function can be called by simply using the function name followed by a list of actual parameters (or

arguments), if any, enclosed in parentheses. Example:

 main()

 {

 int y;

 y = mul(10,5); /* Function call */

 printf(“%d\n”, y);

 }
When the compiler encounters a function call, the control is transferred to the function mul(). This function

is then executed line by line as described and a value is returned when a return statement is encountered.

This value is assigned to y. This is illustrated below:

main ()

int y;

int p;

p = x* y;

return (p);

int mul(int x,int y)

y = mul(10,5); /* call*/

/* local variable*/

/* x = 10, y = 5*/

The function call sends two integer values 10 and 5 to the function.

int mul(int x, int y)

which are assigned to x and y respectively. The function computes the product x and y, assigns the result to

the local variable p, and then returns the value 25 to the main where it is assigned to y again.

There are many different ways to call a function. Listed below are some of the ways the function mul can

be invoked.

mul (10, 5)

mul (m, 5)

Functions 229

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expression1, expression2)

Note that the sixth call uses its own call as its one of the parameters. When we use expressions, they

should be evaluated to single values that can be passed as actual parameters.

A function which returns a value can be used in expressions like any other variable. Each of the following

statements is valid:

 printf(“%d\n”, mul(p,q));
 y = mul(p,q) / (p+q);
 if (mul(m,n)>total) printf(“large”);
However, a function cannot be used on the right side of an assignment statement. For instance,

 mul(a,b) = 15;
is invalid.

A function that does not return any value may not be used in expressions; but can be called in to perform

certain tasks specifi ed in the function. The function printline() discussed in earlier section belongs to this

category. Such functions may be called in by simply stating their names as independent statements.

Example:

 main()
 {
 printline();
 }

Note the presence of a semicolon at the end.

Functi on Call

A function call is a postfi x expression. The operator (. .) is at a very high level of precedence. Therefore, when

a function call is used as a part of an expression, it will be evaluated fi rst, unless parentheses are used to

change the order of precedence.

In a function call, the function name is the operand and the parentheses set (. .) which contains the actual

parameters is the operator. The actual parameters must match the function’s formal parameters in type, order

and number. Multiple actual parameters must be separated by commas.

 Note

 1. If the actual parameters are more than the formal parameters, the extra actual arguments will

be discarded.

 2. On the other hand, if the actuals are less than the formals, the unmatched formal arguments will

be initialized to some garbage.

 3. Any mismatch in data types may also result in some garbage values.

FUNCTION DECLARATION
Like variables, all functions in a C program must be declared, before they are invoked. A function declaration

(also known as function prototype) consists of four parts.

 ∑ Function type (return type).

 ∑ Function name.

230 Programming for Problem Solving

 ∑ Parameter list.

 ∑ Terminating semicolon.

They are coded in the following format:

Function-type function-name (parameter list);
This is very similar to the function header line except the terminating semicolon. For example, mul function

defined in the previous section will be declared as:

int mul (int m, int n); /* Function prototype */

Points to Note

 1. The parameter list must be separated by commas.

 2. The parameter names do not need to be the same in the prototype declaration and the function

definition.

 3. The types must match the types of parameters in the function definition, in number and order.

 4. Use of parameter names in the declaration is optional.

 5. If the function has no formal parameters, the list is written as (void).

 6. The return type is optional, when the function returns int type data.

 7. The retype must be void if no value is returned.

 8. When the declared types do not match with the types in the function definition, compiler will produce an

error.

Equally acceptable forms of declaration of mul function are as follows:

 int mul (int, int);

 mul (int a, int b);

 mul (int, int);

When a function does not take any parameters and does not return any value, its prototype is written as:

void display (void);
A prototype declaration may be placed in two places in a program.

 1. Above all the functions (including main).

 2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration section), the prototype is

referred to as a global prototype. Such declarations are available for all the functions in the program.

When we place it in a function definition (in the local declaration section), the prototype is called a local

prototype. Such declarations are primarily used by the functions containing them.

The place of declaration of a function defines a region in a program in which the function may be used by other

functions. This region is known as the scope of the function. (Scope is discussed later in this chapter.) It is a

good programming style to declare prototypes in the global declaration section before main. It adds flexibility,

provides an excellent quick reference to the functions used in the program, and enhances documentation.

Prototypes: Yes or No
Prototype declarations are not essential. If a function has not been declared before it is used, C will assume

that its details available at the time of linking. Since the prototype is not available, C will assume that the return

type is an integer and that the types of parameters match the formal definitions. If these assumptions are

wrong, the linker will fail and we will have to change the program. The moral is that we must always include

prototype declarations, preferably in global declaration section.

Functions 231

Parameters Everywhere!
Parameters (also known as arguments) are used in following three places:

 1. in declaration (prototypes),

 2. in function call, and

 3. in function defi nition.

The parameters used in prototypes and function defi nitions are called formal parameters and those used

in function calls are called actual parameters. Actual parameters used in a calling statement may be simple

constants, variables, or expressions.

The formal and actual parameters must match exactly in type, order and number. Their names, however,

do not need to match.

CATEGORY OF FUNCTIONS
A function, depending on whether arguments are present or not and whether a

value is returned or not, may belong to one of the following categories:

Category 1: Functions with no arguments and no return values.

Category 2: Functions with arguments and no return values.

Category 3: Functions with arguments and one return value.

Category 4: Functions with no arguments but return a value.

Category 5: Functions that return multiple values.

In the sections to follow, we shall discuss these categories with examples. Note that, from now on, we shall

use the term arguments (rather than parameters) more frequently.

NO ARGUMENTS AND NO RETURN VALUES
When a function has no arguments, it does not receive any data from the calling function. Similarly, when it

does not return a value, the calling function does not receive any data from the called function. In effect, there

is no data transfer between the calling function and the called function. This is depicted in Fig. 5.3. The dotted

lines indicate that there is only a transfer of control but not data.

Fig. 5.3 No data communication between functions

As pointed out earlier, a function that does not return any value cannot be used in an expression. It can only

be used as an independent statement.

Worked-out proBLem 5.1 e

Write a program with multiple functions that do not communicate any data between them.

Lo 5.3

explain the diff erent

categories of functi ons

E for Easy, M for Medium and H for High

232 Programming for Problem Solving

A program with three user-defined functions is given in Fig. 5.4. main is the calling function that calls printline

and value functions. Since both the called functions contain no arguments, there are no argument declarations.

The printline function, when encountered, prints a line with a length of 35 characters as prescribed in the

function. The value function calculates the value of principal amount after a certain period of years and prints

the results. The following equation is evaluated repeatedly:

value = principal(1+interest-rate)

 Program

 /* Function declaration */

 void printline (void);

 void value (void);

 main()

 {

 printline();

 value();

 printline();

 }

 /* Function1: printline() */

 void printline(void) /* contains no arguments */

 {

 int i ;

 for(i=1; i <= 35; i++)

 printf(“%c”,’-’);

 printf(“\n”);

 }

 /* Function2: value() */

 void value(void) /* contains no arguments */

 {

 int year, period;

 float inrate, sum, principal;

 printf(“Principal amount?”);

 scanf(“%f”, &principal);

 printf(“Interest rate? “);

 scanf(“%f”, &inrate);

 printf(“Period? “);

 scanf(“%d”, &period);

 sum = principal;

 year = 1;

Functions 233

 while(year <= period)

 {

 sum = sum *(1+inrate);

 year = year +1;

 }

 printf(“\n%8.2f %5.2f %5d %12.2f\n”,

 principal,inrate,period,sum);

 }

 Output

 —

 Principal amount? 5000

 Interest rate? 0.12

 Period? 5

 5000.00 0.12 5 8811.71

 —

 Fig. 5.4 Functions with no arguments and no return values

It is important to note that the function value receives its data directly from the terminal. The input data

include principal amount, interest rate and the period for which the final value is to be calculated. The while

loop calculates the final value and the results are printed by the library function printf. When the closing brace

of value() is reached, the control is transferred back to the calling function main. Since everything is done by

the value itself there is in fact nothing left to be sent back to the called function. Return types of both printline

and value are declared as void.

Note that no return statement is employed. When there is nothing to be returned, the return statement

is optional. The closing brace of the function signals the end of execution of the function, thus returning the

control, back to the calling function.

ARGUMENTS BUT NO RETURN VALUES
In Fig. 5.4 the main function has no control over the way the functions receive input data. For example, the

function printline will print the same line each time it is called. Same is the case with the function value.

We could make the calling function to read data from the terminal and pass it on to the called function. This

approach seems to be wiser because the calling function can check for the validity of data, if necessary, before

it is handed over to the called function.

The nature of data communication between the calling function and the called function with arguments but

no return value is shown in Fig. 5.5.

We shall modify the definitions of both the called functions to include arguments as follows:

void printline(char ch)

void value(float p, float r, int n)

The arguments ch, p, r, and n are called the formal arguments. The calling function can now send values

to these arguments using function calls containing appropriate arguments. For example, the function call

value(500,0.12,5)

would send the values 500,0.12 and 5 to the function

 void value(float p, float r, int n)

and assign 500 to p, 0.12 to r and 5 to n. The values 500, 0.12, and 5 are the actual arguments, which become

the values of the formal arguments inside the called function.

234 Programming for Problem Solving

function 2 ()fValues
of arguments

No return value

function1 ()

function2 (a)

Fig. 5.5 One-way data communication

The actual and formal arguments should match in number, type, and order. The values of actual arguments

are assigned to the formal arguments on a one to one basis, starting with the first argument as shown in

Fig. 5.6.

 Fig. 5.6 Arguments matching between the function call and the called function

We should ensure that the function call has matching arguments. In case, the actual arguments are more

than the formal arguments (m > n), the extra actual arguments are discarded. On the other hand, if the

actual arguments are less than the formal arguments, the unmatched formal arguments are initialized to some

garbage values. Any mismatch in data type may also result in passing of garbage values. Remember, no error

message will be generated.

While the formal arguments must be valid variable names, the actual arguments may be variable names,

expressions, or constants. The variables used in actual arguments must be assigned values before the

function call is made.

Functions 235

Remember that, when a function call is made, only a copy of the values of actual arguments is passed

into the called function. What occurs inside the function will have no effect on the variables used in the actual

argument list.

Worked-out proBLem 5.2 m

Modify the program of Program 5.1 to include the arguments in the function calls.

The modifi ed program with function arguments is presented in Fig. 5.7. Most of the program is identical to the

program in Fig. 5.4. The input prompt and scanf assignment statement have been moved from value function

to main. The variables principal, inrate, and period are declared in main because they are used in main to

receive data. The function call

value(principal, inrate, period);

passes information it contains to the function value.

The function header of value has three formal arguments p,r, and n which correspond to the actual

arguments in the function call, namely, principal, inrate, and period. On execution of the function call, the

values of the actual arguments are assigned to the corresponding formal arguments. In fact, the following

assignments are accomplished across the function boundaries:

p = principal;

r = inrate;

n = period;

 Program

 /* prototypes */

 void printline (char c);

 void value (fl oat, fl oat, int);

 main()

 {

 fl oat principal, inrate;

 int period;

 printf(“Enter principal amount, interest”);

 printf(“ rate, and period \n”);

 scanf(“%f %f %d”,&principal, &inrate, &period);

 printline(‘Z’);

 value(principal,inrate,period);

 printline(‘C’);

 }

 void printline(char ch)

 {

 int i ;

 for(i=1; i <= 52; i++)

 printf(“%c”,ch);

 printf(“\n”);

 }

236 Programming for Problem Solving

 void value(float p, float r, int n)

 {

 int year ;

 float sum ;

 sum = p ;

 year = 1;

 while(year <= n)

 {

 sum = sum * (1+r);

 year = year +1;

 }

 printf(“%f\t%f\t%d\t%f\n”,p,r,n,sum);

 }

 Output

 Enter principal amount, interest rate, and period

 5000 0.12 5

 ZZ

 5000.000000 0.120000 5 8811.708984

 CC

Fig. 5.7 Functions with arguments but no return values

The variables declared inside a function are known as local variables and therefore their values are local

to the function and cannot be accessed by any other function. We shall discuss more about this later in the

chapter.

The function value calculates the final amount for a given period and prints the results as before. Control

is transferred back on reaching the closing brace of the function. Note that the function does not return any

value.

The function printline is called twice. The first call passes the character ‘Z’, while the second passes the

character ‘C’ to the function. These are assigned to the formal argument ch for printing lines (see the output).

Variable Number of Arguments
Some functions have a variable number of arguments and data types which cannot be known at compile time.

The printf and scanf functions are typical examples. The ANSI standard proposes new symbol called the

ellipsis to handle such functions. The ellipsis consists of three periods (…) and used as shown below:

double area(float d,…)

Both the function declaration and definition should use ellipsis to indicate that the arguments are arbitrary both

in number and type.

ARGUMENTS WITH RETURN VALUES
The function value in Fig. 5.7 receives data from the calling function through arguments, but does not send

back any value. Rather, it displays the results of calculations at the terminal. However, we may not always

wish to have the result of a function displayed. We may use it in the calling function for further processing.

Functions 237

Moreover, to assure a high degree of portability between programs, a function should generally be coded

without involving any I/O operations. For example, different programs may require different output formats for

display of results. These shortcomings can be overcome by handing over the result of a function to its calling

function where the returned value can be used as required by the program.

A self-contained and independent function should behave like a ‘black box’ that receives a predefi ned

form of input and outputs a desired value. Such functions will have two-way data communication as shown in

Fig. 5.8.

function 2 (f)

return (e)

Values
of arguments

Function result

function1()

function2 (a)

Fig. 5.8 Two-way data communication between functions

We shall modify the program in Fig. 5.7 to illustrate the use of two-way data communication between the

calling and the called functions.

Worked-out proBLem 5.3 m

In the program presented in Fig. 5.7 modify the function value, to return the fi nal amount calculated to the

main, which will display the required output at the terminal. Also extend the versatility of the function

printline by having it to take the length of the line as an argument.

The modifi ed program with the proposed changes is presented in Fig. 5.9. One major change is the movement

of the printf statement from value to main.

 Program
 void printline (char ch, int len);

 value (fl oat, fl oat, int);

 main()

 {

 fl oat principal, inrate, amount;

 int period;

 printf(“Enter principal amount, interest”);

 printf(“rate, and period\n”);

 scanf(%f %f %d”, &principal, &inrate, &period);

 printline (‘*’ , 52);

 amount = value (principal, inrate, period);

 printf(“\n%f\t%f\t%d\t%f\n\n”,principal,

 inrate,period,amount);

238 Programming for Problem Solving

 printline(‘=’,52);

 }

 void printline(char ch, int len)

 {

 int i;

 for (i=1;i<=len;i++) printf(“%c”,ch);

 printf(“\n”);

 }

 value(float p, float r, int n) /* default return type */

 {

 int year;

 float sum;

 sum = p; year = 1;

 while(year <=n)

 {

 sum = sum * (l+r);

 year = year +1;

 }

 return(sum); /* returns int part of sum */

 }
 Output
 Enter principal amount, interest rate, and period

 5000 0.12 5

 5000.000000 0.1200000 5 8811.000000

 =

 Fig. 5.9 Functions with arguments and return values

The calculated value is passed on to main through statement:

 return(sum);
Since, by default, the return type of value function is int, the ‘integer’ value of sum at this point is returned

to main and assigned to the variable amount by the functional call

amount = value (principal, inrate, period);
The following events occur, in order, when the above function call is executed:

 1. The function call transfers the control along with copies of the values of the actual arguments to the

function value where the formal arguments p, r, and n are assigned the actual values of principal,

inrate and period respectively.

 2. The called function value is executed line by line in a normal fashion until the return(sum); statement

is encountered. At this point, the integer value of sum is passed back to the function-call in the main

and the following indirect assignment occurs:

value(principal, inrate, period) = sum;

 3. The calling statement is executed normally and the returned value is thus assigned to amount, a float

variable.

 4. Since amount is a float variable, the returned integer part of sum is converted to floating-point value.

See the output.

Functions 239

Another important change is the inclusion of second argument to printline function to receive the value of

length of the line from the calling function. Thus, the function call

printline(‘*’, 52);
will transfer the control to the function printline and assign the following values to the formal arguments ch,

and len:

 ch = ‘*’ ;

 len = 52;

returning Float values

We mentioned earlier that a C function returns a value of the type int as the default case when no other type

is specifi ed explicitly. For example, the function value of Program 5.3 does all calculations using fl oats but

the return statement

return(sum);
returns only the integer part of sum. This is due to the absence of the type-specifi er in the function header.

In this case, we can accept the integer value of sum because the truncated decimal part is insignifi cant

compared to the integer part. However, there will be times when we may fi nd it necessary to receive the fl oat

or double type of data. For example, a function that calculates the mean or standard deviation of a set of

values should return the function value in either fl oat or double.

In all such cases, we must explicitly specify the return type in both the function defi nition and the prototype

declaration.

If we have a mismatch between the type of data that the called function returns and the type of data that

the calling function expects, we will have unpredictable results. We must, therefore, be very careful to make

sure that both types are compatible.

Worked-out proBLem 5.4 e

Write a function power that computes x raised to the power y for integers x and y and returns double-type

value.

Figure 5.10 shows a power function that returns a double. The prototype declaration

double power(int, int);
appears in main, before power is called.

 Program

 main()

 {

 int x,y; /*input data */

 double power(int, int); /* prototype declaration*/

 printf(“Enter x,y:”);

 scanf(“%d %d” , &x,&y);

 printf(“%d to power %d is %f\n”, x,y,power (x,y));

 }

240 Programming for Problem Solving

 double power (int x, int y);

 {

 double p;

 p = 1.0 ; /* x to power zero */

 if(y >=0)

 while(y—–) /* computes positive powers */

 p *= x;

 else

 while (y++) /* computes negative powers */

 p /= x;

 return(p); /* returns double type */

 }

 Output

 Enter x,y:16 2

 16 to power 2 is 256.000000

 Enter x,y:16 -2

 16 to power -2 is 0.003906

Fig. 5.10 Power functions: Illustration of return of fl oat values

Worked-out proBLem 5.5 H

The program in Fig. 5.11 shows how to write a C program (fl oat x [], int n) that returns the position of the

fi rst minimum value among the fi rst n elements of the given array x.

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <stdio.h>

 int minpos(fl oat []. int);

 void main()

 {

 int n:

 fl oat x[10] = {12.5, 3.0, 45.1, 8.2, 19.3, 10.0, 7.8, 23.7, 29.9, 5.2};

 printf(“Enter the value of n: “);

 scanf(“%d”, &n);

Functions 241

 if(n>=1 && n<=10)

 :

 else

 {

 printf(“invalid value of n...Press any key to terminate the program..“);

 getch():

 exit(0);

 }

 printf(“Within the first %d elements of array, the first minimum value is

 stored at index %d”. n, minpos(x,n));

 getch();

 }

 int minpos(float a[]).int N)

 {

 int i.index;

 float min-9999.99:

 for(i=0;i<N;i++)

 if(a[i]<min)

 {

 min-a[i];

 index = i;

 }

 return (index);

 }

 Output

 Enter the value of n: 5

 Within the first 5 elements of array, the first minimum value is stored at index 1

 Fig. 5.11 Program to return the position of the first minimum value in an array

Another way to guarantee that power’s type is declared before it is called in main is to define the power

function before we define main. Power’s type is then known from its definition, so we no longer need its type

declaration in main.

NO ARGUMENTS BUT RETURNS A VALUE
There could be occasions where we may need to design functions that may not take any arguments but

returns a value to the calling function. A typical example is the getchar function declared in the header file

<stdio.h>. We have used this function earlier in a number of places. The getchar function has no parameters

but it returns an integer type data that represents a character.

We can design similar functions and use in our programs. Example:

 int get_number(void);

 main

 {

 int m = get_number();

242 Programming for Problem Solving

 printf(“%d”,m);

 }

 int get_number(void)

 {

 int number;

 scanf(“%d”, &number);

 return(number);

 }

FUNCTIONS THAT RETURN MULTIPLE VALUES
Up till now, we have illustrated functions that return just one value using a return statement. That is because, a

return statement can return only one value. Suppose, however, that we want to get more information from a

function. We can achieve this in C using the arguments not only to receive information but also to send back

information to the calling function. The arguments that are used to “send out” information are called output

parameters.

The mechanism of sending back information through arguments is achieved using what are known as the

address operator (&) and indirection operator (*). Let us consider an example to illustrate this.

 void mathoperation (int x, int y, int *s, int *d);

 main()

 {

 int x = 20, y = 10, s, d;

 mathoperation(x,y, &s, &d);

 printf(“s=%d\n d=%d\n”, s,d);

 }

 void mathoperation (int a, int b, int *sum, int *diff)

 {

 *sum = a+b;

 *diff = a-b;

 }

The actual arguments x and y are input arguments, s and d are output arguments. In the function call, while

we pass the actual values of x and y to the function, we pass the addresses of locations where the values

of s and d are stored in the memory. (That is why, the operator & is called the address operator.) When the

function is called the following assignments occur:

 value of x to a

 value of y to b

 address of s to sum

 address of d to diff

Note that indirection operator * in the declaration of sum and diff in the header indicates these variables

are to store addresses, not actual values of variables. Now, the variables sum and diff point to the memory

locations of s and d respectively.

(The operator * is known as indirection operator because it gives an indirect reference to a variable through

its address.)

Functions 243

In the body of the function, we have two statements:

 * sum = a+b;

 * diff = a-b;
The first one adds the values a and b and the result is stored in the memory location pointed to by sum.

Remember, this memory location is the same as the memory location of s. Therefore, the value stored in the

location pointed to by sum is the value of s.

Similarly, the value of a–b is stored in the location pointed to by diff, which is the same as the location d.

After the function call is implemented, the value of s is a+b and the value of d is a–b. Output will be:

 s = 30

 d = 10

The variables *sum and *diff are known as pointers and sum and diff as pointer variables. Since they are

declared as int, they can point to locations of int type data.

The use of pointer variables as actual parameters for communicating data between functions is called

“pass by pointers” or “call by address or reference”. Pointers and their applications are discussed in detail in

Chapter 6.

Rules for Pass by Pointers

 1. The types of the actual and formal arguments must be same.

 2. The actual arguments (in the function call) must be the addresses of variables that are local to the

calling function.

 3. The formal arguments in the function header must be prefixed by the indirection operator *.

 4. In the prototype, the arguments must be prefixed by the symbol *.

 5. To access the value of an actual argument in the called function, we must use the corresponding formal

argument prefixed with the indirection operator *.

NESTING OF FUNCTIONS
C permits nesting of functions freely. main can call function1, which calls function2, which calls function3,

………. and so on. There is in principle no limit as to how deeply functions can be nested.

Consider the following program:

 float ratio (int x, int y, int z);

 int difference (int x, int y);

 main()

 {
 int a, b, c;

 scanf(“%d %d %d”, &a, &b, &c);

 printf(“%f \n”, ratio(a,b,c));

 }

 float ratio(int x, int y, int z)

 {

 if(difference(y, z))

 return(x/(y-z));

 else

 return(0.0);

 }

244 Programming for Problem Solving

 int difference(int p, int q)

 {

 if(p != q)

 return (1);

 else

 return(0);

 }

 The above program calculates the ratio

a

b c-

and prints the result. We have the following three functions:

 main()

 ratio()

 difference()

main reads the values of a, b, and c and calls the function ratio to calculate the value a/(b–c). This ratio cannot

be evaluated if (b–c) = 0. Therefore, ratio calls another function difference to test whether the difference (b–c)

is zero or not; difference returns 1, if b is not equal to c; otherwise returns zero to the function ratio. In turn,

ratio calculates the value a/(b–c) if it receives 1 and returns the result in fl oat. In case, ratio receives zero

from difference, it sends back 0.0 to main indicating that (b–c) = 0.

Nesting of function calls is also possible. For example, a statement like

 P = mul(mul(5,2),6);
is valid. This represents two sequential function calls. The inner function call is evaluated fi rst and the returned

value is again used as an actual argument in the outer function call. If mul returns the product of its arguments,

then the value of p would be 60 (= 5 × 2 × 6).

Note that the nesting does not mean defi ning one function within another. Doing this is illegal.

RECURSION
When a called function in turn calls another function a process of ‘chaining’

occurs. Recursion is a special case of this process, where a function calls itself.

A very simple example of recursion is presented below:

 main()

 {

 printf(“This is an example of recursion\n”)

 main();

 }

When executed, this program will produce an output something like this:

This is an example of recursion

This is an example of recursion

This is an example of recursion

This is an ex

Execution is terminated abruptly; otherwise the execution will continue indefi nitely.

Another useful example of recursion is the evaluation of factorials of a given number. The factorial of a

number n is expressed as a series of repetitive multiplications as shown below:

factorial of n = n(n–1)(n–2).........1.

Lo 5.4

know the concept of

recursion

Functions 245

For example,

factorial of 4 = 4 × 3 × 2 × 1 = 24

A function to evaluate factorial of n is as follows:

 factorial(int n)

 {

 int fact;

 if (n==1)

 return(1);

 else

 fact = n*factorial(n-1);

 return(fact);

 }

Let us see how the recursion works. Assume n = 3. Since the value of n is not 1, the statement

fact = n * factorial(n–1);

will be executed with n = 3. That is,

fact = 3 * factorial(2);

will be evaluated. The expression on the right-hand side includes a call to factorial with n = 2. This call will

return the following value:

2 * factorial(1)

Once again, factorial is called with n = 1. This time, the function returns 1. The sequence of operations

can be summarized as follows:

 fact = 3 * factorial(2)

 = 3 * 2 * factorial(1)

 = 3 * 2 * 1

 = 6

Recursive functions can be effectively used to solve problems where solution is expressed in terms of

successively applying the same solution to subsets of the problem. When we write recursive functions, we

must have an if statement somewhere to force the function to return without the recursive call being executed.

Otherwise, the function will never return.

PASSING ARRAYS TO FUNCTIONS

one-dimensional Arrays

Like the values of simple variables, it is also possible to pass the values of an array to

a function. To pass a one-dimensional an array to a called function, it is suffi cient to list

the name of the array, without any subscripts, and the size of the array as arguments.

For example, the call

largest(a,n)

will pass the whole array a to the called function. The called function expecting this call must be appropriately

defi ned. The largest function header might look like:

fl oat largest(fl oat array[], int size)

Lo 5.5

describe how

arrays are passed

to functi ons

246 Programming for Problem Solving

The function largest is defi ned to take two arguments, the array name and the size of the array to specify

the number of elements in the array. The declaration of the formal argument array is made as follows:

fl oat array[];
The pair of brackets informs the compiler that the argument array is an array of numbers. It is not necessary

to specify the size of the array here.

Let us consider a problem of fi nding the largest value in an array of elements. The program is as follows:

 main()

 {

 fl oat largest(fl oat a[], int n);

 fl oat value[4] = {2.5,-4.75,1.2,3.67};

 printf(“%f\n”, largest(value,4));

 }

 fl oat largest(fl oat a[], int n)

 {

 int i;

 fl oat max;

 max = a[0];

 for(i = 1; i < n; i++)

 if(max < a[i])

 max = a[i];

 return(max);

 }

When the function call largest(value,4) is made, the values of all elements of array value become the

corresponding elements of array a in the called function. The largest function fi nds the largest value in the

array and returns the result to the main.

In C, the name of the array represents the address of its fi rst element. By passing the array name, we are,

in fact, passing the address of the array to the called function. The array in the called function now refers to the

same array stored in the memory. Therefore, any changes in the array in the called function will be refl ected in

the original array.

Passing addresses of parameters to the functions is referred to as pass by address (or pass by pointers).

Note that we cannot pass a whole array by value as we did in the case of ordinary variables.

Worked-out proBLem 5.6 H

Write a program to calculate the standard deviation of an array of values. The array elements are read from

the terminal. Use functions to calculate standard deviation and mean.

Standard deviation of a set of n values is give by

 S.D =
1 2

1
n

x x
i

i

n

()-

=

Â

Where x is the mean of the values.

Functions 247

 Program
 #include <math.h>

 #define SIZE 5

 float std_dev(float a[], int n);

 float mean (float a[], int n);

 main()

 {

 float value[SIZE];

 int i;

 printf(“Enter %d float values\n”, SIZE);

 for (i=0 ;i < SIZE ; i++)

 scanf(“%f”, &value[i]);

 printf(“Std.deviation is %f\n”, std_dev(value,SIZE));

 }

 float std_dev(float a[], int n)

 {

 int i;

 float x, sum = 0.0;

 x = mean (a,n);

 for(i=0; i < n; i++)

 sum += (x-a[i])*(x-a[i]);

 return(sqrt(sum/(float)n));

 }

 float mean(float a[],int n)

 {

 int i ;

 float sum = 0.0;

 for(i=0 ; i < n ; i++)

 sum = sum + a[i];

 return(sum/(float)n);

 }

 Output
 Enter 5 float values

 35.0 67.0 79.5 14.20 55.75

 Std.deviation is 23.231582

Fig. 5.12 Passing of arrays to a function

A multifunction program consisting of main, std_dev, and mean functions is shown in Fig. 5.12. main

reads the elements of the array value from the terminal and calls the function std_dev to print the standard

deviation of the array elements. Std_dev, in turn, calls another function mean to supply the average value of

the array elements.

Both std_dev and mean are defined as floats and therefore they are declared as floats in the global

section of the program.

248 Programming for Problem Solving

Three Rules to Pass an Array to a Function
1. The function must be called by passing only the name of the array.

2. In the function defi nition, the formal parameter must be an array type; the size of the array does not need

to be specifi ed.

3. The function prototype must show that the argument is an array.

When dealing with array arguments, we should remember one major distinction. If a function changes

the values of the elements of an array, then these changes will be made to the original array that passed to

the function. When an entire array is passed as an argument, the contents of the array are not copied into

the formal parameter array; instead, information about the addresses of array elements are passed on to the

function. Therefore, any changes introduced to the array elements are truly refl ected in the original array in

the calling function. However, this does not apply when an individual element is passed on as argument.

Program 5.6 highlights these concepts.

Worked-out proBLem 5.7 m

Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig. 5.13. Its output clearly shows

that a function can change the values in an array passed as an argument.

 Program
 void sort(int m, int x[]);

 main()

 {

 int i;

 int marks[5] = {40, 90, 73, 81, 35};

 printf(“Marks before sorting\n”);

 for(i = 0; i < 5; i++)

 printf(“%d “, marks[i]);

 printf(“\n\n”);

 sort (5, marks);

 printf(“Marks after sorting\n”);

 for(i = 0; i < 5; i++)

 printf(“%4d”, marks[i]);

 printf(“\n”);

 }

 void sort(int m, int x[])

 {

 int i, j, t;

 for(i = 1; i <= m-1; i++)

 for(j = 1; j <= m-i; j++)

Functions 249

 if(x[j-1] >= x[j])

 {

 t = x[j-1];

 x[j-1] = x[j];

 x[j] = t;

 }

 }

 Output

 Marks before sorting

 40 90 73 81 35

 Marks after sorting

 35 40 73 81 90

Fig. 5.13 Sorting of array elements using a function

two-dimensional Arrays

Like simple arrays, we can also pass multi-dimensional arrays to functions. The approach is similar to the one

we did with one-dimensional arrays. The rules are simple.

 1. The function must be called by passing only the array name.

 2. In the function defi nition, we must indicate that the array has two-dimensions by including two sets of

brackets.

 3. The size of the second dimension must be specifi ed.

 4. The prototype declaration should be similar to the function header.

The function given below calculates the average of the values in a two-dimensional matrix.

 double average(int x[][N], int M, int N)

 {

 int i, j;

 double sum = 0.0;

 for (i=0; i<M; i++)

 for(j=1; j<N; j++)

 sum += x[i][j];

 return(sum/(M*N));

 }
This function can be used in a main function as illustrated below:

 main()

 {

 int M=3, N=2;

 double average(int [] [N], int, int);

 double mean;

 int matrix [M][N]=

250 Programming for Problem Solving

 {

 {1,2},

 {3,4},

 {5,6}

 };

 mean = average(matrix, M, N);

 }

PASSING STRINGS TO FUNCTIONS
The strings are treated as character arrays in C and therefore the rules for passing strings to functions are very

similar to those for passing arrays to functions.

Basic rules are:

 1. The string to be passed must be declared as a formal argument of the function when it is defined.

Example:

 void display(char item_name[])

 {

 }

 2. The function prototype must show that the argument is a string. For the above function definition, the

prototype can be written as

 void display(char str[]);

 3. A call to the function must have a string array name without subscripts as its actual argument. Example:

 display (names);

 where names is a properly declared string array in the calling function.

 We must note here that, like arrays, strings in C cannot be passed by value to functions.

Pass by Value versus Pass by Pointers
The technique used to pass data from one function to another is known as parameter passing. Parameter

passing can be done in following two ways:

 ∑ Pass by value (also known as call by value).

 ∑ Pass by Pointers (also known as call by pointers).

In pass by value, values of actual parameters are copied to the variables in the parameter list of the called

function. The called function works on the copy and not on the original values of the actual parameters. This

ensures that the original data in the calling function cannot be changed accidentally.

In pass by pointers (also known as pass by address), the memory addresses of the variables rather than

the copies of values are sent to the called function. In this case, the called function directly works on the data

in the calling function and the changed values are available in the calling function for its use.

Pass by pointers method is often used when manipulating arrays and strings. This method is also used

when we require multiple values to be returned by the called function.

Functions 251

THE SCOPE, VISIBILITY, AND

LIFETIME OF VARIABLES
Variables in C differ in behaviour from those in most other languages. For

example, in a BASIC program, a variable retains its value throughout the

program. It is not always the case in C. It all depends on the ‘storage’ class a

variable may assume.

In C not only do all variables have a data type, they also have a storage class.

The following variable storage classes are most relevant to functions:

 1. Automatic variables.

 2. External variables.

 3. Static variables.

 4. Register variables.

We shall briefl y discuss the scope, visibility, and longevity of each of the above class of variables. The

scope of variable determines over what region of the program a variable is actually available for use (‘active’).

Longevity refers to the period during which a variable retains a given value during execution of a program

(‘alive’). So longevity has a direct effect on the utility of a given variable. The visibility refers to the accessibility

of a variable from the memory.

The variables may also be broadly categorized, depending on the place of their declaration, as internal

(local) or external (global). Internal variables are those which are declared within a particular function, while

external variables are declared outside of any function.

It is very important to understand the concept of storage classes and their utility in order to develop effi cient

multifunction programs.

Automati c variables

Automatic variables are declared inside a function in which they are to be utilized. They are created when

the function is called and destroyed automatically when the function is exited, hence the name automatic.

Automatic variables are therefore private (or local) to the function in which they are declared. Because of this

property, automatic variables are also referred to as local or internal variables.

A variable declared inside a function without storage class specifi cation is, by default, an automatic variable.

For instance, the storage class of the variable number in the example below is automatic.

 main()

 {

 int number;

 – – –– –

 – – –– –

 }
We may also use the keyword auto to declare automatic variables explicitly.

 main()

 {

 auto int number;

 – – –– –

 – – –– –

 }
One important feature of automatic variables is that their value cannot be changed accidentally by what

happens in some other function in the program. This assures that we may declare and use the same variable

name in different functions in the same program without causing any confusion to the compiler.

Lo 5.6

discuss the relevance

of storage classes on

scope, visibility and

lifeti me of variables

252 Programming for Problem Solving

Worked-out proBLem 5.8 m

Write a multifunction to illustrate how automatic variables work.

A program with two subprograms function1 and function2 is shown in Fig. 5.14. m is an automatic variable

and it is declared at the beginning of each function. m is initialized to 10, 100, and 1000 in function1, function2,

and main respectively.

When executed, main calls function2 which in turn calls function1. When main is active, m = 1000; but

when function2 is called, the main’s m is temporarily put on the shelf and the new local m = 100 becomes

active. Similarly, when function1 is called, both the previous values of m are put on the shelf and the latest

value of m (=10) becomes active. As soon as function1 (m=10) is fi nished, function2 (m=100) takes over

again. As soon it is done, main (m=1000) takes over. The output clearly shows that the value assigned to m

in one function does not affect its value in the other functions; and the local value of m is destroyed when it

leaves a function.

 Program

 void function1(void);

 void function2(void);

 main()

 {

 int m = 1000;

 function2();

 printf(“%d\n”,m); /* Third output */

 }

 void function1(void)

 {

 int m = 10;

 printf(“%d\n”,m); /* First output */

 }

 void function2(void)

 {

 int m = 100;

 function1();

 printf(“%d\n”,m); /* Second output */

 }

 Output

 10

 100

 1000

Fig. 5.14 Working of automatic variables

Functions 253

There are two consequences of the scope and longevity of auto variables worth remembering. First, any

variable local to main will be normally alive throughout the whole program, although it is active only in main.

Secondly, during recursion, the nested variables are unique auto variables, a situation similar to function-

nested auto variables with identical names.

external variables

Variables that are both alive and active throughout the entire program are known as external variables. They

are also known as global variables. Unlike local variables, global variables can be accessed by any function

in the program. External variables are declared outside a function. For example, the external declaration of

integer number and fl oat length might appear as:

 int number;

 fl oat length = 7.5;

 main()

 {

 – – –– –– –

 – – –– –– –

 }

 function1()

 {

 – – –– –– –

 – – –– –– –
 }
 function2()
 {

 – – –– –– –

 – – –– –– –
 }

The variables number and length are available for use in all the three functions. In case a local variable

and a global variable have the same name, the local variable will have precedence over the global one in the

function where it is declared. Consider the following example:

 int count;

 main()

 {

 count = 10;

 – – –– –

 – – –– –

 }

 function()

 {

 int count = 0;

 – – –– –

 – – –– –

 count = count+1;

 }

254 Programming for Problem Solving

When the function references the variable count, it will be referencing only its local variable, not the global

one. The value of count in main will not be affected.

Worked-out proBLem 5.9 e

Write a multifunction program to illustrate the properties of global variables.

A program to illustrate the properties of global variables is presented in Fig. 5.15. Note that variable x is used

in all functions but none except fun2, has a defi nition for x. Because x has been declared ‘above’ all the

functions, it is available to each function without having to pass x as a function argument. Further, since the

value of x is directly available, we need not use return(x) statements in fun1 and fun3. However, since fun2

has a defi nition of x, it returns its local value of x and therefore uses a return statement. In fun2, the global x

is not visible. The local x hides its visibility here.

 Program

 int fun1(void);

 int fun2(void);

 int fun3(void);

 int x ; /* global */

 main()

 {

 x = 10 ; /* global x */

 printf(“x = %d\n”, x);

 printf(“x = %d\n”, fun1());

 printf(“x = %d\n”, fun2());

 printf(“x = %d\n”, fun3());

 }

 fun1(void)

 {

 x = x + 10 ;

 }

 int fun2(void)

 {

 int x ; /* local */

 x = 1 ;

 return (x);

 }

 fun3(void)

 {

 x = x + 10 ; /* global x */

 }

Functions 255

 Output
 x = 10

 x = 20

 x = 1

 x = 30

 Fig. 5.15 Illustration of properties of global variables

Once a variable has been declared as global, any function can use it and change its value. Then, subsequent

functions can reference only that new value.

Global Variables as Parameters
Since all functions in a program source fi le can access global variables, they can be used for passing values

between the functions. However, using global variables as parameters for passing values poses certain

problems.

 ∑ The values of global variables which are sent to the called function may be changed inadvertently by

the called function.

 ∑ Functions are supposed to be independent and isolated modules. This character is lost, if they use

global variables.

 ∑ It is not immediately apparent to the reader which values are being sent to the called function.

 ∑ A function that uses global variables suffers from reusability.

One other aspect of a global variable is that it is available only from the point of declaration to the end of

the program. Consider a program segment as shown below:

 main()

 {

 y = 5;

 }

 int y; /* global declaration */

 func1()

 {

 y = y+1;

 }
We have a problem here. As far as main is concerned, y is not defi ned. So, the compiler will issue an error

message. Unlike local variables, global variables are initialized to zero by default. The statement

y = y+1;
in fun1 will, therefore, assign 1 to y.

external declarati on

In the program segment above, the main cannot access the variable y as it has been declared after the main

function. This problem can be solved by declaring the variable with the storage class extern.

256 Programming for Problem Solving

For example:

 main()

 {

 extern int y; /* external declaration */

 }

 func1()

 {

 extern int y; /* external declaration */

 }

 int y; /* definition */

Although the variable y has been defined after both the functions, the external declaration of y inside the

functions informs the compiler that y is an integer type defined somewhere else in the program. Note that

extern declaration does not allocate storage space for variables. In case of arrays, the definition should

include their size as well.

Example:

 main()

 { int i;

 void print_out(void);

 extern float height [];

 print_out();

 }

 void print_out(void)

 {

 extern float height [];

 int i;

 }

 float height[SIZE];

An extern within a function provides the type information to just that one function. We can provide type

information to all functions within a file by placing external declarations before any of them.

Example:

 extern float height[];

 main()

 {

 int i;

Functions 257

 void print_out(void);

 print_out();

 }

 void print_out(void)

 {

 int i;

 }

 fl oat height[SIZE];

The distinction between defi nition and declaration also applies to functions. A function is defi ned when its

parameters and function body are specifi ed. This tells the compiler to allocate space for the function code and

provides type information for the parameters. Since functions are external by default, we declare them (in the

calling functions) without the qualifi er extern. Therefore, the declaration

void print_out(void);
is equivalent to

extern void print_out(void);
Function declarations outside of any function behave the same way as variable declarations.

Stati c variables

As the name suggests, the value of static variables persists until the end of the program. A variable can be

declared static using the keyword static like

static int x;
static fl oat y;

A static variable may be either an internal type or an external type depending on the place of declaration.

Internal static variables are those which are declared inside a function. The scope of internal static variables

extend up to the end of the function in which they are defi ned. Therefore, internal static variables are similar

to auto variables, except that they remain in existence (alive) throughout the remainder of the program.

Therefore, internal static variables can be used to retain values between function calls. For example, it can be

used to count the number of calls made to a function.

Worked-out proBLem 5.10 e

Write a program to illustrate the properties of a static variable.

The program in Fig. 5.16 explains the behaviour of a static variable.

 Program

 void stat(void);

 main ()

 {

 int i;

258 Programming for Problem Solving

 for(i=1; i<=3; i++)

 stat();

 }

 void stat(void)

 {

 static int x = 0;

 x = x+1;

 printf(“x = %d\n”, x);

 }

 Output

 x = 1

 x = 2

 x = 3

 Fig. 5.16 Illustration of static variable

A static variable is initialized only once, when the program is compiled. It is never initialized again. During

the fi rst call to stat, x is incremented to 1. Because x is static, this value persists and therefore, the next call

adds another 1 to x giving it a value of 2. The value of x becomes three when the third call is made.

Had we declared x as an auto variable, the output would have been:

 x = 1

 x = 1

 x = 1

This is because each time stat is called, the auto variable x is initialized to zero. When the function

terminates, its value of 1 is lost.

An external static variable is declared outside of all functions and is available to all the functions in that

program. The difference between a static external variable and a simple external variable is that the static

external variable is available only within the fi le where it is defi ned while the simple external variable can be

accessed by other fi les.

It is also possible to control the scope of a function. For example, we would like a particular function

accessible only to the functions in the fi le in which it is defi ned, and not to any function in other fi les. This can

be accomplished by defi ning ‘that’ function with the storage class static.

register variables

We can tell the compiler that a variable should be kept in one of the machine’s registers, instead of keeping

in the memory (where normal variables are stored). Since a register access is much faster than a memory

access, keeping the frequently accessed variables (e.g., loop control variables) in the register will lead to

faster execution of programs. This is done as follows:

 register int count;

Although, ANSI standard does not restrict its application to any particular data type, most compilers allow

only int or char variables to be placed in the register.

Since only a few variables can be placed in the register, it is important to carefully select the variables for

this purpose. However, C will automatically convert register variables into non-register variables once the

limit is reached.

Functions 259

Table 5.1 summarizes the information on the visibility and lifetime of variables in functions and files.

Table 5.1 Scope and Lifetime of Variables

Storage Class Where Declared Visibility (Active) Lifetime (Alive)

None Before all functions in a file

(may be initialized)

Entire file plus other files

where variable is declared

with extern

Entire program (Global)

extern Before all functions in a file

(cannot be initialized)

extern and the file where

originally declared as global.

Entire file plus other files

where variable is declared

Global

static Before all functions in a file Only in that file Global

None or auto Inside a function (or a block) Only in that function or block Until end of function or

block

register Inside a function or block Only in that function or block Until end of function or

block

static Inside a function Only in that function Global

Nested Blocks
A set of statements enclosed in a set of braces is known a block or a compound statement. Note that all

functions including the main use compound statement. A block can have its own declarations and other

statements. It is also possible to have a block of such statements inside the body of a function or another

block, thus creating what is known as nested blocks as shown below:

When this program is executed, the value c will be 10, not 30. The statement b = a; assigns a value of 20

to b and not zero. Although the scope of a extends up to the end of main it is not “visible” inside the inner

block where the variable a has been declared again. The inner a hides the visibility of the outer a in the inner

block. However, when we leave the inner block, the inner a is no longer in scope and the outer a becomes

visible again.

260 Programming for Problem Solving

Remember, the variable b is not re-declared in the inner block and therefore it is visible in both the blocks.

That is why when the statement int c = a + b;
is evaluated, a assumes a values of 0 and b assumes a value of 10.

Although main’s variables are visible inside the nested block, the reverse is not true.

Scope Rules
Scope

The region of a program in which a variable is available for use.

Visibility

The program’s ability to access a variable from the memory.

Lifetime

The lifetime of a variable is the duration of time in which a variable exists in the memory during execution.

Rules of use

 1. The scope of a global variable is the entire program file.

 2. The scope of a local variable begins at point of declaration and ends at the end of the block or function

in which it is declared.

 3. The scope of a formal function argument is its own function.

 4. The lifetime (or longevity) of an auto variable declared in main is the entire program execution time,

although its scope is only the main function.

 5. The life of an auto variable declared in a function ends when the function is exited.

 6. A static local variable, although its scope is limited to its function, its lifetime extends till the end of

program execution.

 7. All variables have visibility in their scope, provided they are not declared again.

 8. If a variable is redeclared within its scope again, it loses its visibility in the scope of the redeclared

variable.

MULTIFILE PROGRAMS
So far we have been assuming that all the functions (including the main) are defined in one file. However, in

real-life programming environment, we may use more than one source files which may be compiled separately

and linked later to form an executable object code. This approach is very useful because any change in one

file does not affect other files thus eliminating the need for recompilation of the entire program.

Multiple source files can share a variable provided it is declared as an external variable appropriately.

Variables that are shared by two or more files are global variables and therefore we must declare them

accordingly in one file and then explicitly define them with extern in other files. Figure 5.17 illustrates the use

of extern declarations in a multifile program.

The function main in file1 can reference the variable m that is declared as global in file2. Remember,

function1 cannot access the variable m. If, however, the extern int m; statement is placed before main, then

both the functions could refer to m. This can also be achieved by using extern int m; statement inside each

function in file1.

The extern specifier tells the compiler that the following variable types and names have already been

declared elsewhere and no need to create storage space for them. It is the responsibility of the linker to

resolve the reference problem. It is important to note that a multifile global variable should be declared without

extern in one (and only one) of the files. The extern declaration is done in places where secondary references

are made. If we declare a variable as global in two different files used by a single program, then the linker will

have a conflict as to which variable to use and, therefore, issues a warning.

Functions 261

 file1.c file2.c

 main() int m /* global variable */

 { function2()

 extern int m; {

 int i; int i;

 } }

 function1() function3()

 { {

 int j; int count;

 } }

 Fig. 5.17 Use of extern in a multifile program

The multifile program shown in Fig. 5.18 can be modified as shown in Fig. 5.17.

 file1.c file2.c

 int m; /* global variable */ extern int m;

 main() function2()

 { {

 int i; int i;

 } }

 function1() function3()

 { {

 int j; int count;

 } }

Fig. 5.18 Another version of a multifile program

When a function is defined in one file and accessed in another, the later file must include a function

declaration. The declaration identifies the function as an external function whose definition appears elsewhere.

We usually place such declarations at the beginning of the file, before all functions. Although all functions are

assumed to be external, it would be a good practice to explicitly declare such functions with the storage class

extern.

262 Programming for Problem Solving

key ConCeptS

• ArgumentS: Are the set of values that are passed to a function to enable the function to perform the desired

task. [Lo 5.1]

• BLoCk StAtement: Is a set of statements enclosed within a set of braces. [Lo 5.1]

• FunCtion: Is an independently coded subprogram that performs a specific task. [Lo 5.1]

• moduLAr progrAmming: Is a software development approach that organizes a large program into small,

independent program segments called modules. [Lo 5.1]

• CALLing progrAm: Is the program or function that calls another function. [Lo 5.2]

• FunCtion Body: Contains the statement block for performing the required task. [Lo 5.2]

• FunCtion type: Specifies the type of value that the function will return. [Lo 5.2]

• pArAmeter LiSt: Is a list of variables that will receive data values at the time of function call. [Lo 5.2]

• progrAm deFinition: Is an independent program module that is written to perform specific task. It is also

referred as function definition. [Lo 5.2]

• reCurSion: Is a scenario where a function calls itself. [Lo 5.4]

• externAL vAriABLe: Is a variable that is active throughout the program. It is also referred as global variable.

[Lo 5.6]

• LoCAL vAriABLe: Is a variable that is active only within a specific function or statement block. It is also referred

as internal variable. [Lo 5.6]

ALWAyS rememBer

∑ A function that returns a value can be used in expressions like any other C variable. [Lo 5.1]

∑ A function that returns a value cannot be used as a stand-alone statement. [Lo 5.1]

∑ Where more functions are used, they may be placed in any order. [Lo 5.1]

∑ It is a syntax error if the types in the declaration and function definition do not match. [Lo 5.2]

∑ It is a syntax error if the number of actual parameters in the function call do not match the number in the

declaration statement. [Lo 5.2]

∑ It is a logic error if the parameters in the function call are placed in the wrong order. [Lo 5.2]

∑ Placing a semicolon at the end of header line is illegal. [Lo 5.2]

∑ Forgetting the semicolon at the end of a prototype declaration is an error. [Lo 5.2]

∑ A return statement can occur anywhere within the body of a function. [Lo 5.2]

∑ A function definition may be placed either after or before the main function. [Lo 5.2]

∑ A return statement is required if the return type is anything other than void. [Lo 5.3]

∑ If a function does not return any value, the return type must be declared void. [Lo 5.3]

∑ If a function has no parameters, the parameter list must be declared void. [Lo 5.3]

∑ Using void as return type when the function is expected to return a value is an error. [Lo 5.3]

∑ Trying to return a value when the function type is marked void is an error. [Lo 5.3]

∑ Defining a function within the body of another function is not allowed. [Lo 5.3]

Functions 263

∑ It is an error if the type of data returned does not match the return type of the function. [Lo 5.3]

∑ It will most likely result in logic error if there is a mismatch in data types between the actual and formal

arguments. [Lo 5.3]

∑ Functions return integer value by default. [Lo 5.3]

∑ A function without a return statement cannot return a value, when the parameters are passed by value.

[Lo 5.3]

∑ When the value returned is assigned to a variable, the value will be converted to the type of the variable

receiving it. [Lo 5.3]

∑ Function cannot be the target of an assignment. [Lo 5.3]

∑ A function with void return type cannot be used in the right-hand side of an assignment statement. It can

be used only as a stand-alone statement. [Lo 5.3]

∑ A function can have more than one return statement. [Lo 5.3]

∑ A recursive function must have a condition that forces the function to return without making the recursive

call; otherwise the function will never return. [Lo 5.4]

∑ It is illegal to use the name of a formal argument as the name of a local variable. [Lo 5.5]

∑ Variables in the parameter list must be individually declared for their types. We cannot use multiple

declarations (like we do with local or global variables). [Lo 5.5]

∑ Use parameter passing by values as far as possible to avoid inadvertent changes to variables of calling

function in the called function. [Lo 5.5]

∑ Although not essential, include parameter names in the prototype declarations for documentation

purposes. [Lo 5.5]

∑ A global variable used in a function will retain its value for future use. [Lo 5.6]

∑ A local variable defined inside a function is known only to that function. It is destroyed when the function

is exited. [Lo 5.6]

∑ A global variable is visible only from the point of its declaration to the end of the program. [Lo 5.6]

∑ When a variable is redeclared within its scope either in a function or in a block, the original variable is not

visible within the scope of the redeclared variable. [Lo 5.6]

∑ A local variable declared static retains its value even after the function is exited. [Lo 5.6]

∑ Static variables are initialized at compile time and therefore, they are initialized only once. [Lo 5.6]

∑ Avoid the use of names that hide names in outer scope. [Lo 5.6]

BrieF CASeS

Calculation of Area under a Curve [LO 5.1, 5.2, 5.3, 5.6 M]

One of the applications of computers in numerical analysis is computing the area under a curve. One simple

method of calculating the area under a curve is to divide the area into a number of trapezoids of same width

and summing up the area of individual trapezoids. The area of a trapezoid is given by

 Area = 0.5 * (h1 + h2) * b

where h1 and h2 are the heights of two sides and b is the width as shown in Fig. 5.19.

The program in Fig. 5.21 calculates the area for a curve of the function

 f(x) = x2 + 1

between any two given limits, say, A and B.

264 Programming for Problem Solving

Input

Lower limit (A)

Upper limit (B)

Number of trapezoids

f(x)
h1 h2

b

A Bx

Curve

Fig. 5.19 Area under a curve

Output

Total area under the curve between the given limits.

Algorithm

 1. Input the lower and upper limits and the number of trapezoids.

 2. Calculate the width of trapezoids.

 3. Initialize the total area.

 4. Calculate the area of trapezoid and add to the total area.

 5. Repeat step-4 until all the trapezoids are completed.

 6. Print total area.

The algorithm is implemented in top-down modular form as in Fig. 5.20.

main

input find_area

function_x trap_area

Fig. 5.20 Modular chart

The evaluation of f(x) has been done using a separate function so that it can be easily modified to allow

other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of trapezoids. The actual

area for the limits 0 and 3 is 12 units (by analytical method).

Functions 265

 Program

 #include <stdio.h>

 float start_point, /* GLOBAL VARIABLES */

 end_point,

 total_area;

 int numtraps;

 main()

 {

 void input(void);

 float find_area(float a,float b,int n); /* prototype */

 print(“AREA UNDER A CURVE”);

 input();

 total_area = find_area(start_point, end_point, numtraps);

 printf(“TOTAL AREA = %f”, total_area);

 }

 void input(void)

 {

 printf(“\n Enter lower limit:”);

 scanf(“%f”, &start_point);

 printf(“Enter upper limit:”);

 scanf(“%f”, &end_point);

 printf(“Enter number of trapezoids:”);

 scanf(“%d”, &numtraps);

 }

 float find_area(float a, float b, int n)

 {

 float base, lower, h1, h2; /* LOCAL VARIABLES */

 float function_x(float x); /* prototype */

 float trap_area(float h1,float h2,float base);/*prototype*/

 base = (b-1)/n;

 lower = a;

 for(lower =a; lower <= b-base; lower = lower + base)

 {

 h1 = function_x(lower);

 h1 = function_x(lower + base);

 total_area += trap_area(h1, h2, base);

 }

266 Programming for Problem Solving

 return(total_area);

 float trap_area(float height_1,float height_2,float base)

 {

 float area; /* LOCAL VARIABLE */

 area = 0.5 * (height_1 + height_2) * base;

 return(area);

 }

 float function_x(float x)

 {

 /* F(X) = X * X + 1 */

 return(x*x + 1);

 }

 Output

 AREA UNDER A CURVE

 Enter lower limit: 0

 Enter upper limit: 3

 Enter number of trapezoids: 30

 TOTAL AREA = 12.005000

 AREA UNDER A CURVE

 Enter lower limit: 0

 Enter upper limit: 3

 Enter number of trapezoids: 100

 TOTAL AREA = 12.000438

 Fig. 5.21 Computing area under a curve

revieW QueStionS

 5.1 State whether the following statements are true or false.

 (a) Any name can be used as a function name. [LO 5.1 E]

 (b) A function without a return statement is illegal. [LO 5.2 E]

 (c) A function prototype must always be placed outside the calling function. [LO 5.2 E]

 (d) The variable names used in prototype should match those used in the function definition.

[LO 5.2 E]

 (e) The return type of a function is int by default. [LO 5.2 M]

 (f) When variable values are passed to functions, a copy of them are created in the memory.

[LO 5.2 M]

 (g) A function can be defined within the main function. [LO 5.2 M]

 (h) A function can be defined and placed before the main function. [LO 5.2 M]

 (i) C functions can return only one value under their function name. [LO 5.3 E]

Functions 267

 (j) A function in C should have at least one argument. [LO 5.3 E]

 (k) Only a void type function can have void as its argument. [LO 5.3 E]

 (l) Program execution always begins in the main function irrespective of its location in the program.

[LO 5.3 M]

 (m) In parameter passing by pointers, the formal parameters must be prefixed with the symbol * in

their declarations. [LO 5.3 M]

 (n) In parameter passing by pointers, the actual parameters in the function call may be variables or

constants. [LO 5.3 H]

 (o) An user-defined function must be called at least once; otherwise a warning message will be

issued. [LO 5.3 H]

 (p) A function can call itself. [LO 5.4 E]

 (q) In passing arrays to functions, the function call must have the name of the array to be passed

without brackets. [LO 5.5 E]

 (r) In passing strings to functions, the actual parameter must be name of the string post-fixed with

size in brackets. [LO 5.5 M]

 (s) Global variables are visible in all blocks and functions in the program. [LO 5.6 E]

 (t) Global variables cannot be declared as auto variables. [LO 5.6 H]

 5.2 Fill in the blanks in the following statements.

 (a) The parameters used in a function call are called ______. [LO 5.1 E]

 (b) In prototype declaration, specifying ____ is optional. [LO 5.2 E]

 (c) A _______ aids the compiler to check the matching between the actual arguments and the formal

ones. [LO 5.2 H]

 (d) In passing by pointers, the variables of the formal parameters must be prefixed with _______ in

their declaration. [LO 5.3 M]

 (e) By default, ______ is the return type of a C function. [LO 5.3 M]

 (f) A function that calls itself is known as a _______ function. [LO 5.4 E]

 (g) A variable declared inside a function is called _________. [LO 5.6 E]

 (h) _________ refers to the region where a variable is actually available for use. [LO 5.6 M]

 (i) If a local variable has to retain its value between calls to the function, it must be declared as

_________. [LO 5.6 M]

 (j) A variable declared inside a function by default assumes ______ storage class. [LO 5.6 M]

 5.3 The main is a user-defined function. How does it differ from other user-defined functions? [LO 5.1 H]

 5.4 Describe the two ways of passing parameters to functions. When do you prefer to use each of them?

[LO 5.5 M]

 5.5 What is prototyping? Why is it necessary? [LO 5.2 E]

 5.6 Distinguish between the following:

 (a) Actual and formal arguments [LO 5.2 M]

 (b) & operator and * operator [LO 5.3 M]

 (c) Global and local variables [LO 5.6 E]

 (d) Automatic and static variables [LO 5.6 M]

 (e) Scope and visibility of variables [LO 5.6 M]

 5.7 Explain what is likely to happen when the following situations are encountered in a program.

[LO 5.3 H]

268 Programming for Problem Solving

 (a) Actual arguments are less than the formal arguments in a function.

 (b) Data type of one of the actual arguments does not match with the type of the corresponding formal

argument.

 (c) Data type of one of the arguments in a prototype does not match with the type of the corresponding

formal parameter in the header line.

 (d) The order of actual parameters in the function call is different from the order of formal parameters

in a function where all the parameters are of the same type.

 (e) The type of expression used in return statement does not match with the type of the function.

 5.8 Which of the following prototype declarations are invalid? Why? [LO 5.2 M]

 (a) int (fun) void;

 (b) double fun (void)

 (c) float fun (x, y, n);

 (d) void fun (void, void);

 (e) int fun (int a, b);

 (f) fun (int, float, char);

 (g) void fun (int a, int &b);

 5.9 Which of the following header lines are invalid? Why? [LO 5.2 M]

 (a) float average (float x, float y, float z);

 (b) double power (double a, int n – 1)

 (c) int product (int m, 10)

 (d) double minimum (double x; double y;)

 (e) int mul (int x, y)

 (f) exchange (int *a, int *b)

 (g) void sum (int a, int b, int &c)

 5.10 A function to divide two floating point numbers is as follows: [LO 5.3 M]

 divide (float x, float y)

 {

 return (x / y);

 }

 What will be the value of the following “function calls”

 (a) divide (10, 2)

 (b) divide (9, 2)

 (c) divide (4.5, 1.5)

 (d) divide (2.0, 3.0)

 5.11 What will be the effect on the above function calls if we change the header line as follows: [LO 5.3 H]

 (a) int divide (int x, int y)

 (b) double divide (float x, float y)

 5.12 Determine the output of the following program? [LO 5.3 H]

 int prod(int m, int n);

 main ()

 {

 int x = 10;

 int y = 20;

 int p, q;

Functions 269

 p = prod (x,y);

 q = prod (p, prod (x,z));

 printf (“%d %d\n”, p,q);

 }

 int prod(int a, int b)

 {

 return (a * b);

 }

 5.13 What will be the output of the following program? [LO 5.3 H]

 void test (int *a);

 main ()

 {

 int x = 50;

 test (&x);

 printf(“%d\n”, x);

 }

 void test (int *a);

 {

 *a = *a + 50;

 }

 5.14 The function test is coded as follows: [LO 5.3 M]

 int test (int number)

 {

 int m, n = 0;

 while (number)

 {

 m = number % 10;

 if (m % 2)

 n = n + 1;

 number = number /10;

 }

 return (n);

 }

 What will be the values of x and y when the following statements are executed?

 int x = test (135);

 int y = test (246);

 5.15 Enumerate the rules that apply to a function call. [LO 5.2 M]

 5.16 Summarize the rules for passing parameters to functions by pointers. [LO 5.3 M]

 5.17 What are the rules that govern the passing of arrays to function? [LO 5.5 M]

 5.18 State the problems we are likely to encounter when we pass global variables as parameters to

functions. [LO 5.6 H]

270 Programming for Problem Solving

deBugging exerCiSeS

 5.1 Find errors, if any, in the following function definitions: [LO 5.3 H] (a) void abc (int a, int b)

 {

 int c;

 return (c);

 }

 (b) int abc (int a, int b)

 {

 }

 (c) int abc (int a, int b)

 {

 double c = a + b;

 return (c);

 }

 (d) void abc (void)

 {

 return;

 }

 (e) int abc(void)

 {

 return;

 }

 5.2 Find errors in the following function calls: [LO 5.3 M]

 (a) void xyz ();

 (b) xyx (void);

 (c) xyx (int x, int y);

 (d) xyzz ();

 (e) xyz () + xyz ();

progrAmming exerCiSeS

 5.1 Write a function exchange to interchange the values of two variables, say x and y. Illustrate the

use of this function, in a calling function. Assume that x and y are defined as global variables.

[LO 5.2, 5.6 M]

Functions 271

 5.2 Write a function space(x) that can be used to provide a space of x positions between two output

numbers. Demonstrate its application. [LO 5.2 M]

 5.3 Use recursive function calls to evaluate [LO 5.4 H]

 f(x) = x
x x x

- + - +

3 5 7

3 5 7! ! !

 5.4 An n_order polynomial can be evaluated as follows: [LO 5.5 H]

 P = (.....(((a0x+a1)x+a2)x+a3)x+...+an)

 Write a function to evaluate the polynomial, using an array variable. Test it using a main program.

 5.5 The Fibonacci numbers are defined recursively as follows: [LO 5.3 M]

 F1 = 1

 F2 = 1

 Fn = F n–1+F n–2, n > 2

 Write a function that will generate and print the first n Fibonacci numbers. Test the function for

n = 5, 10, and 15.

 5.6 Write a function that will round a floating-point number to an indicated decimal place. For example the

number 17.457 would yield the value 17.46 when it is rounded off to two decimal places. [LO 5.2 E]

 5.7 Write a function prime that returns 1 if its argument is a prime number and returns zero otherwise.

[LO 5.2 E]

 5.8 Write a function that will scan a character string passed as an argument and convert all lowercase

characters into their uppercase equivalents. [LO 5.5 H]

 5.9 Develop a top_down modular program to implement a calculator. The program should request

the user to input two numbers and display one of the following as per the desire of the user:

[LO 5.2, 5.3 H]

 (a) Sum of the numbers

 (b) Difference of the numbers

 (c) Product of the numbers

 (d) Division of the numbers

 Provide separate functions for performing various tasks such as reading, calculating and displaying.

Calculating module should call second level modules to perform the individual mathematical operations.

The main function should have only function calls.

 5.10 Develop a modular interactive program using functions that reads the values of three sides of a triangle

and displays either its area or its perimeter as per the request of the user. Given the three sides a, b

and c. [LO 5.2, 5.3 H]

 Perimeter = a + b + c

 Area = (s a) (s b) (s c)- - -

 where s = (a + b + c)/2

 5.11 Write a function that can be called to find the largest element of an m by n matrix. [LO 5.5 M]

 5.12 Write a function that can be called to compute the product of two matrices of size m by n and n by m.

The main function provides the values for m and n and two matrices. [LO 5.5 M]

 5.13 Design and code an interactive modular program that will use functions to a matrix of m by n size,

compute column averages and row averages, and then print the entire matrix with averages shown in

respective rows and columns. [LO 5.3, 5.5 M]

 5.14 Develop a top-down modular program that will perform the following tasks: [LO 5.3, 5.5 H]

 (a) Read two integer arrays with unsorted elements.

 (b) Sort them in ascending order

272 Programming for Problem Solving

 (c) Merge the sorted arrays

 (d) Print the sorted list

 Use functions for carrying out each of the above tasks. The main function should have only function

calls.

 5.15 Develop your own functions for performing following operations on strings: [LO 5.3, 5.5 M]

 (a) Copying one string to another

 (b) Comparing two strings

 (c) Adding a string to the end of another string

 Write a driver program to test your functions.

 5.16 Write a program that invokes a function called find() to perform the following tasks: [LO 5.5 M]

 (a) Receives a character array and a single character.

 (b) Returns 1 if the specified character is found in the array, 0 otherwise.

 5.17 Design a function locate () that takes two character arrays s1 and s2 and one integer value m as

parameters and inserts the string s2 into s1 immediately after the index m. [LO 5.5 H]

 Write a program to test the function using a real-life situation. (Hint: s2 may be a missing word in s1 that

represents a line of text).

 5.18 Write a function that takes an integer parameter m representing the month number of the year and

returns the corresponding name of the month. For instance, if m = 3, the month is March.

 Test your program. [LO 5.3 M]

 5.19 In preparing the calendar for a year we need to know whether that particular year is leap year or not.

Design a function leap() that receives the year as a parameter and returns an appro priate message.

[LO 5.2 E]

 What modifications are required if we want to use the function in preparing the actual calendar?

 5.20 Write a function that receives a floating point value x and returns it as a value rounded to two nearest

decimal places. For example, the value 123.4567 will be rounded to 123.46 (Hint: Seek help of one of

the math functions available in math library). [LO 5.2 M]

LEARNING OBJECTIVES

LO 6.1 Know the concept of pointers

LO 6.2 Determine how pointer variables are used in a program

LO 6.3 Describe chain of pointers

LO 6.4 Illustrate pointer expressions

LO 6.5 Discuss pointers and arrays

LO 6.6 Explain how pointers are used with functi ons and structures

introduction
A pointer is a derived data type in C. It is built from one of the fundamental data types available in C. Pointers

contain memory addresses as their values. Since these memory addresses are the locations in the computer

memory where program instructions and data are stored, pointers can be used to access and manipulate data

stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It has added power

and fl exibility to the language. Although they appear little confusing and diffi cult to understand for a beginner,

they are a powerful tool and handy to use once they are mastered.

Pointers are used frequently in C, as they offer a number of benefi ts to the programmers. They include:

 1. Pointers are more effi cient in handling arrays and data tables.

 2. Pointers can be used to return multiple values from a function via function arguments.

 3. Pointers permit references to functions and thereby facilitating passing of functions as arguments to

other functions.

 4. The use of pointer arrays to character strings results in saving of data storage space in memory.

 5. Pointers allow C to support dynamic memory management.

 6. Pointers provide an effi cient tool for manipulating dynamic data structures such as structures, linked

lists, queues, stacks and trees.

 7. Pointers reduce length and complexity of programs.

 8. They increase the execution speed and thus reduce the program execution time.

introduction
A pointer is a derived data type in C. It is built from one of the fundamental data types available in C. Pointers

contain memory addresses as their values. Since these memory addresses are the locations in the computer

Pointers
Chapter

6

274 Programming for Problem Solving

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will examine the pointers

in detail and illustrate how to use them in program development. Chapter 8 examines the use of pointers for

creating and managing linked lists.

UNDERSTANDING POINTERS

The computer’s memory is a sequential collection of storage cells as shown in Fig. 6.1. Each cell, commonly

known as a byte, has a number called address associated with it. Typically, the addresses are numbered

consecutively, starting from zero. The last address depends on the memory size. A computer system having

64 K memory will have its last address as 65,535.

Fig. 6.1 Memory organisation

Whenever we declare a variable, the system allocates, somewhere in the memory, an appropriate location

to hold the value of the variable. Since, every byte has a unique address number, this location will have its own

address number. Consider the following statement

int quantity = 179;

This statement instructs the system to fi nd a location for the

integer variable quantity and puts the value 179 in that location.

Let us assume that the system has chosen the address location

5000 for quantity. We may represent this as shown in Fig. 6.2.

(Note that the address of a variable is the address of the fi rst bye

occupied by that variable.)

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will examine the pointers

in detail and illustrate how to use them in program development. Chapter 8 examines the use of pointers for

Variable

Address

Value

Quantity

5000

179

Fig. 6.2 Representation of a variable

Pointers 275

During execution of the program, the system always associates the name quantity with the address 5000.

(This is something similar to having a house number as well as a house name.) We may have access to

the value 179 by using either the name quantity or the address 5000. Since memory addresses are simply

numbers, they can be assigned to some variables, that can be stored in memory, like any other variable. Such

variables that hold memory addresses are called pointer variables. A pointer variable is, therefore, nothing but

a variable that contains an address, which is a location of another variable in memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another location. Suppose,

we assign the address of quantity to a variable p. The link between the variables p and quantity can be

visualized as shown in Fig. 6.3. The address of p is 5048.

quantity

P

Variable Value Address

179 5000

5000 5048

Fig. 6.3 Pointer variable

Since the value of the variable p is the address of the variable quantity, we may access the value of

quantity by using the value of p and therefore, we say that the variable p ‘points’ to the variable quantity.

Thus, p gets the name ‘pointer’. (We are not really concerned about the actual values of pointer variables. They

may be different everytime we run the program. What we are concerned about is the relationship between the

variables p and quantity.)

underlying Concepts of pointers

Pointers are built on the three underlying concepts as illustrated below:

Pointers

Pointer

constants

Pointer

values

Pointer

variables

Memory addresses within a computer are referred to as pointer constants. We cannot change them; we

can only use them to store data values. They are like house numbers.

We cannot save the value of a memory address directly. We can only obtain the value through the variable

stored there using the address operator (&). The value thus obtained is known as pointer value. The pointer

value (i.e. the address of a variable) may change from one run of the program to another.

Once we have a pointer value, it can be stored into another variable. The variable that contains a pointer

value is called a pointer variable.

276 Programming for Problem Solving

ACCESSING ThE ADDRESS OF A VARIABLE

The actual location of a variable in the memory is system dependent and therefore,

the address of a variable is not known to us immediately. How can we then determine

the address of a variable? This can be done with the help of the operator & available

in C. We have already seen the use of this address operator in the scanf function.

The operator & immediately preceding a variable returns the address of the variable associated with it. For

example, the statement

p = &quantity;
would assign the address 5000 (the location of quantity) to the variable p. The & operator can be remembered

as ‘address of ’.

The & operator can be used only with a simple variable or an array element. The following are illegal use

of address operator:

 1. &125 (pointing at constants).

 2. int x[10];

 &x (pointing at array names).

 3. &(x+y) (pointing at expressions).

If x is an array, then expressions such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x.

WorKeD-out probLeM 6.1 e

Write a program to print the address of a variable along with its value.

The program shown in Fig. 6.4, declares and initializes four variables and then prints out these values with

their respective storage locations. Note that we have used %u format for printing address values. Memory

addresses are unsigned integers.

 Program

 main()

 {

 char a;

 int x;

 fl oat p, q;

 a = ‘A’;

 x = 125;

 p = 10.25, q = 18.76;

 printf(“%c is stored at addr %u.\n”, a, &a);

 printf(“%d is stored at addr %u.\n”, x, &x);

 printf(“%f is stored at addr %u.\n”, p, &p);

 printf(“%f is stored at addr %u.\n”, q, &q);

 }

Lo 6.1

Know the concept

of pointers

E for Easy, M for Medium and H for High

Pointers 277

 Output

 A is stored at addr 4436.

 125 is stored at addr 4434.

 10.250000 is stored at addr 4442.

 18.760000 is stored at addr 4438.

Fig. 6.4 Accessing the address of a variable

DECLARING POINTER VARIABLES

In C, every variable must be declared for its type. Since pointer variables contain

addresses that belong to a separate data type, they must be declared as pointers

before we use them. The declaration of a pointer variable takes the following form:

data_type *pt_name;

This tells the compiler three things about the variable pt_name.

 1. The asterisk (*) tells that the variable pt_name is a pointer variable.

 2. pt_name needs a memory location.

 3. pt_name points to a variable of type data_type.

For example,

 int *p; /* integer pointer */
declares the variable p as a pointer variable that points to an integer data type. Remember that the type

int refers to the data type of the variable being pointed to by p and not the type of the value of the pointer.

Similarly, the statement

 fl oat *x; / * fl oat pointer */
declares x as a pointer to a fl oating-point variable.

The declarations cause the compiler to allocate memory locations for the pointer variables p and x. Since

the memory locations have not been assigned any values, these locations may contain some unknown values

in them and therefore they point to unknown locations as shown:

 int *p;
P

contains
garbage

points to
unknown location

? ?

pointer Declarati on style

Pointer variables are declared similarly as normal variables except for the addition of the unary * operator.

This symbol can appear anywhere between the type name and the printer variable name. Programmers use

the following styles:

 int* p; /* style 1 */

 int *p; /* style 2 */

 int * p; /* style 3 */

However, the style 2 is becoming increasingly popular due to the following reasons:

 1. This style is convenient to have multiple declarations in the same statement. Example:

 int *p, x, *q;

Lo 6.2

Determine how

pointer variables are

used in a program

278 Programming for Problem Solving

 2. This style matches with the format used for accessing the target values. Example:

 int x, *p, y;

 x = 10;

 p = & x;

 y = *p; /* accessing x through p */

 p = 20; / assigning 20 to x */

 We use in this book the style 2, namely,

 int *p;

INITIALIZATION OF POINTER VARIABLES

The process of assigning the address of a variable to a pointer variable is known as initialization. As pointed out

earlier, all uninitialized pointers will have some unknown values that will be interpreted as memory addresses.

They may not be valid addresses or they may point to some values that are wrong. Since the compilers do

not detect these errors, the programs with uninitialized pointers will produce erroneous results. It is therefore

important to initialize pointer variables carefully before they are used in the program.

Once a pointer variable has been declared we can use the assignment operator to initialize the variable.

Example:

 int quantity;

 int *p; /* declaration */

 p = &quantity; /* initialization */
We can also combine the initialization with the declaration. That is,

int *p = &quantity;
is allowed. The only requirement here is that the variable quantity must be declared before the initialization

takes place. Remember, this is an initialization of p and not *p.

We must ensure that the pointer variables always point to the corresponding type of data. For example,

 float a, b;

 int x, *p;

 p = &a; /* wrong */

 b = *p;
will result in erroneous output because we are trying to assign the address of a float variable to an integer

pointer. When we declare a pointer to be of int type, the system assumes that any address that the pointer

will hold will point to an integer variable. Since the compiler will not detect such errors, care should be taken

to avoid wrong pointer assignments.

It is also possible to combine the declaration of data variable, the declaration of pointer variable and the

initialization of the pointer variable in one step. For example,

 int x, *p = &x; /* three in one */
is perfectly valid. It declares x as an integer variable and p as a pointer variable and then initializes p to the

address of x. And also remember that the target variable x is declared first. The statement

 int *p = &x, x;
is not valid.

We could also define a pointer variable with an initial value of NULL or 0 (zero). That is, the following

statements are valued

 int *p = NULL;

 int *p = 0;

Pointers 279

pointer flexibility

Pointers are fl exible. We can make the same pointer to point to different data variables in different statements.

Example;

int x, y, z, *p;

.

p = &x;

.

p = &y;

.

p = &z;

.
We can also use different pointers to point to the same data variable. Example;

 int x;

int *p1 = &x;

int *p2 = &x;

int *p3 = &x;

.

.

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable. For

example, the following is wrong:

 int *p = 5360; / *absolute address */

ACCESSING A VARIABLE ThROUGh ITS POINTER

Once a pointer has been assigned the address of a variable, the question remains as to how to access the

value of the variable using the pointer? This is done by using another unary operator * (asterisk), usually

known as the indirection operator. Another name for the indirection operator is the dereferencing operator.

Consider the following statements:

 int quantity, *p, n;

 quantity = 179;

 p = &quantity;

 n = *p;
The fi rst line declares quantity and n as integer variables and p as a pointer variable pointing to an integer.

The second line assigns the value 179 to quantity and the third line assigns the address of quantity to the

pointer variable p. The fourth line contains the indirection operator *. When the operator* is placed before a

pointer variable in an expression (on the right-hand side of the equal sign), the pointer returns the value of the

variable of which the pointer value is the address. In this case, *p returns the value of the variable quantity,

because p is the address of quantity. The * can be remembered as ‘value at address’. Thus, the value of n

would be 179. The two statements

 p = &quantity;

 n = *p;
are equivalent to

 n = *&quantity;
which in turn is equivalent to

x y

p

z

x

p1 p2 p3

280 Programming for Problem Solving

 n = quantity;
In C, the assignment of pointers and addresses is always done symbolically, by means of symbolic names.

You cannot access the value stored at the address 5368 by writing *5368. It will not work. Program 6.2

illustrates the distinction between pointer value and the value it points to.

WorKeD-out probLeM 6.2 e

Write a program to illustrate the use of indirection operator ‘*’ to access the value pointed to by a pointer.

The program and output are shown in Fig. 6.5. The program clearly shows how we can access the value of a

variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value it points to is

10. Further, you may also note the following equivalences:

 x = *(&x) = *ptr = y

 &x = &*ptr

 Program

 main()

 {

 int x, y;

 int *ptr;

 x = 10;

 ptr = &x;

 y = *ptr;

 printf(“Value of x is %d\n\n”,x);

 printf(“%d is stored at addr %u\n”, x, &x);

 printf(“%d is stored at addr %u\n”, *&x, &x);

 printf(“%d is stored at addr %u\n”, *ptr, ptr);

 printf(“%d is stored at addr %u\n”, ptr, &ptr);

 printf(“%d is stored at addr %u\n”, y, &y);

 *ptr = 25;

 printf(“\nNow x = %d\n”,x);

 }

 Output

 Value of x is 10

 10 is stored at addr 4104

 10 is stored at addr 4104

 10 is stored at addr 4104

 4104 is stored at addr 4106

 10 is stored at addr 4108

 Now x = 25

Fig. 6.5 Accessing a variable through its pointer

Pointers 281

The actions performed by the program are illustrated in Fig. 6.6. The statement ptr = &x assigns the

address of x to ptr and y = *ptr assigns the value pointed to by the pointer ptr to y.

Note the use of the assignment statement

 *ptr = 25;
This statement puts the value of 25 at the memory location whose address is the value of ptr. We know

that the value of ptr is the address of x and therefore, the old value of x is replaced by 25. This, in effect,

is equivalent to assigning 25 to x. This shows how we can change the value of a variable indirectly using a

pointer and the indirection operator.

x

4104

Values in the storage cells and their addressesStage

Declaration

x = 10

ptr = &x

y = *ptr

*ptr = 25

4104

4104

4104

4104

y

4108

4108

4108

4108

pointer to x

4106

4108

ptr

4106
address

address

address

address

4106

4106

4106

25

1010

10

10

10

4104

4104

4104

Fig. 6.6 Illustration of pointer assignments

ChAIN OF POINTERS

It is possible to make a pointer to point to another pointer, thus creating a chain of

pointers as shown.

p2 p1 variable

address 2 address 1 value

Here, the pointer variable p2 contains the address of the pointer variable p1, which points to the location

that contains the desired value. This is known as multiple indirections.

Lo 6.3

Describe chain of

pointers

282 Programming for Problem Solving

A variable that is a pointer to a pointer must be declared using additional indirection operator symbols in

front of the name. Example:

 int **p2;

This declaration tells the compiler that p2 is a pointer to a pointer of int type. Remember, the pointer p2 is

not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the indirection

operator twice. Consider the following code:

 main ()

 {

 int x, *p1, **p2;

 x = 100;

 p1 = &x; /* address of x */

 p2 = &p1 /* address of p1 */

 printf (“%d”, **p2);

 }

This code will display the value 100. Here, p1 is declared as a pointer to an integer and p2 as a pointer to

a pointer to an integer.

POINTER EXPRESSIONS

Like other variables, pointer variables can be used in expressions. For example, if p1

and p2 are properly declared and initialized pointers, then the following statements

are valid:

 y = *p1 * *p2; same as (*p1) * (*p2)

 sum = sum + *p1;

 z = 5* – *p2/ *p1; same as (5 * (– (*p2)))/(*p1)

 *p2 = *p2 + 10;

Note that there is a blank space between / and * in the item3 above. The following is wrong:

z = 5* – *p2 /*p1;

 The symbol /* is considered as the beginning of a comment and therefore the statement fails.

C allows us to add integers to or subtract integers from pointers, as well as to subtract one pointer from

another. p1 + 4, p2–2, and p1 – p2 are all allowed. If p1 and p2 are both pointers to the same array, then p2

– p1 gives the number of elements between p1 and p2.

We may also use short-hand operators with the pointers.

 p1++;

 —p2;

 sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using the relational

operators. The expressions such as p1 > p2, p1 = = p2, and p1 != p2 are allowed. However, any comparison

of pointers that refer to separate and unrelated variables makes no sense. Comparisons can be used

meaningfully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

 p1 / p2 or p1 * p2 or p1 / 3

are not allowed. Similarly, two pointers cannot be added. That is, p1 + p2 is illegal.

Lo 6.4

illustrate pointer

expressions

Pointers 283

WorKeD-out probLeM 6.3 M

Write a program to illustrate the use of pointers in arithmetic operations.

The program in Fig. 6.7 shows how the pointer variables can be directly used in expressions. It also illustrates

the order of evaluation of expressions. For example, the expression

4* – *p2 / *p1 + 10

is evaluated as follows:

((4 * (–(*p2))) / (*p1)) + 10

When *p1 = 12 and *p2 = 4, this expression evaluates to 9. Remember, since all the variables are of type

int, the entire evaluation is carried out using the integer arithmetic.

 Program

 main()

 {

 int a, b, *p1, *p2, x, y, z;

 a = 12;

 b = 4;

 p1 = &a;

 p2 = &b;

 x = *p1 * *p2 – 6;

 y = 4* – *p2 / *p1 + 10;

 printf(“Address of a = %u\n”, p1);

 printf(“Address of b = %u\n”, p2);

 printf(“\n”);

 printf(“a = %d, b = %d\n”, a, b);

 printf(“x = %d, y = %d\n”, x, y);

 *p2 = *p2 + 3;

 *p1 = *p2 – 5;

 z = *p1 * *p2 – 6;

 printf(“\na = %d, b = %d,”, a, b);

 printf(“ z = %d\n”, z);

 }

 Output

 Address of a = 4020

 Address of b = 4016

 a = 12, b = 4

 x = 42, y = 9

 a = 2, b = 7, z = 8

Fig. 6.7 Evaluation of pointer expressions

284 Programming for Problem Solving

POINTER INCREMENTS AND SCALE FACTOR

We have seen that the pointers can be incremented like

 p1 = p2 + 2;

 p1 = p1 + 1;
and so on. Remember, however, an expression like

 p1++;
will cause the pointer p1 to point to the next value of its type. For example, if p1 is an integer pointer with an

initial value, say 2800, then after the operation p1 = p1 + 1, the value of p1 will be 2802, and not 2801. That

is, when we increment a pointer, its value is increased by the ‘length’ of the data type that it points to. This

length called the scale factor.

For an IBM PC, the length of various data types are as follows:

characters 1 byte

integers 2 bytes

fl oats 4 bytes

long integers 4 bytes

doubles 8 bytes

The number of bytes used to store various data types depends on the system and can be found by making

use of the sizeof operator. For example, if x is a variable, then sizeof(x) returns the number of bytes needed

for the variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for short integers.)

rules of pointer operati ons

The following rules apply when performing operations on pointer variables:

 1. A pointer variable can be assigned the address of another variable.

 2. A pointer variable can be assigned the values of another pointer variable.

 3. A pointer variable can be initialized with NULL or zero value.

 4. A pointer variable can be pre-fi xed or post-fi xed with increment or decrement operators.

 5. An integer value may be added or subtracted from a pointer variable.

 6. When two pointers point to the same array, one pointer variable can be subtracted from another.

 7. When two pointers point to the objects of the same data types, they can be compared using relational

operators.

 8. A pointer variable cannot be multiplied by a constant.

 9. Two pointer variables cannot be added.

 10. A value cannot be assigned to an arbitrary address (i.e., &x = 10; is illegal).

POINTERS AND ARRAYS

When an array is declared, the compiler allocates a base address and suffi cient amount

of storage to contain all the elements of the array in contiguous memory locations. The

base address is the location of the fi rst element (index 0) of the array. The compiler

also defi nes the array name as a constant pointer to the fi rst element. Suppose we

declare an array x as follows:

int x[5] = {1, 2, 3, 4, 5};

Lo 6.5

Discuss pointers

and arrays

Pointers 285

Suppose the base address of x is 1000 and assuming that each integer requires two bytes, the fi ve elements

will be stored as follows:

1

1000 1008100610041002

Base address

x[0]Elements

Address

Value

x[1] x[2] x[3] x[4]

2 3 4 5

The name x is defi ned as a constant pointer pointing to the fi rst element, x[0] and therefore the value of x

is 1000, the location where x[0] is stored. That is,

x = &x[0] = 1000
If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the following

assignment:

 p = x;
This is equivalent to

 p = &x[0];
Now, we can access every value of x using p++ to move from one element to another. The relationship

between p and x is shown as:

p = &x[0] (= 1000)

p+1 = &x[1] (= 1002)

p+2 = &x[2] (= 1004)

p+3 = &x[3] (= 1006)

p+4 = &x[4] (= 1008)

You may notice that the address of an element is calculated using its index and the scale factor of the data

type. For instance,

 address of x[3] = base address + (3 x scale factor of int)

 = 1000 + (3 x 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access array elements. Note

that *(p+3) gives the value of x[3]. The pointer accessing method is much faster than array indexing.

The Worked-Out Problem 6.4 illustrates the use of pointer accessing method.

WorKeD-out probLeM 6.4 M

Write a program using pointers to compute the sum of all elements stored in an array.

The program shown in Fig. 6.8 illustrates how a pointer can be used to traverse an array element. Since

incrementing an array pointer causes it to point to the next element, we need only to add one to p each time

we go through the loop.

 Program

 main()

 {

 int *p, sum, i;

 int x[5] = {5,9,6,3,7};

286 Programming for Problem Solving

 i = 0;

 p = x; /* initializing with base address of x */

 printf(“Element Value Address\n\n”);

 while(i < 5)

 {

 printf(“ x[%d] %d %u\n”, i, *p, p);

 sum = sum + *p; /* accessing array element */

 i++, p++; /* incrementing pointer */

 }

 printf(“\n Sum = %d\n”, sum);

 printf(“\n &x[0] = %u\n”, &x[0]);

 printf(“\n p = %u\n”, p);

 }

 Output

 Element Value Address

 x[0] 5 166

 x[1] 9 168

 x[2] 6 170

 x[3] 3 172

 x[4] 7 174

 Sum = 55

 &x[0] = 166

 p = 176

 Fig. 6.8 Accessing one-dimensional array elements using the pointer

It is possible to avoid the loop control variable i as shown:

 p = x;

 while(p <= &x[4])

 {

 sum += *p;

 p++;

 }

Here, we compare the pointer p with the address of the last element to determine when the array has been

traversed.

Pointers can be used to manipulate two-dimensional arrays as well. We know that in a one-dimensional

array x, the expression

*(x+i) or *(p+i)
represents the element x[i]. Similarly, an element in a two-dimensional array can be represented by the

pointer expression as follows:

 ((a+i)+j) or *(*(p+i)j)

Pointers 287

1

1

0

0

p + 4

Rows

2

Columns

2

3

3

4

4

5

5

6

4,0 4,3

p

p + 1

p + 4

p + 6

(p + 4) + 3(p + 4)

p pointer to first row

pointer to ith row

pointer to first element in the ith row

pointer to jth element in the ith row

value stored in the cell (i,j)
(ith row and jth column)

p + i

*(p + i)

*(p + i) + j

((p + i) + j)

Fig. 6.9 Pointers to two-dimensional arrays

Figure 6.9 illustrates how this expression represents the element a[i][j]. The base address of the array a

is &a[0][0] and starting at this address, the compiler allocates contiguous space for all the elements row-wise.

That is, the first element of the second row is placed immediately after the last element of the first row, and so

on. Suppose we declare an array a as follows:

 int a[3][4] = { {15,27,11,35},

 {22,19,31,17},

 {31,23,14,36}

 };
The elements of a will be stored as:

15

address = &a[0] [0]

27 11

row 0 row 1 row 2

35 22 19 31 17 31 23 14 36

If we declare p as an int pointer with the initial address of &a[0][0], then

a[i][j] is equivalent to *(p+4 × i+j)

You may notice that, if we increment i by 1, the p is incremented by 4, the size of each row. Then the

element a[2][3] is given by *(p+2 × 4+3) = *(p+11).

This is the reason why, when a two-dimensional array is declared, we must specify the size of each row so

that the compiler can determine the correct storage mapping.

288 Programming for Problem Solving

POINTERS AND ChARACTER STRINGS

We have seen in Chapter 4 that strings are treated like character arrays and therefore, they are declared and

initialized as follows:

char str [5] = “good”;
The compiler automatically inserts the null character ‘\0’ at the end of the string. C supports an alternative

method to create strings using pointer variables of type char. Example:

char *str = “good”;
This creates a string for the literal and then stores its address in the pointer variable str.

The pointer str now points to the fi rst character of the string “good” as:

g

str

o o d 0\

We can also use the run-time assignment for giving values to a string pointer. Example

 char * string1;

 string1 = “good”;
Note that the assignment

 string1 = “good”;
is not a string copy, because the variable string1 is a pointer, not a string.

(As pointed out in Chapter 4, C does not support copying one string to another through the assignment

operation.)

We can print the content of the string string1 using either printf or puts functions as follows:

 printf(“%s”, string1);

 puts (string1);
Remember, although string1 is a pointer to the string, it is also the name of the string. Therefore, we do

not need to use indirection operator * here.

Like in one-dimensional arrays, we can use a pointer to access the individual characters in a string. This is

illustrated by the Worked-Out Problem 6.5.

WorKeD-out probLeM 6.5 e

Write a program using pointers to determine the length of a character string.

A program to count the length of a string is shown in Fig. 6.10. The statement

char *cptr = name;
declares cptr as a pointer to a character and assigns the address of the fi rst character of name as the

initial value. Since a string is always terminated by the null character, the statement

while(*cptr != ‘\0’)
is true until the end of the string is reached.

When the while loop is terminated, the pointer cptr holds the address of the null character. Therefore, the

statement

length = cptr – name;
gives the length of the string name.

Pointers 289

D

name
(5 4)

cptr
(5 9)

E L H I 0\

The output also shows the address location of each character. Note that each character occupies one

memory cell (byte).

 Program

 main()

 {

 char *name;

 int length;

 char *cptr = name;

 name = “DELHI”;

 printf (“%s\n”, name);

 while(*cptr != ‘\0’)

 {

 printf(“%c is stored at address %u\n”, *cptr, cptr);

 cptr++;

 }

 length = cptr - name;

 printf(“\nLength of the string = %d\n”, length);

 }

 Output

 DELHI

 D is stored at address 54

 E is stored at address 55

 L is stored at address 56

 H is stored at address 57

 I is stored at address 58

 Length of the string = 5

 Fig. 6.10 String handling by pointers

In C, a constant character string always represents a pointer to that string. And therefore the following

statements are valid:

 char *name;

 name = “Delhi”;

290 Programming for Problem Solving

These statements will declare name as a pointer to character and assign to name the constant character

string “Delhi”. You might remember that this type of assignment does not apply to character arrays. The

statements like

 char name[20];

 name = “Delhi”;
do not work.

ARRAY OF POINTERS

One important use of pointers is in handling of a table of strings. Consider the following array of strings:

 char name [3][25];
This says that the name is a table containing three names, each with a maximum length of 25 characters

(including null character). The total storage requirements for the name table are 75 bytes.

We know that rarely the individual strings will be of equal lengths. Therefore, instead of making each row a

fixed number of characters, we can make it a pointer to a string of varying length. For example,

 char *name[3] = {

 “New Zealand”,

 Australia”,

 “India”

 };
declares name to be an array of three pointers to characters, each pointer pointing to a particular name as:

name [0]

name [1]

name [2]

New Zealand

Australia

India

This declaration allocates only 28 bytes, sufficient to hold all the characters as shown

N

A

I

e

u

n

e

a

a

l

l

i

a

a

n d 0

0

0

\

\

\

w

s

d

t

i

Z

r

a

The following statement would print out all the three names:

 for(i = 0; i <= 2; i++)

 printf(“%s\n”, name[i]);
To access the jth character in the ith name, we may write as

 *(name[i]+j)
The character arrays with the rows of varying length are called ‘ragged arrays’ and are better handled by

pointers.

Remember the difference between the notations *p[3] and (*p)[3]. Since * has a lower precedence than

[], *p[3] declares p as an array of 3 pointers while (*p)[3] declares p as a pointer to an array of three elements.

Pointers 291

POINTERS AS FUNCTION ARGUMENTS

We have seen earlier that when an array is passed to a function as an argument,

only the address of the fi rst element of the array is passed, but not the actual

values of the array elements. If x is an array, when we call sort(x), the

address of x[0] is passed to the function sort. The function uses this address

for manipulating the array elements. Similarly, we can pass the address of

a variable as an argument to a function in the normal fashion. We used this

method when discussing functions that return multiple values (see Chapter 5).

When we pass addresses to a function, the parameters receiving the addresses should be pointers. The

process of calling a function using pointers to pass the addresses of variables is known as ‘call by reference’.

(You know, the process of passing the actual value of variables is known as “call by value”.) The function

which is called by ‘reference’ can change the value of the variable used in the call.

Consider the following code:

 main()

 {

 int x;

 x = 20;

 change(&x); /* call by reference or address */

 printf(“%d\n”,x);

 }

 change(int *p)

 {

 *p = *p + 10;

 }

When the function change() is called, the address of the variable x, not its value, is passed into the

function change(). Inside change(), the variable p is declared as a pointer and therefore p is the address of

the variable x. The statement,

*p = *p + 10;
means ‘add 10 to the value stored at the address p’. Since p represents the address of x, the value of x is

changed from 20 to 30. Therefore, the output of the program will be 30, not 20.

Thus, call by reference provides a mechanism by which the function can change the stored values in the

calling function. Note that this mechanism is also known as “call by address” or “pass by pointers”.

 Note C99 adds a new qualifi er restrict to the pointers passed as function parameters.

WorKeD-out probLeM 6.6 M

Write a function using pointers to exchange the values stored in two locations in the memory.

The program in Fig. 6.11 shows how the contents of two locations can be exchanged using their address

locations. The function exchange() receives the addresses of the variables x and y and exchanges their

contents.

Lo 6.6

explain how pointers

are used with functi ons

and structures

292 Programming for Problem Solving

 Program

 void exchange (int *, int *); /* prototype */

 main()

 {

 int x, y;

 x = 100;

 y = 200;

 printf(“Before exchange : x = %d y = %d\n\n”, x, y);

 exchange(&x,&y); /* call */

 printf(“After exchange : x = %d y = %d\n\n”, x, y);

 }

 exchange (int *a, int *b)

 {

 int t;

 t = *a; /* Assign the value at address a to t */

 *a = *b; /* put b into a */

 b = t; / put t into b */

 }

 Output

 Before exchange : x = 100 y = 200

 After exchange : x = 200 y = 100

Fig. 6.11 Passing of pointers as function parameters

You may note the following points:

 1. The function parameters are declared as pointers.

 2. The dereferenced pointers are used in the function body.

 3. When the function is called, the addresses are passed as actual arguments.

The use of pointers to access array elements is very common in C. We have used a pointer to traverse

array elements in Program 6.4. We can also use this technique in designing user-defined functions discussed

in Chapter 5. Let us consider the problem sorting an array of integers discussed in Program 5.6.

The function sort may be written using pointers (instead of array indexing) as shown:

 void sort (int m, int *x)

 { int i j, temp;

 for (i=1; i<= m–1; i++)

 for (j=1; j<= m–1; j++)

 if (*(x+j–1) >= *(x+j))

 {

 temp = *(x+j– 1);

 *(x+j–1) = *(x+j);

 *(x+j) = temp;

 }

 }

Pointers 293

Note that we have used the pointer x (instead of array x[]) to receive the address of array passed and

therefore the pointer x can be used to access the array elements (as pointed out earlier in this chapter). This

function can be used to sort an array of integers as follows:

 int score[4] = {45, 90, 71, 83};

 sort(4, score); /* Function call */

The calling function must use the following prototype declaration.

 void sort (int, int *);
This tells the compiler that the formal argument that receives the array is a pointer, not array variable.

Pointer parameters are commonly employed in string functions. Consider the function copy which copies

one string to another.

 copy(char *s1, char *s2)

 {

 while((*s1++ = *s2++) != ‘\0’)

 ;

 }
This copies the contents of s2 into the string s1. Parameters s1 and s2 are the pointers to character strings,

whose initial values are passed from the calling function. For example, the calling statement

copy(name1, name2);

will assign the address of the fi rst element of name1 to s1 and the address of the fi rst element of name2 to s2.

Note that the value of *s2++ is the character that s2 pointed to before s2 was incremented. Due to the

postfi x ++, s2 is incremented only after the current value has been fetched. Similarly, s1 is incremented only

after the assignment has been completed.

Each character, after it has been copied, is compared with ‘\0’ and therefore, copying is terminated as soon

as the ‘\0’ is copied.

WorKeD-out probLeM 6.7 M

The program of Fig. 6.12 shows how to calculate the sum of two numbers which are passed as arguments

using the call by reference method.

 Program

 #include<stdio.h>

 #include<conio.h>

 void swap (int *p, *q);

 main()

 {

 int x=0;

 int y=20;

 clrstr();

 printf(“\nValue of X and Y before swapping are X=%d and Y=%d”, x,y);

 swap(&x, &y);

 printf(“\n\nValue of X and Y after swapping are X=%d and Y=%d”, x,y);

294 Programming for Problem Solving

 getch();

 }

 void swap(int *p, int *q)//Value of x and y are transferred using call by reference

 {

 int r;

 r=*p;

 *p=*q;

 *q=r;

 }

 Output

 Value of X and Y before swapping are X=10 and Y=20

 Value of X and Y after swapping are X=20 and Y=10

Fig. 6.12 Program to pass the arguments using call by reference method

FUNCTIONS RETURNING POINTERS

We have seen so far that a function can return a single value by its name or return multiple values through

pointer parameters. Since pointers are a data type in C, we can also force a function to return a pointer to the

calling function. Consider the following code:

 int *larger (int *, int *); /* prototype */

 main ()

 {

 int a = 10;

 int b = 20;

 int *p;

 p = larger(&a, &b); /Function call */

 printf (“%d”, *p);

 }

 int *larger (int *x, int *y)

 {

 if (*x>*y)

 return (x); / *address of a */

 else

 return (y); /* address of b */

 }
The function larger receives the addresses of the variables a and b, decides which one is larger using the

pointers x and y and then returns the address of its location. The returned value is then assigned to the pointer

variable p in the calling function. In this case, the address of b is returned and assigned to p and therefore

the output will be the value of b, namely, 20.

Note that the address returned must be the address of a variable in the calling function. It is an error to

return a pointer to a local variable in the called function.

Pointers 295

POINTERS TO FUNCTIONS

A function, like a variable, has a type and an address location in the memory. It is therefore, possible to declare

a pointer to a function, which can then be used as an argument in another function. A pointer to a function is

declared as follows:

type (*fptr) ();
This tells the compiler that fptr is a pointer to a function, which returns type value. The parentheses around

*fptr are necessary. Remember that a statement like

type *gptr();
would declare gptr as a function returning a pointer to type.

We can make a function pointer to point to a specifi c function by simply assigning the name of the function

to the pointer. For example, the statements

 double mul(int, int);

 double (*p1)();

 p1 = mul;
declare p1 as a pointer to a function and mul as a function and then make p1 to point to the function mul. To

call the function mul, we may now use the pointer p1 with the list of parameters. That is,

(*p1)(x,y) /* Function call */

is equivalent to

mul(x,y)

Note the parentheses around *p1.

WorKeD-out probLeM 6.8 H

Write a program that uses a function pointer as a function argument.

A program to print the function values over a given range of values is shown in Fig. 6.13. The printing is done

by the function table by evaluating the function passed to it by the main.

With table, we declare the parameter f as a pointer to a function as follows:

double (*f)();
The value returned by the function is of type double. When table is called in the statement

table (y, 0.0, 2, 0.5);
we pass a pointer to the function y as the fi rst parameter of table. Note that y is not followed by a parameter

list.

During the execution of table, the statement

value = (*f)(a);
calls the function y which is pointed to by f, passing it the parameter a. Thus the function y is evaluated over

the range 0.0 to 2.0 at the intervals of 0.5.

Similarly, the call

table (cos, 0.0, PI, 0.5);
passes a pointer to cos as its fi rst parameter and therefore, the function table evaluates the value of cos over

the range 0.0 to PI at the intervals of 0.5.

 Program

 #include <math.h>

 #defi ne PI 3.1415926

 double y(double);

296 Programming for Problem Solving

 double cos(double);

 double table (double(*f)(), double, double, double);

 main()

 { printf(“Table of y(x) = 2*x*x–x+1\n\n”);

 table(y, 0.0, 2.0, 0.5);

 printf(“\nTable of cos(x)\n\n”);

 table(cos, 0.0, PI, 0.5);

 }

 double table(double(*f)(),double min, double max, double step)

 { double a, value;

 for(a = min; a <= max; a += step)

 {

 value = (*f)(a);

 printf(“%5.2f %10.4f\n”, a, value);

 }

 }

 double y(double x)

 {

 return(2*x*x-x+1);

 }

 Output
 Table of y(x) = 2*x*x-x+1

 0.00 1.0000

 0.50 1.0000

 1.00 2.0000

 1.50 4.0000

 2.00 7.0000

 Table of cos(x)

 0.00 1.0000

 0.50 0.8776

 1.00 0.5403

 1.50 0.0707

 2.00 -0.4161

 2.50 -0.8011

 3.00 -0.9900

Fig. 6.13 Use of pointers to functions

Compati bility and Casti ng

A variable declared as a pointer is not just a pointer type variable. It is also a pointer to a specifi c fundamental

data type, such as a character. A pointer therefore always has a type associated with it. We cannot assign a

pointer of one type to a pointer of another type, although both of them have memory addresses as their values.

This is known as incompatibility of pointers.

Pointers 297

All the pointer variables store memory addresses, which are compatible, but what is not compatible is

the underlying data type to which they point to. We cannot use the assignment operator with the pointers of

different types. We can however make explicit assignment between incompatible pointer types by using cast

operator, as we do with the fundamental types. Example:

int x;
char *p;
p = (char *) & x;

In such cases, we must ensure that all operations that use the pointer p must apply casting properly.

We have an exception. The exception is the void pointer (void *). The void pointer is a generic pointer that

can represent any pointer type. All pointer types can be assigned to a void pointer and a void pointer can be

assigned to any pointer without casting. A void pointer is created as follows:

void *vp;

Remember that since a void pointer has no object type, it cannot be de-referenced.

POINTERS AND STRUCTURES

We know that the name of an array stands for the address of its zeroth element. The same thing is true of

the names of arrays of structure variables. Suppose product is an array variable of struct type. The name

product represents the address of its zeroth element. Consider the following declaration:

 struct inventory

 {

 char name[30];

 int number;

 float price;

 } product[2], *ptr;

This statement declares product as an array of two elements, each of the type struct inventory and ptr

as a pointer to data objects of the type struct inventory. The assignment

 ptr = product;

would assign the address of the zeroth element of product to ptr. That is, the pointer ptr will now point to

product[0]. Its members can be accessed using the following notation.

 ptr –> name

 ptr –> number

 ptr –> price

The symbol –> is called the arrow operator (also known as member selection operator) and is made up of

a minus sign and a greater than sign. Note that ptr–> is simply another way of writing product[0].

When the pointer ptr is incremented by one, it is made to point to the next record, i.e., product[1]. The

following for statement will print the values of members of all the elements of product array.

 for(ptr = product; ptr < product+2; ptr++)

 printf (“%s %d %f\n”, ptr–>name, ptr–>number, ptr–>price);

We could also use the notation

(*ptr).number
to access the member number. The parentheses around *ptr are necessary because the member operator ‘.’

has a higher precedence than the operator *.

298 Programming for Problem Solving

WorKeD-out probLeM 6.9 H

Write a program to illustrate the use of structure pointers.

A program to illustrate the use of a structure pointer to manipulate the elements of an array of structures is

shown in Fig. 6.14. The program highlights all the features discussed above. Note that the pointer ptr (of type

struct invent) is also used as the loop control index in for loops.

 Program

 struct invent

 {

 char *name[20];

 int number;

 fl oat price;

 };

 main()

 {

 struct invent product[3], *ptr;

 printf(“INPUT\n\n”);

 for(ptr = product; ptr < product+3; ptr++)

 scanf(“%s %d %f”, ptr–>name, &ptr–>number, &ptr–>price);

 printf(“\nOUTPUT\n\n”);

 ptr = product;

 while(ptr < product + 3)

 {

 printf(“%–20s %5d %10.2f\n”,

 ptr–>name,

 ptr–>number,

 ptr–>price);

 ptr++;

 }

 }

 Output

 INPUT

 Washing_machine 5 7500

 Electric_iron 12 350

 Two_in_one 7 1250

Pointers 299

 OUTPUT

 Washing machine 5 7500.00

 Electric_iron 12 350.00

 Two_in_one 7 1250.00

 Fig. 6.14 Pointer to structure variables

While using structure pointers, we should take care of the precedence of operators.

The operators ‘–>’ and ‘.’, and () and [] enjoy the highest priority among the operators. They bind very tightly

with their operands. For example, given the definition

 struct

 {

 int count;

 float *p; /* pointer inside the struct */

 } ptr; /* struct type pointer */
then the statement

 ++ptr–>count;
increments count, not ptr. However,

 (++ptr)–>count;
increments ptr first, and then links count. The statement

 ptr++ –> count;

is legal and increments ptr after accessing count.

The following statements also behave in the similar fashion.

 *ptr–>p Fetches whatever p points to.

 *ptr–>p++ Increments p after accessing whatever it points to.

 (*ptr–>p)++ Increments whatever p points to.

 *ptr++–>p Increments ptr after accessing whatever it points to.

In the previous chapter, we discussed about passing of a structure as an argument to a function. We also

saw an example where a function receives a copy of an entire structure and returns it after working on it.

As we mentioned earlier, this method is inefficient in terms of both, the execution speed and memory. We

can overcome this drawback by passing a pointer to the structure and then using this pointer to work on the

structure members. Consider the following function:

 print_invent(struct invent *item)

 {

 printf(“Name: %s\n”, item->name);

 printf(“Price: %f\n”, item->price);

 }
This function can be called by

 print_invent(&product);
The formal argument item receives the address of the structure product and therefore it must be declared

as a pointer of type struct invent, which represents the structure of product.

TROUBLES wITh POINTERS
Pointers give us tremendous power and flexibility. However, they could become a nightmare when they are

not used correctly. The major problem with wrong use of pointers is that the compiler may not detect the error

in most cases and therefore the program is likely to produce unexpected results. The output may not give us

any clue regarding the use of a bad pointer. Debugging therefore becomes a difficult task.

300 Programming for Problem Solving

We list here some pointer errors that are more commonly committed by the programmers.

 ∑ Assigning values to uninitialized pointers

 int * p, m = 100 ;

 p = m ; / Error */

 ∑ Assigning value to a pointer variable

 int *p, m = 100 ;

 p = m; /* Error */

 ∑ Not dereferencing a pointer when required

 int *p, x = 100;

 p = &x;

 printf(“%d”,p); /* Error */

 ∑ Assigning the address of an uninitialized variable

 int m, *p

 p = &m; /* Error */

 ∑ Comparing pointers that point to different objects

 char name1 [20], name2 [30];

 char *p1 = name1;

 char *p2 = name2;

 if(p1 > p2)....... /* Error */
We must be careful in declaring and assigning values to pointers correctly before using them. We must also

make sure that we apply the address operator & and referencing operator * correctly to the pointers. That will

save us from sleepless nights.

Key ConCepts

• MeMory: This is a sequential collection of storage cells with each cell having an address value associated with

it. [Lo 6.1]

• pointer: It is used to store the memory address as value. [Lo 6.1]

• pointer variabLe: It is a variable that stores the memory address of another variable. [Lo 6.2]

• CaLL by referenCe: It is the process of calling a function using pointers to pass the addresses of variables.

[Lo 6.6]

• CaLL by vaLue: It is the process of passing the actual value of variables. [Lo 6.6]

aLWays reMeMber

∑ Only an address of a variable can be stored in a pointer variable. [Lo 6.1]

∑ Do not store the address of a variable of one type into a pointer variable of another type. [Lo 6.1]

∑ The value of a variable cannot be assigned to a pointer variable. [Lo 6.1]

∑ A very common error is to use (or not to use) the address operator (&) and the indirection operator (*) in

certain places. Be careful. The compiler may not warn such mistakes. [Lo 6.1]

Pointers 301

∑ Remember that the definition for a pointer variable allocates memory only for the pointer variable, not for

the variable to which it is pointing. [Lo 6.1]

∑ A pointer variable contains garbage until it is initialized. Therefore, we must not use a pointer variable

before it is assigned, the address of a variable. [Lo 6.2]

∑ It is an error to assign a numeric constant to a pointer variable. [Lo 6.2]

∑ It is an error to assign the address of a variable to a variable of any basic data types. [Lo 6.2]

∑ A proper understanding of a precedence and associativity rules is very important in pointer applications.

For example, expressions like *p++, *p[], (*p)[], (p).member should be carefully used. [Lo 6.4]

∑ Be careful while using indirection operator with pointer variables. A simple pointer uses single indirection

operator (*ptr) while a pointer to a pointer uses additional indirection operator symbol (**ptr). [Lo 6.4]

∑ When an array is passed as an argument to a function, a pointer is actually passed. In the header

function, we must declare such arrays with proper size, except the first, which is optional. [Lo 6.5]

∑ If we want a called function to change the value of a variable in the calling function, we must pass the

address of that variable to the called function. [Lo 6.6]

∑ When we pass a parameter by address, the corresponding formal parameter must be a pointer

variable. [Lo 6.6]

∑ It is an error to assign a pointer of one type to a pointer of another type without a cast (with an exception

of void pointer). [Lo 6.6]

brief Cases

1. Processing of Examination Marks [LO 6.2, 6.5, 6.6 H]

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

 Student name Marks obtained

 S. Laxmi 45 67 38 55

 V.S. Rao 77 89 56 69

 - - - - -

It is required to compute the total marks obtained by each student and print the rank list based on the total

marks.

The program in Fig. 6.15 stores the student names in the array name and the marks in the array marks.

After computing the total marks obtained by all the students, the program prepares and prints the rank list.

The declaration

int marks[STUDENTS][SUBJECTS+1];

defines marks as a pointer to the array’s first row. We use rowptr as the pointer to the row of marks. The

rowptr is initialized as follows:

int (*rowptr)[SUBJECTS+1] = array;
Note that array is the formal argument whose values are replaced by the values of the actual argument

marks. The parentheses around *rowptr makes the rowptr as a pointer to an array of SUBJECTS+1 integers.

Remember, the statement

int *rowptr[SUBJECTS+1];

would declare rowptr as an array of SUBJECTS+1 elements.

When we increment the rowptr (by rowptr+1), the incrementing is done in units of the size of each row of

array, making rowptr point to the next row. Since rowptr points to a particular row, (*rowptr)[x] points to the

xth element in the row.

302 Programming for Problem Solving

 Program

 #define STUDENTS 5

 #define SUBJECTS 4

 #include <string.h>

 main()

 {

 char name[STUDENTS][20];

 int marks[STUDENTS][SUBJECTS+1];

 printf(“Input students names & their marks in four subjects\n”);

 get_list(name, marks, STUDENTS, SUBJECTS);

 get_sum(marks, STUDENTS, SUBJECTS+1);

 printf(“\n”);

 print_list(name,marks,STUDENTS,SUBJECTS+1);

 get_rank_list(name, marks, STUDENTS, SUBJECTS+1);

 printf(“\nRanked List\n\n”);

 print_list(name,marks,STUDENTS,SUBJECTS+1);

 }
 /* Input student name and marks */

 get_list(char *string[],

 int array [] [SUBJECTS +1], int m, int n)
 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 scanf(“%s”, string[i]);

 for(j = 0; j < SUBJECTS; j++)

 scanf(“%d”, &(*(rowptr + i))[j]);
 }
 }

 /* Compute total marks obtained by each student */

 get_sum(int array [] [SUBJECTS +1], int m, int n)

 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 (*(rowptr + i))[n-1] = 0;

 for(j =0; j < n-1; j++)

 (*(rowptr + i))[n-1] += (*(rowptr + i))[j];

 }

 }

Pointers 303

 /* Prepare rank list based on total marks */

 get_rank_list(char *string [],

 int array [] [SUBJECTS + 1]

 int m,

 int n)

 {

 int i, j, k, (*rowptr)[SUBJECTS+1] = array;

 char *temp;

 for(i = 1; i <= m–1; i++)

 for(j = 1; j <= m–i; j++)

 if((*(rowptr + j–1))[n–1] < (*(rowptr + j))[n–1])

 {

 swap_string(string[j-1], string[j]);

 for(k = 0; k < n; k++)

 swap_int(&(*(rowptr + j–1))[k],&(*(rowptr+j))[k]);

 }

 }

 /* Print out the ranked list */

 print_list(char *string[],

 int array [] [SUBJECTS + 1],

 int m,

 int n)

 {

 int i, j, (*rowptr)[SUBJECTS+1] = array;

 for(i = 0; i < m; i++)

 {

 printf(“%–20s”, string[i]);

 for(j = 0; j < n; j++)

 printf(“%5d”, (*(rowptr + i))[j]);

 printf(“\n”);

 }

 }

 /* Exchange of integer values */

 swap_int(int *p, int *q)

 {

 int temp;

 temp = *p;

304 Programming for Problem Solving

 *p = *q;

 *q = temp;

 }

 /* Exchange of strings */

 swap_string(char s1[], char s2[])

 {

 char swaparea[256];

 int i;

 for(i = 0; i < 256; i++)

 swaparea[i] = ‘\0’;

 i = 0;

 while(s1[i] != ‘\0’ && i < 256)

 {

 swaparea[i] = s1[i];

 i++;

 }

 i = 0;

 while(s2[i] != ‘\0’ && i < 256)

 {

 s1[i] = s2[i];

 s1[++i] = ‘\0’;

 }

 i = 0;

 while(swaparea[i] != ‘\0’)

 {

 s2[i] = swaparea[i];

 s2[++i] = ‘\0’;

 }

 }

 Output

 Input students names & their marks in four subjects

 S.Laxmi 45 67 38 55

 V.S.Rao 77 89 56 69

 A.Gupta 66 78 98 45

 S.Mani 86 72 0 25

 R.Daniel 44 55 66 77

 S.Laxmi 45 67 38 55 205

 V.S.Rao 77 89 56 69 291

Pointers 305

 A.Gupta 66 78 98 45 287

 S.Mani 86 72 0 25 183

 R.Daniel 44 55 66 77 242

 Ranked List

 V.S.Rao 77 89 56 69 291

 A.Gupta 66 78 98 45 287

 R.Daniel 44 55 66 77 242

 S.Laxmi 45 67 38 55 205

 S.Mani 86 72 0 25 183

 Fig. 6.15 Preparation of the rank list of a class of students

2. Inventory Updating [LO 6.2, 6.6 M]

The price and quantity of items stocked in a store changes every day. They may either increase or decrease.

The program in Fig. 6.16 reads the incremental values of price and quantity and computes the total value of

the items in stock.

The program illustrates the use of structure pointers as function parameters. &item, the address of the

structure item, is passed to the functions update() and mul(). The formal arguments product and stock,

which receive the value of &item, are declared as pointers of type struct stores.

 Program

 struct stores

 {

 char name[20];

 float price;

 int quantity;

 };

 main()

 {

 void update(struct stores *, float, int);

 float p_increment, value;

 int q_increment;

 struct stores item = {“XYZ”, 25.75, 12};

 struct stores *ptr = &item;

 printf(“\nInput increment values:”);

 printf(“ price increment and quantity increment\n”);

 scanf(“%f %d”, &p_increment, &q_increment);

 /* - */

 update(&item, p_increment, q_increment);

306 Programming for Problem Solving

 /* - */

 printf(“Updated values of item\n\n”);

 printf(“Name : %s\n”,ptr–>name);

 printf(“Price : %f\n”,ptr–>price);

 printf(“Quantity : %d\n”,ptr–>quantity);

 /* - */

 value = mul(&item);

 /* - */

 printf(“\nValue of the item = %f\n”, value);

 }

 void update(struct stores *product, float p, int q)

 {

 product–>price += p;

 product–>quantity += q;

 }

 float mul(struct stores *stock)

 {

 return(stock–>price * stock–>quantity);

 }

 Output

 Input increment values: price increment and quantity increment

 10 12

 Updated values of item

 Name : XYZ

 Price : 35.750000

 Quantity : 24

 Value of the item = 858.000000

Fig. 6.16 Use of structure pointers as function parameters

revieW Questions

 6.1 State whether the following statements are true or false.

 (a) Pointer constants are the addresses of memory locations. [LO 6.1 M]

 (b) The underlying type of a pointer variable is void. [LO 6.1 M]

 (c) Pointer variables are declared using the address operator. [LO 6.2 E]

Pointers 307

 (d) It is possible to cast a pointer to float as a pointer to integer. [LO 6.2 M]

 (e) Pointers to pointers is a term used to describe pointers whose contents are the address of another

pointer. [LO 6.3 E]

 (f) A pointer can never be subtracted from another pointer. [LO 6.4 E]

 (g) An integer can be added to a pointer. [LO 6.4 M]

 (h) Pointers cannot be used as formal parameters in headers to function definitions. [LO 6.6 E]

 (i) When an array is passed as an argument to a function, a pointer is passed. [LO 6.6 M]

 (j) Value of a local variable in a function can be changed by another function. [LO 6.6 M]

 6.2 Fill in the blanks in the following statements:

 (a) A pointer variable contains as its value the _____ of another variable. [LO 6.1 E]

 (b) The _____operator returns the value of the variable to which its operand points. [LO 6.1 E]

 (c) The ______operator is used with a pointer to de-reference the address contained in the pointer.

[LO 6.2 M]

 (d) The pointer that is declared as ______cannot be de-referenced. [LO 6.2 M]

 (e) The only integer that can be assigned to a pointer variable is ______. [LO 6.4 M]

 6.3 What is a pointer? How can it be initialized? [LO 6.1, 6.2 E]

 6.4 A pointer in C language is [LO 6.1 E]

 (a) address of some location

 (b) useful to describe linked list

 (c) can be used to access elements of an array

 (d) All of the above.

 6.5 Explain the effects of the following statements: [LO 6.2 M]

 (a) int a, *b = &a;

 (b) int p, *p;

 (c) char *s;

 (d) a = (float *) &x);

 (e) double(*f)();

 6.6 Distinguish between (*m)[5] and *m[5]. [LO 6.5 M]

 6.7 Given the following declarations: [LO 6.4 H]

 int x = 10, y = 10;

 int *p1 = &x, *p2 = &y;

 What is the value of each of the following expressions?

 (a) (*p1) ++

 (b) – – (*p2)

 (c) *p1 + (*p2) – –

 (d) + + (*p2) – *p1

 6.8 Describe typical applications of pointers in developing programs. [LO 6.1 E]

 6.9 What are the arithmetic operators that are permitted on pointers? [LO 6.4 E]

 6.10 What is printed by the following program? [LO 6.2, 6.3 M]

 int m = 100’;

 int * p1 = &m;

 int **p2 = &p1;

 printf(“%d”, **p2);

308 Programming for Problem Solving

 6.11 Assuming name as an array of 15 character length, what is the difference between the following two

expressions? [LO 6.4, 6.5 E]

 (a) name + 10; and

 (b) *(name + 10).

 6.12 What is the output of the following segment? [LO 6.5 H]

 int m[2];

 *(m+1) = 100;

 *m = *(m+1);

 printf(“%d”, m [0]);

 6.13 What is the output of the following code? [LO 6.4, 6.5 M]

 int m [2];

 int *p = m;

 m [0] = 100 ;

 m [1] = 200 ;

 printf(“%d %d”, ++*p, *p);

 6.14 What is the output of the following program? [LO 6.5, 6.6 M]

 int f(char *p);

 main ()

 {

 char str[] = “ANSI”;

 printf(“%d”, f(str));

 }

 int f(char *p)

 {

 char *q = p;

 while (*++p)

 ;

 return (p-q);

 }

 6.15 Given below are two different definitions of the function search() [LO 6.3, 6.6 M]

 a) void search (int* m[], int x)

 {

 }

 b) void search (int ** m, int x)

 {

 }

 Are they equivalent? Explain.

 6.16 Do the declarations [LO 6.5 M]

 char s [5] ;

 char *s;

 represent the same? Explain.

 6.17 Which one of the following is the correct way of declaring a pointer to a function? Why? [LO 6.5, 6.6 E]

 (a) int (*p) (void);

 (b) int *p (void);

Pointers 309

Debugging exerCises

 6.1 If m and n have been declared as integers and p1 and p2 as pointers to integers, then state errors, if

any, in the following statements. [LO 6.2, 6.4 M]

 (a) p1 = &m;

 (b) p2 = n;

 (c) *p1 = &n;

 (d) p2 = &*&m;

 (e) m = p2–p1;

 (f) p1 = &p2;

 (g) m = *p1 + *p2++;

 6.2 Find the error, if any, in each of the following statements: [LO 6.2, 6.3 E]

 (a) int x = 10;

 (b) int *y = 10;

 (c) int a, *b = &a;

 (d) int m;

 int **x = &m;

 6.3 What is wrong with the following code? [LO 6.2, 6.3 M]

 int **p1, *p2;

 p2 = &p1;

prograMMing exerCises

 6.1 Write a program using pointers to read in an array of integers and print its elements in reverse order.

[LO 6.5 M]

 6.2 We know that the roots of a quadratic equation of the form [LO 6.6 M]

 ax2 + bx + c = 0

 are given by the following equations:

 x1 =
- + -b b ac

a

square-root ()2 4

2

 x2 =
- - -b b ac

a

square-root ()2 4

2

 Write a function to calculate the roots. The function must use two pointer parameters, one to receive the

coefficients a, b, and c, and the other to send the roots to the calling function.

 6.3 Write a function that receives a sorted array of integers and an integer value, and inserts the value in

its correct place. [LO 6.5, 6.6 H]

 6.4 Write a function using pointers to add two matrices and to return the resultant matrix to the calling

function. [LO 6.5, 6.6 M]

 6.5 Using pointers, write a function that receives a character string and a character as argument and

deletes all occurrences of this character in the string. The function should return the corrected string

with no holes. [LO 6.5, 6.6 H]

310 Programming for Problem Solving

 6.6 Write a function day_name that receives a number n and returns a pointer to a character string

containing the name of the corresponding day. The day names should be kept in a static table of

character strings local to the function. [LO 6.5, 6.6 M]

 6.7 Write a program to read in an array of names and to sort them in alphabetical order. Use sort function

that receives pointers to the functions strcmp and swap.sort in turn should call these functions via the

pointers. [LO 6.5, 6.6 H]

 6.8 Given an array of sorted list of integer numbers, write a function to search for a particular item, using

the method of binary search. And also show how this function may be used in a program. Use pointers

and pointer arithmetic. [LO 6.2, 6.4, 6.6 H]

 (Hint: In binary search, the target value is compared with the array’s middle element. Since the table is

sorted, if the required value is smaller, we know that all values greater than the middle element can be

ignored. That is, in one attempt, we eliminate one half the list. This search can be applied recursively

till the target value is found.)

 6.9 Write a function (using a pointer parameter) that reverses the elements of a given array. [LO 6.5, 6.6 H]

 6.10 Write a function (using pointer parameters) that compares two integer arrays to see whether they are

identical. The function returns 1 if they are identical, 0 otherwise. [LO 6.5, 6.6 M]

LEARNING OBJECTIVES

LO 7.1 Explain how structures are used in a program

LO 7.2 Describe how structure variables and members are manipulated

LO 7.3 Discuss structures and arrays

LO 7.4 Illustrate nested structures and ‘structures and functi ons’

LO 7.5 Determine how structures and unions diff er in terms of their storage technique

introduction
We have seen that arrays can be used to represent a group of data items that belong to the same type, such

as int or fl oat. However, we cannot use an array if we want to represent a collection of data items of different

types using a single name. Fortunately, C supports a constructed data type known as structures, a mechanism

for packing data of different types. A structure is a convenient tool for handling a group of logically related data

items. For example, it can be used to represent a set of attributes, such as student_name, roll_number and

marks. The concept of a structure is analogous to that of a ‘record’ in many other languages. More examples

of such structures are:

time : seconds, minutes, hours

date : day, month, year

book : author, title, price, year

city : name, country, population

address : name, door-number, street, city

inventory : item, stock, value

customer : name, telephone, city, category

Structures help to organize complex data in a more meaningful way. It is a powerful concept that we

may often need to use in our program design. This chapter is devoted to the study of structures and their

applications in program development. Another related concept known as unions is also discussed.

Structures help to organize complex data in a more meaningful way. It is a powerful concept that we

may often need to use in our program design. This chapter is devoted to the study of structures and their

 is also discussed.

introduction
We have seen that arrays can be used to represent a group of data items that belong to the same type, such

as int or fl oat. However, we cannot use an array if we want to represent a collection of data items of different

Structure
Chapter

7

312 Programming for Problem Solving

DEFINING A STRUCTURE

Unlike arrays, structures must be defi ned fi rst for their format that may be used

later to declare structure variables. Let us use an example to illustrate the process

of structure defi nition and the creation of structure variables. Consider a book

database consisting of book name, author, number of pages, and price. We can defi ne a structure to hold this

information as follows:

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 fl oat price;

 };
The keyword struct declares a structure to hold the details of four data fi elds, namely title, author, pages,

and price. These fi elds are called structure elements or members. Each member may belong to a different

type of data. book_bank is the name of the structure and is called the structure tag. The tag name may be

used subsequently to declare variables that have the tag’s structure.

Note that the above defi nition has not declared any variables. It simply describes a format called template

to represent information as shown below:

array of 20 characterstitle

author

pages

price

array of 15 characters

integer

float

The general format of a structure defi nition is as follows:

 struct tag_name

 {

 data_type member1;

 data_type member2;

 – – – – – – – –

 – – – – – – – –

 };

In defi ning a structure you may note the following syntax:

 1. The template is terminated with a semicolon.

 2. While the entire defi nition is considered as a statement, each member is declared independently for its

name and type in a separate statement inside the template.

 3. The tag name such as book_bank can be used to declare structure variables of its type, later in the

program.

LO 7.1

explain how structures

are used in a program

Structure 313

arrays vs structures

Both the arrays and structures are classifi ed as structured data types as they provide a mechanism that

enable us to access and manipulate data in a relatively easy manner. But they differ in a number of ways

which are as follows:

 1. An array is a collection of related data elements of same type. Structure can have elements of different

types.

 2. An array is derived data type whereas a structure is a programmer-defi ned one.

 3. Any array behaves like a built-in data type. All we have to do is to declare an array variable and use it.

But in the case of a structure, fi rst we have to design and declare a data structure before the variables

of that type are declared and used.

DECLARING STRUCTURE VARIABLES

After defi ning a structure format we can declare variables of that type. A structure variable declaration is

similar to the declaration of variables of any other data types. It includes the following elements:

 1. The keyword struct.

 2. The structure tag name.

 3. List of variable names separated by commas.

 4. A terminating semicolon.

For example, the statement

 struct book_bank, book1, book2, book3;
declares book1, book2, and book3 as variables of type struct book_bank.

Each one of these variables has four members as specifi ed by the template. The complete declaration

might look like this:

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 fl oat price;

 };

 struct book_bank book1, book2, book3;

Remember that the members of a structure themselves are not variables. They do not occupy any memory

until they are associated with the structure variables such as book1. When the compiler comes across a

declaration statement, it reserves memory space for the structure variables. It is also allowed to combine both

the structure defi nition and variables declaration in one statement.

The declaration

 struct book_bank

 {

 char title[20];

 char author[15];

 int pages;

 fl at price;

 } book1, book2, book3;

314 Programming for Problem Solving

is valid. The use of tag name is optional here. For example:

 struct

 {

 } book1, book2, book3;
declares book1, book2, and book3 as structure variables representing three books, but does not include a

tag name. However, this approach is not recommended for the following two reasons:

 1. Without a tag name, we cannot use it for future declarations:

 2. Normally, structure defi nitions appear at the beginning of the program fi le, before any variables or

functions are defi ned. They may also appear before the main, along with macro defi nitions, such as

#defi ne. In such cases, the defi nition is global and can be used by other functions as well.

type-Defi ned structures

We can use the keyword typedef to defi ne a structure as follows:

 typedef struct

 {

 type member1;

 type member2;

 } type_name;
The type_name represents structure defi nition associated with it and therefore, can be used to declare

structure variables as shown below:

type_name variable1, variable2, ;

Remember that (1) the name type_name is the type defi nition name, not a variable and (2) we cannot

defi ne a variable with typedef declaration.

wOrKeD-Out PrOBLeM 7.1 M

Explain how complex number can be represented using structures. Write two C functions: one to return the

sum of to complex numbers passed as parameters.

A complex number has two parts: real and imaginary. Structures can be used to realize complex numbers in

C, as shown below:

 struct complex /*Declaring the complex number datatype using structure*/

 {

 double real;/*Real part*/

 double img;/*Imaginary part*/

 };

E for Easy, M for Medium and H for High

Structure 315

Function to return the sum of two complex numbers

 struct complex add(struct complex c1, struct complex c1)

 {

 struct complex c3;

 c3.real=c1.real+c2.real;

 c3.img=c1.img+c2.img;

 return(c3);

 }

Function to return the product of two complex numbers

 struct complex product(struct complex c1, struct complex c1)

 {

 struct complex c3;

 c3.real=c1.real*c2.real-c1.img*c2.img;

 c3.img=c1.real*c2.img+c1.img*c2,real;

 return(c3);

 }

ACCESSING STRUCTURE MEMBERS

We can access and assign values to the members of a structure in a number of ways. As mentioned earlier,

the members themselves are not variables. They should be linked to the structure variables in order to make

them meaningful members. For example, the word title, has no meaning whereas the phrase ‘title of book3’

has a meaning. The link between a member and a variable is established using the member operator ‘.’ which

is also known as ‘dot operator’ or ‘period operator’. For example,

book1.price
is the variable representing the price of book1 and can be treated like any other ordinary variable. Here is how

we would assign values to the members of book1:

 strcpy(book1.title, “BASIC”);

 strcpy(book1.author, “Balagurusamy”);

 book1.pages = 250;

 book1.price = 120.50;
We can also use scanf to give the values through the keyboard.

 scanf(“%s\n”, book1.title);
 scanf(“%d\n”, &book1.pages);

are valid input statements.

wOrKeD-Out PrOBLeM 7.2 e

Defi ne a structure type, struct personal that would contain person name, date of joining and salary. Using

this structure, write a program to read this information for one person from the keyboard and print the same

on the screen.

Structure defi nition along with the program is shown in Fig. 7.1. The scanf and printf functions illustrate how

the member operator ‘.’ is used to link the structure members to the structure variables. The variable name

with a period and the member name is used like an ordinary variable.

316 Programming for Problem Solving

 Program

 struct personal

 {

 char name[20];

 int day;

 char month[10];

 int year;

 float salary;

 };

 main()

 {

 struct personal person;

 printf(“Input Values\n”);

 scanf(“%s %d %s %d %f”,

 person.name,

 &person.day,

 person.month,

 &person.year,

 &person.salary);

 printf(“%s %d %s %d %f\n”,

 person.name,

 person.day,

 person.month,

 person.year,

 person.salary);

 }

 Output

 Input Values

 M.L.Goel 10 January 1945 4500

 M.L.Goel 10 January 1945 4500.00

Fig. 7.1 Defining and accessing structure members

STRUCTURE INITIALIZATION

Like any other data type, a structure variable can be initialized at compile time.

 main()

 {

 struct

 {

 int weight;

 float height;

Structure 317

 }

 student = {60, 180.75};

 }
This assigns the value 60 to student. weight and 180.75 to student. height. There is a one-to-one

correspondence between the members and their initializing values.

A lot of variation is possible in initializing a structure. The following statements initialize two structure

variables. Here, it is essential to use a tag name.

 main()

 {

 struct st_record

 {

 int weight;

 float height;

 };

 struct st_record student1 = { 60, 180.75 };

 struct st_record student2 = { 53, 170.60 };

 }
Another method is to initialize a structure variable outside the function as shown below:

 struct st_record

 {

 int weight;

 float height;

 } student1 = {60, 180.75};

 main()

 {

 struct st_record student2 = {53, 170.60};

 }
C language does not permit the initialization of individual structure members within the template. The

initialization must be done only in the declaration of the actual variables.

Note that the compile-time initialization of a structure variable must have the following elements:

 1. The keyword struct.

 2. The structure tag name.

 3. The name of the variable to be declared.

 4. The assignment operator =.

 5. A set of values for the members of the structure variable, separated by commas and enclosed in

braces.

 6. A terminating semicolon.

318 Programming for Problem Solving

rules for initi alizing structures

There are a few rules to keep in mind while initializing structure variables at compile-time which are as follows:

 1. We cannot initialize individual members inside the structure template.

 2. The order of values enclosed in braces must match the order of members in the structure defi nition.

 3. It is permitted to have a partial initialization. We can initialize only the fi rst few members and leave the

remaining blank. The uninitialized members should be only at the end of the list.

 4. The uninitialized members will be assigned default values as follows: ∑ Zero for integer and fl oating point numbers. ∑ ‘\0’ for characters and strings.

COPYING AND COMPARING

STRUCTURE VARIABLES

Two variables of the same structure type can be copied the same way as

ordinary variables. If person1 and person2 belong to the same structure, then

the following statements are valid:

 person1 = person2;

 person2 = person1;

However, the statements such as

 person1 == person2

 person1 != person2

are not permitted. C does not permit any logical operations on structure variables. In case, we need to compare

them, we may do so by comparing members individually.

wOrKeD-Out PrOBLeM 7.3 M

Write a program to illustrate the comparison of structure variables.

The program shown in Fig. 7.2 illustrates how a structure variable can be copied into another of the same type.

It also performs member-wise comparison to decide whether two structure variables are identical.

 Program

 struct class

 {

 int number;

 char name[20];

 fl oat marks;

 };

 main()

 {

 int x;

 struct class student1 = {111,”Rao”,72.50};

LO 7.2

Describe how structure

variables and members

are manipulated

Structure 319

 struct class student2 = {222,”Reddy”, 67.00};

 struct class student3;

 student3 = student2;

 x = ((student3.number == student2.number) &&

 (student3.marks == student2.marks)) ? 1 : 0;

 if(x == 1)

 {

 printf(“\nstudent2 and student3 are same\n\n”);

 printf(“%d %s %f\n”, student3.number,

 student3.name,

 student3.marks);

 }

 else

 printf(“\nstudent2 and student3 are different\n\n”);

 }

 Output

 student2 and student3 are same

 222 Reddy 67.000000

 Fig. 7.2 Comparing and copying structure variables

word Boundaries and slack Bytes

Computer stores structures using the concept of “word boundary”. The size of a word boundary is machine

dependent. In a computer with two bytes word boundary, the members of a structure are stored left_aligned

on the word boundary, as shown below. A character data takes one byte and an integer takes two bytes. One

byte between them is left unoccupied. This unoccupied byte is known as the slack byte.

0 1 2 3

char

slack byte

int

When we declare structure variables, each one of them may contain slack bytes and the values stored in

such slack bytes are undefi ned. Due to this, even if the members of two variables are equal, their structures

do not necessarily compare equal. C, therefore, does not permit comparison of structures. However, we can

design our own function that could compare individual members to decide whether the structures are equal

or not.

320 Programming for Problem Solving

OPERATIONS ON INDIVIDUAL MEMBERS

As pointed out earlier, the individual members are identifi ed using the member operator, the dot. A member

with the dot operator along with its structure variable can be treated like any other variable name and therefore

can be manipulated using expressions and operators. Consider the program in Fig. 7.2. We can perform the

following operations:

 if (student1.number == 111)

 student1.marks += 8.00;

 fl oat sum = student1.marks + student2.marks;

 student2.marks * = 0.5;
We can also apply increment and decrement operators to numeric type members. For example, the

following statements are valid:

 student1.number ++;

 ++ student1.number;
The precedence of the member operator is higher than all arithmetic and relational operators and therefore

no parentheses are required.

three ways to access Members

We have used the dot operator to access the members of structure variables. In fact, there are two other ways.

Consider the following structure:

 typedef struct

 {

 int x;

 int y;

 } VECTOR;

 VECTOR v, *ptr;

 ptr = & n;
The identifi er ptr is known as pointer that has been assigned the address of the structure variable n. Now,

the members can be accessed in the following three ways:

 • using dot notation : ν.x

 • using indirection notation : (*ptr).x

 • using selection notation : ptr –> x

The second and third methods will be considered in Chapter 6.

ARRAYS OF STRUCTURES

We use structures to describe the format of a number of related variables. For

example, in analyzing the marks obtained by a class of students, we may use a

template to describe student name and marks obtained in various subjects and

then declare all the students as structure variables. In such cases, we may declare an array of structures, each

element of the array representing a structure variable. For example:

struct class student[100];

defi nes an array called student, that consists of 100 elements. Each element is defi ned to be of the type

struct class. Consider the following declaration:

 struct marks

LO 7.3

Discuss structures and

arrays

Structure 321

 {

 int subject1;

 int subject2;

 int subject3;

 };

 main()
 {

 struct marks student[3] =
 {{45,68,81}, {75,53,69}, {57,36,71}};

This declares the student as an array of three elements student[0], student[1], and student[2] and

initializes their members as follows:

 student[0].subject1 = 45;

 student[0].subject2 = 65;

 student[2].subject3 = 71;
Note that the array is declared just as it would have been with any other array. Since student is an array,

we use the usual array-accessing methods to access individual elements and then the member operator to

access members. Remember, each element of student array is a structure variable with three members.

An array of structures is stored inside the memory in the same way as a multi-dimensional array. The array

student actually looks as shown in Fig. 7.3.

wOrKeD-Out PrOBLeM 7.4 M

For the student array discussed above, write a program to calculate the subject-wise and student-wise

totals and store them as a part of the structure.

The program is shown in Fig. 7.4. We have declared a four-member structure, the fourth one for keeping the

student-totals. We have also declared an array total to keep the subject-totals and the grand-total. The grand-

total is given by total.total. Note that a member name can be any valid C name and can be the same as an

existing structure variable name. The linked name total.total represents the total member of the structure

variable total.

45student [0].subject 1

.subject 2

.subject 3

student [1].subject 1

.subject 2

.subject 3

student [2].subject 1

.subject 2

.subject 3

68

81

75

53

69

57

36

71

Fig. 7.3 The array student inside memory

322 Programming for Problem Solving

 Program

 struct marks

 {

 int sub1;

 int sub2;

 int sub3;

 int total;

 };

 main()

 {

 int i;

 struct marks student[3] = {{45,67,81,0},

 {75,53,69,0},

 {57,36,71,0}};

 struct marks total;

 for(i = 0; i <= 2; i++)

 {

 student[i].total = student[i].sub1 +

 student[i].sub2 +

 student[i].sub3;

 total.sub1 = total.sub1 + student[i].sub1;

 total.sub2 = total.sub2 + student[i].sub2;

 total.sub3 = total.sub3 + student[i].sub3;

 total.total = total.total + student[i].total;

 }

 printf(“ STUDENT TOTAL\n\n”);

 for(i = 0; i <= 2; i++)

 printf(“Student[%d] %d\n”, i+1,student[i].total);

 printf(“\n SUBJECT TOTAL\n\n”);

 printf(“%s %d\n%s %d\n%s %d\n”,

 “Subject 1 “, total.sub1,

 “Subject 2 “, total.sub2,

 “Subject 3 “, total.sub3);

 printf(“\nGrand Total = %d\n”, total.total);

 }

 Output

 STUDENT TOTAL

 Student[1] 193

 Student[2] 197

Structure 323

 Student[3] 164

 SUBJECT TOTAL

 Subject 1 177

 Subject 2 156

 Subject 3 221

 Grand Total = 554

Fig. 7.4 Arrays of structures: Illustration of subscripted structure variables

ARRAYS WITHIN STRUCTURES

C permits the use of arrays as structure members. We have already used arrays of characters inside a

structure. Similarly, we can use single-dimensional or multi-dimensional arrays of type int or fl oat. For

example, the following structure declaration is valid:

 struct marks

 {

 int number;

 fl oat subject[3];

 } student[2];
Here, the member subject contains three elements, subject[0], subject[1], and subject[2]. These

elements can be accessed using appropriate subscripts. For example, the name

 student[1].subject[2];
would refer to the marks obtained in the third subject by the second student.

wOrKeD-Out PrOBLeM 7.5 e

Rewrite the program of Program 7.4 using an array member to represent the three subjects.

The modifi ed program is shown in Fig. 7.5. You may notice that the use of array name for subjects has

simplifi ed in code.

 Program

 main()

 {

 struct marks

 {

 int sub[3];

 int total;

 };

 struct marks student[3] =

 {45,67,81,0,75,53,69,0,57,36,71,0};

 struct marks total;

 int i,j;

324 Programming for Problem Solving

 for(i = 0; i <= 2; i++)

 {

 for(j = 0; j <= 2; j++)

 {

 student[i].total += student[i].sub[j];

 total.sub[j] += student[i].sub[j];

 }

 total.total += student[i].total;

 }

 printf(“STUDENT TOTAL\n\n”);

 for(i = 0; i <= 2; i++)

 printf(“Student[%d] %d\n”, i+1, student[i].total);

 printf(“\nSUBJECT TOTAL\n\n”);

 for(j = 0; j <= 2; j++)

 printf(“Subject-%d %d\n”, j+1, total.sub[j]);

 printf(“\nGrand Total = %d\n”, total.total);

 }

 Output

 STUDENT TOTAL

 Student[1] 193

 Student[2] 197

 Student[3] 164

 STUDENT TOTAL

 Student-1 177

 Student-2 156

 Student-3 221

 Grand Total = 554

Fig. 7.5 Use of subscripted members arrays in structures

STRUCTURES WITHIN STRUCTURES

Structures within a structure means nesting of structures. Nesting of structures is

permitted in C. Let us consider the following structure defi ned to store information about

the salary of employees:

 struct salary
 {

 char name;

 char department;

 int basic_pay;

LO 7.4

illustrate nested

structures and

‘structures and

functi ons’

Structure 325

 int dearness_allowance;

 int house_rent_allowance;

 int city_allowance;

 }

 employee;
This structure defines name, department, basic pay and three kinds of allowances. We can group all the

items related to allowance together and declare them under a substructure as shown below:

 struct salary
 {

 char name;

 char department;

 struct
 {

 int dearness;

 int house_rent;

 int city;

 }

 allowance;
 }

 employee;
The salary structure contains a member named allowance, which itself is a structure with three members.

The members contained in the inner structure namely dearness, house_rent, and city can be referred to as:

employee.allowance.dearness

employee.allowance.house_rent

employee.allowance.city

An inner-most member in a nested structure can be accessed by chaining all the concerned structure

variables (from outer-most to inner-most) with the member using dot operator. The following are invalid:

employee.allowance (actual member is missing)

employee.house_rent (inner structure variable is missing)

An inner structure can have more than one variable. The following form of declaration is legal:

 struct salary
 {

 struct
 {
 int dearness;

 }
 allowance,
 arrears;
 }
 employee[100];

The inner structure has two variables, allowance and arrears. This implies that both of them have the

same structure template. Note the comma after the name allowance. A base member can be accessed as

follows:

employee[1].allowance.dearness

employee[1].arrears.dearness

326 Programming for Problem Solving

We can also use tag names to defi ne inner structures. Example:

 struct pay
 {
 int dearness;
 int house_rent;
 int city;
 };
 struct salary
 {
 char name;
 char department;
 struct pay allowance;
 struct pay arrears;
 };
 struct salary employee[100];
pay template is defi ned outside the salary template and is used to defi ne the structure of allowance and

arrears inside the salary structure.

It is also permissible to nest more than one type of structures.

 struct personal_record
 {
 struct name_part name;
 struct addr_part address;
 struct date date_of_birth;

 };
 struct personal_record person1;

The fi rst member of this structure is name, which is of the type struct name_part. Similarly, other members

have their structure types.

 Note C permits nesting upto 15 levels. However, C99 allows 63 levels of nesting.

STRUCTURES AND FUNCTIONS

We know that the main philosophy of C language is the use of functions. And therefore, it is natural that C

supports the passing of structure values as arguments to functions. There are three methods by which the

values of a structure can be transferred from one function to another.

 1. The fi rst method is to pass each member of the structure as an actual argument of the function call. The

actual arguments are then treated independently like ordinary variables. This is the most elementary

method and becomes unmanageable and ineffi cient when the structure size is large.

 2. The second method involves passing of a copy of the entire structure to the called function. Since the

function is working on a copy of the structure, any changes to structure members within the function are

not refl ected in the original structure (in the calling function). It is, therefore, necessary for the function

to return the entire structure back to the calling function. All compilers may not support this method of

passing the entire structure as a parameter.

Structure 327

 3. The third approach employs a concept called pointers to pass the structure as an argument. In this

case, the address location of the structure is passed to the called function. The function can access

indirectly the entire structure and work on it. This is similar to the way arrays are passed to function.

This method is more effi cient as compared to the second one.

In this section, we discuss in detail the second method, while the third approach using pointers is discussed

in the next chapter, where pointers are dealt in detail.

The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name);

The called function takes the following form:

 data_type function_name(struct_type st_name)

 {

 return(expression);

 }

The following points are important to note:

 1. The called function must be declared for its type, appropriate to the data type it is expected to return.

For example, if it is returning a copy of the entire structure, then it must be declared as struct with an

appropriate tag name.

 2. The structure variable used as the actual argument and the corresponding formal argument in the

called function must be of the same struct type.

 3. The return statement is necessary only when the function is returning some data back to the calling

function. The expression may be any simple variable or structure variable or an expression using

simple variables.

 4. When a function returns a structure, it must be assigned to a structure of identical type in the calling

function.

 5. The called functions must be declared in the calling function appropriately.

wOrKeD-Out PrOBLeM 7.6 M

Write a simple program to illustrate the method of sending an entire structure as a parameter to a function.

A program to update an item is shown in Fig. 7.6. The function update receives a copy of the structure variable

item as one of its parameters. Note that both the function update and the formal parameter product are

declared as type struct stores. It is done so because the function uses the parameter product to receive the

structure variable item and also to return the updated values of item.

The function mul is of type fl oat because it returns the product of price and quantity. However, the

parameter stock, which receives the structure variable item is declared as type struct stores.

The entire structure returned by update can be copied into a structure of identical type. The statement

item = update(item,p_increment,q_increment);

replaces the old values of item by the new ones.

328 Programming for Problem Solving

 Program

 /* Passing a copy of the entire structure */

 struct stores

 {

 char name[20];

 float price;

 int quantity;

 };

 struct stores update (struct stores product, float p, int q);

 float mul (struct stores stock);

 main()

 {

 float p_increment, value;

 int q_increment;

 struct stores item = {“XYZ”, 25.75, 12};

 printf(“\nInput increment values:”);

 printf(“ price increment and quantity increment\n”);

 scanf(“%f %d”, &p_increment, &q_increment);

 /* - */

 item = update(item, p_increment, q_increment);

 /* - */

 printf(“Updated values of item\n\n”);

 printf(“Name : %s\n”,item.name);

 printf(“Price : %f\n”,item.price);

 printf(“Quantity : %d\n”,item.quantity);

 /* - */

 value = mul(item);

 /* - */

 printf(“\nValue of the item = %f\n”, value);

 }

 struct stores update(struct stores product, float p, int q)

 {

 product.price += p;

 product.quantity += q;

 return(product);

 }

 float mul(struct stores stock)

 {

 return(stock.price * stock.quantity);

 }

Structure 329

 Output

 Input increment values: price increment and quantity increment

 10 12

 Updated values of item

 Name : XYZ

 Price : 35.750000

 Quantity : 24

 Value of the item = 858.000000

Fig. 7.6 Using structure as a function parameter

You may notice that the template of stores is defi ned before main(). This has made the data type struct

stores as global and has enabled the functions update and mul to make use of this defi nition.

UNIONS

Unions are a concept borrowed from structures and therefore follow the same

syntax as structures. However, there is major distinction between them in terms

of storage. In structures, each member has its own storage location, whereas

all the members of a union use the same location. This implies that, although

a union may contain many members of different types, it can handle only one

member at a time. Like structures, a union can be declared using the keyword

union as follows:

 union item
 {
 int m;
 fl oat x;
 char c;
 } code;

This declares a variable code of type union item. The union

contains three members, each with a different data type. However,

we can use only one of them at a time. This is due to the fact that

only one location is allocated for a union variable, irrespective of its

size.

The compiler allocates a piece of storage that is large enough to

hold the largest variable type in the union. In the declaration above,

the member x requires 4 bytes which is the largest among the

members. Figure 7.7 shows how all the three variables share

the same address. This assumes that a fl oat variable requires 4

bytes of storage.

To access a union member, we can use the same syntax that we use for structure members. That is,

 code.m

 code.x

 code.c

are all valid member variables. During accessing, we should make sure that we are accessing the member

whose value is currently stored. For example, the statements such as

LO 7.5

Determine how

structures and unions

diff er in terms of their

storage technique

1000 1001

Storage of 4 bytes

1002 1004

c

m

x

 Fig. 7.7 Sharing of a storage locating

by union members

330 Programming for Problem Solving

 code.m = 379;

 code.x = 7859.36;

 printf(“%d”, code.m);

would produce erroneous output (which is machine dependent).

In effect, a union creates a storage location that can be used by any one of its members at a time. When a

different member is assigned a new value, the new value supersedes the previous member’s value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union member

which is nested inside a structure remains the same as for the nested structures.

Unions may be initialized when the variable is declared. But, unlike structures, it can be initialized only with

a value of the same type as the first union member. For example, with the preceding, the declaration

union item abc = {100};

is valid but the declaration

union item abc = {10.75};

is invalid. This is because the type of the first member is int. Other members can be initialized by either

assigning values or reading from the keyboard.

SIZE OF STRUCTURES

We normally use structures, unions, and arrays to create variables of large sizes. The actual size of these

variables in terms of bytes may change from machine to machine. We may use the unary operator sizeof to

tell us the size of a structure (or any variable). The expression

sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If y is a simple structure

variable of type struct x, then the expression

 sizeof(y)

would also give the same answer. However, if y is an array variable of type struct x, then

 sizeof(y)

would give the total number of bytes the array y requires.

This kind of information would be useful to determine the number of records in a database. For example,

the expression

sizeof(y)/sizeof(x)

would give the number of elements in the array y.

BIT FIELDS

So far, we have been using integer fields of size 16 bits to store data. There are occasions where data items

require much less than 16 bits space. In such cases, we waste memory space. Fortunately, C permits us to

use small bit fields to hold data items and thereby to pack several data items in a word of memory. Bit fields

allow direct manipulation of string of a string of preselected bits as if it represented an integral quantity.

A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length. A word can therefore be

divided into a number of bit fields. The name and size of bit fields are defined using a structure. The general

form of bit field definition is:

Structure 331

 struct tag-name

 {

 data-type name1: bit–length;

 data-type name2: bit–length;

 data-type nameN: bit-length;

 }

The data-type is either int or unsigned int or signed int and the bit-length is the number of bits used for

the specified name. Remember that a signed bit field should have at least 2 bits (one bit for sign). Note that

the field name is followed by a colon. The bit-length is decided by the range of value to be stored. The largest

value that can be stored is 2n–1, where n is bit-length.

The internal representation of bit fields is machine dependent. That is, it depends on the size of int and

the ordering of bits. Some machines store bits from left to right and others from right to left. The sketch below

illustrates the layout of bit fields, assuming a 16-bit word that is ordered from right to left.

15 14

name N name 2 name 1

13 12 11 10 9 8 7 6 5 4 3 2 1 0

There are several specific points to observe:

 1. The first field always starts with the first bit of the word.

 2. A bit field cannot overlap integer boundaries. That is, the sum of lengths of all the fields in a structure

should not be more than the size of a word. In case, it is more, the overlapping field is automatically

forced to the beginning of the next word.

 3. There can be unnamed fields declared with size. Example:

 Unsigned : bit-length

 Such fields provide padding within the word.

 4. There can be unused bits in a word.

 5. We cannot take the address of a bit field variable. This means we cannot use scanf to read values into

bit fields. We can neither use pointer to access the bit fields.

 6. Bit fields cannot be arrayed.

 7. Bit fields should be assigned values that are within the range of their size. If we try to assign larger

values, behaviour would be unpredicted.

Suppose, we want to store and use personal information of employees in compressed form, this can be

done as follows:

 struct personal

 {

 unsigned sex : 1

 unsigned age : 7

 unsigned m_status : 1

 unsigned children : 3

 unsigned : 4

 } emp;

332 Programming for Problem Solving

This defines a variable name emp with four bit fields. The range of values each field could have is follows:

 Bit field Bit length Range of value

 sex 1 0 or 1

 age 7 0 or 127 (27 – 1)

 m_status 1 0 or 1

 children 3 0 to 7 (23–1)

Once bit fields are defined, they can be referenced just as any other structure-type data item would be

referenced. The following assignment statements are valid.

emp.sex = 1;

emp.age = 50;
Remember, we cannot use scanf to read values into a bit field. We may have to read into a temporary

variable and then assign its value to the bit field. For example:

 scanf(%d %d”, &AGE,&CHILDREN);

 emp.age = AGE;

 emp.children = CHILDREN;
One restriction in accessing bit fields is that a pointer cannot be used. However, they can be used in normal

expressions like any other variable. For example:

 sum = sum + emp.age;

 if(emp.m_status).;

 printf(“%d\n”, emp.age);
are valid statements.

It is possible to combine normal structure elements with bit field elements. For example:

 struct personal

 {

 char name[20]; /* normal variable */

 struct addr address; /* structure variable */

 unsigned sex : 1;

 unsigned age : 7;

 }

 emp[100];
This declares emp as a 100 element array of type struct personal. This combines normal variable name

and structure type variable address with bit fields.

Bit fields are packed into words as they appear in the definition. Consider the following definition.

 struct pack

 {

 unsigned a:2;

 int count;

 unsigned b : 3;

 };
Here, the bit field a will be in one word, the variable count will be in the second word and the bit field b will

be in the third word. The fields a and b would not get packed into the same word.

Structure 333

 Note Other related topics such as ‘Structures with Pointers’ and ‘Structures and Linked Lists’ are

discussed in Chapter 6 and Chapter 9, respectively.

KeY COnCePts

• arraY: It is a fi xed-size sequenced collecti on of elements of the same data type. [LO 7.1]

• DOt OPeratOr: This links a structure variable with a structure member. It is used to read/write member

values. [LO 7.1]

• struCture: This is a user-defi ned data type that allows diff erent data types to be combined together to represent

a data record. [LO 7.1]

• uniOn: It is similar to a structure in syntax but diff ers in storage technique. Unlike structures, union members use

the same memory locati on for storing all member values. [LO 7.5]

• Bit fieLD: This refers to a set of adjacent bits with size ranging from 1 to 16 bits. [LO 7.5]

aLwaYs reMeMBer

∑ Remember to place a semicolon at the end of defi nition of structures and unions. [LO 7.1]

∑ We can declare a structure variable at the time of defi nition of a structure by placing it after the closing

brace but before the semicolon. [LO 7.1]

∑ Do not place the structure tag name after the closing brace in the defi nition. That will be treated as

a structure variable. The tag name must be placed before the opening brace but after the keyword

struct. [LO 7.1]

∑ When we use typedef defi nition, the type_name comes after the closing brace but before the

semicolon. [LO 7.1]

∑ We cannot declare a variable at the time of creating a typedef defi nition. We must use the type_name to

declare a variable in an independent statement. [LO 7.1]

∑ It is an error to use a structure variable as a member of its own struct type structure. [LO 7.1]

∑ Declaring a variable using the tag name only (without the keyword struct) is an error. [LO 7.1]

∑ It is illegal to refer to a structure member using only the member name. [LO 7.1]

∑ When using scanf for reading values for members, we must use address operator & with non-string

members. [LO 7.1]

∑ Always provide a structure tag name when creating a structure. It is convenient to use tag name to

declare new structure variables later in the program. [LO 7.1]

∑ Use short and meaningful structure tag names. [LO 7.1]

∑ Avoid using same names for members of different structures (although it is not illegal). [LO 7.1]

∑ It is an error to compare two structure variables. [LO 7.2]

∑ Assigning a structure of one type to a structure of another type is an error. [LO 7.2]

∑ When accessing a member with a pointer and dot notation, parentheses are required around the pointer,

like (*ptr).number. [LO 7.2]

∑ The selection operator (–>) is a single token. Any space between the symbols – and > is an error.

[LO 7.2]

334 Programming for Problem Solving

∑ Forgetting to include the array subscript when referring to individual structures of an array of structures is

an error. [LO 7.3]

∑ When structures are nested, a member must be qualified with all levels of structures nesting it. [LO 7.4]

∑ Passing structures to functions by pointers is more efficient than passing by value. (Passing by pointers

are discussed in Chapter 6.) [LO 7.4]

∑ A union can store only one of its members at a time. We must exercise care in accessing the correct

member. Accessing a wrong data is a logic error. [LO 7.5]

∑ It is an error to initialize a union with data that does not match the type of the first member. [LO 7.5]

∑ We cannot take the address of a bit field. Therefore, we cannot use scanf to read values in bit fields. We

can neither use pointer to access the bit fields. [LO 7.5]

∑ Bit fields cannot be arrayed. [LO 7.5]

Brief Cases

1. Book Shop Inventory [LO 7.1, 7.2, 7.3, 7.4, 7.5 M]

A book shop uses a personal computer to maintain the inventory of books that are being sold at the shop. The

list includes details such as author, title, price, publisher, stock position, etc. Whenever a customer wants a

book, the shopkeeper inputs the title and author of the book and the system replies whether it is in the list or

not. If it is not, an appropriate message is displayed. If book is in the list, then the system displays the book

details and asks for number of copies. If the requested copies are available, the total cost of the books is

displayed; otherwise the message “Required copies not in stock” is displayed.

A program to accomplish this is shown in Fig. 7.8. The program uses a template to define the structure of

the book. Note that the date of publication, a member of record structure, is also defined as a structure.

When the title and author of a book are specified, the program searches for the book in the list using the

function

look_up(table, s1, s2, m)

The parameter table which receives the structure variable book is declared as type struct record. The

parameters s1 and s2 receive the string values of title and author while m receives the total number of books

in the list. Total number of books is given by the expression

 sizeof(book)/sizeof(struct record)

The search ends when the book is found in the list and the function returns the serial number of the book.

The function returns –1 when the book is not found. Remember that the serial number of the first book in the

list is zero. The program terminates when we respond “NO” to the question

Do you want any other book?

Note that we use the function

get(string)

to get title, author, etc. from the terminal. This enables us to input strings with spaces such as “C Language”.

We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to convert it to an

integer before using it in any expressions. This is done using the atoi() function.

Structure 335

 Programs

 #include <stdio.h>

 #include <string.h>

 struct record

 {

 char author[20];

 char title[30];

 float price;

 struct

 {

 char month[10];

 int year;

 }

 date;

 char publisher[10];

 int quantity;

 };

 int look_up(struct record table[],char s1[],char s2[],int m);

 void get (char string []);

 main()

 {

 char title[30], author[20];

 int index, no_of_records;

 char response[10], quantity[10];

 struct record book[] = {

 {“Ritche”,”C Language”,45.00,”May”,1977,”PHI”,10},

 {“Kochan”,”Programming in C”,75.50,”July”,1983,”Hayden”,5},

 {“Balagurusamy”,”BASIC”,30.00,”January”,1984,”TMH”,0},

 {“Balagurusamy”,”COBOL”,60.00,”December”,1988,”Macmillan”,25}

 };

 no_of_records = sizeof(book)/ sizeof(struct record);

 do

 {

 printf(“Enter title and author name as per the list\n”);

 printf(“\nTitle: “);

 get(title);

 printf(“Author: “);

 get(author);

 index = look_up(book, title, author, no_of_records);

336 Programming for Problem Solving

 if(index != -1) /* Book found */

 {

 printf(“\n%s %s %.2f %s %d %s\n\n”,

 book[index].author,

 book[index].title,

 book[index].price,

 book[index].date.month,

 book[index].date.year,

 book[index].publisher);

 printf(“Enter number of copies:”);

 get(quantity);

 if(atoi(quantity) < book[index].quantity)

 printf(“Cost of %d copies = %.2f\n”,atoi(quantity),

 book[index].price * atoi(quantity));

 else

 printf(“\nRequired copies not in stock\n\n”);

 }

 else

 printf(“\nBook not in list\n\n”);

 printf(“\nDo you want any other book? (YES / NO):”);

 get(response);

 }

 while(response[0] == ‘Y’ || response[0] == ‘y’);

 printf(“\n\nThank you. Good bye!\n”);

 }

 void get(char string [])

 {

 char c;

 int i = 0;

 do

 {

 c = getchar();

 string[i++] = c;

 }

 while(c != ‘\n’);

 string[i-1] = ‘\0’;

 }

Structure 337

 int look_up(struct record table[],char s1[],char s2[],int m)

 {

 int i;

 for(i = 0; i < m; i++)

 if(strcmp(s1, table[i].title) == 0 &&

 strcmp(s2, table[i].author) == 0)

 return(i); /* book found */

 return(-1); /* book not found */

 }

 Output

 Enter title and author name as per the list

 Title: BASIC

 Author: Balagurusamy

 Balagurusamy BASIC 30.00 January 1984 TMH

 Enter number of copies:5

 Required copies not in stock

 Do you want any other book? (YES / NO):y

 Enter title and author name as per the list

 Title: COBOL

 Author: Balagurusamy

 Balagurusamy COBOL 60.00 December 1988 Macmillan

 Enter number of copies:7

 Cost of 7 copies = 420.00

 Do you want any other book? (YES / NO):y

 Enter title and author name as per the list

 Title: C Programming

 Author: Ritche

 Book not in list

 Do you want any other book? (YES / NO):n

 Thank you. Good bye!

Fig. 7.8 Program of bookshop inventory

338 Programming for Problem Solving

review QuestiOns

 7.1 State whether the following statements are true or false.

 (a) A struct type in C is a built-in data type. [LO 7.1 E]

 (b) The tag name of a structure is optional. [LO 7.1 E]

 (c) Structures may contain members of only one data type. [LO 7.1 E]

 (d) The keyword typedef is used to define a new data type. [LO 7.1 E]

 (e) A structure variable is used to declare a data type containing multiple fields. [LO 7.1 M]

 (f) It is legal to copy a content of a structure variable to another structure variable of the same type.

[LO 7.1 M]

 (g) Pointers can be used to access the members of structure variables. [LO 7.1 H]

 (h) In accessing a member of a structure using a pointer p, the following two are equivalent:

 (*p).member_name and p –> member_name [LO 7.1 H]

 (i) We can perform mathematical operations on structure variables that contain only numeric type

members. [LO 7.2 M]

 (j) An array cannot be used as a member of a structure. [LO 7.3 E]

 (k) A member in a structure can itself be a structure. [LO 7.4 E]

 (l) Structures are always passed to functions by pointers. [LO 7.4 H]

 (m) A union may be initialized in the same way a structure is initialized. [LO 7.5 E]

 (n) A union can have another union as one of the members. [LO 7.5 H]

 (o) A structure cannot have a union as one of its members. [LO 7.5 H]

 7.2 Fill in the blanks in the following statements:

 (a) The name of a structure is referred to as _______________. [LO 7.1 E]

 (b) The variables declared in a structure definition are called its ______________. [LO 7.1 E]

 (c) The _____________ can be used to create a synonym for a previously defined data type.

[LO 7.1 M]

 (d) The selection operator –> requires the use of a _________________ to access the members of a

structure. [LO 7.1 H]

 (e) A_______________ is a collection of data items under one name in which the items share the

same storage. [LO 7.5 E]

 7.3 A structure tag name abc is used to declare and initialize the structure variables of type struct abc in

the following statements. Which of them are incorrect? Why? Assume that the structure abc has three

members, int, float, and char in that order. [LO 7.1, 7.2, 7.3 E]

 (a) struct a,b,c;

 (b) struct abc a,b,c

 (c) abc x,y,z;

 (d) struct abc a[];

 (e) struct abc a = { };

 (f) struct abc = b, { 1+2, 3.0, “xyz”}

 (g) struct abc c = {4,5,6};

 (h) struct abc a = 4, 5.0, “xyz”;

 7.4 Given the declaration [LO 7.1, 7.2 M]

 struct abc a,b,c;

Structure 339

 which of the following statements are legal?

 (a) scanf (“%d, &a);

 (b) printf (“%d”, b);

 (c) a = b;

 (d) a = b + c;

 (e) if (a>b)

 7.5 Given the declaration [LO 7.3 M]

 struct item_bank

 {

 int number;

 double cost;

 };

 which of the following are correct statements for declaring one dimensional array of structures of type

struct item_bank?

 (a) int item_bank items[10];

 (b) struct items[10] item_bank;

 (c) struct item_bank items (10);

 (d) struct item_bank items [10];

 (e) struct items item_bank [10];

 7.6 Given the following declaration [LO 7.1, 7.3 M]

 typedef struct abc

 {

 char x;

 int y;

 float z[10];

 } ABC;

 State which of the following declarations are invalid? Why?

 (a) struct abc ν1;

 (b) struct abc ν2[10];

 (c) struct ABC ν3;

 (d) ABC a,b,c;

 (e) ABC a[10];

 7.7 How does a structure differ from an array? [LO 7.3 E]

 7.8 Explain the meaning and purpose of the following: [LO 7.1, 7.5 M]

 (a) Template

 (b) struct keyword

 (c) typedef keyword

 (d) sizeof operator

 (e) Tag name

 7.9 Explain what is wrong in the following structure declaration: [LO 7.1 E]

 struct

 {

340 Programming for Problem Solving

 int number;

 float price;

 }

 main()

 {

 }

 7.10 When do we use the following? [LO 7.5 M]

 (a) Unions

 (b) Bit fields

 (c) The sizeof operator

 7.11 What is meant by the following terms?

 (a) Array of structures [LO 7.3 E]

 (b) Nested structures [LO 7.4 M]

 (c) Unions [LO 7.5 M]

 Give a typical example of use of each of them.

 7.12 Describe with examples, the different ways of assigning values to structure members. [LO 7.1 M]

 7.13 State the rules for initializing structures. [LO 7.1 E]

 7.14 What is a ‘slack byte’? How does it affect the implementa tion of structures? [LO 7.2 M]

 7.15 Describe three different approaches that can be used to pass structures as function arguments.

[LO 7.4 H]

 7.16 What are the important points to be considered when imple menting bit-fields in structures? [LO 7.5 M]

 7.17 Define a structure called complex consisting of two floating-point numbers x and y and declare a

variable p of type complex. Assign initial values 0.0 and 1.1 to the members. [LO 7.1 M]

 7.18 What will be the output of the following program? [LO 7.5 H]

 main ()

 {

 union x

 {

 int a;

 float b;

 double c ;

 };

 printf(“%d\n”, sizeof(x));

 a.x = 10;

 printf(“%d%f%f\n”, a.x, b.x, c.x);

 c.x = 1.23;

 printf(“%d%f%f\n”, a.x, b.x, c.x);

 }

Structure 341

DeBugging exerCises

 7.1 Given the structure definitions and declarations [LO 7.1, 7.2 M]

 struct abc

 {

 int a;

 float b;

 };

 struct xyz

 {

 int x;

 float y;

 };

 abc a1, a2;

 xyz x1, x2;

 find errors, if any, in the following statements:

 (a) a1 = x1;

 (b) abc.a1 = 10.75;

 (c) int m = a + x;

 (d) int n = x1.x + 10;

 (e) a1 = a2;

 (f) if (a.a1 > x.x1) . . .

 (g) if (a1.a < x1.x) . . .

 (h) if (x1 != x2) . . .

 7.2 What is the error in the following program? [LO 7.1 M]

 typedef struct product

 {

 char name [10];

 float price ;

 } PRODUCT products [10];

PrOgraMMing exerCises

 7.1 Define a structure data type called time_struct containing three members integer hour, integer minute

and integer second. Develop a program that would assign values to the individual members and display

the time in the following form: [LO 7.1 M]

 16:40:51

 7.2 Modify the above program such that a function is used to input values to the members and another

function to display the time. [LO 7.1, 7.4 M]

 7.3 Design a function update that would accept the data structure designed in Exercise 7.1 and increments

time by one second and returns the new time. (If the increment results in 60 seconds, then the second

member is set to zero and the minute member is incremented by one. Then, if the result is 60 minutes,

the minute member is set to zero and the hour member is incremented by one. Finally when the hour

becomes 24, it is set to zero.) [LO 7.1, 7.2, 7.4 M]

342 Programming for Problem Solving

 7.4 Define a structure data type named date containing three integer members day, month, and year.

Develop an interactive modular program to perform the following tasks: [LO 7.1, 7.2, 7.4 M]

 ∑ To read data into structure members by a function

 ∑ To validate the date entered by another function

 ∑ To print the date in the format

 April 29, 2002

 by a third function.

 The input data should be three integers like 29, 4, and 2002 corresponding to day, month, and year.

Examples of invalid data:

 31, 4, 2002 – April has only 30 days

 29, 2, 2002 – 2002 is not a leap year

 7.5 Design a function update that accepts the date structure designed in Exercise 7.4 to increment the

date by one day and return the new date. The following rules are applicable: [LO 7.1, 7.2, 7.4 M]

 ∑ If the date is the last day in a month, month should be incremented

 ∑ If it is the last day in December, the year should be incremented

 ∑ There are 29 days in February of a leap year

 7.6 Modify the input function used in Exercise 7.4 such that it reads a value that represents the date in the

form of a long integer, like 19450815 for the date 15-8-1945 (August 15, 1945) and assigns suitable

values to the members day, month, and year. [LO 7.1, 7.2, 7.4 M]

 Use suitable algorithm to convert the long integer 19450815 into year, month and day.

 7.7 Add a function called nextdate to the program designed in Exercise 7.4 to perform the following task:

[LO 7.1, 7.2, 7.4 H]

 ∑ Accepts two arguments, one of the structure data containing the present date and the second an

integer that represents the number of days to be added to the present date.

 ∑ Adds the days to the present date and returns the structure containing the next date correctly.

 Note that the next date may be in the next month or even the next year.

 7.8 Use the date structure defined in Exercise 7.4 to store two dates. Develop a function that will take these

two dates as input and compares them. [LO 7.1, 7.2, 7.4 M]

 ∑ It returns 1, if the date1 is earlier than date2

 ∑ It returns 0, if date1 is later date

 7.9 Define a structure to represent a vector (a series of integer values) and write a modular program to

perform the following tasks: [LO 7.1, 7.2, 7.3, 7.4 M]

 ∑ To create a vector

 ∑ To modify the value of a given element

 ∑ To multiply by a scalar value

 ∑ To display the vector in the form

 (10, 20, 30,)

 7.10 Add a function to the program of Exercise 7.9 that accepts two vectors as input parameters and return

the addition of two vectors. [LO 7.1, 7.2, 7.3, 7.4 H]

 7.11 Create two structures named metric and British which store the values of distances. The metric

structure stores the values in metres and centimetres and the British structure stores the values in feet

and inches. Write a program that reads values for the structure variables and adds values contained in

one variable of metric to the contents of another variable of British. The program should display the

result in the format of feet and inches or metres and centimetres as required. [LO 7.1, 7.2 M]

Structure 343

 7.12 Define a structure named census with the following three members: [LO 7.1, 7.3, 7.4 M]

 ∑ A character array city [] to store names

 ∑ A long integer to store population of the city

 ∑ A float member to store the literacy level

 Write a program to do the following:

 ∑ To read details for 5 cities randomly using an array variable

 ∑ To sort the list alphabetically

 ∑ To sort the list based on literacy level

 ∑ To sort the list based on population

 ∑ To display sorted lists

 7.13 Define a structure that can describe an hotel. It should have members that include the name, address,

grade, average room charge, and number of rooms. [LO 7.1, 7.2 M]

 Write functions to perform the following operations:

 ∑ To print out hotels of a given grade in order of charges

 ∑ To print out hotels with room charges less than a given value

 7.14 Define a structure called cricket that will describe the following information: [LO 7.1, 7.2, 7.3 M]

 player name

 team name

 batting average

 Using cricket, declare an array player with 50 elements and write a program to read the information

about all the 50 players and print a team-wise list containing names of players with their batting average.

 7.15 Design a structure student_record to contain name, date of birth, and total marks obtained. Use the

date structure designed in Exercise 7.4 to represent the date of birth. [LO 7.1, 7.2, 7.4 M]

 Develop a program to read data for 10 students in a class and list them rank-wise.

LEARNING OBJECTIVES

LO 8.1 Describe dynamic memory allocati on

LO 8.2 Diff erenti ate between malloc and calloc

LO 8.3 Explain how allocated space is altered or released

LO 8.4 Discuss the concept of linked lists

LO 8.5 Determine how a linked list is implemented

introduction
Most often we face situations in programming where the data is dynamic in nature. That is, the number of data

items keep changing during execution of the program. For example, consider a program for processing the list

of customers of a corporation. The list grows when names are added and shrinks when names are deleted.

When list grows we need to allocate more memory space to the list to accommodate additional data items.

Such situations can be handled more easily and effectively by using what is known as dynamic data structures

in conjunction with dynamic memory management techniques.

Dynamic data structures provide fl exibility in adding, deleting or rearranging data items at run time. Dynamic

memory management techniques permit us to allocate additional memory space or to release unwanted

space at run time, thus, optimizing the use of storage space. This chapter discusses the concept of linked lists,

one of the basic types of dynamic data structures. Before we take up linked lists, we shall briefl y introduce the

dynamic storage management functions that are available in C. These functions would be extensively used

in processing linked lists.

DYNAMIC MEMORY ALLOCATION

C language requires the number of elements in an array to be specifi ed at compile

time. But we may not be able to do so always. Our initial judgement of size, if it is

wrong, may cause failure of the program or wastage of memory space.

Many languages permit a programmer to specify an array’s size at run time. Such languages have the

ability to calculate and assign, during execution, the memory space required by the variables in a program.

The process of allocating memory at run time is known as dynamic memory allocation. Although C does not

inherently have this facility, there are four library routines known as “memory management functions” that

space at run time, thus, optimizing the use of storage space. This chapter discusses the concept of linked lists,

one of the basic types of dynamic data structures. Before we take up linked lists, we shall briefl y introduce the

dynamic storage management functions that are available in C. These functions would be extensively used

lo 8.1

Describe dynamic

memory allocati on

introduction
Most often we face situations in programming where the data is dynamic in nature. That is, the number of data

items keep changing during execution of the program. For example, consider a program for processing the list

Dynamic Memory

Allocation

Chapter

8

Dynamic Memory Allocation 345

can be used for allocating and freeing memory during program execution. They are listed in Table 8.1. These

functions help us build complex application programs that use the available memory intelligently.

Table 8.1 Memory Allocation Functions

Function Task

malloc Allocates request size of bytes and returns a pointer to the fi rst byte of the allocated space.

calloc Allocates space for an array of elements, initializes them to zero and then returns a pointer to

the memory.

free Frees previously allocated space.

realloc Modifi es the size of previously allocated space.

memory allocati on process

Before we discuss these functions, let us look at the memory allocation process associated with a C program.

Figure 8.1 shows the conceptual view of storage of a C program in memory.

The program instructions and global and static variables

are stored in a region known as permanent storage area

and the local variables are stored in another area called

stack. The memory space that is located between these two

regions is available for dynamic allocation during execution

of the program. This free memory region is called the heap.

The size of the heap keeps changing when program is

executed due to creation and death of variables that are

local to functions and blocks. Therefore, it is possible to

encounter memory “overfl ow” during dynamic allocation

process. In such situations, the memory allocation functions

mentioned above return a NULL pointer (when they fail to

locate enough memory requested).

ALLOCATING A BLOCK OF MEMORY: MALLOC

A block of memory may be allocated using the function malloc. The malloc

function reserves a block of memory of specifi ed size and returns a pointer of

type void. This means that we can assign it to any type of pointer. It takes the

following form:

ptr = (cast-type *) malloc(byte-size);

ptr is a pointer of type cast-type. The malloc returns a pointer (of cast-type) to an area of memory with size

byte-size.

Example:

 x = (int *) malloc (100 *sizeof(int));

On successful execution of this statement, a memory space equivalent to “100 times the size of an int”

bytes is reserved and the address of the fi rst byte of the memory allocated is assigned to the pointer x of type

of int.

Local variables Stack

Free memory Heap

Global variables

Permanent
Storage area

C program instructions

Fig. 8.1 Storage of a C program

lo 8.2

Diff erenti ate between

malloc and calloc

346 Programming for Problem Solving

Similarly, the statement

cptr = (char*) malloc(10);

allocates 10 bytes of space for the pointer cptr of type char. This is illustrated as:

10 bytes of space

Address of first byte

cptr

Note that the storage space allocated dynamically has no name and therefore, its contents can be accessed

only through a pointer.

We may also use malloc to allocate space for complex data types such as structures. Example:

st_var = (struct store *)malloc(sizeof(struct store));

where, st_var is a pointer of type struct store

Remember, the malloc allocates a block of contiguous bytes. The allocation can fail if the space in the

heap is not suffi cient to satisfy the request. If it fails, it returns a NULL. We should therefore, check whether the

allocation is successful before using the memory pointer. This is illustrated in the program in Fig. 8.2.

WorkeD-out proBlem 8.1 e

Write a program that uses a table of integers whose size will be specifi ed interactively at run time.

The program is given in Fig. 8.2. It tests for availability of memory space of required size. If it is available,

then the required space is allocated and the address of the fi rst byte of the space allocated is displayed. The

program also illustrates the use of pointer variable for storing and accessing the table values.

 Program

 #include <stdio.h>

 #include <stdlib.h>

 #defi ne NULL 0

 main()

 {

 int *p, *table;

 int size;

 printf(“\nWhat is the size of table?”);

 scanf(“%d”,size);

 printf(“\n”)

 /*------------Memory allocation --------------*/

 if((table = (int*)malloc(size *sizeof(int))) == NULL)

E for Easy, M for Medium and H for High

Dynamic Memory Allocation 347

 {

 printf(“No space available \n”);

 exit(1);

 }

 printf(“\n Address of the first byte is %u\n”, table);

 /* Reading table values*/

 printf(“\nInput table values\n”);

 for (p=table; p<table + size; p++)

 scanf(“%d”,p);

 /* Printing table values in reverse order*/

 for (p = table + size –1; p >= table; p ––)

 printf(“%d is stored at address %u \n”,*p,p);

 }

 Output

 What is the size of the table? 5

 Address of the first byte is 2262

 Input table values

 11 12 13 14 15

 15 is stored at address 2270

 14 is stored at address 2268

 13 is stored at address 2266

 12 is stored at address 2264

 11 is stored at address 2262

Fig. 8.2 Memory allocation with malloc

ALLOCATING MULTIPLE BLOCKS OF MEMORY:

CALLOC

calloc is another memory allocation function that is normally used for requesting memory space at run time

for storing derived data types such as arrays and structures. While malloc allocates a single block of storage

space, calloc allocates multiple blocks of storage, each of the same size, and then sets all bytes to zero. The

general form of calloc is:

ptr = (cast-type *) calloc (n, elem-size);

The above statement allocates contiguous space for n blocks, each of size elem-size bytes. All bytes are

initialized to zero and a pointer to the first byte of the allocated region is returned. If there is not enough space,

a NULL pointer is returned.

348 Programming for Problem Solving

The following segment of a program allocates space for a structure variable:

 struct student

 {

 char name[25];

 fl oat age;

 long int id_num;

 };

 typedef struct student record;

 record *st_ptr;

 int class_size = 30;

 st_ptr=(record *)calloc(class_size, sizeof(record));

record is of type struct student having three members: name, age, and id_num. The calloc allocates

memory to hold data for 30 such records. We must be sure that the requested memory has been allocated

successfully before using the st_ptr. This may be done as follows:

 if(st_ptr == NULL)

 {

 printf(“Available memory not suffi cient”);

 exit(1);

 }

RELEASING THE USED SPACE: FREE

Compile-time storage of a variable is allocated and released by the system in

accordance with its storage class. With the dynamic run-time allocation, it is our

responsibility to release the space when it is not required. The release of storage

space becomes important when the storage is limited.

When we no longer need the data we stored in a block of memory, and we do

not intend to use that block for storing any other information, we may release that block of memory for future

use, using the free function:

free (ptr);

ptr is a pointer to a memory block, which has already been created by malloc or calloc. Use of an invalid

pointer in the call may create problems and cause system crash. We should remember two things here:

 1. It is not the pointer that is being released but rather what it points to.

 2. To release an array of memory that was allocated by calloc we need only to release the pointer once.

It is an error to attempt to release elements individually.

The use of free function has been illustrated in Worked-Out Problem 8.2.

ALTERING THE SIZE OF A BLOCK: REALLOC

It is likely that we discover later, the previously allocated memory is not suffi cient and we need additional

space for more elements. It is also possible that the memory allocated is much larger than necessary and we

want to reduce it. In both the cases, we can change the memory size already allocated with the help of the

lo 8.3

explain how allocated

space is altered or

released

Dynamic Memory Allocation 349

function realloc. This process is called the reallocation of memory. For example, if the original allocation is

done by the statement

ptr = malloc(size);
then reallocation of space may be done by the statement

ptr = realloc(ptr, newsize);
This function allocates a new memory space of size newsize to the pointer variable ptr and returns a pointer

to the fi rst byte of the new memory block. The newsize may be larger or smaller than the size. Remember,

the new memory block may or may not begin at the same place as the old one. In case, it is not able to fi nd

additional space in the same region, it will create the same in an entirely new region and move the contents of

the old block into the new block. The function guarantees that the old data will remain intact.

If the function is unsuccessful in locating additional space, it returns a NULL pointer and the original block

is freed (lost). This implies that it is necessary to test the success of operation before proceeding further. This

is illustrated in the program of Worked-Out Problem 8.2.

WorkeD-out proBlem 8.2 m

Write a program to store a character string in a block of memory space created by malloc and then modify

the same to store a larger string.

The program is shown in Fig. 8.3. The output illustrates that the original buffer size obtained is modifi ed to

contain a larger string. Note that the original contents of the buffer remains same even after modifi cation of

the original size.

 Program

 #include <stdio.h>

 #include<stdlib.h>

 #defi ne NULL 0

 main()

 {

 char *buffer;

 /* Allocating memory */

 if((buffer = (char *)malloc(10)) == NULL)

 {

 printf(“malloc failed.\n”);

 exit(1);

 }

 printf(“Buffer of size %d created \n”,_msize(buffer));

 strcpy(buffer, “HYDERABAD”);

 printf(“\nBuffer contains: %s \n “, buffer);

 /* Reallocation */

 if((buffer = (char *)realloc(buffer, 15)) == NULL)

 {

 printf(“Reallocation failed. \n”);

 exit(1);

 }

350 Programming for Problem Solving

 printf(“\nBuffer size modifi ed. \n”);

 printf(“\nBuffer still contains: %s \n”,buffer);

 strcpy(buffer, “SECUNDERABAD”);

 printf(“\nBuffer now contains: %s \n”,buffer);

 /* Freeing memory */

 free(buffer);

 }

 Output

 Buffer of size 10 created

 Buffer contains: HYDERABAD

 Buffer size modifi ed

 Buffer still contains: HYDERABAD

 Buffer now contains: SECUNDERABAD

Fig. 8.3 Reallocation and release of memory space

CONCEPTS OF LINKED LISTS

We know that a list refers to a set of items organized sequentially. An array is an

example of list. In an array, the sequential organization is provided implicitly by its

index. We use the index for accessing and manipulation of array elements. One

major problem with the arrays is that the size of an array must be specifi ed precisely

at the beginning. As pointed out earlier, this may be a diffi cult task in many real-life

applications.

A completely different way to represent a list is to make each item in the list part of a structure that also

contains a “link” to the structure containing the next item, as shown in Fig. 8.4. This type of list is called a linked

list because it is a list whose order is given by links from one item to the next.

item

structure 1 structure 3structure 2

item item
next

Fig. 8.4 A linked list

Each structure of the list is called a node and consists of two fi elds, one containing the item, and the

other containing the address of the next item (a pointer to the next item) in the list. A linked list is therefore a

collection of structures ordered not by their physical placement in memory (like an array) but by logical links

that are stored as part of the data in the structure itself. The link is in the form of a pointer to another structure

of the same type. Such a structure is represented as follows:

 struct node

 {

 int item;

 struct node *next;

 };

lo 8.4

Discuss the concept

of linked lists

Dynamic Memory Allocation 351

The first member is an integer item and the second a pointer to the next node in the list as shown below.

Remember, the item is an integer here only for simplicity, and could be any complex data type.

node

nextitem

Such structures, which contain a member field that points to the same structure type are called self-

refrential structure.

A node may be represented in general form as follows:

 struct tag-name

 {

 type member1;

 type member2;

 struct tag-name *next;

 };
The structure may contain more than one item with different data types. However, one of the items must

be a pointer of the type tag-name.

nextmember Nmember 2member 1

Let use consider a simple example to illustrate the concept of linking. Suppose we define a structure as

follows:

 struct link_list

 {

 float age:

 struct link_list *next;

 };
For simplicity, let as assume that the list contains two nodes node1 and node2. They are of type struct

link_list and are defined as follows:

struct link_list node1, node2;

This statement creates space for two nodes each containing two empty fields as shown:

node1.age

node2.age

node1.next

node2.next

node1

node2

352 Programming for Problem Solving

The next pointer of node1 can be made to point to node2 by the statement

node1.next = &node2;
This statement stores the address of node2 into the field node1.next and thus establishes a “link” between

node1 and node2 as shown:

node1.age

node2.age

node1.next

Link

node2.next

node1

node2

XXXX

“xxxx” is the address of node2 where the value of the variable node2.age will be stored. Now let us assign

values to the field age.

 node1.age = 35.50;

 node2.age = 49.00;
The result is as follows:

node1.age

node2.age

node1.next

Link
49.00

node2.next

node1

node2

XXXX

35.50

We may continue this process to create a liked list of any number of values.

For example:

node2.next = &node3;

would add another link provided node3 has been declared as a variable of type struct link list.

No list goes on forever. Every list must have an end. We must therefore indicate the end of a linked list. This

is necessary for processing the list. C has a special pointer value called null that can be stored in the next field

of the last node. In our two-node list, the end of the list is marked as follows:

node2.next = 0;

The final linked list containing two nodes is as shown:

node1.age

node2.age

node1.next

Link
49.00

node2.next
()null pointer

node1

35.50

node2

XXXX

0

Dynamic Memory Allocation 353

The value of the age member of node2 can be accessed using the next member of node1 as follows:

printf(“%f\n”, node1.next–>age);

ADVANTAGES OF LINKED LISTS

A linked list is dynamic data structure. Therefore, the primary advantage of linked lists over arrays is that linked

lists can grow or shrink in size during the execution of a program. A linked list can be made just as long as

required.

Another advantage is that a linked list does not waste memory space. It uses the memory that is just

needed for the list at any point of time. This is because it is not necessary to specify the number of nodes to

be used in the list.

The third, and the most important advantage is that the linked lists provide flexibility is allowing the items to

be rearranged efficiently. It is easier to insert or delete items by rearranging the links. This is shown in Fig. 8.5.

Item 3

Item 3

Item 3

Item 3

Item 2

Item 2

Item to be deleted

Item 2

Item 2

Item to be inserted

(a) Insertion

(b) Deletion

x

x

Item 1

Item 1

Item1

Item 1

(A record is created holding the new item and its next pointer is set to link it to the
item, which is to follow it in the list. The next pointer of the item which is to precede it
must be modified to point to the new item.)

(The next pointer of the item immediately preceding the one to be deleted is altered
and made to point to the item following the deleted item.)

Fig. 8.5 Insertion into and deletion from a linked list

354 Programming for Problem Solving

The major limitation of linked lists is that the access to any arbitrary item is little cumbersome and time

consuming. Whenever we deal with a fi xed length list, it would be better to use an array rather than a linked

list. We must also note that a linked list will use more storage than an array with the same number of items.

This is because each item has an additional link fi eld.

TYPES OF LINKED LISTS

There are different types of lined lists. The one we discussed so far is known as linear singly linked list. The

other linked lists are as follows:

 ∑ Circular linked lists.

 ∑ Two-way or doubly linked lists.

 ∑ Circular doubly linked lists.

The circular linked lists have no beginning and no end. The last item points back to the fi rst item. The

doubly linked list uses double set of pointers, one pointing to the next item and other pointing to the preceding

item. This allows us to traverse the list in either direction. Circular doubly linked lists employs both the forward

pointer and backward pointer in circular form. Figure 8.6 illustrates various kinds of linked lists.

0

(a) Linear list

(b) Circular list

(c) Two-way linked list

(d) Two-way circular list

A B C

A

A

A0

B

B

B

C

C

C 0

Fig. 8.6 Different types of linked lists

POINTERS REVISITED

The concept of pointers was discussed in Chapter 6. Since pointers are used

extensively in processing of the linked lists, we shall briefl y review some of their

properties that are directly relevant to the processing of lists.

lo 8.5

Determine how

a linked list is

implemented

Dynamic Memory Allocation 355

We know that variables can be declared as pointers, specifying the type of data item they can point to. In

effect, the pointer will hold the address of the data item and can be used to access its value. In processing

linked lists, we mostly use pointers of type structures.

It is most important to remember the distinction between the pointer variable ptr, which contain the address

of a variable, and the referenced variable *ptr, which denotes the value of variable to which ptr’s value points.

The following examples illustrate this distinction. In these illustrations, we assume that the pointers p and q

and the variables x and y are declared to be of same type.

(a) Initialization

100

200

p

p = & ;x

q = &y;

q

points to

points to

x

y

The pointer p contains the address of x and q contains the address of y.

 *p =100 and *q = 200 and p< >q

(b) Assignment p = q

The assignment p = q assigns the address of the variable y to the pointer variable p and therefore p now

points to the variable y.

100

200

p

q

x

y

p = q;

Both the pointer variables point to the same variable.

*p = *q = 200 but x <> y

(c) Assignment *p = *q

This assignment statement puts the value of the variable pointed to by q in the location of the variable pointed

to by p.

200

200

p

q

points to

points to

x

y

*p = *q;

The pointer p still points to the same variable x but the old value of x is replaced by 200 (which is pointed

to by q).

x = y = 200 but p <> q

356 Programming for Problem Solving

(d) NULL pointers

A special constant known as NULL pointer (0) is available in C to initialize pointers that point to nothing. That

is the statements

 p = 0; (or p = NULL;) p Æ 0

 q = 0; (q = NULL;) q Æ 0

make the pointers p and q point to nothing. They can be later used to point any values.

We know that a pointer must be initialized by assigning a memory address before using it. There are two

ways of assigning memory address to a pointer.

 1. Assigning an existing variable address (static assignment)

ptr = &count;

 2. Using a memory allocation function (dynamic assignment)

 ptr = (int*) malloc(sizeof(int));

CREATING A LINKED LIST

We can treat a linked list as an abstract data type and perform the following basic operations:

 1. Creating a list.

 2. Traversing the list.

 3. Counting the items in the list.

 4. Printing the list (or sub list).

 5. Looking up an item for editing or printing.

 6. Inserting an item.

 7. Deleting an item.

 8. Concatenating two lists.

In the previous sections, we created a two-element linked list using the structure variable names node1

and node2. We also used the address operator & and member operators . and –> for creating and accessing

individual items. The very idea of using a linked list is to avoid any reference to specific number of items in the

list so that we can insert or delete items as and when necessary. This can be achieved by using “anonymous”

locations to store nodes. Such locations are accessed not by name, but by means of pointers, which refer to

them. (For example, we must avoid using references like node1.age and node1.next –> age.)

Anonymous locations are created using pointers and dynamic memory allocation functions such as malloc.

We use a pointer head to create and access anonymous nodes. Consider the following:

 struct linked_list

 {

 int number;

 struct linked_list *next;

 };

 typedef struct linked_list node;

 node *head;

 head = (node *) malloc(sizeof(node));

The struct declaration merely describes the format of the nodes and does not allocate storage. Storage

space for a node is created only when the function malloc is called in the statement

head = (node *) malloc(sizeof(node));

Dynamic Memory Allocation 357

This statement obtains a piece of memory that is suffi cient to store a node and assigns its address to the

pointer variable head. This pointer indicates the beginning of the linked list.

head node

number next

The following statements store values in the member fi elds:

 head –> number = 10;

 head –> next = NULL;

head

10 0

node

number next

The second node can be added as follows:

 head –> next = (node *)malloc(sizeof(node));

 head –> next –>number = 20;

 head–>next–>next = NULL;

Although this process can be continued to create any number of nodes, it becomes cumbersome and

clumsy if nodes are more than two. The above process may be easily implemented using both recursion and

iteration techniques. The pointer can be moved from the current node to the next node by a self-replacement

statement such as:

 head = head –> next;
The Worked-Out Problem 8.3 shows creation of a complete linked list and printing of its contents using

recursion.

WorkeD-out proBlem 8.3 H

Write a program to create a linear linked list interactively and print out the list and the total number of items

in the list.

The program shown in Fig. 8.7 fi rst allocates a block of memory dynamically for the fi rst node using the

statement

head = (node *)malloc(sizeof(node));
which returns a pointer to a structure of type node that has been type defi ned earlier. The linked list is then

created by the function create. The function requests for the number to be placed in the current node that has

been created. If the value assigned to the current node is –999, then null is assigned to the pointer variable

next and the list ends. Otherwise, memory space is allocated to the next node using again the malloc function

and the next value is placed into it. Not that the function create calls itself recursively and the process will

continue until we enter the number –999.

The items stored in the linked list are printed using the function print, which accept a pointer to the current

node as an argument. It is a recursive function and stops when it receives a NULL pointer. Printing algorithm

is as follows;

 1. Start with the fi rst node.

 2. While there are valid nodes left to print

 (a) print the current item; and

 (b) advance to next node.

358 Programming for Problem Solving

Similarly, the function count counts the number of items in the list recursively and return the total number

of items to the main function. Note that the counting does not include the item –999 (contained in the dummy

node).

 Program

 #include <stdio.h>

 #include <stdlib.h>

 #define NULL 0

 struct linked_list

 {

 int number;

 struct linked_list *next;

 };

 typedef struct linked_list node; /* node type defined */

 main()

 {

 node *head;

 void create(node *p);

 int count(node *p);

 void print(node *p);

 head = (node *)malloc(sizeof(node));

 create(head);

 printf(“\n”);

 printf(head);

 printf(“\n”);

 printf(“\nNumber of items = %d \n”, count(head));

 }

 void create(node *list)

 {

 printf(“Input a number\n”);

 printf(“(type –999 at end): “);

 scanf(“%d”, &list –> number); /* create current node */

 if(list–>number == –999)

 {

 list–>next = NULL;

 }

 else /*create next node */

 {

 list–>next = (node *)malloc(sizeof(node));

 create(list–>next); */ Recursion occurs */

 }

 return;

Dynamic Memory Allocation 359

 }

 void print(node *list)

 {
 if(list–>next != NULL)

 {

 printf(“%d––>”,list –>number); /* print current item */

 if(list–>next–>next == NULL)

 printf(“%d”, list–>next–>number);

 print(list–>next); /* move to next item */

 }

 return;

 }

 int count(node *list)

 {

 if(list–>next == NULL)

 return (0);

 else

 return(1+ count(list–>next));

 }

 Output

 Input a number

 (type –999 to end); 60

 Input a number

 (type –999 to end); 20

 Input a number

 (type –999 to end); 10

 Input a number

 (type –999 to end); 40

 Input a number

 (type –999 to end); 30

 Input a number

 (type –999 to end); 50

 Input a number

 (type –999 to end); -999

 60 – –>20 – –>10 – –>40 – –>30 – –>50 – –> –999

 Number of items = 6

Fig. 8.7 Creating a linear linked list

360 Programming for Problem Solving

INSERTING AN ITEM

One of the advantages of linked lists is the comparative case with which new nodes can be inserted. It requires

merely resetting of two pointers (rather than having to move around a list of data as would be the case with

arrays).

Inserting a new item, say X, into the list has three situations:

 1. Insertion at the front of the list.

 2. Insertion in the middle of the list.

 3. Insertion at the end of the list.

The process of insertion precedes a search for the place of insertion. The search involves in locating a

node after which the new item is to be inserted.

A general algorithm for insertion is as follows:

Begin

 if the list is empty or

 the new node comes before the head node then,

 insert the new node as the head node,

 else

 if the new node comes after the last node, then,

 insert the new node as the end node,

 else

 insert the new node in the body of the list.

End

Algorithm for placing the new item at the beginning of a linked list:

 1. Obtain space for new node.

 2. Assign data to the item fi eld of new node.

 3. Set the next fi eld of the new node to point to the start of the list.

 4. Change the head pointer to point to the new node.

Algorithm for inserting the new node X between two existing nodes, say, N1 and N2;

 1. Set space for new node X.

 2. Assign value to the item fi eld of X.

 3. Set the next fi eld of X to point to node N2.

 4. Set the next fi eld of N1 to point to X.

Algorithm for inserting an item at the end of the list is similar to the one for inserting in the middle, except

the next fi eld of the new node is set to NULL (or set to point to a dummy or sentinel node, if it exists).

WorkeD-out proBlem 8.4 H

Write a function to insert a given item before a specifi ed node known as key node.

The function insert shown in Fig. 8.8 requests for the item to be inserted as well as the “key node”. If the

insertion happens to be at the beginning, then memory space is created for the new node, the value of new

item is assigned to it and the pointer head is assigned to the next member. The pointer new, which indicates

the beginning of the new node is assigned to head. Note the following statements:

Dynamic Memory Allocation 361

 new–>number = x;

 new–>next = head;

 head = new;

 node *insert(node *head)

 {

 node *find(node *p, int a);

 node *new; /* pointer to new node */

 node *n1; /* pointer to node preceding key node */

 int key;

 int x; /* new item (number) to be inserted */

 printf(“Value of new item?”);

 scanf(“%d”, &x);

 printf(“Value of key item ? (type –999 if last) “);

 scanf(“%d”, &key);

 if(head–>number == key) /* new node is first */

 {

 new = (node *)malloc(size of(node));

 new–>number = x;

 new–>next = head;

 head = new;

 }

 else /* find key node and insert new node */

 { /* before the key node */

 n1 = find(head, key); /* find key node */

 if(n1 == NULL)

 printf(“\n key is not found \n”);

 else /* insert new node */

 {

 new = (node *)malloc(sizeof(node));

 new–>number = x;

 new–>next = n1–>next;

 n1–>next = new;

 }

 }

 return(head);

 }

 node *find(node *lists, int key)

 {

 if(list–>next–>number == key) /* key found */

362 Programming for Problem Solving

 return(list);

 else

 if(list–>next–>next == NULL) /* end */

 return(NULL);

 else

 find(list–>next, key);

 }

 Fig. 8.8 A function for inserting an item into a linked list

However, if the new item is to be inserted after an existing node, then we use the function find recursively

to locate the ‘key node’. The new item is inserted before the key node using the algorithm discussed above.

This is illustrated as:

Before insertion

 new = (node *)malloc(sizeof(node));

 new–>number = x;

n1 n1 – >next

new node

new
x

key node

After insertion

 new–>next = n1–>next;

 n1–>next = new;

n1
n1 – >next

new node

new
x

key node

Dynamic Memory Allocation 363

DELETING AN ITEM

Deleting a node from the list is even easier than insertion, as only one pointer value needs to be changed.

Here again we have three situations.

 1. Deleting the fi rst item.

 2. Deleting the last item.

 3. Deleting between two nodes in the middle of the list.

In the fi rst case, the head pointer is altered to point to the second item in the list. In the other two cases,

the pointer of the item immediately preceding the one to be deleted is altered to point to the item following the

deleted item. The general algorithm for deletion is as follows:

Begin

 if the list is empty, then,

 node cannot be deleted

 else

 if node to be deleted is the fi rst node, then,

 make the head to point to the second node,

 else

 delete the node from the body of the list.

End

The memory space of deleted node may be released for re-use. As in the case of insertion, the process of

deletion also involves search for the item to be deleted.

WorkeD-out proBlem 8.5 H

Write a function to delete a specifi ed node.

A function to delete a specifi ed node is given in Fig. 8.9. The function fi rst checks whether the specifi ed

item belongs to the fi rst node. If yes, then the pointer to the second node is temporarily assigned the pointer

variable p, the memory space occupied by the fi rst node is freed and the location of the second node is

assigned to head. Thus, the previous second node becomes the fi rst node of the new list.

If the item to be deleted is not the fi rst one, then we use the fi nd function to locate the position of ‘key node’

containing the item to be deleted. The pointers are interchanged with the help of a temporary pointer variable

making the pointer in the preceding node to point to the node following the key node. The memory space of

key node that has been deleted if freed. The fi gure below shows the relative position of the key node.

n1 n1 – >next

key node

n1 – >next – >next

The execution of the following code deletes the key node.

 p = n1–>next–>next;

 free (n1–>next);

 n1–>next = p;

364 Programming for Problem Solving

n1

key node

n1–>next

 node *delete(node *head)

 {

 node *find(node *p, int a);

 int key; /* item to be deleted */

 node *n1; /* pointer to node preceding key node */

 node *p; /* temporary pointer */

 printf(“\n What is the item (number) to be deleted?”);

 scanf(“%d”, &key);

 if(head–>number == key) /* first node to be deleted) */

 {

 p = head–>next; /* pointer to 2nd node in list */

 free(head); /* release space of key node */

 head = p; /* make head to point to 1st node */

 }

 else

 {

 n1 = find(head, key);

 if(n1 == NULL)

 printf(“\n key not found \n”);

 else /* delete key node */

 {

 p = n1–>next–>next; /* pointer to the node

 following the keynode */

 free(n1–>next); /* free key node */

 n1–>next = p; /* establish link */

 }

 }

 return(head);

 }

 /* USE FUNCTION find() HERE */

 Fig. 8.9 A function for deleting an item from linked list

Dynamic Memory Allocation 365

APPLICATION OF LINKED LISTS

Linked list concepts are useful to model many different abstract data types such as queues, stacks and trees.

If we restrict the process of insertion to one end of the list and deletions to the other end, then we have

a model of a queue. That is, we can insert an item at the rear and remove an item at the front (see Fig.

8.10a). This obeys the discipline of “first in, first out” (FIFO). There are many examples of queues in real-life

applications.

If we restrict insertions and deletions to occur only at the beginning of list, then we model another data

structure known as stack. Stacks are also referred to as push-down lists. An example of a stack is the “in” tray

of a busy executive. The files pile up in the tray, and whenever the executive has time to clear the files, he

takes it off from the top. That is, files are added at the top and removed from the top (see Fig. 8.10b). Stacks

are sometimes referred to as “last in, first out” (LIFO) structure.

Lists, queues and stacks are all inherently one-dimensional. A tree represents a two-dimensional linked

list. Trees are frequently encountered in everyday life. One example is the organizational chart of a large

company. Another example is the chart of sports tournaments.

Car5
IN

Car4

File 4

File 2

File 3

File 1

(b) Stack (Executive tray)

Car3 Car2 Car1
OUT

Front

IN OUT

Rear

(a) Queue (Repair shop)

Fig. 8.10 Application of linked lists

key ConCeptS

• DynamiC memory alloCation: It is the process of allocating memory space at run time. [lo 8.1]

• Heap: It is the free memory space that is available for dynamic allocation during program execution. [lo 8.1]

• StaCk: It is a push-down list that stores the elements based on last in, first out (LIFO) principle. [lo 8.1]

• CalloC funCtion: It is a function that allocates space for an array of elements, initializes them to zero and then

returns a pointer to the memory. [lo 8.2]

366 Programming for Problem Solving

• malloC funCtion: It is a function that allocates requested size of bytes and returns a pointer to the first byte of

the allocated space. [lo 8.2]

• Size of operator: It is used to determine the size of a data type. [lo 8.2]

• realloC funCtion: It is a function that modifies the previously allocated memory space. [lo 8.3]

• linkeD liSt: It is a collection of structures ordered not by their physical placement in memory but by the logical

links that are stored as a part of the data in the structure itself. [lo 8.4]

• null pointer: It is a collection of structures ordered not by their physical placement in memory but by the

logical links that are stored as a part of the data in the structure itself. [lo 8.4]

alWayS rememBer

∑ Release the dynamically allocated memory when it is no longer required to avoid any possible “memory

leak”. [lo 8.1]

∑ Use the sizeof operator to determine the size of a linked list. [lo 8.2]

∑ When using memory allocation functions malloc and calloc, test for a NULL pointer return value. Print

appropriate message if the memory allocation fails. [lo 8.2]

∑ Never call memory allocation functions with a zero size. [lo 8.2]

∑ It is an error to assign the return value from malloc or calloc to anything other than a pointer.

[lo 8.2]

∑ It is an error to release individually the elements of an array created with calloc. [lo 8.2]

∑ Using free function to release the memory not allocated dynamically with malloc or calloc is an error.

[lo 8.3]

∑ Use of a invalid pointer with free may cause problems and, sometimes, system crash. [lo 8.3]

∑ Using a pointer after its memory has been released is an error. [lo 8.3]

∑ It is a logic error to set a pointer to NULL before the node has been released. The node is irretrievably

lost. [lo 8.3]

∑ It is an error to declare a self-referential structure without a structure tag. [lo 8.4]

∑ It is a logic error to fail to set the link field in the last node to null. [lo 8.5]

Brief CaSeS

1. Insertion in a Sorted List [LO 8.2, 8.5 M]

The task of inserting a value into the current location in a sorted linked list involves two operations:

 1. Finding the node before which the new node has to be inserted. We call this node as ‘Key node’.

 2. Creating a new node with the value to be inserted and inserting the new node by manipulating pointers

appropriately.

In order to illustrate the process of insertion, we use a sorted linked list created by the create function

discussed in Worked-Out Problem 8.3. Figure 8.11 shows a complete program that creates a list (using sorted

input data) and then inserts a given value into the correct place using function insert.

Dynamic Memory Allocation 367

 Program
 #include <stdio.h>
 #include <stdio.h>
 #define NULL 0

 struct linked_list
 {
 int number;
 struct linked-list *next;
 };
 typedef struct linked_lit node;

 main()
 {
 int n;
 node *head;
 void create(node *p);
 node *insert(node *p, int n);
 void print(node *p);
 head = (node *)malloc(sizeof(node));
 create(head);
 printf(“\n”);
 printf(“Original list: “);
 print(head);
 printf(“\n\n”);
 printf(“Input number to be inserted: “);
 scanf(“%d”, &n);
 head = inert(head,n);
 printf(“\n”);
 printf(“New list: “);
 print(head);
 }
 void create(node *list)
 {
 printf(“Input a number \n”);
 printf(“(type –999 at end): “);
 scanf(“%d”, &list–>number);

 if(list–>number == –999)
 {
 list–>next = NULL;
 }
 else /* create next node */
 {
 list–>next = (node *)malloc(sizeof(node));
 create(list–>next);
 }
 return:
 }

368 Programming for Problem Solving

 void print(node *list)
 {
 if(list–>next != NULL)
 {
 printf(“%d ––>”, list–>number);

 if(list –>next–>next = = NULL)
 printf(“%d”, list–>next–>number);

 print(list–>next);
 }
 return:
 }
 node *insert(node *head, int x)
 {
 node *p1, *p2, *p;
 p1 = NULL;
 p2 = head; /* p2 points to first node */

 for(; p2–>number < x; p2 = p2–>next)
 {
 p1 = p2;

 if(p2–>next–>next == NULL)
 {
 p2 = p2–>next; /* insertion at end */
 break;
 }
 }

 /*key node found and insert new node */

 p = (node)malloc(sizeof(node)); / space for new node */

 p–>number = x; /* place value in the new node */

 p–>next = p2; /*link new node to key node */

 if (p1 == NULL)
 head = p; /* new node becomes the first node */
 else
 p1–>next = p; /* new node inserted in middle */

 return (head);
 }

Dynamic Memory Allocation 369

 Output

 Input a number

 (type –999 at end); 10

 Input a number

 (type –999 at end); 20

 Input a number

 (type –999 at end); 30

 Input a number

 (type –999 at end); 40

 Input a number

 (type –999 at end); -999

 Original list: 10 – –>20– –>30– –>40– –>–999

 Input number to be inserted: 25

 New list: 10– –>20– –>25– –>30– –>40– –>–999

 Fig. 8.11 Inserting a number in a sorted linked list

The function takes two arguments, one the value to be inserted and the other a pointer to the linked list.

The function uses two pointers, p1 and p2 to search the list. Both the pointers are moved down the list with p1

trailing p2 by one node while the value p2 points to is compared with the value to be inserted. The ‘key node’

is found when the number p2 points to is greater (or equal) to the number to be inserted.

Once the key node is found, a new node containing the number is created and inserted between the nodes

pointed to by p1 and p2. The figures below illustrate the entire process.

p1

p1

head

head

p2

p2

10

10

20

20

x = 25 (value to be inserted)

key node

key node

At the start of the search

When key node is found

30

30

40

40

370 Programming for Problem Solving

p1

p1

p

head

head

p2

p2

10

10

20

20

key node

key node

new node

When new node is created

When new node is inserted

30

30

25

25

40

40

2. Building a Sorted List [LO 8.2, 8.5 H]

The program in Fig. 8.11 can be used to create a sorted list. This is possible by creating ‘one item’ list using

the create function and then inserting the remaining items one after another using insert function.

A new program that would build a sorted list from a given list of numbers is shown in Fig. 8.12. The

main function creates a ‘base node’ using the first number in the list and then calls the function insert_sort

repeatedly to build the entire sorted list. It uses the same sorting algorithm discussed above but does not use

any dummy node. Note that the last item points to NULL.

 Program
 #include <stdio.h>
 #include <stdlib.h>
 #define NULL 0

 struct linked_list
 {
 int number;
 struct linked_list *next;
 };
 typedef struct linked_list node;

 main ()
 {
 int n;

 node *head = NULL;

 void print(node *p);

Dynamic Memory Allocation 371

 node *insert_Sort(node *p, int n);

 printf(“Input the list of numbers.\n”);

 printf(“At end, type –999.\n”);

 scanf(“%d”,&n);

 while(n != –999)

 {

 if(head == NULL) /* create ‘base’ node */

 {

 head = (node *)malloc(sizeof(node));

 head –>number = n;

 head–>next = NULL;

 }

 else /* insert next item */

 {

 head = insert_sort(head,n);

 }

 scanf(“%d”, &n);

 }

 printf(“\n”);

 print(head);

 print(“\n”);

 }

 node *insert_sort(node *list, int x)

 {

 node *p1, *p2, *p;

 p1 = NULL;

 p2 = list; /* p2 points to first node */

 for(; p2–>number < x ; p2 = p2–>next)

 {

 p1 = p2;

 if(p2–>next == NULL)

 {

 p2 = p2–>next; /* p2 set to NULL */

 break; /* insert new node at end */

 }

 }

 /* key node found */

 p = (node *)malloc(sizeof(node)); /* space for new node */

372 Programming for Problem Solving

 p–>number = x; /* place value in the new node */

 p–>next = p2; /* link new node to key node */

 if (p1 == NULL)

 list = p; /* new node becomes the first node */

 else

 p1–>next = p; /* new node inserted after 1st node */

 return (list);

 }

 void print(node *list)

 {

 if (list == NULL)

 printf(“NULL”);

 else

 {

 printf(“%d––>”,list–>number);

 print(list–>next);

 }

 return;

 }

 Output
 Input the list of number.

 At end, type –999.

 80 70 50 40 60 –999

 40– –>50– –>60– –>70– –>80 – –>NULL

 Input the list of number.

 At end, type –999.

 40 70 50 60 80 –999

 40– –>50– –>60– –>70– –>80– –>NULL

Fig. 8.12 Creation of sorted list from a given list of numbers

revieW QueStionS

 8.1 State whether the following statements are true or false

 (a) Dynamically allocated memory can only be accessed using pointers. [LO 8.1 M]

 (b) calloc is used to change the memory allocation previously allocated with malloc. [LO 8.2 E]

 (c) Memory should be freed when it is no longer required. [LO 8.3 E]

 (d) To ensure that it is released, allocated memory should be freed before the program ends.

[LO 8.3 E]

 (e) Only one call to free is necessary to release an entire array allocated with calloc. [LO 8.3 M]

 (f) The link field in a linked list always points to successor. [LO 8.4 E]

 (g) The first step in a adding a node to a linked list is to allocate memory for the next node.

[LO 8.5 M]

Dynamic Memory Allocation 373

 8.2 Fill in the blanks in the following statements

 (a) A______________identifies the last logical node in a linked list. [LO 8.4 M]

 (b) Function ______________ is used to dynamically allocate memory to arrays. [LO 8.2 E]

 (c) A_______________ is an ordered collection of data in which each element contains the location

of the next element. [LO 8.4 E]

 (d) Stacks are referred to as _______________. [LO 8.1 M]

 (e) Data structures which contain a member field that points to the same structure type are called

_________________ structures. [LO 8.4 M]

 8.3 What is a linked list? How is it represented? [LO 8.4 E]

 8.4 What is dynamic memory allocation? How does it help in building complex programs?

[LO 8.1 E]

 8.5 What is the principal difference between the functions malloc and calloc? [LO 8.2 M]

 8.6 Why a linked list is called a dynamic data structure? What are the advantages of using linked lists over

arrays? [LO 8.4 M]

 8.7 Describe different types of linked lists. [LO 8.4 E]

 8.8 The following code is defined in a header file list.h [LO 8.5 H]

 typedef struct

 {

 char name[15];

 int age;

 float weight;

 }DATA;

 struct linked_list

 {

 DATA person;

 Struct linked_list *next;

 };

 typedef struct linked_list NODE;

 typedef NODE *NDPTR;

 Explain how could we use this header file for writing programs.

 8.9 What does the following code achieve? [LO 8.2 E]

 int * p ;

 p = malloc (sizeof (int)) ;

 8.10 What does the following code do? [LO 8.2 E]

 float *p;

 p = calloc (10,sizeof(float)) ;

 8.11 What is the output of the following code? [LO 8.2 M]

 int i, *ip ;

 ip = calloc (4, sizeof(int));

 for (i = 0 ; i < 4 ; i++)

 * ip++ = i * i;

 for (i = 0 ; i < 4 ; i++)

 printf(“%d\n”, *—ip);

374 Programming for Problem Solving

 8.12 What is printed by the following code? [LO 8.2 M]

 int *p;

 p = malloc (sizeof (int));

 *p = 100 ;

 p = malloc (sizeof (int));

 *p = 111;

 printf(“%d”, *p);

 8.13 What is the output of the following segment? [LO 8.5 M]

 struct node

 {

 int m ;

 struct node *next;

 } x, y, z, *p;

 x.m = 10 ;

 y.m = 20 ;

 z.m = 30 ;

 x.next = &y;

 y.next = &z;

 z.next = NULL;

 p = x.next;

 while (p != NULL)

 {

 printf(“%d\n”, p -> m);

 p = p -> next;

 }

DeBugging exerCiSeS

 8.1 Find errors, if any, in the following memory management statements:

 (a) *ptr = (int *)malloc(m, sizeof(int)); [LO 8.2 M]

 (b) table = (float *)calloc(100); [LO 8.2 M]

 (c) node = free(ptr); [LO 8.3 M]

 8.2 Identify errors, if any, in the following structure definition statements: [LO 8.5 E]

 struct

 {

 char name[30]

 struct *next;

 };

 typedef struct node;

programming exerCiSeS

 8.1 In Worked-Out Problem 8.3, we have used print() in recursive mode. Rewrite this function using iterative

technique in for loop. [LO 8.5 M]

Dynamic Memory Allocation 375

 8.2 Write a menu driven program to create a linked list of a class of students and perform the following

operations: [LO 8.5 H]

 (a) Write out the contents of the list.

 (b) Edit the details of a specified student.

 (c) Count the number of students above a specified age and weight.

 Make use of the header file defined in Review Question 8.8.

 8.3 Write recursive and non-recursive functions for reversing the elements in a linear list. Compare the

relative efficiencies of them. [LO 8.5 M]

 8.4 Write an interactive program to create linear linked lists of customer names and their telephone

numbers. The program should be menu driven and include features for add ing a new customer and

deleting an existing customer. [LO 8.5 M]

 8.5 Modify the above program so that the list is always maintained in the alphabetical order of customer

names. [LO 8.5 H]

 8.6 Develop a program to combine two sorted lists to produce a third sorted lists which contains one

occurrence of each of the elements in the original lists. [LO 8.5 M]

 8.7 Write a program to create a circular linked list so that the input order of data item is maintained. Add

function to carry out the following operations on circular linked list. [LO 8.5 H]

 (a) Count the number of nodes

 (b) Write out contents

 (c) Locate and write the contents of a given node

 8.8 Write a program to construct an ordered doubly linked list and write out the contents of a specified

node. [LO 8.5 M]

 8.9 Write a function that would traverse a linear singly linked list in reverse and write out the contents in

reverse order. [LO 8.5 M]

 8.10 Given two ordered singly linked lists, write a function that will merge them into a third ordered list.

[LO 8.5 M]

 8.11 Write a function that takes a pointer to the first node in a linked list as a parameter and returns a pointer

to the last node. NULL should be returned if the list is empty. [LO 8.5 M]

 8.12 Write a function that counts and returns the total number of nodes in a linked list. [LO 8.5 E]

 8.13 Write a function that takes a specified node of a linked list and makes it as its last node. [LO 8.5 M]

 8.14 Write a function that computers and returns the length of a circular list. [LO 8.5 E]

 8.15 Write functions to implement the following tasks for a doubly linked list. [LO 8.5 H]

 (a) To insert a node.

 (b) To delete a node.

 (c) To find a specified node.

LEARNING OBJECTIVES

LO 9.1 Describe opening and closing of fi les

LO 9.2 Discuss input/output operati ons on fi les

LO 9.3 Determine how error handling is performed during I/O operati ons

LO 9.4 Explain random access to fi les

LO 9.5 Know the command line arguments

introduction
Until now we have been using the functions such as scanf and printf to read and write data. These are

console oriented I/O functions, which always use the terminal (keyboard and screen) as the target place. This

works fi ne as long as the data is small. However, many real-life problems involve large volumes of data and in

such situations, the console oriented I/O operations pose two major problems.

 1. It becomes cumbersome and time consuming to handle large volumes of data through terminals.

 2. The entire data is lost when either the program is terminated or the computer is turned off.

It is therefore necessary to have a more fl exible approach where data can be stored on the disks and read

whenever necessary, without destroying the data. This method employs the concept of fi les to store data. A

fi le is a place on the disk where a group of related data is stored. Like most other languages, C supports a

number of functions that have the ability to perform basic fi le operations, which include:

 ∑ naming a fi le,

 ∑ opening a fi le,

 ∑ reading data from a fi le,

 ∑ writing data to a fi le, and

 ∑ closing a fi le.

There are two distinct ways to perform fi le operations in C. The fi rst one is known as the low-level I/O and

uses UNIX system calls. The second method is referred to as the high-level I/O operation and uses functions

in C’s standard I/O library. We shall discuss in this chapter, the important fi le handling functions that are

available in the C library. They are listed in Table 9.1.

introduction
Until now we have been using the functions such as

console oriented I/O functions, which always use the terminal (keyboard and screen) as the target place. This

File Management
Chapter

9

File Management 377

Table 9.1 High Level I/O Functions

Function Name Operation

fopen() * Creates a new fi le for use.

* Opens an existing fi le for use.

fclose() * Closes a fi le which has been opened for use.

getc() * Reads a character from a fi le.

putc() * Writes a character to a fi le.

fprintf() * Writes a set of data values to a fi le.

fscanf() * Reads a set of data values from a fi le.

getw() * Reads an integer from a fi le.

putw() * Writes an integer to a fi le.

fseek() * Sets the position to a desired point in the fi le.

ftell() * Gives the current position in the fi le (in terms of bytes from the start).

rewind() * Sets the position to the beginning of the fi le.

There are many other functions. Not all of them are supported by all compilers. You should check your C

library before using a particular I/O function.

DEFINING AND OPENING A FILE

If we want to store data in a fi le in the secondary memory, we must specify certain

things about the fi le, to the operating system. They include the following:

 1. Filename

 2. Data structure

 3. Purpose

Filename is a string of characters that make up a valid fi lename for the operating system. It may contain

two parts, a primary name and an optional period with the extension. Examples:

Input.data

store

PROG.C

Student.c

Text.out

Data structure of a fi le is defi ned as FILE in the library of standard I/O function defi nitions. Therefore, all

fi les should be declared as type FILE before they are used. FILE is a defi ned data type.

When we open a fi le, we must specify what we want to do with the fi le. For example, we may write data to

the fi le or read the already existing data.

Following is the general format for declaring and opening a fi le:

FILE *fp;

fp = fopen(“fi lename”, “mode”);

The fi rst statement declares the variable fp as a “pointer to the data type FILE”. As stated earlier, FILE

is a structure that is defi ned in the I/O library. The second statement opens the fi le named fi lename and

assigns an identifi er to the FILE type pointer fp. This pointer, which contains all the information about the fi le

is subsequently used as a communication link between the system and the program.

There are many other functions. Not all of them are supported by all compilers. You should check your C

lo 9.1

describe opening and

closing of fi les

378 Programming for Problem Solving

The second statement also specifies the purpose of opening this file. The mode does this job. Mode can

be one of the following:

 r open the file for reading only.

 w open the file for writing only.

 a open the file for appending (or adding) data to it.

Note that both the filename and mode are specified as strings. They should be enclosed in double quotation

marks.

When trying to open a file, one of the following things may happen:

 1. When the mode is ‘writing’, a file with the specified name is created if the file does not exist. The

contents are deleted, if the file already exists.

 2. When the purpose is ‘appending’, the file is opened with the current contents safe. A file with the

specified name is created if the file does not exist.

 3. If the purpose is ‘reading’, and if it exists, then the file is opened with the current contents safe otherwise

an error occurs.

Consider the following statements:

 FILE *p1, *p2;

 p1 = fopen(“data”, “r”);

 p2 = fopen(“results”, “w”);

The file data is opened for reading and results is opened for writing. In case, the results file already exists,

its contents are deleted and the file is opened as a new file. If data file does not exist, an error will occur.

Many recent compilers include additional modes of operation. They include:

 r+ The existing file is opened to the beginning for both reading and writing.

 w+ Same as w except both for reading and writing.

 a+ Same as a except both for reading and writing.

We can open and use a number of files at a time. This number however depends on the system we use.

CLOSING A FILE

A file must be closed as soon as all operations on it have been completed. This ensures that all outstanding

information associated with the file is flushed out from the buffers and all links to the file are broken. It also

prevents any accidental misuse of the file. In case, there is a limit to the number of files that can be kept open

simultaneously, closing of unwanted files might help open the required files. Another instance where we have

to close a file is when we want to reopen the same file in a different mode. The I/O library supports a function

to do this for us. It takes the following form:

fclose(file_pointer);

This would close the file associated with the FILE pointer file_pointer. Look at the following segment of a

program.

.....

.....

FILE *p1, *p2;

p1 = fopen(“INPUT”, “w”);

p2 = fopen(“OUTPUT”, “r”);

.....

.....

fclose(p1);

fclose(p2);

.....

File Management 379

This program opens two fi les and closes them after all operations on them are completed. Once a fi le is

closed, its fi le pointer can be reused for another fi le.

As a matter of fact all fi les are closed automatically whenever a program terminates. However, closing a fi le

as soon as you are done with it is a good programming habit.

INPUT/OUTPUT OPERATIONS ON FILES

Once a fi le is opened, reading out of or writing to it is accomplished using the

standard I/O routines that are listed in Table 9.1.

The getc and putc Functions

The simplest fi le I/O functions are getc and putc. These are analogous to getchar and putchar functions

and handle one character at a time. Assume that a fi le is opened with mode w and fi le pointer fp1. Then, the

statement

putc(c, fp1);

writes the character contained in the character variable c to the fi le associated with FILE pointer fp1. Similarly,

getc is used to read a character from a fi le that has been opened in read mode. For example, the statement

c = getc(fp2);

would read a character from the fi le whose fi le pointer is fp2.

The fi le pointer moves by one character position for every operation of getc or putc. The getc will return an

end-of-fi le marker EOF, when end of the fi le has been reached. Therefore, the reading should be terminated

when EOF is encountered.

worked-out proBlem 9.1 e

Write a program to read data from the keyboard, write it to a fi le called INPUT, again read the same data

from the INPUT fi le, and display it on the screen.

A program and the related input and output data are shown in Fig.9.1. We enter the input data via the keyboard

and the program writes it, character by character, to the fi le INPUT. The end of the data is indicated by entering

an EOF character, which is control-Z in the reference system. (This may be control-D in other systems.) The

fi le INPUT is closed at this signal.

 Program

 #include <stdio.h>

 main()

 {

 FILE *f1;

 char c;

 printf(“Data Input\n\n”);

 /* Open the fi le INPUT */

 f1 = fopen(“INPUT”, “w”);

lo 9.2

discuss input/output

operati ons on fi les

E for Easy, M for Medium and H for High

380 Programming for Problem Solving

 /* Get a character from keyboard */

 while((c=getchar()) != EOF)

 /* Write a character to INPUT */

 putc(c,f1);

 /* Close the file INPUT */

 fclose(f1);

 printf(“\nData Output\n\n”);

 /* Reopen the file INPUT */

 f1 = fopen(“INPUT”,”r”);

 /* Read a character from INPUT*/

 while((c=getc(f1)) != EOF)

 /* Display a character on screen */

 printf(“%c”,c);

 /* Close the file INPUT */

 fclose(f1);

 }

 Output

 Data Input

 This is a program to test the file handling

 features on this system^Z

 Data Output

 This is a program to test the file handling

 features on this system

Fig. 9.1 Character oriented read/write operations on a file

The file INPUT is again reopened for reading. The program then reads its content character by character,

and displays it on the screen. Reading is terminated when getc encounters the end-of-file mark EOF.

Testing for the end-of-file condition is important. Any attempt to read past the end of file might either cause

the program to terminate with an error or result in an infinite loop situation.

The getw and putw Functions
The getw and putw are integer-oriented functions. They are similar to the getc and putc functions and are

used to read and write integer values. These functions would be useful when we deal with only integer data.

The general forms of getw and putw are as follows:

putw(integer, fp);

getw(fp);

Worked-Out Problem 9.2 illustrates the use of putw and getw functions.

File Management 381

worked-out proBlem 9.2 e

A fi le named DATA contains a series of integer numbers. Code a program to read these numbers and then

write all ‘odd’ numbers to a fi le to be called ODD and all ‘even’ numbers to a fi le to be called EVEN.

The program is shown in Fig. 9.2. It uses three fi les simultaneously and therefore, we need to defi ne three-fi le

pointers f1, f2 and f3.

First, the fi le DATA containing integer values is created. The integer values are read from the terminal and

are written to the fi le DATA with the help of the statement

putw(number, f1);

Notice that when we type –1, the reading is terminated and the fi le is closed. The next step is to open all

the three fi les, DATA for reading, ODD and EVEN for writing. The contents of DATA fi le are read, integer

by integer, by the function getw(f1) and written to ODD or EVEN fi le after an appropriate test. Note that the

statement

(number = getw(f1)) != EOF

reads a value, assigns the same to number, and then tests for the end-of-fi le mark.

Finally, the program displays the contents of ODD and EVEN fi les. It is important to note that the fi les ODD

and EVEN opened for writing are closed before they are reopened for reading.

 Program

 #include <stdio.h>

 main()

 {

 FILE *f1, *f2, *f3;

 int number, i;

 printf(“Contents of DATA fi le\n\n”);

 f1 = fopen(“DATA”, “w”); /* Create DATA fi le */

 for(i = 1; i <= 30; i++)

 {

 scanf(“%d”, &number);

 if(number == -1) break;

 putw(number,f1);

 }

 fclose(f1);

 f1 = fopen(“DATA”, “r”);

 f2 = fopen(“ODD”, “w”);

 f3 = fopen(“EVEN”, “w”);

 /* Read from DATA fi le */

 while((number = getw(f1)) != EOF)

382 Programming for Problem Solving

 {

 if(number %2 == 0)

 putw(number, f3); /* Write to EVEN file */

 else

 putw(number, f2); /* Write to ODD file */

 }

 fclose(f1);

 fclose(f2);

 fclose(f3);

 f2 = fopen(“ODD”,”r”);

 f3 = fopen(“EVEN”, “r”);

 printf(“\n\nContents of ODD file\n\n”);

 while((number = getw(f2)) != EOF)

 printf(“%4d”, number);

 printf(“\n\nContents of EVEN file\n\n”);

 while((number = getw(f3)) != EOF)

 printf(“%4d”, number);

 fclose(f2);

 fclose(f3);

 }

 Output

 Contents of DATA file

 111 222 333 444 555 666 777 888 999 000 121 232 343 454 565 –1

 Contents of ODD file

 111 333 555 777 999 121 343 565

 Contents of EVEN file

 222 444 666 888 0 232 454

Fig. 9.2 Operations on integer data

The fprintf and fscanf Functions
So far, we have seen functions, that can handle only one character or integer at a time. Most compilers

support two other functions, namely fprintf and fscanf, that can handle a group of mixed data simultaneously.

File Management 383

The functions fprintf and fscanf perform I/O operations that are identical to the familar printf and scanf

functions, except of course that they work on fi les. The fi rst argument of these functions is a fi le pointer which

specifi es the fi le to be used. The general form of fprintf is

fprintf(fp, “control string”, list);

where fp is a fi le pointer associated with a fi le that has been opened for writing. The control string contains

output specifi cations for the items in the list. The list may include variables, constants and strings. Example:

fprintf(f1, “%s %d %f”, name, age, 7.5);

Here, name is an array variable of type char and age is an int variable.

The general format of fscanf is

fprintf(fp, “control string”, list);

This statement would cause the reading of the items in the list from the fi le specifi ed by fp, according to the

specifi cations contained in the control string. Example:

fscanf(f2, “%s %d”, item, &quantity);
Like scanf, fscanf also returns the number of items that are successfully read. When the end of fi le is

reached, it returns the value EOF.

worked-out proBlem 9.3 H

Write a program to open a fi le named INVENTORY and store in it the following data:

 Item name Number Price Quantity

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

Extend the program to read this data from the fi le INVENTORY and display the inventory table with the

value of each item.

The program is given in Fig. 9.3. The fi lename INVENTORY is supplied through the keyboard. Data is read

using the function fscanf from the fi le stdin, which refers to the terminal and it is then written to the fi le that is

being pointed to by the fi le pointer fp. Remember that the fi le pointer fp points to the fi le INVENTORY.

After closing the fi le INVENTORY, it is again reopened for reading. The data from the fi le, along with the

item values are written to the fi le stdout, which refers to the screen. While reading from a fi le, care should be

taken to use the same format specifi cations with which the contents have been written to the fi le.…

 Program

 #include <stdio.h>

 main()

 {

 FILE *fp;

 int number, quantity, i;

 fl oat price, value;

 char item[10], fi lename[10];

 printf(“Input fi le name\n”);

384 Programming for Problem Solving

 scanf(“%s”, filename);

 fp = fopen(filename, “w”);

 printf(“Input inventory data\n\n”);

 printf(“Item name Number Price Quantity\n”);

 for(i = 1; i <= 3; i++)

 {

 fscanf(stdin, “%s %d %f %d”,

 item, &number, &price, &quantity);

 fprintf(fp, “%s %d %.2f %d”,

 item, number, price, quantity);

 }

 fclose(fp);

 fprintf(stdout, “\n\n”);

 fp = fopen(filename, “r”);

 printf(“Item name Number Price Quantity Value\n”);

 for(i = 1; i <= 3; i++)

 {

 fscanf(fp, “%s %d %f d”,item,&number,&price,&quantity);

 value = price * quantity;

 fprintf(stdout, “%-8s %7d %8.2f %8d %11.2f\n”,

 item, number, price, quantity, value);

 }

 fclose(fp);

 }

 Output

 Input file name

 INVENTORY

 Input inventory data

 Item name Number Price Quantity

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

 Item name Number Price Quantity Value

 AAA-1 111 17.50 115 2012.50

 BBB-2 125 36.00 75 2700.00

 C-3 247 31.75 104 3302.00

Fig. 9.3 Operations on mixed data types

File Management 385

ERROR HANDLING DURING I/O OPERATIONS

It is possible that an error may occur during I/O operations on a fi le. Typical error

situations include the following:

 1. Trying to read beyond the end-of-fi le mark.

 2. Device overfl ow.

 3. Trying to use a fi le that has not been opened.

 4. Trying to perform an operation on a fi le, when the fi le is opened for another type of operation.

 5. Opening a fi le with an invalid fi lename.

 6. Attempting to write to a write-protected fi le.

If we fail to check such read and write errors, a program may behave abnormally when an error occurs.

An unchecked error may result in a premature termination of the program or incorrect output. Fortunately, we

have two status-inquiry library functions; feof and ferror that can help us detect I/O errors in the fi les.

The feof function can be used to test for an end of fi le condition. It takes a FILE pointer as its only argument

and returns a nonzero integer value if all of the data from the specifi ed fi le has been read, and returns zero

otherwise. If fp is a pointer to fi le that has just been opened for reading, then the statement

 if(feof(fp))

 printf(“End of data.\n”);

would display the message “End of data.” on reaching the end of fi le condition.

The ferror function reports the status of the fi le indicated. It also takes a FILE pointer as its argument and

returns a nonzero integer if an error has been detected up to that point, during processing. It returns zero

otherwise. The statement

 if(ferror(fp) != 0)

 printf(“An error has occurred.\n”);

would print the error message, if the reading is not successful.

We know that whenever a fi le is opened using fopen function, a fi le pointer is returned. If the fi le cannot be

opened for some reason, then the function returns a NULL pointer. This facility can be used to test whether a

fi le has been opened or not. Example:

 if(fp == NULL)

 printf(“File could not be opened.\n”);

worked-out proBlem 9.4 e

Write a program to illustrate error handling in fi le operations.

The program shown in Fig. 9.4 illustrates the use of the NULL pointer test and feof function. When we input

fi lename as TETS, the function call

fopen(“TETS”, “r”);

returns a NULL pointer because the fi le TETS does not exist and therefore the message “Cannot open the

fi le” is printed out.

Similarly, the call feof(fp2) returns a non-zero integer when the entire data has been read, and hence the

program prints the message “Ran out of data” and terminates further reading.

 Program

 #include <stdio.h>

 main()

lo 9.3

determine how error

handling is performed

during i/o operati ons

386 Programming for Problem Solving

 {

 char *filename;

 FILE *fp1, *fp2;

 int i, number;

 fp1 = fopen(“TEST”, “w”);

 for(i = 10; i <= 100; i += 10)

 putw(i, fp1);

 fclose(fp1);

 printf(“\nInput filename\n”);

 open_file:

 scanf(“%s”, filename);

 if((fp2 = fopen(filename,”r”)) == NULL)

 {

 printf(“Cannot open the file.\n”);

 printf(“Type filename again.\n\n”);

 goto open_file;

 }

 else

 for(i = 1; i <= 20; i++)

 { number = getw(fp2);

 if(feof(fp2))

 {

 printf(“\nRan out of data.\n”);

 break;

 }

 else

 printf(“%d\n”, number);

 }

 fclose(fp2);

 }

 Output

 Input filename

 TEST

File Management 387

 Cannot open the fi le.

 Type fi lename again.

 TEST

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 Ran out of data.

 Fig. 9.4 Illustration of error handling in fi le operations

RANDOM ACCESS TO FILES

So far we have discussed fi le functions that are useful for reading and writing data

sequentially. There are occasions, however, when we are interested in accessing only

a particular part of a fi le and not in reading the other parts. This can be achieved with

the help of the functions fseek, ftell, and rewind available in the I/O library.

ftell takes a fi le pointer and return a number of type long, that corresponds to the current position. This

function is useful in saving the current position of a fi le, which can be used later in the program. It takes the

following form:

n = ftell(fp);

n would give the relative offset (in bytes) of the current position. This means that n bytes have already been

read (or written).

rewind takes a fi le pointer and resets the position to the start of the fi le. For example, the statement

rewind(fp);

n = ftell(fp);

would assign 0 to n because the fi le position has been set to the start of the fi le by rewind. Remember, the

fi rst byte in the fi le is numbered as 0, second as 1, and so on. This function helps us in reading a fi le more

than once, without having to close and open the fi le. Remember that whenever a fi le is opened for reading or

writing, a rewind is done implicitly.

fseek function is used to move the fi le position to a desired location within the fi le. It takes the following

form:

fseek(fi le_ptr, offset, position);

fi le_ptr is a pointer to the fi le concerned, offset is a number or variable of type long, and position is an integer

number. The offset specifi es the number of positions (bytes) to be moved from the location specifi ed by

position. The position can take one of the following three values:

lo 9.4

explain random

access to fi les

388 Programming for Problem Solving

 Value Meaning

 0 Beginning of fi le

 1 Current position

 2 End of fi le

The offset may be positive, meaning move forwards, or negative, meaning move backwards.

Examples in Table 9.2 illustrate the operations of the fseek function:

Table 9.2 Operations of fseek Function

Statement Meaning

fseek(fp,0L,0); Go to the beginning.

(Similar to rewind)

fseek(fp,0L,1); Stay at the current position.

(Rarely used)

fseek(fp,0L,2); Go to the end of the fi le, past the last character of the fi le.

fseek(fp,m,0); Move to (m+1)th byte in the fi le.

fseek(fp,m,1); Go forward by m bytes.

fseek(fp,-m,1); Go backward by m bytes from the current position.

fseek(fp,-m,2); Go backward by m bytes from the end. (Positions the fi le to the mth character

from the end.)

When the operation is successful, fseek returns a zero. If we attempt to move the fi le pointer beyond the

fi le boundaries, an error occurs and fseek returns –1 (minus one). It is good practice to check whether an error

has occurred or not, before proceeding further.

worked-out proBlem 9.5 e

Write a program that uses the functions ftell and fseek.

A program employing ftell and fseek functions is shown in Fig. 9.5. We have created a fi le RANDOM with the

following contents:

 Position – – – –> 0 1 2 . . . 25

 Character

 stored – – – –> A B C . . . Z

We are reading the fi le twice. First, we are reading the content of every fi fth position and printing its value

along with its position on the screen. The second time, we are reading the contents of the fi le from the end

and printing the same on the screen.

During the fi rst reading, the fi le pointer crosses the end-of-fi le mark when the parameter n of fseek(fp,n,0)

becomes 30. Therefore, after printing the content of position 30, the loop is terminated.

For reading the fi le from the end, we use the statement

fseek(fp,–1L,2);

to position the fi le pointer to the last character. Since every read causes the position to move forward by one

position, we have to move it back by two positions to read the next character. This is achieved by the function

fseek(fp, –2L, 1);

in the while statement. This statement also tests whether the fi le pointer has crossed the fi le boundary or not.

The loop is terminated as soon as it crosses it.

File Management 389

 Program

 #include <stdio.h>

 main()

 {

 FILE *fp;

 long n;

 char c;

 fp = fopen(“RANDOM”, “w”);

 while((c = getchar()) != EOF)

 putc(c,fp);

 printf(“No. of characters entered = %ld\n”, ftell(fp));

 fclose(fp);

 fp = fopen(“RANDOM”,”r”);

 n = 0L;

 while(feof(fp) == 0)

 {

 fseek(fp, n, 0); /* Position to (n+1)th character */

 printf(“Position of %c is %ld\n”, getc(fp),ftell(fp));

 n = n+5L;

 }

 putchar(‘\n’);

 fseek(fp,–1L,2); /* Position to the last character */

 do

 {

 putchar(getc(fp));

 }

 while(!fseek(fp,–2L,1));

 fclose(fp);

 }

 Output

 ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z

 No. of characters entered = 26

 Position of A is 0

 Position of F is 5

 Position of K is 10

390 Programming for Problem Solving

 Position of P is 15

 Position of U is 20

 Position of Z is 25

 Position of is 30

 ZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 9.5 Illustration of fseek and ftell functions

worked-out proBlem 9.6 m

Write a program to append additional items to the fi le INVENTORY created in Program 9.3 and print the

total contents of the fi le.

The program is shown in Fig. 9.6. It uses a structure defi nition to describe each item and a function append()

to add an item to the fi le.

On execution, the program requests for the fi lename to which data is to be appended. After appending the

items, the position of the last character in the fi le is assigned to n and then the fi le is closed.

The fi le is reopened for reading and its contents are displayed. Note that reading and displaying are done

under the control of a while loop. The loop tests the current fi le position against n and is terminated when they

become equal.

 Program

 #include <stdio.h>

 struct invent_record

 {

 char name[10];

 int number;

 fl oat price;

 int quantity;

 };

 main()

 {

 struct invent_record item;

 char fi lename[10];

 int response;

 FILE *fp;

 long n;

 void append (struct invent_record *x, fi le *y);

 printf(“Type fi lename:”);

 scanf(“%s”, fi lename);

 fp = fopen(fi lename, “a+”);

File Management 391

 do

 {

 append(&item, fp);

 printf(“\nItem %s appended.\n”,item.name);

 printf(“\nDo you want to add another item\

 (1 for YES /0 for NO)?”);

 scanf(“%d”, &response);

 } while (response == 1);

 n = ftell(fp); /* Position of last character */

 fclose(fp);

 fp = fopen(filename, “r”);

 while(ftell(fp) < n)

 {

 fscanf(fp,”%s %d %f %d”,

 item.name, &item.number, &item.price, &item.quantity);

 fprintf(stdout,”%-8s %7d %8.2f %8d\n”,

 item.name, item.number, item.price, item.quantity);

 }

 fclose(fp);

 }

 void append(struct invent_record *product, File *ptr)

 {

 printf(“Item name:”);

 scanf(“%s”, product–>name);

 printf(“Item number:”);

 scanf(“%d”, &product–>number);

 printf(“Item price:”);

 scanf(“%f”, &product–>price);

 printf(“Quantity:”);

 scanf(“%d”, &product–>quantity);

 fprintf(ptr, “%s %d %.2f %d”,

 product–>name,

 product–>number,

 product–>price,

 product–>quantity);

 }

 Output

 Type filename:INVENTORY

 Item name:XXX

392 Programming for Problem Solving

 Item number:444

 Item price:40.50

 Quantity:34

 Item XXX appended.

 Do you want to add another item(1 for YES /0 for NO)?1

 Item name:YYY

 Item number:555

 Item price:50.50

 Quantity:45

 Item YYY appended.

 Do you want to add another item(1 for YES /0 for NO)?0

 AAA-1 111 17.50 115

 BBB-2 125 36.00 75

 C-3 247 31.75 104

 XXX 444 40.50 34

 YYY 555 50.50 45

Fig. 9.6 Adding items to an existing fi le

worked-out proBlem 9.7 H

Write a C program to reverse the fi rst n character in a fi le. The fi le name and the value of n are specifi ed on

the command line. Incorporate validation of arguments, that is, the program should check that the number

of arguments passed and the value of n that are meaningful.

 Program

 #include <stdio.h>

 #include <conio.h>

 #include <stdlib.h>

 #include <string.h>

 void main(int argc, char *argv[])

 {

 FILE *fs;

 Char str[100];

 int i,n,j;

 if(argc!=3)/*Checking the number of arguments given at command line*/

 {

 puts(“Improper number of arguments.”);

 exit(0);

 }

 n=atoi(argv[2]);

File Management 393

 fs = fopen(argv[1], “r“);/*Opening the souce file in read mode*/

 if(fs==NULL)

 {

 printf(“Source file cannot be opened.”);

 exit(0);

 }

 i=0;

 while(1)

 {

 if(str[i]=fgetc(fs)!=EOF)/*Reading contents of file character by character*/

 j=i+1:

 else

 break;

 }

 fclose(fs);

 fs=fopen(argv[1],”w”);/*Opening the file in write mode*/

 if(n<0||n>strlen(str))

 {

 printf(“Incorrect value of n. Program will terminate...\n\n”);

 getch();

 exit(1);

 }

 j=strlen(str);

 for (i=1;i<=n;i++)

 {

 fputc(str[j],fs);

 j–;

 }

 fclose(fs);

 printf(“\n%d characters of the file successfully printed in reverse order”,n);

 getch();

 }

 Output

 D:\TC\BIN\program source.txt 5

 5 characters of the file successfully printed in reverse order

 Fig. 9.7 Program to reverse n characters in a file

394 Programming for Problem Solving

COMMAND LINE ARGUMENTS

What is a command line argument? It is a parameter supplied to a program when the

program is invoked. This parameter may represent a fi lename the program should

process. For example, if we want to execute a program to copy the contents of a

fi le named X_FILE to another one named Y_FILE, then we may use a command

line like

C > PROGRAM X_FILE Y_FILE

where PROGRAM is the fi lename where the executable code of the program is stored. This eliminates the

need for the program to request the user to enter the fi lenames during execution. How do these parameters

get into the program?

We know that every C program should have one main function and that it marks the beginning of the

program. But what we have not mentioned so far is that it can also take arguments like other functions. In fact

main can take two arguments called argc and argv and the information contained in the command line is

passed on to the program through these arguments, when main is called up by the system.

The variable argc is an argument counter that counts the number of arguments on the command line.

The argv is an argument vector and represents an array of character pointers that point to the command line

arguments. The size of this array will be equal to the value of argc. For instance, for the command line given

above, argc is three and argv is an array of three pointers to strings as shown below:

 argv[0] –> PROGRAM

 argv[1] –> X_FILE

 argv[2] –> Y_FILE

In order to access the command line arguments, we must declare the main function and its parameters as

follows:

 main(int arge, char *argv[])

 {

 }

The fi rst parameter in the command line is always the program name and therefore argv[0] always

represents the program name.

worked-out proBlem 9.8 e

Write a program that will receive a fi lename and a line of text as command line arguments and write the

text to the fi le.

Figure 9.8 shows the use of command line arguments. The command line is

F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

Each word in the command line is an argument to the main and therefore the total number of arguments

is 9.

The argument vector argv[1] points to the string TEXT and therefore the statement

fp = fopen(argv[1], “w”);

opens a fi le with the name TEXT. The for loop that follows immediately writes the remaining 7 arguments to

the fi le TEXT.

lo 9.5

know the command

line arguments

File Management 395

Program

 #include <stdio.h>

 main(int arge, char *argv[])

 {

 FILE *fp;

 int i;

 char word[15];

 fp = fopen(argv[1], “w”); /* open file with name argv[1] */

 printf(“\nNo. of arguments in Command line = %d\n\n”,argc);

 for(i = 2; i < argc; i++)

 fprintf(fp,”%s “, argv[i]); /* write to file argv[1] */

 fclose(fp);

 /* Writing content of the file to screen */

 printf(“Contents of %s file\n\n”, argv[1]);

 fp = fopen(argv[1], “r”);

 for(i = 2; i < argc; i++)

 {

 fscanf(fp,”%s”, word);

 printf(“%s “, word);

 }

 fclose(fp);

 printf(“\n\n”);

 /* Writing the arguments from memory */

 for(i = 0; i < argc; i++)

 printf(“%*s \n”, i*5,argv[i]);

 }

 Output

 C>F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGG

 No. of arguments in Command line = 9

 Contents of TEXT file

396 Programming for Problem Solving

 AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

 C:\C\F12_7.EXE

 TEXT

 AAAAAA

 BBBBBB

 CCCCCC

 DDDDDD

 EEEEEE

 FFFFFF

 GGGGGG

Fig. 9.8 Use of command line arguments

key ConCeptS

• Filename: It is a string of characters that make up a valid filename for the operating system. [lo 9.1]

• FSeek: It is a function that sets the position to a desired point in the file. [lo 9.4]

• Ftell: It is a function that returns the current position in the file. [lo 9.4]

• rewind: It is a function that sets the position to the beginning of the file. [lo 9.4]

• Command line argument: It is a parameter supplied to a program from command prompt when the program

is invoked. [lo 9.5]

alwayS rememBer

∑ Do not try to use a file before opening it. [lo 9.1]

∑ Remember, when an existing file is open using ‘w’ mode, the contents of file are deleted. [lo 9.1]

∑ When a file is used for both reading and writing, we must open it in ‘w+’ mode. [lo 9.1]

∑ It is an error to omit the file pointer when using a file function. [lo 9.1]

∑ It is an error to open a file for reading when it does not exist. [lo 9.1]

∑ It is an error to access a file with its name rather than its file pointer. [lo 9.1]

∑ It is a good practice to close all files before terminating a program. [lo 9.1]

∑ EOF is integer type with a value –1. Therefore, we must use an integer variable to test EOF. [lo 9.2]

∑ It is an error to try to read from a file that is in write mode and vice versa. [lo 9.2]

∑ To avoid I/O errors while working with files, it is a good practice to include error handling code in programs

by using functions such as feof and ferror. [lo 9.3]

∑ It is an error to attempt to place the file marker before the first byte of a file. [lo 9.4]

∑ It is a good practice to check the return value of fseek function every time it is invoked. A positive return

value ensures that the file pointer is within the file boundaries. [lo 9.5]

File Management 397

review QueStionS

 9.1 State whether the following statements are true or false.

 (a) A file must be opened before it can be used. [LO 9.1 E]

 (b) All files must be explicitly closed. [LO 9.1 E]

 (c) Files are always referred to by name in C programs. [LO 9.1 E]

 (d) Using fseek to position a file beyond the end of the file is an error. [LO 9.1 M]

 (e) Function fseek may be used to seek from the beginning of the file only. [LO 9.4 E]

 9.2 Fill in the blanks in the following statements.

 (a) The mode _______ is used for opening a file for updating. [LO 9.1 E]

 (b) The function _____ is used to write data to randomly accessed file. [LO 9.2 M]

 (c) The function ____gives the current position in the file. [LO 9.4 E]

 (d) The function _______ may be used to position a file at the beginning. [LO 9.4 M]

 9.3 Describe the use and limitations of the functions getc and putc. [LO 9.2 E]

 9.4 What is the significance of EOF? [LO 9.2 M]

 9.5 When a program is terminated, all the files used by it are automatically closed. Why is it then necessary

to close a file during execution of the program? [LO 9.1 H]

 9.6 Distinguish between the following functions:

 (a) getc and getchar [LO 9.2 E]

 (b) printf and fprintf [LO 9.2 E]

 (c) feof and ferror [LO 9.3 M]

 9.7 How does an append mode differ from a write mode? [LO 9.1 M]

 9.8 What are the common uses of rewind and ftell functions? [LO 9.4 E]

 9.9 Explain the general format of fseek function? [LO 9.4 E]

 9.10 What is the difference between the statements rewind(fp); and fseek(fp,0L,0);? [LO 9.4 M]

 9.11 What does the following statement mean? [LO 9.1 H]

 FILE(*p) (void)

 9.12 What does the following statement do? [LO 9.2 M]

 while ((c = getchar() != EOF)

 putc(c, fl);

 9.13 What does the following statement do? [LO 9.2 M]

 while ((m = getw(fl)) != EOF)

 printf(“%5d”, m);

 9.14 What does the following segment do? [LO 9.2 H]

 for (i = 1; i <= 5; i++)

 {

 fscanf(stdin, “%s”, name);

 fprintf(fp, “%s”, name);

 }

 9.15 What is the purpose of the following functions? [LO 9.3 E]

 (a) feof ()

 (b) ferror ()

398 Programming for Problem Solving

 9.16 Give examples of using feof and ferror in a program. [LO 9.3 M]

 9.17 Can we read from a file and write to the same file without resetting the file pointer? If not, why?

[LO 9.2 H]

 9.18 When do we use the following functions? [LO 9.4 M]

 (a) free ()

 (b) rewind ()

 9.19 Describe an algorithm that will append the contents of one file to the end of another file. [LO 9.1 E]

deBugging exerCiSeS

 9.1 Find error, if any, in the following statements: [LO 9.1 M]

 FILE fptr;

 fptr = fopen (“data”, “a+”);

programming exerCiSeS

 9.1 Write a program to copy the contents of one file into another. [LO 9.2 E]

 9.2 Two files DATA1 and DATA2 contain sorted lists of integers. Write a program to produce a third file

DATA which holds a single sorted, merged list of these two lists. Use command line arguments to

specify the file names. [LO 9.2 M]

 9.3 Write a program that compares two files and returns 0 if they are equal and 1 is they are not.

[LO 9.2 E]

 9.4 Write a program that appends one file at the end of another. [LO 9.4 E]

 9.5 Write a program that reads a file containing integers and appends at its end the sum of all the integers.

[LO 9.4 M]

 9.6 Write a program that prompts the user for two files, one containing a line of text known as source file

and other, an empty file known as target file and then copies the contents of source file into target file.

[LO 9.1, 9.2, 9.5 H]

 Modify the program so that a specified character is deleted from the source file as it is copied to the

target file.

 9.7 Write a program that requests for a file name and an inte ger, known as offset value. The program then

reads the file starting from the location specified by the offset value and prints the contents on the

screen. [LO 9.4 M]

 Note: If the offset value is a positive integer, then printing skips that many lines. If it is a negative

number, it prints that many lines from the end of the file. An appropriate error message should be

printed, if anything goes wrong.

 9.8 Write a program to create a sequential file that could store details about five products. Details include

product code, cost and number of items available and are provided through keyboard. [LO 9.2 M]

 9.9 Write a program to read the file created in Exercise 9.8 and compute and print the total value of all the

five products. [LO 9.2 M]

 9.10 Rewrite the program developed in Exercise 9.8 to store the details in a random access file and print

the details of alter nate products from the file. Modify the program so that it can output the details of a

product when its code is specified inter actively. [LO 9.2, 9.4 H]

	Title
	Contents
	1 Introduction to Computer and Programming
	2 Fundamentals of C
	3 Control Structure in C
	4 Array & String
	5 Functions
	6 Pointers
	7 Structure
	8 Dynamic Memory Allocation
	9 File Management

