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Preface to the Third Edition

This third enlarged edition of the book is presented after thorough revision, incorporating the valuable 
suggestions sent by readers on enhancing the contents of the second edition. The book is ideal for 
students of B.Tech./B.E. students of  mechanical, production, industrial, aeronautical, agricultural, 
civil, chemical, metallurgical and automobile engineering of all Indian and foreign universities. I am 
thankful to the readers who have adopted this book as a text or reference book.

The chapter on kinematics has been split into two chapters: Velocity in Mechanisms and Acceleration 
in Mechanisms. Three new chapters on Kinematic Synthesis of Planar Mechanisms, Mechanical 
Vibrations and Automatic Control have been added. Ample multiple-choice questions from IES, IAS 
and GATE examinations, with explanatory notes, have been added for the benefit of students who 
aspire to appear for competitive examinations. Each chapter has been enriched with solved numerical 
examples for the benefit of the readers. An added feature of the book is the inclusion of Summary for 
Quick Revision at the end of each chapter to enable quick recapitulation of the discussed concepts. I 
hope that readers will like the book even more in its present form.

Utmost care has been taken while proofreading to make the text error-free. However, it is possible 
that a few errors might have been left unnoticed inadvertently. Suggestions from readers are invited for 
improving the book further.

I appreciate the continued support received from my family while preparing the manuscript for this 
book.

Sadhu Singh





Preface

A machine is a device which transforms energy available in one form to another to do certain type of 
useful work. A machine consists of many mechanisms and they in turn comprise of many links. The 
subject of Theory of Machines is concerned with the kinematics and kinetics of the various links 
of the machine. The elasticity of the links and the effect of clearances in the joints of the links in 
transmitting motion is neglected, as this is beyond the scope of this book.

An undergraduate course on this subject is studied by most of the students of engineering and 
technology. The course material in this book has been limited to undergraduate level. The author has 
taught this course for over thirty years and his rich experience has been reflected in the book. The reading 
material has been presented in a simple manner which can be easily assimilated by the readers.

The book contains twelve chapters. The first chapter deals with various types of mechanisms, their 
velocity and acceleration diagrams. This is the fundamental chapter and more stress must be laid in 
understanding the various concepts. Second chapter deals with the lower pairs to generate intermittent, 
approximate and accurate straight line motion. The working of Oldham’s coupling, automobile steering 
gears, parallel linkages and engine pressure indicators have been explained in this chapter. The 
gyroscopic and precessional motion is described in chapter three and laws of friction in chapter four. 
Power transmission methods by belts, chains and ropes are explained in chapter five. Brakes, clutches, 
and dynamometers are dealt with in chapter six, governors in chapter seven and cams in chapter eight. 
The effect of inertia forces and turning moment is described in chapter nine. Chapter ten is concerned 
with the problems of balancing of rotating and reciprocating parts. The various types of gears and gear 
trains are described in chapter eleven and twelve respectively.

All chapters contain a large number of solved and unsolved problems. The author has taken utmost 
care in solving the numerical problems. However, errors if still left, may be brought to his notice.

An added feature of the book is the inclusion of Machine Theory Laboratory Practice, Glossary of 
terms and Multiple-choice Questions as appendices. These shall be highly useful to the readers.

It is hoped that the book in its present form shall be liked by the readers. Suggestions for the 
improvement of the book shall be welcomed.

I express my sincere thanks to all my family members for their patience and support during the 
writing of this book. The financial support provided by the publishers to partially meet the expenses to 
prepare the manuscript of the book is highly acknowledged.

Sadhu Singh
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1.1 INTRODUCTION
A mechanism is a set of machine elements or components or parts arranged in a specific order to produce 
a specified motion. The machine elements or components are considered rigid or resistant bodies that 
do not deform under the action of forces. Resistant bodies are bodies that do not suffer appreciable 
distortion or change in physical form due to forces acting on them, e.g. springs, belts, and fluids. Elastic 
bodies are also resistant bodies. They are capable of transmitting the required forces with negligible 
deformation. Rigid bodies are bodies that do not deform under the action of forces. All resistant bodies 
are considered rigid bodies for the purpose of transmitting motion. In this chapter, we shall study the 
different ways of connecting rigid (resistant) bodies to obtain various types of mechanisms.
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2 Theory of Machines

Kinematics is a subject that deals with the study of relative motion of parts constituting a machine, 
neglecting forces producing the motion. A structure is an assemblage of a number of resistant bodies 
meant to take up loads or subjected to forces having straining actions, but having no relative motion 
between its members. Frame is a structure that supports the moving parts of a machine.

1.2 KINEMATIC JOINT
A kinematic joint is the connection between two links by a pin. There is clearance between the pin and 
the hole in the ends of the links being connected so that there is free motion of the links.

1.2.1 Type of Kinematic Joints
The type of kinematic joints generally used in mechanisms are:

1. Binary joint: In a binary joint, two links are connected at the same joint by a pin, as shown in  
Fig.1.1(a).

2. Ternary joint: In a ternary joint, three links are connected at the same joint by a pin. It is equivalent 
to two binary joints. In Fig.1.1(b), joints B and C are ternary joints and others are binary joints.

3. Quaternary joint: When four links are connected at the same joint by a pin, it is called a quaternary 
joint. One quaternary joint is equivalent to four binary joints. In Fig.1.1(c), joint B is a quaternary 
joint; A, C, E, F are ternary joints; and D is a binary joint.

A

B

C

D A

B

E

C

D A

B

E
F

C

D

(a) Binary joints (b) Ternary joints (c) Quaternary joints

Fig.1.1 Type of kinematic joints

1.3 ELEMENTS OR LINKS
A link (or element or kinematic link) is a resistant body (or assembly of resistant bodies) constitut-
ing a part (or parts) of the machine, connecting other parts, which have motion, relative to it. A slider 
crank mechanism of an internal combustion engine, shown in Fig.1.2, consists of four links, namely, 
(1) frame, (2) crank, (3) connecting rod and (4) slider.

1 (Frame)

(Slider)

2
(Crank)

3 (Connecting rod)

4

Fig.1.2 Kinematic links of a slider crank mechanism
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1.3.1 Classification of Links
Links can be classified as binary, ternary, or quaternary depending upon the ends on which revolute 
or turning pairs can be placed, as shown in Fig.1.3. A binary link has two vertices, a ternary has three 
vertices, and a quaternary link has four vertices, and so on.

(a) Binary link (b) Ternary link (c) Quaternary link

Fig.1.3 Types of links

There are four types of links: rigid, flexible, fluid, and floating links.

Rigid link: A rigid link does not undergo any deformation while transmitting motion. Links in 
general are elastic in nature. They are considered rigid if they do not undergo appreciable defor-
mation while transmitting motion, e.g. connecting rod, crank, tappet rod, etc.

Flexible link: A flexible link is one which while transmitting motion is partly deformed in a 
manner not to affect the transmission of motion, e.g. belts, ropes, chains, springs, etc.

Fluid link: A fluid link is deformed by having fluid in a closed vessel and the motion is transmit-
ted through the fluid by pressure, as in the case of a hydraulic press, hydraulic jack, and fluid 
brake.

Floating link: It is a link which is not connected to the frame.

1.4 KINEMATIC PAIR
The two links of a machine, when in contact with each other, are said to form a pair. A kinematic pair 
consists of two links that have relative motion between them. In Fig.1.2, links 1 and 2, 2 and 3, 3 and 4, 
and 4 and 1 constitute kinematic pairs.

1.4.1 Classification of Kinematic Pairs
Kinematic pairs may be classified according to the following considerations:

Type of relative motion

Type of contact

Type of mechanical constraint.

1. Kinematic Pairs According to the Relative Motion

Sliding pair: It consists of two elements connected in such a manner that one is constrained 
to have sliding motion relative to another. For example, a rectangular bar in a rectangular hole 
(Fig.1.4(a)), piston and cylinder of an engine, cross-head and guides of a steam engine, ram and 
its guides in a shaper, tailstock on the lathe bed, etc. all constitute sliding pairs.

Turning (revolute) pair: It consists of two elements connected in such a manner that one is 
constrained to turn or revolve about a fixed axis of another element. For example, a shaft with 
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collar at both ends revolving in a circular hole (Fig.1.4(b)) crankshaft turning in a bearing, cycle 
wheels revolving over their axles, etc. all constitute turning pairs.

Rolling pairs: When two elements are so connected that one is constrained to roll on another 
element which is fixed, forms a rolling pair. Ball and roller bearings, a wheel rolling on a flat 
surface (Fig.1.4(c)) are examples of rolling pairs.

Screw (or helical) pair: When one element turns about the other element by means of threads, 
it forms a screw pair. The motion in this case is a combination of sliding and turning. The lead 
screw of a lathe with nut, bolt with a nut Fig.1.4(d), screw with nut of a jack, etc. are some 
examples of screw pairs.

Spherical pair: When one element in the form of a sphere turns about the other fixed element, it 
forms a spherical pair. The ball and socket joint Fig.1.4(e), pen stand, the mirror attachment of 
vehicles, etc. are some examples of spherical pair.

2. Kinematic Pairs According to the Type of Contact

Lower pair: When the two elements have surface (or area) contact while in motion and  
the relative motion is purely turning or sliding, they are called a lower pair. All sliding pairs, 
turning pairs, and screw pairs form lower pairs. For example, nut turning on a screw, shaft 
rotating in a bearing, universal joint, all pairs of a slider crank mechanism, pantograph etc., are 
lower pairs.

Fig.1.4 Types of kinematic pairs according to the type of relative motion
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Higher pairs: When the two elements have point or line contact while in motion and the relative 
motion being the combination of sliding and turning, then the pair is known as a higher pair. 
Belts, ropes, and chains drive, gears, cam and follower, ball and roller bearings, wheel rolling 
on a surface, etc., all form higher pairs.

3. Kinematic Pairs According to the Type of Mechanical Constraint

Closed pair: When the two elements of a pair are held together mechanically in such a manner 
that only the required type of relative motion occurs, they are called a closed pair. All lower 
pairs and some higher pairs (e.g. enclosed cam and follower) are closed pairs (Fig.1.5(a)).

Unclosed pair: When the two elements of a pair are not held mechanically and are held in 
contact by the action of external forces, are called unclosed pair, e.g. cam and spring loaded 
follower pair (Fig.1.5(b)).

Fig.1.5 Closed and unclosed pairs

1.5 CONSTRAINED MOTION
The three types of constrained motion are as follows:

Completely constrained motion: When the motion between a pair takes place in a definite direc-
tion irrespective of the direction of force applied, then the motion is said to be a completely 
constrained motion. For example, a square bar in a square hole, a shaft with collars at each end 
in a circular hole, a piston in the cylinder of an internal combustion engine, have all completely 
constrained motion.

Partially (or successfully) constrained motion: When the constrained motion between a pair 
is not completed by itself but by some other means, it is said to be successfully constrained 
motion. For example, the motion of a shaft in a footstep bearing becomes successfully con-
strained motion when compressive load is applied to the shaft (Fig.1.6(a)).

Incompletely constrained motion: When the motion between a pair can take place in more than 
one direction, it is said to be incompletely constrained motion, e.g. a circular shaft in a circular 
hole. (Fig.1.6(b)).
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Load

(a) Successfully constrained motion (b) Incompletely constrained motion

Shaft

Fig.1.6 Types of constrained motion

1.6 KINEMATIC CHAIN
A kinematic chain may be defined as an assembly of links in which the relative motion of the links is 
possible and the motion of each relative to the others is definite. The last link of the kinematic chain 
is attached to the first link. The four-bar mechanism and the slider crank mechanism are some of the 
examples of a kinematic chain.

The following relationship holds for a kinematic chain having lower pairs only:

L  2P  4 (1.1a)

J   3L/2  2 (1.1b)

where L  number of binary links
P  number of lower pairs
J  number of binary joints.

If LHS  RHS, then chain is called locked chain or redundant chain.
LHS  RHS, then chain is constrained
LHS  RHS, then chain is unconstrained

For a kinematic chain having higher pairs, each higher pair is taken equivalent to two lower pairs 
and an additional link. In that case,

J
H

L
2

3
2

2
  

(1.1c)

where H  number of higher pairs.

Example 1.1

A chain with three links is shown in Fig.1.7. Prove that the chain is locked.

Fig.1.7 Three-bar chain
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Solution 

Number of binary joints, J  3
Number of binary links, L  3
Number of lower pairs, P  3

Now L  2P  4

 3  2  3  4  2

 LHS  RHS

Also

  
J L

3

2
2 

3
3

2
3 2 2  .

LHS  RHS

Therefore, it is a locked chain.

Example 1.2

A four-bar chain is shown in Fig.1.8. Prove that it is a constrained chain.

Fig.1.8 Four-bar chain

Solution 

Number of binary joints, J  4
Number of binary links, L  4
Number of lower pairs, P  4

Now L  2P  4

 4  2  4  4  4

 LHS  RHS

Also

 
J L

3

2
2 

 
4

3

2
4 2 4

 LHS  RHS

Therefore, it is a constrained chain.
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Example 1.3

A five-bar chain is shown in Fig.1.9. Prove that it is an unconstrained chain.

Fig.1.9 Five-bar chain

Solution 

Number of binary joints, J  5
Number of binary links, L  5
Number of lower pairs, P  5

Now L  2P  4

 5  2  5  4  6

 LHS  RHS

Also

 
J L

3

2
2 

 
5

3

2
5 2 5 5 .

 LHS  RHS

Therefore, it is an un-constrained chain.

Example 1.4

Show that the chain shown in Fig.1.10 is an unconstrained kinematic chain.

Fig.1.10 Six-bar chain

Solution 

Number of binary joints, J  7 (A  1, B  2, C  2, D  1, E  1)
Number of binary links, L  6
Number of lower pairs, P  9 ( 1  2, 2  3, 3  4, 2  4, 4  5, 5  3, 5  6, 3  6, 1  6)



9 Mechanisms 

Now L  2P  4

 6  2  9  4  14

 LHS  RHS

Also

 
J L

3

2
2 

 
7

3

2
6 2 7 

 LHS  RHS

Therefore, it is an un-constrained chain.

Example 1.5

Show that the chain shown in Fig.1.11 is not a kinematic chain.

Fig.1.11 Nine-bar chain

Solution 

Number of binary joints, J  13 (A  2, B  4, C  2, D  1, E  2, F  2)
Number of binary links, L  9
Number of lower pairs, P  13 (D  1, A, C, E, F  2 each, B  4)

Now L  2P  4

 9  2  13  4  22

 LHS  RHS

Also

 
J L

3

2
2 

 
13 3

2
9 2 11 5  .

 LHS  RHS

Therefore, it is not a kinematic chain. It is a locked chain or a frame.
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Example 1.6

Determine the type of chain in Fig.1.12(a)–(e).

Fig.1.12 Different types of chains

Solution 

(a) (i) L  2P  4 (ii) J  3L/2  2

L  3, P  3, J  3

LHS  3 LHS  3

RHS  2  3  4  2 RHS  3  3/2  2  2.5

LHS  RHS LHS  RHS

It is a locked chain and not a kinematic chain.

(b) L  4, P  4, J  4

LHS  4 LHS  4

RHS  2  4  4  4 RHS  3  4/2  2  4

LHS  RHS LHS  RHS

It is a constrained kinematic chain.

(c) L  5, P  5, J  5

LHS  5 LHS  5

RHS  2  5  4  6 RHS  3  5/2  2  5.5

LHS  RHS LHS  RHS

It is an unconstrained chain and not a kinematic chain.

(d) L  6, P  5, J  7

LHS  6 LHS  7

RHS  2  5  4  6 RHS  3  6/2  2  7

LHS  RHS LHS  RHS

It is a constrained kinematic chain.
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(e) L  4, P  4, J  4

LHS  4 LHS  4

RHS  2  4  4  4 RHS  3  4/2  2  4

LHS  RHS LHS  RHS

It is a constrained kinematic chain.

1.7 MECHANISM
When one of the links of a kinematic chain is fixed, the chain is called a mechanism.

1.7.1 Types of Mechanisms
The mechanisms are of the following types:

Simple mechanism: A mechanism which has four links.

Compound mechanism: A mechanism which has more than four links.

Complex mechanism: It is formed by the inclusion of ternary or higher order floating link to a 
simple mechanism.

Planar mechanism: When all the links of the mechanism lie in the same plane.

Spatial mechanism: When the links of the mechanism lie in different planes.

1.7.2 Equivalent Mechanisms
Turning pairs of plane mechanisms may be replaced by other types of pairs such as sliding pairs or 
cam pairs. The new mechanism thus obtained having the same number of degrees of freedom as the 
original mechanism is called the equivalent mechanism. The equivalent mechanism will have same 
degrees of freedom and shall be kinematically similar.

The following rules may be used to obtain the equivalent mechanism:

1. A sliding pair is equivalent to a turning pair, as shown in Fig.1.13(a).

2. A spring can be replaced by two binary links, as shown in Fig.1.13(b).

3. A cam pair can be replaced by one binary link together with two turning pairs at each end, as shown 
in Fig.1.13(c).

1.8 MECHANISM AND MACHINES
A machine is a device that transforms energy available in one form to another to do certain type of 
desired useful work. The parts of the machine move relative to one another. Its links may transmit both 
power and motion. On the other hand, a mechanism is a combination of rigid or restraining bodies, 
which are so shaped and connected that they move upon each other with definite relative motion. A 
mechanism is obtained when one of the links of the kinematic chain is fixed. A machine is a combi-
nation of two or more mechanisms arranged in such a way so as to obtain the required motion and 
transfer the energy to some desired point by the application of energy at some other convenient point. 
A machine is not able to move itself and must get the motive power from some source.
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Fig.1.13 Equivalent mechanisms
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Some examples of mechanisms are: slider crank, typewriter, clocks, watches, spring toys, etc. 
Steam engine, internal combustion engine, lathe, milling machine, drilling machine, etc. are some 
examples of machines.

1.8.1 Classification of Machines
The machines may be classified as the following:

Simple machine: In a simple machine, there is one point of application for the effort and one 
point for the load to be lifted. Some examples of simple machines are lever, screw jack, inclined 
plane, bicycle, etc.

Compound machine: In a compound machine, there are more than one point of application for 
the effort and the load. It may be thought of as a combination of many simple machines. Some 
examples of compound machines are lathe machine, grinding machine, milling machine, print-
ing machine, etc.

1.9 DEGREES OF FREEDOM
An unconstrained rigid body moving in space can have three translations and three rotational motions 
(i.e. six motions) about the three mutually perpendicular axes. Degrees of freedom of a kinematic pair 
is defined as the number of independent relative motions, both translational and rotational, a kinematic 
pair can have.

Degrees of freedom  6  number of restraints (1.2)

The degrees of freedom of some of the systems are as follows:

A rigid body has 6 degrees of freedom.

A rectangular bar sliding in a rectangular hole has one degree of freedom as the motion can be 
expressed by the linear displacement only.

The position of the crank of a slider crank mechanism can be expressed by the angle turned 
through and thus has one degree of freedom.

A circular shaft rotating in a hole and also translating parallel to its axis has two degrees of 
freedom, i.e. angle turned through and displacement.

A ball and a socket joint has three degrees of freedom.

1.9.1 Degrees of Freedom of Planar Mechanisms
Mobility of a mechanism: The mobility of a mechanism is defined as the number of degrees of 
freedom it possesses. An equivalent definition of mobility is the minimum number of independ-
ent parameters required to specify the location of every link within a mechanism.

Kutzbach criterion: The Kutzbach criterion for determining the number of degrees of freedom 
of a planar mechanism is:

F  3(n  1)  2p  h (1.3)

 where F  degrees of freedom
 n  total number of links in a mechanism out of which one is a fixed link.
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 n  1  number of movable links
 p  number of simple joints or lower pairs having one degree of freedom
 h  number of higher pairs having two degrees of freedom and so on.

When two links are joined by a hinge, two degrees of freedom are lost. Hence for each joint two 
degrees of freedom are lost. Therefore, for p number of joints the number of degrees of freedom lost 
are 2p. When a kinematic chain is made up of different type of links, then the number of lower pairs 
p is computed as follows:

p  (1/2) [2n
2
 + 3n

3
 + 4n

4
 + ………] (1.4)

 where n
2
  number of binary links

 n
3
  number of ternary links, and so on.

To determine the degrees of freedom of a mechanism, the presence of a redundant link or redun-
dant pair may also be considered.

(i)  A mechanism may have one or more links which do not introduce any extra constraint. Such 
links are called redundant links (n

r
) and should not be taken into account. Similarly redundant 

joints (p
r
) should also not be taken into account.

In Fig.1.14(a), links 3 and 4 are parallel and are termed as redundant links, as none of them pro-
duces extra constraint. By removing one of the two links, the motion remains the same. So one of the 
two links is considered for calculating the degrees of freedom.

The corresponding kinematic pairs either between links 4 and 2, and 4 and 5; or 3 and 2, and 3 and 
5 are considered as redundant pair. Therefore, either of the two links and the corresponding kinematic 
pair should be considered while calculating the degrees of freedom.

Fig.1.14

In Fig.1.14(b), links AB and CD are identical and each leads to same constraint.

(ii)  Sometimes one or more links of a mechanism may have redundant degrees of freedom. If a 
link can be moved without causing any movement in the rest of the mechanism then the link 
is said to have redundant degree of freedom (F

r
).

Fig.1.15
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In Fig.1.15(a), the link 3 can slide without causing any movement to the mechanism. Thus link 
3 represents one redundant degree of freedom. In Fig.1.15(b), roller can rotate without causing any 
movement in the rest of the mechanism.

Thus Eq. (1) can be modified as:

 F  3 (n  n
r
  1)  2(p  p

r
)  h  F

r
 (1.5)

1.9.2 Planar Mechanisms with Lower Pairs Only
For linkages with lower pairs only, h  0, and

F  3(n  1)  2p (1.6)

A joint connecting k links at a single joint must be counted as (k  1) joints. Only four types of 
joints are commonly found in planar mechanisms. These are the revolute, the prismatic, the roll-
ing contact joints (each having one degree of freedom), and the cam or gear joint (each having two 
degrees of freedom). These joints are depicted in Fig.1.16. The following definitions apply to the 
actual degrees of freedom of a device.

 F  1: the device is a mechanism with F degrees of freedom.
 F  0: the device is a statically determinate structure.
 F  1: the device is a statically indeterminate structure.

Fig.1.16 Common types of joints found in planar mechanisms
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The degrees of freedom of some of the planar mechanisms have been listed in Table 1.1.

Table 1.1 Degrees of Freedom of Planar Mechanisms

Mechanism n p h F  3(n  1)  2p  h

 1. Three  bar 3 3 0 0

 2. Four  bar 4 4 0 1

 3. Five  bar 5 5 0 2

 4. Five  bar 5 6 0 0

 5. Six  bar 6 8 0 1

 6. Four  bar 4 5 0 1

 7. Three  bar 3 2 1 1

 8. Four  bar 4 3 1 2

 9. Five  bar 5 11/2 0 1

10. Six  bar 6 7 0 1

Gruebler’s criterion: For a constrained motion, F  1, so that

1  3(n 1)  2p  h

or 2p  h  3n  4  0 (1.7)

Eq. (1.7) represents the Gruebler’s criterion.
If h  0, then

p  3n/2  2 (1.8)

Therefore, a planar mechanism with F  1 and having only lower pairs, cannot have odd number of links.
Eq. (1.8) is similar to Eq. (1.1 b) with p  J and n  L. As p and n are to be whole numbers, the 

relation can be satisfied only if n is even.
For possible linkages made of binary links only,

n  4, p  4  No excess turning pair

 n  6, p  7  One excess turning pair

n  8, p  10  Two excess turning pair
and so on.

Thus, we find that the number of excess turning pairs increase as the number of links increase. To 
get the required number of turning pairs from the same number of binary links is not possible. There-
fore, the additional pairs or joints can be obtained only from the links having more than two joining 
points, i.e., ternary or quaternary links, etc.

1.10 FOUR-BAR CHAIN
A four-bar chain has been shown in Fig.1.17. It consists of four binary links. Link AD is fixed (called 
frame), AB is the crank (or driver link), BC is the coupler (or connecting rod), and CD the lever (or 
rocker or follower link).  is the input angle and the angle of transmission. The coupler BC may be 
a ternary link. The number of degrees of freedom of the four-bar chain is one.
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A link that makes complete revolutions is the crank, the link opposite to the fixed link is the 
coupler, and the fourth link a lever or rocker, if it oscillates or another crank, if it rotates.

The four-bar mechanism with all its pairs as turning pairs is called the “quadric cycle chain.” 
When one of these turning pairs is replaced by a slider pair, the chain becomes “single slider chain.” 
When two turning pairs are replaced by slider pairs, it is called a “double slider chain” or a “crossed 
double slider chain,” depending on whether the two slider pairs are adjacent or crossed.

A

2

1

3

4

C Lever

Coupler
B

Crank

D

Fixed link

Fig.1.17 Four-bar chain

Example 1.7

Calculate the number of degrees of freedom of the linkages shown in Fig.1.18(a) and (b).

Fig.1.18 Four- and five-bar chains

Solution 

(a) Number of binary links, n  4

Number of lower pairs, p  4

Degrees of freedom, F  3(n  1)  2p

  3(4  1)  2  4  1

(b) Number of binary links, n  5

Number of lower pairs, p  5

Degrees of freedom, F  3(n  1)  2p

  3(5  1)  2  5  2
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Example 1.8

Calculate the number of degrees of freedom of the linkages shown in Fig.1.19(a) to (c).

Solution 

(a)  In Fig.1.19(a), links 3 and 4 are parallel and are termed as redundant links, as one of them pro-
duces extra constraint. By removing one of these two links, the motion remains same. So one 
of the two links is considered for calculating the degrees of freedom.

 Number of binary links, n  4
 Number of lower  pairs, p  4
 Degrees of freedom, F  3 (n  1)  2p

  3 (4  1)  2  4
  9  8  1

Fig.1.19 Various types of linkages

(b) Number of binary links, n  8
 Number of simple joints:
  Binary joints at C and F  2
  Ternary joints at A, B, D and E  4
   P  2 + 2  4  10
 Degrees of freedom, F  3 (n  1)  2p

  3 (8  1)  2  10
  21  20 1

(c) Number of binary links, n  14
 Number of lower pairs, p  18
  Number of higher pairs, h  1 

(Slider can rotate and slide )
 Degrees of freedom, F  3 (n  1)  2p  h
  3 (14  1)  2  18  1
  39  36  1  2
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Example 1.9

Determine the number of degrees of freedom of the mechanism shown in Fig.1.20(a) to (f).

Fig.1.20 Various types of mechanisms

Solution 

(a) Number of binary links, n2  3
 Number of ternary links, n3  2
 Total number of links, n  n2  n3  3  2  5
  2p  2n2  3n3  2  3  3  2  12

 Degrees of freedom, F n p3 1 2

3 5 1 12
12 12 0

 It is a structure.

(b) Number of binary links, n
2
  5

 Number of ternary links, n
3
  2

 Total number of links, n  n
2
  n

3
  5  2  7

  2p  2n2  3n3  2  5 + 3  2  16

 Degrees of freedom, F n p3 1 2

3 7 1 16
18 16 2
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(c)  The roller 3 carried at the end of the output link 2 can be rotated without causing any motion in 
the rest of the mechanism. Thus roller 3 is a link with redundant degree of freedom. The roller 
can thus be considered welded to the output link. Hence, there are three binary links 1, 2 and 4 
together with two turning pairs 12, 14 and one higher pair 34. Thus

  n  3, p  2, h  1

 Degrees of freedom, F n p h3 1 2

3 3 1 2 2 1
6 4 1 1

(d) Number of binary links, n2  4

 Number of ternary links, n3  2

 Total number of links, n  n2  n3  4  2  6

  

2 2 3 2 4 3 2 14
3 1 2

3 6 1 14
15 14 1

2 3p n n

F n p

(e) Number of binary links, n2  5

 Number of ternary links, n3  2

 Number of quaternary links, n4  1

 Total number of links,  n  n2  n3  n4  5  2  1  8

  

2 2 3 4 2 5 3 2 4 1 20
3 1 2

3 8 1 20
21 20 1

2 3 4p n n n

F n p

(f) Number of binary links, n2  5

 Number of ternary links, n3  2

 Total number of links, n  n2  n3  5  2  7

  

2 2 3 2 5 3 2 16
3 1 2

3 7 1 16
18 16 2

2 3p n n

F n p
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Example 1.10

Determine the number of degrees of freedom of the mechanism shown in Fig.1.21(a) to (f).

Fig.1.21 Various types of mechanisms

Solution 

(a) n
2
  3, n

3
  2, n  5

2p  2  3  3  2  12

F  3(5  1)  12  0

(b) n
2
  4, n

3
  2, n  6

2p  2  4  3  2  14

F  3(6  1)  14  1

(c) n
2
  5, n

3
  2, n

4
  1, n  8

2p  2  5 + 3  2  4 + 1  20

F  3(8  1)  20  1

(d) n
2
  4, n

3
  2, n  6

2p  2  4  3  2  14

F  3(6  1)  14  1

(e) n
2
  5, n

3
  2, n  5 + 2 

 

2 2 3 2 5 3 2 16
3 1 2

3 7 1 16
18 16 2

2 3p n n

F n p

(f)  The solution has been given in Example  
1.9(c).
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Example 1.11

Determine the number of degrees of freedom of the mechanism shown in Fig.1.20 (a)–(h).

Fig.1.22 Various types of mechanisms

Solution 

(a) Number of binary links, n2  7

 Number of ternary links, n3  2

 Number of quaternary links, n4  1

 Total number of links, n  n2  n3  n4  7  2  1  10

  

2 2 3 4 2 7 3 2 4 1 24
3 1 2

3 10 1 24
27 24

2 3 4p n n n

F n p

33

(b) n p h

F n p h

7  7  , , 1
3 1 2

3 7 1 2 7 1
18 14 1 3

Example 1.12

Find the equivalent mechanisms with turning pairs for the mechanisms shown in Figs.1.23(a) to (d).

Solution 

(a)  A spring can be replaced by two binary links. Therefore, the equivalent mechanism is as shown 
in Fig.1.23a(ii).
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(b)  A cam pair can be replaced by one binary link with two turning pairs at each end. Therefore, the 
equivalent mechanism is shown in Fig.1.23b(ii). The centres of curvature at the point of contact 
E lie at B and C, respectively.

(c) The equivalent mechanism is shown in Fig.1.23c(ii) as explained in (b) above.

(d)  A spring is equivalent to two binary links connected by a turning pair. A cam follower is equiva-
lent to one binary link with turning pairs at each end. The equivalent chain with turning pairs is 
shown in Fig.1.23d(ii).

Fig.1.23 Equivalent mechanisms
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Example 1.13

Calculate the degrees of freedom of the mechanisms shown in Fig.1.24(a–e).

Fig.1.24 Various types of mechanisms

Solution 

(a) n n n

p n n

F n p h

2 3

2 3

4 2 4 2 6
2 2 3 2 4 3 2 14

3 1 2

3 6 1

, ,

14 0
15 14 1

(b) n  13
 Binary pairs: A, B, C, D, E, F, G, H, K, L, M, N, P, two at Q and one slider.
 P  16
 F  3 (n  1)  2p  3(13  1)  2  16  36  32  4

(c) n n n

p

F n p

2 35 3 5 3 8
2 2 5 3 3 19

3 1 2

3 8 1 19
21 19

, ,

22
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(d) n p h

F n p h

5 5 1
3 1 2

3 5 1 2 5 1
12 10 1 1

, , ( )cam pair

(e) n p h

F n p h

12 15 1
3 1 2

3 12 1 2 15 1
33 30 1 2

, ,

1.11 GRASHOF’S LAW
This law states that for a four-bar mechanism the sum of the lengths of the largest and the shortest 
links should be less than or equal to the sum of the lenghts of the other links, that is,

(l + s)  (p + q)  (1.9)

where l, s  lengths of the longest and the shortest links, respectively.
p, q  lengths of the other two links.

Consider the four-bar chain shown in Fig.1.25. Let the length of fixed link O
2
O

4
  l

1
, crank  

O
2 
A  l

2
, coupler AB  l

3
, and lever BO

4
  l

4
. The following types of mechanisms are obtained by 

adjusting the lengths of various links:

Fig.1.25 Four-bar chain

1.11.1 Crank–Crank (or Double Crank) Mechanism
When the shortest link is fixed and (l  s)  (p  q), crank-crank or double crank mechanism is 
obtained, as shown in Fig.1.26. Links O

2
A or O

4
B may be the inputs links or cranks. They are able to 

make complete rotations about points O
2
 and O

4
 respectively. Shortest link O

2
O

4
  l

1
 is fixed. A four-

bar mechanism behaves as a crank-crank when the following conditions exist:
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l l l l

l l l l

l l l l

1 2 3

1 3 2

1 3 2

 or  or 
and 
and  
wher

4

4

4

( )
(| | )

ee | | stands for absolute value.
   

 

Fig.1.26 Crank–crank mechanism

1.11.2 Crank–Rocker (or Lever) Mechanism
If any of the adjacent links of shortest link l

1
 i.e., ‘l

2
’ or l

4
 is fixed then l

1
 can have full revolution and 

the link l
3
 opposite to it oscillates. In Fig.1.27(a), ‘l

2
’ is fixed, l

1
 is the crank to rotate about O

2
 and l

3
 

oscillates, whereas in Fig.1.27(b), l
4
 is fixed, l

1
 is the crank to rotate about O

4
 and l

3
 oscillates. Again 

(l + s)  (p + q) applies.
A four-bar mechanism behaves as a crank-rocker, when the following conditions exist:

l l l l

l l l l

l l l l

2 1 3

1 3 2

1 3 2

 or  or 

and 

and  

4

4

4

( )

( )   

 

Fig.1.27 Crank–rocker mechanism

1.11.3 Rocker–Rocker (or Double Rocker) Mechanism
If the link l

3
 opposite to the shortest link l

1
 is fixed and shortest link l

1
 is made the coupler, the other 

two links ‘l
2
’ and l

4
 would oscillate, as shown in Fig.1.28(a). When (l + s)  (p + q), the linkage is 
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known as a class-I four-bar linkage. A four-bar mechanism behaves as a double rocker mechanism 
when the following condition is met:

l
3
  l

1
 or l

2
 or l

4

Fig.1.28 Rocker–rocker mechanism

1.11.4 Class-II Four-Bar Linkage
When (l  s)  (p  q), the linkage is known as a class-II four-bar linkage. In such a mechanism, fixing 
of any of the links always results in rocker-rocker mechanism, as shown in Fig.1.28(b).

Example 1.14

Identify the nature of each mechanism shown in Fig.1.29(a) to (d).

Fig.1.29 Four-bar mechanisms
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Solution 

(a) l l l l l s p q1 2 3 45 7 10 9 10 5 cm,  cm,  cm,  cm;  cm,  cm, 77 9 16
10 5 15
15 16

 cm
 cm

( cm  cm
Hence Grasho

l s
l s p q) ( )

ff s law is satisfied.
 i.e.  hence va

’

l l l l1 2 3 4 5 7 10 9, , llid.
cm

cm) cm. Hence, valid.
l l l

l

l l

3 4 2

1

3

10 9 7 12
5 12(

44 2

1

10 9 7 8
5 8

l

l

 cm
cm)  cm. Hence, valid.

The shortest
(

  link  is fixed. Hence, it is a double crank (or drag l1l iink) mechanism.

(b) l l l l l s l s1 2 3 410 6 11 9 11 6 cm,  cm,  cm,  cm;  cm,  cm, 11 6 17
10 9 19
17 19

 cm,
 cm

(  cm cm
Hence Gra

p q
l s p q) ( )

sshof s law is satisfied.
 or  or . Hence, valid.

’

l l l l

l
2 1 3 4

33 4 2

1 3 4 2

11 9 6 14
10 14

l l

l l l l

cm
cm) cm). Hence, vali( ( dd.

 cm
cm)  cm. Hence, v

l l l

l l l l
3 4 2

1 3 4 2

11 9 6 8
10 8( ( ) aalid.

The link l
1
 adjacent to the shortest link l

2
 is fixed. Therefore, it is a crank-rocker mechanism.

(c) l l l l l s

l s
1 2 3 411 6 12 10 12 6

12 6
 cm, cm, cm, cm; cm, cm,

18 11 10 21
18 21

cm, cm
( cm cm
Hence, Grashof

p q
l s p q) ( )

’ss law is satisfied.
 or  or  Hence, valid.l l l l

l l
2 1 3 4

3 4

.
ll

l l l l

l l l

2

1 3 4 2

3 4 2

12 10 6 16

12 1

cm
 Hence, valid.( ).

00 6 8

1 3 4

cm

). Hence, valid.2l l l l(

The link l
1
 adjacent to the shortest link l

2
 is fixed. Therefore, it is a crank-rocker mechanism.

(d) l l l l l s

l s
1 2 3 49 7 5 8 9 5

9 5 14
cm, cm, cm, cm; cm, cm,

cm,  cm
( cm cm
Hence, Grashof s law is

p q
l s p q

7 8 15
14 15) ( )

’   satisfied.
. Hence, valid.l l l l3 1 2 4
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The link l
1
 opposite to the shortest link l

3
 (coupler) is fixed. Therefore, it is a rocker-rocker 

mechanism.

Example 1.15

Identify the nature of the mechanisms shown in Fig.1.30(a) to (d).

Fig.1.30 Four-bar mechanisms

Solution 

(a) l l l l l s

l
1 2 3 4100 400 700 800 800 100mm, mm, mm, mm; mm, mm,

s p q
l s p q

800 100 900 400 700 1100
900 1100

mm, mm
( mm) ( mmm
Hence, Grashof s law is satisfied.

 i.e. 

)

,
’

l l l l1 2 3 4 1000 400 700 800
700 800 400 11003 4 2

. Hence, valid.
 mml l l

l11

1

( ). Hence, valid.
 mm

l l l

l l l

l

3 4 2

3 4 2 700 800 400 500

  l l l3 4 2

The shortest link is fixed. Therefore, it is a crank-crank mechanism.



30 Theory of Machines

(b) l l l l l s1 2 3 4700 800 100 400 800 100 mm,  mm, mm,  mm;  mm,   mm,
 mm, mm

( mm
l s p q
l s p

800 100 900 700 400 1100
900 ) ( qq

l l l l

1100

3 1 2 4

mm
Hence, Grashof s law is valid.

 Hence

)

.
’

,, valid.

The link l
1
 opposite to the shortest link l

3
 (coupler) is fixed. Therefore, it is a rocker-rocker 

mechanism.

(c) l l l l l s1 2 3 4800 100 400 700 800 100 mm, mm, mm, mm; mm, mm,
ll s p q
l s p q

800 100 900 400 700 1100
900 110

mm, mm
( mm) ( 00

2 1 3 4

mm
Hence, Grashof s law is satisfied.

 Hence,

)

.
’

l l l l   valid.
 mm

( ). Hence, 1

l l l

l l l l
3 4 2

3 4 2

400 700 100 1000
vvalid.

mm

 Hence, valid1

l l l

l l l l
3 4 2

3 4 2

400 700 100 400

. ..

The link l
1
 adjacent to the shortest link l

2
 is fixed. Therefore, it is a crank-rocker mechanism.

(d) l l l l

l s
1 2 3 4250 300 350 450

450 250
 mm, mm, mm, mm;
mm, mm, ll s

p q
l s p q

450 250 700
300 350 650

mm,
mm

( ) ( )
Therefore, it is a rocker-rocker mechanism of class-II.

1.12 INVERSION OF MECHANISMS
A kinematic chain becomes a mechanism when one of its links is fixed. Therefore, as many number of 
mechanisms can be obtained as many are the links in the kinematic chain. This method of obtaining 
different mechanisms by fixing different links of a kinematic chain is called inversion of the mecha-
nism. The relative motion between the various links is not altered as a result of inversion, but their 
absolute motion with respect to the fixed link may alter drastically.

1.12.1 Inversions of a Four-Bar Chain
Some of the important inversions of a four-bar chain are:

1. Beam engine

2. Coupled wheel of locomotive

3. Watt’s indicator mechanism

4. Slider-crank chain.
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1. Beam engine: The beam engine mechanism is shown in Fig.1.31. It consists of four links. 
When the crank AB rotates about the fixed centre  A, the lever oscillates about a fixed centre  D. The 
end  E of the lever CDE is connected to a piston rod which moves the piston up and down in the 
cylinder. This is also called crank and lever mechanism.

Fig.1.31 Beam engine

2. Coupled wheel of a locomotive: In this mechanism, as shown in Fig.1.32, the 
links AB and CD are of equal lengths and act as cranks. These cranks are connected to the respective 
wheels. The link BC acts as the connecting rod. The link AD is fixed to maintain constant distance 
between the wheels. This mechanism is used to transmit rotary motion from one wheel to the other. 
This is also called the double crank mechanism.

Fig.1.32 Coupled wheel of a locomotive

3. Watt’s indicator mechanism: This mechanism is shown in Fig.1.33. It consists of 
four links: a fixed link at A, link AC, link CE, and link BFD. The links CE and BFD act as levers. The 
displacement of link BFD is directly proportional to the pressure in the indicator cylinder. The point E 
on link CE traces out an approximate straight line. It is also called double lever mechanism.

Fig.1.33 Watt’s indicator mechanism



32 Theory of Machines

4. Single slider-crank chain: The single slider-crank chain shown in Fig.1.34 consists 
of three turning pairs and one sliding pair. Link 1 corresponds to the frame of the mechanism, which 
is fixed. Link 2 is the crank and link 3 the connecting rod. The link 4 is the slider. It is used to con-
vert rotary motion into reciprocating motion and vice-versa. Its important applications are in steam 
engines, internal combustion engines, reciprocating compressors, etc. If the straight line path of the 
slider is offset from the fixed point of the crank then it is called offset slider-crank chain. The offset is 
called the eccentricity.

Fig.1.34 Single-slider crank mechanism

1.12.2 Inversions of a Single-Slider Crank Chain
The inversions of a single slider crank chain are as follows:

1. Pendulum pump

2. Oscillating cylinder engine

3. Rotary internal combustion engine

4. Crank and slotted lever quick-return motion mechanism

5. Whitworth quick-return motion mechanism.

1. Pendulum pump: This inversion mechanism is obtained by fixing the link 4, i.e., the 
sliding pair, as shown in Fig.1.35. When the link 2 (i.e., the crank) rotates, the link 3 (i.e., connecting 
rod) oscillates about a pin pivoted to fixed link 4 at  C and the piston attached to the piston rod (link 1)  
reciprocates in the cylinder. It is used to supply feed water to a boiler.

Fig.1.35 Pendulum pump
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2. Oscillating cylinder engine: In this mechanism, as shown in Fig.1.36, link 3 is fixed. 
When the crank (link 2) rotates, the piston attached to piston rod (link 1) reciprocates and the cylinder 
(link 4) oscillates about a pin pivoted to the fixed link at  A.

Fig.1.36 Oscillating cylinder engine

3. Rotary internal combustion engine (Gnome engine): It consists of several 
cylinders in one plane and all revolve about fixed centre  O, as shown in Fig.1.37. The crank (link 2) 
is fixed. When the connecting rod (link 4) rotates, the piston (link 3) reciprocates inside the cylinder 
forming link 1.

Fig.1.37 Rotary internal combustion engine

4. Crank and slotted lever quick-return motion mechanism: In this mech-
anism, as shown in Fig.1.38, the link AC (link 3) corresponding to the connecting rod is fixed. The 
driving crank CB (link 2) revolves about centre C. A slider (link 1) attached to the crank pin at  B 
slides along the slotted lever AP (link 4) and make the slotted lever oscillate about the pivoted point  
A. A short link PQ transmits the motion from  AP to the arm which reciprocates with the tool along 
the line of stroke. The line of stroke is perpendicular to  AC produced. This mechanism is mostly used 
in shaping machines, slotting machine, and rotary internal combustion engines.

Time of cutting stroke/Time of return stroke  (1.10)

Length of stroke  2 AP (CB/AC) (1.11)
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Fig.1.38 Crank and slotted lever quick-return motion mechanism

5. Whitworth quick-return motion mechanism: In this mechanism, as shown in 
Fig.1.39, link  CD (link 2) is fixed. The driving crank CA (link 3) rotates about  C. The slider (link 4) 
attached to the crank pin at  A slides along the slotted lever PA (link 1), which oscillates about pivot  D. 

Fig.1.39 Whitworth quick-return motion mechanism
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The connecting rod PQ carries the ram at Q with cutting tool. The ram reciprocates along the line of 
stroke. It is used in shaping and slotting machines.

Time of cutting stroke Time of return stroke  / 


 (1.12)

Length of stroke  2 PD (1.13)

6. Toggle mechanism: This mechanism has many applications where it is necessary to 
overcome a large resistance with a small driving force. Fig.1.40 shows the toggle mechanism; links 
4 and 5 are of equal length. As the angles  decrease and links 4 and 5 approach being collinear, the 
force F required to overcome a given resistance  P decreases as:

F  2P tan  (1.14)

If  approaches zero, for a given F, P approaches infinity. A stone crusher utilizes this mechanism to 
overcome a large resistance with a small force. It can be used in numerous toggle clamping devices, 
for holding work pieces.

Fig.1.40 Toggle mechanism
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The summary of single slider crank chain and its inversions is given in Table 1.2.

Table 1.2 Summary Of Single Slider Crank Chain And Its Inversions

Mechanism
Links

Fixed Rotates Oscillates Reciprocates

Single slider-crank chain 1 2 3 4

Inversions:

Pendulum pump 4 2 3 1

Oscillating cylinder engine 3 2 4 1

Crank and slotted lever 3 2 4 1

Whitworth mechanism 2 3 1 4

Gnome engine 2 3 1 4

1.13 DOUBLE SLIDER-CRANK CHAIN
A kinematic chain consisting of two turning pairs and two sliding pairs is called double slider–crank 
chain, as shown in Fig.1.41. Links 3 and 4 reciprocate, link 2 rotates and link 1 is fixed. Two pairs of 
the same kind are adjacent.

Fig.1.41 Double slider–crank chain
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1.13.1 Inversions of Double Slider–Crank Chain
The inversions of double slider-crank chain are as follows:

1. Donkey pump

2. Oldham’s coupling

3. Elliptical trammel

4. Scotch yoke.

1. Donkey Pump: Figure 1.42 shows a donkey pump, in which link 2 (crank) rotates about point 
A. One end of the crank is connected to the piston, through the piston rod, which reciprocates vertically in 
the pump cylinder. This cylinder together with the body of the pump represents the fixed link 1. The other 
end of the crank is connected to the slider (link 3) which reciprocates horizontally in the cylinder.

Fig.1.42 Donkey pump

2. Oldham’s coupling: The Oldham’s coupling shown in Fig.1.43, is used to connect two 
parallel shafts, the distance between whose axes is small and variable. The shafts connected by the 
coupling rotate at the same speed. The shafts have flanges at the ends, in which slots are cut. These

Fig.1.43 Oldham’s coupling
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These form links 1 and 3. An intermediate piece circular in shape and having tongues at right angles 
on opposite sides, is fitted between the flanges of the two shafts in such a way that the tongues of the 
intermediate piece get fitted in the slots of the flanges. The intermediate piece forms link 4, which 
slides or reciprocates in links 1 and 3. The link 2 is fixed.

Maximum sliding speed of each tongue along its slot
 Distance between the axes of the shafts  angular velocity of each shaft (1.15)

3. Elliptical trammel: It is a device to draw ellipses. Fig.1.44 shows an elliptical trammel 
in which two grooves are cut at right angles in a plate that is fixed. The plate forms the fixed link 4.  
Two sliding blocks are fitted into the grooves. The slides form two sliding links 1 and 3. The link join-
ing slides form the link 2. Any point on link 2 or on its extension traces out an ellipse on the fixed 
plate, when relative motion occurs.

x  BC cos 

 or   
x

BC
= cos

Fig.1.44 Elliptical trammel

y  AC sin 

or  
y

AC
sin

Squaring and adding, we get 

x
BC

y
AC

2

2

2

2 1  (1.16)

which is the equation of an ellipse.
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4. Scotch yoke: This mechanism gives simple harmonic motion. Its early application was on 
steam pumps, but it is now used as a mechanism on a test machine to produce vibrations. It is also used 
as a sine-cosine generator for computing elements. Fig.1.45 shows a sketch of scotch yoke mechanism.

Fig.1.45 Scotch yoke

x  r  r cos 

 r (1  cos t) (1.17)

v
x

t
r t

d

d
sin  (1.18)

a
x

t
r t  d

d

2

2
2 cos  (1.19)

Example 1.16

In a crank and slotted lever quick-return mechanism shown in Fig.1.46, the distance between the fixed 
centres is 300 mm and the length of the driving crank is 150 mm. Find the inclination of the slotted 
lever with the vertical in the extreme position and the ratio of time of cutting stroke to return stroke.

Solution 

Given AC  300 mm, B
1
C  150 mm

cos(

.

/ /B C AC1

150

300
0 50

120
360 120 240

Time of cutting stroke/Time of return stroke

240
120

2
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Fig.1.46 Crank and slotted lever mechanism

Inclination of slotted lever with the vertical 90
2

90
2

30

Example 1.17

In a Whitworth quick return motion mechanism, as shown in Fig.1.47, the distance between the fixed 
centres is 80 mm and the length of the driving crank is 100 mm. The length of the slotted lever is 180 mm 
and the length of the connecting rod is 150 mm. Calculate the ratio of the time of cutting to return strokes.

Solution 

Given: CD  80 mm, CA  100 mm, PA  180 mm, PQ  150 mm

cos .

.





2
60

100
0 6

106 26
2

CD
CA

Time of cutting stroke Time of return stroke/ 360 


253 74
106 26
2 388

.

.
.
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Fig.1.47 Whitworth mechanism

Example 1.18

The distance between two parallel shafts connected by Oldham’s coupling is 25 mm. The driving shaft 
revolves at 240 rpm. Determine the maximum speed of sliding of the tongue of the intermediate piece 
along its groove.

Solution 

d n25 240
240
60

25 133

 mm,  rpm

 = 2    rad/s  .

Maximum velocity of sliding   d  25.133  0.025  0.628 m/s
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Example 1.19

In a crank and slotted lever mechanism, the length of crank is 560 mm and the ratio of time of working 
stroke to return stroke is 2.8. Determine (a) distance between the fixed centres, and (b) the length of 
the slotted lever, if length of stroke is 250 mm.

Solution 

Given: AB  560 mm, stroke  250 mm, ratio of times  2.8
The mechanism is shown in Fig.1.48.

Fig. 1.48 Crank and slotted lever mechanism

Time of working stroke

Time of return stroke
2 8

360
2 8

.

.
o

94 737

2
1

.

cos

o  

 

Now

AB

AC
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AC
560

cos  47.368
826.83 mm

Length of  stroke  D D 2D D

250

o

1 2 1

2CD sin 90
2

2CD  sin 47.368

1
o

1
o

Length of slotted lever. CD
1
  169.9 mm.

Example 1.20

The configuration of a drag link mechanism is shown in Fig.1.49. Determine the time ratio and the 
length of stroke. The crank O

2
A rotates clockwise.

Fig.1.49 Drag link mechanism

Solution 

The drag link mechanism has been drawn as O
2
ABO

4
 to scale of 1 cm  10 mm. The extreme positions 

of B are B
1
 and B

2
. The length of stroke is 2  O

4
B  B

1
B

2
  2  60  120 mm.

When B is at B
1
, then A is at A

1
 and when B is at B

2
, then A is at A

2
. By measurement, we have

110  and 250

  Ratio of  times  
250

110
2.27

o o
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Example 1.21

The distance between the axes of parallel shafts connected by Oldham’s coupling is 25 mm. The speed 
of rotation of the shafts is 320 rpm. Determine the maximum velocity of sliding of each tongue in its 
slot.

Solution 

cos( / ) / / ,

/

2 100 150 2 3  96.4

Time of cutting stroke Time off return stroke ( ) /

. / . .

360

263 6 96 4 2 735

Example 1.22

In crank and slotted lever quick return mechanism, the distance between the fixed centres is 150 mm 
and the driving crank is 100 mm long. Find the ratio of the time taken during the cutting and return 
strokes.

Solution 

d 25 2 320 60 33 51mm, rad/s

Maximum velocity of sliding 

/ .

== m/sd 33 51 0 025 0 838. . .

Example 1.23

Design a quick return mechanism of the type shown in Fig.1.50. The working stroke is 200 mm and 
the ratio of the time of working stroke to return stroke is 2:1. The driving crank is 50 mm long.

A

C

O
B

Fig.1.50 Quick-return mechanism
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Solution 

( ) ,

cos ( )

cos

360 2 120

2

50 60 100

/  

/ /

/ mm

Workin

OB OA

OA

gg stroke

 sin 30

mm

Length of leve

C C C C

AC

AC

1 2 1

1

1

2

200 2

200

rr, 200 mmAC

Example 1.24

Design a Whitworth quick return motion mechanism shown in Fig.1.51 to have the following particulars:
Return stroke  200 mm
Time ratio of working to return stroke  2
Length of driving crank  50 mm.

DO

C

A
B

Fig.1.51 Whitworth mechanism

Solution 

( )

cos( )

cos

360 2

120

2

50 60 100

/

/

/ mm

Return stro

OA
AB

kke 2 

/ mm

OC

OC

CD OC

200 2 100
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Example 1.25

In a Whitworth quick return motion mechanism, as shown in Fig.1.52, the distance between the fixed 
centres is 60 mm and the length of the driving crank is 80 mm. The length of the slotted lever is 160 mm 
and length of the connecting nod is 140 mm. Find the ratio of the time of cutting stroke to the time of 
return stroke and also the effective stroke.

A2

P1

D

S

30º

/2

C

A

P

P2

R1
R2

R

Scale: 1cm = 20 mm

A1

Fig.1.52

Solution 

Given: CD  60 mm, CA  80 mm, AP  160 mm, PR  140 mm.
Draw extreme positions of driving crank CA.

cos .

.

.







2

60

80
0 75

2
41 41

82 82

2

CD

CA

Time of cutting strokke

Time of return stroke

360

360 82 82

82 82
3 347




.

.
.

Draw a circle with centre D and radius equal to DP to intersect the crank circle at P
1
 and P

2
. Mark 

P
1
R

1
  P

2
R

2
  PR.

Length of effective stroke  R
1
R

2
  3.5 cm or 70 mm
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Summary for Quick Revision

1 Kinematics is a subject that deals with the study of relative motion of parts constituting a machine, 
neglecting forces producing the motion.

2 Dynamics is a subject that deals with the study of relative motion of parts constituting a machine, 
considering the forces producing the motion.

3 A mechanism is a set of machine elements or components or parts, arranged in a specific order to 
produce a specified motion.

4 A kinematic joint is the connection between two links by a pin. Kinematic joints can be binary, 
ternary, quaternary and so on. A ternary joint is equivalent to two binary joints and a quaternary 
joint is equivalent to four binary joints.

5 A link (or element or kinematic link) is a resistant body (or assembly of resistant bodies) which 
constitute part (or parts) of a machine, connecting other parts, which have motion, relative to it.

6 Links can be classified as: binary, ternary, quaternary, etc. depending upon its ends on which 
revolute or turning pairs can be placed. A binary link has two vertices, a ternary link has three 
vertices, and a quaternary link has four vertices, and so on. Links can be rigid, flexible, fluid, and 
floating.

7 The two links of a machine, when in contact with each other, are said to form a pair. A kinematic 
pair consists of two links that have relative motion between them. Kinematic pairs may be clas-
sified according to the type of relative motion, contact or mechanical constraint. The kinematic 
pairs could be of the sliding, turning, rolling, screw or spherical types.

8 Lower pairs are those which have surface (or area) contact while in motion and the relative motion 
being purely turning or sliding. Higher pairs have point or line contact while in motion and the 
relative motion being the combination of sliding and turning.

9 Closed pair consists of two elements held together mechanically in such a manner that only 
required type of relative motion occurs. Unclosed pair consists of two elements not held mechani-
cally and are held in contact by the action of external forces.

10 A kinematic chain may be defined as an assembly of links in which the relative motion of the links 
is possible and the motion of each relative to the others is definite. The last link of the kinematic 
chain is attached to the first link.

11 When one of the links of a kinematic chain is fixed, the chain is called a mechanism. The mecha-
nisms can be simple, compound, complex, planar, or spatial.

12 A machine is a device which transforms energy available in one form to another to do certain type 
of desired useful work.

13 A four-bar chain consists of four binary links. The four-bar mechanism with all its pairs as turning 
pairs is called the “quadric cycle chain.” When one of these turning pairs is replaced by a slider 
pair, the chain becomes “single slider chain.” When two turning pairs are replaced by slider pairs, 
it is called a “double slider chain” or a “crossed double slider chain,” depending on whether the 
two slider pairs are adjacent or crossed.

14 A kinematic chain becomes a mechanism when one of its links is fixed.

15 For a kinematic chain: L  2P  4 and J  (3/2) L  2, where L  number of binary links,  
P  number of lower pairs, J  number of joints.

 For a locked chain, LHS  RHS; for a constrained chain, LHS  RHS; and for an unconstrained 
chain, LHS  RHS.
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 For a kinematic chain having higher pairs, J + (H/2)  (3/2) L  2, where H  number of higher 
pairs.

16 Degrees of freedom of a kinematic pair is defined as the number of independent relative motions, 
both translational and rotational, a kinematic pair can have.

17 Mobility of a mechanism is defined as the number of degrees of freedom it possesses.

18 According to Kutzbach criterion for degrees of freedom of planar mechanisms, F  3(n  1)  2p  h,  
where n  total number of links in a mechanism, p  number of simple joints or lower pairs, 
h  number of higher pairs. For a kinematic chain having different type of links, p  (1/2) 
[2n

2
  3n

3
  4n

4
  ...], where n

2
, n

3
, etc. are binary, ternary and so on links.

19 Gruebler’s criterion: For a constrained motion, F  1, so that 2p  h  3n  4  0.

20 A new mechanism obtained by replacing sliding, spring or cam pairs by turning having the same 
number of degrees of freedom as the original mechanism is called an equivalent mechanism.

21 Grashof’s law: For a kinematic chain. (l  s)  (p  q).

 Double crank mechanism: when the shortest link is fixed.

 Crank–rocker mechanism: when any of the adjacent links of shortest link are fixed.

 Rocker–rocker mechanism: when link opposite to the shortest link is fixed and shortest link is 
made the coupler.

22 The method of obtaining different mechanisms by fixing different links of a kinematic chain is 
called inversion of the mechanism.

 Inversions of four-bar chain: Beam engine. Coupled wheel of locomotive. Watt’s indicator mechanism.

 Slider–crank chain

 Inversions of single slider crank chain: Pendulum pump, Oscillating cylinder engine, Rotary 
internal combustion engine, Crank and slotted lever quick return motion mechanism, Whitworth 
quick return motion mechanism, Toggle mechanism.

 Inversions of double slider crank chain: Donkey pump, Oldham’s coupling, Elliptical trammel, 
Scotch yoke.

23 Quick return motion mechanisms are used in shaping and slotting machines. Scotch yoke is used 
as a sine – cosine function generator. Oldham’s coupling is used to connect two shafts when the 
distance between their axes is small and variable.

24 In a quick–return motion mechanism,

 Time of cutting stroke/Time of return stroke  angle covered by crank during cutting stroke/angle 
covered by crank during return stroke.

25 Maximum sliding speed of each tongue along its slot in the Oldham’s coupling  Distance between 
the axes of shafts  angular speed of each shaft.

Multiple Choice Questions

1 The purpose of a link is to
(a) transmit motion (b) guide other links
(c) act as a support (d) all of the above.



49 Mechanisms 

2 A kinematic chain requires at least
(a) 2 links and 3 turning pairs (b) 3 links and 4 turning pairs
(c) 4 links and 4 turning pairs (d) 5 links and 4 turning pairs.

3 Which of the following is a lower pair?
(a) ball and socket (b) piston and cylinder
(c) cam and follower (d) (a) and (b) above.

4 Quick return motion mechanism is used in
(a) milling machine (b) broaching machine
(c) grinding machine (d) slotter.

5 A kinematic chain becomes a mechanism when
(a) first link is fixed (b) any one link is fixed
(c) all links are fixed (d) none of the links are fixed.

6 A slider crank mechanism consists of the following number of turning and sliding pairs
(a) 1, 3 (b) 2, 2
(c) 3, 1 (d) 4, 0.

7 A typewriter constitutes a
(a) machine (b) structure
(c) mechanism (d) inversion.

8 The lead screw of a lathe with nut is a
(a) rolling pair (b) screw pair
(c) turning pair (d) sliding pair.

9 In kinematic chain, a ternary joint is equivalent to
(a) two binary joints (b) three binary joints
(c) four binary joints (d) single binary joint.

10 A four-bar mechanism satisfying Grashof’s criteria will act as a drag-crank mechanism, if
(a) the longest link is fixed (b) the shortest link is fixed
(c) any link adjacent to shortest link is fixed.

11 In a four-bar mechanism, (l  s)  (p  q). It will act as a crank-rocker mechanism, if
(a) the link opposite to the shortest link is fixed
(b) the shortest link is fixed
(c) any link adjacent to shortest link is fixed.

12 In a four-bar mechanism, the sum of the lengths of shortest and longest links is less than the sum 
of other two links. It will act as a rocker-rocker mechanism, if
(a) the link opposite to the shortest link is fixed
(b) the shortest link is fixed
(c) any link adjacent to shortest link is fixed.

13 Which of the following is an inversion of single-slider crank chain?
(a) elliptical trammel (b) hand pump
(c) Scotch yoke (d) Oldham’s coupling.

14 Which one of the following is an inversion of double-slider crank chain?
(a) Whitworth quick return motion mechanism (b) reciprocating compressor
(c) Scotch yoke (d) rotary engine.
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15 The number of degrees of freedom of the mechanism shown below is:

(a) 0 (b) 1
(c) 2 (d) 3

16 The number of degrees of freedom of the mechanism shown below is:

(a) 0 (b) 1
(c) 2 (d) 3

17 The number of equivalent lower pairs of a higher pairs are
(a) 2 (b) 3
(c) 4 (d) 1

18 The equivalent number of binary joints of a quaternary joint are:
(a) 2 (b) 3
(c) 4 (d) 5

19 For a kinematic chain, if L  2P  4, then
J  CL  2
where C is equal to

(a) 
1
2

 (b) 1

(c) 
3
2

 (d) 2

20 In the equation, L  2P  4, the kinematic chain is called locked, when
(a) LHS  RHS (b) LHS  RHS
(c) LHS  RHS

21 The equivalent number of binary links of a spring are:
(a) 1 (b) 2
(c) 3 (d) 4
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Answers

1. (d) 2. (c) 3. (d) 4. (d) 5. (b) 6. (c) 7. (c) 8. (b) 9. (a) 10. (b) 11. (c)  
12. (a) 13. (b) 14. (c) 15. (b) 16. (b) 17. (a) 18. (c) 19. (c) 20. (c) 21. (b)

Review Questions

1 Differentiate between a mechanism and a machine.

2 Define kinematic link, kinematic pair and a kinematic chain.

3 What is a resistant body?

4 How do you classify kinematic pairs? Illustrate with examples.

5 Differentiate between (a) lower and higher pairs, (b) turning and screw pairs, (c) rolling and 
spherical pairs, and (d) closed and unclosed pairs.

6 Define degrees of freedom of a mechanism. How this is determined?

7 Explain Gruebler’s criterion for degrees of freedom for planar mechanisms.

8 What do you understand by an equivalent mechanism?

9 Discuss various types of constrained motions.

10 What is mobility (or movability) of a mechanism?

11 What is a kinematic chain? How this can be ascertained?

12 What do you understand by inversion of a mechanism? List various inversions of a four-bar 
chain.

13 Describe various inversions of a single slider–crank chain.

14 List the various inversions of a double slider–crank chain and give their applications.

Exercises

1.1 Calculate the number of degrees of freedom of the mechanisms shown in Fig.1.53.
[Ans. 1, 0, 3]

Fig.1.53 Various types of mechanisms
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1.2 Determine the number of degrees of freedom of all the devices shown in Fig.1.54.
[Ans. 0, 1, 2, 2]

Fig.1.54 Various types of devices

1.3 Determine the degrees of freedom of the mechanisms shown in Fig.1.55.
[Ans. 1, 1, 1]

Fig.1.55 Various types of mechanisms

1.4 Find the degrees of freedom of the kinematic linkages shown in Fig.1.56.
[Ans. 1, 2, 1, 0]

Fig.1.56 Kinematic linkages
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1.5 Draw the equivalent mechanisms of the following and find their degrees of freedom, as shown 
in Fig.1.57.

[Ans. 1, 1, 2]

Fig.1.57 Various types of mechanisms

1.6 In a quick-return motion mechanism of the oscillating link type, the distance between the fixed 
centres is 80mm and the length of the driving crank is 20 mm. Determine the time ratio of the 
working stroke to the return stroke.

[Ans. 1.38]

1.7 In an off-set slider crank mechanism, the eccentricity is 50 mm, length of crank is 300 mm, and 
length of connecting rod is 500 mm, determine the quick return ratio.

[Ans. 1.293]

1.8 In a quick-return motion mechanism of the crank and slotted lever type, the ratio of maximum 
velocities is 2. If the length of stroke is 250 mm, find (a) the length of the slotted lever, (b) the 
ratio of times of cutting and return strokes, and (c) the maximum cutting velocity in m/s if the 
crank rotates at 30 rpm.

[Ans. 375 mm, 1.552, 0.294 m/s]

1.9 The distance between the parallel shafts of an Oldham’s coupling is 15 mm. The driving shaft 
revolves at 160 rpm. Calculate the maximum speed of sliding of the tongue of the intermediate 
piece along its groove.

[Ans. 0.251 m/s]
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1.10 Determine the type of chains shown in Fig.1.58.

(a)

50

90 mm

100

80

(b)

60

110

90

100 mm

100 mm
(c) (d)

80

50

90

150

80

120 mm

100

Fig.1.58 Four-bar mechanisms

[Ans. Double crank, Crank-rocker, Double rocker, Double rocker]

1.11 A drag link quick return mechanism is shown in Fig.1.59. Determine the time ratio of the work-
ing stroke to the return stroke for uniform angular velocity of crank O

1
A.

[Ans. 2.3]

50

70 mm

B
90

A

80

O2 O4

Fig.1.59 Drag link mechanism

1.12 Classify the motion of the four-bar mechanism shown in Fig.1.60, l
1
  80 cm, l

2
  30 cm,  

l
3
  75 cm, l

4
  65 cm

[Ans. Crank-rocker]
D

A

B

C

4

2

1

3

Fig.1.60 Four-bar mechanism
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1.13 Find the number of degrees of freedom of the mechanism shown in Fig.1.61.
[Ans. 1]

B

C

D

E
A

Fig.1.61 Four-bar mechanism

1.14 Classify the four-bar mechanism based on its possible motion, when the lengths of the links are: 
l
1
  30 cm, l

2
  12.5 cm, l

3
  30 cm, and l

4
  10 cm.

[Ans. Crank-rocker]
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VELOCITY IN 
 MECHANISMS

2.1 INTRODUCTION
Kinematics deals with the study of relative motion between the various links of a machine ignoring the 
forces involved in producing such motion. Thus, kinematics is the study to determine the displacement 
velocity and acceleration of the various links of the mechanism. A machine is a mechanism or a com-
bination of mechanisms that not only imparts definite motion to the various links but also transmits 
and modifies the available mechanical energy into some kind of useful energy. In this chapter, we shall 
study the various methods of determination of velocity in mechanisms.
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2.2 VELOCITY DIAGRAMS
Displacement: The displacement of a body is its change of position with reference to a certain fixed point.

Velocity: Velocity is the state of change of displacement of a body with respect to time. It is a vector 
quantity.

Linear velocity: It is the rate of change of velocity of a body along a straight line with respect to time. 
Its units are m/s.

Angular velocity: It is the rate of change of angular position of a body with respect to time. Its units 
are rad/s.

The relationship between velocity v and angular velocity  is:

v  r  (2.1)

where r  distance of point undergoing displacement from the centre of rotation.

Relative velocity: The relative velocity of a body A with respect to a body B is obtained by adding to 
the velocity of A the reversed velocity of B. If v

a
 > v

b
, then

or

vab a bv v

ba oa ob

Similarly,

or

v v v

ab ob oa
ba b a

Fig.2.1 Relative velocity of a point

Consider two points A and B on a rigid link rotating clockwise about A as shown in Fig.2.1(a). There 
can be no relative motion between A and B as long as the distance between A and B remains the same. 
Therefore, the relative motion of B with respect to A must be perpendicular to AB. Hence, the direction 
of relative velocity of two points in a rigid link is always along the perpendicular to the straight line 
joining these points. Let relative velocity of B with respect to A be represented by v

ba
  AB, then ab is 
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drawn perpendicular to AB to a convenient scale, as shown in Fig.2.1(b). Similarly, the linear velocity of 
any other point C on AB with respect to A is v

ca
  AC and is represented by vector ac. Hence,

v
ba

/v
ca

   AB)/( AC)  AB/AC

or ab/ac  AB/AC  r/r
1
 (2.2)

Hence the point C divides the vector ab in the same ratio as the point C divides the link AB.

2.3 DETERMINATION OF LINK VELOCITIES
There are two methods to determine the velocities of links of mechanisms.

1. Relative velocity method

2. Instantaneous centre method

2.3.1 Relative Velocity Method
Consider a rigid link AB, as shown in Fig.2.2(a), such that the velocity of A (v

a
) is vertical and velo-

city of B (v
b
) is horizontal. To construct the velocity diagram, take a point o. Draw oa representing 

the magnitude and direction of velocity of A. Draw ob along the direction of v
b
. From point ‘a’ draw a 

line ab perpendicular to AB, meeting ob in b. Then oab is the velocity triangle, as shown in Fig.2.2(b).  
Ob v

b
; ab  v

ba
, i.e. the velocity of B with respect to A. Vector ab is called the velocity image of link 

AB. The velocity of any point C in AB with respect to A is given by,

vca ba

c a ba

ac v
AC

AB

v v
AC

AB
v

oa
ac

ab
ab

ooa ac

oc

Hence vector oc represents the velocity of point C.

Fig.2.2 Relative velocity of points in a kinematic link
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2.3.2 Relative Velocity of Points in a Kinematic Link
Consider a link A

1
B

1,
 first undergoing rotation by an amount  to A

1
B'

1
 and then undergoing translation 

by an amount s
A
 to occupy the new position A

2
B

2
, as shown in Fig.2.3(a). Then

s s sB BA A  (a)

Now let the link A
1
B

1
 first undergo linear translation s

A
 to A

2 
B"

1
 and then angular rotation of 

to A
2 
B

2
, as shown in Fig.2.3(b). Then

 s s sB A BA=  (b)

Eqs. (a) and (b) are same. Dividing by t, we get

 

s

t

s

t

s

t
B A BA

or v v vb a ba

Therefore, the velocity of point B is obtained by adding vectorially the relative velocity of point B 
w.r.t. point A to the velocity of point A.

Now
s A BBA 1 1 

or
s

t
A B

t
BA

1 1



v A Bba 1 1 

Also 

 90

Fig.2.3 Relative velocity of points in a kinematic link

The following conclusions may be drawn from the above analysis:

The velocity of any point on the kinematic link is given by the vector sum of the velocity of 
some other point in the link and the velocity of the first point relative to the other.

The magnitude of the velocity of any point on the kinematic link relative to the other point in 
the kinematic link is the product of the angular velocity of the link and distance between the two 
points under consideration.

The direction of the velocity of any point on a link relative to any other point on the link is per-
pendicular to the line joining the two points.
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2.3.3 Relative Angular Velocities
Consider two links OA and OB connected by a pin joint at O, as shown in Fig.2.4. Let 

1
 and 

2
 be the 

angular velocities of the links OA and OB, respectively. Relative angular velocity of OA with respect 
to OB is,

12
  

1
 – 

2

and relative angular velocity of OB with respect to OA is,

21
  

2
 – 

1

 –
12

If r  radius of the pin at joint O, then rubbing (or sliding) velocity at the pin joint O,

 (
1
 – 

2
) r, when the links move in the same direction (2.3a)

 (
1
 + 

2
) r, when the links move in the opposite direction (2.3b)

Fig.2.4 Relative angular velocities

2.3.4 Relative Velocity of Points on the Same Link
Consider a ternary link ABC, as shown in Fig.2.5(a), such that C is any point on the link. Let v

a
 and v

b
 

be the velocities of points A and B, respectively. Then

v
b
  v

a
 + v

ba

ab
bav

AB

ab

AB

v
c
  v

a
 + v

ca

or  v
b
 + v

cb

Fig.2.5 Relative velocity of points on the same link
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The velocity diagram is shown in Fig.2.5(b).
Angular velocity of link ABC,

abc
ba cb cav

AB

v

BC

v

AC

ab

AB

bc

BC

ac

AC   
(2.4)

2.3.5 Forces in a Mechanism
Consider a link AB subjected to the action of forces and velocities, as shown in Fig.2.6. Let A be the 
driving end and B the driven end. When the direction of the forces and velocities is the same, then

Energy at A  Energy at B

F
a
  v

a
  F

b
  v

b

or F
F v

vb
a a

b
  (2.5a)

Fig.2.6 Force and velocity diagram

Considering the effect of friction, the efficiency of transmission,


output

input

F v

F v
b b

a a

or F
F v

vb
a a

b


  (2.5b)

When the forces are not in the direction of the velocities, then their components along the veloci-
ties should be taken.

2.3.6 Mechanical Advantage
Mechanical advantage, MA  Load lifted/Effort applied  F

b
/F

a

For a mecahnism, MA  Output torque/Input torque

 T
b
/T

a
  

a
/

b
 (2.6a)

Considering the effect of friction, MA    a b/   (2.6b)
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2.3.7 Four-Bar Mechanism

(a) Consider the four-bar mechanism, as shown in Fig.2.7(a), in which the crank O
1
 A is rotating 

clockwise with uniform angular speed . The linear velocity of point A is v
a
    O

1
  A and it 

is perpendicular to O
1
 A. Therefore, draw o

1
a  O

1
 A to a convenient scale in Fig.2.7(b). The 

velo city of point B is perpendicular to O
2
 B. Therefore, at point o

1
, draw o

1
b  O

2
B. The relative 

velocity of B with respect to A is perpendicular to AB. Therefore, draw ab  AB meeting the line 
drawn perpendicular to O

2
 B at b. Then v

b
  o

1
b, and v

ba
  ab. To find the velocity of joint C, draw 

ac  AC and bc  BC to meet at c. Join o
1
c. Then v

c
  o

1
c.

Now 

v v v

o a ab o b
b a ba

1 1

v v v

o b bc o c
c b cb

1 1=

and also,

vc a cav v

o a ac o c1 1

To find the velocity of any point D in AB, we have

BD

BA

bd

ba

or 

bd
BD

BA
ba

Fig.2.7 Four-bar mechanism with ternary link
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Thus, locate point d in ab and join o
1
d. Then o

1
d  v

d
. To find the relative velocity of C w. r. t. D, 

join cd. Then v
cd

  dc. The velocity image of link ABC is abc.

(b)     Now consider the four-bar mechanism, as shown in Fig.2.8(a), in which the crank AB is rotating 
at angular velocity  in the anticlockwise direction. The absolute linear velocity of B is  AB 
and is perpendicular to AB. Draw ab AB  to a convenient scale to represent v

ba
, as shown in 

Fig.2.8(b). From b, draw a line perpendicular to BC and from ‘a’ another line perpendicular to 
CD to meet each other at point c. Then, ac  v

ca
 and cb  v

bc
. To find the velocity of any point E 

in BC, we have

CE

CB

ce

cb

or 

ce
CE

CB
cb

Thus, locate point e in cb and join ae. Then ae  v
ea

.

Fig.2.8 Four-bar mechanism

The rubbing velocities at pins of joints are:

A : 
ab

  r
a

B : (
ab

  
cb

) r
b

C : (
bc

  
dc

) r
c

D : 
cd

  r
d

where r is the radius of the pin.
Use the + ve sign when angular velocities are in the opposite directions.

 cb cd

bc

BC

cd

CD
 and  

2.3.8 Slider–Crank Mechanism
Consider the slider–crank mechanism, as shown in Fig.2.9(a), in which the crank OC is rotating clock-
wise with angular speed . PC is the connecting rod and P is the slider or piston.

The linear velocity of C, v
c
  OC · 

To draw the velocity diagram, draw a line oc  v
c
 from point o, as shown in Fig.2.9(b), represent-

ing the velocity of point C to a convenient scale. From point c draw a line perpendicular to CP. The 
velocity of slider P is horizontal. Therefore, from point o draw a line parallel to OP to intersect the 
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line drawn perpendicular to CP at p. Then the velocity of the piston, v
p
  op and the velocity of piston 

P relative to crank pin C is v
pc 

 cp. To find the velocity of any point E in CP, we have

CE/CP  ce/cp

or     ce  (CE/CP) · cp

Thus locate point e in cp, join oe. Then v
e
  oe

Rubbing velocities are:

O roc o:

P rcp p:

C roc cp c:  

2.3.9 Crank and Slotted Lever Mechanism
Consider the crank and slotted lever mechanism, as shown in Fig.2.10(a). The crank OB is rotating at 
a uniform angular speed  . Let OB  r, AC  l, and OA  d. Linear velocity of B, v

b
  r . Draw ob  

v
b
 and perpendicular to OB to a convenient scale, as shown in Fig.2.10(b). v

b
 is the velocity of point B 

on the crank OB. The velocity of the slotted lever is perpendicular to AC. The velocity of the slider is 
along the slotted lever. Hence draw a line from b parallel to AC to meet the line perpendicular to AC 
at p. Now, ap  v

pa
, and

ac v
AC

AP
vc pa.

From point c, draw a line perpendicular to CD and from point o draw a line parallel to the tool 
motion, to intersect at point d.

Velocity of cutting tool, v
d
  ad

The component of the velocity of the crank perpendicular to the slotted lever is zero at positions  
B

1
 and B

2
. Thus for these positions of the crank, the slotted lever reverses its direction of motion.

Fig.2.9 Slider-crank mechanism
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Time of cutting stroke/Time of return stroke 


(360 )

At positions B
3
 and B

4
, the component of velocity along the lever is zero, i.e. the velocity of the 

slider at the crank pin is zero. Thus the velocity of the lever at crankpin is equal to the velocity of 
crankpin, i.e. r . The velocities of lever and tool at these points are minimum. The maximum cutting 
velocity occurs at B

3
 and maximum return velocity occurs at B

4
.

Maximum cutting velocity ( )
3

OB
AC

AB


( )r
l

d r
  

(2.7a)

Maximum return velocity ( )
4

OB
AC

AB

( )r
l

d r
  

(2.7b)

Maximum cutting velocity Maximum return velocity/
d r

d r   
(2.8)

2.3.10 Drag Mechanism
The drag mechanism is shown in Fig.2.11(a). Link 2 rotates at constant angular speed . Link 4 rotates 
at a nonuniform velocity. Ram 6 will move with nearly constant velocity over most of the upward 
stroke to give a slow upward stroke and a quick downward stroke when link 2 rotates clockwise.

Fig.2.10 Crank and slotted lever mechanism
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Fig.2.11 Drag mechanism

To determine the velocity diagram, draw o
1
a    ·  O

1
A, perpendicular to O

1
A, as shown in Fig.2.11(b). 

From ‘a’ draw ab  AB and from o
1
 draw o

1
b  O

2
B to intersect at b. Then, o

1
b  v

b
 and ab  v

ba
. At 

b draw bc BC  and at o
1
 draw o c O C1 2

, to intersect at c. Then o
1
c  v

c
.

Now at o
2
 draw o

2
d || O

2
D and from c draw a line perpendicular to CD to intersect at d. Then  

o
2
d  v

d
, the velocity of ram 6. o

2
bc is the velocity image of O

2
BC.

2.3.11 Whitworth Quick-Return Motion Mechanism
In the Whitworth mechanism, as shown in Fig.2.12(a), the crank O

1
A rotates with constant angular 

speed . The link PB oscillates about pin O
2
. The ram C reciprocates on the guides.

Fig.2.12 Whitworth quick-return motion mechanism
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The velocity diagram has been drawn in Fig.2.12(b). v
a
  o

1
a   O

1
A. Draw o

1
a  O

1
A to a 

convenient scale. At o
2
, draw a line perpendicular to PB and at ‘a’ draw a line parallel to O

2
P to inter-

sect at p. Then ap  v
pa

 represents the velocity of slider at P and o
2 
p  v

po
2

 the velocity of lever PB at 
P. Produce po

2
 to b so that o p

o b

o P

o B
2

2

2

2

.

Draw bc  BC and o
2
c || O

2
C to intersect at c. Then v

c 
 o

2
c is the velocity of the ram.

2.3.12 Stone Crusher Mechanism
In the stone crusher mechanism shown in Fig.2.13(a), the crank O

1
A rotates at uniform angular 

speed . To draw the velocity diagram (Fig.2.13(b)), draw o
1
a  v

a
   · O

1
A perpendicular to O

1
A 

to a convenient scale. At o
2
, draw a line perpendicular to O

2
B and at ‘a’ another line perpendicular 

to AB  to intersect at b. Then o
2
b  v

b
 and ab  v

ba
. At b, draw a line perpendicular to BC and at ‘a’  

perpendicular to AC to intersect at c. Then abc is the velocity image of link ABC. At C, draw a line 
perpendicular to CD and at o

3
 draw a line perpendicular to o

3
D

 
 to intersect at point d. Then cd  v

d.
 At 

d, draw de  DE and o
3
e  O

3
E. Then o

3
e  v

e
.  Horizontal component of v

e
  (v

e
)

hor
.

Fig.2.13 Stone crusher mechanism 

Let F be the horizontal force to be overcome and T be the torque needed at the driving crank.
Then

T   F (v
e
)

hor

or T
F v( )e hor

   
(2.9)

Example 2.1

In the mechanism shown in Fig.2.14(a), the crank O
1
A rotates at a uniform speed of 650 rpm. Determine 

the linear velocity of the slider C and the angular speed of the link BC. O
1
A  30 mm, AB  45 mm,  

BC  50 mm, O
2
B  65 mm, and O

1
O

2
  70 mm.
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Solution 
Given: N  650 rpm, lengths of links.

Procedure:

1. Draw the coniguration diagram to a convenient scale as shown in Fig.2.14(a).

2. Calculate the angular velocity of crank O
1
A.

 2
650

60
= 68.07 rad/s

3. Calculate the linear velocity of point A,

v
a   

 O
1
A  68.07  0.03  2.04 m/s

4. Draw the velocity diagram as shown in Fig.2.14(b) to a scale of 1 cm  0.5 m/s.

5. Draw v
a
  o

1
a  O

1
A such that o

1
a  4.08 cm.

6. Draw a line from o
2
 perpendicular to O

2
B and another line from ‘a’ perpendicular to AB to intersect 

at b. Then

ab  v
ba

 and o
2
b  v

b

7. From b, draw a line perpendicular to BC and another line from o
2
 parallel to the path of motion of 

the slider to intersect at c. Then

Velocity of the sider C, v
c
  o

2
c

Fig.2.14 Diagram for Example 2.1
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By measurement, we get

v

v
c

cb

o c

bc
2 1 4 0 7

1 3 0 65
. .

. .
cm m/s

cm m/s

Angular velocity of link BC
v

BC
cb 0 65

0 05
13

.

.
rad/s, clockwise about B. (Fig.2.14c)

Example 2.2

The slider C of the toggle mechanism shown in Fig.2.15(a) is constrained to move on a horizontal 
path. The crank O

1
A rotates in the counterclockwise direction at a uniform speed of 180 rpm.

O
1
A  200 mm, AB  400 mm, O

2
B  300 mm, and BC  600 mm.

Determine (a) velocity of slider C, (b) angular velocity of links AB, O
2
B, and BC, (c) rubbing 

velocities on the pins of 25 mm diameter at A and C, and (d) torque required at the crank O
1
A for a 

force of 2 kN at C.

Fig.2.15 Toggle mechanism
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Solution 
Given: N  180 rpm, radius of pin, r  12.5 mm, lengths of links.

Procedure:

1. Draw the configuration diagram to a convenient scale as shown in Fig.2.15(a).

2. Calculate the angular velocity of crank O
1
A.

 2
180

60
18 85.  rad/s

3. Calculate the linear velocity of point A.

va O A1 18 85 0 2 3 77. . .  m/s

4. Draw the velocity diagram as shown in Fig.2.15(b) to a scale of 1 cm  0.5 m/s.

5. Draw v
a
  o

1
a  O

1
A such that o

1
a  7.54 cm.

6. From ‘a’ draw a line perpendicular to AB and another line from o
2
 perpendicular to o

2
B to intersect 

at b. Then o
2
b  v

b
 and ab  v

ba
.

7. From b, draw a line perpendicular to BC and another line from o
2
 parallel to the path of motion of 

the slider C to meet at c. Then o
2
c  v

c
. By measurement, we get

(a) Velocity of the slider, vc o c2 4 2 2 1. .cm m/s

(b) Velocity of link AB AB abbav 2 4 1 2. .cm m/s

Velocity of point B, v
b
  o

2
b  6.2 cm  3.1 m/s

Velocity of link BC, v
cb

  bc  5.7 cm  2.85 m/s

Angular velocity of B about A, ab
ba

AB

v 1 2

0 4
3

.

.
rad/s  (ccw about A)

Angular velocity of B about O
2
, b

b

O B

v

2

3 1

0 3
10 33

.

.
. rad/s  (ccw about O

2
)

Angular velocity of C about B, bc
cb

BC
v 2 85

0 6
4 75.

.
. rad/s  (cw about B)

For direction of angular velocities, refer to Fig.2.15(c).

(c) Radius of pin, r
25

2
12 5. mm

Rubbing velocity on pin at C  
cb 

·
 
r  4.75  0.0125  0.0594 m/s

Relative angular velocity at A b ba cb  
10 33 3 4 75 12 08. . . rad/s

Rubbing velocity on pin at A  12.08  0.0125  0.151 m/s

(d) Let T be the torque required at the crank O
1
A.

T F

T

T

c cv

18 85 2000 2 1

222 81

. .

.

 

 Nm
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Example 2.3

Determine the mechanical advantage of the toggle mechanism shown in Fig.2.16(a).

Fig.2.16 Toggle mechanism

Solution 
Given:   5 rad/s, lengths of links.

Procedure:

1. Calculate the linear velocity of point A. 

va OA2 5 20 100 cm/s

2. Draw the configuration diagram to a convenient scale as shown in Fig.2.16(a).

3. Draw the velocity diagram to a scale of 1 cm  20 cm/s, as shown in Fig.2.16(b).

4. Draw va oa OA, such that oa  5 cm.

5. Draw ab AB  and cb BC  to meet at b.

6. Draw bd BD  and cd CD||  to meet at d.

By measurement, cd  2.5 cm
Let T

a
  torque input at A

Force, F
T

OA
F

a
a

a aWork input v

Let

 

F D

F

F

F

d

d d

d

a

a

force at 

Work output

Mechanical advantage

v

v

vvd

oa

cd

5

2 5
2

.
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Example 2.4

Determine the angular velocity of the follower 3 and the velocity of sliding at the point of contact in 
Fig.2.17(a). The speed of driver link 2 is 3 rad/s.

Fig.2.17 Diagram for Example 2.4

Solution 
Join A

2
O, O

1
O, and O

1
O

2
. Produce A

2
O to meet O

1
O

2
 at M.

va o O A
2 2 2 2 2 3 30 90 mm/s
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Now MA O A2 2 2 . Therefore,






3

2

2

1

3

3 44

20
6 6

O M

O M

. rad/s

Draw the velocity diagram as shown in Fig.2.17(b) to a scale of 1 cm  30 mm/s.

o a A Oa o1 2 2 22 2
v

o a v O Aa o1 3 1 33 1

a a a Oa a2 3 23 2
v

Velocity of sliding, cm mm/sva a a a
3 2 2 3 9.4 282

Example 2.5

The crank AB of a four-bar mechanism shown in Fig.2.18(a) rotates at 60 rpm clockwise. Determine 
the relative angular velocities of the coupler to the crank and the lever to the coupler. Find also the 
rubbing velocities at the surface of pins 25 mm radius at the joints B and C.

Fig.2.18 Four-bar mechanism

Solution 

 2 2
60

60
6.28 rad/s

v
b
  

2
  AB  6.28  40  251.3 cm/s
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Draw the velocity diagram as shown in Fig.2.18(b), to a scale of 1 cm  50 cm/s.

v ab ABb

bc BC

dc CD

v
cb

  bc  2.3 cm  165 cm/s

v
cd

  dc  4.2 cm  210 cm/s

3

165

70
2.36

bc

BC
rad/s (ccw)

23
  

2
 – 

3
  6.28 – ( –2.36)  8.64 rad/s (cw)

Rubbing velocity of pin B  
23

  r
p
  8.64  2.5  21.6 cm/s

4

210

60
2.5

cd

CD
rad/s (cw)

34
  

3
 – 

4
  2.36 – ( –2.5)  5.86 rad/s (ccw)

Rubbing velocity of pin C  
34

  r
p
  5.86  2.5  14.65 cm/s

Example 2.6

Wheel 2 in Fig.2.19(a) rotates at 1500 rpm and is driving the wheel 7 pivoted at O
2
. Determine the 

linear velocity of slider and angular velocities of links 3, 4 and 6.
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Solution 

2 2
1500

60
157.08 rad/s

v
a  2

  O
1
A  157.08  15  2356.2 mm/s

Draw the velocity diagram as shown in Fig.2.19(b) to a scale of 1 cm  500 mm/s.

 v o a O Aa 1 1  v v O Dd a 2

ab AB  db DB

bc BC  o c XX1 ||

Linear velocity of slider  v
c
  o

1
c  1.6 cm  800 mm/s

v
ba

  ab  1.7 cm  850 mm/s

3

850

60
14.16

v

AB
ba rad/s (cw)

v
cb

  bc  6.5 cm  3250 mm/s

4

3250

30
108.3

v

BC
cb rad/s (cw)

v
bd

  db  1.4 cm  700 mm/s

6

700

80
8.75

v

BD
bd rad/s (ccw)

Fig.2.19 Diagram for Example 2.6
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Example 2.7

The dimensions of the mechanism for hydraulic riveter, as shown in Fig.2.20(a), are: OA  200 mm, 
AB  210 mm, AD  550 mm and BC  330 mm.

Fig.2.20 Hydraulic riveter

Determine the velocity ratio between the piston C and ram D. Also calculate the efficiency of the 
machine if a load of 3 kN on piston C causes a thrust of 4.5 kN at ram D.

Solution 

Let N be the speed of the crank OA in rpm. Then 
2

60

N
 rad/s.

v A Na  O N m/s2
0.2

60
0.0209

Since N is unknown, let v
a
  25 mm. Draw oa OA  to represent v

a
 (Fig.2.20b). From ‘a’ draw a  

vector ab AB, to represent v
ba

, and from o draw ob OB, to represent v
b
, to intersect it at b.

From point b, draw a line perpendicular to BC and from o draw a line parallel to the path of motion 
of the piston C. These lines intersect at c so that b and c coincide. Thus v

b
  v

c
.

From point ‘a’ draw a line perpendicular to AD and from o draw another line parallel to the path of 
motion of ram D, to intersect at d. Then od  v

d
, the velocity of ram D. By measurement, we get

v
c
  oc  74 mm

v
d
  od  45 mm

Velocity ratio
v

v
c

d

74

45
1.644
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Work done on the piston C  Load on the piston  v
c
 

 3000v
c

Work done by ram D  4500 v
d

Efficiency
4500

3000

v

v
d

c

1.5

1.644
0.912 91.2% or 

Example 2.8

Crank OA in Fig.2.21(a) is 80 mm long and rotates clockwise about O at 120 rpm. The connecting rod 
AB is 450 mm long. Point C on AB is such that AC  150 mm. A rod CE  400 mm is attached at point 
C which slides in a trunnion at D. The end E is connected by a link EF  320 mm to the horizontally 
moving slider F. Find (a) the velocity of F, (b) the velocity of sliding of CE in the trunnion, and (c) 
the angular velocity of CE.

Fig.2.21 Swivelling pin mechanism

Solution 

Angular speed of OA,
 

 2
120

60
12.57 rad/s

v
a
   · OA  12.57  0.08  1.005 m/s

(a) Draw oa OA  to represent v
a
 to a scale of 1 cm  0.2 m/s, as shown in Fig.2.21(b). From  

‘a’ draw a line perpendicular to AB and from o draw another line parallel to the line of motion of 
the slider to intersect at b. Locate point c on ab such that, ac/ab  AC/AB. From point c draw a line 
perpendicular to CD to represent v

dc
 and at point o draw another line parallel to the motion of CD 

to meet at d, which moves along CD only, to represent v
d
. Locate point e on cd such that, cd/ce  

CD/CE. From point e draw a line perpendicular to EF and from point o draw another line parallel 
to the path of motion of the slider F, to meet at point f. Then of  v

f
. By measurement, we have

v
f
  2.3 cm  0.46 m/s
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(b) Velocity of sliding of CE in trunnion D is, v
d
  od  4.3 cm  0.86 m/s 

(c) v
ce

  ec  2.4 cm  0.48 m/s

Angular velocity of CE
v
CE

ce 0.48
0.4

1.2  rad/s ccw about E. (Fig.2.21c)

Example 2.9

An engine crankshaft drives a reciprocating pump through a mechanism, as shown in Fig.2.22(a). The 
crank OA rotates in the counter-clockwise direction at 150 rpm. The diameter of the pump piston at F 
is 180 mm and OA  175 mm, AB  650 mm, CD  160 mm, and DE  600 mm.

Fig.2.22 Reciprocating pump mechanism

Determine (a) the velocity of cross head E, (b) the rubbing velocities at pins A, B, C, and D having 
diameters of 40 mm each, and (c) the torque required at the crank to overcome a pressure of 0.35 MPa 
at the pump piston at F.

Solution 

 2
150

60
15.708 rad/s

v
a
  15.708  0.175  2.75 m/s
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Draw oa OA  to represent v
a
 to a scale of 1 cm  0.5 m/s, as shown in Fig.2.22(b). From ‘a’ draw  

a line perpendicular to AB and from c draw another line perpendicular to BC to intersect at b. Then 
ab  v

ba
 and cb  v

bc
.

cd cb
CD

BC
5

160

310
2.58 cm

Draw a line perpendicular to CD from c and cut it equal to cd. From d draw a line perpendicular 
to DE and from o draw another line parallel to the path of motion of the slider E, to meet at e. Then  
de  v

ed
 and oe  v

e
. By measurements, we have

(a) Velocity of cross-head E,

v
e
  oe  2.5 cm  1.25 m/s

(b) Rubbing velocities,

2
  15.708 rad/s ccw about O

3 2.9
0.5

0.650
3

ab

AB

v

AB
Aba rad/s ccw about

32
  

3
 – 

2
  3 – 15.708  –12.708 rad/s

Pin A:

32
  0.020  –0.254 m/s

3 2.9
0.5

0.65
3

ba

AB
Bccw about rad/s

4 4
0.5

0.31
6.45

bc

BC
Bcw about rad/s

43
  

4
 – 

3
  6.45 + 3  9.45 rad/s

Pin B:

43
  0.020  9.45  0.020  0.189 m/s

Pin C:
cb

BC
0.020 4 0.5/0.31 0.020 0.129( ) m/s

5

de

DE
D cw about

0.6
0.5

0.6
0.5 rad/s

4

dc

DC
D cw about

2.6
0.5

0.160
8.125 m/s

54
  

5
 – 

4
  0.5 – 8.125  –7.625 rad/s
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Pin D:

54
  0.020  7.625  0.020  0.1525 m/s

(c) Velocity of the piston, v
f
  v

e
  2.5  0.5  1.25 m/s

Let T be the torque required at the crank OA. Then, 

T   Fv
f

15.708
4

(180) 0.35 10 1.252 6T


T  708.75 Nm

Example 2.10

The various dimensions of the mechanism, as shown in Fig.2.23(a), are OA  120 mm, AB  500 mm, 
BC  120 mm, CD  300 mm, and DE  150 mm. The crank OA rotates at 150 rpm. The bell crank 
lever is DE. Determine the absolute velocity of point E.

Fig.2.23 Diagram for Example 2.10

Solution 

 2
150

60
15.708 rad/s

v
a
  15.708  0.120  1.885 m/s

Draw oa OA  to represent the velocity v
a
 of point A to a scale of 1 cm  0.5 m/s, as shown in  

Fig.2.23(b). At ‘a’ draw a line perpendicular to AB and at o draw another line parallel to the path of 
motion of the slider at B to intersect at b. Then ob  v

b
 and ab  v

ba
.

At b draw a line perpendicular to BC and at d draw another line perpendicular to DC to intersect 
at c. Then bc  v

cb
 and dc  v

c
. Now draw de dc  such that

de

dc

DE

DC
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or 

de 2.5
150

300
1.25 cm

Then v
e
  de  1.25 cm  0.625 m/s

Example 2.11

In the mechanism shown in Fig.2.24(a), the crank O
1
A and O

2
B are 100 and 50 mm, respectively. The 

diameters of wheels with centres O
1
 and O

2
 are 260 and 150 mm, respectively. BC  AC  200 mm, 

CD  250 mm. The wheels roll on each other. The crank O
1
A rotates at 120 rpm. Determine (a) the 

velocity of the slider D, (b) the angular velocities of links BC and CD and (c) the torque at O
2
B when 

the force required at D is 4 kN.

Fig.2.24 Diagram for Example 2.11

Solution 

 2
120

60
12.57 rad/s

v
a
  12.57  0.1  1.257 m/s
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v ve a

O E

O A
1

1

1.257
130

100
1.634 m/s

v
f
  v

e

v vb f

O B

O F
2

2

1.634
50

60
1.362 m/s

Draw o a O A1 1  to represent the velocity v
a
 of point A to a scale of 1 cm  0.25 m/s, as shown in 

Fig.2.24(b). Extend o
1
a to e such that

o e o a
O E

O A1 1
1

1

5
130

100
6.5 cm

From o
2
 draw a line perpendicular to O

2
B to intersect o

1
e rotated about o

1
 at f. Locate point b on 

o
2
  f such that

o b o f
O B

O F2 2
2

2

6.5
50

75
4.33 cm

  ( )o f o e2 2

Draw a line perpendicular to BC at b and draw another line perpendicular to AC at ‘a’ to intersect 
at c. Now draw a line perpendicular to CD at c and draw another line from g parallel to the path of 
motion of slider D to intersect at d. Then,

(a) Velocity of slider, v
dg

  gd  2.4 cm  0.6 m/s

(b) v
bc

  cb  1.4 cm  0.35 m/s

bc
bcv

BC

0.35

0.2
1.75 rad/s (cw)

v
dc

  cd  4.6 cm  1.15 m/s

cd
dcv

DC

1.15

0.25
4.6 rad/s (ccw)

(c) T   F
d
 v

dg

T 4000
0.6

12.57
190.93 Nm

Example 2.12

In the mechanism shown in Fig.2.25(a), 
a
  120 m/s. Determine the angular velocities 

4
, 

5
 of the 

two gears and the velocity 
d
 on gear 5. O

2
A  50 mm, AB  200 mm and O

6
C  150 mm.
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Solution 
Draw o a O A2 2  to represent v

a
  120 m/s to a scale of 1 cm  40 m/s, as shown in Fig.2.25(b). 

Draw ab AB  and o
2
b parallel to pitch line of rack. Then o

2
b  v

b
 and ab  v

ba
. Draw bc BC  and 

o c O C6 6 .  Then o
6
c  v

c
 and bc  v

cb
. By measurement,

v
b
  o

2
b  2.6 cm  104 m/s

v
c
  o

6
c  0.7 cm  28 m/s

v
ba

  ab  2.9 cm  116 m/s

v
cb

  bc  2.6 cm  104 m/s

4

4 = 104

0.1
1040

v v

BP

bp b
rad/s (cw)

5
5 5.2

40

0.05
4160

v

CM
cm rad/s (ccw)

v
m4

  v
m5

  5.2 cm  2.08 m/s

v
d
  5.3 cm  212 m/s

Because v
p1

  0 and v
p4

  v
p1

, the images of the points P
1
 and P

4
 both are at the pole point o

2
. Draw 

velocity image of gear 4 with b as centre and radius bp
4
. Produce cb to meet the circle at m

4
, m

5
 since 

v
m4

  v
m5

. The velocity image of gear 5 is drawn with c as centre and cm
5
 as radius. Point d is located 

on the circle opposite to m
5
.

Example 2.13

The dimensions of various links for the mechanism shown in Fig.2.26(a) are: OA  0.5 m, AB  1.5 m, 
AC  CD  0.9 m. The crank OA has uniform angular speed of 180 rpm. Determine the velocities of 

Fig.2.25 Diagram for Example 2.12
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sliders B and D. Also calculate the turning moment at O if a force of 500 N acts on B and a force of 
800 N acts on D, as shown.

Fig.2.26 Diagram for Example 2.13

Solution 

Procedure:

1. Draw configuration diagram as shown in Fig.2.26(a) to a scale of 1 cm = 0.2 m, OB = 1.68 m,  
OE = 0.64 m.

2. Angular speed of OA, 
2 180

60
18 85. rad/s

v
a
    OA  18.85  0.5  9.425 m/s.
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3. Draw the velocity diagram as shown in Fig.2.26(b) to a scale of 1 cm  1 m/s.

 (i) Draw oa OA oa, .9 425 cm.

 (ii) Draw ab AB  and ob ||  slider B.

 (iii) Measure ab  2.8 cm, ob 10.8 cm so that v
b
  ob  10.8 m/s

 (iv) Now 
ac

ab

AC

AB
ac,

.

.
. .

0 9

1 5
2 8 1 68 cm.

 (v) Join oc. Then oc  v
c
.

 (vi) Draw cd CD  and od || slider D. Then od  v
d
  1.5 cm  1.5 m/s.

 (vii) Turning moment at O,

M OB OEo 500 45 800

500
1

2
1 68 800 0 64 82 06

 

 Nm (cw)

sin

. . . .. 

Example 2.14

The dimensions of the various links of the mechanism shown in Fig.2.27(a) are: OA  50 mm,  
AB  400 mm, BC  150 mm, CD  100 mm, and DE  250 mm. The crank OA rotates at 60 rpm. 
Find velocity of slider E.

Fig.2.27 Diagram for Example 2.14
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Solution 

Procedure:
1. Angular speed of crank OA,  2

60

60
6 28. rad/s

v
a
    OA  6.28  50  314.16 mm/s

2. Draw the configuration diagram to a scale of 1 mm 5 mm, as shown in Fig.2.27(a).

3. Draw the velocity diagram as shown in Fig.2.27(b) to a scale of 1 cm  50 mm/s.

 (i) Draw va oa OA oa, .6 28 cm .

 (ii) Draw ab AB and cb BC  meeting at b.

 (iii) Measure cd  v
bc

 (iv) Now 
cd

cb

CD

BC
cd, . cm.

100

150
5 3 33

 (v) Draw cd CD 3 33. cm.

 (vi)  Draw de DE  and oe OB  Then v
e
  oe  3.4 cm  117 mm/s 

  Velocity of slider E  117 mm/s.

Example 2.15

The dimensions of the various links of the mechanism shown in Fig.2.28(a) are OA  30 mm,  
AB  75 mm, BD  100 mm. The crank OA rotates at 120 rpm. Determine the velocity of the slider D 
and angular speed of links AB, BC, and BD.

Fig.2.28 Toggle mechanism

Solution 

Procedure:

1. Draw configuration diagram as shown in Fig.2.28(a) to a scale of 1 cm  20 mm.
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2. Angular speed of the crank OA,
 
 2

120

60
12 57. rad/s

v
a
    OA  12.57  30  377 mm/s.

3. Draw the velocity diagram as shown in Fig.2.28(b) to a scale of 1 cm  50 mm/s.

 (i) Draw va oa OA oa, . cm.7 54

 (ii) Draw ab AB  and cb BC, intersecting at point b.

 (iii) Draw bd BD  and cd CD, intersecting at point d.

 (iv) Then vba ab 7 4 370. cm mm/s

v

v

v

d

bc

db

cd

cb

bd

3 2 160

3 5 175

2 8 140

.

.

.

cm mm/s

cm mm/s

cm mm/ss

 

(v)

 

AB
ba

BC
bc

AB

BC

v

v

370

75
4 93

175

45
3 89

.

.

rad/s, cw

rad/s, cw

BD
bd

BD

v 140

100
1 4. .rad/s, cw

Example 2.16

The crank OA of the mechanism shown in Fig.2.29(a) rotates at 120 rpm. The dimensions of the vari-
ous link are:
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OA  100 mm, AB  CE  400 mm, AC  125 mm, and EF  300 mm. The rod CE slides in a 
slot in trunnion at D. Determine (a) velocity of F, (b) velocity of sliding of CE in D, and (c) angular 
velocity of CE.

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.29(a) to a scale of 1 cm  50 mm.

2. Angular speed of crank OA,  2
120

60
12 567. rad/s

va oA 12 567 100 1256 7. . mm/s

3. Draw the velocity diagram as shown in Fig.2.29(b) to a scale of 1 cm  200 mm/s.

 (i) Draw va oa OA oa, . cm.6 28

 (ii) Draw ab AB  and ob OB|| , intersecting at point b. Measure ab  3.2 cm.

 (iii) Now 
ac

ab

AC

AB
ac, . cm.3 2

125

400
1

 (iv) Draw cd CD  and od CD|| , intersecting at d. Measure cd  0.7 cm.

 (v)  Now 
ce

cd

CE

CD
ce ce, . . , . . cm  mm/s0 7

400

285
0 982 196 4v  Produce cd to e so that  

ce  0.982 cm.
 (vi) Draw ef EF  and of || FD , intersecting at point f.

Then v
f
  of  1.2 cm  240 mm/s.

Thus, velocity of F, v
f
  240 mm/s

Fig.2.29 Swivelling pin mechanism
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 (b) vd od 5 6 1120. cm mm/s

 (c) ce
ce

CE

v 196 4

400
0 491

.
. rad/s , ccw about E (see Fig.2.29(c)).

Example 2.17

The crank and slotted lever mechanism shown in Fig.2.30(a) has the dimensions of its various links 
as follows:

OA  200 mm, AB  100 mm, OC  400 mm, and CD  300 mm. The crank AB rotates at 75 rpm. 
Determine (a) velocity of ram, and (b) angular speed of slotted lever OC.

Fig.2.30 Crank and slotted lever mechanism

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.30(a) to a scale of 1 cm  50 mm.

2. Angular speed of crank AB,  2
75

60
7 854. rad/s

vb AB 7 854 100 785 4. . mm/s

3. (a)  Draw the velocity diagram as shown in Fig.2.30(b) to a scale of 1 cm  100 mm/s
 (i) Draw vb ab AB ab, . cm.7 85

 (ii) Draw bb OB||  and ob OB, intersecting at point b'. Measure ob'  5.8 cm.
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 (iii) oc ob
OC

OB
5 8

400

265
8 75. . .cm  Produce ob' to c so that oc  8.75 cm.

 (iv) Draw cd CD  and od DE|| , intersecting at point d.

 (v) Then vd od 9 900cm mm/s.

 (b) Angular speed of slotted lever OC, (by measurement, OB'  265 mm)

oc

ob

OB
cw

5 8 100

265
2 19

.
. , .rad/s

Example 2.18

For the mechanism shown in Fig.2.31(a), determine the velocities of points C, E and F. Also calculate 
the angular velocities of the links BC, CDE, and EF. Crank AB rotates at 120 rpm. The dimensions of 
various links are: AB  60 mm, BC  120 mm, AD  50 mm, CD  100 mm, DE 120 mm, CE  50 
mm, and EF  150 mm.

Fig.2.31 For Example 2.18
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Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.31(a) to a scale of 1 cm  20 mm.

2. Angular speed of crank AB,  2
120

160
12 57. rad/s

vb AB 12 57 60 752 98. . mm/s.

3. Draw the velocity diagram as shown in Fig.2.31(b) to a scale of 1 cm  200 mm/s.
 (i) Draw vb ab AB ab, . cm.3 77

 (ii) Draw bc BC  and dc DC  to intersect at point c.

 (iii) Measure v
cd

  dc  4.8 cm  960 mm/s to get the velocity of point c.

 (iv)  Draw ce CE  and de DE  to intersect at point e. Then ved de 5 8 1160. cm mm/s , 
the velocity of point E.

 (v)  Draw ef EF  and df DF  to intersect at point f. Then v
fd
  df  9.5 cm  1900 mm/s,  

the velocity of point F.
 

(vi)
 

EF

ef

BC
bc

EF

BC

v

v

6 7 200

150
8 93

2 8 200

120
6

.
.

.
.

rad/s, ccw

333

4 8 200

100
9 6

rad/s, ccw

rad/s, ccw.CDE
cd

CD

v .
.

Example 2.19

For the mechanism shown in Fig.2.32(a), determine the angular velocities of links 3 and 4 when link 
2 is rotating at 120 rpm. Also find the velocity of point C and D. O

2
 A  100 mm, AB  250 mm,  

AC  150 mm, BC  150 mm, O
4
B  100 mm, and AD  100 mm.
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Fig.2.32 Diagram for Example 2.19

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.32(a), to a scale of 1 cm  50 mm.
2. Angular speed of link 2, 

2

2 2

2
120

60
12 57

12 57 100 1257

.

.

rad/s

mm/sva O A

3. Draw the velocity diagram shown in Fig.2.31(b) to a scale of 1 cm  200 mm/s.

 (i) Draw va o a O A o a2 2 2 6 20, . cm.

 (ii)  Draw o b O B4 4  and ab AB  to intersect at point b. Also draw ac AC  and bc BC  
to intersect at point c.

 (iii) Measure ab  6 cm.

 Now, ad

ab

AD

AB

 
ad 6

100

250
2 4. cm

 Join o
2
d ·Measure o

2
d  6 cm

 

v

v

v

d

c

b

o d

o c

o b

2

4

4

1200

8 1600

7 2 1440

mm/s

cm mm/s

cm mm/s.
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 (iv) 
4
  vb

O B4

1440

100
14 4. rad/s, ccw

 
3
  vac

AC

2 7 200

150
4 93

.
. rad/s, ccw.

Example 2.20

For the mechanism shown in Fig.2.33(a), determine the velocities of points C and A and angular 
speedy of links 3 and 4. The link 2 rotates at 150 rpm.

O
2
A  380 mm, O

4
B  250 mm, AC  250 mm, BC  400 mm, and O

2
O

4
  750 mm.

Fig.2.33 Four-bar mechanism having ternary link

Solution 

Procedure :

1. Draw the configuration diagram in Fig.2.33(a) to a scale of 1 cm = 100 mm.

2. Angular speed of link 2,

2 rad/s

mm/s.

2
150

60
15 7

15 7 380 59692 2

.

.va O A

3. Draw the velocity diagram shown in Fig.2.33(b) to a scale of 1 cm = 1000 mm/s.

 (i) Draw o
2
a  O

2
A, o

2
a = 5.97 cm.

 (ii) Draw o
4
b  O

4
B and ab  AB to intersect at b.

 (iii) Draw ac AC and bc BC to intersect at point c. Join o
2
c.

 (iv) Measure v
c
  o

2
c  4.5 cm  4500 mm/s, v

b
  o

2
b  2.3 cm  2300 mm/s, and

 v
ab

  ba  5.2 cm  5200 mm/s.
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 (v) 4
4

2300

250
9 2

vb

OB
. rad/s, cw

 
3

5200

400
13

vab

AB
rad/s, cw.

Example 2.21

For the mechanism shown in Fig.2.34(a), determine the velocity of the slider C. The link 2 rotates at 
180 rpm.

O
2
A  50 mm, AB  100 mm, AC  200 mm, BD  100 mm, O

2
D  100 mm, and O

2
O

6
  100 mm.

Fig.2.34 Diagram for Example 2.21

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.34(a) to a scale of 1 cm  25 cm.

2. Angular speed of link 2,

2

2 2

2
180

60
18 85

18 85 50 942 5

.

. .

rad/s

mm/s.va o A

3. Draw the velocity diagram in Fig.2.34(b) to a scale of 1 cm  200 mm/s.

 (i) Draw va o a O A o a2 2 2 4 71, . cm.

 (ii) Draw ac AC  and o c O C2 2||  to intersect at c. Measure ac = 3.5 cm.

 (iii) Now ab

ac

AB

AC
ab, . .3 5

100

200
1 75 cm.

 (iv) Draw o d O D6 6  and bd BD  to intersect at d.

 (v) Velocity of c  v
c
  o

2
c  2.6 cm  520 mm/s.
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Example 2.22

In the crank–shaper mechanism shown in Fig.2.35(a), the link 2 rotates at a constant angular speed of 
1 rad/s. Determine the angular speed of link 4, v

A4
, v

A2A3
, and v

A3A4
, O

2
A  50 mm, O

4
A  80 mm, and 

O
2
O

4
  120 mm.

Fig.2.35 Crank shaper mechanism

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.35(a) to a scale of 1 cm  25 mm.

2. 
2
  1 rad/s (given),

va o A2 2

1 50 50 mm/s

3. Draw the velocity diagram shown in Fig.2.35 (b) to a scale of 1 cm  10 mm/s.

 (i) va o a O A o a2 2 2 5, cm.

 (ii) Draw o a O A4 4  and a a || O A4  to intersect at a'. Then

 
v vA a o o a4 44

3 30cm mm/s

 
4

4

4
30

80
0 375

va o

o A
. rad/s, ccw

 v
A3A4

  aa'  4 cm  40 mm/s

 v
A2A3

  v
a
  50 mm/s.
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Example 2.23

For the mechanism shown in Fig.2.36(a), the link 2 rotates at 160 rad/s. Determine v
b
, 

4
 and v

ba
. O

2
A  

150 mm, AB  200 mm, and O
4
B  150 mm.

Fig.2.36 Four-bar mechanism

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.36(a) to a scale of 1 cm  50 mm.

2. 
2
  160 rad/s (given)

 v
a
  

2
  o

2
A  160  150  24,000 mm/s.

3. Draw the velocity of diagram shown in Fig.2.36(b) to a scale of 1 cm  4000 mm/s.

 (i) Draw va o a O A o a2 2 2 6, cm.

 (ii) Draw o b O B4 4  and ab AB  to intersect at b.

 (iii) Measure v
b
  o

4
b  3 cm  12,000 mm/s.

 (iv) 
2

4

12 000

150
80

vb

O B

,
rad/s, ccw

 v
ba

  ab  5.8 cm  23,200 mm/s.
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Example 2.24

The driving link 2 of the Whitworth quick-return motion mechanism shown in Fig.2.37(a) rotates at 
a constant speed of 6 m/s. Determine the velocity of tool holder. O

1
A  100 mm, O

4
B 100 mm,  

BC 300 mm, O
2
O

4
  90 mm. 

Fig.2.37 Whitworth quick-return motion mechanism

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.37(a) to a scale of 1 cm  25 mm and velocity 
diagram shown in Fig.2.37(b) to a scale of 1 cm  1 m/s.

2. Draw v vao ao a O A o a
2 2 2 2 2 6, m/s.

3. Draw o a O A4 4||  and a a   O A4  to intersect at a'.

4. Measure o
4
a'  3.8 cm, O

4
A  5.7 cm, O

4
B  4 cm

5. Now 
o b

o a

O B

O A
o b4

4

4

4
4 3 8

4

5 7
, .

.
2.67 cm.

6. Draw bc BC  and o c O C2 4||  to intersect at point C.

7. Velocity of tool holder, v
c
  o

2
c  1.5 cm  1.5 m/s.
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Example 2.25

For the mechanism shown in Fig.2.38(a), determine velocity of slider and 
3
, 

4
, and 

5
.

Fig.2.38 Diagram for Example 2.25

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.38(a) to a scale of 1 cm  20 mm.

2. Angular speed of link 2,

2

2 2

150

150 30 4500

rad s

O B mm sb

/

/ .v

3. Draw the velocity diagram shown in Fig.2.38(b) to a scale of 1 cm  1000 mm/s.

 (i) Draw vb o b O B o b2 2 2 4 5, . cm.

 (ii) Draw bc BC  and o c O C4 4  to intersect at point c.

 (iii) Draw cd CD  and o d O D4 4  to intersect at d.

 (iv) Draw de DE  and o e yy2 ||  to intersect at e.
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 (v) 
3

4
4

4

4

5 8 1000

62 5
92 8

5

v

v

cb

c

BC

bc

BC

O C

o c

O C

.

.
. rad/s, ccw

..
.

.
.

5 1000

65
84 6

2 8 1000

75
37 35

rad/s, ccw

rad/
vde

DE

ed

DE
ss, ccw

Velocity of slider, ve Ao e 7 2 1000 7200. mm/s  or 7.2 m/s.

Example 2.26

For the mechanism shown in Fig.2.39(a), v
E
  5 m/s. Determine v

d
, 

3
, and 

5
.

Fig.2.39 Diagram for Example 2.26

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.39(a) to a scale of 1 cm  20 mm.

2. Draw the velocity diagram shown in Fig.2.39(b) by assuming v
b
  5 cm and crank AB rotating 

clockwise.

3. Draw vb ab Ab ab, 5 cm.

4. Draw bd BD ad AD, ||  to meet at point d.
5. Draw bc BC  and cd CD  to meet at point c.

6. Draw ae E|| v  and ce CE  to meet at e. Then ae  v
E
  5 m/s  3.5 cm. Thus scale is: 1 cm   

1.428 m/s.
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7.

 

v

v

v

da

bd

bd

ad

db

BD

bd

BD

4 5 6 45

2 7 5 28

5 28
3

. .

. .

.

cm m/s

cm m/s

00 1
52 8

2 4 4 85

4 85

0 10
45

.
.

. .

.

.

rad/s, ccw

cm m/sv

v
ec

ec

ce

EC
88 5. rad/s, cw

Example 2.27

The crank O
1
A of the four-bar linkage shown in Fig.2.40(a) is rotating at a uniform angular velocity 

of 30 rad/s. Draw the velocity polygon and determine the velocity of point B, the angular velocities  
of the links 3 and 4. O

1
A 100 mm, AB  200 mm, O

2
B  75 mm, AC  100 mm, BC  150 mm, and 

AD  50 mm. Also determine the velocity images of all links.

Fig.2.40 Four-bar mechanism with ternary link

Solution 

Procedure:

1. Draw the configuration diagram shown in Fig.2.40(a) to a scale of 1 cm  50 mm.

2. 
2
  30 rad/s, v

a
  

2
  O

1
A  30  100  3000 mm/s

3. Draw the velocity polygon as shown in Fig.2.40(b) to a scale of 1 cm  500 mm/s.

 (i) Draw va o a O A o a1 1 1 6, .cm

 (ii) Draw ab AB  and o b O B2 2  to intersect at point b.

 (iii) Draw ac AC  and bc BC  to intersect at point c.

 (iv) v

v
ba

b

ab

o b

5 6 2800

2 9 14501

.

.

cm mm/s

cm mm/s.
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 (v)

 

3

4
2

2

2

2800

200
14

1450

75
1

v

v

ba

b

AB

ab

AB

O B

o b

O B

rads/s,cw.

99 3. .rads/s, cw

Example 2.28

In the mechanism shown in Fig.2.41(a), the piston D moves in the vertical direction upwards with a 
velocity of 5 m/s.

O
1
A  7.5 cm, O

1
O

2
  30 cm, AB 25 cm, O

2
C  O

2
B  10 cm, CD  25 cm, and BC  12.5 cm. 

Find the speed in rpm and direction of rotation of crank O
1
A.

Fig.2.41 Diagram for Example 2.28

Solution 

Procedure:
Draw the configuration diagram shown in Fig.2.41(a) to a scale of 1 cm  5 cm. Let us assume that 
crank O

1
A is rotation clockwise. Assume that v

a
  5 cm to some scale. Then draw the velocity diagram 

shown in Fig.2.41(b) as follows:

1. Draw va o a O A o a1 1 1 5, .cm

2. Draw ab AB  and o b O B2 2  meeting at point b.

3. Draw bc BC  and o c O C2 2  meeting at point c.

4. Draw o d O D2 2  and cd CD  meeting at point d.

Then v
D
  o

2
d  2 cm  5 m/s

Hence scale: 1 cm  2.5 m/s

and v
a
  5  2.5  12.5 m/s
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va

O A1

12 5 100

7 5
166 67

.

.
.

  

rad/s

2

60
166 67

N
.

N  1591.5 rpm

Example 2.29

The quick-return motion mechanism of the crank and slotted lever type shaping machine is shown in 
Fig.2.42(a).

O
1O2

  800 mm, O
1
B  300 mm, O

2
D  1300 mm, DR  400 mm.

The crank O
1
B makes and angle of 45° with the vertical and rotates at 40 rpm in the counter clock-

wise direction. Find: (a) velocity of ram R, and (b) angular velocity of link O
2
D.

Solution 

Procedure:

1. Draw the configuration diagram to a scale of 1 cm  200 mm.

2. Angular speed of crank O
1
B,

2 40

60
4 189

4 189 300 1256 61

.

. .

rad/s

mm/svb O B

Fig.2.42 Shaping machine mechanism
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 3. Draw the velocity diagram as shown in Fig.2.42(b) to a scale of 1 cm  200 mm/s.

 4. Draw o b O B o b1 1 1 6 28, . .cm  Also draw bc O D2  and o d O D2 2

 5. Measure o
2
c  5.1 cm.

 6. Now 
o d

o c

O D

O C
o d2

2

2

2
2

5 1 6 5

5 1
6 5,

. .

.
. cm.

 7. Produce o
2
c to d so that o

2
d  6.5 cm.

 8. Draw dr DR  and o r RE2  to meet at r.

 9. Then v
r
  o

1
r  7.1 cm  1420 mm/s is the velocity of ram.

10. v
v

d D
do d

O D2 0
2

6 5 1300
1300

1300
1

2
. ,cm mm/s rad/s  ccw about O

2
.

Example 2.30

The dimesions of the mechanism shown in Fig.2.43(a) are: O
1
O

2
 6 cm, O

3
A  8 cm, O

1
B  20 cm, 

BC  18 cm, O
2
C  20 cm, O

1
O

2
C  90°.

The crank O
3
A rotates uniformly at 20 rad/s clockwise. Determine the velocity of the slider A and 

angular velocity of link BC.

Fig.2.43 Diagram for Example 2.30

Procedure:

1. Angular speed of link O
3
A  20 rad/s

vao O A
3 3 20 8 160 = cm/s

2. Draw velocity diagram as shown in Fig.2.43(b)

3. Draw vao o a O A
3 3 3 =  to a scale of 1 cm  40 cm/s so that o

3
a  4 cm.
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4. Draw ad || BO
1
 and o

1
b O B1 . Measure o

1
d  2.9 cm and O

1
B  2.8  4  11.2 cm.

Now 
o d

o b

O D

O B
o b1

1

1

1
1 2 9

20

11 2
5 2, .

.
. cm

Produce o
1
d to b so that o

1
b  5.2 cm

5. Draw bc BC  and o
2
c  O

2
C to meet at c.

Velocity of the slider A, v
da

  2.8  40  112 cm/s

Angular velocity of link BC  
BC

  
vcb

BC

3 1 40

18
6 9

.
. rad/s, cw.

Example 2.31

Using relative velocity method find the absolute velocity of the slider E in the mechanism shown  
in Fig.2.44(a). The crank O

1
A rotates at 60 rpm. O

1
A  50 mm, O

2
B 120 mm, AB  270 mm  

O
2
D  90 mm, and DE  180 mm.

Fig.2.44 Diagram for Example 2.31
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Solution 

  
2

60

2 60

60
6 28

 N
.  rad/s

v
a
    O

1
A  6.28  50  314.16 mm/s

1. Draw va o a O A o a1 1 1 6 28, . cm  (Fig.2.44(b)).

2. Draw ab AB  and o b O B2 2  to meet at point b.

3. Draw bd BD  and o d O D2 2
 to meet at point d.

4. Draw de DE  and o e O B1 1  to meet at point e.

Absolute velocity of the slider v
e
  o

1
e  4 cm  200 mm/s.

Example 2.32

Figure 2.45(a) shows a swivelling joint mechanism in which AB is the driving crank which rotates at 
240 rpm clockwise.

Fig.2.45 Swivelling joint mechanism
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AB  100 mm, BC  750 mm, CD  200 mm, AD  600 mm, BE  EC, EF  340 mm, FG  400 mm.
Determine (a) the velocity of slider G, (b) angular velocity of link EF, and (c) the velocity of link 

EF in the swivel block.

Solution 


2

60
25 13

240
rad/s.

v
b
    AB  25.13  100  2513 mm/s

1. Draw vba ab AB ab, .5 02 cm  (Fig.2.45(b)).

2. Draw bc BC  and cd CD  to meet at c.

3. Since BE  EC, therefore ce  eb. Locate point e.

4. Let Q be a point on link EF at joint O. Draw eq EF  and oq EF||  to locate point q.

5. Now 
ef

eq

EF

EQ
ef, . .2 8

340

200
4 76  cm. Extend eq to f so that ef  4.76 cm.

6. Draw fs FS  and gs || line of stroke of slider to meet at point s.

 (a) Velocity of slider s  gs  0.6 cm  300 mm/s.

 (b) Angular velocity of link EF
EF

fev 4 76 500

340
7 

.
red/s, ccw.

 (c) Velocity of link EF in swivel block oq  3 cm  1500 mm/s.

Example 2.33

The angular velocity of crank OA shown in Fig.2.46(a) is 600 rpm. Determine the linear velocity 
of slider D and the angular velocity of link BD when the crank is inclined at an angle of 75° to the 
vertical. The dimensions of the various links are: OA  28 mm, AB  44 mm, BC  49 mm, and BD   
46 mm. The centre distance between the centres of rotation O and C is 65 mm. The path of travel of the 
slider is 11 mm below the fixed point C. The slider moves along a horizontal path and OC is vertical.

d

dbv

ba

b

Scale : 1 cm = 0.5 m/s

(b) Velocity diagram

a
v

av

dv

bv

o,c

Scale : 1 cm = 10 mm

(a) Configuration diagram

D

46

B

49

65

C
11 mm

75°
A

28

44

O

Fig.2.46 Diagram for Example 2.33
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Solution 

Angular velocity of OA,   
2

60

2 600

60
62 83

 N
.  rad/s

Linear velocity of A, v
a
    OA  62.83  28  10–3  1.76 m/s

1. Draw configuration diagram as shown in Fig.2.46(a).

2. Draw velocity diagram as shown in Fig.2.46(b).

3. Draw oa perpendicular to OA such that oa  v
a
  3.52 cm.

4. Draw ab AB  and ob BC  to intersect at b.

5. Draw bd BD  and od parallel to the path of slider D to intersect at d.

Linear velocity of slider D, v
d
  od  2.8 cm  1.4 m/s

Linear velocity of BD, v
db

  3.2 cm  1.6 m/s

Angular velocity of BD, bd
db

BD

v 1 6

0 046
34 78

.

.
.  rad/s (clockwise about B)

Example 2.34

The mechanism shown in Fig.2.47 has the dimensions of various links as follows:

AB  DE  150 mm, BC  CD  450 mm, EF  375 mm

The crank AB makes an angle of 45° with the horizontal and rotates about A in the clockwise 
direction at a uniform speed of 120 rpm. The lever DC oscillates about the fixed point D, which is 
connected to AB by the coupler BC.

The block F moves in the horizontal guides, being driven by the link EF. Determine (a) linear velocity 
of block F, (b) angular velocity of DC, and (c) rubbing speed at pin C, which is 50 mm diameter.

ef
fa,d

b

c

e
v

cdv

bv

cb
v

fv

Scale: 1 cm = 0.5 m/s

(b) Velocity diagram

Scale: 1 cm = 100 mm

375

375

450

E

D

100 mm

F

B

A

C

150
45°

(a) Configuration diagram

Fig.2.47 Diagram for Example 2.34

Solution 

Angular velocity of AB, 
 2

60

2 120

60
12 57

N
.  rad/s
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Linear velocity of B, v
b
    AB  12.57  0.15  1.885 m/s

 1. Draw the configuration diagram as shown in Fig.2.47(a).

 2. Draw the velocity diagram as shown in Fig.2.47(b).

 3. Draw ab AB||  such that ab  v
b
  3.77 cm.

 4. Draw bc BC  and dc DC  to intersect at c.

 5. Measure dc  4.4 cm.

 6. de
DE

CD
dc

150

450
4 4 1 47. .  cm.

 7. Draw ef EF  and af parallel to the line of stroke of F to meet at f.

 8. Linear velocity of F, v
f
  af  1.5 cm  0.75 m/s.

 9. v
cd

  dc  4.4 cm  2.2 m/s.

10. 
cd

  v
cd

/CD  2.2/0.45  4.9 rad/s (ccw about D)

11. v
cb

  bc  4.4 cm 2.2 m/s

12. cb
cb

BC

v 2 2

0 45
4 9

.

.
. rad/s  (ccw about B)

13. Rubbing velocity at pin C v
r

 (
cb

 – 
cd

) r
c
  (4.9 – 4.9)  0.025  0

Example 2.35

The dimensions of a four-bar mechanism are:
AD  300 mm, BC  AB  360 mm, CD  600 mm.The link CD is fixed and ADC  60°. The 

driving link AD rotates uniformly at a speed of 120 rpm clockwise and the constant driving torque is 
60 Nm. Determine (a) the velocity of the point B and angular velocity of BC, (b) actual mechanical 
advantage and the resisting torque if efficiency of the mechanism is 75 percent.

A

B

CD

60°

Scale: 1 cm = 100 mm

(a) Configuration diagram

Scale: 1 cm = 1 m/s

(b) Velocity diagram

c,d

vb

va
a

b

vba

Fig.2.48 Four-bar mechanism

Solution 

Angular velocity of link AD, 
 2

60

2 120

60
12 57

N
.  rad/s

Linear velocity of A, v
b
    AB  12.57  0.3  3.77 m/s
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1. Draw configuration diagram as shown in Fig.2.48(a).

2. Draw velocity diagram as shown in Fig.2.48(b).

3. Draw da DA  such that da  v
a
  3.77 cm.

4. Draw ab AB  and cb CB  to intersect at b.

5. v
b
  cb  2.6 cm  2.6 m/s

6. bc
b

BC

v 2 6

0 36
7 22

.

.
. rad/s  (cw about c)

Mechanical advantage 



a

b

0 75
12 57

7 22
1 30.

.

.
.

Now Efficiency, 



T

T
b b

a a

.

.

 

 

T
b
  0.75  60  

12 57

7 22

.

.
  78.345 Nm

Example 2.36

A quick-return mechanism of a shaper is shown in Fig.2.49(a). The crank O
1
A rotates in the counter-

clockwise direction. Determine the linear velocity of the cutting tool when the crank O
1
A is at 45° 

with the horizontal. All dimensions are given in the figure.

20

C

40
B

130

80 cm

O2

O1

A1

A2

30
45°

X

Scale: 1 cm = 20 cm

(a) Configuration diagram

a2

O1,O2

a1

a1
v

av vcb

vb

c
c

b

v

a1a2
v

Scale: 1 cm = 100 cm/s

(b) Velocity diagram

Fig.2.49 Quick-return mechanism
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Solution 

Draw configuration diagram shown in Fig.2.49(a).

  2   120/60  12.57 rad/s

v
a1

    O
1
A

1
  12.57  30  377 cm/s

Draw the velocity diagram as shown in Fig.2.49(b).
v o a O Aa1 1 1 1 1

a a O B1 2 2||

o a O B2 2 2

o
2
a

2
  3 cm

o
2
b  o

2
a

2
  O

2
B/O

2
A

2
  3  6.5/5.1  2.82 cm

bc BC
o c XC2 ||

Velocity of cutting tool, v
c
  o

1
c  4.30 cm/s

2.4 INSTANTANEOUS CENTRE METHOD
A link as a whole may be considered to be rotating about an imaginary centre or about a given centre 
at a given instant. Such a centre has zero velocity, i.e. the link is at rest at this point. This is known as 
the instantaneous centre or centre of rotation. This centre varies from instant to instant for different 
positions of the link. The locus of these centres is termed the centrode.

2.4.1 Velocity of a Point on a Link
Consider two points A and B on a rigid link, having velocities v

a
 and v

b
, respectively, as shown in  

Fig.2.50(a). From A and B draw lines perpendicular to the directions of motion and let them meet at I. 
Then I is the instantaneous centre of rotation of the link AB for its give position.

If  is the instantaneous angular velocity of the link AB, then v
a
  . IA and v

b
   . IB. Thus

v
IB

IA
vb a

 (2.10)

The velocity diagram for the link AB has been drawn in Fig.2.50(b). Triangles IAB and oab are 
similar. Hence

Fig.2.50 Concept of instantaneous centre
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or

oa

IA

ob

IB

ab

AB
v

IA

v

IB

v

AB

v

IC
a b ba c 

 (2.11)

where C is any point on the link AB.

2.4.2 Properties of Instantaneous Centre
The properties of the instantaneous centre are as follows:

1. At the instantaneous centre of rotation, one rigid link rotates instantaneously relative to another for 
the configuration of the mechanism considered.

2. The two rigid links have no linear velocities relative to each other at the instantaneous centre.

3. The two rigid links have the same linear velocity relative to the third rigid link, or any other link.

2.4.3 Number of Instantaneous Centres
The number of instantaneous centres in a mechanism is equal to the number of possible combinations 
of two links. The number of instantaneous centres,

N
n n ( 1)

2
 (2.12)

where n  number of links.

2.4.4 Types of Instantaneous Centres
The instantaneous centres for a mechanism are of the following types:

1. Fixed instantaneous centres.

2. Permanent instantaneous centres.

3. Neither fixed nor permanent instantaneous centres.

Fig.2.51 Instantaneous centres in a four-bar mechanism

Consider a four-bar mechanism shown in Fig.2.51. For this mechanism, n  4.
Hence

N  4(4 – 1)/2  6
The instantaneous centres are:

12, 13, 14, 23, 24, 34.
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The instantaneous centres 12 and 14 remain at the same place for the configuration of the mecha-
nism, and are therefore called fixed instantaneous centres. The instantaneous centres 23 and 34 move 
when the mechanism moves. But the joints are permanent, therefore, they are called permanent instan-
taneous centres. The instantaneous centres 13 and 24 vary with the configuration of the mechanism 
and are neither fixed nor permanent instantaneous centres.

2.4.5 Location of Instantaneous Centres
The following observations are quite helpful in locating the instantaneous centres:

1. For a pivoted or pin joint, the instantaneous centre for the two links lies on the centre of the pin (see 
Fig.2.52(a)).

2. In a pure rolling contact of the two links, the instantaneous centre lies at their point of contact (see 
Fig.2.52(b)). This is because the relative velocity between the two links at the point of contact is 
zero.

3. In a sliding motion, the instantaneous centre lies at infinity in a direction perpendicular to the path 
of motion of the slider. This is because the sliding motion is equivalent to a rotary motion of the 
links with radius of curvature equal to infinity (see Fig.2.52(c)). If the slider (link 2) moves on a 
curved surface (link 1), then the instantaneous centre lies at the centre of curvature of the curved 
surface (see Fig.2.52(d) and (e)).

Fig.2.52 Locating instantaneous centres

2.4.6 Arnold–Kennedy Theorem
This theorem states that if three-plane bodies have relative motion among themselves their three 
instantaneous centres must lie on a straight line.

Consider three rigid links 1, 2, and 3; 1 being a fixed link. 12 and 13 are the instantaneous centres 
of links 1, 2 and 1, 3 respectively. Let 23 be the instantaneous centre of links 2, 3, lying outside the 
line joining 12 and 13, as shown in Fig.2.53. The links 2 and 3 are moving relative to link 1. Therefore, 
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the motion of their instantaneous centre 23 is to be the same whether it is considered in body 2 or 3. If 
the point 23 is considered on link 2, then its velocity v

2
 is perpendicular to the line joining 12 and 23. 

If the point 23 lies on link 3, then its velocity v
3
 must be perpendicular to the line joining 13 and 23. 

The velocities v
2
 and v

3
 of point 23 are in different directions, which is not possible. The velocities v

2
 

and v
3
 of instantaneous centre 23 will be equal only if it lies on the line joining 12 and 13. Hence all 

the three instantaneous centres 12, 13 and 23 must lie on a straight line.

Fig.2.53 Proving three-centres theorem

2.4.7 Method of Locating Instantaneous Centres
The following procedure may be adopted to locate the instantaneous centres:

1. Determine the number of instantaneous centres from N
n n ( 1)

2
.

2. Make a list of all the instantaneous centres by writing the link numbers in the first row and instanta-
neous centres in ascending order in columns. For example, for a four-bar chain shown in Fig.2.54(a), 
we have

1 2 3 4

12 23 34

13 24

14

  



3. Locate the fixed and permanent instantaneous centres by inspection, as explained in Section 2.4.5. 
Tick mark () these instantaneous centres.

4. Locate the remaining neither fixed nor permanent instantaneous centres (circled) by using  
Arnold–Kennedy’s theorem. This is done by a circle diagram, as shown in Fig.2.54(b). Mark points 
on a circle equal to the number of links in the mechanism. Join the points by solid lines for which 
instantaneous centres are known by inspection. Now join the points forming the other instantaneous 
centres by dotted lines. The instantaneous centre shall lie at the intersection of the lines joining the 
instantaneous centres of the two adjacent triangles of the dotted line. For example, in Fig.2.54(b), 
the centre 13 is located at the intersection of lines (produced) joining the instantaneous centres 12, 
23, and 14, 34. Similarly, the centre 24 is located at the intersection of the lines (produced) joining 
the centres 23, 34 and 12, 14.
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Fig.2.54 Four-bar mechanism

2.4.8 Determination of Angular Velocity of a Link
The angular velocities of two links vary inversely as the distances from their common instantaneous 
centre to their respective centres of rotation relative to the frame. For example, for the four-bar mecha-
nism shown in Fig.2.54(a), if 

2
 is the angular velocity of link 2, then angular velocity 

4
 of link 4 will 

be given by the following relationship:




4

2

(24 12)

(24 14)

If the respective centres of rotation are on the same side of the common instantaneous centre, then 
the direction of angular velocities will be same. However, if the respective centres of rotation are on 
opposite sides, then the direction of angular velocities will be opposite.

Similarly,  



3

2

(23 12)

(23 13)

Example 2.37

In the four-bar mechanism shown in Fig.2.55(a), link 2 is rotating at angular velocity of 15 rad/s c . 
Locate all the instantaneous centres of the mechanism and find (a) the angular speeds of links 3 and 4, 
(b) the linear velocities of links 3 and 4, and (c) the linear velocities of points E and F.

Fig.2.55 Four-bar mechanism
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AB  200 mm, BC  250 mm, CD  300 mm, AD  500 mm, BAD  60°, BE  FD  150 mm.

Solution 

Given: n  4,   15 rad/s

Number of instantaneous centres, N
4(4 1)

2
6

The instantaneous centres are:
1 2 3 4

12 23 34

13 24

14

  



1. Draw the configuration diagram of the four-bar mechanism to a convenient scale, as shown in 
Fig.2.55(a).

2. Locate the fixed and permanent instantaneous centres 12, 14, 23, and 34.

3. Locate the centres 13 and 24 by using Arnold–Kennedy’s theorem of three centres from 
Fig.2.55(b).

13 : 12, 23; 14, 34

24 : 12, 14; 23, 34

4. By measurement, we have
23 – 13  280 mm
24 – 12  420 mm
24 – 14  920 mm
13 – 34  190 mm
13 – E  200 mm

(a)
 


3

2

23 12

23 13

200

280

or 




3

4

2

200

280
15 10 71

24 12

24 14

420

920

. rad/s

or   
 
4 420

15

920
6 848. rad/s
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(b) v

v v

b

c b

AB2 15 0 2 3

13 34

13 23

3
190

280
2 04

.

.

m/s

m/s

vv vbc b

BC

13 23

3
250

280
2 678. m/s

(c) v

v v

e

f c

E

FD

CD

3 13

10 71 0 2 2 142

2 04
150

300

( )

. . .

.

m/s

1 02. m/s

Example 2.38

Locate the instantaneous centres of the slider crank mechanism shown in Fig.2.56(a). Find the veloc-
ity of the slider. OA  160 mm, AB  470 mm, and OB  600 mm, 

2
  12 rad/s cw.

Fig.2.56 Slides-crank mechanism

Solution 
Given: n  4, 

2
  12 rad/s cw, lengths of links.

Number of instantaneous centres, N
4(4 1)

2
6
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1 2 3 4

12 23 34

13 24

14

  



1. Draw the configuration diagram to a convenient scale as shown in Fig.2.56(a).

2. Locate fixed centres 12 and 34.

3. Locate permanent centre 23. Instantaneous centre 14 is at infinity.

4. Locate neither fixed nor permanent centres 13 and 24 by using Arnold–Kennedy’s three centres 
theorem.
As shown in Fig.2.56(b), we have

13 : 12, 23; 14, 34

24 : 12, 14; 23, 34

5. By measurements, we have

13 23 550

13 34 390

12 0 16 1 92

23 13
2

3

mm

mm

m/sva OA . .

( )

Hence,  3 2

23 12

23 13

12
160

550
3 191

( )

( )

. m/s

When 
3
 is the angular velocity of link 3 about 13.

Velocity of slider,

vb

OA

3

2

2

34 13

23 12

23 13
34 13

34 13

23

( )

( )

113

12 0 16
390

550
1 36. . m/s
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Example 2.39

Locate the instantaneous centres of the mechanisms shown in Fig.2.57(a).

Fig.2.57 Four-bar mechanism

Solution 

(a) Here n  4

Number of instantaneous centres, N  4
3

2
6

1 2 3 4

12 23 34

13 24

14

   



Instantaneous centres 12, 14, 23, and 34 are located by inspection and centres 13, 24 are located by 
using Arnold–Kennedy’s theorem as follows:

13: 12, 23; 14, 34

24: 23, 34; 12, 14

Example 2.40

Locate the instantaneous centres of the mechanism shown in Fig.2.58.

Solution 

Here n  3; Number of instantaneous centres  
3 2

2
3  

1 2 3

12 23

13
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Instantaneous centres 12, 13 are located by inspection. 23 12   13: ,

Fig.2.58 Three-bar mechanism

Example 2.41

In the toggle mechanism, shown in Fig.2.59, crank O
1
A rotates at 30 rpm clockwise. O

1
A  40 mm,  

AB  140 mm, BC  100 mm, BD  80 mm, and DE  80 mm. Neglecting friction and inertia effects, calculate 
the torque required to overcome a resistance of 500 N at D. Use the instantaneous centre method.

Fig.2.59 Toggle mechanism

Solution 

Here n  6; Number of instantaneous centres 
n n 1

2

6 5

2
15
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1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16

    

 

  



 2 2
30

60
2 14.  rad/s; v

a
  

2
  O

1
A  2.14  40  125.7 mm/s

3 13 23

125 7

8 4 20
0 748

va .

.
.  rad/s; v

b
  

3
 (13 – 34)  0.748  5.3  20  79.29 mm/s

5 15 35

79 29

4 8 20
0 826

vb .

.
.  rad/s; v

d
  

5
 (15 – 56)  0.826  2.1  20  51.21 mm/s

6 16 56

51 21

80
0 64

vd .
.  rad/s

Torque  Angular velocity  Resistance force  v
d

T  2.14  500  51.21  10–3; T  8.15 Nm

Example 2.42

Determine all the instantaneous centres of the double slider–crank mechanism shown in Fig.2.60(a).

13 12 23 14 34

15 16 56 14 45

24 23 34 12 14

: , ; ,

: , ; ,

: , ; ,

Fig.2.60 Double slider-crank mechanism
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Solution 

Here n  6; so that N
6 6 1

2
15  

1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16

As shown in Fig.2.60(b), we have  13 : 12, 23; 14, 34

  15 : 16, 56; 12, 25

  24 : 23, 34; 12, 14

  26 : 12, 16; 25, 56

  36 : 13, 16; 35, 56

  45 : 14, 15; 34, 35

  46 : 45, 56; 34, 36

Example 2.43

Locate all the instantaneous centres of the Whitworth mechanism shown in Fig.2.61(a).

Fig.2.61 Whitworth mechanism
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Solution 

N
6 6 1

2
15

 
1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16

    





As shown in Fig.2.61(b), we have 13 : 12, 23; 14, 34

 15 : 14, 45; 16, 56

 24 : 23, 34; 12, 14

 25 : 24, 45; 12, 15

 26 : 25, 56; 12, 16

 35 : 34, 45; 23, 25

 36 : 35, 56; 23, 26

 46 : 45, 46; 14, 16

Example 2.44

Determine all the instantaneous centres of the mechanism shown in Fig.2.62(a). Calculate the veloci-
ties of the slider E and the joints B and D when the crank OA is rotating at 120 rpm. Also find 

AB
, 

BD
, 

and 
DE

. OA  200 mm, AB  500 mm, BC  300 mm, BD  600 mm, and DE  450 mm.

Fig.2.62 Mechanism for Example 2.44
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Solution 

 2 2
120

60
12 57.  rad/s

v
a
  

2 
. OA  12.57  0.2  2.513 m/s

N
6 6 1

2
15

1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16

    





As shown in Fig.2.62(b), we have 13 : 12, 23; 14, 34
 15 : 14, 45; 16, 56
 24 : 23, 34; 12, 14
 25 : 24, 45; 12, 15
 26 : 25, 56; 12, 16
 35 : 34, 45; 23, 25
 36 : 35, 56; 23, 26
 46 : 45, 46; 14, 16

v
26

  
2
(12 – 26)  12.57  0.15  1.886 m/s

v
e
  v

26
  1.886 m/s

13 – A  710 mm, 13 – B  510 mm, 14 – B 300 mm,

14 – D  300 mm, 15 – D  110 mm, 15 – E  470 mm

v
B

A
vb a

13

13
510

2 513

710
1 805

.
.  m/s

v
C

B
vd b

14

14
300

1 805

300
1 805

.
.  m/s

v
E

D
ve d

15

15
470

1 805

110
7 712

.
.  m/s

AB
av

A13

2 513

0 71
2 54

.

.
.  rad/s

BD
bv

B14

1 805

0 3
6 02

.

.
.  rad/s

DE
dv

D15

1 805

0 11
16 41

.

.
.  rad/s
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Example 2.45

A wrapping mechanism is shown in Fig.2.63(a). The crank O
1
A rotates at a uniform speed of 1200 

rpm. Determine the velocity of point E on the bell crank lever.
O

1
A  300 mm, AC  650 mm, BC  100 mm, O

3
C  400 mm,

O
2
E  400 mm, O

2
D  200 mm, and BD  200 mm.

Fig.2.63 Wrapping mechanism

Solution 

 2
1200

60
125 7.  rad/s

v
a
  125.7  0.3  37.71 m/s

N
6 6 1

2
15

As shown in Fig.2.63(b), we have

1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16
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13 : 12, 23; 14, 34
15 : 14, 45; 16, 56

 13 – A  530 mm, 13 – B  750 mm, 15 – B  170 mm,
 15 – D  30 mm, 16 – D  200 mm, 16 – E  400 mm

v
B

A
vb a

13

13
750

37 71

530
52 36

.
.  m/s

v
D

B
vd b

15

15
30

52 36

170
9 42

.
.  m/s

v
E

D
ve d

16

16
400

9 42

200
18 83

.
.  m/s

Example 2.46

The sewing machine needle bar mechanism is shown in Fig.2.64(a). Crank 2 rotates at 450 rpm. 
Determine the velocity of the needle at D.

O
1
A  15 mm, O

2
B  25 mm, AB  65 mm, BC  20 mm, CD  60 mm and O

2
BC  90°.

Fig.2.64 Sewing machine needle bar mechanism

Solution 

Here n  6 and N  15
As shown in Fig.2.64(b), we have

1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16
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13 : 12, 23; 14, 34
15 : 14, 45; 16, 56

13 – A    32 mm, 13 – B  84 mm, 14 – B  25 mm,
14 – C  30 mm, 15 – C  98 mm, 15 – D  132 mm

 2
450

60
47 124.  rad/s

v
a
  47.124  0.015  0.71 m/s

v
B

A
vb a

13

13
84

0 71

32
1 864

.
.  m/s

v
C

B
vc b

14

14
30

1 864

25
2 236

.
.  m/s

v
D

C
vd c

15

15
132

2 236

98
3 01

.
.  m/s

Example 2.47

Figure 2.65 shows the Whitworth mechanism. The crank O
1
A rotates at 120 rpm. O

1
O

2
  100 mm, 

O
1
A  200, O

2
C  150 mm, and CD  500 mm. Locate all the instantaneous centres and find the 

 velocity of ram D.

Fig.2.65 Whitworth mechanism
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Solution  

n N
n n

6
1

2
6

5

2
15,

Locate the centres as shown in Fig.2.65(a) and using circle diagram shown in Fig.2.65(b).

1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16

13  : 12, 23; 14, 34

15  : 14, 45; 16, 56

24  : 23, 34; 12, 14

25  : 24, 45; 12, 15

26  : 25, 56; 12, 16

35  : 34, 45; 23, 25

36  : 35, 56; 23, 26

46  : 45, 56; 14, 16

 2
120

60
12 57.  rad/s

v
a
  12.57  0.2  2.5133 m/s

 

v va d

15 23 15 56

vd 9
2 5133

6 3
2 59

.

.
.  m/s.

Example 2.48

Locate all the instantaneous centres of the toggle mechanism shown in Fig.2.66. The crank rotates at 
240 rpm. O

1
A  200 mm, AB  360 mm, O

2
B  200 mm, and BC  525 mm. Determine (a) velocity 

of slider C and (b) angular velocity of links 3 and 5.

Solution 

n N
n n

6
1

2
6

5

2
15,

Locate the centres as shown in Fig.2.66.
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1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16

13 : 12, 23; 14, 34

15 : 14, 45; 16, 56

24 : 23, 34; 12, 14

25 : 24, 45; 12, 15

26 : 25, 56; 12, 16

35 : 34, 45; 23, 25

36 : 35, 56; 23, 26

46 : 45, 56; 14, 16

 2 2
240

60
25 13.  rad/s

v
a
  

2
  O

1
A  25.13  0.2  5.026 m/s

v
c
  v

26
  

2
(12 – 26)  25.13  0.8  100  10–3  2.01 m/s

Fig.2.66 Toggle mechanism
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3

2

23 12

23 13

2

8 8.

3 25 13
2

8 8
5 71.

.
.  rad/s




5

2

25 12

25 15

1 2

4 8

.

.

5 25 13
1 2

4 8
6 28.

.

.
.  rad/s

Example 2.49

The mechanism shown in Fig.2.67 has the following dimensions:
O

1
A  50 mm, AB  200 mm, CD  60 mm, O

2
B  100, O

1
O

2
  150 mm, AC  CB, and CE   

EF  100 mm. The crank O
1
A rotates at 210 rpm. Determine by instantaneous centre method (a) velocity 

of slider F, (b) angular velocity of CE, and (c) velocity of sliding of CE in the swivel block D.

Fig.2.67 Diagram for Example 2.49Solution 

n N
n n

7
1

2
7

6

2
21,

Locate the centres as shown in Fig.2.67, which are required for the solution.
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1 2 3 4 5 6 7

12 23 34 45 56 67

13 24 35 46 57

14 25 36 47

15 26 37

16 27

17

     





13 : 12, 23; 14, 34

16 : 17, 67; 15, 56

24 : 23, 34; 12, 14

25 : 25, 56; 12, 16

27 : 12, 17, 26, 67

2 rad/s2
210

60
22

v
f
  v

27
  

2
(12 – 27)  22  1.8  25  10–3  0.99 mm/s

v
d
  v

25
  

2
 (12 – 25)  22  2.2  25  10–3  1.21 mm/s




5

2

25 12

25 35

2 2

4 4

1

2

.

.

5 22
1

2
11 rad/s

Example 2.50

A mechanism shown in Fig.2.68 has the following dimensions:
OA  200 mm, AB  1500 mm, BC  600 mm, CD  500 mm and BE  40 mm. Locate all the 

instantaneous centres.
If the crank OA rotates uniformly at 120 rpm clockwise, determine (a) the velocity of B, C and D, 

and (b) the angular velocity of links AB, BC, and CD.

Solution 

Given: N  120 rpm, OA  200 mm  0.2 m

Angular speed of OA, OA

N2

60

2 120

60
12 5

 
. 7 rad/s  

v
OA

  
OA

  OA  12.57  0.2  2.51 m/s

(a) Number of instantaneous centres:

N
n n( )1

2

Here n  6,  N
6 5

2
15
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13 : 12, 23; 14, 34

15 : 16, 56; 14, 45

24 : 23, 34; 12, 14

25 : 24, 45; 12, 15

26 : 12, 16; 25, 56

35 : 34, 45; 23, 25

36 : 13, 16; 23, 26

46 : 45, 56; 14, 16

v

v
A

B

13 23

13 34

43

53

vB

53

43
2 51 3 1. . m/s

v

v
c

B

14 45

14 34

10

20
0 5.

v
c
  3.1  0.5  1.55 m/s

v

v
D

c

15 56

15 45

29

40

vD 1 55
29

40
1 12. . m/s

AB
Av

13 23

2 51

43 20 10
2 92

3

.
. rad/s

2 A

24 3

13

C 45 46 5

E
1

4

B
34

15

D 6

56 100

14O
26

12
25

30°

23

1.35 m
scale: 1 cm = 200 mm

(a) Locating instantaneous centres

16 at
16 at

16 at

(b) Circle diagram

1 2

3

45

6

Fig.2.68 Diagram for Example 2.50

1 2 3 4 5 6

12 23 34 45 56

13 24 35 46

14 25 36

15 26

16
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BC
Bv

14 34

3 1

20 20 10
7 75

3

.
. rad/s

CD
cv

15 45

1 55

40 20 10
1 94

3

.
. rad/s

Example 2.51

For the two rolling wheels shown in Fig.2.69(a), determine the angular velocity of links 3 and 4 and v
eb

.

F1

(a) Configuration diagram

500 mm dia

900

800 mm

400 mm dia

3
D

E

4

F4

C

B

A2

A1

2

Scale: 1 cm = 100 mm

Scale: 1 cm = 500 mm/s

200 mm

30°
10 rad/s

1

(b) Equivalent mechanism (c) Velocity diagram

F1

C

B

A1

E

D10 rad/s

c

e bveb

vba

vc

a1, f1

d

Fig.2.69 Two rolling wheels mechanism

Solution 

Draw the equivalent mechanism as shown in Fig.2.69(b).

A
1
C  430 mm, F

1
D  340 mm,   10 rad/s

v
c
    A

1
C  10  430  4300 mm/s

Draw the velocity diagram as shown in Fig.2.69(c).

vc a c AC1 1

cd CD
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f d F D1 1

cb CB

a b A B1 1

ed ED
f e F E1 1

veb be 1 500cm mm/s

3

3 4 500

900
1 9

vdc

CD

.
. rad/s ccw

4

1

1

10 500

340
14 7

vdf

DF
. rad/s ccw

2.5 COMPLEX MECHANISMS
With the inclusion of ternary or higher order floating link to a simple mechanism, the successive appli-
cation of the relative velocity and relative acceleration equations fail to complete the analysis. Such a 
mechanism is classified as kinematically complex mechanism.

2.5.1 Low Degree of Complexity
When a complex mechanism can be rendered simple by a change of input link, it is called a mecha-
nism having low degree of complexity. In the mechanism shown in Fig.2.70, when the input link is 2, 
then the velocity and acceleration of point B cannot be determined from the velocity and acceleration 
of point A, as the radius of path of curvature of point B is unknown. However, with the input link as 
link 6 or link 5, the velocity and acceleration of C and D can be determined. Then by the image of 
ternary link BCD, the velocity and acceleration of B is determined.

Fig.2.70 Complex mechanism having low degree of complexity
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2.5.2 High Degree of Complexity
When a complex mechanism cannot be rendered simple by a change of input link, it is called a 
mechansim with high degree of complexity. In such a mechanism, the radii of the paths of curvature 
of two or more motion transfer points of a floating link are not known. The mechanisms shown in Figs. 
2.71(a) and (b) have high degree of complexity.

Fig.2.71 High degree of complexity mechanisms

Example 2.52

For the mechanism shown in Fig.2.72(a), determine 
4
 and 

6
.

Fig.2.72 Low degree of complexity mechanism
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Solution 

With link 2 as the input link, the mechanism is complex. Make link 6 the input link. Then it becomes 
a simple mechanism.

Let 
6
 . O

6
D  25 mm  v

d
.

(a) Draw o d O D d6 6 25v mm,  as shown in Fig.2.58(b).

Locate point c. o c O C5 5

 cd CD

(b) Draw cb BC

 db BD

 Locate point b.

(c) Draw o a O A2 2

 ab AB

Locate point a.

(d) Measure o
2
a  v

a
. The direction of the velocity vector v

a
 confirms the direction of rotation of crank 

O
2
A in the counter-clockwise direction. If it does not confirm, the solution is repeated with link 6 

rotating in the clockwise direction.

By measurement, o
2
a  8 mm.

2
 . O

2
A  8  scale

or scale, 1 mm = 92.75 mm/s10
75

8

6
2

2

25 92 75

50
46 875

o d

O D

scale
 rad/s (ccw)

.
.

v v vdc db cb

DC DB BC
cd

DC

bd

BD

bc

BC
;

.
.4

70 92 75

10
65 625 rad/s (cw)

Example 2.53

For the mechanism shown in Fig.2.73, determine 
6
.

Solution 

With link 1 being the fixed link and link 2 the input link, the velocity diagram cannot be drawn. It is a 
complex mechanism with a of high degree of complexity.

To draw the velocity diagram, draw the mechanism with link 4 as the fixed link, as shown in 
Fig.2.74(a). Now the velocity diagram can be drawn for BACD and points O

2
 and E can be located on 

the velocity image of BAO
2
 and DCE, as shown in Fig.2.74(b). After locating points O

2
 and E, point 

O
6
 can be located.

v
a
  

24
 . AB

Let ba  50 mm, then v
a
  Diagram scale  50. The velocity diagram is drawn as follows:

(a) Draw ab AB 50 mm.

(b) Draw ac AC  and dc CD  to locate c.
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Fig.2.73 Complex mechanism

Fig.2.74 High degree of complexity mechanism

(c) Draw ce CE  and de DE  to locate e.

(d) Draw ao AO2 2  and bo BO2 2  to locate o
2
.

(e) Draw eo EO6 6  and o o O O2 6 2 6  to locate o
6
.
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24 Diagram scale
ba

AB

Scale Scale (ccw)
50

70
0 7143.

v
o6o2

  o
2
o

6
  

14
  140  

14

 o
2
o

6
  scale

or 
14

  
25

140

scale

 0.1786  Scale rad/s

v
o6e

  O
6
E  

64
  50  

64

 eo
6
  Scale

or 64
6

50

20

50

eo scale scale

 0.4  Scale rad/s (ccw)

Similarly, 34

22

40

ac

AC

Scale Scale

 0.55  Scale rad/s (ccw)

54

49

130

dc S

DC

Scale cale

  0.377  Scale rad/s (ccw)

But, 
2
  

21
  1 rad/s (ccw)

Also, 
21

  
24

 – 
14+

 (0.7143 – 0.1786 )  Scale rad/s

 1  0.5357  Scale rad/s

or scale  1.867 mm/s/mm

Thus, 
24

  0.7143  1.867  1.3336 rad/s (ccw)

14
  0.1786  1.867  0.3334 rad/s (ccw)

34
  0.55  1.867  1.0268 rad/s (ccw)

64
  0.4  1.867  0.7468 rad/s (ccw)

54
  0.377  1.867  0.7038 rad/s (ccw)

6
  

61
  

64
 – 

14

  0.7468 – 0.3334  0.4134 rad/s (ccw)

Example 2.54

For the mechanism, shown in Fig.2.75(a), the linear velocity of point E is 2.3 m/s. Link 2 rotates at 
uniform angular velocity in the counter-clockwise direction. Determine 

2
, 

3
, and 

4
.
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Solution 

The magnitude of 
2
 is unknown. Let us take ab  30 mm (arbitrarily).

Draw the velocity diagram as shown in Fig.2.61(b).
ab AB

bd BD

ad AD

30 mm

Locate d.
bc BC

hc HC

Locate c.
be BE

ce CE

Locate e. Join ae.
cf CF

hf HF

Locate f.
v

e
 Scale of diagram  ae

2300  Scale  23

or scale  
100 mm/s

mm

2

30 100

40

vb

AB

ab

AB

scale

  75 rad/s (ccw)

3

17 100

90

vcb

CB

bc

CB

scale

 18.9 rad/s (cw)

4

28 100

50

vc

HC

hc

HC

scale

 56 rad/s (ccw)

Fig.2.75 Complex mechanism



140 Theory of Machines

Summary for Quick Revision

1 If  is the angular speed of a link rotating about a point, then the linear velocity v of a point on 
the link at a distance r from the point of rotation is given by: v  r .

2 The relative velocity of a body A with respect to a body B is obtained by adding to the velocity of 
A the reversed velocity of B. v

ba
  v

b
 – v

a
.

3 The velocity of any point on the kinematic link is given by the vector sum of the velocity of some 
other point in the link and the velocity of the first point relative to the other.

4 The magnitude of the velocity of any point on the kinematic link relative to the other point in 
the kinematic link is the product of the angular velocity of the link and distance between the two 
points under consideration.

5 The direction of the velocity of any point on a link relative to any other point on the link is per-
pendicular to the line joining the two points.

6 If C is any point on a link AB, then the corresponding point c in the velocity diagram will divide 
the vector ab in the same ratio as the point C divides the link AB. i.e.

ac/ab  AC/AB

7 Relative angular velocity of 1.w.r.t. link 2,

12
  

1
 – 

2

and relative angular velocity of 2 w.r.t. 1,

21
  

2
 – 

1
  –

12

8 If r  radius of the pin at joint O, then

Rubbing velocity at the pin joint O,

v
r
  (

1
 – 

2
)r, when the links move in the same direction

 (
1
 + 

2
)r, when the links move in the opposite direction.

9 Forces in a mechanism

F
a
  v

a
  F

b
  v

b

Considering the effect of friction, the efficiency of transmission,

  output/input  (F
b
 v

b
 )/(F

a
v

a
)

F
b
  F

a
v

a
/v

b

10  Mechanical advantage, MA  F
b
/F

a

For a mechanism, MA  Output torque/Input torque

 T
b
/T

a
  

a
/

b

Considering the effect of friction, MA  
a
/

b

11 The number of instantaneous centers in a mechanism,

N  n (n – 1)/2

Where n  number of links.

12 The instantaneous centre is a point about which a link as a whole may be considered to be rotating 
at a given instant. The velocity of the link is zero at the instantaneous centre.
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13 The angular velocities of two links vary linearly as the distances from their common instantaneous 
centre to their respective centres of rotation relative to the frame.

14 Arnold–Kennedy’s theorem states that if three plane bodies have relative motion among them-
selves, their three centres must lie on a straight line.

15 Instaneous centres may be fixed, permanent, and neither fixed nor permanent.

16 For a pin joint, the instantaneous centre lies at the centre of the pin.

17 In a pure rolling contact two links, the instantaneous centre lies at the point of contact of two links.

18 In a sliding motion, the instantaneous centre lies at infinity in a direction perpendicular to the path 
of motion of the slider.

19 When the slider moves on a curved surface then the instantaneous centre lies at the centre of 
curvature of the curved surface.

20 Instantaneous centres can be located by the circular diagram.

Multiple Choice Questions

1 The total number of instantaneous centres for a mechanism of n links are
(a) n(n – 1)/2 (b) n (c) n – 1 (d) n/2.

2 A mechanism has 7 links with all binary pairs except one which is a ternary pair. The number of 
instantaneous centres of this mechanism are
(a) 14 (b) 21 (c) 28 (d) 42.

3 The direction of the linear velocity of any point on the kinematic link relative to any other point 
on the same kinematic link is
(a) parallel to the line joining the points
(b) perpendicular to the line joining the points
(c) at 45° to the line joining the points
(d) dependent on the angular speed of rotation of the link.

4 Two kinematic links have absolute angular velocities of 
1
 (clockwise) and 

2
 (anti-clockwise). 

The angular velocity of link 1 relative to link 2 , is
(a) 

1
 + 

2
 (b) 

1
 – 

2
 (c) 

2
 – 

1
 (d) 

1 2
.

5 The linear velocity of a point B on a link rotating at an angular velocity  relative to another point 
A on the same link is

(a)   AB (b) 

AB

 (c) 2  AB (d)   (AB)2

6 According to Kennedy’s theorem, the instantaneous centres of three bodies having relative motion 
lie on a
(a) straight line (b) point (c) curved path (d) circle

7 The instantaneous centre of a slider moving in a linear guide lies at
(a) their point of contact (b) infinity perpendicular to the path of guide
(c) the pin point (d) infinity parallel to the path of guide.

8 The instantaneous centre of a slider moving on a curved surface lies
(a) infinity (b) their point of contact
(c) the centre of curvature of curved surface (d) the pin point.
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9 The instantaneous centre of rotation of a circular disc rolling on a straight path lies at
(a) the centre of the disc (b) their point of contact
(c) the centre of gravity of the disc (d) infinity.

10 The number of types of instantaneous centres are:
(a) 2 (b) 3 (c) 4 (d) 6.

Answers:

1. (a) 2. (c) 3. (b) 4. (a) 5. (a) 6. (a) 7. (b) 8. (c) 9. (b) 10. (b)

Review Questions

1 Define relative velocity.

2 Define linear velocity and angular velocity.

3 What is relative angular velocity? How this is determined?

4 What is mechanical advantage for a mechanism?

5 What is a velocity diagram? What are its uses.

6 What is a velocity image? Give its uses.

7 What is rubbing velocity? How this is determined?

8 State angular velocity theorem.

9 Define instantaneous centre of a link.

10 What are the various types of instantaneous centres?

11 How number of instantaneous centres are determined?

12 State Arnold–Kennedy theorem of three centres.

13 What are the properties of instantaneous centre?

14 How instantaneous centres are located?

Exercises

2.1 The dimensions of a four-bar chain shown in Fig.2.76 are: AD  BE  120 mm, AB  30 mm and 
CD  60 mm. The crank AB rotates at 100 rpm. Determine the angular speed of link CD.

[Ans. 3.9 rad/s, cw]

 

Fig.2.76 Four-bar chain
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2.2 In the mechanism shown in Fig.2.77, O
1
O

2
  210 mm, O

1
B  300 mm and O

2
A  60 mm. The 

crank O
2
A rotates at 300 rpm in the ccw direction. Find (a) angular speed of link O

1
A, and  

(b) velocity of slider.

Fig.2.77 Four-bar chain

[Ans. 8.9 rad/s ccw, 1.425 m/s]

2.3 The dimensions of the various links of the mechanism shown in Fig.2.78 are: AD DE  150 
mm, BC CD  450 mm, EF  375 mm.

The crank AB rotates at 120 rpm. The lever DC oscillates about the fixed point D. Determine  
(a) velocity of slider F, and (b) angular speed of CD.

Fig.2.78 Six-bar chain

[Ans. 0.7 m/s, 4.9 rad/s ccw]

2.4 In the toggle mechanism shown in Fig.2.79, the crank OA rotates at 180 rpm and the slider is 
constrained to move on a horizontal path. OA  180 mm, BC  240 mm, AB  360 mm, and  
BD  540 mm

Find (a) velocity of slider D, (b) angular speed of links AB, BC and BD, (c) velocity of rubbing 
on the pins of diameter 30 mm at A and D, and (d) torque applied to crank OA for a force of  
2 kN at D.

[Ans. 1.75 m/s, 3.33 rad/s ccw, 11.04 rad/s ccw, 4.53 rad/s cw; 0.1836 m/s, 0.0679 m/s; 185.68 Nm]
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2.5 The crank OA of the mechanism shown in Fig.2.80 rotates at 100 rpm clockwise. Using instan-
taneous centre method determine the linear velocities of points B, C and D, and angular speeds 
of links AB, BC and CD.

Fig.2.80 Diagram for Exercise 2.5

[Ans. 3.0 m/s, 1.5 m/s, 0.98 m/s; 2.69 rad/s, 7.50 rad/s, 2.08 rad/s]

2.6 Find the velocity of point C in the mechanism shown in Fig.2.81 by using relative velocity 
method. Crank O

2
A rotates at 20 rad/s clockwise.

[Ans. 1.7 m/s]

Fig.2.81 Four-bar mechanism

Fig.2.79 Toggle mechanism
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3.1 INTRODUCTION
In the Chapter 2, we have defined the concept of velocity. In this chapter, we shall study the concept of 
acceleration. The acceleration may be defined as the rate of change of velocity of a body with respect 
to time. The acceleration can be linear or angular. Linear acceleration is the rate of change of linear 
velocity of a body with respect to time. Angular acceleration is the rate of change of angular velocity 
of a body with respect to time.

Acceleration diagram. It is the graphical representation of the accelerations of the various links 
of a mechanism drawn on a suitable scale. It helps us to determine the acceleration of various links of 
the mechanism.

The determination of acceleration of various links is important from the point of view of calculat-
ing the forces and torques in the various links to carry out the dynamic analysis.

3.2 ACCELERATION OF A BODY MOVING IN A CIRCULAR PATH
Consider a body moving in a circular path of radius r with angular speed , as shown in Fig.3.1(a). 
The body is initially at point A and in time t moves to point B. Let the velocity change from v to v  
v at B and the angle covered be .

Ch
ap

te
r 

Ou
tli

ne
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Fig.3.1 Acceleration for a link

The change in velocity can be determined by drawing the velocity diagram as shown in Fig.3.1(b). 
In this diagram, oa v, ob v v, and ab change in velocity during time t. The vector ab is 
resolved into two components ax and xb, parallel and perpendicular to oa, respectively.

Now ax      ox   –  oa     ob cos    –  oa (v v) cos    –  v

xb     ob sin      (v v) sin 

The rate of change of velocity is defined as the acceleration. It has two components: tangential and 
normal. The tangential component of acceleration f  t is the acceleration in the tangential direction. It 
is defined by,

f  t change of velocity in the tangential direction per unit time
ax

t

t

( ) cosv v v

( )v v v

t  
[Because for small angle cos   1]

v v

t t

r

t
r

t
r

d

d
d

d

d

d

( )

 
 (3.1)

where angular acceleration.

The normal component of acceleration f n is the acceleration in the direction normal to the tangent 
at that instant. This component is directed towards the centre of the circular path. It is also called the 
radial or centripetal acceleration. It is defined by,

f n change of velocity component in a direction normal to 
tangent per unit time
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xb

t

t

( ) sinv v  

( )v v

t  
[Because for small angle sin   ]

v v v

t t t  
[Neglecting second term, being small]

v

t
v r

v

r

d

d
2

2

 
 (3.2)

Two cases arise regarding the motion of the body.

 (i)  When the body is rotating with uniform angular velocity, then d /dt     0, so that f  t     0. The body 
will have only normal acceleration, f  n     r 2.

(ii)  When the body is moving on a straight path, r will be infinitely large and 
v

r

2

 will tend to zero, so 
that f  n   =   0. The body will have only tangential acceleration, f  t  r .

3.3 ACCELERATION DIAGRAMS

3.3.1 Total Acceleration of a Link
Consider two points A and B on a rigid link, as shown in Fig.3.2(a), such that the point B moves rela-
tive to point A with an angular velocity  and angular acceleration .

Centripetal (or normal or radial) acceleration of point B with respect to point A is,

f AB
v

ABba
n ba2

2

 
(3.3)

Tangential acceleration of point B with respect to point A,

f ABba
t   

 (3.4)

Total acceleration of B w.r.t. A,

 f f fba ba
n

ba
t ( )vector sum

 2 AB AB

( ) 2 AB   (3.5)

 
tan 




f

f
ba
t

ba
n 2

  
(3.6)

The acceleration diagram has been represented in Fig.3.2(b).
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Fig.3.2 Total acceleration of a link

3.3.2 Acceleration of a Point on a Link
The accelerations of any point X on the rigid link w.r.t. A as shown in Fig.3.2(a) are:

f AXxa
n  2

  (3.7)

f AXxa
t    (3.8)

Total acceleration, f f fxa xa
n

xa
t  (vector sum)  (3.9)

Therefore, f
xa

 Denoted by ax in the acceleration diagram shown in Fig.3.2(b) is inclined to XA at 
the same angle . Triangles abx and ABX are similar. Thus, point x can be fixed on the acceleration 
image, corresponding to point X on the link. Total acceleration of X relative to A,

f
xa

ax

Total acceleration of X relative to B,

f
xb

bx

Acceleration Image The concept of velocity image was explained in Section 2.3.7(b) in 
Chapter 2. It was stated that the velocity images are useful in finding velocities of offset points of 
links. In the same way, acceleration images are also helpful to find the accelerations of offset points of 
the links. The acceleration image is obtained in the same manner as a velocity image.

An easier method of making abx similar to  ABX is by making AB' on AB equal to ab and  
drawing a line parallel to BX, meeting AX in X'. AB'X' is the exact size of the triangle to be made  
on ab.
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Take ax AX' and bx B' X '
Thus the point x is located.
The method is illustrated in Fig.3.2(c).

3.3.3 Absolute Acceleration for a Link
Consider the rigid link AB such that point B is rotating about A with angular velocity  and angular 
acceleration , as shown in Fig.3.3(a). The point A itself has acceleration f

a
. The acceleration diagram 

is shown in Fig.3.3(b). Absolute acceleration of B,

Fig.3.3 Absolute acceleration of a rigid link

 f f f fb a xa
n

xa
t

 (vector sum)

f AB ABa  2
  (3.10)

Similarly for any other point X,

f f f f xax a xa
n t

f AX AXa  2

  (3.11)

3.3.4 Acceleration Centre
Consider a rigid link AB whose ends A and B have accelerations f

a
 and f

b
 respectively, as shown  

in Fig.3.4(a). The acceleration diagram is shown in Fig.3.4(b). If we select a point O on the link 
such that triangles aob and AOB are similar, then the acceleration of point O relative to a fixed link 
or fixed point O is zero. The point O is called the instantaneous centre of acceleration of link AB or 
acceleration centre.
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Fig.3.4 Acceleration centre

3.3.5 Acceleration Diagram for Four-Bar Mechanism
The four-bar mechanism is shown in Fig.3.5(a). The velocity of point B, v

b
· AB. The velocity dia-

gram is shown in Fig.3.5(b), and has been drawn as explained in Section 2.3.7(b). In this diagram,

Fig.3.5 Acceleration diagram for four-bar mechanism

v ab ABb

dc DC

and bc BC
Then Velocity of C relative to D, v

cd
  =   v

c
  =   dc

Velocity of C relative to B, v
cb

  =   bc
Now we calculate the accelerations of various points and links.

f
v

AB
abba

n b
2
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f
v

CB
bccb

n cb
2

f
v

CD
dccd

n c
2

f f fcb cb
n

cb
t

bc bc c c

f f fcd cd
n

cd
t

dc dc c c

The acceleration diagram is shown in Fig.3.5(c) to a suitable scale. To construct the acceleration 
diagram, proceed as follows:

1. Draw ab f
b
 parallel to AB, which is known in magnitude and direction.

2. Draw bc fcb
n  parallel to BC, which is known in magnitude and direction.

3. Draw cc', representing fcb
n  perpendicular to bc', which is known in direction only.

4. Now draw dc fcd
n  parallel to CD, which is known in magnitude and direction.

5. Draw c"c, representing fcd
t ,  perpendicular to dc" to intersect c'c at point c.

6. Join dc and bc. Then

Acceleration of C relative to B, f
cb

bc

Acceleration of C relative to D, f
cd

f
c

dc

3.3.6 Four-Bar Mechanism with Ternary Link
The four-bar mechanism with a ternary link is shown in Fig.3.6(a), in which the driving crank has angu-
lar velocity  and angular acceleration · v

a
      O

1
A. The velocity diagram is shown in Fig.3.6(b), 

and has been drawn as explained in Section 2.3.7 (a). In this diagram,

(i) Velocity diagram

v o a O Aa 1 1

ab AB

o b O B2 2

Then velocity of B relative to A, v
ba

ab
Velocity of B relative to O

2
, v

bo2
v

b
o

2
b

Now bc BC
and ac AC

which locates point c.
Velocity of C relative to O

1
, v

c
o

1
c

Then abc is the velocity image of ternary link ABC.

Now 
ad

ab

AD

AB
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Fig.3.6 Acceleration diagram for four-bar chain with ternary link
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Locate point d in ab. Join o
1
d and cd. Then v

d
     o

1
d and v

cd
     dc

Now 
ae

ac

AE

AC

Locate point e in ac. Join o
1
e. Then velocity of point E, v

e
     o

1
e

This completes the construction of velocity diagram.

(ii) Acceleration diagram
Now we calculate the accelerations of various points and links.

f f
v

O A
o aa

n
ao
n a

1

2

1
1

f f O A a aa
t

ao
t

1 1

Total acceleration of A, f f f f o aa ao ao
n

ao
t

1 1 1 1  (vector sum)

f f
v

O B
o bb

n
bo
n b

2

2

2
2

f
v

AB
abba

n ba
2

bb f abba
t

f f o b b bb
t

bo
t

2 2

f f f fb bo ao ba2 1  (vector sum)

f f f fao
n

ao
t

ba
n

ba
t

1 1  (vector sum)

The following steps may be adopted to draw the acceleration diagram as shown in Fig.3.6(c).

 1. Draw f o a O Aa
n

1 1|| ,  to a convenient scale, to represent the normal acceleration of A, which is 
known in magnitude and direction.

 2. Draw f a a O Aa
t

1  at a' to represent the tangential acceleration of A, which is known in mag-
nitude and direction. Join o

1
a to get the total acceleration of A, f

a
o

1
a.

 3. Draw f abba
n ||  AB to represent the normal acceleration of AB, which is known in magnitude 

and direction.

 4. Draw f ABba
t  at b" to represent the tangential acceleration of AB, which is not known in mag-

nitude.

 5. Draw f o bb
n

2 ||  to O
2
B to represent the normal acceleration of B, which is known in magnitude 

and direction.

 6. Draw f O Bb
t

2  at b' to represent the tangential acceleration of B, which is not known in  
magnitude.

 7. The lines of fba
t and fb

t
meet at point b. Join ab and o

2
b. Then

Total acceleration of B relative to A, f
ba

ab

Total acceleration of B relative to O
2
,  f

b
o

2
b
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(iii) Acceleration of Intermediate Points

 8. To calculate the acceleration of point D in AB, we have

ad

ab

AD

AB

This locates point d in ab. Join o
1
d. Then acceleration of point D, f

d
    o

1
d

Similarly acceleration of any point in link O
1
A and O

2
B can be determined.

(iv) Acceleration of Offset Points

 9. Draw a line ac' parallel to AC to represent fac
n , which is known in magnitude and direction. Draw 

another line perpendicular to AC at c' to represent fac
t , which is unknown in magnitude.

10. Draw a line bc" parallel to BC to represent fcb
n

which is known in magnitude and direction. Draw 
another line perpendicular to BC at c" to represent fcb

t , which is unknown in magnitude. These 
two lines meet at c. Join ac and bc.

The triangles abc and ABC are similar. Then abc is the acceleration image of ternary link ABC. 
To find the acceleration of offset point C, join o

1
c. Then

Total acceleration of C, f
c

o
1
c

11. To find the acceleration of point E in AC, we have
ae

ac

AE

AC

Thus locate point e in ac. Join o
1
e. Then

Total acceleration of E, f
e

o
1
e

(v) Angular Acceleration of Links

It may be observed that the tangential component of acceleration occurs due to the angular accelera-
tion of a link. Thus, angular acceleration can be determined if the tangential acceleration is known.

In Fig.3.6(c), tangential acceleration of B relative to A, f b bba
t

i.e., tangential acceleration of B relative to A is in a direction b" to b or in a counter-clockwise 
direction about A.

Now f ABba
t

ba

               ba
ba
tf

AB

Tangential acceleration of A relative to B, f bbab
t

i.e., tangential acceleration A relative to B is in a direction b to b" or in a counter-clockwise direc-

tion about B with magnitude ab
ab
tf

AB
,  which is the same as 

ba
.

Thus, angular acceleration of a link about one end of the link is the same in magnitude and direction 
as the angular acceleration about the other end

Tangential acceleration of B relative to O f b b fbo
t

b
t

2 2,
i.e., B relative to O

2
 moves in a direction from b' to b or B moves in the counter-clockwise direction 

about O
2
.

 b bo
b
tf

O B2
2

ccw
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3.3.7 Acceleration Diagram for Slider-Crank Mechanism
(i) Velocity diagram
For the slider crank mechanism as shown in Fig.3.7(a). v  · OA. The velocity diagram is shown in 
Fig.3.7(b) and has been drawn as explained in Section 2.3.8. In this diagram,

Fig.3.7 Acceleration diagram of slider-crank mechanism

v oa OA

ab AB
ob OB||

Then
Velocity of slider, v

b
  =   ob

Velocity of connecting rod, v
ba

     ab

(ii) Acceleration Diagram

The acceleration diagram is shown in Fig.3.7(c), in which

f OA
v

OA
oaa

a2
2

f
v

AB
abba

n ba
2

The following steps may be adopted to draw the acceleration diagram:

1. Draw oa f
a
 parallel to OA on a convenient scale to represent the normal acceleration of the crank OA.

2. Draw ab fba
n parallel to AB to represent the normal acceleration of the connecting rod, which is 

known in magnitude and direction.

3. Draw a line perpendicular to AB at b' to represent the tangential acceleration fba
t of AB, which is 

unknown in magnitude.

4. Draw a line parallel to OB at o to represent the acceleration f
b
 of the slider B. Let these two lines 

intersect at b. Join ab. Then

Linear acceleration of slider B, f
b
     ob

5. To find the acceleration of any point C in AB, we have

ac

ab

AC

AB

Locate point c in ab. Join oc. Then
Acceleration of point C, f

c
     oc
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Example 3.1

In the four-bar mechanism shown in Fig.3.8, the lengths of the various links are: AB   =   190 mm, 
BC  =   CD 280 mm, AD     500 mm, BAD 55 . The crank AB rotates at 10 rad/s in the clockwise 
direction. Determine (a) the acceleration of the links BC and CD, and (b) angular accelerations of BC 
and CD.

Fig.3.8 Four-bar mechanism
Solution 

Linear velocity of point B, v
b
     v

ba
    AB        0.19  10     1.9 m/s

1. Draw the configuration diagram to a scale of 1 cm     100 mm, as shown in Fig.3.8(a).

2. Draw the velocity diagram shown in Fig.3.8(b), as explained in Section 3.3.5, to a scale of  
1 cm  0.5 m/s.

3. Measure the velocity of C relative to B, v
cb

     bc     3.3 cm     1.65 m/s, and the velocity of C relative 
to D, v

cd
 dc     2.2 cm     1.1 m/s.

4. Calculate the normal accelerations:

f f
v

AB

f
v

BC

b
n

ba
n ba

cb
n cb

2 2
2

2 2

1 9

0 9
19

1 65

0 28
9

( . )

.

( . )

.
.

m/s

772

1 1

0 28
4 32

2

2 2
2

m/s

m/sf
v

CDcd
n cd ( . )

.
.

5. Draw the acceleration diagram to a scale of 1 cm     5 m/s2, as shown in Fig.3.8(c) and as explained 
in Section 3.3.5.
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6. Measure the acceleration of C relative to B, f
cb

     bc     2.1 cm     10.5 m/s2.
Acceleration of C relative to D, f

cd
     dc     5.1 cm 25.5 m/s2

7. Tangential acceleration of BC, f cc cmcb
t 0 9 4 5 2. . m/s

Angular acceleration of BC, bc
bc
tf

BC

4 5

0 28
16 07 2.

.
. rad/s cw

Tangential acceleration of CD, f cccd
t 5 2 26 2. cm m/s

Angular acceleration of CD, cd
cd
tf

CD

26

0 28
92 857 2

.
. rad/s ccw

Example 3.2

A four-bar mechanism with ternary link is shown in Fig.3.9(a). The lengths of various links is given 
as below:

O
1
O

2
     600 mm, O

1
A     300 mm, AB     400 mm, O

2
B     450 mm,

AC     300 mm, BC     250 mm, AD     100 mm, and AO O1 2 75 .

Angular velocity of crank O
1
A 20 rad/s

Angular acceleration of crank O
1
A     100 rad/s2

Determine (a) acceleration of coupler AB, (b) acceleration of lever O
2
B, (c) acceleration of points 

C and D, and (d) angular acceleration of ternary link.

Solution 
Linear velocity of A, v

a
      O

1
A 20      0.3 6 m/s

1. Draw the configuration diagram as shown in Fig.3.9(a) to a scale of 1 cm     100 mm.

2. Draw the velocity diagram as shown in Fig.3.9(b) to a scale of 1 cm     1 m/s, and as explained in 
Section 3.3.6.

3. Measure ab     v
ba

  3.5 cm     3.5  m/s; o
2
b v

b
     4.7 cm     4.7m/s; o

1
c v

c
     3.5 cm     3.5 m/s, 

v
ca

ac 2.7 cm     2.7  m/s; v
cb

      bc     2.1 cm     2.1  m/s

4. Now 
ad

ab

AD

AB
ad,

.
. .

3 5 100

400
0 875 cm  Locate point d in ab and join o

1
d. Then v

d
o

1
d 5.5 

cm 5.5 m/s.

5. Calculate the accelerations of various points as follows:

f
v

O A

f O A

f
v

A

a
n a

a
t

ba
n ba

2

1

2
2

1
2

2

6

0 3
120

100 0 3 30

.

.

m/s

m/s

BB

f
v

O B

f

b
n b

ac
n

( . )

.
.

( . )

.
.

3 5

0 4
30 625

4 7

0 45
49 1

2
2

2

2

2
2

m/s

m/s

vv

AC

f
v

BC

ac

cb
n cb

2 2
2

2 2
2

2 7

0 3
24 3

2 1

0 25
17 64

( . )

.
.

( . )

.
.

m/s

m/s
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Fig.3.9 Four-bar mechanism with ternary link
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6. Draw the acceleration diagram on a scale of 1 cm     10 m/s2, as shown in Fig.3.9(c), and as explained 
in section. 3.3.6.

7. Measure the various required lengths on the acceleration diagram.

(a) Acceleration of coupler AB, f
ba

      ab   =   7.8 cm 78 m/s2

(b) Acceleration of lever O
2
B, f

b
     o

2
b     8.6 cm     86 m/s2

(c) Acceleration of point C, f
c
     o

1
c     7.9 cm     79 m/s2

8. Locate point d in ab from the relation, ad
ab AD

AB
1 95. cm. Then

Acceleration of point D, f
d
     o

1
d     11 cm     110 m/s2.

9. Tangential acceleration of AB, f b bba
t 7 2. cm 72 m/s2

Angular acceleration of AB, ab
ba
tf

AB

72

0 4
0

.
.18  rad/s cw2

Example 3.3

In the slider-crank shown in Fig.3.10(a), the lengths of the various links are:

OA AC 200 mm, AB 600 mm, AOB 30 .

The crank rotates at 10 rad/s. Determine (a) the acceleration of the connecting rod AB, (b) accel-
eration of slider B, and (c) acceleration of a point C in AB.

Fig.3.10 Slider crank mechanism
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Solution 
Linear velocity of point A, v

a
   OA     10  0.2     2 m/s

1. Draw the configuration diagram to a scale of 1 cm     100 mm, as shown in Fig.3.10(a).

2. Draw the velocity diagram to a scale of 1 cm     0.5 m/s, as shown in Fig.3.10(b), and following the 
procedure explained in Section 3.3.7.

3. Measure the velocity of B relative to A, v
ba

      ab 3.5 cm     1.75 m/s.

4. Calculate the normal accelerations:

f
v

OAa
n a

2 2
22

0 2
20

.
m/s

f
v

ABba
n ba

2 21 75

0 6
5 1

( . )

.
. m/s2

5. Draw the acceleration diagram as shown in Fig.3.10(c) to a scale of 1 cm     4 m/s2, and following 
the procedure as explained in Section 3.3.7. 

6. Measure the acceleration of connecting rod, f
ba

  =   ab     2.7 cm     10.8 m/s2

Acceleration of slider B, f
b
     ob     5.2 cm     20.8 m/s2

7. Now 
ac

ab

AC

AB

ac
2 7 200

600
0 9

.
. cm

8. Locate point c in ab and join oc. Then

Acceleration of point C, f
c
  =   oc  4.9 cm     19.6 m/s2.

Example 3.4

In the mechanism shown in Fig.3.11(a), determine the acceleration of the slider C. O
1
A     100 mm, AB   

120 mm, O
2
B     150 mm, and BC     350 mm. The crank O

1
A rotates at 240 rpm.

Solution 

Angular velocity of crank O A1 rad/s2

2 240

60
25 13.

Linear velocity of point A, v
a
      · O

1
A     25.13  0.1     2.513 m/s

 1. Draw the configuration diagram to a scale of 1 cm     50 mm, as shown in Fig.3.11(a).

 2. Draw the velocity diagram as shown in Fig.3.11(b) to a scale of 1 cm 0.5 m/s.

 3. Draw v
a
     o

1
a OA     5.5 cm.

 4. Draw a line perpendicular to AB at ‘a’ and another line perpendicular to O
2
B at o

2
 to meet at b.

 5. Draw a line perpendicular to BC at b and another line parallel to the line of stroke of the slider C 
at o

1
. Then

o b v

ab v

o c v

b

ba

c

2

1

1 3

4 8

1 0 5

.

.

.

cm 0.65 m/s

cm 2.4 m/s

cm  m/ss

cm 0.6 m/sbc vcb 1 2.
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Scale: 1 cm = 10 m/s2

Fig.3.11 Six-link mechanism

 6. Calculate the accelerations as follows:

f
O A

f
f

AB

ao
n a

ba
n ba

1

2

1

2

2 2

2 513

0 1
63 15

2 4

0 12
4

v ( . )

.
.

( . )

.

m/s2

88

0 65

0 15
2 81

0 6

0

2

2

2

2

2 2

m/s

m/s

2

2f
O B

f
BC

bo
n b

cb
n cb

v

v

( . )

.
.

( . )

..
.

35
1 03m/s2

 7. Draw acceleration diagram as shown in Fig.3.11(c) to a scale of 1 cm 10 m/s2.

 8. Draw f o aa
n

1 6 3. cm parallel to O
1
A.

 9. Draw ab fba
n 4 8. cm at ‘a’ parallel to AB.
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10. At b' draw a line perpendicular to AB representing fba
t whose magnitude is unknown.

11. Draw o b fb
n

2 0 28.  parallel to O
2
B.

12. Draw a line perpendicular to O
2
B at b" representing fb

t  whose magnitude is unknown. This line 
intersects the line at b  at b. Join ab to get f

ba
ab.

13. Draw a line bc  0.1 cm at b parallel to BC representing fcb
n .  Draw a line at c' perpendicular to 

BC to represent fcb
t and another line at o

1
 parallel to the line of stroke of the slider at C meeting 

the first line at c. Then
 Acceleration of the slider at C, f

c
o

1
c 9.1 cm 91 m/s2

3.4 CORIOLIS ACCELERATION
It has been observed in Section 3.2 that the total acceleration of a point with respect to another point 
in a rigid link is the vector sum of its normal and tangential components. This holds true when the dis-
tance between the two points is fixed and the relative acceleration of the two points on a moving rigid 
link has been considered. If the distance between the two points varies, i.e., the second point which 
was considered stationary, now slides, the total acceleration will contain one additional component, 
called Coriolis component of acceleration.

Consider a slider B on a link OA such that when the link OA is rotating clockwise with angular 
velocity  the slider B moves outward with linear velocity v, as shown in Fig.3.12. Let in time t the 
angle turned through by link OA be  to occupy the new position OA' and the slider moves to position E. 
The slider can be considered to move from B to E as follows:

Fig.3.12 Concept of coriolis acceleration

1. From B to C due to angular velocity  of link OA.

2. C to D due to outward velocity v of the slider.

3. D to E due to acceleration perpendicular to the rod, i.e., due to Coriolis acceleration.Now 
arc DE     arc EF   –  arc FD

arc EF   –   arc BC
 OF · d    –   OB · d
 (OF   –   OB) d
 BF · d
 CD · d

Now CD     v · dt
and d       · dt
Hence arc DE     (v · dt) · (  · dt)
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Now arc DE chord DE, as d  is very small.

Therefore, DE v  (dt)2 (1)

But DE f dtcr1

2
2( )   (2)

Where f cr is the constant Coriolis acceleration of the particle. Hence from (1) and (2), we get

f cr 2 v  (3.12)

The direction of the Coriolis acceleration component is such so as to rotate the sliding velocity vec-
tor in the same sense as the angular velocity of OB. This is achieved by turning the sliding velo city vector 
through 90° in a manner that the velocity of this vector is the same as that of angular velo city of OA. 
The method of finding the direction of Coriolis acceleration is illustrated in Fig.3.13.

Fig.3.13 Finding direction of Coriolis acceleration

Example 3.5

In the crank and slotted lever type quick return motion mechanism shown in Fig.3.14(a), the crank AB 
rotates at 120 rpm. Determine (a) velocity of ram at D, (b) magnitude of Coriolis acceleration component, 
and (c) acceleration of ram at D   AB 200 mm, OC 800 mm, CD 600 mm, OA 300 mm.

Solution 

Velocity diagram

 2 12 57 rad/s
120

60
.

v
b
     v

ba
     ·  AB     12.57  0.2 2.51 m/s

1. Draw the configuration diagram to a scale of 1 cm 100 mm, as shown in Fig.3.14(a). By measure-
ment, OP 450 mm.

2. Draw the velocity diagram as shown in Fig.3.14(b) to a scale of 1 cm 0.5 m/s, by adopting the 
following steps.

3. Draw ba AB 5.02 cm to represent the linear velocity of point B on link AB.

4. Let the coincident point of B on the slotted lever OC be P. Draw a line at o perpendicular to OC and 
another line at b parallel to OC to meet at point p.

5. By measurement, op 4.2 cm. Then oc
op OC

OP

4 2 800

600
7 47

.
. cm.
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6. Produce op to oc.

7. Draw a line parallel to XX, the line of stroke of the ram D, and a line at c perpendicular to CD to 
meet the previous line at d. Then

Velocity of the slider D, v
d

od 7.8 cm 3.9 m/s

Velocity of point C, vc oc 7.47 cm 3.74 m/s

Angular velocity of slotted lever OC, oc
cv

OC

3 74

0 8
4 675

.

.
. rad/s cw

v op

v pb

v cd

po

bp

cd

4 2

3

3 2

.

.

cm 2.1 m/s

cm 1.5 m/s

cm 1.6 m/s

Acceleration diagram

 1. Calculate the accelerations of various points.
Coriolis acceleration of B relative to P, f vbp

cr
bp oc2 2 1 5 4 675 14 025. . . m/ The direc-

tion of coriolis component of acceleration is shown in Fig.3.14(d), which is perpendicular to OC.

f
v

AB

f
v

OP

ba
n ba

po
n po

2 2

2 2

2 51

0 2
31 5

2 1

0 45
9 8

( . )

.
.

( . )

.
.

m/s

m

2

//s

m/s

2

2f
v

CDdc
n dc

2 21 6

0 6
4 27

( . )

.
.

 2. Draw the acceleration diagram as shown in Fig.3.14(c) to a scale of 1 cm 2 m/s2, by adopting 
the following steps.

 3. Draw ab fba
n 15 75 cm.  parallel to AB.

 4. Draw p b fbp
cr 7  cm.0 perpendicular to OC at point b, and another line perpendicular to OC 

representing fbp
s , the sliding acceleration of point B relative to point P f pbbp.  is the total accel-

eration of B relative to P.

 5. Draw op f po
n 4 9.  cm parallel to OP and another line p'p perpendicular to it to meet the previ-

ous line at point p.

 6. Join bp and op. By measurement, op 5.3 cm.

 7. Now oc
op OC

OP

5 3 800

450
9 4

.
. cm.

 8. Extend op to point c so that oc 9.4 cm.

 9. Draw cd fdc
n 2 13.  cm parallel to CD and draw a line perpendicular to CD at d' to represent the 

tangential acceleration of CD.

10. Draw a line at o parallel to the line of action of the ram at D meeting previous line at d. Join cd. Then

 Acceleration of the ram at D, f
d

od 2.5 cm 5 m/s2

(a) Velocity of ram 3.9 m/s

(b) Coriolis acceleration 14.025 m/s2

(c) Acceleration of ram 2.5 m/s2
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Fig.3.14 Crank and slotted lever mechanism

Example 3.6

Draw the acceleration diagram for the Whitworth mechanism shown in Fig.3.15(a).

O
1
O

2
300 mm, O

1
A 200 mm,

AB 700 mm, BC 800 mm,
AO O1 2 45 .
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Fig.3.15 Whitworth mechanism
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The crank O
1
A rotates at 120 rpm clockwise. Determine (a) Velocity of ram C, (b) Coriolis accel-

eration, (c) angular acceleration of AB, (d) angular acceleration of BC, and (e) acceleration of ram C.

Solution 

2
120

60
12 57

12 57 0 2

.

. .

rad/s

= 2.51 m/sva

Velocity diagram

1. Draw the configuration diagram to a scale of 1 cm 100 mm, as shown in Fig.3.15(a). By measure-
ment, O

2
P 460 mm. Point P is the coincident point of A on the link AB, whereas point A is on the 

crank O
1
A.

2. Draw the velocity diagram to a scale of 1 cm 0.5 m/s, as shown in Fig.3.15(b), by adopting the 
following steps.

3. Draw o a v Aa1 15 02. .cm O

4. Draw a line at ‘a’ parallel to PB and another line at o
2
 perpendicular to PB to meet at point p. vap

pa 
represents the velocity of sliding between A and P.

5. By measurement, o
2
 p 4.5 cm.

Now pb o p
PB

O P2
2

4 5 700

460
6 85

.
. cm

6. Extend line po
2
 to b such that pb 6.85 cm.

7. Draw a line at b perpendicular to BC and another line parallel to the path of the ram at C to meet at 
point c. Then

v pa

v o p

v bc

ap

po

cb

= 2.3 cm = 1.15 m/s

cm = 2.25 m/s2 2 4 5

0

.

..8cm = 0.4 m/s

Velocity of ram C, vc o
1
c 1.9 cm 0.85 m/s

Angular velocity of link O P
v

O Po p
po

2 2
2

2

2 25
0 46

4 89, .
.

. rad/s cw  (see Fig.3.15(d))

Angular velocity of BC, bc
bcv

BC

0 4

0 8
0 5

.

.
. rad/s

Acceleration diagram

Coriolis acceleration, f vap
cr

ap o p2 2 1 15 4 89 11 2472 . . . m/s2

Refer to figure for direction of Coriolis acceleration.

f
v

O A

f
v

O P

a
n a

po
n po

2

1

2

2

2
2

2

2

2 51

0 2
31 5

2 25

0 46
1

( . )

.
.

( . )

.

m/s2

11

0 4

0 8
0 2

2 2

m/s

m/s

2

2f
v

BCcb
n cb ( . )

.
.
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 1. Draw the acceleration diagram as shown in Fig.3.15(c) to a scale of 1 cm 2 m/s2, by adopting 
the following procedure:

 2. Draw o
1 a fa

n 15 75 cm.  parallel to O
1
A.

 3. At point ‘a’ draw a line ap fap
cr 5 6 cm.  perpendicular to PB. At point p' draw another line 

perpendicular to PB representing the acceleration of sliding fap
s
 between A and P.  f

ap
pa is the 

total acceleration of A relative to P.

 4. Draw o p f po
n

2 2 5 5 .  cm parallel to O
2 
P· At p' draw another line perpendicular to O

2
P repre-

senting fo p
t
2  to meet the line fap

s  at point p. Join ap and o
2 
p. Then

f
ap

pa and f
po2

o
2
  p

 5. By measurement po
2

5.7 cm 11.4 m/s2

 6. Now pb
po O B

O P
2 2

2

5 7 700

460
8 67

.
. cm.

 7. Produce po
2
 to b so that pb 8.67 cm.

 8. At point b draw bc fcb
n 0.1cm parallel to BC and draw a line at c' perpendicular to BC repre-

senting fcb
t .

 9. Draw a line at o
2
 parallel to the path of ram at C meeting the line drawn at c' at c. Then Accelera-

tion of ram C, f
c

o
2
c 2.2 cm 4.4 m/s2

10. Calculate the angular accelerations as follows:

Tangential acceleration of O P f p ppo
t

2 2
21 2 4 4, . .cm m/s

Angular acceleration of O P
f

O P
po
t

2
2

2

22 4

0 46
5 21

.

.
. rad/s

Tangential acceleration of BC, f
cb

c'c 2.7 cm 5.4 m/s2

Angular acceleration of BC =  6 75 rad/s2f

BC
cb
t .

.
.

5 4

0 8

(a) 0.85 m/s (b) 11.247 m/s2 (c) 5.21 rad/s2 (d) 6.75 rad/s2 (e) 4.4 m/s2

3.5 LINK SLIDING IN A SWIVELLING PIN
Consider a link AB sliding through a swivelling pin O, as shown in Fig.3.16(a). C is a point on link AB. 
The point A moves up with velocity v

a
 and acceleration f

a
.

Velocity diagram

1. Draw oa v
a
 parallel to the path of motion of point A, as shown in Fig.3.16(b).

2. From ‘a’ draw a line perpendicular to AB to represent the velocity of A relative to B, v
ba

.
3. From o draw a line parallel to AB to represent the sliding velocity between C and O,v

co
, to meet the 

above line at c.
4. Produce ac to b such that 

ac

ab

AC

AB
.  Join o to b. Then

v
b

ob
v

co
oc

v
ca

ac
v

bc
cb
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Acceleration diagram

f vco
cr

CD ab2

f
v

ACca
n ca

2

1. Draw oa f
a
 parallel to the path of A, as shown in Fig.3.16(c).

2. Draw ac f
v

CA

ac

CAca
n ca

2 2

 parallel to AB and a line perpendicular to AB at c' to represent the 

tangential acceleration fca
t

.

3. Draw the coriolis acceleration of CO, fco
cr oc  perpendicular to AB at o.

4. Draw the sliding acceleration fca
s  between C and O parallel AB at c" to meet the fca

t line at c.

5. Join ac and oc.

6. Measure ac. Then 
ab

ac

AB

AC
.

7. Produce ac to b.

8. Join ob. Then f
b

ob.

Example 3.7

In the swivelling joint mechanism shown in Fig.3.17(a), AB 300 mm, BC 800 mm, CD 400 mm, 
AD 500 mm, BE 400 mm, EF 500 mm, ES 250 mm, and FR 600 mm. The crank AB rotates 
at 20 rads/s and 200 rad/s2. Determine (a) the coriolis acceleration, and (b) the sliding acceleration of 
link EF in the trunnion.

Solution 
Given:    20 rad/s, 200 rad/s2

v
ba

20      0.3 6  m/s

Fig.3.16  Link sliding in a swivelling pin
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Velocity diagram

 1. Draw the configuration diagram to a scale of 1 cm 100 mm, as shown in Fig.3.17(a).

 2. Draw the velocity diagram to a scale of 1 cm 1 m/s, as shown in Fig.3.17(b).

 3. Draw ab v
ba

6 cm.

 4. Draw bc perpendicular to BC and dc perpendicular to CD to meet at c. Then v
cb

bc and v
cd

dc.

 5. By measurement, bc 5.3 cm. Then 
be

bc

BE

BC
,  so that be 

5 3 400

259
2 65

.
. .cm  Locate point  

e in bc.

 6. Draw a line perpendicular to EF at e and a line parallel to EF at g to meet at s.

 7. By measurement, es 4.2 cm. Then 
ef

es

EF

ES
, so that ef

4 2 500

259
8 4

.
. .cm

 8. Produce es to f.

 9. Draw a line at f perpendicular to FR and another line at ‘a’ parallel to the path of ram R to meet  
at r.

10. By measurement, we have

v es

v gs

se

sg

4 2 4 2

3 6 3 6

. .

. .

cm mm/s

cm mm/s
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Fig.3.17 Swivelling joint mechanism
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v ef

v fr

v ar

fe

rf

r

8 4 8 4

5 8 5 8

3 4 3 4

. .

. .

. .

cm mm/s

cm mm/s

cm mm/ss

rad/s cwef

fev

EF

8 4

0 5
16 8

.

.
.

Acceleration diagram

Coriolis acceleration, f vsg
cr

sg ef . . .2 2 3 6 16 8 12 96 m/s20

f
v

AB

f AB

f
v

ba
cr ba

ba
t

cb
n cb

2
2

2

36

0 3
120

200 0 3 60

.

.

m/s

m/s
22 2

2

2 2
2

5 3

0 8
35 1

6 3

0 4
99 2

BC

f
v

CD

f

cd
n cd

fe
n

( . )

.
.

( . )

.
.

m/s

m/s

vv

EF

f
v

FR

f

fe

rf
n rf

2 2
2

2 2
2

8 4

0 5
141 1

5 8

0 6
56 0

( . )

.
.

( . )

.
.

m/s

m/s

sse
n sev

ES

2 2
24 2

0 25
70 56

( . )

.
. m/s

1. Draw the acceleration diagram to a scale of 1 cm 20 m/s2, as shown in Fig.3.17(c).

2. Draw ab fba
n 6 cm parallel to AB and b b fba

t 3 cm  perpendicular to AB to meet at b. Join 
ab to give f

ba
.

3. Draw bc fcb
n 1 75 cm.  parallel to BC and a line perpendicular to BC at c' representing fbc

t , whose 
magnitude is unknown.

4. Draw dc fcd
n 4 96 cm.  parallel to CD and a line perpendicular to CD at c  to meet the line at 

c' at c. Join bc and dc.

5. By measurement, bc 8.5 cm. Now 
be

bc

BE

BC
,  so that be 

8 5 400

800

.
. .4 25 cm  Locate point  

e in bc.

6. Draw es fse
n 3 51 cm.  parallel to ES and a line perpendicular to ES at s' to represent fse

t ,  whose 
magnitude is unknown.

7. Draw as fsg
cr 6 5 cm.0  perpendicular to EF and a line parallel to EF at s  to meet the line at  

s' at s. Join es and gs.

8. Sliding acceleration of link EF in the trunnions is, f s ssg
s 1cm 2  m/s20 .
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Example 3.8

For the mechanism shown in Fig.3.18(a), find the angular accelerations of the links AB, BO
2
 and the 

linear accelerations of points C, D, and E. 10 rad/s, 200 rad/s2.

O
1
O

2
100 mm, O

1
A 50 mm, AB 45 mm, AD 30 mm, AC 45 mm,

BC 30 mm, O
2
B 55 mm, O

2
E 45 mm, and BE 25 mm.

Fig.3.18 Four-bar mechanism with two ternary links
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Solution 

Velocity diagram

1. Draw the configuration diagram shown in Fig.3.18(a) to a scale of 1 cm 10 mm.

2. Given: 10 rad/s, v
a

      O
1
A 10      50 500 mm/s.

3. Draw the velocity diagram shown in Fig.3.18(b) to a scale of 1 cm 100 mm/s.

 (i) Draw v o a O A o aa  5 cm1 1 1, .

 (ii) Draw o b O B2 2  and ab AB  to intersect at point b. Measure ab 5.4 cm.

 (iii) Now 
ad

ab

AD

AB
ad, . . cm.5 4

30

45
3 6  Locate point d in ab. Join o

1
d.

 Then v
d

o
1
d 4.4 cm 440 mm/s

v
b

o
2
b 5 cm 500 mm/s

v
ba

5.4 cm 540 mm/s

 (iv) Draw be BE  and o e O2 2  to meet at e. then v
e

 o
2
 e 4.2 cm 420 mm/s

 (v)  Draw bc BC  and ac AC  to meet at c. abc is the velocity image of ABC and o
2
be that 

of O
2
BE.

Acceleration diagram

f
O A

f O A

ao
n a

ao
t

1

2

1

2
2

1 1

500

50
500

200 50 10 000

v
mm/s

mm/s2,

ff
O B

f
AB

bo
n b

ba
n ba

2

2

2

2
2

2 2

500

55
4545 5

540

45
6480

v

v

. mm/s

mm/ss

mm/s

2

2

2

2

2
2420

45
3920f

O Eeo
n ev

 1. Draw acceleration diagram as shown in Fig.3.18(c) to a scale of 1 cm 100 mm/s2.

 2. Draw f o a O A o aao
n

1 1 1 1 5 cm|| , .

 3. Draw f a a O A aaao
t

1 01 1  cm. Join o
1
a. o

1
a f

ao1
.

 4. Draw f ab ABba
n ||  and f o b O B o bbo

n
2 2 2 2 4 54|| , . .cm

 5. Draw f b b abba
t  and f b bbo

t
2  to intersect at point b. Join ab and o

2
b.

 6. Measure f abba 7 4 cm 74  mm/s2. 00  and f
bo2

o
2
b 5.7 cm 5700 mm/s2.

 7. 

 
ba

ba

bo
bo

f

AB

f

O B

7400

45
164 4

5700

55
103 64

2

2
2

2

.

.

rad/s

rad/ss2.
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 8. Now 
ad

ab

AD

AB
ad, . . .7 4

30

45
4 86 cm  Locate point d in ab. Join o

1
d. Then f

d
o

1
d.

 9. Draw ac AC  and be BC. Join o
1
c. f

c
o

1
c 10.6 cm 10600 mm/s2.

10. Draw be BC  and o e O E2 2  to meet at e. Join o
2
e. Then f

e
o

2
e 0.4 cm 400 mm/s2.

Example 3.9

For the slider-crank mechanism shown in Fig.3.19(a), determind (a) acceleration of slider B,  
(b), acceleration of point C, and (c) acceleration of link AB. The crank OA rotates at 180 rpm. OA 500 
mm, AB 1500 mm, and AC 250 mm.

Fig.3.19 Slider-crank mechanism

Solution 

1. Draw the configuration diagram shown in Fig.3.19(a) to a scale of 1 cm 200 mm.

2.  Angular speed of crank OA,  2 18 85 rad/s
180

60
.

v
a

      OA 18.85      500 4424.8 mm/s.

3. Draw the velocity diagram shown in Fig.3.19(b) to a scale of 1 cm  200 mm/s.
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4. Draw v
a

oa OA , oa 4.71 cm.

5. Draw ab AB  and ob || OB to meet at point b. v
b

ab 4.5 cm 8400 mm/s

v
ba

ab 3.5 cm 7000 mm/s

6. Now 
ac

ab

AC

AB
ac, . . .3 5

250

1500
0 583 cm  Produce ba to c so that ac 0.583 cm. Join oc. Then 

v
c

oc 5 cm 10,000 mm/s.

Acceleration diagram

f
OA

f
AB

oa
n a

ba
n ba

v

v

2 2
2

2 2

9424 8

500
1 77 654

7000

1500

( . )
, , mm/s

32667 2mm/s

1. Draw the acceleration diagram shown in Fig.3.19(c) to a scale of 1 cm 30,000 mm/s2.

2. Draw f oa OA oaoa
n || , . .5 92 cm

3. Draw f ab AB abba
n || . ., 1 8 cm0  f b b ABba

t  and f
b

ob || OB to meet at point b. Join ab.

4. Measure f ob

f ab

b

ba

4 3 1 29 000

4 2 1 26 000

. , ,

. , ,

cm mm/s

cm mm/s

2

2

5. Now ac ab
AC

AB
    cm4 2

250

1500
0 7. . .

6. Produce ba to c so that ac 0.7 cm. Join oc. Then f
c

oc 6.4 cm 1,92,000 mm/s2.

Example 3.10

Draw the acceleration diagram for the shaper mechanism shown in Fig.3.20(a). OB 150 mm, 
CB 225 mm, OC 150 mm. Find the coriolis acceleration of slider B.

Solution 

Velocity diagram

1. Draw the configuration diagram shown in Fig.3.20(a) to a scale of 1 cm 50 mm.

2. 20 rad/s (given). v
b

       OB 20      150 3000 mm/s.

3. Draw the velocity diagram shown in Fig.3.20(b) to a scale of 1 cm 1000 mm/s.

4. Draw v
b

ob OB.  ob 3 cm.

5. Draw cd AC  and db || AC to meet at d. Then, velocity of slider B along ABC, v
bd

db 2 
cm 2000 mm/s.

v
dc

cd 1.5 cm 1.5 m/s

6. Angular speed of ABC link, 
AC

  
vdc

CD

2 1 5 100

225
6 67

.
. rad/s.
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Acceleration diagram

Coriolis acceleration of slider B, fbd
cr

bd AC2 2 2 6 67 2668  mm/s2v 000 0.  and is perpendicu-
lar to CB.

f
v

OBbo
n b

2 2
23000

150
60 000, mm/s  along BO.

f
CDdc

n dcv2 2
21500

225
10000 mm/s  along CD.

1. Draw acceleration diagram shown in Fig.3.20(c) to a scale of 1 cm 10,000 mm/s2.

2. Draw f o b OB o bbn
n

1 1 1 1 6|| ,  cm.

3. Draw f b d CD b dbd
cr

1 1 1 1 2 67, . cm.

4. Draw f b dbd
s

1 1.

Fig.3.20 Shaper mechanism
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5. Draw f c d CD c ddc
n

1 1 1 1 1|| , cm

6. Draw f c dbc
t

1 1  to intersect fbd
s

 at d
1
.

7. Join b
1
d

1
 and c

1
d

1
.

Example 3.11

In the mechanism shown in Fig.3.21(a), the link O
1
A rotates at 24 rad/s. Find the velocity and accelera-

tion of point B. O
1
A 75 mm, AB 200 mm, and O

2
B 2000 mm.

Fig.3.21 Four-bar mechanism with a sector type ternary link
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Solution 

Velocity diagram

1. Draw the configuration diagram shown in Fig.3.21(a) to a scale of 1 cm 50 mm.

2. 24 red/s, v
a

      O
1
A 24      75 1800 mm/s.

3. Draw the velocity diagram shown in Fig.3.21(b) to a scale of 1 cm 500 mm/s.

 (i) Draw v
a

o a O A1 1 , o1 3.6 cm.

 (ii) Draw ab AB  and o b O B2 2  to meet at point b. v
b

o2b 2 cm 1500 mm/s.

 (iii) v
ba

ab 2 cm 1000 mm/s.

Acceleration diagram

f
O A

AO

f
AB

o a
n a

ba
n ba

1

2

1

2
2

1

2 2

1800

75
43 200

1000

v

v

, .mm/s along

2200
500 2mm/s along AB.

f
v

O B
BOo b

n b
2

2

2

2
2

2

1500

200
11 250, .mm/s along

1. Draw the acceleration diagram shown in Fig.3.21(c) to a scale of 1 cm 500 mm/s2.

2. Draw f o a O A o ao a
n
1 1 1 1 8 64|| , . cm

f ab AB abba
n || , 1 cm

3. Draw b b AB f o b O B o bo b
n, || , .2 2 2 2 2 25 cm

4. Draw b b o B2  to meet b'b line at point b. Join ba and bo
2
. Then  f

o2b
o

2
b 4.2 cm 21,000 mm/

s2.

Example 3.12

A double slider-crank mechanism is shown in Fig.3.22(a). Crank 2 rotates at constant angular speed 

2
10 rad/s. Determine the velocity and acceleration of each slider. O

2
A 1000 mm, AB 200 mm, 

and AC 200 mm.

Solution 

Velocity diagram

1. Draw the configuration diagram shown in Fig.3.22(a) to a scale of 1 cm 25 mm.

2.  
2

10 rad/s, v
a 2

      O
2
A 10      100 1000 mm/s.

3. Draw the velocity diagram as shown in Fig.3.22(b) to a scale of 1 cm 200 mm/s.

4. Draw v o O Aa2 2 , o
2a

5 cm.
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5. Draw ab AB  and ac AC , o
2
cb || o

2
c to meet ab and ac lines at b and c respectively.

6. Measure v
c

o
2
c 3.1 cm 620 mm/s

v
b

o
2
b 5.2 cm 1040 mm/s

v
ba

ab 2.2 cm 440 mm/s
v

ca
ac 2.8 cm 560 mm/s

Acceleration diagram

f
O A

AOo a
n a
2

2

2

2
2

2

1000

100
10 000

v
, .mm/s along

 
f

AB
ABba

n bav2
2440

200
968 mm/s along .

f
AC

ACca
n cav2 2

2500

200
1568 mm/s along .

1. Draw the acceleration diagram as shown in Fig.3.22(c) to a scale of 1 cm 2000.

2. Draw f f o a O A o ao a
n

a
n

2 2 2 2 5|| , cm

f ab AB abba
n || , .0 484 cm

Fig.3.22 Double slider-crank mechanism
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b b AB f o b O Co b
nand 2 2 2||  to meet b'b at point b

f o bb 2
21 4 200 2800. mm/s

3. Draw f ac AC acca || , .0 784 cm.

c c AC o c O Cand 2 2||  to meet at c.

Then f o cc 2
23 7. .cm = 7400 mm/s

Example 3.13

A part of a mechanism which operates a horizontally sliding block E is shown in Fig.3.23(a). In the given 
configuration, the lever OB swings about O in the clockwise direction with an angular velocity of 11.2 
rad/s and an angular acceleration of 56.5 rad/s2. The reciprocating mass at E is 70 kg. Determine the 
value of force P necessary to ensure this motion, neglecting the inertia of the links OB and CE.

Solution 

Velocity diagram

1. Draw configuration diagram shown in Fig.3.23(a) to a scale of 1 cm 50 mm.

2. 11.2 rad/s,
v

a
      OA 11.2      150 1680 mm/s

v
b

      OB 11.2      250 2800 mm/s

3. Draw the velocity diagram as shown in Fig.3.23(b) to a scale of 1 cm 500 mm/s

4. Draw v
b

ob AB , ob 5.6 cm. v
a

oa 3.36 cm

5. Draw ae AE  and oe || XE to meet at point e. Then

v

v
e

ea

oe

ae

2 9 1450

0 8 400

.

.

cm mm/s

cm mm/s

Acceleration diagram

f
OA

AO

f OA

a
n a

a
t

v2 2
21680

150
18 816

56 5 150 84

,

.

mm/s along .

775

400

250
640

2

2 2
2

mm/s .

mm/s along .

AO

f
AE

AEea
n eav

1. Draw the acceleration diagram as shown in Fig.3.23(c) to a scale of 1 cm 2000 mm/s2.

2. Draw f oa OA oaa
n || , .9 4 cm.

3. Draw f a a o a a aa
t , .4 2 cm. Join oa. f

a
oa

4. Draw f ae AE aeea
n || , .0 32 cm:

5. Draw e e AE and oe || XE to meet at point e. Then
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f oee 8 7 2. cm =17400 mm/s

P cos [90 – (45° 15°)] 70      f
e

P
70 17 400 10

30
1406 5

3,

cos
. N

Fig.3.23 Diagram for Example 3.13
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3.6 KLEIN’S CONSTRUCTION
Klein’s construction is used to draw the velocity and acceleration diagrams for a single slider-crank 
mechanism on its configuration diagram. The line that represents the crank in the configuration dia-
gram also represents the velocity and the acceleration of its moving end to some scale. The following 
steps may be adopted to draw the velocity and acceleration diagrams, as shown in Fig.3.24:

1. Draw the configuration diagram OAB of the slider-crank mechanism to a convenient scale.

2. Draw OI OB and produce BA to meet OI at C. Then OAC represents the velocity diagram. 
OA r to some scale from which the scale of velocity diagram is determined. OC v

bp
, CA v

ba
, 

OA v
ao

.

3. With AC as the radius and A as the centre, draw a circle.

4. Locate the mid-point D of AB. With D as centre and DA as radius, draw the circle to intersect the 
previously drawn circle at E and F. Join EF intersecting AB at G.

5. EF meets OB at H. If it does not meet OB then produce EF to meet OB at H. Join AH.

Then OAGH is the acceleration diagram.

OA f

AG f

ao
n

ba
n

Acceleration of piston (slider B), f
b

2  OH

f AG

f GH

ba
n

ba
t





2

2

Fig.3.24 Klein’s construction
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6. To find the acceleration of any point X in AB, draw a line XX || OB to intersect HA at X. Join OX. 
Then

f OXx  2




AB
ba
tf

AB

GH

AB

2

(ccw)

Example 3.14

The crank of an engine 300 mm long rotates at a uniform speed of 300 rpm. The ratio of connecting 
rod length to crank radius is 4. Determine (a) acceleration of the piston. (b) angular acceleration of 
the rod, and (c) acceleration of a point X on the connecting rod at 400 mm from crank pin. The crank 
position is 60° from inner dead centre.

Solution 

The acceleration diagram using Klein’s construction has been drawn in Fig.3.25, following the steps 
as explained in Section. 3.6.

Fig.3.25 Klein’s construction for Example 3.14
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OAGH is the acceleration diagram.

f AG

f GH

f AH

ba
n

ba
t

ba









2

2

2

2

2
2

60
986 96

300
(rad. //s)2

Locate point X in AB, such that AX 400 mm. Draw Xx parallel to BO to meet AH at x. Join Ox. 
Then

 Ox f

f OH

x

b



 2

(a) Acceleration of piston, f OHb  2 986 96 1 1 100

1000
108 56

. .
. m/s2

(b) Tangential acceleration of rod, f GHba

t  2 986 96 2 6 100

1000
256 61

. .
. m/s2

Angular acceleration of rod,  AB
ba
tf

AB

256 61

1 2
213 84

.

.
. rad/s2

(c) Acceleration of point X on rod  2 986 96 2 2 100

1000
217 13Ox

. .
. m/s2

3.7 ANALYTICAL ANALYSIS OF SLIDER-CRANK MECHANISM
Consider the slider-crank mechanism shown in Fig.3.26. Let  be the angle turned through by the 
crank OA r when the slider B has moved by an amount x to the right, and  the angle, which the con-
necting rod AB l makes with the line of stroke.

Fig.3.26 Slider crank mechanism
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x r l – (OC BC)
r l – (r cos l cos )
 r (1 – cos ) l (1 – cos )

Now AC r sin l sin 

sin sin 
r

l

Let  n
l

r

Then  cos ( sin ) . 1 2 0 5

1

1 1 1

2

2

0 5

2

2

0 5

sin

( cos )
sin

.

.

n

x r l
n

r n
n

r

( cos )
sin

(

.

1 1 1
2

2

0 5

11 1 1
2

1

2

2
cos )

sin
...

( cos

n
n

r )
sin

( cos )
( cos )

2

2

1
1 2

4

n

r
n

  
(3.13)

Velocity of slider,  vb

x

t

x

t

xd

d

d

d

d

d

d

d

r
n

sin
sin

 + 
2

2
 

(3.14)

Acceleration of slider,

f
x

t t tb
b b bd

d

d

d

d

d

d

d

d

d

2

2

v v v

2 2
r

n
cos

cos
 

Now     sin
sin

n

cos
cosd

d

d

dt n t
cos

n
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Angular velocity of connecting rod,

ba t n

d

d

  


cos

cos

 cos

( sin ) .


n2 2 0 5


n

 cos
  

(3.15)

Angular acceleration of connecting rod,




ba
ba

t

n

n

d

d
 


2

2

2 2 3 2

1
sin

( )

( sin ) /

 2

n
sin

 
(3.16)

Example 3.15

In Example 3.14, calculate analytically, the acceleration of the piston and angular acceleration of the 
rod.

Solution 

Given:

n
l

r
r N4 60 300 300, ,  mm, rpm

2

2
2 300

60
986 96. (rad/s)2

Acceleration of piston, 

f r
nb  
2 2

986 96 0 3 60
120

4

cos
cos

. . cos
cos

 111.0 m/s2

Angular acceleration of rod    



2

n
sin

986 96 60

4

. sin

 213.68 rad/s2
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Example 3.16

For the Scotch yoke mechanism shown in Fig.3.27, find the velocity and acceleration of point B.  

2
     5 rad/s, and O

2
A     100 mm.

Solution 

Draw configuration diagram as shown in Fig.3.27(a).

2
     5 rad/s

v
a  

  
2 
  O

2
 A     5  100     500 mm/s

Draw the velocity diagram as shown in Fig.3.27(b).
v o a O Aa 2 2

ab || AB
o

2
b || O

2
B

v
b
     o

2
b     2.55 cm     355 mm/s

v
ba

     ab     2.55 cm     355 mm/s

The accelerations of various links are;
f  n

a
     v2

a
 / O

2
A     (500)2 / 100     2500 mm/s2 along AO

2
.

f  n
ba

     v2ba / AB     (355)2 / 70.72     1782 mm/s2 along AB
f  n

b
     v2

b
 / O

2
B     (355)2 / 70.72     1782 mm/s2 along BO

2
.

Draw acceleration diagram as shown in Fig.3.27(c).
o

2
a     f n

a
 || O

2
A

ab f n 
ba

ab AB
o

2
b     f n

b
 || O

2
B

f
b

o b     2.55 cm     1775 mm/s2

Scale: 1 cm = 500 mm/s2

(c) Acceleration diagram

a

fba

b o2

Scale: 1 cm = 100 mm/s

(b) Velocity diagram

b

a

o2

vba

vb

va

A

B
45º

3

4

Scale: 1 cm = 25 mm

(a) Configuration diagram

1

O2

1

2

2

n

fb
n

fa
n

Fig.3.27 Scotch yoke mechanism
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Solution 

Draw configuration diagram as shown in Fig.3.28(a).
10 rad/s

v
c

      AC 10      250 2500 mm/s,
Draw the velocity diagram as shown in Fig.3.28(b).

v
d

5.6 cm 2800 mm/s ↑
f  cr

d
2v

d
2      2800      10 56,000 mm/s2 ←

Example 3.18

In the mechanism shown in Fig.3.29, link AB rotates clockwise at a speed of 240 rpm. At the instant 
shown, find the velocity and acceleration of slider C as well as those of slider E. AB 50 mm,  
BC 120 mm, BD DC 60 mm, DE 80 mm.

Solution 

Draw configuration diagram shown in Fig.3.29(a).
2       240 / 60 25.13 rad/s

v
d

      AB 25.13      50 1256.6 mm/s

Draw the velocity diagram as shown in Fig.3.29(b).

v ab ABb

bc BC

Example 3.17

Bar AB is connected by pin C to slider D that slides along the fixed vertical rod EF as shown in 
Fig.3.28. Find the velocity and acceleration of the slider D if the bar AB rotates at a constant angular 
velocity of 10 rad/s in counter-clockwise direction.

E

D

A

(a) Configuration diagram

B

AC = 250 mm

Pin C

F30°

(b) Velocity diagram

Scale: 1 cm = 500 mm/s

c

a

d

vd

vc

Fig.3.28 Diagram for Example 3.17
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ac || AC
ac v

c
5.7 cm 1140 mm/s

As CD DB, hence cd db 2.3 cm
de DE
ae || YE
v

e
ae 0.5 cm 100 mm/s

v
cb

bc 4.6 cm 920 mm/s
 v

ed
de 5.3 cm 1060 mm/s

The accelerations of various links are;
f n

ba
v 2

ba
 / AB (1256.6)2 / 50 31581 mm/s2

Scale: 1 cm = 5000 mm/s2

(c) Acceleration diagram

c a

e

e1

d

b

c1

fcb

fcb

fcb

fed

fab

fc

fd

Scale: 1 cm = 200 mm/s

(b) Velocity diagram

a

c

d

b

e
ve

ved
vda vcb

vc

vb

Scale: 1 cm = 20 mm

(a) Configuration diagram

A

50

B
60

D

120

80

60

Y
C

E

45º

t

n

n

fed

fed

fe
t

n

Fig.3.29 Diagram for Example 3.18
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f  n
cb

v2
cb

/BC (920)2/120 7052.3 mm/s2

f  n
ed

v2
ed

/DE (1060)2/80 14045 mm/s2

Draw acceleration diagram as shown in Fig.3.29(c).
f  n

ba
ab || AB

f  n
cb

bc
1
 || BC

f c BCt
cb c1

ac || AC
Join bc.

f 
c

ac 4.4 cm 22,000 mm/s2

cd bd 2.2 cm
f  n

ed
de

1
 || DE

ee de1 1

ae || EY
Join de.

f 
e

ae 0.9 cm 4500 mm/s2.

Example 3.19

Fig.3.30 depicts the structure of Whitworth quick return mechanism used in reciprocating machine 
tools. The various dimensions of the mechanism for a specified stroke of the tool are:

OQ 120 mm, OP 240 mm, RQ 180 mm, and RS 600 mm.

Crank OP makes an angle of 60° with the vertical. Determine the velocity of the slider S (cutting tool) 
when crank rotates at 120 rpm clockwise. Find also the angular velocity of the link RS and the velocity 
of the sliding block on the slotted lever QT.

Solution 
Draw configuration diagram shown in Fig.3.30(a).

2       120/60 12.57 rad/s
v

p1
      OP 12.57      240 3015.93 mm/s

Draw the velocity diagram as shown in Fig.3.30(b).
v op OPp1 1 1

p
1
 p

2
 || P

2
Q

pb PQ

v
p2

qp
2

2.8 cm 2800 mm/s

p2q
v

p2
/P

2
Q 2800/(5.2      60) 8.97 rad/s cw

p
2
q 2.8 cm, p

2
r p

2
q      P

2
R/P

2
Q 2.8      8.2/5.2 4.41 cm,

v
s

qs 0.9 cm 900 mm/s
v

sr
rs 1.1 cm 1100 mm/s.

Velocity of sliding block on QT, v
p1p2

p
2
p

1
1 cm 1000 mm/s

Angular velocity of link RS, 
rs

v
sr
/RS 1100/600 1.83 rad/s cw

The accelerations of various links are
f n

p1o
v2

p1
/OP

1
(3015.93)2/240 37899 mm/s2

f n
p2q

v2
p2

/P
2
Q (2800)2/312 25128 mm/s2
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f n
sr

v2
sr
/SR (1100)2/600 2017 mm/s2

f cr 2v
p1p2

 
p2q

2      1000      8.97 17940 mm/s2

Draw acceleration diagram as shown in Fig.3.30(c).
f n

po
op

1
 || P

2
O

p p f TQp p
cr

1 2 1 2

p p p p1 2 1 1

f n
p2q

qp
2
 || P

2
Q,  f t

p2q
 p p p q2 2 2 .

Join p
1 
p

2
 and qp

2
 · p

2
q 5.2 cm

p
2
r p

2
q      P

2
R/P

2
Q 5.2      8.2/5.2 8.2 cm

f n
sr

rs || RS
s s s r and qs || QS.

Join rs.
QS f

sq
1.6 cm 8000 mm/s2.

R 600 S

180 Q

120

O 60º
240

P2

P1

T

Scale: 1 cm = 60 mm

(a) Configuration diagram

r

vsr

vs

vp1p2

vp1

vp2

p2

p1

s
o,q

Scale: 1 cm = 1000 mm/s

(b) Velocity diagram

Scale: 1 cm = 5000 mm/s2

(c) Acceleration diagram

p

p

p
2

p
1

cr
s

fp1p2

fp1p2

n

o,q

fsq s

fsr

rs

fp2q

n
fpo

n

t

fsr

fsr

fp2
q fp2

q

fp1p2

t

1

2

Fig.3.30 Whitworth quick-return mechanism
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Example 3.20

In the swivelling point mechanism shown in Fig.3.31(a), OA 25 mm, AB 150 mm, AD DE,  
DE 150 mm, EF 100 mm, BC 60 mm, DS 40 mm, and OC 150 mm. Crank OA rotates at  
200 rpm. Determine the acceleration of sliding link DE in the trunnion.

\

Fig.3.31 Swivelling point mechanism
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Solution 
2       200/60 20.944 rad/s

v
a

20.944      0.025 0.523 m/s

The velocity diagram is shown in Fig.2.31(b) to a scale of 1 cm 0.1 m/s, in which

oa v OAa

ab AB

cb BC

Locate b. cb v
b

4.6 cm 0.46 m/s

ab v
ba

2.3 cm 0.23 m/s

ad

ab

AD

AB

1

2

or ad 0.5      2.3 1.15 cm

Draw os || DE, de DE:

v
sd

ds 1.8 cm 0.18 m/s

v
s

gs 4.4 cm 0.44 m/s

de

ds

DE

DS
150 45/

or de 1 8
150

45
6. cm

v
ed

6 cm 0.6 m/s

DE
dev

DE

0 6

0 1
6

.

.
 rad/s (ccw)

Locate e. Draw ef EF  and if || XX.

of v
f

ef v
fe

6.6 cm 0.66 m/s

Table 3.1 shows the calculation of Coriolis acceleration.

fsg
cr

sg DE2 2 0 44 6 5 28v . . m/s2

The acceleration diagram is shown in Fig.3.31(c) to a scale of 1 cm 1 m/s2.

oa || OA 10.94 m/s2

ab f BAba
n || .0 352 m/s2

b b ab f BAba
n  or 
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cb f BCbc
n || .3 52 m/s2

b b cb fbc
t

Locate point b. Join ob and ab.

ab f
ba

; ob f
b

ad

ab

AD

AB

or ad 0 5 6 5 3 25. . . cm

ds DS fsd
n|| .0 72 m/s2

s s ds

Draw 
gs f SDsg

cr = 5 28 m/s2. .

s"s || SD
Locate s. Join os and sd.

The acceleration of sliding in the trunnion, s s fsg
s 0 0. .3 cm 3 m/s2

Example 3.21

The crank of an engine 250 mm long rotates at a uniform speed of 240 rpm. The ratio of connecting 
rod length to crank radius is 4. Determine (a) the acceleration of the piston, (b) the angular accelera-
tion of the rod, and (c) the acceleration of a point X on the connecting rod at 1/3rd length from crank 
pin. The crank position is 30° from inner dead centre.

Table 3.1

Link Length  
r  
m

Velocity  
v  

m/s

Normal acceleration 
f n v2/r  

m/s2

Tangential 
acceleration  
f  t   r m/s2

Coriolis 
acceleration 

f cr 2v   
m/s2

OA 0.025 0.523 10.94 – –

AB 0.150 0.23 0.352 – –

BC 0.06 0.46 2.52 – –

DE 0.15 0.6 2.4 – –

EF 0.10 0.66 4.356 – –

DS 0.045 0.18 0.72 – –

S fixed – 0.44 – – 5.28

S on link
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Solution 

The acceleration diagram using Klein’s construction has been drawn in Fig.3.32.

Draw OM BO. The acceleration diagram is shown by OAPQ.

AP f

PQ f

AQ f

ba
n

ba
t

ba

 2
240

60
25 13. rad/s

Draw Xx parallel to BO. Join AQ and Ox. Then,

Ox fx

f OQb  2

(a) Acceleration of the piston 2      OQ (25.13)2      2.5      10 15788 cm/s2

(b) Tangential acceleration of the rod 2      PQ (25.13)2      1.25      10 7894 cm/s2

  Angular acceleration of the rod 
7894

100
78 94 rad/s2.

(c)  Acceleration of the point X on the rod  2      Ox (25.13)2      2.4      10 15156 cm/s2.

Fig.3.32 Klein’s construction for Example 3.21 

Example 3.22

In the mechanism shown in Fig.3.33, the crank OA rotates at 20 rpm anti-clockwise and gives motion 
to the sliding blocks B and D. The dimensions of the various links are: OA 300 mm, AB 1200 mm, 
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BC 450 mm, and CD 450 mm. Determine (a) velocities of sliding at B and D, (b) angular velocity 
of CD, (c) linear acceleration of D, and (d) angular acceleration of CD.

Solution 

Angular velocity of OA, 
2

60

2 20

60
2 1

  
rad/s

N
.

Linear velocity of A, v
a

      OA 2.1      0.3 0.63 m/s

Velocity diagram

1. Draw configuration diagram as shown in Fig.3.33(a).

2. Draw velocity diagram as shown in Fig.3.33(b)

3. Draw oa OA  such that oa 6.3 cm.

 ab AB and ob || OB to intersect at b.

(c) Acceleration diagram

Scale: 1 cm = 0.2 m/s

d t

fd fdc

fdc

t
fba

n
fdc

fba

fb

fn
a

fn
ba

fc

b
d

b
a

c

o
d

Scale: 1 cm = 0.1 m/s

(c) Velocity diagram

o
b

c

d

a

c

bv

v

v

v

vba

dc

va

B

C

D

Scale: 1 cm = 100 mm

(a) Configuration diagram

1050 mm

A

30º
o

Fig.3.33 Double slider mechanism 
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4. Measure ab 5.5 cm, v
ba

0.55 m/s

bc
BC

AB
ab

450

1200
5 5 2 06. . cm

5. Join OC. Draw cd CD  and od || line of stroke of slider D to meet at d.

6.  v
b

ob 3.8 cm 0.38 m/s; v
d

od 2.3 cm 0.23 m/s.

7. v
cd

cd 3.6 cm 0.36 m/s

cd
cdv

CD

0 36

0 45
0 8

.

.
.  rad/s ccw

Acceleration diagram

f
v

OA

f
v

AB

a
n a

ba
n ba

2 2
2

2 2

0 63

0 3
1 323

0 55

1 2
0 252

( . )

.
.

( . )

.
.

m/s

mm/s

m/s

2

2 2
20 36

0 45
0 288f

v

CDcd
n dc ( . )

.
.

1. Draw acceleration diagram as shown in Fig.3.33(c).

2. Draw oa || OA such that oa fa
n 6 6 cm 1 323 m/s2. . .

3. Draw ab' || AB, ab fba
n 0. . .252 m/s =1 26 cm2

4. Draw b b AB  and ob || OB to intersect at b.

 Joint ab. Measure ab 3.3 cm.

5. bc
BC

AB
ab

450

1200
3 3 1 237. . .cm Join oc.

6. Draw cd" || CD, cd fdc
n 0. . .288 m/s 1 44 cm2

7. Draw d d CD  and od || the line of stroke of slider D to intersect of d.

 Join cd.
8. Linear acceleration of D, f

d
od 1 cm 0.2 m/s2.

9. Linear tangential acceleration of CD, f d ddc
t 6 5 cm 1 3 m/s2. .

 Angular acceleration of CD,  cd
dc
tf

CD

1 3

0 45

.

.
. .2 9 rad/s cw2

Example 3.23

The kinematic diagram of one of the cylinders of a rotary engine is shown in Fig.3.34(a). The crank OA 
which is vertical and fixed, is 50 mm long. The length of connecting rod AB is 125 mm. The line of stroke 
OB is inclined at 50° to the vertical. The cylinder is rotating at a uniform speed of 300 rpm, in a clock-
wise direction, about the fixed centre O. Calculate (a) acceleration of the piston inside the cylinder, and  
(b) angular acceleration of connecting rod.
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Solution 

Angular velocity of OC, CO

N2

60

2 300

60
31 4

 
. rad/s

Linear velocity of C, v
c CD

      OC

AB2 OB2 OA2 – 2 OB      OA      cos 130°

1252 OB2 502 – 2 OB      50      cos 130°

OB2 64.28      OB – 13125 0

OB 86.85 mm OC

v
c

31.4      86.85      10 3 2.73 m/s

Velocity diagram

1. Draw velocity diagram as shown in Fig.3.34(b).

2. Draw oc OC , oc 5.46 cm 2.73 m/s.

ab AB

cb OC||

A

B

C

50 mm

50°

O

Cylinder

Piston

C on OC
B on AB

Scale: 1 cm = 20 mm

(a) Configuration diagram

Scale: 1 cm = 0.5 m/s

(b) Velocity diagram

c

o,a

b
v bc

vba

vco

(c) Direction of coriolis
acceleration

B C

O

fbc
cr co

vba

Scale : 1 cm = 20 m/s2

(d) Acceleration diagram

n

t

n

c

cr

b

o,a

b

b

fbc

fba
fba f

ba

fbc

fco

nfbc

Fig.3.34 Rotary engine
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3. v
bc

cb 1.7 cm 0.85 m/s

v
ba

ab 5.7 cm 2.85 m/s

Acceleration diagram (Fig.3.34d):

f
v

OCco
n co

2 22 73

0 08685
85 8

( . )

.
. m/s2

f vbc
cr

bc oc2 2 0 85 31 4 53 38. . . m/s2

f v ABba
n

ba
2 22 85 0 125 64 98/ / m/s2( . ) . .

1. Draw oc || OC, oc fco
n 85 8 m/s = 4 29 cm2. . .

2. Draw cb fbc
cr = 53 38 m/s 2 67 cm2. .  perpendicular to oc.

 b b cb

3. Draw ab fba
n 64 98 m/s 3 25 cm2. .

 b b ab  to meet b'b at b.
4. Join cb and ab.

f
bc

 cb 3.4 cm 68 m/s2

f b bba
t 1 9 38 2. cm m/s

ba ba
tf AB/ 38/ 125 3 4 rad/s20 0.

Example 3.24

In the mechanism shown in Fig.3.35(a), the link 2 rotates with angular velocity of 30 rad/s and an 
angular acceleration of 240 rad/s2. Determine (a) the acceleration of points B and C, (b) the angular 
accelerations of link 3 and 4 and (c) the relative acceleration 

34
. O

2
A 100 mm, AB 200 mm,  

AC 100 mm and BC 150 mm.

 Solution

v
a

30      0.1 3 m/s

The velocity diagram is shown in Fig.3.35(b) to a scale of 1 cm 1 m/s.

v v v

v v v v v

v o a O A

v o b o b

b a ba

c a ca b cb

a

b

2 2

2 4 2 6

and

and cm. 2 6

2 3 2 3

1 7 1 7

.

. .

. .

m/s

and cm m/s

and cm m/s

v ab AB

v bc BC
ba

cb

v o b o bca 2 4 1 2 1 2and cm m/s. .

v o cc 2
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The acceleration diagram is shown in Fig.3.35(c) to a scale of 1 cm 20 m/s2.

f
v

O Bb
n b

2

4

2
22 6

0 2
64 8

.

.
. m/s  (from B to O

4
)

f fb
t

b
n

f
v

O Aa
n a

2

2

2
23

0 1
90

.
m/s  (from A to O

2
)

f
v

ABba
n ba

2 2
22 3

0 2
26 45

.

.
. m/s  (from B to A)

f fba
t

ba
n

f f fb a ba

f f f f f fb
n

b
t

a
n

a
t

ba
n

ba
t

f
b

o
2
b 2.5 cm 70 m/s2

f b bb
t 1 4 cm 28 m/s2.

f b bba
t 6 2 cm 124 m/s2.

3

124

0 2
620

f

BA
ba
t

.
rad/s ccw2

4
4

28

0 2
140

f

O B
b
t

.
rad/s cw2

  34 3 4 620 140 760 rad/s ccw2

f f f fc a ca
n

ca
t

f f fb cb
n

cb
t

f
v

CAca
n ca

2 2
21 2

0 1
14 4

.

.
. m/s

f fca
t

ca
n

f
v

CBcb
n cb

2 2
21 7

0 150
19 27

.

.
. m/s

f fcb
t

cb
n

f o cc 2 5 00cm 1  m/s2
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Summary for Quick Revision

1 A particle moving in a circular path has two components of accelerations, normal and tangential, 
which are perpendicular to each other.
Normal (or radial or centripetal) component of acceleration, f  n 2r v2/r
Tangential component of acceleration, f  r
where angular velocity, angular acceleration, v linear velocity, and r radius

2 Total acceleration of a point B w.r.t. point A on the same link (vector sum),

f f fba ba
n

ba
t ( )2 AB

tan / 2

3 Acceleration centre is a point in a link about which the acceleration is zero.

Fig.3.35 Diagram for Example 3.24
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4 Coriolis components of acceleration acts when the second point which was considered stationary, 
now slides, e.g. a slider sliding along a rotating link, as in the case of a crank and slotted lever or 
Whitworth quick-return motion mechanisms.
Coriolis acceleration, f cr 2v
Where v linear velocity of the slider along the link

angular speed of the rotating link

5 The direction of the coriolis component of acceleration is such as to rotate the sliding velocity 
vector through 90° in the same sense as the angular velocity of the rotating link.

6 Klein’s construction is used to draw the velocity and acceleration diagrams for a single slider-
crank mechanism.

7 In a slider–crank mechanism,
Velocity of slider  r [sin  + sin 2 /(2n)]
Acceleration of slider 2 r [cos  + cos 2 /n]
Angular velocity of connecting rod  cos  / (n2 – sin2 )0.5

 ( /n) cos 
Angular acceleration of connecting rod –  2 sin  (n2 – 1)/(n2 – sin2  )3/2

 (  2/n) · sin 

Multiple Choice Questions

1 The C.G. of a link in any mechanism would experience
(a) zero acceleration (b) linear acceleration
(c) angular acceleration (d) both angular and linear accelerations.

2 Coriolis components of acceleration is encountered in
(a) four bar mechanism (b) lower pairs
(c) higher pairs (d) Whitworth quick return motion.

3 Coriolis components of acceleration exists whenever a point moves along a path that has
(a) linear displacement (b) rotational motion
(c) tangential acceleration (d) centripetal acceleration.

4 The total acceleration of B relative to A is
(a) [ (  2

 AB
      AB)2 (       AB)2]1/2 (b) 2

AB
      AB       AB

(c) [
AB

      AB2       AB2]1/2 (d) [(
AB

      AB)2 (       AB )2]1/2.
5 The total acceleration of B relative to A is inclined to AB at an angle tangent of which is given by

(a) /  2 (b) /
(c) 2/  (d) /

6 The velocity of slider-crank mechanism is given by
(a) (  L/2) [sin (L/4l) sin 2 ] (b) ( 2 L/2) [sin (L/2l) sin 2 ]
(c) (  L/2) [cos (L/4l) cos 2 ] (d) ( 2 L/2) [cos (L/2l) cos 2 ]
where L length of stroke, I length of connecting rod.

angular speed of crank, crank angle.

7 The linear acceleration of piston of a reciprocating engine is
(a) 2 r [cos cos 2 /(2n)] (b) 2 r [cos cos 2 /n]
(c) 2 r [sin sin 2 /(2n)] (d) 2 r [sin sin 2 /n]
where n l/r.
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 8 The angular velocity of the connecting rod of a reciprocating engine is approximately given by
(a)  cos /n (b)  sin /n
(c)  cos /(2n) (d)  sin /(2n).

 9 The angular acceleration of the connecting rod of a reciprocating engine is approximately given by
(a) 2 cos /n (b) 2 sin /n
(c)  2 cos /(2n) (d)  2 sin /(2n).

10 Klein’s construction is used mainly to determine the
(a) linear velocity of the piston (b) linear acceleration of the piston
(c) linear displacement of the piston (d) all of the above.

11 A slider slides along a straight link with uniform velocity v and the link rotates about a point with 
uniform angular speed . The Coriolis components of acceleration of a point on the slider at a 
distance r from the centre of rotation is
(a) v 2/r parallel to link (b)  r perpendicular to link
(c) 2  v perpendicular to link (d) v  parallel to link.

12 The Coriolis component of acceleration occurs in
(a) slider-crank mechanism (b) Scotch-yoke mechanism
(c) oscillating cylinder mechanism (d) four-bar chain.

13 The direction of the Coriolis component of acceleration is
(a) along the surface of sliding
(b) perpendicular to the surface of sliding in the direction of angular speed
(c)  perpendicular to the surface of sliding in the direction opposite to the direction of angular 

speed
(d)  inclined to the surface of sliding depending on the magnitude of normal and tangential 

accelerations.

Answers

1. (d) 2. (d) 3. (b) 4. (a) 5. (a) 6. (a) 7. (b) 8. (a) 9. (b) 10. (b) 11. (c) 12. (c) 13. (b)

Review Questions

1 Define normal and tangential components of acceleration.

2 How do you determine normal and tangential components of acceleration?

3 What is acceleration image? How it is helpful in determining the acceleration of offset points in 
a mechanism?

4 Define Coriolis component of acceleration. When it occurs?

5 How do you determine coriolis components of acceleration?

6 What is the use of Klein’s construction?

Exercises

3.1 A link AB of a four-bar mechanism ABCD revolves uniformly at 120 rpm in a clockwise direction. 
Find the angular acceleration of links BC and CD and acceleration of pont E in link BC. Given: 
AB 75 mm, BC 175 mm, EC 50 mm, CD 150 mm, AD 100 mm, and BAD  90 .

[Ans. 12.57 rad/s2, 12.0 rad/s2, 10.8 cm/s2]
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3.2 In the steam engine mechanism shown in Fig.3.36, the crank AB rotates at 200 rpm clockwise. 
Find the velocities of C, D, E, F, and G, and the acceleration of slider at C. AB 120 mm, 
BC 4780 mm, CD 180 mm, DE 360 mm, EF 120 mm, and FG 360 mm.

Fig.3.37 Washer sliding on a rod

Fig.3.36 Steam engine mechanism

[Ans. 2.55 m/s, 2.5 m/s, 1.5 m/s, 1.65 m/s, 0.7 m/s; 0.85 m/s2] 

3.3 In the Fig.3.37, the washer is sliding outward on the rod with a velocity of 1.2 m/s when distance 
from point O is 0.6 m. Its velocity along the rod is increasing at the rate of 0.9 m/s2. The angular 
velocity of rod is 5 rad/s counter-clockwise and its angular acceleration is 10 rad/s2 clockwise. 
Determine the absolute acceleration of a point on the washer.

[Ans. 15.32 m/s2]

3.4 The driving crank O
1
A of the quick-return motion mechanism shown in Fig.3.38 resolves at a 

uniform speed of 200 rpm clockwise. Find the velocity and acceleration of tool post C when the 
crank makes an angle of 60˚ with the vertical line of centres O

1
O

2
. What is the acceleration of 

sliding of block A along the slotted lever O
2
B?
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Fig.3.38 Quick-return motion mechanism

Fig.3.39 Four-bar mechanism

[Ans. 1.6 m/s, 20.5 m/s2, 22 m/s2]

3.5 The crank AB of a four-bar mechanism shown in Fig.3.39 rotates with an angular speed of 100 
rad/s and an angular acceleration of 4400 rad/s2 when the crank makes an angle of 53° to the 
horizontal. Determine (a) the angular acceleration of BC, and (b) linear acceleration of point E. 
Take AB 75 mm, BC 80 mm, AD 125 mm, and BE 28 mm.

[Ans. 10,750 rad/s2, 1160 m/s2]

3.6 Fig.3.40 shows a mechanism in which the hydraulic actuator O
2
A is expanding at a constant rate 

of 10 cm/s. Determine the directions and magnitudes of the angular velocity and acceleration of 
link O

4
A.
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[Ans. 0.566 rad/s]

3.7 For the mechanism shown in Fig.3.41, find the acceleration of point B in link 3. Given: 
2

30 
rad/s, O

2
A 200 mm, AB  BC 175 mm, AC 600 mm.

Fig.3.40 Mechanism with hydraulic actuator

Fig.3.42 Four-bar mechanism with ternary link

Fig.3.41 Four-bar mechanism

[Ans. 196 m/s2]

3.8 Determine the angular acceleration of links 3 and 4 and the absolute acceleration of point C 
on link 3 in the mechanism shown in Fig.3.42. O

2
A 45 mm, AB 130 mm, O

2
O

4
90 mm,  

O
4
B 60 mm, AC 55 mm, BC 100 mm.

[Ans. 492.3 rad/s2, 2600 rad/s, 160 m/s2]
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MECHANISMS WITH 
LOWER PAIRS

4.1 INTRODUCTION
The lower pairs are those which have surface contact between them. We study, in this chapter, the 
various mechanisms for the generation of straight line motion, both exact and approximate. These 
mechanisms have a vital role to play in generating the configurations for machines.The steering gears 
and Hooke’s joint are other lower pairs that are discussed.

4.2 PANTOGRAPH
It is a mechanism to produce the path traced out by a point on enlarged or reduced scale. Fig.4.1(a) 
shows the line diagram of a pantograph in which AB  CD, BC AD and ABCD is always a parallelo-
gram. OQP is a straight line. P describes a path similar to that described by Q. It is used as a copying 
mechanism.

Ch
ap

te
r 

Ou
tli

ne
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Fig.4.1 Pantograph

Proof: To prove that the path decribed by P is similar to that described by Q, consider s OAQ and 
OBP which are similar, because BOP is common.

AQO BPO being corresponding angles as AQ BP.

Hence 
OA

OB

OQ

OP

AQ

BP
  (4.1)

In the displaced position shown in Fig.4.1(b), as all inks are rigid,

B
1
O BO, D

1
A

1
DA, A

1
O AO

and P
1
B

1
PB, B

1
A

1
BA, A

1
Q

1
AQ

Hence 
OA

OB

AQ

B P
1 1 1

1 11

As A
1
B

1
C

1
D

1
 is a parallelogram, A D B C1 1 1 1 , i.e., A Q B P1 1 1 1 .

OQ
1
P

1
 is again a straight line so that s QA

1
Q

1
 and OB

1
P

1
 are similar.

OA

OB

OQ

OP
1

1

1

1  
 (4.2)

From Eqs. (4.1) and (4.2), we get

OQ

OP

OQ

OP
1

1  
because OA OA

1
 and OB OB

1
.

Hence QQ
1
 is similar to PP

1
 or they are parallel. Thus path traced by P is similar to that of Q.

The pantograph is used in geometrical instruments, manufacture of irregular objects, to guide  
cutting tools, and as indicator rig for cross head.

4.3 STRAIGHT LINE MOTION MECHANISMS
Now we will look at lower pairs generating straight line motion. Straight line motion can be generated 
by either sliding pairs or turning pairs. Sliding pairs are bulky and gets worn out rapidly. Therefore, 
turning pairs are preferred over sliding pairs for generating straight line motion. Straight line motion 
can be generated either accurately or approximately.
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4.3.1 Accurate Straight Line Motion Mechanisms
The mechanisms for the generation of accurate straight line motion are as follows:

1. Peaucellier mechanism

2. Hart mechanism

3. Scott-Russel mechanism.

1. Peaucellier mechanism: A line diagram of the Peaucellier mechanism is shown in Fig.4.2.

OR OS and OO
1

O
1
Q.

Point P describes a straight line perpendicular to OO
1
 produced.

Fig.4.2 Peaucellier straight line mechanism

Proof: s ORQ and OSQ are congruent, because OR   OS, OR   QS and OQ is common.

ROQ   SOQ. Also OQR   OQS and s PRO   s PSQ.

OQR    RQP OQS SQP

But OQ is a straight line.

OQR RQP OQS SQP 180°

Hence OQP is a straight line.

Now            

           

2 2 2

2 2 2

2 2 2

OR OT RT

RP RT TP

OR RP OT TP– – 22

                  OT TP OT TP OP OQ–

But OR and RP are always constant.

Hence OP  .  OQ constant.

Draw PP OO1 1  produced and join QQ
1
. s OQQ

1
 and OPP

1
 are similar, because 

OQQ
1

OP
1
P 90° and QOQ

1
 is common.
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Hence 
OQ

OQ

OP

OP1

1

or OQ  .  OP OQ
1
  .  OP

1
constant

Now OQ
1

2OO
1

constant
Hence OP

1
constant

or point P moves in a straight line.

2. Hart mechanism: The Hart mechanism is shown in Fig.4.3. OO
1
 is a fixed link and O

1
Q is the rotat-

ing link. The point Q moves in a circle with centre O
1 
and radius O

1
Q. ABCD is a trapezium so that 

AB CD, BC AD and BD AC .

  

BO

BA

BQ

BC

DP

DA

P describes a straight line perpendicular to OO
1
 produced as Q moves in a circle with centre O

1
.

Proof: In ABD, BO

BA

PD

DA
. Hence OP BD.

Fig.4.3 Hart straight line mechanism

s ABD and AOP are similar, because AOP ABD being corresponding angles and DAB is 
common.

 

AB

AO

BD

OP

or  OP
BD AO

AB
  (4.3)

Similarly as  
BO

AB

BQ

BC
. 
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Hence OQ AC .

Now AC BD , OQ BD, OP BD. Hence OP OQ.

Since O is a common point, therefore OQP is a straight line.

Now s BOQ and BAC are similar.

 

AC

OQ

AB

OB

or  OQ
OB AC

AB
 (4.4)

From Eqs. (4.3) and (4.4), we get

 

OP OQ
BD AO

AB

OB AC

AB

AO OB

AB

.

            
2

BD AC
 
 (4.5)

Draw DE AC.

 

BD AC EC

AC AE EC

BD AC AC EC AE EC

AE EC EC AE EC

–

–

–

2

2

2

AAE EC AE EC

AE EC

–

–2 2
 (4.6)

From AED, AE2 AD2 – DE2

From GED,  EC2 CD2 – DE2

 AE EC AD CD2 2 2 2– –  (4.7)

From Eqs. (4.6) and (4.7), we get

BD AC AD CD2 2–  (4.8)

OP OQ
AO BO

AB
AD CD

2
2 2

 constant, as AO, BO . AB, AD, and CD are fixed.

Hence P describes a straight line perpendicular to OO
1
 produced as point Q moves in a circle with 

centre O
1
.
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3. Scott-Russel mechanism: The Scott-Russel mechanism is shown in Fig.4.4. It consists of a sliding 
pair and turning pairs. It can be used to generate approximate and accurate straight lines.

Fig.4.4 Scott-Russel straight line mechanism (CP CQ)

(a)  When OC CP CQ, Q describes a straight line QO OP  provided P moves in a straight line 
along OP.

(b) If CP CQ then Q describes an approximate straight line perpendicular to OP provided P moves 

along a straight line OP such that OC
CP

CQ

2

.

Proof: 

(a)  As OC CP CQ, hence POQ 90° and OQ  OP. If P moves along OP then Q moves along 
a line perpendicular to OP.

Hence OP OC cos CP cos PQ cos 
 CPI 90° – 
Now ICP COP CPO 2

Fig.4.5 Scott-Russel mechanism when CP  CQ

Then CIP 180° – CPI – ICP
  180° – 90°  – 2
  90° – 
 CIP CPI
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or  CI CP
 CP CQ CO CI and POQ 90°

 Hence OPIQ is a square. As the path of Q is  OI, I is the instantaneous centre. Q will move along 
a line perpendicular to OP.

(b) When CP  CQ, it will form an elliptical trammel, as shown in Fig.4.5.

 

x

CQ

y

CP

2

2

2

2
1

 Because x CQ cos  and y PC sin 

 

OC

CP

CQ

Semi-minor axis

Semi-major axis

2

2

As point C moves in a circle, for Q to move along an approximate straight line, OC
CP

CQ

2

.

Limitations: When OC  OP, P coincides with O and OQ 2OC. Here a small displacement of P 
shall cause a large displacement of Q, requiring a relatively small displacement of P to give displace-
ment to Q. This requires highly accurate sliding surfaces.

4.3.2 Approximate Straight Line Motion Mechanisms
The mechanisms for the generation of approximate straight line motion are:

1. Grasshopper mechanism
2. Watt mechanism
3. Tchebicheff mechanism

1. Grasshopper mechanism: The Grasshopper mechanism is shown in Fig.4.6. The crank OC rotates 
about a fixed point O . O

1
 is a fixed pivot for link O

1
P. For small angular displacements of O

1
P, 

point Q on link PCQ will trace approximately a straight line path perpendicular to OP if 

OC
CP

CQ

2

2. Watt mechanism: The Watt mechanism is shown in Fig.4.7(a).

 Links OA and O
1
B oscillates about O and O

1
 respectively. AB is a connecting link. P will trace an 

approximate straight line if PA

PB

O B

OA
1 . In Fig.4.7(b),  and  are the amplitudes of oscillation and I 

is the instantaneous centre of A B . P  is the point which lies on the approximate straight line described 
by P.
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Proof:

Fig.4.7 Watt mechanism

 
AA

OA
, and 

BB

O B1

 




AA

OA

O B

BB
. 1

 
(4.9)

If B'P'I 90°, then sin  
B P

B I

or  
B P

B I
 and 

A P

A I

Fig.4.6 Grasshopper mechanism
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A P

A I

B I

B P
.  (4.10)

From Eqs. (4.9) and (4.10), we get 

 
AA

OA

O B

BB

A P

A I

B I

B P
. .1

Now  
AA

BB

B I

A I

s OAA  and IP A are approximately similar, as well as s O
1
BB  and B P I are approximately 

similar.

 

O B

OA

A P

B P

AP

BP
1

Therefore, P divides the coupler AB in the ratio of the lengths of oscillating links. Hence P will 
describe an approximate straight line for a certain position of its path.

3. Tchebicheff mechanism: The Tchebicheff mechanism is shown in Fig.4.8. In this mechanism, 
OA O

1
B and AP PB. P is the tracing point. Let AB 1, OA O

1
B x, and OO

1
y.

Fig.4.8 Tchebicheff mechanism

Now  OB B O OO2
2

2 1
2

1
2

or  

– –x x y

x
y

1
2 2 2

2 1

2
 (4.11)
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Draw AL  OO
1
, then OL OO

1
 – O

1
L

Also  O
1
L AP

1

and
  

AP
P P BA y

1
2 1

2

1

2

Again OL OO
1
 – O

1
L

 y
y y1

2

1

2

Further OA2 AL2 OL2

 
x x

y2

2 2
1

2

1

2

or x
y y2

4

1

2 2
 (4.12)

 From Eqs. (4.11) and (4.12), we get

 

y y y2 21

2 4

1

2 2

 or  y 2
 Substituting in Eq. (4.11), we find that, x 3.5

 i.e.,  AB : OO
1
, : OA :: 1 : 2 : 3.5

Fig.4.9 Robert’s mechanism
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 P moves horizontally because instantaneous centre of AB will lie on point C which is the intersec-
tion of OA and BO

1
. Thus C lies just below P.

4. Robert’s mechanism: This mechanism is shown in Fig.4.9. The lengths of links are such that 
AB CD, BE EC and EF is perpendicular to BC. Here, F is the tracing point. When the mecha-
nism is displaced (shown by dotted lines), the point F will approximately trace a straight line  
parallel to BC. Produce AB  and DC  to meet at I, the instantaneous centre of link BC. From I drop 
a vertical line to intersect E F  at F . The velocity v

f
 of point F  is perpendicular to the line joining 

I and F  and is thus a horizontal line.

4.4 INTERMITTENT MOTION MECHANISMS
These mechanisms are used to convert continuous motion into intermittent motion. The mechanisms 
used for this purpose are the Geneva wheel and the ratchet mechanism.

1. Geneva wheel: The Geneva wheel as shown in Fig.4.10, consists of a plate 1, which rotates continuously 
and contains a driving pin P that engages in a slot in the driven member 3. Member 2 is turned 1

4 th of a 
revolution for each revolution of plate 1. The slot in member 2 must be tangential to the path of pin upon 
engagement in order to reduce shock. The angle  is half the angle turned through by member 2 during 
the indexing period. The locking plate serves to lock member 2 when it is not being indexed. Cut the lock-
ing plate back to provide clearance for member 2 as it swings through the indexing angle. The clearance 
arc in the locking plate will be equal to twice the angle .

2. Ratchet mechanism: This mechanism is used to produce intermittent circular motion from an 
oscillating or reciprocating member. Fig.4.11 shows the details of a ratchet mechanism. Wheel 
4 is given intermittent circular motion by means of arm 2 and driving pawl 3. A second pawl 5 
prevents 4 from turning backward when 2 is rotated clockwise in preparation for another stroke. 
The line of action PN of the driving pawl and tooth must pass between centers O and A in order to 
have the pawl 3 remain in contact with the tooth. This mechanism is used particularly in counting 
devices.

4.5 PARALLEL LINKAGES
These are the four-bar linkages in which the opposite links are equal in length and always form a paral-
lelogram. There are three types of parallel linkages: parallel rules, universal drafting machine and lazy 
tongs. They are used for producing parallel motion.

1. Parallel rules: A parallel rule is shown in Fig.4.12, in which AB CD EF GH IJ and AC BD, 
CE DF, EG FH, GI HJ. Here AB, C, EF, GH and IJ will always be parallel to each other.

2. Universal drafting machine: A universal drafting machine is shown in Fig.4.13, in which AB CD; 
AC BD; EF GH; and EG FH. Position of points A and B are fixed. Similarly the positions of 
points E and F are fixed with respect to C and D. The positions of scales I and II are fixed with 
respect to points G and H. Then ABDC is a parallelogram. Line CD will always be parallel to AB so 
that the direction of CD is fixed. Therefore, the direction of EF is fixed. Further EFHG is a paral-
lelogram, so GH is always parallel to EF such that the direction of GH is also fixed, whatever their 
actual position may be.
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Fig.4.10 Geneva wheel

Fig.4.11 Ratchet mechanism
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3. Lazy tongs: Lazy tongs, as shown in Fig.4.14, consists of pin joint A attached to a fixed point. Point 
B moves on a roller. All other joints are pin jointed. The vertical movement of the roller affects the 
movement of the end C to move in a horizontal direction. It is used to support a telephone or a bulb 
at point C for horizontal movements.

4.6 ENGINE PRESSURE INDICATORS
A pressure indicator is an instrument used to obtain a graphical record of the pressure–volume dia-
gram of a reciprocating engine. It consists of a cylinder with a piston, a straight line motion mecha-
nism with a pencil and a drum with paper wrapped around it. The indicator cylinder is connected to 
the engine cylinder, which causes the movement of the indicator piston with change of pressure in the 
engine cylinder. The piston motion is constrained by a spring so that the piston displacement is a direct 
measure of the working fluid pressure acting upon it. The displacement and hence volume is then 
recorded by the pencil with the help of straight line mechanism on the drum paper. The requirements 
of the straight line mechanism are as follows:

Fig.4.12 Parallel rule

Fig.4.13 Universal drafting machine
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1. The pencil point should move in a straight line parallel to the axis of the indicator piston.

2. The velocity ratio of the indicator piston and pencil should be constant.

3. The indicator piston motion should be magnified so as to get a good size indicator diagram.

4. The friction should be the least.

4.6.1 Types of Indicators
The various types of indicators are simplex, Crosby, Richards, Thomson and Dobbie–McInnes.

1. Simplex indicator: The simplex indicator (Fig.4.15) employs pantograph mechanism. Point Q on 
link AD coincides with D and P is a point on BC produced such that OQP is a straight line. ABCD 
form a parallelogram with all joints pin jointed. Point Q lies on the piston of the indicator. The 
pencil to record the indicator diagram is fixed at point P which describes a path similar to that  
of Q.

2. Crosby indicator: The Crosby indicator (Fig.4.16) employs the modified form of pantograph to 
generate motion of pencil point P similar to that of point Q lying on the indicator piston. The fol-
lowing conditions are to satisfied by this mechanism:

Fig.4.15 Simplex indicator

1. Velocity ratio between P and Q is constant, i.e. v

v
p

q

constant.

2. Point P travels along a straight line.

Fig.4.14 Lazy tongs
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Proof:
Draw instantaneous centres I

1
 and I

2
 of links QB and AP, respectively. I

1
 is obtained by drawing a 

horizontal line from Q which meets the line DC produced in I
1
. For I

2
, draw a horizontal line from P 

meeting OA in I
3
. The line I

2
 P cuts the link QB in I

1
. The point I

2
 will lie in I

1
 B.

Now v

v
b

p

I B

I Q
1

1

but  
I B

I Q

I B

I L
1

1

2

2

 
v

v
b

q

I B

I L
2

2

 (4.13)

Also  
v

v
p

b

I P

I B
2

2

 (4.14)

Multiplying (4.13) and (4.14), we get

 

v

v
p

q

I P

I L
2

2

As OA is parallel to QB or I
2
 A is parallel to BL, s PI

2
A and PLB are similar.

 

I P

I L

AP

AB
2

2

Fig.4.16 Crosby indicator
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v

v
p

q

AP

AB
constant

Since lengths AP and AB are fixed.

3. Richard indicator: The Richard indicator (Fig.4.17) employs Watt mechanism OABO
1
 to guide 

the pencil point at P. The motion to link AC is given by the piston rod of the indicator piston at C 
through link QC. If a line QD is drawn parallel to OCA, then OCADQ forms a pantograph, having 
point P on link AD produced.

Fig.4.17 Richard indicator

4. Thomson indicator: The Thomson indicator (Fig.4.18) employs Grasshopper mechanism OABO
1
, 

the tracing point P lying on link AB produced. Link AB gets the motion from the piston rod of the 
indicator at C which is connected by link QC at Q to the end of indicator piston rod. Link QC is 
parallel to link OA.

Fig.4.18 Thomson indicator
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The velocity ratio 
v
v

p

q

constant. To prove this, draw the instantaneous centres I
1
 and I

2
 of the links 

AB and QC respectively. I
1
P cuts CQ in L.

Proof:
v

v
c

q

I C

I Q
2

2

Now triangles I
1
 CL and I

2
CQ are similar. Therefore

 

I C

I Q

I C

I L
2

2

1

1

Also  
v

v
p

c

I P

I C
1

1

 

v

v
p

q

I P

I L
1

1

s PAI
1
 and PCL are similar. Hence

 

I P

I L

AP

AC
1

1

 
v

v
p

q

AP

AC
constant

Since the lengths AP and AC are fixed.

5. Dobbie–McInnes indicator: In the Dobbie–McInnes indicator (Fig.4.19), the motion is given to 
link O

1
B by the link QC connected to the indicator piston and I

1
 and I

2
 are the instantaneous centres 

of AB and QC, respectively. The line I
1
P cuts QC in L. Draw BM  I

1
P from point B. OQP is a 

straight line. The ratio 
v

v
p

q

constant.

Proof:

 

v

v
c

q

I C

I Q
2

2

Triangles I
1
 BM, I

1
CL and I

1
CQ are similar.

 

I C

I Q

I C

I L

I B

I M
2

2

1

1

1

1

 

v

v
c

q

I B

I M
1

1

Now  
v

v
b

c

O B

O C
1

1
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Also  
v

v
p

b

I P

I B
1

1

 

v

v
p

q

I P

I M

O B

O C
1

1

1

1

.

In similar traingles PBM and PAI
1
.

 

I P

I M

AP

AB
1

1

 
v

v
p

q

PA

AB

O B

O C
1

1

constant

Since the lengths of all four links PA, AB, O
1
B and O

1
C are fixed

Example 4.1

A circle with AB as diameter has a point C on its circumference. D is a point on AC produced such 
that if C turns about A, the product AC × AD is constant. Prove that the point D moves in a straight line 
perpendicular to AB produced.

Solution 

Let D
1
D be perpendicular to AB produced, as shown in Fig.4.20.

Now ACB 90°, being angle in a semicircle. Also AD
1
D 90°. Therefore, s ACB and AD

1
D 

are similar, as CAB is common.

Fig.4.19 Dobbie-McInnes indicator
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AC

AB

AD

AD

1

or AB × AD
1

AC × AD

or AD
AC AD

AB1
constant

Fig.4.20 For Example 4.1

Because AB is fixed and AC × AD constant.
Thus AD

1
 will be constant for all positions of C. Therefore, the location of D

1
, is fixed, which 

means that D moves in a straight line perpendicular to AB produced.

Example 4.2

In a Grasshopper mechanism shown in Fig.4.21, OC 100 mm, PC 150 mm, and PQ 375 mm. 
Determine the magnitude of the vertical force at Q necessary to resist a torque of 200 N m applied to 
the link OC when it makes an angle of 30° with the horizontal.

Solution 
 QC PQ – PC 375 – 150 225 mm

 

OC

PC

PC

QC

or  
100

150

150

225

Thus the condition for the dimensions of a Grasshopper mechanism is satisfied, and point Q will 
trace an approximate straight line perpendicular to OP.

Now F
q
.v

q
T

c
.v

c

or  F
T

OCq
c c

q

v

v

The instantaneous centre of PQ is at I. Let QIC . Also s QIC and OCP are similar.
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v

v
c

q

IC

IQ

OC

OP

Thus
            

F
T

OPq
c

When             30°,
          OP 100 cos 30° ( ) (

.
150 1002 0 5

 sin 30 )2

    228 mm

           
Fq

200

0 228
877 2

.
. N

4.7 AUTOMOBILE STEERING GEAR MECHANISMS
The mechanisms that are used for changing the direction of motion of an automobile are called steer-
ing gears. Steering is done by changing the direction of motion of front wheels only as the rear wheels 
have a common axis which is fixed and moves in a straight line only.

4.7.1 Fundamental Equation for Correct Steering
When a vehicle takes a turn all the wheels should roll on the road smoothly preventing excessive tyre 
wear. This is achieved by mounting the two front wheels on two short axles, called stub axles. The stub 
axles are pin-jointed with the main front axle which is rigidly attached to the rear axle, on which the 
back wheels are attached. Steering is done by front wheels only.

Fig.4.21 Grasshopper mechanism
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Figure 4.22 shows an automobile taking a right turn. When the vehicle takes a turn, the front 
wheels along with stub axles turn about their respective pin-joints. The inner front wheel turns through 
a greater angle as compared to that of outer front wheel. In order to avoid skidding, for correct steering, 
the two front wheels must turn about the same instantaneous centre I, which lies on the axis of the rear 
wheels. Thus, the condition for correct steering is that all the four wheels must turn about the same 
instantaneous centre.

Let   AE l  wheel base
 CD a wheel track

Fig.4.22 Automobile steering gear

AB b distance between the pivots of front axles
I common instantaneous centre of all wheels

 ,  angles turned through by stub-axles of the inner and outer front wheels  
respectively

Now     b AP – BP
 l (cot  – cot )

or cot  – cot 
b

l
 (4.12)

Eq. (4.12) is called the fundamental equation for correct steering.

4.7.2 Steering Gears
A steering gear is a mechanism for automatically adjusting values of  for correct steering.
The following steering gears are commonly used in automoiles:

1. Davis steering gear

2. Ackermann steering gear
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1. Davis steering gear
Davis steering gear is shown in Fig.4.23. This type of gear has only sliding pairs. Two arms AG and BH 
are fixed to the stub axles AC and BD respectively. CAG and DBH form two similar bell-crank levers 
pivoted at A and B respectively. KL is a cross-link which is constrained to slide parallel to AB. The ends 
of the cross-link KL are pin-jointed to two sliders S

1
 and S

2
 as shown. These sliders are free to slide on 

links AG and BH respectively. The whole mechanism is in front of the front wheels.

Fig.4.23 Davis steering gear for straight drive

During the straight motion of the vehicle, the gear is in the mid-position, with equal inclination of 
the arms AG and BH with the verticals at A and B. The steering is achieved by moving cross-link KL 
to the right or left of the mid-position. The steering gear for taking a right turn is shown in Fig.4.24. 
K'L' shows the position of the cross-link KL while taking a right turn.
Determination of angle :
Let x distance moved by KL from mid-position

  KK' – LL'

 y horizontal distance of points K and L from A and B respectively

 h vertical distance between AB and KL
 angle of inclination of track arms AG and BH with the vertical in mid-

position
 , angles turned by stub axles
From Fig.4.24, we have

 y AK sin BL sin 

 tan (  – )
y x

h

or
 tan tan

tan1  tan 

 y x

h

Now  tan 
y

h
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y

h
y

h

y x

h

tan

tan



1

or 
tan

xh

y xy h2 2  (4.16)

Similarly tan ( )
y x

h

So that  tan
xh

y xy h2 2
 (4.17)

From Eqs. (4.16) and (4.17), we get

 
cot cot –

2y

h

b

l

or  tan
y

h

b

l2

Generally, 
b

l
 4 to 50 0. . , so that 11.3° to 14.1°. There will be friction and more wear due to 

sliding pairs in the Davis steering gear. Therefore, it becomes inaccurate after some use. On account 
of these reasons, it is not used in practice.

Fig.4.24 Davis steering gear taking a right turn
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2. Ackermann steering gear
The Ackermann steering gear has only turning pairs. Fig.4.25 shows the gear for straight drive. The 
turning pairs are: AK, KL, LB and AB. The two short arms AK and BL are of equal length and are 
connected by pin-joints with front wheel axle AB at A and B respectively. AC and BD are the stub-axles 
so that CAK and DBL form bell-crank levers. ABLK form a four - bar linkage. KL is the track rod.

For correct steering, we have 

 
cot cot  –

b

l

Generally, 
b

l
0 0 0. . .4 to 5 455.

Fig.4.25 Ackermann steering gear for straight drive

Determination of angle 

1. Analytical method: Consider the Ackermann steering gear, as shown in Fig.4.26(a), taking a right 
turn. The instantaneous centre I lies on a line parallel to the rear axis at a distance of approximately 
0.3l above the rear axis. It may be seen that the whole mechanism of the Ackermann steering gear is 
on the back of the front whells. From Fig.4.26(b), we have

Projection of arc K’K on AB Projection of arc L’L on AB

or K
1
K

1
' L

1
L

1
'

 AK [sin  – sin (  – ) BL [sin ( ) – sin ]

Now AK BL

 sin  – sin (  – ) sin ( ) – sin 

or sin  – sin  cos cos  sin sin  cos cos  sin  – sin 

 sin  (2 – cos  – cos ) cos  (sin  – sin )

 tan
sin sin

cos cos

 
 2

 (4.18)

The values of  and  are known for correct steering. Hence, the value of  can be determined 
from, Eq. (4.18). 
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2. Graphical method to determine angle : Draw a horizontal line OX (Fig.4.27). Make XOQ  
and XOP . With any radius, draw arc PRQ. Join PR and produce it so that PR RM. Join MQ and 
produce. Draw ON  NQM. Then 90° – XON.

Fig.4.26 Ackermann steering gear in displaced position

Fig.4.27 Graphical method to determine angle 
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Proof
In Fig.4.28, let BL x so that b c 2x sin .

For correct steering,

 b l(cot  – cot )

  c cos x sin ( ) x sin (  – )

Fig.4.28 Graphical method to determine angle 

If  is small, c cos c.

 c 2x sin c x sin ( ) x sin (  – )

or 2 sin sin ( ) sin ( )

In Fig.4.29, let r OP OR OQ. In right angled triangle OQN,

 NOQ 90° –  – 90 – (  – )

 ON r cos[90° – ( )] r sin( )

Draw RL  ON then RL  SN.

i.e. SRQ

Also ORL

 OL r sin 

Fig.4.29 Graphical method to determine angle 
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Now NL RS. In OPR,

 

PR r

sin sin( . ) 90 0 5

or PR
r sin

cos( . )


0 5

 2r sin(0.5 )

From triangle RSM in Fig.4.30, we have

Fig.4.30 Graphical method to determine angle 

 MRS  – 0.5

 SMR 90° – (  – 0.5 )

Also 
RS

RM
cos(  – 0.5 )

Now RM PR.  
RS

PR
cos(  – 0.5 )

or RS 2r sin(0.5 ) cos(  – 0.5 )

  r sin  – r sin (  – )

 ON OL LN OL RS

 r sin ( ) r sin r sin  – r sin (  – )

or 2 sin sin ( ) sin (  – ) (4.19a)

or tan  
sin sin

cos cos2
 (4.19b)

Hence proved.
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Example 4.3

In a Davis steering gear, the distance between the pivots of the front axle is 1.2 m and the wheel base 
is 2.8 m. When the automobile is moving along a straight path, find the inclination of the track arms 
to the longitudinal axis of the automobile?

Solution 

Given: b 1.2 m, l 2.8 m

Now tan 
b

l2

   
1 2

5 6

.

.
0.2143

 12.095°

Example 4.4

A car with a track of 1.5 m and a wheel base of 2.9 m has a steering gear mechanism of the Ackermann 
type. The distance between the front stub axle pivots is 1.3 m. The length of each track arm is 150 
mm and the length of track rod is 1.2 m. Find the angle turned through by the outer wheel if the angle 
turned through by the inner wheel is 30°.

Solution 
Given: a 1.5 m, l 2.9 m, b 1.3 m, c 1.2 m, AK 0.15 m.

For correct steering, we have
 

cot cot–
b

l 
1 3

2 9
0

.

.
.44827

 

 cot  – cot 0.44827
 cot  – 1.73205 0.44827
 cot 2.18032
 24.64

4.8 HOOKE’S JOINT OR UNIVERSAL COUPLING
It is a device to connect two shafts whose axes are neither coaxial nor parallel but intersect at a point. 
This is used to transmit power from the engine to the rear axle of an automobile and similar other 
applications. It is also called universal coupling.

The Hooke’s joint, as shown in Fig.4.31, consists of two forks connected by a centre piece, hav-
ing the shape of a cross or square carrying four trunnions. The ends of the two shafts to be connected 

together are fitted to the forks.
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4.8.1 Velocities of Shafts
Let the driving shaft A and the driven shaft B be connected by a joint having two forks KL and MN. 
The two forks are connected by a cross KLMN intersecting at O, as shown in Fig.4.32. Let the angle 
between the axes of the shafts be . Let fork KL move through an angle  in a circle to the position 
K

1
L

1
 in the front view. The fork MN will also move through the same angle . MN being not in the 

same plane shall move in an ellipse in the front view to its new position M
1
N

1
. To find the true angle, 

project M
1
 to the top view, which cuts the horizontal axis in R and fork MN in R

1
. Rotate R

1
 to R

2
 on 

the horizontal axis with centre O. Project R
2
 back in the front view cutting the circle in M

2
. Join OM

2
 

Measure angle MOM
2
, which is the true angle . Thus when the driving shaft A revolves through an 

angle , the driven shaft B will revolve through an angle .

Now  tan 
OR

R M
2

2 2

and tan
OR

R M1

 

tan

tan




OR

R M

R M

OR
2

2 2

1

But R M M1 2 2R

 

tan

tan




OR

OR

OR

OR
2 1

Now OR OR   cos 1 

Fig.4.31 Hooke’s joint
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tan

tan cos




1

or tan cos  tan  (4.20)

Angular velocity of driven shaft, 


A

d

dt 

Angular velocity of driven shaft, 


B

d

dt 

Differentiating Eq. (4.20), we get

Fig.4.32 Hooke’s coupling forks in displaced position
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Fig.4.33 Speed polar diagram

sec2 . 
d

dt


cos  sec2 . d

dt



d

dt
d

dt




cos

sin cos


 1 2 2

or             



B

A

cos

sin cos


 1 2 2

 (4.21)

Case 1:           



B

A

1

cos 1 – sin2  cos2 

or          cos
 


1

1 cos 
  (4.22)

This condition occurs once in each quadrant, as shown in Fig.4.33 by points 1, 2, 3 and 4.

Case 2: 



B

A

 is minimum when the denominator is maximum, i.e., sin2  cos2  must be minimum, or 

cos  0°. Thus 
B

A
 is minimum at 90°, 270°, i.e. at points 6 and 8. Then

 

B

A
cos

 

(4.23)
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Case 3: 
B

A
 is maximum when denominator is minimum, i.e., when cos2 1, or cos ±1,

0° or 180°, i.e. at points 5 and 7. Then




B

A

1

cos  

(4.24)

Case 4: Maximum fluctuation of velocity of driven shaft

( ) ( )

( )
max min 


B B

B mean

Now  (
B
)

mean A

Maximum speed fluctuation






A
A

A

cos
cos




1 2cos

cos




 tan  sin  (4.25)

For  to be small, tan    and sin   
Maximum speed fluctuation  2 (4.26)

4.8.2 Angular Acceleration of Driven Shaft




B

A

cos

sin cos


 1 2 2

d

d d
B

At

d

t
cos

sin cos sin

( sin cos )

2

1

2

2 2 2

Angular acceleration of driven shaft,




B
A
2 2

2 2 2

2

1

cos sin sin

( sin cos )

  
   

(4.27)

For acceleration to be maximum or minimum 
d

d




B 0

d

d


 

     B
A

 2 2
2 2 2 22 2 1 2 1

cos sin
sin ( sin cos ) sin sin ( sin coos ) . cos

( sin cos )

2 2

2 2 4

2 2

1
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 cos2 2
2

1
2sin 

cos 2  – 2

 0

or               cos 2   
2

2

2

2

sin

sin




 (4.28)

4.9 DOUBLE HOOKE’S JOINT
The double Hooke’s joint, as shown in Fig.4.34, is used to maintain the speed of driven shaft equal to 
the driving shaft at every instant. To achieve this, the driving and the driven shafts should make equal 
angles with the intermediate shaft and the forks of the intermediate shaft should lie in the same plane. 
Let  be the angle turned by the intermediate shaft while the angle turned by the driving shaft and the 
driven shaft be  and  respectively.

Then tan cos  tan 
and tan cos  tan 
Therefore, 

Fig.4.34 Double Hooke’s joint

However, if the forks of the intermediate shafts lie in perpendicular planes to each other, then the 
variation of speed of the driven shaft will be there.




c

A min

cos




B

C min

cos
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B

A min

cos2 
 

(4.29)

Similarly,      

 

B

A max
cos

1
2

 (4.30)

Example 4.5

The angle between the axes of two shafts connected by Hooke’s joint is 25°. Determine the angle 
turned through by the driving shaft when the velocity ratio is unity.

Solution 
For velocity ratio to be unity,

cos
cos

.




1

1

0 5

1

1 25

0 72427

0 5

cos

.

.

43.59°    or    136.41°

Example 4.6

Two shafts are connected by a Hooke’s joint. The driving shaft revolves uniformly at 600 rpm. The 
total variation in the speed of the driven shaft is not to exceed 6% of the mean speed. Find the great-
est permissible angle between the centre lines of the shafts.

Solution 
Total fluctuation in speed of the driven shaft

 12 0

1 2

.

cos

cos








m

m

or cos2 0.12 cos  – 1 0

cos
. ( . )

.

.
0 12 0 12 4

2

0

2 0 5

9418

=19.64

Example 4.7

Two shafts are connected by the Hooke’s joint. The driving shaft rotates at a uniform speed of 1000 
rpm. The angle between the shafts is 20°. Calculate the maximum and minimum speeds of the driven 
shaft, when the acceleration of the driven shaft is maximum?
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Solution 

Maximum speed, N
N

max cos  
1000

20
0

cos
. 1 64 2 rpm

Minimum speed, N
min

N cos 

 1000 cos 20°
 939.7 rpm

For acceleration to be maximum,

cos
sin

sin

sin

sin

.

.

2
2

2

2 20

2 20

2 0 11698

2 2 0 11698

2

2

2

2





0.

. , . , . , .

13248

41 19  138 61  221 19  and 318 81

Example 4.8

The driving shaft of a Hooke’s joint runs at a speed of 400 rpm. The angle between the shafts is 25°. 
The driven shaft with attached masses has a mass of 50 kg at a radius of gyration of 200 mm. If a 
steady torque of 900 N.m resists rotation of the driven shaft, find the torque required at the driving 
shaft, when angle turned through by the driving shaft is 45°.

Solution 

Given:   N
A

400 rpm, 25°, m 50 kg, K 0.2 m, T 900 N m, 45°
Moment of inertia of the driven shaft, I mK2

 50 × (0.2)2

 2 kg m2

Angular acceleration of the driven shaft

B A
2

2

2 2 2

2

1

cos sin sin

( cos sin )

2 400

60

25 90 25

1 45 25

2 2

2 2 2

 cos sin sin

( cos sin )

1754 6
0 16187

0 910697
.

.

.

 –311.868 rad/s2

Torque required to accelerate the driven shaft I
B
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 –2 × 311.868
 –623.73 N.m

Total torque required on the driven shaft, T
B

900 – 623.73
 276.26 N.m

Torque required on the driving shaft, T
T

A
B B

A




TB

cos

cos sin


 1 2 2

276 26
25

1 45 252 2
.

cos

cos sin

 274.93 N.m

Example 4.9

In a double Hooke’s coupling, the driving and the driven shafts are parallel and the angle between each 
and the intermediate shaft is 30°. Find the maximum and minimum velocities of the driven shaft if the 
axis of the driving pin carried by the intermediate shaft has inadvertently been placed 90° in advance 
of the correct position. The driving shaft rotates uniformly at 350 rpm.

Solution 

( )
cosmaxN

N
B

A
2 

350

302cos

 466.67 rpm

(N
B
)

min
N

A
 cos2  

 350 cos2 305°

 262.5 rpm

Example 4.10

A torque of 100 N.m is applied to the link OC of a Grasshopper mechanism shown in Fig.4.35. Link 
OC makes an angle of 20° with the horizontal. Find the magnitude of the vertical force exerted at Q 
to overcome this torque. OC 80 mm, PC 120 mm, and PQ 300 mm. Also calculate the force 
required if the link makes an angle of 0°.

Solution 

QC QP – CP 300 – 120 180 mm

OC

PC

PC

QC
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80

120

120

180

2

3

Let            F
q

vertical force exerted at Q

Fig.4.35 Grasshopper mechanism

Then      F
q
  v

q
T

c
  v

c

F
T

OCq
c c

q

v

v

v

v
c

q

IC

IQ

OC

OP OP

80

F
T

OP

T

OPq
c c80

80

OP OC cos 20° 80 cos 20° 75.17 mm

F Nq

100

75 17 10
1330

3.

When 0°, then
OP OC 80 mm

Fq

100

80 10
1250

3
N

Example 4.11

The distance between the fixed centres of a Watt’s straight line mechanism shown in Fig.4.36 is 
320 mm. The lengths of links are: OA 300 mm, AB 400 mm, and BO

1
250 mm. Locate the 

position of a point P on AB which will trace approximately straight line.

Solution 

For the Watt’s mechanism, we have

AP

BP

O B

OA
1 250

300

5

6
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Fig.4.36 Watt’s mechanism

AP
5 400

11

 181.8 mm
BP 213.2 mm

Example 4.12

In a Robert mechanism shown in Fig.4.37(a), AB BC CD
AD

2
. Locate the point P on the central 

vertical arm that approximately describes a straight line.

Solution 
Draw the mechanism with BC 30 mm (assumed) in its displaced position AB'C'D, as shown in 
Fig.4.37(b). Produce AB' and DC' to meet at I the instantaneous centre. Draw a vertical line from I to 
intersect the perpendicular on B'C' at E' at P'. Measure E'P'. Then

E'P' 3.6 cm 1.2 BC

Fig.4.37 Robert mechanism

Example 4.13

In the Watt’s mechanism shown in Fig.4.38(a), plot the path of point P and mark and measure the 
straight line segment of the path of P.

Solution 

1. Draw the Watt’s mechanism OABO
1
.

2.  Draw straight lines at 10° interval at points O and O
1
 on both sides of lines OA and O

1
B, as shown 

in Fig.4.38(b).
3. Cut off AB on arc with centre O

1
 from the points on arc with centre O.
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4. Join the mid-points P of lines AB to get the desired straight line.
5. It is observed that beyond 20°, the line becomes curved.

Fig.4.38 Diagram for Example 4.13

Example 4.14

A car using Ackermann steering gear has a wheel base of 2.8 m and a track of 1.5 m. The track rod is 
1.2 m and each track arm is 150 mm long. The distance between the pivots of front stub axles is 1.3 
m. If the car is turning to the right find the radius of curvature of the path followed by the inner front 
wheel for correct steering.

Solution 

Given:    l 2.8 m, a 1.5 m, b 1.3 m, KL 1.2 m, AK BL 0.15 m

AC BD 0.5 (a  b) 0.5 (150  130) 10 cm
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For correct steering, we have

cot cot

.

.
.

 
b

l
1 3

2 8
0 4643

Fig.4.39 Ackermann steering gear mechanism at various displaced positions

Draw the steering mechanism for various input angles  as shown in Fig.4.39(a), and measure the 
output angles . Complete the following table:

, deg 10 20 30 40

cot 5.6728 2.74747 1.73205 1.19175

, deg 9.5 18.0 25.0 30.0

cot 5.97576 3.07768 2.14450 1.73205

cot  – cot 0.304 0.330 –0.412 0.540
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sin
. .

.
.

AB KL

BL2

1 3 1 2

2 0 15
0 3333

 19.47°

Plot (cot  – cot ) v's  as shown in Fig.4.39(b). Determine value of  corresponding to cot  – 
cot 0.4643. We find that 

C
34.5° and 27.5°. Locate the centre of curvature by drawing these 

angles. We find that,
BI 548 cm, BD' 10 cm

Radius of curvature of path, ID' 538 cm.

Example 4.15

A universal joint is used to connect two shafts which are inclined at 20° and the speed of the driving shaft 
is 1000 rpm. Find the extreme angular velocities of the driven shaft and its maximum acceleration.

Solution 

Angular speed of driving shaft, 
1

2 1000

60
01 4 72 rad/s.

Maximum speed of driven shaft, ( 2
1 104 72

20
111 44)

cos

.

cos
.max  rad/s

Minimum speed of driven shaft, (
2
)

min 1
 cos 104.72 cos 20° 98.40 rad/s

For acceleration of driven shaft to be maximum,

cos
sin

sin

sin

sin
.2

2

2

2 20

2 20
0 12424

2

2

2

2

2 82.86° or 277.14°

 41.43° or 138.57°

Maximum angular acceleration of driven shaft,  

2
1
2 2 2

2 2 21max

cos sin sin

( cos sin )

( . ) cos sin sin .

( cos . sin )

104 72 20 20 82 86

1 41 43 20

2 2

2 2 2

11196 1

0 87281
1370 4 2.

.
.  rad/s

Example 4.16

The distance between the pivots of the front stub axles of a car is 1.35 m. The length of track rod is 
1.25 m. The wheel track is 1.5 m and the wheel base is 2.8 m. What should be the length of the track 
arm if the gear is to be given a correct steering, when rounding a corner of radius 5 m.
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Solution 

b 1.35 m, a 1.5 m, 2.8 m, KL 1.25 m

Draw the steering mechanism as shown in Fig.4.24.
a CD CA AB BD 2CA AB

CA BD 0.5 (CD – AB) 0.5 (a – b) 0.5 ( 1.5 – 1.35 ) 0.075 m
Now ID 5 m

IB ID   ' D/B ' 5 0.075 5.075 m
sin IE/IB /IB 2.8 /5.075 0.55172

33.485°

For correct steering,  cot cot b

 cot cot 33 485 1 35 2 8

 cot 48214 1 51

– /

– . . / .

. .0 1169 1 99383

      63 364

tan 2 1 35 5 6 241 7

   

.

.

/ . / . .b 0 0

   13 554

sin 2

 1 35 1 25 2 sin 13 55

.

– /

. – . /( .

b KL AK

AK 44

      213 m

)

.0

Example 4.17

A Hooke’s coupling is used to connect two shafts whose axes are inclined at 30°. The driving shaft 
rotates uniformly at 600 rpm. What are the extreme angular velocities of the driven shaft? Find the 
maximum value of retardation or acceleration and state the angle where both will occur.

Solution 

 3  6  rpm

/ cos 1 sin  cos

/ 1/co

2 2

max

0 00,

/ ( )

( )

N A

B A

B A

    
  ss  at  and 18

2 6 /6 62 83 rad/s

  /cmax

 
 

 

0 0

00 0A

B A

.

( ) oos 62 83/cos 3 72 552 rad/s

/ cos  at 9  min


   

. .

( )

0

0B A aand 27

 cos 62 83 cos 3 54 41 rad smin A

0

0( ) . . /  B

For acceleration to be maximum,

cos 2 2 sin 2 sin

2sin 3 2 sin 3

28571

36

2 2

2 2

/ ( )

/ ( )

.

.

–

–0 0

0

77

  cos  sin  sin 2 1 sin  cos

2  

2 2 2 2 2

2

B A [ ( ) / ( – ) ]

( ) [0 (( . ) / ( – . ) ]cos 3  sin  3  sin 73 4 1 sin  3  cos  36 7

1

2 2 2 20 0 0

0007 rad/s2
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Example 4.18

Two shafts are to be joined by a Hooke’s coupling. The driving shaft rotates at a uniform speed of 600 
rpm and the speed of the driven shaft must lie between 500 and 550 rpm. Determine the maximum 
permissible angle between the shafts.

Solution 
                                               6  rpm1N 00 ,   5  to 55  rpm  

      Maximum variation of speed N

2N 00 0 , ?

22 max 2 min 1N N

                                     

–

                55 5 6 1 12

                       

0 00 00– / /

                              1 cos cos 

            

2( – ) / 

       12 cos cos 12

                                 

2  – 0

            cos 9592

                                   

 0.

                16 42 .

Example 4.19

A Hooke’s coupling connects a shaft running at a uniform speed of 900 rpm to a second shaft. The angle 
between their axes being 20°. Find the velocity and acceleration of the driven shaft at the instant when the 
fork of the driving shaft has turned through an angle of 15° from the plane containing the shaft axes.

Solution 

N

N N

1

2 1
2 2

9  rpm  2  15

/ cos / 1 sin  cos

cos 2

00 0

0

, ,

( )

// 1 sin  2 cos 15

1 548

949 3rpm

2 9 /6 94 248

2 2

2

1

( )

.

.

.

0

0

00 0

N

  rad/s

 cos  sin  sin 2 / 1 sin  cos

94 24

2
2
1

2 2 2 2[( ) ( ) ]

. 88 cos2  sin  2  sin 3 / 1 sin  2  cos  15

58

2 2 2 2 2[( ) ( ) ]0 0 0 0

66 6 rad/s2.

Example 4.20

The angle between the axes of two horizontal shafts to be connected by Hooke’s joint is 150°. The 
speed of the driving shaft is 150 rpm. The driven shaft carries a flywheel of mass 15 kg and having 
a radius of gyration of 100 mm. If the forked end of the driving shaft rotates 30° from the horizontal 
plane, find the torque required to drive the shaft to overcome the inertia of the flywheel.

Solution 

15  3  15  rpm

2 15 /6 15 7 rad/s

 c

1

1

2
2
1

0 0 0

0 0

, ,

.

[(

N

oos  sin  sin 2 / 1 sin  cos

15 7 cos 15  sin

2 2 2 2

2

) ( ) ]

. [( 0 22 2 2 2

2

 3  sin 6 / 1 sin 15  cos  3

7 76 rad/s

00 0 0 0

0 0

) ( ) ]

.
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Moment of inertia of flywheel on driven shaft,

I MK

T I

2
2 3 2 2

2 2 2

15 1 1 15 kg m

15 7 76 1 51 

00 0 0

0 0 0 0

– .

. . . NN m

Example 4.21

The driving shaft of a double Hooke's joint rotates at 500 rpm. The angle of the driving and driven 
shafts with the intermediate shaft is 25°. Determine the maximum and minimum velocities of the 
driven shaft.

Solution 

N

N N

N

A

B A

B

5 rpm  25

/cos 5 /cos 25 6 3 72 rpm
max

2 2

00

00 0

,

.





min

2 2cos 5 cos 25 41 7 rpmN A  00 0.

Example 4.22

The driving shaft of a Hooke’s joint runs at a uniform speed of 240 rpm and the angle between  
the shafts is 25°. The driven shaft with attached masses has a mass of 50 kg at a radius of gyration of 
150 mm.

(a)  If a steady torque of 200 N · m resists rotation of the driven shaft, find the torque required at the 
driving shaft when angle turned through by the driving shaft is 45°.

(b)  At what angle between the shafts will the total fluctuation of speed of the driven shaft be limited 
to 20 rpm ?

Solution 

Given:  N
1

240 rpm, 25°, M 50 kg, K 150 mm, T
1

200 N m,
45°, N

2
 – N

1
20 rpm

1
2 N

1
/60 2 × 240/60 25.14 rad/s

(a) I
2

MK2 50 × (0.15)2 1.125 kg · m2

Angular acceleration of driven shaft,


   

 2
1
2 2

2 2 2

2 22

1

25 14 25 2cos sin sin

( sin cos )

( . ) cos sin 55 90

1 25 45

102 3

0 8294
123 35

2 2 2

2

sin

( sin cos )

.

.
.  rad/s

T22 2 2 1 125 123 35 138 76 N mI  . . .

Total torque required on driven shaft, T T
1

T
2

200 – 138.76 61.24 N · m
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Now T
1
 

1
T

2
 

2

 
T T T1

2

1
2 2 2 2 21

61 24 25

1 25





 

cos

sin cos

. cos

sin coss
.

2 45
60 94N.m

(b) Total fluctuation of speed N
1
 tan  sin 

 

20
240 1

0 0

2( cos )

cos

( )

.




 

 

12 1 cos cos

1 cos 833 cos

cos

2

2

2 





0 0 0

0 0833 0 0833 4

2
0 9592

2

.

cos
. ( . )

.

.

833 cos 1

16 42

Example 4.23

A double universal joint is used to connect two shafts in the same plane. The intermediate shaft is 
inclined at an angle of 20° to the driving shaft as well as the driven shaft. Find the maximum and 
minimum speed of the intermediate shaft and the driven shaft if the driving shaft has a constant speed 
of 600 rpm.

Solution 

Given: 20°, N
A

600 rpm

Let N
A
, N

B
 and N

C
 be the speed of driving, intermediate and driven shaft respectively.

( )
cos cos

.maxN
N

N N

B
A

B A

600

20
638 5

00

rpms

cos 6  cos 
min

22 563 8 rpm

rpmC

m

0

638 5

20
679 5

.

( )
( )

cos

.

cos
.max

maxN
N

N

B

C iin min
cos 563 8 cos 2 529 8 rpmN B . .0

Summary for Quick Revision

1  Pantograph is a mechanism to produce the path traced out by a point on enlarged or reduced 
scale

2 Mechanisms for accurate straight line motion are : Peaucellier, Hart, and Scott-Russel.

3 Mechanisms for approximate straight line motion are: Grasshopper. Watt. Tchebicheff and  
Robert.

4 Mechanisms for intermittent motion are: Geneva wheel and Ratchet.
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5 Parallel linkages are: Parallel rules, universal drafting machine, and lazy tongs.

6 Engine pressure indicators are: Simplex, Crosby, Richards, Thomson, and Dobbie–McInnes.

7 Steering gear mechanism is used for changing the direction of motion of an automobile.

8 Automobile steering gear mechanisms are: Davis, and Ackermann.

9 Davis steering gear lies at the front of front axle.

10 To avoid skidding, the two front wheels must turn about the same instantaneous centre.

11 The fundamental equation for correct steering is:

cot  – cot b/l

where , angles turned through by the stub – axles of inner and outer front wheels respectively

b distance between the pivots of front axles.
wheel base

12 For the Davis steering gear, tan b/(2l)

13 Davis steering gear has all sliding pairs.

14 Ackermann steering gear lies at the back of the front axle.

15 Ackermann steering gear has all turning pairs.

16 For Ackermann steering gear,
 tan (sin  – sin )/(2 – cos  – cos )
 Generally, b/l 0.4 to 0.5  0.455.

17 The instantaneous centre for Davis steering gear lies on the axis of rear wheels.

18 The instantaneous centre for Ackermann steering gear lies approximately at 0.3  above the rear 
wheels axis.

19 Hook’s coupling is a device to connect two shafts whose axes are neither coaxial nor parallel but 
intersect at a point. This is used to transmit power from the engine to the rear axle of an automo-
bile and similar other applications.

 tan cos  tan 
Where angles turned through by driving and driven shafts respectively

 angle of inclination of driven shaft with driving shaft.

20 Ratio of angular speeds of driven and driving shafts is,
 

B
/

A
cos /(1–sin2  cos2 )

21 For 
B
/

A
1, cos ± 1 1( cos )

22 (
B
/

A
)

max
1/cos 

23 (
B
/

A
)

min
cos 

24 Maximum variation of velocity of driven shaft [(
B
)

max
 – (

B
)

min
]/(

B
)

mean

  tan  sin 
  2

25  Angular acceleration of driven shaft,
 

B
– 

A
2 cos  sin2  sin 2 /(1 – sin2  cos2 )2

26  For acceleration of driven shaft to be maximum or minimum,
 cos 2   2 sin2 /(2–sin2 )
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27 Double Hooke’s joint is used to maintain the speed of driven shaft equal to the driving shaft 
at every instant. To achieve this, the driving and the driven shafts should make equal angles 
with the intermediate shaft and the forks of the intermediate shaft should lie in the same 
plane.

28 For a double Hooke’s joint,
 tan cos  tan 
 tan cos  tan 
  
 where angle turned by the intermediate shaft
 , angles turned through by the driving and driven shafts respectively.

29 For a double Hooke’s joint, the speed ratios are:
 (

B
/

A
)

min
cos2 

  (
B
/

A
)

max
1/cos2 

Multiple Choice Questions

1 The number of links in a pantograph mechanism is equal to
(a) 2 (b) 3 (c) 4 (d) 5

2 Automobile steering gear is an example of
(a) higher pair (b) sliding pair (c) turning pair (d) lower pair.

3 In automobiles, the power is transmitted from gear box to differential through
(a) bevel gears (b) knuckle joint (c) Hooke’s joint (d) Cotter joint.

4 Scott-Russel mechanism for generating straight line has
(a) four lower kinematic turning pairs
(b) two lower kinematic turning pairs and one lower kinematic sliding pairs
(c) one lower kinematic turning pair and two lower kinematic sliding pairs
(d) two lower kinematic turning pairs and two lower kinematic sliding pairs.

5 Watt mechanism is capable of generating
(a) approximate straight line (b) exact straight line
(c) approximate circular path (d) exact circular path.

6 Which of the following mechanisms generetes approximate straight line?
(a) Hart mechanism (b) Watt mechanism
(c) Peaucellier mechanism (d) Scott-Russel mechanism

7 Which of the following mechanisms generates accurate straight line?
(a) Scott-Russel mechanism (b) Grasshopper mechanism
(c) Watt mechamism (d) Tehebicheff mechanism

8 Geneva wheel is used to generete
(a) circular motion (b) intermittent motion
(c) continuous motion (d) parcbolic motion

9 Lazy tongs generete
(a) straight line motion (b) circular motion
(c) simple harmonic motion (d) uniformly accelereted motion.

10 Davis steering gear has
(a) only turning pairs (b) only sliding pairs
(c) both sliding and turning pairs (d) rolling pairs
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11 Ackermann steering gear has
(a) only sliding pairs (b) only turning pairs
(c) both sliding and turning pairs (d) spherical pairs

Answers

1. (c) 2. (d) 3. (c) 4. (b) 5. (a) 6.(b) 7. (a) 8. (b) 9. (a) 10. (b) 11. (c)

Review Questions

1 What is a pantograph? What are its uses?

2 Name the exact straight line mechanisms.

3 List the approximate straight line mechanisms.

4 Define a steering gear.

5 What is the function of a steering gear?

6 Name the steering gears used in automobiles.

7 Compare Davis and Ackermann steering gears.

8 Write the fundamental equation for correct steering.

9 What is a Hooke’s joint? Where it is used?

10 Write the expression for ratio of angular velocities of shafts for a Hooke’s joint.

11 Draw the polar velocity diagram of a Hooke’s joint and mark its salient features.

12 Write the expressions for maximum and minimum speeds of driven shaft in a Hooke’s joint.

13  What is a double Hooke’s joint? What is its use?

14  Write the condition for the speeds of two shafts to be same in a Hooke’s joint.

Exercises

4.1 Two shafts connected by a Hooke’s joint have their axes inclined at 20°. The driving shaft rotates 
at 1440 rpm and the driven shaft carries a flywheel of mass 20 kg. The radius of gyration is 
10 cm. Find the maximum torque in the driven shaft.

[Ans. 568.36 N · m]

4.2 The axes of two shafts connected by a Hooke’s joint are inclined at 20°. At what positions of the 
driving shaft, the velocities of two shafts are equal? State whether the accelerations are positive 
or negative at these positions.

  If the driving shaft rotates at 1800 rpm, determine acceleration of the driven shaft at an the of 
the above positions.

[Ans. 44.1°, 135.9°, 224.1°, 315.9°; ve at 135.9°, 315.9 and –ve at 44.1°, 224.1°; 
 –4421.23 rad/s2 at 44.1°]

4.3 The driving shaft of a Hooke’s joint is rotating at a uniform speed of 600 rpm. The speed of the driven 
shaft must be 575 and 625 rpm. Determine the maximum permissible angle between the shafts. 

[Ans. 16.54°]
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4.4 A shaft running at 1200 rpm is connected to a second shaft by a Hooke’s joint. The angle between 
the axes of the shafts is 15°. Determine the velocity and acceleration of the driven shaft when it 
has turned through an angle of 10° from the plane containing the shaft axes.

[Ans. 1239.6 rpm, –400 rad/s2]

4.5  The intermediate shaft of a double Hooke’s joint is inclined at 15° to each. The input and output 
forks on the intermediate shaft have been assembled by mistake at 90° to one another. Determine 
the maximum and minimum speeds of output shaft if the speed of input shaft is 600 rpm. Also 
calculate the coefficient of fluctuation in speed. 

[Ans. 643 rpm, 559.8 rpm; 13.87%]

4.6  Two shafts are connected by a Hooke’s joint. The driving shaft rotates uniformly at 600 rpm. 
If the total permissible variation in speed of the driven shaft is not to exceed 5% of the mean 
speed, find the greatest permissible angle between the centre lines of the shafts.

[Ans. 17.97°]

4.7 The moment of inertia of the driven shaft in a Hooke’s joint is 35 kg. m2. The driven shaft is 
inclined at 30° to the axis of the driving shaft. The driving shaft rotates at 2700 rpm with a steady 
torque of 275 N.m. Determine the maximum fluctuation of output torque. 

[Ans. 96.91% of input torque]

4.8 In a Davis steering gear, the distance between the pivots of the front axle is 1.2 m and the wheel 
base is 2.8 m. Find the inclination of each arm to the longitudinal axis of the car, when it is mov-
ing along a straight path.

[Ans. 12.1°]

4.9  The distance between the pivots of the front stub axles of a car is 1.35 m. The length of track rod 
is 1.25 m. The wheel track is 1.5 m and the wheel base is 2.8 m. What should be the length of the 
track arm if the gear is to be given a correct steering, when rounding a corner of radius 5 m. 

[Ans. 0.213 m]

Fig.4.40 Scott-Russel mechanism

4.10 In a Scott-Russel mechanism shown in Fig.4.40, OA1 30 cm, A1C1 40 cm. Find the length 
of the extended link A

1
B

1
 so that point B

1
 is generating an approximate straight line motion. 

[Ans. 53.3 cm]
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5.1 INTRODUCTION
When a body moves or tends to move on another body, the property of the two bodies by virtue of 
which a force is developed between the two bodies, which opposes the motion, is called friction, and 
the opposing force is called the force of friction. The force of friction acts opposite to the impending 
motion.

Friction: A Blessing or a Curse
Friction is a blessing when it is necessary to increase the force of friction between two contacting 
bodies when power is being transmitted through them, as in the case of a belt and pulley and friction 
clutches. In the case of brakes also, it is necessity to have friction between contacting surfaces to 
reduce the speed of the moving member or stop it altogether.

In the case of lathe slides, journal bearings, etc., it is necessary to reduce the force of friction in 
order to decrease the power lost due to friction. In such situations, friction is a curse. To decrease the 
friction, proper lubrication has to be provided.



260 Theory of Machines

5.2 TYPES OF FRICTION
Friction is of the following types:

Static friction: It is the friction experienced by two bodies in contact, while at rest.

Dynamic (or kinetic) friction: It is the friction experienced by two bodies in contact, while in motion. 
It is less than the static friction.

Sliding friction: It is due to sliding of two bodies on each other.

Rolling friction: It is due to rolling of two bodies on each other.

Pivot friction: It is the friction experienced by two bodies due to the rotation of one body around the 
other, as in the case of a foot step bearing.

Dry (or solid) friction: It is due to two dry and unlubricated surfaces in contact.

Boundary (or skin or greasy) friction: It is the friction experienced by two bodies separated by a very 
thin layer of a lubricant.

Fluid (or film) friction: It is the friction experienced by two bodies in contact when separated by a 
thick film of a lubricant.

5.3 LAWS OF FRICTION
a. Static friction

1. The force of friction always acts in a direction opposite to the impending motion.

2. The limiting force of friction is directly proportional to the normal reaction.

3. The force of friction is independent of the area of contact between the two surfaces.

4. The force of friction depends upon the roughness of the surfaces of two materials.

b. Kinetic friction
1. The force of friction always acts in a direction opposite to that in which the body is moving.

2. The magnitude of kinetic friction bears a constant ratio to the normal reaction between the two 
surfaces.

3. The force of friction is independent of the relative velocity between the two surfaces in contact, 
but it decreases slightly with increase in velocity.

4. The force of friction increases with reversal of motion.

5. The coefficient of friction changes slightly due to temperature changes.

c. Fluid friction
1. The force of friction is almost independent of the load.

2. The force of friction reduces with the increase of temperature of the lubricant.

3. The force of friction depends upon the type and viscosity of the lubricant.

4. The force of friction is independent of the nature of surfaces.

5. The frictional force increases with the increase in the relative velocity of the frictional surfaces.

5.4 DEFINITIONS
a. Coefficient of friction
Consider a block of weight W resting on a plane rough surface, as shown in Fig.5.1. The normal reac-
tion because of the weight of the block is R. Let a force P be applied to the block towards the right. 
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The frictional force F will set up between the block and the rough surface. The direction of F will 
be towards the left. The coefficient of friction (μ) is the ratio of the force of friction (F) to the normal 
reaction (R). Thus


F

R  
(5.1)

Fig.5.1 Block resting on rough horizontal plane

b. Angle of friction
Let S be the resultant of F and R making an angle of  with R that is called the angle of friction, such 
that

tan
F

R  
(5.2)

From Eqs. (5.1) and (5.2), we find that

μ  =  tan  (5.3)

Therefore, in the case of limiting friction, the coefficient of friction is equal to the tangent of the 
angle of friction.

Now consider the block resting on rough inclined plane, as shown in Fig.5.2. By resolving the 
forces along and perpendicular to the plane, we have

Fig.5.2 Block resting on rough inclined plane
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F W sin 

R W cos 

or
 

F

R
tan

Comparing with Eq. (5.2), we find that

tan tan 

or  (5.4)

Thus, in the case of limiting friction, the angle of the plane is equal to the angle of friction. The 
angle of the plane when motion of an object on the plane is impending is called the angle of repose. 
This is the maximum angle that a heap of sand or similar materials will make with the horizontal.

c. Cone of friction
If the force P is made to revolve about a vertical axis, the resultant S will also revolve about a vertical 
axis. As S revolves, it will generate a cone of vertex angle 2 . This cone is called the cone of friction, as 
shown in Fig.5.3.

Fig.5.3 Cone of friction

5.5 FORCE ANALYSIS OF A SLIDING BODY
A rough body resting on another rough body may be made to slide by a force of the pull or push type. 
Now we study the force required to slide the body under various situations.

a. Body resting on a horizontal plane
Consider a body of weight W resting on a rough horizontal plane being pulled by a force P inclined at 
an angle , as shown in Fig.5.4(a). By resolving the forces horizontally and vertically, we have

P cos F

R P sin W

Now, F μ R

Therefore, P cos μ R
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P
P W

P W

cos
sin

cos
sin











P (cos  cos sin  sin ) W sin 
or P cos (  – ) W sin 

or
 

P
W sin

cos( )


   

(5.5)

For P to be minimum, cos (  – ) should be maximum, that is,

cos (  – ) 1

or 

and P
min

W sin  (5.6)

If the force P is of the push type, as shown in Fig.5.4(b), then

P cos F μR

P sin W R

P
cos


P (cos  cos  – sin  sin ) W sin 

P cos ( ) W sin 

or
 

P
W sin

cos( )


   

(5.7)

Fig.5.4 Force analysis of a sliding body on horizontal plane
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b. Body resting on an inclined plane with applied force inclined to the plane

1. Body going up the plane: Consider the body resting on the inclined plane as shown in Fig.5.5(a). 
By resolving the forces perpendicular and along the plane, we have

Fig.5.5 Inclined pull acting on body resting on inclined plane

P cos W sin R

W cos P sin R

or P cos W sin tan  (W cos  – P sin )

or P (cos sin  tan ) W (sin cos  tan )

or P (cos  cos sin  sin ) W (sin  cos cos  sin )

P cos (  – ) W sin ( )

P
W sin ( )

cos( )

 
   

(5.8)

For P to be minimum, cos (  – ) 1, or . In that case,

P
min

W sin ( ) (5.9)

2. Body going down the plane: When the body is going down the plane, as shown in Fig.5.5(b), 
then, we get

P
W sin ( )

cos( )  
(5.10)

For P to be minimum, cos ( ) 1, or – . In that case

P
min

W sin (  – ). (5.11)

c. Body resting on an inclined plane with horizontal applied force

1. Body going up the plane: Consider the body as shown in Fig.5.6(a). By resolving the forces 
perpendicular and along the plane, we have
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P cos W sin μR

P sin W cos R

Fig.5.6 Horizontal pull acting on body resting on inclined plane

or P cos W sin tan  (P sin W cos )

P (cos  cos  – sin  sin ) W (sin  cos cos  sin )

P cos ( ) W sin ( )

P W tan ( ) (5.12)

2. Body going down the plane: For the body shown in Fig.5.6(b), we get

P W tan (  – ) (5.13)

d. Efficiency of the inclined plane
The efficiency of the inclined plane is defined as the ratio of the effort required P

o
 without friction and 

P with friction.


P

P
o

1. For body going up the plane with inclined applied force,






 
 

sin

cos
sin

cos

1

1

 
 

tan

cot  
(5.14)

2. For body going down the plane with inclined applied force





 
 

sin

cos

cos

sin
  



266 Theory of Machines

1

1

 
 

tan

cot  

(5.15)

3. For body going up the plane with horizontal applied force




 
tan

tan
 

(5.16)

4. For body going down the plane with horizontal applied force


 


tan

tan  
(5.17)

5.6 SCREW THREADS
Screws are used for fastening, load lifting, and power transmission purposes. The screws may have 
single start or multi-start threads. Lead is the product of pitch and number of starts. A screw thread 
is obtained when the hypotenuse of a right-angled triangle is wrapped round the circumference of a 
cylinder. Figure 5.7(a) shows the development of a helix of diameter d and lead L or pitch p.

Fig.5.7 Square and V-threads

Let p pitch of the threads
L lead of the threads

d
m

mean pitch circle diameter of the screw
helix angle, that is, angle of inclination of the threads with a line perpendicular to the axis 
of the screw.

Then
  

tan
p L

d
or

dm m  
(5.18)

(a) Square threads
In the case of square threads as shown in Fig.5.7(b), the faces of the threads are normal to the axis of 
the spindle. The force P acting horizontally required at the screw threads to slide the load W up the 
inclined plane is given by Eq. (5.12), that is

P W tan ( )
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(b) V-threads
For a screw having V-threads, as shown in Fig.5.7(c), let 2  be the angle of the threads. Then normal 
reaction on the threads is given by:

R
W

cos

Frictional force, 

F R W

cos

= μ
e
W

Where μ
e

μ/cos  is called the virtual or equivalent coefficient of friction.
Therefore, for a screw having V-threads, the virtual coefficient of friction should be used to calcu-

late the torque required to lift the load.

5.7 SCREW JACK
A screw jack is a device for lifting of loads. The principle of working of a screw jack is similar to that 
of an inclined plane. Fig.5.8 shows the common form of the screw jack.

Let P effort applied at the circumference of the screw to lift the load
W load to be lifted
μ coefficient of friction between the screw and the nut

 tan 

Fig.5.8 Screw jack
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1. Raising of load
As derived in Section 5.5, for raising the load, we have

P W tan ( )

Torque required to overcome friction between the screw and nut is

T
P d Wd

1 2 2
m m tan ( ) 

Torque required to overcome friction at the collar,

T
Wd

2 2

c c

where μ
c

collar coefficient of friction
           d

c
mean diameter of the collar R

1
R

2

Total torque,
 

T T T Pd Wd1 2

1

2
( )m c c

 
(5.19)

Let F  effort applied at the end of a lever of length l

Then  T Fl

2. Lowering of load
For lowering of load, we have

P W tan (  – )

Torque required to overcome friction between screw and nut,

T
P

Wm
m1 2 2

d 1
d  tan ( )

Torque required to overcome collar friction,

T Wc c2 2
  
1

d

Total torque, T T
1

T
2

1

2
( )Pd Wdm c c

Effort F required at the end of lever of length l,

F
T

l

3. Efficiency of Screw Jack

Efficiency, 


tan

tan ( )
, for raising of load, and (5.20a)
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tan (

tan

 )
, for lowering of load (5.20b)

For efficiency to be maximum, 
d

d
0

Now  tan ( tan tan )

tan tan

1

sin

sin sin

sin


cos 

cos cos 











1

ccos cos 



sin

sin sin sin

sin sin

    
    

cos cos

cos cos cos

sin ( )

sin ( )

sin ( ) sin

sin ( ) sin

  
  

  
  

cos

cos

2

2

For efficiency to be maximum, sin (2 ) 0

or 2 90°

or 


45
2

 (5.21)

 




max

sin sin

sin sin

sin

sin

90

90

1

1
 (5.22)

4. Self-locking and over-hauling screw

The effort required for lowering of load is,

P W tan (  – )

Torque, T
Pd

W
dm

2 2
m tan ( ) 

Torque will remain positive if  > . Such a screw is called self-locking screw. If  < , then the 
torque will become negative. In other words, the screw will lower of its own. Such a screw is called 
over-hauling screw.

For , the efficiency of the screw for raising of load becomes,


 
 




sin

sin

tan

tan

cos

cos

2

2 2

For a self-locking screw,





 


tan

tan

tan ( tan )

tan

tan

2

1

2

1

2 2

2 2

 50% (5.23)
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5.8 FRICTION IN BEARINGS
When a shaft is rotating in a bearing, a pivot or a collar is provided on the shaft to take up the axial 
thrust. Common examples are steam turbines, hydraulic turbines, propeller shaft of a ship, etc.

5.8.1 Flat Pivot Bearing
When the axial force is taken by the end of a shaft that is inserted in a recess to take up the thrust, it is 
called a pivot bearing or foot step bearing.

A flat pivot bearing like the foot step bearing is shown in Fig.5.9(a).

Let W load on the bearing

r radius of bearing surface

p intensity of pressure between rubbing surfaces

(a) Uniform pressure

When the pressure is uniformly distributed over the bearing surface area, then

 
p

W

r 2
 

(5.24)

Consider a ring of radius x and thickness dx of the bearing area, as shown in the figure.

Area of bearing surface, A 2 x dx

Load transmitted to the ring, W p A

Frictional resistance to sliding at radius r,

F
r

μ W 2 μ px dx

Frictional torque on the ring, dT
f

F
r
x 2 μ px2dx

Total frictional torque, T px x p x x p
x

f

r r r

2 2 2
30

2 2

0

3

0

   d d

Fig.5.9 Flat Pivot bearing
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2

3

3  pr

   
2

3




Wr
Wrm  (5.25)

 where  rm r
2

3
 (5.26)

Power lost in friction, P T
f
  (5.27) 

Where 2

60

N  rad/s and N is the speed of the shaft in rpm.

If the shaft of radius r
2
 is resting on a disc of radius r

1
 as shown in Fig.5.9(b), then

  p
W

r r( )2
2

1
2  (5.28)

 

T p x x p
x

p
r r

W
r r

r

f

r

r

r

r

2 2
3

2
3

2

2
3

2
3

1
3

2
3

1
3

2
2

1

2

1

2

d

( )

rr
Wrm

1
2

 

(5.29)

where  r
r r

r rm

2

3
2
3

1
3

2
2

1
2

mean radius  (5.30)

(b) Uniform wear
The rate of wear depends upon the intensity of pressure and the rubbing velocity. The rubbing veloc-
ity increases with the increase in radius. Therefore, the wear rate is proportional to the pressure p and 
radius x. For uniform wear,

px C

      or p
C

x
where C is a constant.
Load transmitted to the ring, W p 2 x dx

= 2 C dx

Total load transmitted to the bearing, W C x C x

Cr

r
r

2 2 0

0

 



d

2

| |

or C
W

r2
Frictional torque acting on the ring,

dT
f

2  μ px2 dx 2  μ Cx dx

Total frictional torque on the bearing,

 

T C x x C
x

C r
Wr

f

rr

2 2
2 2

2

0

2

0

     


d

 
(5.31)
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If the shaft of radius r
2
 is resting on a disc of inner radius r

1
, then

T C x x C
x

C r r
W r r

f

r

r

r

r

2 2
2 2

2

2
2

1
2 2 1

1

2

1

2

     


d ( )
( )

T
f

Wr
m
 (5.32)

Where r
m

1
2

(r
1

r
2
) is the mean radius. (5.33)

5.8.2 Conical Pivot Bearing
Consider a conical pivot bearing as shown in Fig.5.10.

Shaft

Bearing

sin x
dl 

dx
x

r

r

W

O

2
dx

pnpn

Fig.5.10 Conical pivot bearing

Let p
n

intensity of normal pressure on the cone
semicone angle

μ coefficient of friction between the shaft and the bearing
r radius of the shaft

Consider a small ring of radius x and thickness dx. Let dl be the length of the ring along the cone, 
so that

dl dx  cosec 

Area of the ring, dA 2 x  dl 2 x  dx cosec 
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(a) Uniform pressure
Normal load acting on the ring, W

n
2 x   p

n
  dx cosec 

Vertical load acting on the ring, W W
n
 sin 

Total vertical load transmitted to the bearing,

W W p x x p x

W r p

n n
r

rr

n

  2 2
0

00

 d

2

| |

or p
W

rn  2

Frictional force acting on the ring tangentially at radius x, F
f

μ × W
n

Frictional torque acting on the ring,

dT
f

F
f
 , x 2 μ  p

n
  cosec   x2  dx

Total frictional torque,

T p x x p xf n
r

r

2
2

3
2 3

0

0

   cosec d cosecn | |

2

3
3  r pn cosec

T Wrf

2

3
  cosec  (5.34)

(b) Uniform wear
In the case of uniform wear, the intensity of normal pressure varies inversely with the distance.
Therefore,

p
n
 x C, where C is a constant

Load transmitted to the ring, W p
n
  2 x  dx 2 C  dx

Total load transmitted to the bearing, W W C x C r
rr

  2 2
00

d

or C
W

r2

Frictional torque acting on the ring,

dT
f

2 μ  p
n
  cosec   x2  dx

= 2 μ  C  cosec   x  dx

Total frictional torque acting on the bearing,

T C x xf

r

2
0

  cosec d

=  μ  C  r2  cosec 

T Wrf

1

2
  cosec  (5.35)
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5.8.3 Truncated Conical Pivot Bearing
Consider a truncated conical pivot bearing as shown in Fig.5.11. Then 

Intensity of uniform pressure is given by: p
W

r rn  ( )2
2

1
2

Fig.5.11 Truncated pivot bearing

(a) Uniform pressure
Total frictional torque acting on the bearing,

T p x x p
r r

n n

r

r

f 2 2
3

2 2
3

1
3

1

2

cosec d cosec   
( )

2
32

2
1
2

2
3

1
3W

r r

r r

( )

( )cosec  

T W
r r

r rf

2

3
2
3

1
3

2
2

1
2

cosec 

T Wrf m  cosec  
 

(5.36)

Where r
r r

r rm

2

3
2
3

1
3

2
2

1
2

 (5.37)

(b) Uniform wear
Total frictional torque acting on the bearing,

T C x x C r rf

r

r

2 2
2

1
2

1

2

cosec d cosec  ( )
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Fig.5.12 Flat collar bearings




  
W

r r
r r W

r r

2 22 1
2
2

1
2 2 1

( )
( )

( )
cosec cosec

 

T
f

μWr
m
 cosec  (5.38)

where r
m
  

1

2 1 2( )r r  (5.39)

5.8.4 Flat Collar Bearing
A single collar bearing is shown in Fig.5.12(a) and the multiple-collar bearing in Fig.5.12(b).

Let r
1
 and r

2
inner and outer radii of the bearing, respectively.

Area of the bearing surface, A r r ( )2
2

1
2

(a) Uniform pressure 

Intensity of pressure, p
W

A

W

r r ( )2
2

1
2

Frictional torque on the ring of radius x and thickness dx,
dT

f
2 μ  p  x2  dx

Total frictional torque, T p x xf

r

r

2 2

1

2

  d

2

3 2
3

1
3 p r r

2

3
2
3

1
3

2
2

1
2

W
r r

r r
 (5.40a)

 Wr
m 

(5.40b)

(b) Uniform wear
For uniform wear, the load transmitted on the ring,

W p
n
 · 2 x · dx

 2  C · dx
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Total load transmitted to the collar,

W C x C r r
r

r

2 2 2 1

1

 d ( )
2

  or C
W

r r2 2 1 ( )

Frictional torque on the ring, dT
f

μ  W  r 2   μ  C  x  dx

Total frictional torque on the bearing,

T C x xf

r

r

2
1

2

 d

 C r r2
2

1
2

W r r( )1 2

2  (5.41a)

T
f

μWr
m
 (5.41b)

For a multi-collared bearing having n collars, multiply by n.

5.9 ROLLING FRICTION
Consider a cylinder or sphere rolling on a flat surface, as shown in Fig.5.13(a). When there is no defor-
mation of the surface on which rolling is taking place, then the point of contact will be a line in the case 
of a cylinder and a point in the case of a sphere, as shown in Fig.5.13(a). If the surface deforms, then the 
shape of the surface will be as shown in Fig.5.13(b). Let the distance between the point of contact B and 
the point A through which the load W passes be b and F be the force required for rolling. Then rolling 
moment is equal to F. h and the resisting moment is W .b. For the equilibrium of forces, we have

Fig.5.13 Rolling of a cylinder or sphere

F  h W  b
b is known as the coefficient of rolling friction, and has linear dimension.
Let F

r
force applied to the body for rolling

F
s

force applied to the body for sliding

Then F
b

h
Wr
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and F
s

μ . W
The body rolls without sliding, if F

r
 < F

s
 or μ > b/h. The body will slide if F

s
 < F

r
 or μ < b/h. The 

body will either roll or slide if μ b/h.

5.10 ANTI-FRICTION BEARINGS
In the case of anti-friction bearings, the point of contact between the journal and the bearing elements 
is either a point (as in the case of ball bearings) or a line (as in the case of roller bearings).

The ball bearing consists of a number of hardened balls mounted between two hardened races. 
The inner race is fitted on the shaft and the outer race is a tight fit into the bearing housing. The balls  
are kept at a fixed distance from one another in a brass cage. The distortion of balls is very little and 
the rolling friction is very low. They are mainly used to carry radial loads.

In roller bearings, either right cylindrical or tapered rollers are present. They are used to carry 
heavy loads, both radial and thrust.

5.11 FRICTION CIRCLE
Consider a journal bearing, as shown in Fig.5.14. When the journal is at stand still, then the point of 
contact is at A. The load W is balanced by the reaction R. When the journal starts rotating in the clock-
wise direction, then the point of contact shifts from A to B. The resultant of normal reaction R and 
force of friction F μR is S, as shown in Fig.5.14(b). For the equilibrium of the journal, we have

W S
Torque, T W · OC

= W · OB sin 
= W · r tan  (angle  being small)
= W · r μ  (5.42)

A circle drawn with centre O and radius OC r sin rμ is called the friction circle.

Fig.5.14 Friction circle
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5.12 FILM FRICTION
Thin-film lubrication: Thin-film lubrication is defined as a condition of lubrication in which the lubri-
cant film is relatively thin and there is partial metal-to-metal contact. This mode of lubrication is seen 
in door hinges and machine tool slides. It is also called boundary lubrication. The conditions result-
ing in thin-film lubrication are excessive load, insufficient surface area or oil supply, low speed, and 
misalignment.

Thick-film lubrication: When the bearing and the journal are completely separated from each other 
by the lubricant film, then it is called thick-film lubrication. Since there is no contact between the 
surfaces, properties of surface, like surface finish, have little or no influence on the performance of the 
bearing. The resistance to relative motion between the journal and the bearing arises from the viscous 
resistance of the lubricant. Therefore, the performance of the bearing is affected by the viscosity of the 
lubricant. Thick-film lubrication could be hydrodynamic or hydrostatic.

In a journal bearing working under thick-film lubrication regime, the frictional resistance depends 
upon the following parameters:

1. Dynamic viscosity of the lubricant.

2. Speed of the journal.

3. Unit pressure of the lubricant, and

4. Radial clearance ratio.

The coefficient of friction depends upon the factor ( μ n /p), where dynamic viscosity of 
 lubricant, n speed of journal, and p unit pressure of lubricant. The value of this factor at which 
the coefficient of friction is minimum is called the bearing modulus, as shown in Fig.5.15. Below this 
value, there exists boundary (or thin-film) lubrication and above this value there shall be full-film (or 
thick-film) lubrication.

Fig.5.15 Variation of coefficient of friction with μn/p
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5.13 MITCHELL (OR TILTING PAD) THRUST BEARING
To maintain thick-film lubrication in the case of rotating members, a wedge-shaped converging space 
should be available for the lubricant between the journal and the bearing. For flat surfaces, the same 
purpose can be served if one surface is made slightly inclined. A Mitchell thrust bearing consists of a 
series of metallic pads arranged around a rotating collar fixed to the shaft, as shown in Fig.5.16. Each 
pad is held by the housing of the bearing to prevent rotation but free to tilt about its stepped edge. The 
oil carried by the moving collar is dragged around the pad. Thus, an oil film of wedge shape is formed 
and a considerable pressure is built up to carry the axial load.

Example 5.1

A square threaded screw of mean diameter 30 mm and pitch of threads 5 mm is used to lift a load of 
15 kN by a horizontal force applied at the circumference of the screw. Find the force required if the 
coefficient of friction between screw and nut is 0.02.

Solution  Given: d
m

30 mm, p 5 mm, W 15kN, μ 0.02

tan−1 μ tan−1 0.02 1.145°

tan . , .



p

dm
5

30
0 05305 3 037

P W tan ( ) 15 tan 4.182° 1.0967 kN

Example 5.2

A turnbuckle with right- and left-hand single-start square threads is used to couple two railway 
coaches. The pitch of thread is 10 mm over a mean diameter of 30 mm. The coefficient of friction is 
0.15. Find the work to be done in drawing the coaches together a distance of 300 mm against a steady 
load of 2.5 kN.

Solution  Given  p 10 mm, d
m

30 mm, W 2.5 kN, μ 0.15, s  300 mm

tan−1 μ tan−1 0.15 8.530°

Fig.5.16 Tilting pad thrust bearing
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tan . , . 
p

dm 
10

30
0 10610 6 057

P W tan ( ) 2500 tan 14.587° 650.6 N

Torque on each rod  p md

2
650.6 × 0.015 9.76 N . m

Total torque required on the coupling nut, T 2 × 9.76 19.52 N . m

For one revolution of rod, coaches are drawn nearer by a distance 2p 20 mm

Number of turns required, N
s

p2 20
15

300

Work done by torque 2  NT 2  × 15 × 19.52 1839.6 N . m

Example 5.3

A vertical two-start square threaded screw of 100 mm mean diameter and 20 mm pitch supports a 
vertical load of 20 kN. The axial thrust on the screw is taken by a collar bearing of 250 mm outer 
diameter and 100 mm inner diameter. Find the force required at the end of a lever 450 mm long in 
order to lift and lower the load. The coefficient of friction for the vertical screw and nut is 0.15 and 
that for the collar bearing is 0.20.

Solution  Given: d 100 mm, p 20 mm, W 20 kN, d
2

250 mm, d
1

100 mm, l 450 mm, 
μ 0.15, and μ

c
0.20.

tan−1 μ tan−1 0.15 8.530°

tan . , .
L

dm

2 20

100
0 12732 7 256

P W tan ( ) 20 tan 15.786° 5.6544 kN

d
c

0.5(100 250) 175 mm

Fl 0.5 (Pd μ
c
Wd

c
)

F
0 5 5 6544 100 0 20 20 175

450
2 812

. ( . . )
.  kN

Example 5.4

The spindle of a screw jack has single-start square threads with an outer diameter of 50 mm and a 
pitch of 10 mm. The spindle moves in a fixed nut. The load is carried on a swivel head but is not free 
to rotate. The bearing surface of the swivel head has a mean diameter of 60 mm. The coefficient of 
friction between the nut and the screw is 0.12 and that between the swivel head and the spindle is 0.10. 
Calculate the load that can be raised by efforts of 125 N, each applied at the end of two levers with 
effective length 400 mm. Also find the efficiency of the lifting system.

Solution  Given: d
o

50, p 10 mm, W N, d
c

60 mm, l 400 mm, μ 0.12,  μ
c

0.10, and 
F 125 N.

tan−1  μ tan−1 0.12 6.843°
d

m
d

o
 – 0.5p 50 – 5 45 mm
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tan . , .

tan ( ) tan . .

p

P W W
md

10

45
0 0707 4 046

10 889 0 119237

2 0 5

2 125 400 0 5 0 19237 45 0 10

W

 

Fl Pd Wd

W W

m c c. ( )

. . . 660

100 000 7 3283

13645 7

, .

.

tan

tan ( )

t

W

N

Efficiency, 

W

aan .

tan .

.

.
. %

4 046

10 889

0 0707 100

0 19237
36 75=

Example 5.5

A flat foot step bearing of 300 mm diameter supports a load of 8 kN. If the coefficient of friction is 
0.10 and speed of the shaft is 80 rpm, find the power lost in friction, assuming (a) uniform pressure, 
and (b) uniform wear.

Solution  Given: r 150 mm, W 8 kN, μ 0.1, N  80 rpm

(a) Uniform pressure

T Wrf

2

3

2

3
0 1 8000 150 10 80

2 80

60
8 3776

3




.

.

N m

rad/s

Powwer lost, WP Tf 80 8 3776 670 2. .

(b) Uniform wear

T Wr

P T

f

f

0 5 0 5 0 1 8000 150 10 60

60

3. . .



N m

Power lost, 88 3776 502 6. . W

Example 5.6

A vertical pivot bearing 200 mm diameter has a cone angle of 150°. If the shaft supports an axial load 
of 25 kN, and the coefficient of friction is 0.25, find the power lost in friction when the shaft rotates at 
300 rpm, assuming (a) uniform pressure, and (b) uniform wear.

Solution  Given: r 100 mm, W 25 kN, μ 0.25, 75°, N 300 rpm

(a) Uniform pressure

T Wrf

2

3

2

3
0 25 25000 0 1 75 431 365  cosec cosec N. . . m

rad/s
2 300

60
31 416.

Power lost, P T
f

431.365 × 31.416 13.552 W
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(b) Uniform wear

T
f

0.5 μ Wr cosec 0.5 × 0.25 × 25000 × 0.1 × cosec 75° 323.5 N . m

Power lost, P T
f
 323.5 × 8.3776 10.164 W

Example 5.7

A vertical shaft supports a load of 30 kN in a conical pivot bearing. The external radius of the cone is 
three times the internal radius and the cone angle is 120°. Assuming uniform intensity of pressure of 
0.40 MPa, determine the radii of the bearing. If the coefficient of friction between the shaft and bear-
ing is 0.05 and the shaft rotates at 150 rpm, find the power lost in friction.

Solution  Given: W 30 kN, 60°, r
2

3r
1
, p

n
0.40 MPa, μ 0.05, N 150 rpm

2 150

60
15 708

0 40 10
30 10

9 1

2
2

1
2

6
3

.

( )

.
( )

 rad/s

p
W

r rn

rr

r

r

r

T Wf

1
2

1
2 6

1

2

2985 15 10

54 627

163 882

2

3

.

.

.

 mm

 mm

cosec 
r r

r r
2
3

1
3

2
2

1
2

2

3
0 05 30 000 60 54 627. , .cosec

27 1

9 1

205 N m

Example 5.8

The thrust on the propeller shaft of a marine engine is taken by eight collars whose outer and inner 
diameters are 650 and 400 mm, respectively. The thrust pressure is 0.5 MPa and may be assumed uni-
form. The coefficient of friction between the shaft and collars is 0.05. If the shaft rotates at 120 rpm, 
find (a) total thrust on the collars and (b) power absorbed by friction at the bearing.

Solution   Given: n 8, d
o

650 mm, d
i

400 mm, p 0.5 MPa, μ 0.04, N 120 rpm

(a)  p
W

A

W

d do i

 4
2 2

 
W

0 5 650 400

4
1 03 083

2 2. ( )
, ,


N
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(b) Uniform pressure

T n W
r r

r rf
o i

o i

2

3

2

3
8 0 04 103083

325 20

3 3

2 2

3

.
00

325 200
10

8822 6

2 120

60
12 566

3

2 2
3

.

.

 N m

 rad/s

P Tf 8822 6 12 566 10 110 873. . . kW

Example 5.9

The movable jaw of a bench vice is at the upper end of a hinged arm 0.5 m long, the centre line 
of the screw being 400 mm above the hinge. The screw has outer diameter of 25 mm and pitch 
of 6 mm. The mean radius of the thrust collar is 30 mm. Find the tangential force to be applied 
to the screw at a radius of 300 mm to produce a force of 6 kN at the jaw. Also find the mechani-
cal efficiency of the vice. Assume thread and collar coefficient of friction to be 0.1 and 0.15, 
 respectively.

Solution  Given: d
o

25 mm, p 6 mm, d
c

60 mm, l 300 mm, W 6 kN, μ 0.10, F
c

0.15

 d
m

d
o
 – 0.5p 25 – 3 22 mm

 

tan . , .

tan tan . .

p

P

dm

 
6

22
0 08681 4 96

0 10 5 711 1

WW

T P W

F
m c c

tan ( ) tan . .

. ( )

.

6000 10 67 1130 6

0 5

300 0 5

 N

 

d d

(( . . )

.

,
tan

tan (

1130 6 22 0 15 6000 60

131 46F N

Efficiency
 

)

.

.
. %

0 08681 100

0 18841
46 06

Example 5.10

A pivot bearing of a shaft consists of a frustrum of a cone. The diameters of the frustrum are 200 mm 
and 400 mm and its semi-cone angle is 60° . The shaft carries a load of 40 kN and rotates at 240 rpm. 
The coefficient of friction is 0.02. Assuming the intensity of pressure to be uniform, determine (a) the 
magnitude of pressure, and (b) the power lost in friction.

Solution  Given: d2 400 mm, d1  200 mm, W 40 kN, 30°, μ 0.02, and N 240 rpm
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2 240

60
25 133

4

4 40 10

400 200

2
2

1
2

3

2 2

.

( )

( )

 rad/s

p
W

d d

10

0 4244

2

3

2

3
0 02

6

2
3

1
3

2
2

1
2

.

.

MPa

cosec  T W
r r

r rf

40 000 30 10
200 100

200 100

248 9

3
3 3

2 3
,

.

cosec

NN m

WP Tf 248 9 25 133 6255 54. . .

Example 5.11

What force will be required at a radius of 80 mm to raise and lower an 11 kN crossbar of a planer 
that is raised and lowered by two 38 mm single-start square thread screw having a pitch of 7 mm? 
The outer and inner diameters of the collar are 76 and 38 mm respectively. Assume the coefficient of  
friction at the threads as 0.11 and at the collar as 0.13.

Solution   Given: d
o

76 mm, d
i

38 mm, p 7 mm, d
m

38 mm, l 80 mm, F W 11 kN, μ 0.11, 
μ

c
0.13

 d
c

0.5 (d
o

d
i
) 0.5 (76 38) 57 mm

 

tan . , .

tan tan . .

 
d

p

m

7

38
0 05864 3 356

0 11 6 2771 1

PP W

T P Wd

F
m c c

tan , tan .

. ( )

.

11 000 9 633 1867

0 5

2 80 0

N

d

55 1867 38 0 13 11 000 57

476 43

( . , )

.F N

Example 5.12

A square threaded bolt of root diameter 20 mm and pitch 5 mm is tightened by screwing a nut whose 
mean diameter of bearing surface is 50 mm. The coefficient of friction for nut and bolt is 0.10 and for 
nut and bearing surface is 0.15. Find the force required at the end of a 450 mm long spanner when the 
load on the bolt is 10 kN.
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Solution   Given: d
c

20 mm, p 5 mm, R
m

25 mm, 0.10, 
c

0.15, 450 mm, W 10 kN, 

Mean diameter of screw  mm

d

, . .

tan

d dm c

p

p

m

2
20 2 5 22 5

5

22 5
0 07073

4 05

0 10 5 71

10 10

1

3

.
.

.

tan . .

tan ( )

t

P W

aan ( . . ) .

.
.

.

4 05 5 71 1720 1

2

1720 1
22 5

2
0 15 104

N

T
P

WRc m

dm

225

19351 12 37500 56851 12

450 56851 12

126 33

. .

.

.

Nmm

 N

Fl T

F

F

Example 5.13

The mean diameter of a bolt having V-threads is 25 mm. The pitch of the thread is 5 mm and the angle 
of threads is 55° . The bolt is tightened by screwing a nut whose mean radius of bearing surface is  
25 mm. The coefficient of friction for nut and bolt is 0.10 and for nut and bearing is 0.15. Find the 
force required at the end of a 0.5 m long lever when the load on the bolt is 15 kN.

Solution   Given: d
m

25 mm, p 5 mm, 2 55 , R
m

25 mm, 0.10, 
c

0.15, 0.5 m,  
W 15 kN,

tan tan .

tan
cos

1 1

1

5

25
3 64

p

dm

ttan
.

.
.

( )

tan ( .

1

3

0 1

27 5
6 43

15 10 3 64 6

cos

tanP W

.. ) .

. . .

43 2663 8

2
2663 8 12 5 0 15 15000 25

33297

N

d
T

P
WRm

c m

.. .

.
.

5 56250 89547 5

89547 5

500
179 1

N

N

Fl T

F
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Example 5.14

Two tie rods are connected by a turnbuckle having right- and left-hand metric threads of V-type. The 
pitch of the threads is 5 mm on a mean diameter of 30 mm and a thread angle of 60°. Assuming coef-
ficient of friction of 0.12, find the torque required to produce a pull of 40 kN.

Solution  Given: P 5 mm, d
m

30 mm, 2 °, 0.12,  W 40 kN,

 

e

e

m

p

d

cos

.

cos
.

tan .

tan

0 12

30
0 13856

7 891

1 5

30
3 04.

(a) When rods are tightened,

Torque,

 

P W

T
Pd

tan ( )

tan ( . . )

.

.

40 10 3 04 7 89

7724 5

2

7724 5 1

3

N

 m

55 10 115 863 . Nm

(b) When the rods are slackened

P W

T

tan ( )

tan ( . . )

.

40 10 7 89 3 04

3394

3394 15 10

50

3

3

N

991Nm

Example 5.15

A vertical shaft 140 mm in diameter rotating at 120 rpm rests on a flat end foot step bearing. The shaft 
carries a vertical load of 30 kN. The coefficient of friction is 0.06. Estimate the power lost in friction, 
assuming (a) uniform pressure and (b) uniform wear.

Solution  Given: R 70 mm, N 120 rpm, W 30 kN, μ 0.06

(a) Uniform pressure

T W R
2

3

2

3
0 06 30 10 0 07

84

3

  

Nm

Power lost in f

. .

rriction

kW

T

84 2
150

60
10

1 056

3

.
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(b) Uniform wear

T W
R





2

0 06 30 10
0 07

2
63

63 2
120

3.
.

Nm

Power lost in friction
660

10

0 79

3

. kW

Example 5.16

A conical pivot supports a load of 25 kN, the cone angle being 120°, and the intensity of normal pres-
sure does not exceed 0.25 MPa. The external radius is twice the internal radius. Find the outer and 
inner radii of the bearing surface. If the shaft rotates at 180 rpm and the coefficient of friction is 0.15, 
find the power lost in friction, assuming uniform pressure.

Solution  Given: W 25 kN, 2    120  p
n

0.25 mpa, r
2

2r
1
, N 180 rpm,  0.15

 

Intensity of normal pressure,  p
W

r rn ( )

.
(

2
2

1
2

3

0 25
25 10

2rr r

r

r

Tf

1
2

1
2

1

2

103

206

2

3

)

mm

mm

Frictional torque, W
r r

r r
cosec  

cosec

2
3

1
3

2
2

1
2

32

3
0 15 25 10. 660

206 103

206 103

693 8

3 3

2 2

. Nm

Power lost in friction
Tf

1000

693 8
2

1000
13 08

180
60.

( )
.  kW

Example 5.17

A thrust shaft of a ship has six collars of 600 mm outer diameter and 300 mm inner diameter. The 
total thrust from the propeller is 120 kN. If the coefficient of friction is 0.15 and speed of the engine 
100 rpm, find the power lost in friction at the thrust block, assuming (a) uniform pressure, and  
(b) uniform wear.
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Solution  Given: n 6, r
2
  300 mm  r

1
 mm, W  120 kN, 0.15, N = 100 rpm

(a) Uniform pressure

Friction torque,

 

 T n W
r r

r rf

2

3

2

3
6 0 15 120 1

2
3

1
3

2
2

1
2

. 00
300 150

300 150
10

25 200

25 200
2 100

3
3 3

2 2
3

,

,
( /

Nm

660

1000
263 9

)
. kW

(b) Uniform wear

Friction torque,

 

 

Nm

T n Wrf m

6 0 15 120 10
300 150 10

2
24 300

24 300
2

3
3

.
( )

,

,
( 100 60

1000
254 47

/ )
. kW

Example 5.18

A force of 250 N is required to pull a body resting on a horizontal plane with a force applied at 30° to 
the horizontal. If the direction of the force is reversed to push the body, the force required is 300 N. 
determine the mass of the body and the coefficient of friction between the body and the surface. Also 
calculate the minimum force required to pull the body.

Solution  

Given: 30°, P
1

250 N, P
2

300 N

To pull the body, P
1

W sin /cos (  – ) 250

To push the body, P
2

W sin /cos ( ) 300

cos ( )/cos (  – ) 250/300

1.2 [cos 30° cos  – sin 30° sin ] cos 30° cos sin 30° sin 

1.2 [0.866 cos  – 0.5 sin ] 0.866 cos 0.5 sin 

1.2 [0.866 – 0.5 tan ] 0.866 0.5 tan 

1.0392 – 0.6 μ 0.866 0.5 μ

1.1 μ 0.1732

μ 0.1575, 8.948°

W 250 cos (30° – 8.948°)/sin 8.948° 1500 N

Minimum force W sin 1500 sin 8.948° 233.3 N

Example 5.19

A bolt with square threads has outer diameter 30 mm and pitch of 5 mm. It is tightened by screwing 
a nut whose mean diameter of bearing surface is 50 mm. The coefficient of friction for nut and bolt is 
0.12 and for nut and bearing is 0.15. The nut is tightened by a spanner whose effective lever arm is 450 mm. 
The load on the bolt is 12 kN. Determine the effort required at the end of the spanner.

Power lost in friction,

Power lost in friction,
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Solution  Given: d
0

30 mm, p  5 mm  d
b

50 mm, 0.12, 
c

0.15, 450 mm, W 12 kN
Mean diameter of screw, d

m
d

o
 – p/2 30 – 2.5 27.5 mm

Helix angle, tan–1 [p/( d
m
)] tan–1 [5/(  × 27.5)] 3.3123°

Friction angle, tan–1 μ tan–10.12 6.8428°
Force required on the screw, P W tan ( )

= 12 tan (3.3123° 6.8428°) 2.149 kN
Total frictional torque, T

f
Pd

m
/2 μ

c
 Wd

b
 / 2

= 2.149 × 27.5/2 0.15 × 12 × 50/2
= 74.555 N · m

If F is the effort applied at the end of the lever, then
450 F 74555 

F 165.7 N

Example 5.20

A turnbuckle is used to couple two railway coaches. It has single-start square threads with pitch of 12 mm 
on a mean diameter of 38 mm. Calculate the work to be done in drawing the coaches together by a 
distance of 200 mm, if the coefficient of friction is 0.12, when (a) the steady load is 2500 N, (b) the 
load increases from 2500 N to 8000 N, and (c) efficiency of the turnbuckle.

Solution  Given: p 12 mm, d
m
  38 mm  s 200 mm, 0.12, W

1
2500 N, W

2
8000 N

(a)

 

Helix angle  

Fricti

, tan [ /( )] tan [ / ( )] .1 1 12 38 5 74p dm

oon angle, tan

Force required on the

1 tan . .1 0 12 6 8428

  screw, W tan

2500 tan N

Torque on 

P ( )

( . . )5 74 6 8428 558

eeach rod, N mm

Total torque require

T Pdr m/ /2 558 38 2 10602

dd on the coupling nut, 2 N mm

Number of turns re

T Tr 21 204,

qquired to bring the coaches nearer by 200 mm,

200/24

N s p/2

8.33

Work done 2 = 2 N mNT 8 33 21204 10 1110 243. .

(b)  Work done 1110.24 (8000 – 2500)/2500 2442.528 N · m
(c)  Efficiency /tan /tan  tan ( ) tan . ( . . ) .   5 74 5 74 6 8428 0 45 oor 45%

Example 5.21

In a thrust bearing the outer and inner radii of the contact surface are 200 mm and 150 mm, respec-
tively. Total axial load is 80 kN and the coefficient of friction is 0.05. The shaft is rotating at 420 rpm. 
Intensity of pressure is not to exceed 0.35 MPa. Assuming uniform pressure, calculate (a) power lost 
in overcoming friction, and (b) the number of collars required for the thrust bearing.

Solution  Given: r
2

200 mm, r
1
  150 mm  W  kN, 0.05, N 420 rpm, p 0.35 mpa

(a) Frictional torque  )/(, ( / ) [( )]

( / )

T W r r r rf 2 3

2 3

2
3

2
3

2
2

1
2

00 05 80 000 200 150 200 150 10

704 762

3 3 2 2 3. , [( )/( )]

. N m per ccollar

Power lost in friction 2 60 10

2 420 704 76

3NTf /( )

. 22 60 10 313/( ) kW per collar
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(b) Number of collars required, 

80,000/

n W r r p( )

[ (

2
2

1
2

2000 150 0 35 4 16 42 2 ) . ] .

Total power lost = 4 31.997

= 124 kW

Example 5.22

The mean diameter of a screw jack having pitch of 10 mm is 50 mm. A load of 25 kN is lifted through 
a distance of 180 mm. Find the work done in lifting the load and efficiency of the screw when 

(a) The load rotates with the screw.

(b)  The load rests on the loose head that does not rotate with the screw. The outer and inner diame-
ters of the bearing surface of the loose head are 60 mm and 10 mm, respectively. The coefficient 
of friction for the screw as well the bearing surface may be taken as 0.10.

Solution  

Given: p 10 mm, d
m

50 mm, W 25 kN, h 180 mm, μ μ
c

0.10, R
2

30 mm, R
1

5 mm

Helix angle of screw, tan tan1 1 10

50

p

dm

33 6426

0 10 5 71061 1

.

tan . .Angel of friction, = tan

Force required at the circumference of screw to lift the load,

P W tan ( ) tan ( . . ) .  25 3 6426 5 7106 4 118kN

Frictional torque of screw, T P
d

f
m

2
4 118

50

2
102 94. . N m

(a) Number of rotations made by screw to lift the load through 180 mm,

N
h

p

180

10
18

Work done in lifting the load 2 2 18 102 94 11642 6 NTf . . N m

Efficiency, 


 
tan

tan

tan .

tan . .
. .

3 6426

3 6426 5 7106
0 3865 38 65or

(b) Mean radius of bearing surface, R R Rm

1

2

1

2
5 30 17 51 2( ) ( ) . mm

Total frictional torque required at the screw and collar,

T P
d

WRf C
m

2

4 118
50

2
0 10 25 17 5 146 7

m

. . . . N m
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Work done in lifting the load 2  NT
f

2   18  146.7 16591.4 N . m
Torque required to lift the load without friction,

T W
d

o tan

tan . .

m

2

25 3 6426
50

2
39 79 N m

Efficiency of screw jjack, or
T

T
o

f

39 79

146 7
0 2712 27 12

.

.
. . %

Example 5.23

Two co-axial roads are connected by a turnbuckle having pitch diameter of 20 mm and pitch of 3 mm 
threads. The included angle of the threads is 60°. Calculate the torque required on the nut to produce 
a pull of 50 kN. The coefficient of friction is 0.15.

Solution  Given: d
m

20 mm, p 3 mm, 2 60°, W 50 kN, μ 0.15

tan .

.


 



p

md

Virtual coefficient of fri

3

20
0 04775

2 7336

cction, 



 

e

e

cos

.

cos
.

tan tan . .

0 15

30
0 1732

0 1732 91 1 88264

Force required at the circumference of screw,

P W tan ( ) tan ( . . ) .  kN

Torque on one 

50 2 7336 9 8264 11 14

rrod, 
d

N m

Torque required on the nut

T P m

2
11 14

20

2
111 4. .

2 2 111.4 222.8 N mT

Summary for Quick Revision

1 Friction is the property of the two bodies moving or tending to move on one another by virtue of 
which a force is developed between them. Force of friction is the force that opposes the motion 
of one body over another.

2 Friction is a blessing in some cases but a necessary evil in other cases.

3 Static friction: It is the friction experienced by two bodies in contact, while at rest.
Dynamic (or kinetic) friction: It is the friction experienced by two bodies in contact, while in 
motion. It is less than the static friction.
Sliding friction: It is due to sliding of two bodies on each other.
Rolling friction: It is due to rolling of two bodies on each other.
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Pivot friction: It is the friction experienced by two bodies due to rotation of one body around 
other, as in the case of foot step bearing.
Dry (or solid) friction: It is due to two dry and unlubricated surfaces in contact.
Boundary (or skin or greasy) friction: It is the friction experienced by two bodies in contact when 
separated by a thin film of a lubricant.

4 Laws of static friction
(i) The force of friction always acts in a direction opposite to the impending motion.
(ii) The limiting force of friction is directly proportional to the normal reaction.
(iii) The force of friction is independent of the area contact between the two surfaces.
(iv) The force of friction depends upon the roughness of the surfaces of two materials.

5 The coefficient of friction (μ) is the ratio of the force of friction (F) to the normal reaction (R), 
that is, μ F/R. Angle of friction is the angle that the resultant of F and R makes with R. In the 
case of limiting friction, the coefficient of friction is equal to the tangent of the angle of friction, 
that is, μ tan . In the case of limiting friction, the angle of the inclined plane is equal to the 
angle of friction. The angle of the plane when motion of an object on the plane is impending is 
called the angle of repose. Cone of friction is the cone generated by the resultant of F and R when 
it is rotated about the vertical axis.

6 Forces on sliding bodies:
(a) Body resting on a horizontal plane subjected to inclined force:

P W sin /cos (  – ) for pull type force
W sin /cos ( ) for push type force

Note that pull type force is smaller than push type force.
(b) Body resting on an inclined plane with force inclined to the plane:

P W sin ( )/cos (  – ) for body going up the plane
= W sin (  – )/cos ( ) for body going down the plane

(c) Body resting on an inclined plane with horizontal force:
P W tan ( ) for body going up the plane
P W tan (  – ) for body going down the plane

7 Efficiency of the inclined plane:
(i) For body going up the plane with inclined force:

(1 μ tan )/(1 μ cot )
(ii) For body going down the plane with inclined force:

(1 – μ tan )/(1 – μ cot )
(iii) For body going up the plane with horizontal force:

tan /tan ( )
(iv) For body going down the plane with horizontal force:

tan (  – )/tan 

8 Screw threads:
(a) Square threads:

P W tan ( )

where tan p/( d
m
)

(b) V-threads:
Frictional force, F (μ/cos ) W
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9 Screw jack:
A screw jack is a device for lifting of load.
(i) Horizontal effort required:

= W tan ( ) for raising a load
= W tan ( ) for lowering a load

Torque required to overcome friction between the screw and the nut:
T

1
W d

m
 tan ( )/2

Torque required to overcome friction at the collar:
T

2
μ

c
 W d

c
/2

where μ
c

collar coefficient of friction and 
 d

c
mean diameter of the collar

Total torque, T T
1

T
2

(P d
m

μ
c
 W d

c
)/2

F effort applied at the end of a lever of length T/
(ii) Efficiency:

tan /tan ( ), for raising of load
= tan (  – )/tan , for lowering of load

For efficiency to be maximum, 45° – /2

max
(1 – sin )/(1 sin )

(iii) Self locking and over-hauling screw:
If  > , then the screw is called self-locking. If  < , then the screw will lower of its own. 
Such a screw is called over-hauling. For a self-locking screw,  50%.

10 Friction in bearings:
(i) Flat pivot bearing.

(a) Uniform pressure:
Total frictional torque, T

f
2 μ W R/3 2 μ p (R

2
 – R

1
)/3

p W/[  (R
2
 – R

1
)]

Power lost in friction, P T
f
 

(b) Uniform wear
Total frictional torque on the bearing, T

f

1

2
μ W (R

2
R

1
) μ W R

m

(ii) Conical pivot bearing
(a) Uniform pressure

Total frictional torque, T
f

(2/3) μ W R cosec 
(b) Uniform wear

Total frictional torque on the bearing, T
f

1/2 × μ W R cosec 
(iii) Truncated conical pivot bearing.

(a) Uniform pressure:
Total frictional torque, T

f
(2/3) μW cosec  [( ) / ( )]r r r r2

3
1
3

2
2

1
2

(b) Uniform wear:
Total frictional torque, T

f
μW r

m
 cosec 

(iv) Flat collar bearing.
(a) Uniform pressure:

Intensity of pressure, p W/ [ ( )]r r2
2

1
2

Frictional torque, T W r r r rf ( / ) [( ) / ( )]2 3 2
3

1
3

2
2

1
2

(b) Uniform wear:
Total frictional torque on the bearing, T

f
μ W r

m
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11 Rolling friction:
Coefficient of rolling friction, b Fh/W
Let F

r
force applied to the body for rolling bW/h

F
s

force applied to the body for sliding μ W
The body rolls without sliding, if F

r
 < F

s
 or μ > b/h. The body will slide if F

s
 < F

r
 or μ < b/h.

The body will either roll or slide if μ b/h.

12 Anti-friction bearings:
In the case of anti-friction bearings, the point of contact between the journal and the bearing 
elements is either a point (as in the case of ball bearings) or a line (as in the case of roller 
 bearings).

13 Friction circle:
A cricle drawn with centre O and radius OC r sin r μ is called the friction circle. r is the 
radius of the journal.

14 Mitchell bearing is a tilting pad thrust bearing.

Multiple Choice Questions

1 Friction is a curse in case of
(a) Belt drive (b) Lathe slide (c) Brakes (d) Clutches

2 Force of friction does not depend upon
(a) Area of contacting surfaces (b) Material of contacting surfaces
(c) Velocity of sliding (d) Temperature

3 If μ coefficient of friction, and angle of friction, then μ is equal to
(a) sin  (b) cos  (c) tan  (d) cot 

4 Angle of cone of friction is equal to ( angle of friction)
(a)  (b) 2  (c) 1.5 (d) 3

5  The efficiency of screw jack for raising the load is

(a) 
tan

tan ( )


 

 (b) 
tan

tan ( )


 

 (c) 
tan ( )

tan

 


 (d) 
tan ( )

tan

 


6  The maximum efficiency of a screw jack is

(a) 
1

1

sin

sin




 (b) 
1

1

sin

sin




 (c) 
1

1

cos

cos




 (d) 
1

1

sin

cos




7  The efficiency of a screw jack is maximum when

(a) 
 
4 2

 (b) 
 
4 2

 (c)  
 
2 2

 (d) 
 
2 2

8 For a self-locking screw, efficiency should be
(a) <50% (b) >50% (c) 50% (d) 50%

9 For a flat pivot bearing of radii r
1
 and r

2
, the mean radius with uniform pressure is

(a) 
1

2 1 2( )r r  (b) 2

3
2

3
1
3

2
2

1
2

r r

r r
 (c) 

1

2 1 2( )r r  (d) 
2

3
2

3
1
3

2
2

1
2

r r

r r



295 Friction 

10 The effective coefficient of friction for V-threads of thread angle 2  is

(a) μ sin  (b) 

sin

 (c) μ cos  (d) 

cos

Answers

1. (b) 2. (a) 3. (c) 4. (b) 5. (b) 6. (a) 7. (a) 8. (a) 9. (b) 10. (b)

Review Questions

1  What is friction? Is it necessary evil or blessing?

2  Describe various types of friction.

3  State the laws of friction.

4  Define coefficient of friction, angle of friction, and angle of repose.

5  When a screw jack is self-locking and self-hauling?

6  What are the limits on the efficiency of a screw jack to be of the self-locking type?

7  Explain uniform pressure and uniform wear theories for a clutch.

8  What are thin-film and thick-film lubrications?

9 What are anti-friction bearings?

10 Explain friction circle.

Exercises

5.1 An effort of 1 kN is required to move a certain body up an inclined plane of angle 15° when 
the force is acting parallel to the plane. If the angle of plane is increased to 20°, then the effort 
required is 1.25 kN. Find the weight of the body and coefficient of friction. 

[Ans. 3072.5N, 0.069]

5.2 A shaft has a number of collars integral with it. The outer diameter of the collars is 450 mm and 
the shaft diameter is 300 mm. If the uniform intensity of pressure is 0.3 MPa and the coefficient 
of friction is 0.05, determine (a) power absorbed in overcoming friction when the shaft is run-
ning at 120 rpm and carries a load of 150 kN, and (b) the number of collars required. 

[Ans. 19.03kW, 6]

5.3 A thrust shaft of a ship has six collars of 600 mm outer diameter and 300 mm inner diameter. 
The total thrust from the propeller is 120 kN. If the coefficient of friction is 0.15 and the speed 
of the engine is 100 rpm, determine the power absorbed in friction when (a) pressure is uniform, 
and (b) wear is uniform. 

[Ans. 43.98kW, 42.41kW]

5.4 The mean diameter of a bolt having V-threads is 25 mm. The pitch of the threads is 5 mm and the 
angle of threads is 55°. The bolt is tightened by screwing a nut whose mean radius of the bearing 
surface is 25 mm. If the coefficient of friction for nut and bolt is 0.10 and for the nut and bearing 
surface is 0.15, find the force required at the end of a 0.5 m long spanner when the load on the 
bolt is 10 kN.

[Ans. 119.4N]
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5.5 A vertical screw with single-start square threads 50 mm mean diameter and 10 mm pitch is raised 
against a load of 6 kN by means of a hand wheel, the boss of which is threaded to act as a nut. 
The axial load is taken by a thrust collar that supports the wheel boss and has a mean diameter of 
70 mm. If the coefficient of friction is 0.15 for the screw and 0.20 for the collar, find the suitable 
diameter of hand wheel. Assume that a person can apply a force of 150 N by each hand.

[Ans. 1m]

5.6 The pitch of a 50 mm mean diameter threaded screw of a jack is 12.5 mm. The coefficient of 
friction between the screw and the nut is 0.15. Determine the torque required on the screw to 
raise a load of 20 kN. Assume that the load does not rotate with the screw. Calculate the ratio of 
torque required for raising and lowering the load. Also calculate the efficiency of the screw in 
both the cases. 

[Ans. 3.34, 34.25%, 87.43%]
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6.1 INTRODUCTION
Belts, chains and ropes are used for power transmission. Belts and chains are used for short centre 
drives whereas ropes are used for long centre distances. Belts are of two types: flat belts and V-belts. 
Chains give a more positive drive than belts. There are problems of slip and creep in belts. Belts can 
be either of the open type or cross type. In this chapter, we shall study belts, chains and ropes from the 
point of view of power transmission.

6.2 FLAT BELT DRIVE

6.2.1 Angular Velocity Ratio
Consider the open belt drive shown in Fig.6.1. Let the smaller pulley be the driver and the bigger  
pulley the driven (or follower). When the driver is rotating anticlockwise, the top side of the belt will 
be the tight side and the bottom side the slack side.



298 Theory of Machines

Fig.6.1 Flat belt drive

Let d
1
    diameter of the driving pulley

d
2

diameter of the driven pulley
n

1
rpm of the driving pulley

n
2

rpm of the driven pulley

Then angular velocity of driver, 


1
12

60
 

n
rad/s

and angular velocity of follower, 


2
22

60
 

n
rad/s

Angular velocity ratio, 


1

2

1

2

n

n

Linear velocity of driver, v
1

d
1
n

1

Linear velocity of follower, v
2

d
2
n

2

Assuming there is no slip between the belt and the pulleys, v
1

v
2

n

n

d

d
1

2

2

1  

(6.1)

If t is the thickness of the belt, then

n
1
/n

2
(d

2
t)/(d

1
t) (6.2)

6.2.2 Effect of Slip
Slip is the difference between the speed of the driver and the belt on the driver side and the belt and 
the follower on the driven side.

Let  s
1

percentage slip between the driver and the belt
s

2
percentage slip between the belt and the follower

Linear speed of belt on driver v
s

1
11

100

Linear speed of follower, v v
s s

2 1
1 21

100
1

100
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v
s s s s

v s1
1 2 1 2

11
0.01

100
1

where s
s s s s1 2 1 20.01

100
 is the total fractional slip.

Hence 
n

n
s

d t

d t
2

1

1

2

1  (6.3)

6.2.3 Law of Belting
The law of belting states that the centre line of the belt as it approaches the pulley must lie in a plane 
perpendicular to the axis of that pulley, or must lie in the plane of the pulley, otherwise the belt will 
run off the pulley.

6.2.4 Length of Open Belt
Consider the open flat belt drive shown in Fig.6.2. The length of open belt,

L
o

arc AEB arc CFD AC BD

arc 
( 2 )

2
1AEB

d  

arc 
( 2 )

2
2CFD

d  

AC BD O
1
G C cos 

L
d d

Co
1 2( 2 )

2

( 2 )

2
2

   
cos

Fig.6.2 Open flat belt drive
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Now
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1 2
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d d d d
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(6.4)

6.2.5 Length of Cross Belt
Consider the cross belt shown in Fig.6.3. The length of cross flat belt,

L
c
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L C
d d

C

d d d d

Cc 2
1

8 2 2
1 2

2

2

1 2 1 2

2

2
2 4

1 2 1 2

2

C
d d d d

C


  

(6.5)

Fig.6.3 Cross flat belt drive

6.2.6 Angle of Arc of Contact
1. Open belt The angle of arc of contact on the smaller pulley,

 – 2

    
 2

2
1 2 1sin

d d

C   
(6.6a)

The possibility of slip is more on the smaller pulley due to smaller angle of arc of contact.

2. Cross belt The angle of arc of contact on either pulley,

2

 2
2

1 1 2sin
d d

C   
(6.6b)

6.2.7 Ratio of Belt Tensions
Let T

1
 and T

2
 be the belt tensions on the tight and slack sides respectively, as shown in Fig.6.4(a). Let 

 be the angle of contact on the pulley. Consider a portion AB of the belt on angular arc . Let the 
tension change from T to T T in going from A to B. Let R be the normal reaction on the pulley and 
μ  R the force of friction. The forces acting on the belt-pulley system are shown in Fig.6.4(b).
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Fig.6.4 Belt tensions

Resolving the forces vertically, we have
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Resolving the forces horizontally, we have
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T
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1

2

( )exp 
  

(6.7)

The ratio of belt tensions is given by Eq. (6.7).



303 Belts, Chains and Ropes

6.2.8 Power Transmitted

Power transmitted,         P
T T v1 2

1000
 kW   (6.8a)

               
T v1 3

1

10

[ exp( )]
kW

  
(6.8b)

6.2.9 Centrifugal Tension
The centrifugal tension is introduced in the belt due to its mass. Let T

c
 be the centrifugal tension in 

the belt. Consider the length of the belt over an angular arc , as shown in Fig.6.5. The force acting 
on the belt due to belt tension,

2
2

Tc sin


 T
c
   

Fig.6.5 Centrifugal tension

Centrifugal force acting on length AB and of unit width of the belt due to angular velocity,

F
m r v

r
mvc




1 2
2

where m mass of the belt per unit length

r radius of the pulley

v speed of belt

For equilibrium of the belt,

T
c

mv2 

T
c

mv2  (6.9)
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Centrifugal stress,   c
cT

bt

mv

bt

2

  (6.10)

where b width of the belt and
t thickness of the belt

Effective tension on tight side T
1

T
c

Effective tension on slack side T
2

T
c

6.2.10 Condition for Maximum Power Transmission
Power transmitted, P (T

1
 – T

2
) v

 T
1
[1 – exp(– μ )] v

Let 1 – exp (– μ ) k, so that

P kT
1
v

Now maximum belt tension, T T
1

T
c

or T
1

T T
c

 P k (T  T
c
) v

 kTv  kT
c
v

 kTv  kmv3

For P to be maximum,  
d

d

P

v
0

or  kT – 3k m v2 0

or  T 3mv2

or v
T

m3

0.5

  (6.11)

P kT
T

m
km

T

mmax 3 3

0.5 1.5

k
T

m
T

T

3 3

0.5

2

3 (3 )

1.5

0.5

kT

m   
(6.12)

6.2.11 Initial Belt Tension
Let T

o
initial tension in belt

Resultant tension on tight side T
1
 – T

o

Resultant tension on slack side T
o
 – T

2

Since the belt length remains constant, therefore

T
1
  T

o
T

o
 – T

2

or T
T T

o
1 2

2
  (6.13a)

Considering centrifugal tension,  T
T T T

o
1 2 2

2
c   (6.13b)
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6.2.12 Effect of Initial Tension on Power Transmission

Ratio of tensions, 
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v oT
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0.5

  

(6.15)
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While starting, v 0 and T
c

0. Hence

T
c

c
T1

2

1 o
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While running,  T
c

c
T T1

2

1 o c

Hence maximum belt tension, T
c

c
T1

2

1 o
  (6.17)

6.2.13 Belt Creep
The tension on the tight side is more than the tension on the slack side. As a result of this, the belt is 
stretched more on the tight side as compared to the slack side. Therefore, the driver pulley receives 
more length of the belt and delivers less. Hence, the belt creeps forward. The reverse occurs on the 
follower pulley. The follower pulley receives less length of the belt and delivers more. As a result of it, 
the belt creeps backward. This phenomenon is called creeping of the belt.

Creep = 1 2T T

bt E   
(6.18)

where E is the modulus of elasticity of belt material.
The velocity ratio becomes,

n

n

d

d

E

E
2

1

1

2

2

1




  (6.19)

6.2.14 Crowning of Pulleys
The pulley face is given a convex curvature and is never kept flat. This is called crowning of the pul-
leys. This helps in running the belt in the centre of the pulley width. Crowning prevents any tendency 
of the belt to fall off the pulley face.

6.2.15 Cone Pulleys
Consider the cone pulley block shown in Fig.6.6. Let N be the speed of the driver block, and R

1
, R

2
, 

R
3
, etc. the radii of its pulleys. Let the radii of the driven pulleys be r

1
, r

2
, r

3
, etc. and speeds n

1
, n

2
, n

3
, 

etc. The centre distance between the pulleys is C.
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Fig.6.6 Cone pulley system

Similarly 
n

N
k

R

r
3 2 1

1

or in general, 
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N
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R
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r
i i i

i

( 1) 1

1

  (6.20)

and 
n

n
ki i

1

( 1)   (6.21)

The length of the belt is same for all the cones, therefore

 R
i

r
i

constant, i 1, 2, 3 etc. (6.22)

6.2.16 Compound Belt Drive
In compound belt drive, the driven pulley of the first set is mounted on the same shaft on which the 
driver of the second set is mounted. Let pulley 1 be the driver for the first set and pulley 2 its follower. 
The driver of the second set, pulley 3, is mounted on the same shaft on which pulley 2 is mounted. The 
follower of second set is pulley 4.

n

n

d

d
2

1

1

2
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n

n

d

d
4

3

3

4

Hence 
n

n

d d

d d
4

1

1 3

2 4

or in general,

Speed of last driven

Speed of first driver

Product of diametters of drivers

Product of diameters of drivens   
(6.23)

Example 6.1

Two pulleys of diameters 450 mm and 150 mm are mounted on two parallel shafts 2 m apart and are 
connected by a flat belt drive. Find the power which can be transmitted by the belt when the larger 
pulley rotates at 180 rpm. The maximum permissible tension in the belt is 1 kN, and the coefficient of 
friction between the belt and the pulley is 0.25. Also find the length of the cross belt required and the 
angle of arc of contact between the belt and the pulleys.

Solution 

v2

450 180

60 1000
4.24 


m/s

n1

180 450

150
540 rpm

Now sin
d d

C
1 2

2

150 450

4000
0.15

8.627°
Angle of contact, 2 197.254° or 3.443 rad

T

T
1

2

( )exp 

 exp(0.25 3.443) 2.365

T
T

2
1

2.365

1000

2.365
422.83 N

Power transmitted, P T T
v

1 2
2

1000

(1000 422.83)
4.24

1000
2.447 kW

Length of cross belt, L C
d d d d

Cc 2
2 4

1 2 1 2

2

4
(0.450 0.150)

2

(0.450 0.150)

8

2

 4.987 m
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Example 6.2

A shaft running at 200 rpm drives another shaft at 400 rpm, and transmits 7.5 kW through an open 
belt. The belt is 80 mm wide and 10 mm thick. The centre distance is 4 m. The smaller pulley is of 
500 mm diameter, and the coefficient of friction between the belt and pulley is 0.30. Calculate the 
stress in the belt.

Solution 

d
n d

n2
1 1

2

400
500

200
1000 mm

v1

500 400

60 1000
10.472 


m/s

sin
d d

C
2 1

2

1000 500

8000
0.0625

3.583°

Angle of arc of contact,  180° – 2 172.83° 3.0165 rad

T

T
1

2

 ( )  (0.3 3.0165) 2.472exp exp
  

(1)

Power transmitted, P T T
v

1 2 1000
 kW

T T1 2

7.5 1000

10.472
716.2 N

  
(2)

From (1) and (2), we get

T
1

1202.7 N and T
2

486.5 N

Maximum stress in the belt 
T

bt
1

1202.7

80 10
1.503 2N/mm

Example 6.3

A leather belt is required to transmit 8 kW from a pulley 1.5 m diameter running at 240 rpm. The angle 
of contact is 160° and the coefficient of friction between belt and pulley is 0.25. The safe working 
stress for leather is 1.5 MPa and density of leather is 1000 kg/m3. Determine the width of the belt if its 
thickness is 10 mm. Take into account the effect of centrifugal tension.

Solution 

Velocity of the belt, v
 1.5 240

60
18.85 m/s

Power transmitted,  P T T
v

1 2 1000
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T T1 2 8
1000

18.85
424.4 N

T

T
1

2

( )exp 

exp 0.25 160
180

2.01


T
1

844.6 N and T
2

420.2 N

Mass of the belt per metre length, m b 0.01 1 1000 10b kg

Centrifugal tension, T
c

mv 2 10b(18.85)2 3553.2 b N

Maximum tension in the belt, T   bt

  1.5 106 b 0.01 15000 b N

 T T
1

T
c

or 15000 b 844.6 3553.2b

 b 0.0738 m or 73.8 mm

Example 6.4

A pulley is driven by a flat belt 100 mm wide and 6 mm thick. The density of belt material is 1000 kg/m3. 
The angle of lap is 120°  and the coefficient of friction 0.3. The maximum stress in the belt does not exceed 
2 MPa. Find the maximum power that can be transmitted and the corresponding speed of the belt.

Solution 
Maximum tension in the belt,  T 2 106 0.1 0.006 1200 N
Mass of the belt per metre length,   m 0.1 0.006 1 1000 0.6 kg/m

Speed of the belt for maximum power,  v
T

m3

0.5

1200

3 0.6

0.5

 25.82 m/s
For maximum power to be transmitted, the centrifugal tension,

T
T

c 3

1200

3
400 N

T

T
1

2

(0.3 120 /180) 1.874exp 
 

T
1

T – T
c

1200 – 400 800 N

T
T

2
1

1.874

800

1.874
426.8 N

Maximum power transmitted T T1 2 1000

v

(800 426.8)
25.82

1000

 9.636 kW
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Example 6.5

An open belt drive is used to connect two parallel shafts 4 m apart. The diameter of bigger pulley is 
1.5 m and that of the smaller pulley 0.5 m. The mass of the belt is 1 kg/m length. The maximum ten-
sion is not to exceed 1500 N. The coefficient of friction is 0.25. The bigger pulley, which is the driver, 
runs at 250 rpm. Due to slip, the speed of the driven pulley is 725 rpm. Calculate the power transmit-
ted, power lost in friction, and the efficiency of the drive.

Solution 

v1 1.5
250

60
19.635  m/s

v2 0.5
725

60
18.98  m/s

T
c

mv
1
2 1 (19.635)2 385.53 N

T
1

T  T
c

1500  385.53 1114.47 N

sin
d d

C
2 1

2

1.5 0.5

8
0.125

7.18°

180°  2 165.64° 2.89 rad

T

T
1

2

( )  (0.25 2.89) 2.06exp exp

T
T

2
1

2.06

1114.47

2.06
541.0 N

T
1
  T

2
1114.47  541.00 573.47 N

Torque on bigger pulley,  M
1

573.47 0.75 430.1 Nm

Torque on smaller pulley,  M
2

573.47 0.25 143.37 Nm

Power transmitted, P T T
v

1 2
1

1000
573.47

19.635

1000
11.26 kW

Input power, P M1 1 1 430.1

2
250

60

1000
11.26 



kW

Output power, P M2 2 2 143.37

2
725

60

1000
10.885 


kW

Power lost in friction, P
f

11.26  10.885 0.375 kW

Efficiency of the drive 
10.885

11.26
96.67%
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Example 6.6

Two parallel shafts 5 m apart are connected by open flat belt drive. The diameter of the bigger pulley 
is 1.5 m and that of the smaller pulley 0.75 m. The initial tension in the belt is 2.5 kN. The mass of the 
belt is 1.25 kg/m length and coefficient of friction is 0.25. Taking centrifugal tension into account, find 
the power transmitted, when the smaller pulley rotates at 450 rpm.

Solution 

v
 0.75 450

60
17.67 m/s

T
c

mv
2
2 1.25 (17.67)2 390.28 N

T
T T T

o
c1 2 2

2

2500
2 390.28

2
1 2T T

T
1

T
2

4219.44 N

 sin 1 1.5 0.75

10
4.3

180° – 2 171.4° 2.991 rad

T
1
/T

2
exp ( ) exp (0.25 2.991) 2.1125

T
2

1355.65 N and T
1

2863.81 N

Power transmitted, P T T1 2 1000

v

(2863.81 1355.65)
17.67

1000
26.65 kW

 

6.3 V-BELT DRIVE
The V-belt drive is more positive than the flat belt drive. It is a short centre drive and is preferred for 
power transmission from the prime mover. The belt touches the sides of the grooved pulley only. The 
V-belts are classified as A, B, C, D, E.

6.3.1 Ratio of Belt Tensions
A V-belt in a grooved pulley is shown in Fig.6.7.

Let 2 pulley groove angle;

 R total reaction on the pulley;

R
n

normal reaction between the belt and the sides of the groove and

 coefficient of friction between the belt and the groove sides.

Then R 2R
n
 sin 

or R
R

n 2sin



313 Belts, Chains and Ropes

Force of friction, F 2 R
n
 





sin

R Re

where 
e
 is called the virtual, apparent or equivalent coefficient of friction.

Ratio of tensions, T

T e
1

2

( )exp     (6.24)

Fig.6.7 Forces on V-belt

Example 6.7

A compressor requires 100 kW to run at 240 rpm from an electric motor of speed 750 rpm, by means 
of a V-belt drive. The diameter of the compressor shaft pulley should not be more than 1 m while the 
centre distance between the shafts is 2 m. The belt speed should not exceed 25 m/s.

Determine the number of V-belts required to transmit the power if each belt has a cross-sectional 
area of 375 mm2, density 1000 kg/m3, and an allowable tensile stress of 2.5 MPa. The pulley groove 
angle is 40  and coefficient of friction between the belt and the pulley sides is 0.25.

Solution 

Diameter of motor pulley, d1

240 1

750
0.32 m

Mass of belt per metre length,  m 375 10–6 1 1000 0.375 kg/m

Velocity of belt,  v 25 m/s

Centrifugal tension,  T
c

mv2 0.375 625 234.375 N

Maximum tension in the belt,  T  A 2.5 106 375 10 6

  937.5 N

Tight side tension,  T
1

T  T
c

937.5  234.375 703.125 N

  
sin

d d

C
2 1

2

1 0.32

4
0.17

  9.78°
  180°  2 160.44° 2.8 rad
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 T
1
/T

2
exp (

e
 )

 
exp

sin
 

0.25

20
2.8

  exp (2.0466) 7.74

 
T2

703.125

7.74
90.84 N

Power transmitted per belt T T1 2 1000

v

 
(703.125 90.84)

25

1000
15.31 kW

Number of V-belts required 
100

15.31
6.53 7

6.4 CHAIN DRIVE
Chains are mostly used to transmit power without slipping and with better efficiency than belts.  
They are commonly used in motor cycles, bicycles, road rollers, and agricultural machinery. A chain 
on the sprocket is shown in Fig.6.8. The pitch of the chain is the distance between the hinge centers of 
the adjacent links. The pitch circle diameter is the diameter of the circle on which the hinge centers of 
the chain link lie, when the chain is wrapped round the sprocket.

C

p

d

Chain link

Smaller
sprocket

Hinge D Larger
sprocket

Fig.6.8 Chain drive

6.4.1 Chain Pitch
As shown in Fig.6.9, the chain pitch is,

p
D

D
2

2 2 2
sin sin

 

  
(6.25a)

where 
360

z
zand Number of teeth

Hence, p D
z

sin
180

  (6.25b)
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6.4.2 Chain Length
As shown in Fig.6.10, the chain length

L C R R
R R

C
2 1 2

1 2

2

  (6.26a)

 R R
p z z

1 2
1 2

2

R
p

z1
12

180
cosec

R
p

z2
22

180
cosec

L C
p z z

p
z z

2
2

180 180

1 2

2

1 2

cosec cosec

22

4C

 
(6.26b)

Fig.6.9 Chain pitch

Fig.6.10 Chain length
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Example 6.8

A chain drive is used for reduction of speed from 240 rpm to 120 rpm. The number of teeth on the 
driving sprocket is 24. Find the number of teeth on the driven sprocket. If the pitch circle diameter 
of the driven sprocket is 600 mm and centre distance is 1 m, determine the pitch and length of the 
chain.

Solution 

z
n z

n2
1 1

2

240 24

120
48

R
p

z2
22

180
cosec

0.3
2

180

48

p
cosec

p    0.0392 m or 39.2 mm

L C
p z z p

C z z
2

( )

2 4

180 1801 2
2

1 2

cosec cosec

2

2 1
0.0392

2
(24 48)

0.03922

4

180

24

180

48

2

cosec cosec

 2 2.8224 0.0223 4.8447 m

6.5 ROPE DRIVE
Ropes are used for power transmission over long distances. They are commonly used in hoisting 
equipment, drilling rigs, and textile industry. Ropes are either made of fibre or steel. Ropes are gener-
ally of circular cross-section and require grooved sheaves or pulleys.

6.5.1 Ratio of Tensions

The ratio of tensions, 
T

T
1

2

( )exp  e  (6.27)

where 

e sin

 semi-groove angle of the sheave
 angle of contact.
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Example 6.9

A pulley of groove angle 45°, diameter 4 m and having 15 grooves is used to transmit power. The angle 
of contact is 170°  and the coefficient of friction between the ropes and the groove sides is 0.30. The 
maximum possible tension in the ropes is 1 kN and the mass of the rope is 1.5 kg/m length. Determine 
the speed of the pulley for maximum power conditions.

Solution 

For maxim power to be transmitted, v
T

m3

1000

3 1.5
14.91 

0.5 0.5

m/s

Speed of the pulley, n
60 14.91

4
71.2 


rpm

For maximum power to be transmitted, T
T

c 3

1000

3
333.3 N

Tension on the side, T
1

T – T
c

1000 – 333.33 666.67 N

T

T
1

2

 ( )exp  e

exp 0.3  (22.5 ) 170
180

cosec


 exp (2.326) 10.23

T
T

2
1

10.23

666.67

10.23
65.12 N

Power transmitted per rope T T1 2 1000

v

(666.67 65.12)
14.91

1000
8.97 kW

Total power transmitted, P 8.97 15 134.5 kW

Example 6.10

A prime mover running at 400 rpm drives a generator at 600 rpm by a belt drive. Diameter of prime 
mover pulley 600 mm. Assuming a slip of 2%, determine the diameter of the generator pulley, if the 
belt thickness is 6 mm.

Solution 

Given: n
1

400 rpm, n
2

600 rpm, d
1

600 mm, s 2%, t 6 mm.

n
2
/n

1
[(d

1
t)/(d

2
t)] (1  s/100)

600/400 [(600 6)/(d
2

6)] (1 – 0.02)

d
2

(606 400/600) (0.98) – 6 389.92 mm

Example 6.11

A pulley 200 mm in diameter is mounted on a motor shaft running at 900 rpm and drives a main shaft 
at 300 rpm by means of a flat belt. The belt is 6 mm thick and 20 mm wide. Determine the size of the 
pulley on the main shaft if there is a slip of 3 % on each pulley.
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Solution 

Given: d
1

200 mm, n
1

900 rpm, n
2

300 rpm, t 6 mm, b 20 mm, s
1

s
2

3%
Now linear speed of belt,  v

1
v

2

The slip will occur on smaller pulley only.
(d

1
t) n

1
 (1 – s

1
/100) (1 – s

2
/100) (d

2
t) n

2

d
2

(206 900 0.97 0.97/300) – 6 575.5 mm

Example 6.12

Two parallel shaft at 6 m centre distance are connected by a cross belt have pulley diameters of 
300 mm and 600 mm, respectively. Calculate the length of the belt required. If the same belt is to be 
used for the open belt drive, what is the remedy?

Solution 

Given: d
1

300 mm, d
2

600 mm, C 6 m

Length of cross belt, L
c

2C cos (d
1

d
2
) ( /2 )

sin (d
1

d
2
)/(2C) 900/12000 0.075

4.3 0.075 rad

L
c

2 600 cos 4.3 900 ( /2 0.075) 13447 mm

Length of open belt, L
o

2C  (d
1

d
2
)/2 (d

2
 – d

1
)2/(4C)

 12000 450 3600/24000 13413.87 mm

The remedy is that the length of the belt be shortened by (L
c
 – L

o
) 13447 – 13413.87 33.13 mm

Example 6.13

A shaft running at 120 rpm is to drive another shaft at 240 rpm and transmits 10 kW. The belt is  
120 mm wide and 10 mm thick. The coefficient of friction between belt and pulley is 0.25. The dis-
tance between the shafts is 3 m and the smaller pulley is of 600 mm diameter. Calculate the stress in 
the belt, assuming the drive to be of the open belt type.

Solution 

Given: n
1

120 rpm, n
2

240 rpm, d
1

600 mm, b 120 mm, t 10 mm, 0.25, P 10 kW, C 3 m

d
2

d
1
n

1
/n

2
600 120/240 300 mm

v
m

 (d
1

t) n
1
/60 610 10–3 120/60 3.833 m/s

Power transmitted, P (T
1
 – T

2
) v

m
/103

10 (T
1
 – T

2
) 3.833/103

T
1
 – T

2
10 103/3.833 2609.1 N (1)

For open belt drive, cos ( /2) (d
1
 – d

2
)/(2C) (600 – 300)/6000 0.05

/2 87.13°

174.27° 3.0416 rad

Now T
1
/T

2
exp ( ) exp (0.25 3.0416) 2.1391 (2)

Substituting in Eq. (1), we get

T
2
 (2.1391 – 1) 2609.1

T
2

1875.7 N

T
1

4012.3 N

Maximum stress in the belt, 
max

T
1
/(bt) 4012.3/(120 10) 3.343 N/mm2
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Example 6.14

A pulley of 600 mm diameter mounted on the driving shaft rotates at 120 rpm. A countershaft is to 
be driven at 300 rpm by an open belt drive, the centre distance being 2.5 m. The belt is to transmit  
3 kW. The coefficient of friction between the belt and the pulley is 0.3. Determine the width of the belt 
if safe tension in the belt material in tension is 15 N/mm.

Solution 

Given: d
1

600 mm, n
1

120 rpm, n
2

300 rpm, C 2.5 m, P 2.5 kW, 0.3, 
w

15 N/mm

d
2

d
1
n

1
/n

2
600 120/300 240 mm

sin (d
1
 – d

2
)/(2C) (600 – 240)/5000 0.072

4.12887° 0.072 rad

Angle of contact,  – 2 2.99746 rad

T
1
/T

2
exp ( ) exp (0.3 2.99746) 2.45774

P (T
1
 – T

2
) v/103

3 (T
1
 – T

2
) 600 120/(60 106)

T
1
 – T

2
795.78 N

T
2
 (2.45774 – 1) 795.78

T
2

545.896 N

T
1

1341.67 N

Width of belt, b T
1
/

w
1341.67/15 89.45 mm

Example 6.15

In a belt drive, the ratio of belt tensions is 2.2, when the effect of centrifugal tension is not considered. 
Linear velocity of belt is 15 m/s and the safe stress for the belt material is 1.5 MPa. Determine the 
width of the belt to transmit 9 kW. Density of belt material is 1000 kg/m3 and the thickness of belt is 
10 mm.

Solution 

Power,                                             P (T
1
 – T

2
) v/103 kW

      T
1
 – T

2
9 103/15 600 N

      T
1
/T

2
2.2

      T
2

600/1.2 500 N

      T
1

1100 N

Mass of the belt per metre length, m bt 1000 b 10 10–6 10–2 b kg/m length

Centrifugal tension,               T
c

mv2 10–2 b 225 2.25 b N

Maximum tension,               T
max

T
1

T
c

1100 2.25 b N

Maximum stress in belt T
max

/bt

              (1100 2.25 b)/(10 b) 1.5

or 1100 2.25 b 15 b

              b 1100/12.75 86.27 mm

Example 6.16

A leather belting of mass 1000 kg/m3 has a maximum permissible tension of 2.1 MPa. Determine the 
maximum power that can be transmitted by the belt 200 mm 10 mm, if the ratio of belt tensions is 2.
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Solution 

Mass of belt per metre length, m bt   200 10 10–6 1000 2 kg/m length
Maximum permissible tension in belt, T

max
bt

w
200 10 2.1 4200 N

For maximum power to be transmitted, T
c

T
max

/3 4200/3 1400 N
T

c
mv2 1400

v (1400/2)0.5 26.45 m/s
T

1
2T

max
/3 2 4200/3 2800 N

T
2

T
1
/2 1400 N

P
max

(T
1
 – T

2
) v /103 (2800 – 1400) 26.45/103 37 kW

Example 6.17

An open belt drive transmits power from a 300 mm diameter pulley running at 240 rpm to a pulley  
450 mm diameter. Angle of lap on smaller pulley is 160 . The belt is on the point of slipping when  
3 kW is being transmitted. The coefficient of friction between belt and pulley is 0.3.

It is desired to increase the power transmitted. State which of the following methods suggested 
would be more effective ?

(a) Initial tension in the belt is increased by 10%.

(b) Suitable dressing is given to the belt surface to increase the coefficient of friction by 10%. Assume 
that initial tension is kept the same.

Solution 

Linear velocity of belt, v d
1
n

1
/(60 103) 300 240/(60 103) 3.77 m/s

Power transmitted, P (T
1
 – T

2
) v/103

3 (T
1
 – T

2
) 3.77/103

T
1
 – T

2
3 103/3.77 795.76 N

T
1
/T

2
exp ( ) exp (0.3 160 /180) 2.3112

T
2
(2.3112 – 1) 795.76

T
2

606.89 N
T

1
1402.65 N

(a) Initial tension, T
i

(T
1

T
2
)/2 (1402.65 606.89)/2 1004.77 N

When the initial tension is increased by 10 %,
T

1
T

2
2 1.1 1004.77 2210.494 N

T
2
 (2.3112 1) 2210.494

T
2

667.58 N
T

1
1542.91 N

P (1542.91 – 667.58) 3.77/103 3.30 kW

(b) When coefficient of friction is increased by 10 %, then 1.1 0.3 0.33
T

1
/ T

2
exp ( ) exp (0.33 160 /180) 2.51314

When the initial tension is kept constant.
T

1
T

2
2 1004.77 2009.54 N

T
2
 (2.51314 1) 2009.54.494

T
2

572 N
T

1
1437.5 N

P (1437.5 – 572) 3.77/103 3.26 kW
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Example 6.18

A belt 200 mm wide and 8 mm thick embraces the smaller pulley by 160 . The density of belt material 
is 1000 kg/m3. Determine the maximum power that can be transmitted by the belt if maximum 
permissible stress in belt is 2 MPa and coefficient of friction is 0.25.

Solution 

Maximum allowable tension in belt, T
max

bt
w

200 8 2 3200 N

Mass of belt per metre length, m bt 200 8 10–6 1000 1.6 kg/m

Speed for maximum power tranmission, v [T/(3m)]0.5 [3200/(3 1.6)]0.5 25.82 m/s

Centrifugal tension, T
c

mv 2 1.6 (25.82)2 1066.67 N

T
1
/T

2
exp (0.25 160/180) 2.01

T
max

T
1

T
c
, T

1
3200 – 1066.67 2133.33 N

T
2

2133.33/2.01 1061.36 N

Power transmitted, P (T
1
 – T

2
) v /103 (2133.33 – 1061.36) 25.82/103 27.678 kW

Example 6.19

An open belt 100 mm 10 mm connects two pulleys 1500 mm and 600 mm diameters on parallel 
shafts 4 m apart. The material density of the belt is 985 kg/m3. The maximum tension is not to exceed 
2 kN and the coefficient of friction is 0.3. The larger driver pulley runs at 240 rpm. Due to slip the 
larger pulley runs at 590 rpm. Determine (a) the torque exerted on each of the shafts, (b) the power 
transmitted, (c) power lost in friction, and (d) the efficiency of the drive.

Solution 

Linear speed of belt, v d
1
n

1
/(103 60) 1500 240/(103 60) 18.85 m/s

Mass of belt per metre length, m bt 100 10 10–6 985 0.985 kg/m

Centrifugal tension, T
c

mv2 0.985 (18.85)2 350 N

T
1

T
max

 – T
c

2000 – 350 1650 N

Angle of contact on smaller pulley, 180° – 2 sin–1 [(d
1
 – d

2
)/2C]

 180° – 2 sin–1 [(1500 – 600)/8000]

 167.1° or 2.916 rad

T
1
/T

2
exp ( ) exp (0.3 2.916) 2.3984

T
2

1650/2.3984 687.96 N

(a) Torque on larger pulley shaft (T
1
 – T

2
) d

1
/2 (1650 – 687.96) 0.750 721.53 Nm

Torque on smaller pulley shaft (T
1
 – T

2
) d

2
/2 (1650 – 687.96) 0.3 288.612 Nm

(b) Power transmitted by larger pulley, P
1

(T
1
 – T

2
) v

1
/103   (1650 – 687.96) 1.5

240/(103 60) 18.134 kW
Power transmitted by smaller pulley, P

2
(T

1
 – T

2
) v 

2
/103  (1650 – 687.96) 0.6

590 /(103 60) 17.832 kW

(c) Power lost in friction, P
f

P
1
 – P

2
18.134 – 17.832 0.302 kW

(d) Efficiency of drive P
2
/P

1
17.832 100/18.134 98.33%
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Example 6.20

An open belt drive connects two parallel shafts 4 m apart. The diameter of larger pulley is 1.5 m and 
that of the smaller pulley is 1 m. The initial tension in the belt before starting is 2 kN. The belt is  
120 mm wide and 15 mm thick. Its density is 1100 kg/m3 and the coefficient of friction is 0.34. Taking 
centrifugal tension into account, determine the maximum power transmitted.

Solution 

Mass of belt per metre length, m bt 120 15 10–6 1100 1.98 kg/m
For maximum power transmission, v [T

i
/(3m)]0.5 [2000/(3 1.98)]0.5 18.35 m/s

Centrifugal tension, T
c

mv2 1.98 (18.35)2 666.7 N
Also T

i
[T

1
T

2
2T

c
]/2

T
1

T
2

2 2000 – 2 666.7 2666.6 N
Angle of contact, 180° – 2 sin–1 [(d

1
 – d

2
)/2C]

 180° – 2 sin–1 [(1.5 – 1)/8] 172.83° or 3.0165 rad
T

1
/T

2
exp (0.34 3.0165) 2.7888

T
2
 (2.7888 1) 2666.6

T
2

703.8 N
T

1
1962.8 N

Power transmitted, P (T
1
 – T

2
) v/103 (1962.8 – 703.8) 18.35/103 23.1 kW

Example 6.21

A V-belt of 6.5 cm2 cross-section has a groove angle of 40° and angle of lap of 165°. The mass of the 
belt is 1.2 kg/m run. The maximum safe stress is 8 N/mm2. Calculate the power that can be transmitted 
at 20 m/s speed, if coefficient of friction is 0.15.

Solution 

Centrifugal tension, T
c

mv 2 1.2 202 480 N
Maximum tension, T

max w
A 8 500 4000 N

Apparent coefficient of friction, 
e

/sin 0.15/sin 20° 0.4386
T

1
/T

2
exp (

e
) exp (0.4386 165 /180) 3.536

T
max

T
1

T
c
, T

1
4000 – 480 3520 N

T
2

3520/3.536 995.5 N
Power transmitted, P (T

1
 – T

2
) v/103 (3520 – 995.5) 20/103 50.49 kW

Example 6.22

A rope drive transmits 120 kW at 220 rpm by ropes 25 mm in diameter and 0.6 kg/m length  
mass. The maximum rope tension is 1360 N and it is designed for maximum power transmission  
conditions. The angle of contact is 160° and the coefficient of friction is 0.25. The sheave groove angle 
is 45°. Determine the diameter of the sheave and the number of ropes.

Solution 

For maximum power transmission, T
max

3T
c

1360 3mv2

 v 2 1360/(3 0.6) 755.56
v 27.487 m/s
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Diameter of sheave 60 v/ N 60 27.487/( 220) 2.386 m
T

c
mv2 0.6 (27.487)2 453.32 N

T
1

1360 – 453.32 906.68 N
T

1
/T

2
exp [(0.25/sin 22.5°) ( 160/180)] 6.1985

T
2

906.68/6.1985 146.27 N
Power transmitted, P n (906.68 – 146.27) 27.487/103 120
Number of ropes, n 5.74  6

Example 6.23

A chain drive is used for reduction of speed from 300 to 150 rpm. The number of teeth on the driving 
sprocket is 25. The pitch circle diameter of the driven sprocket is 500 mm. Determine the number of 
teeth on the driven sprocket and the pitch.

Solution 

(a) From n
1
z

1
n

2
 z

2
, z

2
300 25/150 50

(b) d
2
  p cosec (180°/z

2
)

500 p cosec (180°/50) 15.926 p
p 31.4 mm

Example 6.24

A flat belt is required to transmit 20 kW from a pulley 1.5 m diameter running at 300 rpm. The angle 
of contact between the belt and the pulley is 160° and the coefficient of friction is 0.25. The safe work-
ing stress for the belt material is 3 MPa. The thickness of belt is 6 mm and its density is 1100 kg/m3. 
Find the width of the belt required.

Solution 

Given: P 20 kW, d 1.5 m, n 300 rpm, 160°, 0.25, 3 MPa,
 t 6 mm, 1100 kg/m3, b ?
 v  d n/60 1.5 300/60 23.562 m/s
 m b t 1100 b 0.006 6.6b kg
 T

c
mv2 6.6b (23.562)2 3664.1 b N

 (T
1

T
c
)/(T

2
T

c
) exp ( )  exp (0.25 160/180) exp (0.698) 2

 T
1
 – 2T

2
T

c

 (T
1

T
c
)/(bt) 3 106

 T
1

T
c

3 106 b 6 103 18 103 b
 T

1
3664.1 b 18 103 b

 T
1
   14335.9 b

 T
2

5335.9 b
 P (T

1
 – T

2
) v/103

 20 103 (14335.9 – 5335.9) b 23.562
 b 0.0943 m or 94.3 mm

Example 6.25

A shaft running at 200 rpm carries a pulley 1.25 m diameter which drives a dynamo at 1200 rpm 
by means of a belt 6 mm thick. Allowing for the thickness of the belt and a slip of 4%, find the size 
of the dynamo pulley and width of belt. Find also the power required if ratio of belt tensions is 2.5.  
Maximum tension in the belt is not to exceed 3 MPa.
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Solution 

Given: n
1

200 rpm, d
1

1.25 m, n
2

1200 rpm, t 6 mm, s 4%, T
1
/T

2
2.5,

 P 15 kW, 
max

3 MPa, b ?, d
2

?
 n

2
/n

1
(d

1
t) (100 – s)/[(d

2
t) 100]

 1200/200 (1250 6) (100 – 4)/[100 (d
2

6)]
 d

2
195 mm

 v d
1
n

1
/60 1.25 200/60 13.09 m/s

 
max

T
1
/(bt)

 T
1

3 106 6 10–3 b 18 103 b
 T

2
T

1
/2.5 7.2 103 b

 P (T
1
 – T

2
) v/103

 15 (18 – 7.2) b 13.09
 b 0.1061 m or 106.1 mm

Example 6.26

A belt is required to transmit 40 kW from a pulley 1.5 m diameter running at 300 rpm. The angle of 
contact is spread over 11/24th of the circumference of the pulley, and the coefficient of friction is 0.3. 
Determine the width of the belt required, if thickness of belt is 10 mm, safe working stress for belt 
meterial is 2.5 MPa, and density of belt material is 1100 kg/m3.

Solution 

Given: P 40 kW, d 1.5 m, n 300 rpm, 11 360/24 165°,
 0.3, t 10 mm, 2.5 MPa, 1100 kg/m3

 v  dn/60 1.5 300 / 60 23.562 m/s
 m  bt 1100 b 0.01 11 b kg
 T

c
mv 2 11 b (23.562)2 6106.82 b N

 exp ( ) exp (0.3 165/180) exp (0.86394) 2.3725
 (T

1
T

c
)/(T

2
T

c
) 2.3725

 T
1
 – 2.3725 T

2
1.3725T

c

 (T
1

T
c
)/(bt) 2.5 106

 T
1

T
c

2.5 106 b 10 103 25 103 b
 T

1
6106.82 b 25 103 b

 T
1

18893.18 b
 T

2
4430.6 b

 P (T
1
 – T

2
) v/103

 40 103 (18893.18 – 4430.6) b 23.562
 b 0.1174 m or 117.4 mm

Example 6.27

A V-belt having a lap angle of 180° has a cross-sectional area of 250 mm2, and runs in a groove of 
included angle 40°. The density of the belt material is 1500 kg/m3 and maximum stress is limited to  
4 MPa. The coefficient of friction is 0.15.

Find the maximum power that can be transmitted, if the wheel has a mean diameter of 300 mm 
and runs at 900 rpm.
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Solution 

Given: 180°, a 250 mm2, 20°, 1500 kg/m3, 4 MPa,
 0.15, d 300 mm, n 900 rpm, P

max
?

 
e

/sin 0.15/sin 20° 0.43857
 exp (

e
) exp (0.43857 ) 3.9662

 m A 1500 250 10–6 0.375 kg
 v d n/60 0.3 900/60 14.137 m/s
 T

c
mv2 0.375 (14.137)2 74.95 N

For maximum power transmission,  (T
1

T
c
)/A

 (T
1

74.95)/(250 10–6) 4 106

 T
1

925.05 N
 T

2
T

1
/3.9662 233.23 N

 P
max

(T
1
 – T

2
) v/103

  (925.05 – 233.23) 14.137/103 9.78 kW

Example 6.28

A machine which is to rotate at 400 rpm is run by an engine turning at 1500 rpm, through a silent 
chain, having a pitch of 15 mm. The number of teeth on a sprocket should be from 18 to 105. The 
linear velocity of chain drive is not to exceed 10 m/s. Find the suitable number of teeth for both the 
sprockets.

Solution 

Given: n
1

1500 rpm, n
2

400 rpm, p 15 mm, v 10 m/s
 v  D

1
 n

1
/60

 10  D
1

1500/60
 D

1
0.127 m

 p d sin (180°/z)
 15 10–3 0.127 sin (180°/z

1
)

 z
1

26.5  28
 z

2
/z

1
n

1
/n

2

 z
2

28 1500/400 105

Example 6.29

A rope drive transmits 120 kW at 225 rpm by ropes, each 25 mm diameter and density 6800 kg/m3. 
The maximum rope tension is 1.5 kN and it is designed for maximum power conditions. The angle 
of contact is 160° and coefficient of friction is 0.25. Determine the diameter of pulley and number of 
ropes, if groove angle is 45°.

Solution 

Given: P
t

120 kW, n 225 rpm, d
r

25 mm, 6800 kg/m3,
T

max
1.5 kN, 160°, 0.25, 2 45°, d ?, i ?

e
/sin 0.25/sin 22.5° 0.65328

m  d 2
r
 /4 625 10–6 6800/4 3.338 kg
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For maximum power transmission, v [T
max

/(3m)]0.5

  [1500/(3 3.338)]0.5 12.239 m/s
 T

c
T

max
/3 1500/3 500 N

 T
1

T
max

 – T
c

1500 – 500 1000 N
 exp (

e
) exp (0.65328 160/180) 6.1985

 T
1
/T

2
6.1985

 T
2

1000/6.9815 161.33 N
 P

max
(T

1
 – T

2
) v/103

  (1000 – 161.33) 12.239/103 10.264 kW
Number of ropes, i P

t
 /P 120/10.264 11.69 12

 v  d n/60
 12.239 d 225/60
 d 1.039 m

Example 6.30

An open belt 100 mm wide connects two pulleys mounted on parallel shafts with their centres 2.5 m 
apart. The pulleys are of 500 mm and 250 mm diameters. The coefficient of friction between the belt 
and the pulleys is 0.3. The maximum stress in the belt is limited to 15 N/mm width. Find the maximum 
power which can be transmitted if the larger pulley rotates at 120 rpm.

Solution 

Given:  b 100 mm, C 2.5 m, d
1

250 mm, d
2

500 mm, 0.3,
 

max
15 N/mm width, n

2
120 rpm, P

max
?

 sin (d
2
 – d

1
)/(2C) (500 – 250)/(2 2500) 0.05

 2.866°
 180° – 2 180° – 5.732° 174.268°
 exp (  ) exp (0.3 174.268/180) 2.49
 v  d

2
n

2
/60 500 10–3 120/60 3.14 m/s

 T
max max

b 15 100 1500 N, T
c

T
max

/3 500 N
 T

1
T

max
 – T

c
1500 – 500  1000 N

 T
2

T
1
/2.49 401.6 N

 P (T
1
 – T

2
) v/103

  (1000 – 401.6) 3.14/103 1.879 kW

Example 6.31

A leather belt 120 mm wide and 6 mm thick transmits power from a pulley 800 mm diameter which 
rotates at 450 rpm. The angle of lap is 160° and coefficient of friction is 0.3. The mass of the belt is 1000 
kg/m3 and the stress is not to exceed 2.5 MPa. Find the maximum power that can be transmitted.

Solution 

Given: b 120 mm, t 6 mm, d
1

800 mm, n
1

450 rpm, 160°,
0.3, 100 kg/m3, 

max
2.5 MPa, P

max
?

m bt 120 6 10–6 1000 0.72 kg
v  d

1
 n

1
/60 800 10–3 450/60 18.85 m/s

exp (  ) exp (0.3 160/180) 2.3112
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For maximum power transmission, T
c

T
max

/3
 

max
 b t/3

 2.5 120 6/3 600 N
T

1
T

max
 – T

c
1800 – 600 1200 N

T
1
/T

2
2.3112

T
2

1200/2.3112 519.21 N
P

max
(T

1
 – T

2
) v/103

 (1200 – 519.21) 18.85/103 12.83 kW

Example 6.32

An open belt drive connects two pulleys 1.5 and 0.5 m diameter on parallel shafts 3.5 m apart. The 
belt has a mass of 1 kg/m length and the maximum tension in the belt is not to exceed 2 kN. The 1.5 
m pulley, which is the driver, runs at 250 rpm. Due to belt slip, the velocity of the driven shaft is only 
730 rpm. If the coefficient of friction between the belt and the pulley is 0.25, find (a) torque on each 
shaft, (b) power transmitted, (c) power lost in friction, and (d) efficiency of the drive.

Solution 

Given:  d
1

1.5 m, d
2

0.5 m, C 3.5 m, m 1 kg/m, T
max

2 kN,

 n
1

250 rpm, n
2

730 rpm, 0.25

 v
1

 d
1
 n

1
/60 1.5 250/60 19.635 m/s

 v
2

 d
2
 n

2
/60 0.5 730/60 19.111 m/s

 T
c

m v 2
1

1 (19.635)2 385.53 N

 T
1

T
max

 – T
c

2000 – 385.53 1614.467 N

 sin (d
1
 – d

2
)/(2C) (1.5 – 0.5)/(2 3.5) 0.14286

 8.213°
 180° – 2 180° – 16.426° 163.574°
 exp ( ) exp (0.25 163.574/180) 2.0416
 T

2
T

1
/2.0416 1614.467/2.0416 790.792 N

 T
1
 – T

2
1614.467 – 790.792 823.675 N.

Torque on bigger pulley, M
1

(T
1
 – T

2
) d

1
/2 823.675 0.75 617.76 Nm

Torque on bigger pulley, M
2

(T
1
 – T

2
) d

2
/2 823.675 0.25 205.92 Nm

Input power, P
1

(T
1
 – T

2
) v

1
/103 823.675 19.635/103 16.173 kW

Output power, P
2

(T
1
 – T

2
) v

2
/103 823.675 19.111/103 15.741 kW

Power lost in friction, P
f

P
1
 – P

2
16.173 – 15.741 0.431 kW

 Efficiency 15.741/16.173 0.973 or 97.3%

Example 6.33

The power transmitted between two shafts 4 m apart by a cross belt drive is 7.5 kW. The pulleys are 600 
and 300 mm diameters, bigger pulley being the driver, and running at 225 rpm. The permissible load 
on the belt is 25 N/mm width of the belt, which is 5 mm thick. The coefficient of friction is 0.35.

Determine (a) length of the belt, (b) width of the belt, and (c) initial tension in the belt.

Solution 

Given:  C 4 m, P 7.5 kW, n
1

225 rpm, d
1

600 mm, d
2

300 mm,
T 25 N/mm of belt width, t 5 mm, 0.35, L

c
?, b ?, T

o
?
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  v
1

 d
1
 n

1
/60 0.6 225/60 7.068 m/s

 sin (d
1

d
2
)/(2C) (0.6 0.3)/(2 4) 0.1125

 6.46°

 180° 2 180° 12.92° 192.92°

 exp (  ) exp (0.35 192.92/180) 3.249

 L
c

2 C  (d
1

d
2
)/2 (d

1
d

2
)2/(4C)

  2 4 0.9/2 (0.9)2/(4 4)

  9.4643 m

 T
1

25 b

 T
2

25 b/3.247 7.6947 b

 P (T
1
 – T

2
) v

1
/103

 7.5 103 (25 – 7.6947) b 7.068/103

 b 61.32 mm

Initial tension, T
o

(T
1

T
2
)/2 (25 7.6947) 61.32/2 1002.42 N

Example 6.34

A V-belt drive consists of three belts in parallel on grooved pulleys of the same size. The angle of 
groove is 40°, and the coefficient of friction 0.15. The cross-sectional area of each belt is 800 mm2 
and the permissible stress in the belt material is 3 MPa. Calculate the power that can be transmitted 
between two pulleys 400 mm in diameter rotating at 960 rpm.

Solution 

Given: 40°, 0.15, A 800 mm2, 
p

3 MPa,
 d

1
d

2
400 mm, n

1
n

2
960 rpm, P ?, i 3

 
e

/sin 0.15/sin 20° 0.43857
 exp (

e
) exp (0.43857 ) 3.9662

 v  d n/60 0.4 960/60 20.1 m/s
 T

1 p
A 3 800 2400 N

 T
1
/T

2
3.9662, T

2
2400/3.9662 605.1 N

 P i(T
1
 – T

2
) v/103

  3 (2400 – 605.1) 20.1/103 108.23 kW

Example 6.35

A rope drive is required to transmit 250 kW from a sheave of 1 m diameter running at 450 rpm. The 
safe pull in each rope is 800 N and the mass of the rope is 0.46 kg/m length. The angle of lap is 160° 
and the groove angle is 45°. If the coefficient of friction is between the rope and the sheave is 0.3, find 
the number of ropes required.

Solution 

Given: P
t

250 kW, d 1 m, n 450 rpm, m 0.46 kg/m length of belt,
 T

max
800 N, 160° 2 45°, 0.3, i ?.

 
e

/sin 0.3/sin 22.5° 0.784
 exp (

e
) exp (0.784 160/180) 8.9278

 v  d n/60 1 450/60 23.562 m/s
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 T
c

m v 2 0.46 (23.562)2 255.4 N
 T

1
800 – 255.4 544.6 N, T

2
544.6/8.9278 61 N

 P (T
1
 – T

2
) v/103

  (544.6 – 61) 23.562/103 11.4 kW
 i   P

t
 /P    250/11.4  

Example 6.36

The reduction of speed from 360 to 120 rpm is desired by the use of a chain drive. The driving 
sprocket has 18 teeth. Find the number of teeth on the driven sprocket and the pitch length of the 
chain, if the pitch radius of the driven sprocket is 250 mm and the centre distance between the two 
sprockets is 400 mm.

Solution 

Given: n
1

360 rpm, n
2

120 rpm, z
1

18, d
2

250 mm, C 400 mm, z
2

?, L
p

?

 z
2

n
1
z

1
/n

2
360 18/120 54

 p d
2
 sin (180°/z

2
) 250 sin (180°/54) 14 .54 mm

 L
p

2C p (z
1

z
2
)/2 {                 p2/(4C)} [cosec (180°/z

1
) – cosec (180°/z

2
)]2

  2 400 14.54 (18 54)/2 {(14.54)2 /(4 400)}[cosec (180°/18) – cosec (180°/54)]2

  1340.8 mm

Example 6.37

A leather belt 150 mm wide, 6 mm thick, and weighing 6 N/m connects two pulleys each 1 m in dia-
meter and on parallel shafts. The belt is found to slip when the moment of resistance is 600 Nm and the 
speed is 500 rpm. If the coefficient of friction between the belt and the pulleys is 0.24, find the largest 
tension in the belt. [IAS, 1982]

Solution 

Given: b 150 mm, t 6 mm, w 6 N/m, d
1

d
2
  1 m, 0.24, 180°,

 M 600 N.m, n 500 rpm, T
max

?.

 2  n/60 2 500/60 52.36 rad/s

 v r 0.5 52.36 26.18 m/s

 P M /103 600 52.36/103 31.416 kW

 m 6/9.81 0.61162 kg/m

 T
c

mv2 0.61162 (26.18)2 419.2 N

 exp (  ) exp (0.24 ) 2.1254

 T
max

T
1

T
c

 (T
1

T
c
)/(T

2
T

c
) 2.1254

 T
1

419.2 2.1254 T
2

890.97

 T
1
 – 2.1254, T

2
471.77 (1)

 P (T
1
 – T

2
) v/103

 31.416 103 (T
1
 – T

2
) 26.18

 T
1
 – T

2
1200 (2)

Solving Eqs. (1) and (2), we get

 T
1

1847.1 N, T
2

647.1 N, and T
max

2266.3 N
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Example 6.38

What is the effect of centrifugal force on the transmission of power in a belt drive? A prime mover 
running at 300 rpm drives a D.C. generator at 500 rpm by a belt drive. Diameter of the pulley on the 
output shaft of the prime mover is 600 mm. Assuming a slip of 3%, determine the diameter of the 
generator pulley if the belt running over it is 6 mm thick. [IAS, 1997]

Solution 

Given: n
1

300 rpm, n
2

500 rpm, d
1

600 mm, s 3%, t 6 mm, d
2

?,

n
2
/n

1
(1 – s/100) [(d

1
t)/(d

2
t)]

500/300 (1 – 0.03) [(600 6)/(d
2

6)]
d

2
346.7 mm

Example 6.39

An 8 mm thick leather open belt connects two pulleys. The smaller pulley is 300 mm diameter and 
runs at 200 rpm. The angle of lap of this pulley is 160°, and the coefficient of friction between the belt 
and the pulley is 0.25. The belt is on the point of slipping when 3 kW is transmitted. Safe working 
stress in the belt material is 1.6 N/mm2. Determine the required width of the belt for 20% overload 
capacity. Initial tension may be taken equal to mean of the driving tensions.

It is proposed to increase the power transmitting capacity of the drive by adopting one of the fol-
lowing alternatives:

(a) by increasing initial tension by 10%.

(b) by increasing the coefficient of friction to 0.3 by applying a dressing to the belt.

Examine the two alternatives and recommend the one which you think will be more effective. How 
much power would the drive transmit adopting either of the alternatives? [IES, 1976]

Solution 

Given: t 8 mm, d
1

300 mm, n
1

200 rpm, 160°, 0.25, P
max

3 kW,
 1.6 N/m2, overload 20%, b ?, T

o
?.

 v  d n/60 0.3 200/60 3.1416 m/s
 exp (  ) exp (0.25 160/180) 2
 T bt 1.6 b 8 12.8 b
 T

1
T 12.8b, T

2
T

1
/2 6.4b

 1.2 P (T
1
 – T

2
) v/103

 1.2 3 103 (12.8 – 6.4) b 3.1416
 b 179 mm
 T

1
2309.1 N, T

2
1154.6 N

 T
o

(T
1

T
2
)/2 1731.85 N

(a) T

T T T T

o

1

1 2 2 2

173185 19 5 N
T T  N

/ 2  3 381  12

1 1 0
3810

0
2

. .

,� , 77  N  254  N

254 127 3 1416/1 3 99 kW
1

3

0 0

0 0 0

,

. .

T

P

(b) exp ( ) exp (0.3 160/180) 2.311

 T
1

2309.1 N, T
2

999.2 N

 P (2309 – 999.2) 3.1416/103 4.11 kW
Hence, increasing coefficient of friction gives better results.
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Example 6.40

A rope drive transmits 600 kW from a pulley of effective diameter 4 m, which runs at a speed of  
90 rpm. The angle of lap is 160°, the angle of groove 45°, the coefficient of friction 0.28, the weight 
of the rope 15 N/m, and the allowable tension in each rope 2.4 kN. Find the number of ropes required. 
 [IES, 1980]

Solution 

Given: P
t

600 kW, d 4 m, n 90 rpm, 160°, 2 45°, 0.28,
w 15 N/m, T 2.4 kN, i ?

e
/sin 0.28/sin 22.5° 0.73167

exp (
e

) exp (0.73167 160/180) 7.715
v dn/60 4 90/60 18.85 m/s

m w/g 15/9.81 1.529 kg/m
T

c
mv 2 1.529 (18.85)2 543.3 N

T
1

2400 – 543.3 1856.7 N, T
2

1856.7/7.715 240.7 N

P (T
1
 – T

2
) v/103

 (1856.7 – 240.7) 18.85/103 30.462 kW
i P

t 
 /P 600/30.462 19.69  20

Example 6.41

An electric motor is to drive a compressor by a belt drive.
Power to be transmitted 7.5 kW
Diameter of motor pulley 200 mm
Centre distance between pulleys 1 m
Motor speed 750 rpm
Compressor speed 250 rpm

Direction of rotation of both the pulleys is same. Find the width of the belt required if the permissible 
belt tension is 16 N/mm belt width. Coefficient of friction between the belt and the pulleys is 0.3. 
Neglect the effect of centrifugal tension. [IES, 1982]

Solution 

Given: P 7.5 kW, d
1

200 mm, C 1 m, n
1

750 rpm, n
2

250 rpm, T 16b, 0.3, b ?

sin (d
2
 – d

1
)/(2C) (600 – 200)/(2 1000) 0.2

11.537°
180° – 2 180° – 23.074° 156.93°

exp (  ) exp (0.3 156.93/180) 2.274
v  d

1
 n

1
/60 0.2 750/60 7.854 m/s

T
1

T 16 b, T
2

16b/2.274 7.035 b

P (T
1
 – T

2
) v/103

7.5 103 (16 – 7.035) b 7.854
b 106.52 mm

Example 6.42

A blower is driven by an electric motor through a belt drive. The motor runs at 750 rpm. For this power 
transmission, a flat belt of 8 mm thickness and 250 mm width is used. The diameter of the motor pul-
ley is 350 mm and that of the blower pulley 1350 mm. The centre distance between these pulleys is 
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1350 mm and an open belt configuration is adopted. The pulleys are made out of cast iron. Frictional 
coefficient between belt and pulley is 0.35 and the permissible stress for the belt meterial can be taken 
as 2.5 N/mm2 with sufficient factor of safety. Belt Weighs 20 N/m length. What is the maximum power 
transmitted without belt slipping on any one of the pulleys? [IES, 1983] 

Solution 

Given: n
1

750 rpm, t 8 mm, b 250 mm, d
1

350 mm, d
2

1350 mm,

C 1350 mm, 0.35, 2.5 N/mm2, w 20 N/m, P
max

?.

sin (d
2
 – d

1
)/(2C) (1350 – 350)/(2 1350) 0.3704

21.74°

180° – 2 180° – 43.48° 136.52°
exp (  ) exp (0.35 136.52/180) 2.3024

v  d
1
 n

1
/60 0.35 750/60 13.74 m/s

m 20/9.81 2.0387 kg/m
T

c
mv 2 2.0387 (13.74)2 385.13 N

T T
1

T
c
, T

1
5000 – 385.37 4614.87 N

T
2

4614.87/2.3024 2004.37 N
P (T

1
 – T

2
) v/103

 (4614.87 – 2004.37) 13.74/103 35.87 kW

Example 6.43

Determine the width of a 9.75 mm thick leather belt required to transmit 15 kW from a motor running 
at 900 rpm. Diameter of the driving pulley of the motor is 300 mm. The driven pulley runs at 300 rpm 
and the distance between the centre of the two pulleys is 3 m. The weight of the leather is 0.1 10–3 
N/mm2. Maximum allowable stress in the leather is 2.5 N/mm2. Coefficient of friction between leather 
and pulley is 0.3. Assume open belt drive and neglect the sag and slip of the belt. [IES, 1989]

Solution 

Given: t 9.75 mm, P 15 kW, n
1

900 rpm, d
1

300 mm, n
2

300 rpm,

C 3 m, w 0.1 10–3 N/mm2, 2.5 n/mm2, 0.3

d
2

d
1
n

1
/n

2
300 900/300 900 mm

sin (d
2
 – d

1
)/(2C) (900 – 300)/(2 3000) 0.1

5.739°

180° – 2 180° – 11.478° 168.52°

exp ( ) exp (0.3 168.52/180) 2.41662

v  d
1
n

1
/60 0.3 900/60 14.137 m/s

m (0.1 10–3 b 9.75)/9.81 0.0994 10–3 b kg/m

T
c

mv 2 0.0994 10–3 b (14.137)2 19.866 10–3 b

T  bt 2.5 9.75 b 24.375 b

T T
1

T
c
, T

1
(24.375 – 19.866 10–3) b 24.355  b

T
2

24.355 b/2.41662 10.078 b

P (T
1
 – T

2
) v/103

15 103 (24.355 – 10.078) b 14.137

b 74.32 mm
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Example 6.44

A prime mover running at 300 rpm, drives a DC generator at 500 rpm by a belt drive. Diameter of 
the pulley on the output shaft of the prime mover is 600 mm. Assuming a slip of 3%, determine the 
diameter of the generator pulley if the belt running over it is 6 mm thick. [IES, 1994]

Solution 

Given: n
1

300 rpm, n
2

500 rpm, d
1

600 mm, s 3%, t 6 mm, d
2

?
 n

2
/n

1
[(d

1
t)/(d

2
t)] (1 – s/100)

 600/500 [(600 6)/(d
2

6)] (1 – 0.03)
 d

2
(606 500/600) (0.97) – 6 483.85 mm

Example 6.45

A V-belt of 6 cm2 cross-section has a groove angle of 40° and angle of lap of 150°, 0.1. The mass 
of belt per metre run is 1.2 kg. The maximum allowable stress in the belt is 850 N/cm2. Calculate the 
power that can be transmitted at a belt speed of 30 m/s. [IES, 1998]

Solution 

Given: A 6 cm2, 2 40°, 150°, 0.1, m 1.2 kg/m run,
 850 N/cm2, v 30 m/s, P ?
 

e
/sin 0.1/sin 20° 0.2924

 exp (
e
 ) exp (0.2924 150/180) 2.15

 T
c

m v2 1.2 (30)2 1080 N
 T a 850 6 5100 N
 T

1
5100 – 1080 4020 N, T

2
4020/2.15 1869.77 N

 P (T
1
 – T

2
) v/103

  (4020 – 1869.77) 30/103 64.5 kW

Example 6.46

A shaft which rotates at a constant speed of 160 rpm is connected by belting to a parallel shaft 720 mm 
apart, which has to run at 60, 80 and 100 rpm. The smallest pulley on the driving shaft is 40 mm in radius. 
Determine the remaining radii of the two stepped pulleys for (a) an open belt, and (b) a crossed belt.

Solution 

Refer to Fig.6.11.
Given: n

1
n

3
n

5
160 rpm, C 720 mm,

n
2

60 rpm, n
4

80 rpm, n
6

100 rpm, r
1

40 mm

(a) Open belt

r
r n

n

r
r n

n
r r

L ro

2
1 1

2

4
3 3

4
3 3

1

40 160

60
106 7

160

80
2

 
 mm

 

.

 rr
r r

C
C2

2 1

2

2

2

40 106 7
106 7 40

720
2 720 1907 .

.
 mmm

 r r
r r

C
C3 4

4 3

2

2
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Driving
shaft

Driven
shaft

720 mm

5

6

4
2

3

1

Fig.6.11 Cone pulley drive
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.
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. .
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(b)

 

r
r n

n
r r

L r r
r r

C
C

r

o

6
5 5

6
5 5

5 6
6 5

2

5
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1 6

2
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 .

.
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1 6
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5
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5
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5
2
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r
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.
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5

5

2

16336 934000 0

1

2
16336 16336 4 934000 5

 

 

r
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40
160

60
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6

2
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4
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r

r
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n

r
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. .
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4
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Now  mmr r r r r r

r r

r

1 2 3 4 5 6

3 3

3

40 106 7 146 7

2 146 7

48 9

. .

.

.   mm

 mm

 
 

 

r

r
r n

n
r r

r r

r

4

6
5 5

6
5 5

5 5

5

97 8

160

100
1 6

1 6 146 7

.

.

. .

56 4

1 6 56 4 90 26

.

. . .

 mm

 mmr

Example 6.47

A leather belt is required to transmit 7.5 kW from a pulley 1.5 m in diameter, running at 240 rpm. 
The angle of wrap is 165° and the coefficient of friction between belt and pulley is 0.35. If the safe 
working stress for leather belt is 1.5 MPa, density of leather 1000 kg/m3 and thickness of belt 10 mm, 
determine the width of belt taking centrifugal tension into account.

Solution 

Given: P 7.5 kW, d 1.5 m, n 240 rpm, 165°,
0.35, 1.5 MPa, 1000 kg/m3, t 10 mm

Velocity of belt,  m/s

Power trans

v
dn 

60

1 5 240

60
18 85

.
.

mmitted, 

 N

P
T T v

T T

1 2

3

1 2

3

10

7 5 10

18 85
397 88

.

.
.

  
(1)

T

T
e e1

2

0 35
180

165
2 74 .
.



  
(2)

From Eqs. (1) and (2), we have
T

2
(2.74 – 1) 397.88

T
2

228.67 N
T

1
2.74 228.67 626.55 N

Mass of belt per metre length, m b 0.01 1 1000 10 b kg
Centrifugal tension, T

c
mv2 10 b (18.85)2 3553.2 b N

Maximum tension in belt, T
max

 bt 1.5 106 b 0.01 15,000  b N
Now T

max
T

1
T

c

15,000 b 626.55 3553.2 b
b 0.0547 m or 54.7 mm

Example 6.48

A pulley is driven by a flat belt, the angle of lap being 160 . The belt is 100 mm wide and 6 mm 
thick. The density of belt material is 1000 kg/m3. The coefficient of friction is 0.32 and the maximum 
stress in the belt is not to exceed 2 MPa. Determine the greatest power that the belt can transmit and 
corresponding speed of belt.
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Solution 

Given: 160°, b 100 mm, t 6 mm, 1000 kg/m3, 0.32, 2 MPa

Maximum tension in belt, T
max

 bt 2 106 0.1 0.006 1200 N

Mass of belt per metre length, m bt l 0.1 0.006 1 1000 0.6 kg/m

Speed of belt for greatest power transmitted, v
T

m
max

.
.

3

1200

3 0 6
25 82 m/s

For maximum power to be transmitted, centrifugal tension,

T
T

c  Nmax

3

1200

3
400

Tension on tight side, T
1

T
max

 – T
c

1200 – 400 800 N

T

T
e e

T

1

2

0 32
180

160

2

2 444

800

2 444
327 34




.
.

.
.  N

Power trannsmitted,  kWP
T T v1 2

3 310

800 327 34 25 82

10
12 2

. .
.

Example 6.49

A belt drive consists of two V-belts in parallel on grooved pulley having groove angle of 40°. The 
cross-sectional area of each belt is 750 mm2 and coefficient of friction is 0.15. The density of belt 
material is 1200 kg/m3 and safe stress is 7 MPa. Calculate the power that can be transmitted between 
pulleys 300 mm diameter rotating at 1500 rpm. Find also the shaft speed in rpm at which power trans-
mitted would be maximum.

Solution 

Given: 2 40°, A 750 mm2, 0.15, 1200 kg/m3, 7 mpa,
d 300 mm, n  1500 rpm, , i  2

Velocity of belt,  m/s

Ma

v
dn 

10 60

300 1500

10 60
23 56

3 3
.

sss of belt per metre length,  kgm Al 750 10 1 1200 0 96 . //m

Centrifugal tension,  N

Maximum t

T mvc
2 2

0 9 23 56 500. .

eension in belt,  N

Tension in belt on 

T Amax  7 750 5250

ttight side,  N

Equivalent coeffici

T T Tc1 5250 500 4750max

eent of friction, 

Now 




 

e sin

.

sin
.


0 15

20
0 4386

1

2

T

T
e e ee

T

0 4386

2

3 9662

4750

3 9662
1197 6

. .

.
.



 N
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Power transmitted
i T T v1 2

3 310

2 4750 1197 6 23 56

10
167

. .
..

max

4

3

5250

3
1750

 kW

For maximum power transmitted,  NT
T

c

TT mv

v
T

m

dn

n

c
2

1750

0 9
44 1

60
60 44 1

0 3
2807

c  m/s

 rpm

.
.

.

.

p

p

Summary for Quick Revision

(a) Flat Belt Drive

1 Belts are used for short centre drive to transmit motion on parallel shafts.

2 Angular velocity ratio:

n
2
/n

1
d

1
/d

2
(d

1
t)/(d

2
t) (1 s/100)  (d

1
t)/(d

2
t)

where s (s
1

s
2
 – 0.01 s

1
s

2
) is the total percentage slip.

t thickness of belt

3 Law of Belting
The law of belting states that the centre line of the belt as it approaches the pulley must lie in a 
plane perpendicular to the axis of that pulley, or must lie in the plane of the pulley, otherwise the 
belt will run off the pulley.

4 Length of open belt,
L

o
2C (d

2
 – d

1
)2/4C  (d

1
d

2
)/2

5 Length of cross belt,
L

c
2C  (d

1
d

2
)/2 (d

1
d

2
)2/4C

6 Angle of arc of contact
 – 2 sin–1 [(d

2
 – d

1
)/2C] for open type belt

 2 sin–1 [(d
1

d
2
)/2C] for cross type belt

7 Ratio of belt tensions
T

1
/T

2
exp (  )

8 Power transmitted
P (T

1
 – T

2
) v/103 T

1
 v [1 – exp (  )]/103 kW

9 Centrifugal tension
T

c
m v2

10 Effective tension on tight side T
1

T
c

Effective tension on slack side T
2

T
c

11 Condition for maximum power transmission
v [T/(3 m)]0.5
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12 Initial belt tension
T

o
(T

1
T

2
)/2

 (T
1

T
2

2T
c
)/2 considering centrifugal tension.

13 The jumping of the belt forward and backward on the driving and driven pulleys respectively due 
to unequal tension on the two sides of the belt, is called creep.

14 Creep (T
1
 – T

2
)/(btE).

15 Velocity ratio after accounting for creep,
(n

2
/n

1
) (d

1
/d

2
) [(E

2
)/(E

1
)]

16 The convex curvature given to the pulley rim is called crowning.

17 Crowning helps in running the belt in the centre of the pulley width.

18 Cone pulleys are used to obtain a range of speeds between the connected shafts.

19 Fast pulley is keyed to the shaft and loose pulley is free on the shaft.

(b) V-Belt Drive

20 Virtual (or apparent) coefficient of friction, 
e

/sin 
where semi-groove angle of pulley.

21 Ratio of belt tensions, T
1
/T

2
exp (

e
).

(c) Chain Drive

22 Chains are used for short centre drive.

23 Chain pitch, p D sin (180°/z).

24 Chain length, L 2C  (R
1

R
2
) (R

1
 – R

2
)2/C

R (p/2) cosec (180°/z).

(d) Rope Drive

25 Ropes are used for long distance drive.

26 Ratio of rope tensions, T
1
/T

2
exp (

e
 ), 

e
/sin , semi-groove angle of sheave.

Multiple Choice Questions

1 The centrifugal tension in belts
(a) reduces power transmission
(b) increases power transmission
(c) does not affect power transmission
(d) increases or decreases power transmission depending on speed.

2  In case of a flat belt drive with T as the maximum permissible tension, v as linear speed of belt,  
w as weight per metre length of belt, the maximum permissible speed is given by
(a) T wv 2/g (b) T 2 wv 2/g (c) T 3wv 2/2g (d) T 3  wv 2/2g.

3 With the same set of pulleys, belt and centre distance, the maximum power transmitted by
(a) cross belt is more than open belt
(b) cross belt is less than open belt
(c) cross and open belts is same
(d) cross and open belts depends upon pulley diameters.
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4 The ratio of tensions in the tight and slack sides of a belt drive is
(a)   (b) exp ( ) (c) 1/    (d) exp (1/  ).

5 If the percentage slip is same on both the driving and driven pulleys, then the speed ratio will
(a) increase (b) decrease (c) remain same (d) unpredictable.

6 The crowning of pulleys is done to
(a) make the belt run in the centre of the pulley face width
(b) strengthen the pulley
(c) give better shape to pulley
(d) decrease slip.

7 Considering centrifugal tension in a belt, the maximum linear velocity of belt is proportional to
(a) cube root of maximum tension (b) square root of maximum tension
(c) maximum tension   (d) reciprocal of maximum tension.

8 If the initial tension in the belt is increased then the power transmitted by the belt
(a) reduces (b) increases (c) remains same (d) depends on speed.

9 The initial tension in the belt due to centrifugal tension, for the same power to be transmitted
(a) increases (b) decreases (c) remains same (d) depends on speed.

10 The maximum tension in the belt, for limiting friction conditions, occurs at
(a) starting (b) stopping (c) maximum power speed (d) specified speed.

11 The apparent coefficient of friction for V-belts is
(a) /cos  (b)  cos  (c)  sin  (d) /sin .
where semi-angle of pulley groove.

12  For maximum power to be transmitted by belt drive, the ratio of centrifugal tension to permissible 
tension is
(a) 1/2 (b) 1/3 (c) 2/3 (d) 1/4.

13  For maximum power to be transmitted by belt drive, the ratio of centrifugal tension to effective 
tight side tension is
(a) 1/2 (b) 1/3 (c) 2/3 (d) 1/4.

14  If the ratio of the tensions on tight and slack sides of a belt drive is increased by 20%, the  
power is
(a) increased by 20% (b) decreased by 20% (c) unaffected (d) unpredictable.

15 The net effect of creep in belts is to
(a) increase the speed of driven pulley (b) decrease the speed of driven pulley
(c) increase the power output  (d) decrease the power output.

Answers:

1. (a) 2. (c) 3. (a) 4. (b) 5. (a) 6. (a) 7. (b) 8. (b) 9. (b) 10. (a) 11. (d) 12. (b) 13. (a) 14. (a) 15. (b)

Review Questions

1 State the law of belting.

2 What is the effect of belt thickness and slip on speed ratio?

3 What is the effect of centrifugal tension on power transmission?

4 What is the role of initial tension in flat belt drive?

5 Write the expression for ratio of belt tensions.
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6 What is centrifugal tension in a belt?

7 What is the condition for maximum power transmission by a belt?

8 What is belt creep?

9 Why crowning of pulley is done?

10 Differentiate between a fast and loose pulley.

11 What is virtual coefficient of friction in a V-belt drive?

12 Define chain pitch.

13 When rope drive is preferred?

14 When chain drive is preferred?

15 When V-belt drive is preferred?

Exercises

 6.1 A flat belt drive is required to transmit 20 kW at 300 rpm of 2 m diameter pulley. The angle of 
contact is 170  and coefficient of friction between belt and pulley is 0.30. The permissible stress 
for belt material is 3 MPa. Thickness of belt is 8 mm and density of its material is 0.95 kg/m3. 
Find the width of belt required taking centrifugal tension into account.

[Ans. 66 mm]

 6.2 A shaft running at 500 rpm carries a pulley 1 m diameter and drives another pulley by means 
of ropes with a speed ratio of 2:1. The drive transmits 200 kW. Angle of groove is 40° and dis-
tance between pulley centres is 2 m. The coefficient of friction between rope and pulley is 0.20. 
The mass of rope is 0.12 kg/m and has a safe stress of 1.75 MPa. The initial tension in the rope 
should not exceed 800 N. Calculate the number of ropes required and rope diameter.

[Ans. 8, 30 mm]

 6.3 If the difference between tight and slack side tensions for a leather belt does not exceed 
100 N/cm of width for a belt 5 mm thick, find the maximum stress in the belt. Assume the 
following data:

Angle of lap 170°, coefficient of friction 0.25, density of leather 10–3 kg/cm3, belt 
speed 1000 m/min.

[Ans. 3.82 MPa]

 6.4 The initial tension in a flat belt drive is 1800 N and angle of lap on the smaller pulley is 170°. 
The coefficient of friction between belt and pulley surface is 0.25. The pulley diameter is 
0.9 m and runs at 540 rpm. Neglecting centrifugal tension, determine the power that can be 
transmitted.

[Ans. 32.5 kW]

 6.5 It is required to reduce speed from 360 to 120 rpm by the use of chain drive. The driving 
sprocket has 10 teeth. Calculate: (a) the number of teeth on the follower, (b) the pitch of chain 
if pitch circle diameter of follower is 0.5 m, (c) the pitch circle diameter of driver, and (d) the 
length of chain, if centre distance is 0.4 m.

[Ans. 30, 52.26 mm, 169 mm, 1.92 m]
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 6.6 A rope pulley having a mean diameter of 1.5 m rotates at 90 rpm; angle of lap of ropes 170°; 
angle of groove 45°, safe tension per rope 750 N, and coefficient of friction between the 
ropes and sides of groove 0.25. Calculate the number of ropes for transmitting 50 kW.

[Ans. 11]

 6.7 A belt of density 1000 kg/m3 has a maximum permissible stress of 2.5 MPa. Calculate the maxi-
mum power that can be transmitted by a belt of 200 mm 12 mm size if the ratio of tensions is 2.

[Ans. 57.734 kW]

 6.8 Determine the maximum power that can be transmitted by a belt of 100 mm 10 mm size with 
an angle of lap of 160°. The belt density is 1000 kg/m3 and coefficient of friction is 0.25. The 
tension in the belt should not exceed 1.5 MPa.

[Ans. 11.18 kW]

 6.9 The included angle of a V-grooved pulley is 30°. The belt is 20 mm deep and maximum width is 
20 mm. The mass of belt is 0.35 kg per metre length and maximum allowable stress is 1.4 MPa. 
Determine the maximum power that can be transmitted if angle of lap is 140° and coefficient of 
friction is 0.15.

[Ans. 4.09 kW]

6.10 A pulley used to transmit power by means of ropes has a diameter of 3.6 m and has 15 grooves 
of 45° angle. The angle of contact is 170° and coefficient of friction between ropes and groove 
side is 0.28. The maximum possible tension in the ropes is 960 N and rope mass is 1.5 kg per 
metre length. Calculate the pulley speed in rpm and maximum power transmitted.

[Ans. 77.45 rpm, 124.16 kW]
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7.1 INTRODUCTION
Brakes are the devices that reduce the speed of a moving machine component by absorbing energy. 
The energy thus absorbed is converted into heat and released into the atmosphere or absorbed in 
another medium. Clutches are the devices that are used to engage or disengage two rotating machine 
components as and when desired. Dynamometers, on the other hand, are the devices that measure the 
power developed by a prime mover. In this chapter, we shall study these devices from the point of view 
of machine theory.

7.2 BRAKES
Brakes can be classified as follows:

1. Block or shoe brake

2. Band brake

3. Band and block brake

4. Internal expanding shoe brake
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7.2.1 Block or Shoe Brake
These brakes may be classified as:

1. Single-block or shoe brake

2. Pivoted-block or shoe brake

3. Double-block or shoe brake

1. Single-block or Shoe Brake A single-block brake, shown in Fig.7.1(a), comes in to 
play when the force of friction passes through the fulcrum of the lever. When the angle of contact of 
the block on the brake drum is small (< 60º), then the normal pressure between the block and the drum 
can be assumed to be uniform.

Fig.7.1 Block brake

Normal force between the block and drum, R
Pb

a

Tangential braking or frictional force on the drum, F R
Pb

a




Braking torque, T Fr
Pbr

ab


 (7.1)

where r is the radius of the drum.
When the brake drum is moving on the rails or road with speed v and the braking distance is s, 

then
Work done against friction F s

Pb s

a



Kinetic energy lost 
1

2

1

2
2 2mv I
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where m  mass of brake drum,
 I  moment of inertia of brake drum
   angular speed of drum.

For the conservation of energy, we have




Pb s

a
mv I

1

2

1

2
2 2

 
(7.2)

1. If the frictional force F is above the lever fulcrum by a distance c, as shown in Fig.7.1(b), then

P b R a F c

R a R c

R a c


( )

or R
Pb

a c
 (7.3)

We find that the frictional force helps in applying the brake. Such a brake is called self-energizing 
brake.

2. If the fulcrum is above the frictional force F by an amount c, then

P b F c R a

P b R a c( )

or  R
P b

a c
 (7.4)

If a  μc, then P will be zero or negative, that is no external force will be required to apply the 
brake. Such a brake is called self-locking type of brake.

2. Pivoted-block or Shoe Brake When the angle subtended by the shoe at the drum 
centre is more than 60°, then the normal pressure is lesser at the sides than at the centre. In such a case 
(Fig.7.2), consider an element of the block between  and d .

Fig.7.2 Pivoted shoe brake



346 Theory of Machines

Let b width of the drum
r radius of the drum
p normal pressure between the block and the drum

Area of the drum element, dA br d
Normal force on the drum, dR pbr d
Vertical component of normal force pbr d  cos 

Total normal force,  R br pcos  d

Frictional force on element of the block μpbr d
Resisting torque on the drum, dT μpbr2 d

Total torque, T br p2 d

Normal wear is proportional to the product of normal pressure and rubbing velocity. The compo-
nent of wear in the direction of applied force P is proportional to cos . Hence, normal pressure is also 
proportional to cos .

Let p k cos 

where k is the constant of proportionality. Then

R brk d

brk

T bkr d

bkr

2

2

2

2 2

4

2

cos

( sin )

cos

 ssin

Eliminating k, we get

T
Rr4

2 2

sin

sin  
(7.5)

Equivalent coefficient of friction,


 

 e

4

2 2

sin

sin

3. Double-shoe Brake A double-shoe brake is shown in Fig.7.3. It consists of two brake 
shoes applied at the opposite sides of the brake drum that more or less eliminate the unbalanced force 
on the shaft due to normal reaction. Frictional or braking torque is given by,

T
b

(F
l

F
r
)r (7.6)

where F
l  
and F

r
 are the frictional forces on the left and right side shoes, respectively, and r is the radius 

of the brake drum.
Assuming frictional forces passing through the fulcrums of the levers, we have

F R
P a b

a

F R
P a b

a

l l
l

r r
r







( )

( )
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When the frictional force is not passing through the fulcrums, then

P
l
 (a b) F

l 
c R

l
a

or P
l
 (a b) μR

l 
c R

l
a

or  R
P a b

a cl
l ( )



F
P a b

a cl
l


( )

and P
r
 (a b) R

r
a F

r
c R

r
a μc

or R
P a b

a cr
r ( )



F
P a b

a cr
r


( )

7.2.2 Band Brake
The band brakes may be classified as: (a) simple-band brake, and (b) differential-band brake.

(1) Simple-band Brake A simple band brake is shown in Fig.7.4(a). Let T
1
 and T

2
 be the  

tensions on the tight and slack sides, respectively. Taking moments about the fulcrum, we have

Pb T
1
a, for counter-clockwise rotation of the drum

 T
2
a, for clockwise rotation of the drum

Also 
T

T
1

2

( )exp 

Braking torque on the drum, T
b

(T
1

 T
2
)r (7.7)

(2) Differential-band Brake The differential band brake is shown in Fig.7.4(b). Taking 
moments about the fulcrum, we have

Fig.7.3 Double-shoe brake
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Pl T
l
a T

2
b, for counter-clockwise rotation of the drum

or Pl T
2
b – T

1
a (7.8a)

Pl T
2
a T

1
b, for clockwise rotation of the drum

or Pl T
1
b – T

2
a (7.8b)

For a self-locking brake, P  0, therefore, for counter-clockwise rotation,

T

T

b

a
1

2  
(7.9a)

and for clockwise rotation,
T

T

a

b
1

2  
(7.9b)

T

T
1

2

( )exp 

7.2.3 Band and Block Brake
The band and block brake is shown in Fig.7.5(a).

Let  T
0

tight side tension in the band on the first block
  T

1
slack side tension in the band on the first block

  T
n

slack side tension in the band on the nth block
  2 angle subtended by the block at the drum centre

The forces acting on the first block are shown in Fig.7.5(b). Resolving the forces horizontally and 
vertically, we get

 (T
1
 – T

0
) cos μR

 (T
1

T
0
) sin R

or 
T T

T T
1 0

1 0

cot 

Fig.7.4 Band brake
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or 
T

T
1 1

10

 
 

tan

tan

Similarly  
T

T
2

1

1

1

 
 

tan

tan

T

T
n

n 1

1

1

 
 

tan

tan

Hence 
T

T
n

n

0

1

1

 
 

tan

tan
 (7.10)

Braking torque, T
b

(T
0
 – T

n
)r (7.11)

7.2.4 Internal Expanding Shoe Brake
The internal expanding shoe brake is shown in Fig.7.6. The shoes are pinned at O

1
 and O

2
. The shoes 

are kept in non-braking position by the spring.
The brakes are applied when the cam is pressed down, in the case of a mechanically operated brake, 

or when the shoes are pressed on the brake drum, in the case of a hydraulically operated brake.
Consider a small element BC of the shoe between  and d .

Let         r radius of the brake drum
b width of the brake lining
p normal pressure between the shoe and the drum

p
max

maximum intensity of normal pressure
F

1
force exerted by the cam on the leading shoe

F
2

force exerted by the cam on the trailing shoe
a distance between the fulcrum O

1
 and O.

Fig.7.5 Block and band brake
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Fig.7.6 Internal expanding shoe brake

It is assumed that the pressure distribution on the shoe is nearly uniform. The shoe turns about 
point O

1
. Therefore, the rate of wear of the shoe lining at B will be proportional to the radial displace-

ment of that point. The rate of wear of the shoe lining varies directly as the perpendicular distance 
from O

1
 to OB, that is, O

1
A.

Now O
1
A OO

1
 sin a sin 

Normal pressure at B,
p  sin 

or p p
max

 sin 

Normal force acting on the element,

 R Normal pressure  Area of the element

  p br p
max

 sin br
Friction force on the element,

 F μ R μ p
max

sin br

Braking torque due to the element about O,
 T

b
F r μp

max
br2 sin 

Total braking torque about O,

( sin )

(cos cos )

max

max

T p br

p br

b  

 

2

2
1 2

1

2

d

Moment of the normal force R about the fulcrum O
1
,

M
n

R O
1
A R OO

1
 sin R a sin 

Total moment of normal force about the fulcrum O
1
,

 
M p b an max

1

2

· · ·r
2sin  d

 
b a pmax

1

2

· · ·r
 

1 2

2

cos 
d

 

( ) sinmaxp b r a

2

2

2
1

2 
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( )
( ) (sin sin )maxp b r a

2

1

2
2 22 1 1 2     

 

(7.12)

Moment of frictional force  F about the fulcrum O
1
,

   

   


M F AB F r a

p br r a

p br r

f ( )

( )

(

cos

sin cos

s
max

max iin sin cos

sin
sin

max

   

 




a

p br r
a

)

2

2

 

 

Total moment of the frictional force about the fulcrum O
1
,

M p brf max
1

2

.
 

r
a

sin
sin





2

2
d

 






p br r
a

max cos
cos 2

4
1

2

    p br r
a

max cos cos (cos cos )( )
4

2 21 2 2 1 
 

(7.13)

For the leading shoe, taking moments about the fulcrum O
1
,

F
1

l M
n
 – M

f
 (7.14)

and for the trailing shoe, taking moments about the fulcrum O
2
,

F
2

l M
n

M
f
 (7.15)

7.2.5 Braking of a Vehicle
Consider a vehicle going up an inclined plane with acceleration ‘a’, as shown in Fig.7.7. To stop the 
vehicle, let brakes be applied to all the four wheels.

Fig.7.7 Brakes applied to a vehicle going up the inclined plane
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Let F
A

μR
A

braking force applied at the rear wheels
 F

B
μR

B
braking force applied at the front wheels

 R
A
, R

B
normal reactions at A and B

 W weight of the vehicle
 h height of the C.G. of the vehicle from the ground level
 l wheel base

Resolving the forces parallel to the plane, we have

 ( ) sinR R W
W

g
aA B  (7.16)

Resolving the forces perpendicular to the plane, we have

R
A

R
B

W cos  (7.17)
From (7.17), we get

R
B

W cos  – R
A
 (7.18)

Taking moments about G, we have

 μ (R
A

R
B
) h R

A
x (W cos  – R

A
)  (l – x)

 μWh cos R
A
 (x l – x) W (l – x) cos 

R W
l x h

l

R W
l l x h

l

W
x h

l

A

B

cos

cos
( )

cos










From (7.16), we have

  W W
W

g
acos sin

or a g (μ cos sin ) (7.19)

(a) When the vehicle moves on a level track, then 0, and

a μg (7.20)

(b) When the vehicle moves down, then

a g (μ cos  – sin ) (7.21)

(c) When brakes are applied to rear wheel only, then

a
g l x

l h
g

 



( )cos

sin  (7.22)

Use the positive sign for going up and the negative sign for going down the plane.
On a level track,

a
g l x

l h




( )
 (7.23)

(d) When brakes are applied to front wheels only, then

a
gx

l h
g

 



cos

sin  (7.24)
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Use the positive sign for going up the plane and the negative sign for going down.
On a level track,

a
gx

l h


  

(7.25)

Example 7.1

A bicycle and rider of mass 120 kg are travelling at a speed of 15 km/h on a level road. The rider 
applies brake to the rear wheel that is 0.9 m in diameter. How far will the bicycle travel before it comes 
to rest? The pressure applied on the brake is 100 N and coefficient of friction between the brake and 
the cycle rim is 0.05. Assume that no other resistance is acting on the bicycle.

Solution 

Frictional for, F μR 0.05  100 5 N
Let s be the distance travelled after the bicycle comes to rest in m

Work done F  s 5    s Nm
Kinetic energy of the wheel, neglecting rotational energy,

1

2

1

2
120

15 1000

3600
1041 67

2

2

mv

.  Nm

Hence, 5s 1041.67
s 208.33 m

Example 7.2

A double-shoe brake (Fig.7.8) is capable of absorbing a torque of 1500 Nm. The diameter of the brake 
drum is 300 mm and the angle of contact for each shoe is 90°. The coefficient of friction between the 
brake drum and the lining is 0.35. Find (a) the spring force necessary to set the brake and (b) width of 
the brake shoes. The bearing pressure on the lining material is not to exceed 0.25 MPa.

Solution 

(a) Let P be the spring force to set the brake. Since the angle of contact is greater than 60°, there-
fore, equivalent coefficient of friction,


 

 

 

e

4

2 2
4 0 35 45

2
4 2

0 385

sin

sin
. sin

sin

. 

Taking moments about the fulcrum O
1
, we have

P R F

F
F

r r r

r
r

480 220 150 30

0 385
220 120 691 428

( )

.
. FFr

or F
r

0.694 P
r
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Now taking moments about O
2
, we have

P F R
F

l l l
l480 150 30 220

0 385
220( )

.
  

 F
l

1.0633 P
l

Let the spring force, P
l 

P
r

P
Torque capacity of the brake, T

b
(F

1
F

r
) r

 1500 (1.0633 0.694)P  0.150
 P 5690.5 N

(b) Let b be the width of the brake shoes in mm.
Projected bearing area for one shoe, A

b
b 2r sin 

b b

R
F

   mm( sin ) .

.

. .

.

2 150 45 212 1

0 385

0 694 5690 5

0 385
1

2

r
r 00257 7

0 385

1 0633 5690 5

0 385
15716 1

.

.

. .

.
.

 N

 NR
F

l
l

The normal force is maximum on the left-hand side shoe.

0 25
15716 1

212 1
.

.

.  b

or   b 296.4 mm

Fig.7.8 Double-shoe brake mechanism

Example 7.3

A simple band brake, as shown in Fig.7.9, is used on a shaft carrying a flywheel of mass 450 kg. The 
radius of gyration of the flywheel is 500 mm and runs at 320 rpm. The coefficient of friction is 0.2 
and the brake drum diameter is 250 mm. Find (a) torque applied due to a hand load of 150 N, (b) the 
number of turns of the wheel before it is brought to rest, and (c) the time required to bring it to rest 
from the moment of application of the brake.
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Solution 

(a) Angle of contact, 210° 3.6652 rad

T

T
1

2

0 2 3 6652 2 08exp ( ) exp ( . . ) .  

Taking moments about the fulcrum C, we have

T
2
  100 150  300

T
2

450 N

T
1

936 N

Torque applied, T
b

(T
1
 – T

2
) r (936 – 450)  0.125

 60.75 Nm

(b) Rotational kinetic energy of the wheel 
1

2
2I

1

2

1

2
450 0 5 2

320

60

63165 5

2 2

2

2

mK 

.

.  Nm

Energy used to overcome the braking torque 2 nT
b

 2   n  60.75

 381.7n Nm

 63165.5

or n 165

(c) Time required to bring the wheel to rest 
n
N
2

2 165

320
1 031 61 87. min .or s

Fig.7.9 Simple band brake mechanism
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Example 7.4

A differential band brake shown in Fig.7.10, has an angle of contact of 225°. The band has a lining 
whose coefficient of frictions is 0.3 and the drum diameter is 400 mm. The brake is to sustain a torque 
of 375 Nm. Find (a) the necessary force for the clockwise and counter-clockwise rotation of the drum 
and (b) the value of OA for the brake to be self-locking, when the drum rotates clockwise.

Fig.7.10 Differential band brake mechanism

Solution 

1. Force required

(a) Clockwise rotation of the drum
T

T

T T T r

T

1

2

1 2

0 3 225

180
3 248

375

exp ( ) exp
.

.

( )

(

 


b

11 2

1 2

1 2

0 2

1875

2709 834

T

T T

T T

) .

,

 N

 N  N 
Taking moments about the fulcrum O, we have

 P  500 T
1
  40 T

2
  150

 P  500 2709  40 834  150, P 46.7 N

(b) Counter-clockwise rotation of the drum
Taking moments about O, we have

 P  500 T
2
  40 T

1
  150

 P  500 834  40 2790  150, P 903.7 N

2. For the brake to be self-locking, P 0. For clockwise rotation of the drum,

 T
1
  40 T

2
  OA

OA
2709 40

834
129 92.  mm
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Example 7.5

A band and block brake, with 15 blocks, each of which subtends an angle of 15°, is applied to a drum 
of 1 m diameter, as shown in Fig.7.11. The drum and the flywheel mounted on the same shaft has a 
mass of 1500 kg and a combined radius of gyration of 500 mm. Find (a) maximum braking torque,  
(b) angular retardation of the drum, and (c) time taken by the system to come to rest from the rated 
speed of 380 rpm. The coefficient of friction between the drum and the blocks can be taken as 0.25.

Fig.7.11 Band and block brake mechanism

Solution 

(a) The braking torque will be maximum when the drum rotates counter-clockwise and the force 
P is upwards. Taking moments about O, we have

 300  800 T
1
  40 T

2
  150

 15T
2
 – 4T

1
24000

T

T

n

1

2

1

1

1 0 25 7 5

1 0 25 7 5

 
 

tan

tan

. tan .

. tan .

15

2 685.

 15T
2
 – 4  2.685T

2
24000

 4.26T
2

24000
 T

2
5633.8 N

 T
1

15126.76 N
Braking torque, T

b 
(T

1
 – T

2
)  r (15126.76 – 5633.8)  0.5

  4744 Nm

(b) Let  be the angular retardation of the drum
 T

b
I m K2 

 4744 1500  (0.5)2 ·
 12.65 rad/s2
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(c) Let t be the time taken to come to rest

Initial angular speed, 


1

2 380

60
39 793.  rad/s

Final angular speed,  
2

0

2 1
 –   t

 
t

39 793

12 65
3 15

.

.
.  s

Example 7.6

An external expanding shoe brake is shown in Fig.7.12. The coefficient of friction may be taken as 
0.35, and the braking torque required is 25 Nm. Calculate the force P required to operate the brake 
when the drum rotates (a) clockwise and (b) counter-clockwise.

Fig.7.12 External expanding shoe brake mechanism

Solution 

(a) When drum rotates clockwise,
Total braking torque, T

b
μP

max
b r2 (cos 

1
 – cos 

2
)

 25 0.35  P
max

  b  0.122 (cos 30° – cos 150°)
 P

max
b 2863.84

Total moment of the normal force about the fulcrum O
1
,

 M
n

0.5 P
max  

bra [(
2
 – 

1
) 0.5 (sin 2

1
 – sin 2

2
)]

0 5 2863 84 0 12 0 08
150 30

180
0 5 60 300. . . . . sin sin



  40.695 Nm
Total moment of friction force about the fulcrum O

1
,

 M
f

μP
max

br  [r  (cos 
1
 – cos 

2
) 0.25 a (cos 2

2
 – cos 2

1
)]

   0.35  2863.84  0.12 [0.12(cos 30° – cos 150°) 0.25 
 0.08(cos 300° – cos 60°)]

  25 Nm
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Total moment M
n

M
f

65.695 Nm

Taking moments about O
1
, we have

 P  0.16 65.695
 P 410.6 N

(b) When drum rotates counter-clockwise, taking moments about O
1
, we have

 P  0.16 M
n
 – M

f
15.695

 P 98.1 N

Example 7.7

A vehicle moving on a rough plane inclined at 15° with the horizontal at a speed of 40 km/h has a 
wheel base of 1.8 m. The centre of gravity of the vehicle is 0.8 m from the rear wheels and 0.9 m above 
the inclined plane. Find the distance travelled by the vehicle before coming to rest and the time taken 
to do so when the vehicle is moving (a) up the plane and (b) down the plane. The brakes are applied to 
all the four wheels and the coefficient of friction is 0.45.

Solution 

(a) For the vehicle moving up the plane,
 a g (μ cos sin )
  9.81(0.45  cos 15° sin 15°)
  6.8 m/s2

Distance travelled, s
u

a

2

2

2

40 1000

3600

2 6 8.
  9.078 m

Final velocity of vehicle, v u a t

 0 11.11 – 6.8 t

 t 1.63 s

(b) For the vehicle going down the plane,

 a g (μ cos  – sin )

  9.81(0.45  cos 15° – sin 15°)

  1.725 m/s2

s
u

a

t
u

a

2 2

2

11 11

2 1 725
35 78

11 11

1 725
6 44

( . )

.
.

.

.
.

 m

 s

Example 7.8

The wheel base of a car is 3 m and its centre of gravity is 1.2 m ahead of the rear axle and 0.75 m above 
the ground level. The coefficient of friction between the wheels and the road is 0.5. Determine the 
maximum deceleration of the car when it moves on a level if the braking force on all the four wheels 
is the same and no wheel slip occurs.
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Solution 

(a) When slipping is imminent on the rear wheels (Fig.7.13),

Now 

 
or

 

R W
l h x

l

W W

F F W
a

A

A B



3 0 5 0 75 1 2

3
0 475

. . .
.   N

gg

F F F R

R W

W W
a

g

a

A B A A

A

   and   

 

 m/s


2

2 0 5 0 475

4 66 2

. .

.

(b) When slipping is imminent on the front wheels,

Now

 

R W
h x

l

W W

F F
Wa

g

F

B

A B

A



0 5 0 75 1 2

3
0 525

. . .
.   N

FF F R

R W

W
Wa

g

a

B B B

B

   and   

 

 m/s


2

2 0 5 0 525

5 15 2

. .

.  

or

Fig.7.13 Forces on the vehicle
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7.3 CLUTCHES
The friction clutches may be classified as follows:

1. Plate (or disc) clutches

(a) Single-plate clutches

(b) Multiple-plate clutches

2. Cone clutch

7.3.1 Single-Plate Clutch
Consider a single-plate clutch as shown in Fig.7.14.

Let r
1
, r

2
inner and outer radii of the plate, respectively

 p intensity of axial pressure on the plate
 W axial load on the clutch
 μ coefficient of friction between the friction surfaces and the plate
 T torque transmitted by the clutch

Fig.7.14 Single-plate clutch

Consider an elementary ring of the friction surface of radius r and thickness dr.

Contact area of the friction surface, dA 2 r     dr
Arial force on the ring, dW p  dA
Frictional force on the ring, dF μ  dW
Frictional torque on the ring, dT

f
d F  r 2 μ p r2 dr

(a) Uniform pressure
When the pressure is uniform over the entire area of friction surface, then the intensity of pressure,

p
W

r r ( )2
2

1
2
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Total frictional torque on the frictional surface,

T r r p r r
r

r

f d2
2

3
2

2
3

1
3

1

2

( )

2

3
2
3

1
3

2
2

1
2

  W
r r

r r
 

(7.26)

Mean radius of friction surface,  r
r r

r rm

2

3
2
3

1
3

2
2

1
2

   (7.27)

(b) Uniform wear
For uniform wear, the intensity of pressure varies inversely with the distance, therefore

p r C

or  p
C

r
At r  r

1
, p  p

max
 and at r  r

2
, p  p

min

Force acting on the ring,  d d dW
C

r
r r C r2 2 

Total force acting on the friction surface,  W C r C r r
r

r

2 2
1

2

2 1d ( ).

or C
W

r r2 2 1 ( )

W  p
max

 r r
2
 – r

1
)

Frictional torque on the ring, d dfT C r r2  (7.28)

Total frictional torque on the friction sufrace,

T C r r C r r
r

r

f d2 2
2

1
2

1

2

( ). . . −

W
r r( )1 2

2  
(7.29)

where r
r r

m
1 2

2
 

7.3.2 Multi-Plate Clutch
A multi-plate friction clutch is shown in Fig.7.15. Multi-plate friction clutches are used where space 
is a limitation, as in the case of two wheelers, scooters, etc.

Let n
1

number of plates on the driving shaft
n

2
number of plates on the driven shaft

Then, number of pairs of contact surfaces, n n
1

n
2
 – 1

Total frictional torque transmitted, T n μ W r 
m
 (7.30)

Dry and Wet Clutches In case of single-plate clutches, the contacting surfaces are either 
one or two. Due to large surface area available, heating is not a problem and the clutch is of the  
dry type. In case of multi-plate clutches, the work done during engagement and disengagement is 



363 Brakes, Clutches, and Dynamometers 

converted into heat. Heat dissipation is a serious problem in multi-plate clutches because of the large 
number of friction surfaces. Cooling oil is used to dissipate this heat. Therefore, these clutches are 
wet clutches.

7.3.3 Cone Clutch
Consider a cone clutch as shown in Fig.7.16(a).

Let r
1
 and r

2
inner and outer radii of the frictional conical surface, respectively

 p
n

normal pressure between the contact surfaces
 b width of the conical surfaces
 μ coefficient of friction between contact surfaces
 semi-cone angle.

Consider an elementary ring of the conical surface of radii r and r dr and of length dl, as shown 
in Fig.7.16(b).

 d l d r cosec 
Area of the ring, d A 2  r d l 2  r d r cosec 

(a) Uniform pressure
Normal load acting on the ring, d W n p 

n
d A

Axial load acting on the ring, d W d W 
n

sin 2  p
n

r d r

Fig.7.15 Multi-plate friction clutch
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Fig.7.16 Cone clutch

Total axial load transmitted to the clutch,

or 

W p r r p r r

p
W

r r

r

r

2
1

2

2
2

1
2

2
2

1
2

n n

n

d ( )

( )
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Frictional force on the ring, dF μ dW
n

Frictional torque, dT
f

d F r 2 μ p
n

cosec r2 dr

Total frictional torque,  T p
n

r r
r

r

f ec d2 2

1

2

cos. . .

2

3 2
3

1
3  p r rn co ( )sec

2

3
2
3

1
3

2
2

1
2

 W
r r

r r
cosec 

 

(7.31a)

 μW r
m
 cosec  (7.31b)

(b) Uniform wear
For uniform wear, p

n
r C

or   p
C

rn

Normal load on the ring, dW
n

p
n

dA

Axial load on the ring, dW dW
n

sin p
n

2 r dr 2 C dr

Total axial load on the clutch,  W C r C r r
r

r

2 2 2 1
1

2

d ( )

or C
W

r r2 2 1 ( )

Frictional force on the ring, dF μ dW
n

Frictional torque on the ring, dT
f 

dF r 2 μp
n
 cosec   ·  r

2
 ·  dr

  2 μ C cosec r dr

Frictional torque on the clutch, T C r r
r

r

f cosec d2
1

2

 

 

C r r

W
r r

cosec

osec

( )

( )
2
2

1
2

1 2

2
c

  μWr
m
 cosec  (7.32)

where r
r r

m
1 2

2
 is the mean radius.

The frictional torque can also be written as,
 T

f
2 μ  p

n
 b  r2m (7.33)

Axial force required to engage the clutch,
 W

e
W μ W

n
 cos 

  W
n
 sin μ W

n
 cos 

 = W
n
(sin μ cos ) (7.34)

Example 7.9

A single-plate clutch, with both sides effective, has inner and outer diameters of friction surface  
250 mm and 350 mm, respectively. The maximum intensity of pressure is not to exceed 0.15 MPa. The 
coefficient of friction is 0.3. Determine the power transmitted by the clutch at a speed of 2400 rpm for 
(a) uniform wear and (b) uniform pressure.
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Solution 

(a) For uniform wear, T
f

n μW r
m

r

n

C pr

W

m

250 350

4
150 0 15

2

0 15 125 18 75

2
1

 mm  m

 N/mm

 

.

. .

 CC r r

T

( ) . ( ) .

. . .
2 1 2 18 75 175 125 5890 48

2 0 3 5890 48 0 1

   N

f 55 530 14.  Nm

Power transmitted, P
Tf  

kW
 

1000
530 14

2

1000

2400
60.

 133.24 kW

(b) For uniform pressure, r
r r

r rm

2

3

2

3

175 125

175 12
2
3

1
3

2
2

1
2

3 3

2 552

 151.4 mm

W r r p 2
2

1
2

   (1752 – 1252)  0.15 7068.58 N
 T

f 
nμWr

m

  2  0.3  7068.58  151.4  10–3

  642.1 Nm

Power transmitted, P 642 1
2

1000

2400
60.



 161.38 kW

Example 7.10

A plate clutch has three discs on the driving shaft and two discs on the driven shaft, providing four 
pairs of contact surfaces. The inside and outside diameters of the friction surfaces are 125 mm and 
250 mm, respectively. Assuming uniform pressure and coefficient of friction equal to 0.3, find the total 
spring load pressing the plates together to transmit 30 kW at 1500 rpm.

Solution 

Power transmitted, P
Tf

1000
kW

30
2

1000
30 1000 60

2 1500
190 986

1500
60T

T

r

f

f

m




( )

( )
.  Nm

2

3

2

3

125 62 5

125 62

2
3

1
3

2
2

1
2

3 3

2

r r

r r

.

..
.

5
97 2

2
 mm
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 T
f

n μ Wr
m

 190.986 4  0.3  W  0.0972
 W 1637.4 N

Example 7.11

An engine developing 50 kW at 1200 rpm is fitted with a cone clutch. The cone angle is 12° and a 
maximum mean diameter of 500 mm. The coefficient of friction is 0.25. The normal pressure on  
the clutch face is not to exceed 0.1 MPa. Determine (a) the axial spring force to engage the clutch, and 
(b) the face width required.

Solution 

(a) P
Tf

1000
kW

50
2

1000

1200
60Tf 

 T
f

397.9 Nm
  μ W

n
 r 

m
0.25  W

n
  0.25

 W
n

6366.4 N

Axial spring force required to engage the clutch,
 W

e
W

n 
(sin μ cos )

  6366.4 (sin 12° 0.25 cos 12°)
  2880.5 N

(b) W
n

p
n

2 r
m
b

Face width, b
2880 5

0 1 2 250
18 3

.

.
.


 mm

7.4 DYNAMOMETERS
The two types of dynamometers are: (1) absorption dynamometers, and (2) transmission dynamo-
meters.

7.4.1 Absorption Dynamometers
In these type of dynamometers, the entire power produced by the prime mover is absorbed by the 
frictional resistance of the brake and is transformed into heat, during the process of measurement. The 
absorption type of dynamometers can be classified as: (a) Prony brake dynamometer and (b) Rope 
brake dynamometer.

1. Prony Brake Dynamometer The prony brake dynamometers is shown in Fig.7.17.  
It consists of two wooden blocks placed around a pulley fixed to the shaft of the prime mover, whose 
power is to be measured. The blocks are clamped by means of two bolts and nuts. A helical spring is 
provided between the nut and the upper block to adjust the pressure on the pulley to control its speed. 
The upper block has a long lever attached to it and carries a weight W at its other end. A counter weight 
is placed at the other end of the lever that balances the brake when unloaded. Two stops S are provided 
to limit the motion of the lever.
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Fig.7.17 Prony brake dynamometer

When the brake is to be put in operation, the long end of the lever is loaded with suitable weight W 
and the nuts are tightened until the prime mover shaft runs at a constant speed and the lever is in hori-
zontal position. Under these conditions, the moment due to the weight W must balance the moment of 
the frictional resistance between blocks and pulley.

Moment of the frictional resistance, T
f

WL F R
Work done per minute 2  NT

f

Brake power, BP f
 kW

2

60 1000

2

60 1000

 NT NWL
 (7.35)

2. Rope brake dynamometers The rope brake dynamometers is shown in Fig.7.18.  
It consists of one or more ropes wound around the flywheel or rim of the pulley, fixed rigidly to the 
shaft of the prime mover. The upper end of the ropes is attached to a spring balance while the lower 
end is kept in position by applying a dead weight. In order to prevent the slipping of the ropes over the 
flywheel, wooden blocks are placed at intervals around the circumference of the flywheel.

During operation of the brake, the prime mover is made to run at a constant speed. The frictional 
torque due to the ropes must be equal to the torque being transmitted by the prime mover.

Let W dead load on the rope
 S spring balance reading
 D diameter of the pulley
 d diameter of the rope
 N speed of the pulley

Work done per minute (W – S )  (D d )N

Brake power, BP kW
( ) ( )W S D d N

60 1000
 (7.36)
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7.4.2 Transmission Dynamometers
In these type of dynamometers, the energy is used for doing work. The power developed by the prime 
mover is transmitted through the dynamometer to some other machine where the power is suitably 
measured. This type of dynamometer can be classified as follows:
1. Epicyclic train dynamometer
2. Belt transmission dynamometer
3. Torsion dynamometer.

1. Epicyclic Train Dynamometer The epicyclic train dynamometer is shown in 
Fig.7.19. It consists of a simple epicyclic train of gears: a spur gear, an annular gear, and a pinion. The 
spur gear is keyed to the engine shaft and rotates in counter-clockwise direction. The annular gear is 
also keyed to the driving shaft and rotates in clockwise direction: The pinion meshes with both the 
spur and annular gears. The pinion revolves freely on a lever that is pivoted to the common axis of 
the driving and driven shafts. A weight w is placed at the smaller end of the lever in order to keep it 
in position.

Let P be the force between the pinion, the spur gear, and the annular gear. Then the total upward 
force on the lever through the axis of the pinion is 2P. This force is balanced by a dead weight W at 
the other end of the lever. The stops control the movement of the lever.

For the equilibrium of the lever, taking moments about the fulcrum, we have

2P  ·  a WL

or P
WL

a2
Torque transmitted, T P R

where R  pitch circle radius of the spur gear.

Power transmitted ,   B P
2

60 1000

2

60 1000

 N T N P R 

kW

Fig.7.18 Rope brake dynamometer
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2. Belt Transmission Dynamometer A belt transmission dynamometer, as shown in 
Fig.7.20, consists of a driving pulley A, rigidly fixed to the shaft of the prime mover. There is another 
driven pulley B mounted on another shaft, to which the power from pulley A is transmitted. The pul-
leys A and B are connected by means of a continuous belt passing round the two loose pulleys C and 
D, which are mounted on the lever, pivoted at E. The lever carries a dead weight W at the one end, and 
a balancing weight is attached at the other end. The total force acting on the pulley D is 2T

1
 and on the 

pulley, C is 2T
2
. Taking moments about the fulcrum E, we have

2T
1
L 2T

2
a W  L

or T T
W L

a1 2 2

 

Brake power developed,

BP 
D N T T( )1 2

60 1000
kW

 
(7.37)

3. Torsion Dynamometer A torsion dynamometer is used to measure large power devel-
oped by a turbine or marine engines. The torque developed by a shaft of diameter d, length l, and 
modulus of rigidity G is

 T
G J

l
k 

where   angle of twist of the shaft.
Therefore, the torque acting on the shaft is proportional to the angle of twist.
By measuring the angle of twist, the power developed by the machine can be measured.

Power developed, P
N T2

60 1000

   

kW  (7.38)

Fig.7.19 Epicyclic gear train dynamometer



371 Brakes, Clutches, and Dynamometers 

A large number of torsion dynamometers are used to measure the angle of twist. We describe 
below the flashlight dynamometer.

4. FlashLight Dynamometer The principle of the flashlight dynamometer is shown in 
Fig.7.21. It consists of two discs A and B fixed on a shaft at a convenient distance apart. Each disc has 
a small radial slot and these two slots are in the same line when no power is transmitted and there is no 
torque on the shaft. A bright electric lamp behind the disc A is fixed on the bearing of the shaft. This 
lamp is masked having a slot directly opposite to the slot of disc A. At every revolution of the shaft, a 
flash of light is projected through the slot in the disc A towards the disc B in a direction parallel to the 
shaft. An eye piece is fitted behind the disc B on the shaft bearing and is capable of slight circumfer-
ential adjustment.

When the shaft does not transmit any torque, a flash of light may be seen after every revolution of 
the shaft, as the positions of the slot do not change relative to one another, as shown in Fig.7.21(b). 
When the torque is transmitted, the shaft twists and the slot in the disc B changes its position, though 
the slots in the lamp, disc A, and eye piece are still in line. Because of this, the light does not reach 
the eye piece, as shown in Fig.7.21(c). If the eye piece is now moved round by an amount equal  
to the lag of the disc B, then the slot in the eye piece will be opposite to the slot in disc B, and hence 
the eye piece will receive flash of light. The eye piece is moved by operating a micrometer spindle 
and by means of scale and Vernier, the angle of twist may be measured upto 1/100th of a degree. For 
the measurement of variable torque, the discs A and B should be perforated with slots arranged in the 
form of a spiral.

Fig.7.20 Belt transmission dynamometer
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Example 7.12

In a single-block brake, the drum diameter is 300 mm, the angle of contact is 90°, and the coefficient of 
friction between the lining and the drum is 0.30. If the operating force is 400 N, applied at the end of a 
lever 400 mm long, determine the torque transmitted by the brake. The distance of the fulcrum from the 
centre of the brake drum is 200 mm and assume that the force of friction passes through the fulcrum.

Solution 

Given: d 300 mm, 2 90°, μ 0.3, P 400 N, a 200 mm, b 400 mm.
 R P b/a 400  400/200 800 N
 T 4μ R r sin /(2 sin 2 )

 4  0.35  800  0.15  sin 45°/( /2 sin 90°)
 39.614 Nm

Example 7.13

In a double-shoe brake, the diameter of the brake drum is 350 mm and the contact angle for each shoe 
is 120°. The coefficient of friction for the brake lining and drum is 0.35. Find the necessary spring 
force to transmit a torque of 40 Nm. The distance of the centre of brake drum from the fulcrum and 
spring is 250 and 300 mm, respectively.

Solution 

Given: d    350 mm, 2     120°, μ    0.35, T    40 Nm, a    250 mm, b    300 mm
 R P b/a 400  400/200 800 N
 μ

e
4μ sin /(2 sin 2 )
4  0.35  sin 60°/(2 /3 sin 120°)

 1.55
Let P spring force on left side

 P
r

spring force on right side
 P  (a b) R a
 R P  (a b)/a

Fig.7.21 Flashlight dynamometer
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 P   550/250 2.2 P
L

 P
r
 (a b) R

r   
a

 R
r

P
r
 (a b)/a 2.2 P

R

 T μ
e
 (R R

r
) r

For P
L

P
R

 40 1.55 (2  2.2) P
r
  0.35/2

Spring force, P
r

33.51 N

Example 7.14

A simple band brake is operated by a lever of length 450 mm. The brake drum has a diameter of  
600 mm and the brake band embraces fifth-eigth of the circumference. One end of the band is attached 
to the fulcrum of the lever, whereas the other end is attached to a pin on the lever 120 mm from the 
fulcrum. The effort applied to the end of the lever is 2 kN, and the coefficient of friction is 0.30. Find 
the maximum braking torque on the drum.

Solution 

Given: b 450 mm, d 600 mm, 5  360/8 225°, μ 0.3, a 120 mm, P 2 kN, T
b

?.
 T

1
/T

2
exp  (μ ) exp  (0.3    225/180) 3.248

 T
1

P b/a 2000  450/120 7500 N
 T

2
7500/3.248 2309 N

 Braking torque for ccw of drum, T
b

(T
1
 – T

2
) d/2 (7500 – 2309)  0.3 1557.3 Nm

Example 7.15

In the differential band brake, the diameter of the drum is 900 mm, and the coefficient of friction 
between the drum and the band is 0.3. The angle of contact is 240°. When a force of 650 N is applied 
at the free end of the lever, find the maximum and the minimum force in the band and the torque that 
can be applied by the brake. Take a 120 mm and b 100 mm.

Solution 

Given: a 120 mm, b 100 mm, d 900 mm, 240°, μ 0.3, P 650 N, 500 mm.
 T

1
/T

2
exp ( μ ) exp (0.3    240/180) 3.5136

 T
1
a P T

2
b

 650  500 T
2
  100 – T

1
  120

 T
2
 – 1.2 T

1
3250

 T
2
 – 4.216 T

2
3250

 T
2

–1010.5 N
 T

1
–3.5136  1010.5 –3550.4 N

Braking torque for ccw of drum, T
b

(T
1
 – T

2
) d/2

 (3550.4 – 1010.5)  0.45 1143 Nm

Example 7.16

A vehicle is moving on a level track at a speed of 40 km/h. Its centre of gravity lies at a distance of 
0.6 m from the ground level. The wheel base is 2.4 m and the distance of the CG from the rear is 1 m. 
Find the distance travelled by the vehicle before coming to rest when brakes are applied (a) to the rear 
wheels, (b) to the front wheels, and (c) to all the four wheels.

The coefficient of friction between the tyres and the road surface is 0.40.
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Solution 

Given: h 0.6 m, wheel base, 2.4 m, x 1 m, μ 0.4
 v 40  1000/3600 11.11 m/s

(a) R
A

R
B

W, M
G

0 gives,
 R

A
 x μR

A
 h R

B
 (  – x)

 R
A
  1 0.4  R

a
  0.6 R

B
 (2.4 – 1)

 1.24 R
A

1.4 (W – R
A
)

 R
A

0.53 W, R
B

0.47 W
 F

A
–Wa/g

 μR
A

–Wa/g
 a –0.4  0.53 W  9.81/W –2.08 m/s2

 v2 – u2 2 a s
 0 – (11.11)2 –2  2.08  s
 s 29.67 m

(b) μ R
B

–Wa/g
 a –0.4  0.47 W  9.81/W –1.844 m/s2

 v2 – u2 2 a s
 0 – (11.11)2 –2  1.844 s
 s 33.47 m
(c) μ (R

A
R

B
) –W a/g 0.4 W

 a –0.4  W  9.81/W –3.924 m/s2

 v2 – u2 2 a s
 0 – (11.11)2 –2  3.924  s
 s 15.72 m

Example 7.17

A single-plate clutch having both sides effective is required to transmit 30 kW at 1500 rpm. The outer 
diameter of the plate is limited to 300 mm and the intensity of pressure between the plates is not to 
exceed 0.07 MPa. Assuming uniform wear and a coefficient of friction 0.35, determine the inside 
diameter of the plate.

Solution 

Given: P 30 kW, n 1500 rpm, d
2

0.3 m, p 0.07 MPa, i 2, μ 0.35, d
1

?.
 r

m
0.25 (d

1
d

2
) 0.25 (d

1
0.3)

For uniform wear,
 W d

1
(d 

2
 – d 

1
) p/2 d

1
(0.3 – d

1
)  0.07  106/2 109956 d

1
(0.3 – d

1
) N

2   1500/60 157.08 rad/s
 P T

f  

 30  103 T
f
  157.08

 T
f

191 Nm
 T

f
μ W r

m 
i

 191 0.35  109956 d
1
(0.3 – d

1
)  0.25 (d

1
0.3)  2

 9.926 d
1
(0.09 – d2

1
)
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We determine the value of d
1
 by hit and trial.

d
1
 (m) RHS

0.10 8  10 3

0.12 9.072  10 3

0.14 9.856  10 3

0.145 9.917  10 3

Hence, we adopt d
1

0.145 m or 145 mm

Example 7.18

A multi-plate clutch has three pairs of contact surfaces. The outer and inner radii of the contact sur-
faces are 150 and 80 mm, respectively. The maximum axial spring force is limited to 03 kN and the 
coefficient of friction is 0.3. Assuming uniform uniform wear find the power transmitted by the clutch 
at 1500 rpm.

Solution 

Given: n 3, r
1

80 mm, r
2

150 mm, μ 0.3, N 1500 rpm, W 0.9 kN
 r

m
0.5 (r

1
r

2
) 0.5 (80 150) 115 mm

 T
f

n μ W r
m

3  0.3  0.9  115 93.15 Nm
2   1500/60 157.08 rad/s

 P T
f  

93.15  157.08/103 14.632 kW

Example 7.19

A cone clutch with cone angle 25° is to transmit 8 kW at 750 rpm. The normal intensity of pressure 
between the contact faces is not to exceed 0.15 MPa. The coefficient of friction is 0.25. If face width 
is one-fifth of mean diameter, find (a) the main dimensions of the clutch and (b) axial force required 
while running.

Solution 

Given: 2 25°, P 8 kW, N 750 rpm, p
n

0.15 MPa, μ 0.25, b d
m
/5

 r
m

0.25 (d
1  
+

  
d

2
)

 For uniform wear,

2   750/60 78.54 rad/s

 P T
f

 8000 T
f
  78.54

 T
f

101.86 Nm

 T
f

2 μp
n
br2

m

 101.86 2   0.25  0.15  106  0.2  0.5 (d
1

d
2
)  (d

1
d

2
)2/16

 (d
1

d
2
)3 69168.6  10–6

 d
1

d
2

410.5 mm

 Let d
2
/d

1
2, then d

1
136.8 mm, d

2
273.6 mm,

 b 0.2  0.5  410.5 41.05 mm



376 Theory of Machines

Example 7.20

A torsion dynamometer is fitted on a turbine shaft to measure the angle of twist. It is observed that the 
shaft twists 2° in a length of 5 m at 600 rpm. The shaft is solid and has a diameter of 250 mm. If the 
modulus of rigidity is 84 GPa, find the power transmitted by the turbine.

Solution 

Given: 2°, 5 m, N 600 rpm, d 250 mm, G 84 GPa, P ?
 T GJ / 84  109    (0.25)4    2/(5  32  180)

 224893 Nm
 P 2   NT/(60  103)

 2   600  224893/(60  103) 14130 kW

Example 7.21

A single-plate clutch is required to transmit 22 kW at 6000 rpm. The clutch facings available provide 
a coefficient of friction of 0.25 and the average pressure is to be limited to 75 kN/m2. Determine the 
dimensions of the working surface of the clutch plate if its maximum dimension is not to exceed  
260 mm due to space restrictions. [IAS, 1983]

Solution 

Given: P 22 kW, N 6000 rpm, μ 0.25, p 75 kN/m2, d
2

0.26 m, i 1, d
1

?
For uniform wear, r

m
0.25 (d

1
d

2
) 0.25 (d

1
0.26)

 W
d d d p1 2 1

2

( ) max

 
d d1 1

30 16 75 10

2

( . )
= 117809.7 d

1
(0.16 – d

1
) N

2   6000/60 628.3 rad/s
 P T

f

 22  103 T
f
  628.3

 T
f

35.015 Nm
 T

f
μ W r

m
i

 35.015 0.25  117809.7 d
1
(0.26 – d

1
)  0.25 (d

1
0.26)  1

 or 4.755  10–3 d (0.0676 – d2
1
)

We shall solve this by hit and trial method to find d
1
.

d
1
, (m) RHS

0.100 5.76  10 3

0.080 4.896  10 3

0.078 4.798  10 3

0.077 4.749  10 3

Hence, we adopt d
1

77 mm

Example 7.22

In a winch, the rope supports a load W and is wound round a barrel of 450 mm diameter. A differential 
band brake acts on a drum 800 mm diameter that is keyed to the same shaft as the barrel. Two ends of 
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the band are attached to pins on opposite sides of the fulcrum of the brake lever and at a distance of  
25 and 100 mm, respectively, from the fulcrum. The angle of lap of the brake band is 250° and 
coefficient of friction is 0.25. What is the maximum load W that can be supported by the brake when 
a force of 750 N is applied to the lever at a distance of 3 m from the fulcrum? [IAS, 1987]

Solution 

Given: d
b

450 mm, d 800 mm, a 100 mm, b 25 mm,

250°, μ 0.25, P 750 N, 3 m.

 P T
1 
a T

2  
b

 750  3 0.1 T
1

0.025 T
2

 T
2
 – 4 T

1
90,000

 T
1
/T

2
exp  (μ ) exp  (0.25    250/180) 2.9767

 T
2
 – 4  2.9767 T

2
90,000

 T
2

–8251.6 N, T
2

–24562.5 N

 W  d
b
/2 (T

1
 – T

2
) d/2

 W  450 (24562.5 – 8251.6)  800

 W 28997 N

Example 7.23

A differential band brake under certain conditions can provide self-locking. Where this facility finds 
applications?

A differential band brake has a force of 220 N applied at the end of a pedal as shown in Fig.7.22. 
The coefficient of friction between the band and the drum is 0.4. Angle of lap is 180°.

(a) What is the maximum torque the brake may sustain, for a counter-clockwise rotation, when the 
force applied at the pedal is 220 N?

(b) If a clockwise torque of 450 Nm is applied to the drum, determine the maximum and minimum 
force in the band. [IES, 1984]

180

T1T2

240mm

12060

220N

180

Fig.7.22 Differential band brake
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Solution 

Given: P 220 N, 240 mm, μ 0.4, 180°, b 60 mm, a 120 mm, d 180 mm
 P T

1
 a T

2
b

 220  240 60 T
2
 = 120T

1

 2T
1
 – T

2
880

 T
1
/T

2
exp ( μ ) exp (0.4  ) 3.5136

 2  3.5136 T
2
– T

2
880

 T
2

146 N, T
1

513 N
(a) Braking torque (T

1
 – T

2
) d/2 (513 – 146)  0.09 33.03 Nm

(b) If  T
b

450 Nmcw, then T
1
 – T

2

450 10

90
5000

3

 N
 T

2
(3.5136 – 1) = 5000

 T
2
 = 1989.2 N

 T
1
 = 6989.2 N

Example 7.24

A single-plate clutch, effective on both sides, is required to transmit 25 kW at 3000 rpm. Determine 
the outer and inner diameters of frictional surface if the coefficient of friction is 0.255, ratio of diam-
eters is 1.25, and the maximum pressure is not to exceed 0.1 N/mm2. Also determine the axial thrust 
to be provided by springs, assuming the theory of uniform wear. [IES, 1984]

Solution 

Given: P N p d d i25 3000 0 255 0 1 1 25 22
2 1 kW   rpm   N mm   , , . , . / , / . , ,

WW d d

W d d d p d

?, , ?.

( ) / ( . ) . /max

  1 2

1 2 1 1
2 62 1 25 1 0 1 10 2 339 270

0 25 1 0 25 1 1 25 0 5625
1
2

2 1 1

.

. ( ) . ( . ) .

 d

r d d d d

T i Wr

m

f m 2 0 255 39270 0 5625 11265 6

2 3000 60 314 16

1
2

1 1
3. . .

/ .

d d d

rrad s

Nm

 

/

/ , / . .

. .

P T T

d

f f10 25 10 314 16 79 578

11265 6 79 57

3 3

1
3 88

192 384 39270 0 192 1447 61 2
2d d Wmm mm N, , ( . ) .

Example 7.25

An automobile single-plate clutch consists of a pair of contacting surfaces. The inner and outer diam-
eters of friction plate are 120 and 250 mm, respectively. The coefficient of friction is 0.25 and the total 
axial force is 15 kN. Calculate the power transmitting capacity of the plate clutch at 500 rpm using  
(a) uniform wear theory and (b) uniform pressure theory. [IES, 1996]

Solution 

Given: d
1

120 mm, d
2

250 mm, μ 0.25, W 15 kN, N 500 rpm

(a) r
m

0.25(d
1

d
2
) 0.25(120 250) 92.5 mm

 T
f

i μ W r
m

2  0.25  15  103  92.5  10–3 693.75 Nm
2   500/60 52.36 rad/s

 P T
f

/103, T
f

693.75  52.36/103 36.32 kW
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(b) r
m

(2/3) [(1253 – 603)/(1252 – 602)] 96.3 mm
 T

f
i μ W r

m
2  0.25  15  103  96.3  10–3 722.25 Nm

 P T
f

/103, T
f

722.25  52.36/103 37.82 kW

Example 7.26

The semi-cone angle of a cone clutch is 12.5° and the contact surfaces have a mean diameter of 80 
mm. The coefficient of friction is 0.32.
(a) What is the maximum torque required to produce slipping of the clutch for an axial force of 200 N?
(b) What is the time needed to attain the full speed?
(c) What is the total energy supplied during slipping? Motor speed is 900 rpm and the moment of 
inertia of the flywheel is 0.4 kg m2.
(d) What are the considerations in the selection of plate clutches and cone clutches?  [IES, 1998]

Solution 

Given: 12.5°, d
m

80 mm, μ 0.32, W 200 N, I 0.4 kg m2

(a) T
f

μ W r
m
 cosec 0.32  200  40  10–3  cosec 12.5° 11.83 Nm

 T
f

 · 
Angular acceleration, 11.83/0.4 29.575 rad/s2

 2   900/60 94.248 rad/s

(b) Time taken to obtain full speed, t / 94.248/29.575 3.18 s Angle turned through by the  
driving shaft during slipping period, 

1
  t 94.248  3.18 299.7 rad

Angle turned by the driven shaft, 
2

0.5 t2

  0.5  29.575  (3.18)2 149.54 rad

Energy lost in friction due to clutch slip T
f
 (

1
 – 

2
)

  11.83  (299.7 – 149.54)

  1776.4 Nm

(c) Kinetic energy of driven shaft 0.5 I 2

  0.5  0.4  (94.248)2 1776.53 Nm

Total energy supplied during slipping 1776.53 1776.4 3552.93 Nm

Example 7.27

A single-plate friction clutch has the following data:
Power developed 30 kW
Speed 2400 rpm
Axial load 1500 N
Outside diameter 300 mm
Coefficient of friction 0.32
Overload 10%

(a) Determine the inside diameter of the clutch plate for its both sides effective and assuming uniform 
wear.

(b) The moment of inertia of rotating parts attached to driven shaft is 2.5 kg m2 and average torque is 
80% of maximum torque. Determine the time lapse before the engine attains the full speed, if the 
clutch is suddenly applied.
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Solution 

 T
max

30  103  60/(2   2400) 119.37 Nm
 T

f
 1.1 T

max
131.3 Nm

 r
m

0.25 (d
1

0.3)
 T

f
2 μ W r

m

 131.3 2  0.32  1500  0.25 (d
1

0.3)
 d

1
247 mm

 T
avg

0.8 T
max

95.496 Nm
 T

avg
I /t

 t 2.5  2   2400/(60  95.496) 6.57 s

Example 7.28

A machine is driven from a constant speed shaft rotating at 270 rpm by a disc friction clutch having 
both sides effective. The moment of inertia of rotating parts of the machine is 4.5 kg  ·  m2. The inner 
and outer diameters of friction plate are 250 and 150 mm, respectively, and the axial pressure applied 
is 0.075 MPa. Assuming uniform pressure and coefficient of friction to be 0.25, determine the time 
required for the machine to attain full speed when the clutch is suddenly engaged. Also determine the 
energy supplied during clutch slip.

Solution 

Given: d
1

150 mm, d
2

250 mm, μ 0.25, p 0.075 MPa, I 4.5 kg.m2, N 270 rpm

(a) W  (2502 – 1502)  0.075/4 2356 N
 r

m
(2/3) [(1253 – 753)/(1252 – 752)] 102.1 mm

 T
f

2μ W r
m

2  0.25  2356  102.1  10–3 120.284 Nm
 T

f
I 

Angular acceleration, 120.284/4.5 26.73 rad/s2

 2   270/60 28.27 rad/s

(b) Time taken to obtain full speed, t / 28.27/26.73 1.06 s Angle turned through by the 
driving shaft during slipping period, 

1
  t 28.27  1.06 29.9 rad

Angle turned by the driven shaft, 
2

0.5  t2

  0.5  26.73  (1.06)2 15.017 rad
Energy lost in friction due to clutch slip T

f
 (

1
 – 

2
)

  120.284  (29.9 – 15.017)
  1790.2 Nm

(c) Kinetic energy of driven shaft 0.5 I 2

  0.5  4.5  (28.27)2 1798.2 Nm
Total energy supplied during slipping 1790.2 1798.2 3588.4 Nm

Example 7.29

A crane is required to hold a load of 100 kN. This load is attached to a rope wound round the crane 
barrel that is 450 mm in diameter. The brake drum that is fixed to the barrel shaft has diameter of  
600 mm. The band embraces three-fourth of the circumference of the drum and the coefficient of fric-
tion between the band and the drum is 0.35. The brake is to be applied by a hand lever above the drum 
and the operating force acting vertically downwards must not exceed 500 N. Find suitable length of 
lever on both sides of fulcrum, assuming that one of the bands is attached to the fulcrum pin directly.
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Solution 

Refer to Fig.7.23.
Given: W 100 kN, d

b
450 mm, d

d
600 mm, 1.5  rad, μ 0.35

 T
1
/T

2
exp (0.35  1.5 ) 5.2

 (T
1
 – T

2
) d

d  
/2 Wd

b
/2

 T
1
 – T

2
100  450/600 75 kN

 T
2

17857 N, T
1

92857 N
 P l T

2
 a

 l/a 17857/500 35.714
If the rotation of drum is ccw, then T

2
 will become, T

1
. In that case,

 l/a 92857/500 185.714

Example 7.30

The power of a turbine is to be determined by observing the angle of twist of a 6 m long shaft at  
520 rpm; the angle was 2°. The solid shaft has a diameter of 200 mm and modulus of rigidity 84 GPa. 
Neglecting end thrust, determine the power of the turbine.

Solution 

2 /180 0.0349 rad, l 6 m, G 84 GPa

 J   (0.2)4/32 1.57  10–4 m–4

 T G J /l 84  109  1.57  10–4  0.0349/6 76.749 Nm

2   520/60 54. 45 rad/s

 P T /103 76,749  54.45/103 4179 kW

Example 7.31

A band brake acts on three-fourth of circumference of a drum of 500 mm diameter that is the keyed 
to the shaft. The band brake provides a breaking torque of 250 Nm. One end of the band is attached 
to a fulcrum pin of the lever and other end to a pin 100 mm from the fulcrum. If the operating force 
is applied at 550 mm from the fulcrum and the coefficient of friction is 0.27, find the operating force 
when the drum rotates in (a) clockwise direction and (b) anti-clockwise direction.

Solution 

Refer to Fig.7.4(a).

Given: d 500 mm, 
3

4
360 270 , T

b
250 Nm, a 100 mm, b 550 mm, μ 0.27

l

T2

T1

A

B
Barrel

Drum

C

P = 500 N

W = 100 kN

a

dddb

Fig.7.23 Rope brake



382 Theory of Machines

(a) When drum rotates clockwise
P will act downwards and the end of band attached to fulcrum O will be tight with tension T

1
.

T

T
e e

T T T r

T T

T T

1

2

0 27

1 2

1 2

1 2

3
2 3 569

250 0 25


. .

( )

( ) .
b

  

1000

3 569 1 1000

389 25 1389 25
2

2 1

N

N N

T

T T

( . )

. , , .

Taking moments about O, we have

Pb T a

P

2

389 25
100

550
70 8. . N

(b) When drum rotates anticlockwise
Right hand side band will be tight.

P T a

P

b 1

1389 25
100

550
252 6. . N

Example 7.32

In the internal expanding shoe brake shown in Fig.7.24, the distance OO
1

80 mm. The internal 
radius of the brake drum is 105 mm. Angle BOO

1
45° and AOO

1
135°. The brake is applied by 

means of a force at C perpendicular to the line O
1
C, the distance O

1
C being 150 mm. The coefficient of 

friction may be taken as 0.4 and the braking torque required is 25 Nm. Calculate the force required at 
C to operate the brake when (a) the drum rotates clockwise, and (b) the drum rotates anticlockwise.

Lining

Shoe

B

A
C

F

45°

135° O 105

80

150 mm

Brake
drum

O1

Fig.7.24 Internal expanding shoe brake
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Solution 

Given: OO
1

80 mm, r 105 mm, 





1 245
4

135
3

4
, , l 150 mm, μ 0.4, T

b
25 Nm.

Let F force applied at C.

(a) When drum rotates clockwise.
 T

b
μp

1 
b r2 (cos 

1
 – cos 

2
)

 
25 10 0 4 105

4

3

4
3

1
2. cos cosþ b

 

  6236.68  p
1
b

 p
1
Pb 4

Total moment of normal forces about the fulcrum O
1
,

 

M p b r OOr

1

2

1

2
2 2

1

2
4 105

1 1 2 1 1 2( ) [( ) (sin sin )]

      880
3

4 4

1

2
90 270

43189

(sin sin )

      N mm

Total moment of friction force about the fulcrum O
1
,

M p br r
OO

f     1 1 2
1

2 14
2 2

0 4 4 105

(cos cos ) (cos cos )

. 1105 45 135
80

4
270 90

24947

(cos cos ) (cos cos )

N mm

Taking moments about O
1
,

 F l M
n

M
f

 F  150 43189 24947 68136
 F 454.24 N

(b) When drum rotates anticlockwise.
 F l M

n
 – M

f

 F  150 43189 – 24947 18242
 F 121.6 N

Example 7.33

A car moving on a level road at a speed of 60 km/h has a wheel base 2.8 m, distance of CG from 
ground level is 0.6 m, and the distance of CG from rear wheel is 1.2 m. Find the distance travelled by 
the car before coming to rest when brakes are applied (a) to the rear wheels, (b) to the front wheels, 
and (c) to all the four wheels.

The coefficient of friction between types and road may be taken as 0.5.

Solution 

Given: u
60 10

3600
16 67

3

. m/s, l 2.8 m, h 0.6 m, x 1.2 m, μ 0.5
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(a) Brakes applied to rear wheels

Retardation, a
g l x

l h




( )

0.5 0.6
2.53m/s2 0 5 9 81 2 8 1 2

2 8

. . ( . . )

.

Distance travelled, s
u

a

2

2.53
54.9 m

2

16 67

2

2( . )

(b) Brakes applied to front wheels

 

a
g x

l h

s
u

a

0 5 9 81 1 2

2 8 0 5 0 6
2 354

2

16 67

2

2

. . .

. . .
.

( . )

 m/s

22

2 2 354
59

.
 m

(c) Brakes applied to all four wheels

 

a g

s
u

a

9.81 0.5 4.905 m/s

4.905
28.3 m

2

2 2

2

16 67

2

( . )

Example 7.34

A rotor is driven by a coaxial motor through a single-plate clutch, both sides of the plate being effec-
tive. The external and internal diameters of the plate are 240 mm and 180 mm, respectively, and total 
spring load pressing the plates together is 600 N. The motor armature and shaft has a mass of 800 
kg with an effective radius of gyration of 200 mm. The rotor has a mass of 1250 kg with an effective 
radius of gyration of 180 mm. The coefficient of friction for the clutch is 0.36.

The driving motor is brought up to a speed of 1250 rpm when the current is switched off and the 
clutch is suddenly engaged. Determine:

(a) the final speed of motor and rotor, (b) the time to reach this speed, and (c) the kinetic energy 
lost during the period of slipping.

How long would slipping continue if it is assumed that a constant resisting torque of 60 Nm were 
present? If instead of a resisting torque, it is assumed that a constant driving torque of 60 Nm is main-
tained on the armature shaft, what would then be slipping time?

Solution 

Given: r
1

90 mm, r
2

120 mm, W 600 N, m
m

800 kg, K
m

200 mm,
 m

r
1250 kg, K

r
180 mm, μ 0.36, N

1
1250 rpm

  


 
1

12

60

2

60
130 9

N 1250
rad/s.

(a)        I m Km m m
2 2800 0 2 32( . ) kg m

               I
r

m
r
K2

r
 1250  (0.18)2 40.5 kg m2

Let 
3

final speed of motor and rotor
For conservation of angular momentum,

I
m 1

I
r 2

(I
m

I
r
) 

3

32  130.9 40.5  0 (32 40.5) 
3

3
57.78 rad/s or 551.7 rpm
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(b) Let t time in seconds to reach 
3

Mean radius, r r rm

1

2

1

2
90 1201 2( ) ( ) 105mm

Total frictional torque, T n μ W r
m

2  0.36  600  0.105 45.36 Nm

Angular acceleration of rotor,2

45 36

40 5

T

Ir

.

.
1.12 rad/s2

                                                        
t

 


3 1

2

57 78 0

1 12

.

.
51.59s

(c) Angular kinetic energy before impact,

  E I I Im r m1 1
2

2
2

1
2

2

1

2

1

2

1

2
1

2
32 130 9 274157

  

( . ) Nm

After imppact

Nm

, ( ) ( . ) ( . )E I Im r2 3
2 21

2

1

2
32 40 5 57 78

121022



Kinetic energy lost during slipping E
1
 – E

2
274157 – 121022

  153135 Nm
Let t

1
time of slipping with constant resisting torque

Torque on armature shaft, T
1

–60 – 45.36 –105.36 Nm
Torque on rotor shaft, T

2
T 45.36 Nm

For armature shaft,    3 1 1 1 1+t
T

I
t

m
1

1

130.9
105.36 

132
t

 130.9 – 3.2925t
1
 (1)

For rotor shaft,  3 1
2

1 1

45 36

40 52 11.12t
T

I
t t t

r

.

.
  (2)

From Eqs. (1) and (2),
 1.12 t

1
130.9 – 3.2925 t

1

 t
1

29.7 s
With constant driving torque,
 T

1
60 – 45.36 14.64 Nm

Now 1
1

1
2

1

1 1130 9
14 64

32

45 36

40 5
130 9

T

I
t

T

I
t

t t

t

m r

.
. .

.
. 0.4575 1 11.12

197.6 s
1t

t1
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Example 7.35

The contact surfaces in a cone clutch have an effective diameter of 80 mm. The semi-angle of cone is 
15° and coefficient of friction is 0.32. Find the torque required to produce slipping of the clutch if an 
axial force applied is 200 N.

This clutch is employed to connect an electric motor running uniformly at 1200 rpm with a fly-
wheel, which is initially stationary. The flywheel has a mass of 15 kg and its radius of gyration is 
150 mm. Calculate the time required for the flywheel to attain full speed and also the energy lost in 
the slipping of the clutch.

Solution 

Given: R 40 mm, 15°, μ 0.32, W 200 N, N
f

1200 rpm, m
f

15 kg, K
f

150 mm

Torque required to produce slipping,      T μWr cosec 

     0.32  200  0.04  cosec 15° 9.891 Nm

Mass moment of inertia of flywheel,  I m Kf f f
2 2 215 0 15 0 3375( . ) . kg m

Now  T I
f
  

f

Angular acceleration of flywheel,          f
f

T

I

9 891

0 3375
2.

.
29.3 rad/s

Angular speed of flywheel, 
 

f

N2

60

2

60
f 1200

125.664 rad/s

Now 
f f

  t
f

 
t f

125 664

29 3

.

.
4.29s

Angle turned through by the clutch in 4.29 s from rest,
 average angular velocity  time

 

1

2

1

2
4 29 f ft 125.664 269.55 rad.

Energy lost in slipping of clutch T 8.891  269.55 2396.6 Nm.

Example 7.36

The arrangement of an internal expanding shoe brake is shown in Fig.7.25. The width of the brake 
lining is 40 mm and the intensity of pressure at any point A is 4  105 sin  MPa, where  is measured 
as shown from either pivot. The coefficient of friction is 0.35. Determine the braking torque and mag-
nitude of forces F

1
 and F

2
.

Solution 

Given: 
1

30°, 
2

120°, μ 0.35, b 40 mm, r 150 mm, p
n

4  105 sin  MPa, 
0

25°
Maximum intensity of pressure, p

max
4  105 MPa

Distance of force F
1
 from fulcrum O

1
, l 200 mm

Distance of force F
2
 from fulcrum O

2
, l 200 mm

Braking torque, T
b

μp
max

br 2 (cos 
1
 – cos 

2
)

  0.35  4  105  0.04  (0.15)2 (cos 30° – cos 120°)
  172.12 Nm
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35˚

F1

O

O1

A

O2

r
B

F2

35˚

1= 30°

25˚

100 mm

100 mm

2= 120°

0= 25°

Fig.7.25 Internal expanding shoe brake

Total braking torque for two shoes, T
b

2  172.12 344.24 Nm

Now OO
O B

1
1

0

100

25
110 34

cos cos
.


mm

Total moment of normal forces about fulcrum O
1
,

 
M p br OOn

1

2

1

2
2 21 2 1 1 2max [( ) (sin sin )]   

 

1

2
4 10 0 04 0 15 0 11034

180
120 30

1

2
60 245 . . . ( ) (sin sin


00 )

  322.65 Nm
Moment of friction forces about fulcrum O

1
,

M p br r
OO

f     max [ (cos cos ) (cos cos )]

.

1 2
1

2 1

5

4
2 2

0 35 4 10 00 04 0 15 0 15 30 120
0 11034

4
240 60. . . (cos cos )

.
(cos cos )

  148.95 Nm
Leading shoe:
Taking moments about O

1
,

 F
1
  l m

n
 – m

f

 0.2 F
1

322.65 – 148.95 173.7
 F

1
868.5 N
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Trailing shoe:
Taking moments about O

2
,

 F
2
  l M

n
m

f

 0.2 F
2

322.65 148.95 471.6
 F

2
2358 N

Summary for Quick Revision

1 Brakes are the devices to reduce the speed of a moving machine component by absorbing energy. 
The energy thus absorbed is converted into heat and released into the atmosphere or absorbed in 
another medium.

2 Block brakes:

 (a) Single-block or shoe brake.
(i) Frictional force F passes through the lever fulcrum.

Tangential braking or frictional force on the drum, F μPb/a
Braking torque, T

b
Fr μPbr/a

Where r  radius of the drum
When the brake drum is moving on the rails or road with speed v, and the braking distance 
is s, then
Work done against friction F s μpb s/a
Kinetic energy lost 1/2 mv2 1/2 1 2

where m mass of brake drum
 I moment of intertia of brake drum
 angular speed of drum
For the conservation of energy, we have
μPb s/a 1/2 mv2 1/2 I 2

(ii) Frictional force F is above the lever fulcrum by a distance c.
R P b/(a μc)

In this case, the frictional force is helping to apply the brake. Such a brake is called self-
energizing brake.

(iii) Frictional force F is below the lever fulcrum by a distance c.
R P.b/(a – μc)
If a  μc, then P will be zero or negative, that is, no external force will be required to 
apply the brake. Such a brake is called self-locking type of brake.

 (b) Pivoted shoe brake
Frictional torque, T 4 μRr sin /(2 sin 2 )
Equivalent coefficient of friction,
μ

e
4 μ sin /(2 sin 2 )

 (c) Double-shoe brake
(i) Frictional forces passing through the fulcrums of the levers.

 R
I

P
I
 (a b)/(a – μc)

 F
I

μP
I
 (a b)/(a – μc)

 R
r

P
r
 (a b)/(a μc)

 F
r

μP
r
 (a b)/(a μc)
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3 Band brakes
 (a) Simple band brake

Ratio of tensions, F
1
/F

2
exp ( μ )

Braking torque on the drum, T
b

(F
1
 – F

2
) r

 (b) Differential band brake
PI F

1
a F

2
b, for anti-clockwise rotation of drum

PI F
2
a F

1
b, for clockwise rotation of drum

For a self-locking brake, P  0, therefore, for anti-clockwise rotation,
F

1
/F

2
 b/a

and for clockwise rotation, F
1
/F

2
 a/b

F
1
/F

2
exp ( μ )

4 Band and block brake.
 F

n
/F

o
[(1 μ tan )/(1 – μ tan )]n

Braking torque, T
b

(F
o
 – F

n
) r

5 Internal expanding shoe brake
Total moment of normal force about the fulcrum,

M
n

(p
max

b r a)/2 [(
2
 – 

1
) (1/2) (sin 2

1
 – sin 2

2
)]

Total moment of the frictional force about the fulcrum O
1
,

M
f
 μ (p

max
 br [r (cos 

1
 – cos 

2
)  (a /4)(cos 2

2
 – cos 2

1
)]

For the leading shoe, taking moments about the fulcrum,
I M

n
 – M

f

and for the trailing shoe, taking moments about the fulcrum,
F

2
.I M

n
M

f

6 Braking of a vehicle.
Acceleration, f g ( μ cos sin )

 (a) Vehicle moves on a level track, f μg
 (b) Vehicle moves down, f g ( μ cos  – sin )
 (c) Brakes are applied to rear wheel only, f {μg (I – x) cos }/(I μh) ± g sin 

Use positive sign for going up and negative sign for going down the plane.
On a level track, f μg (I – x)/(I μh)

 (d) Brakes are applied to front wheels only: f (μg  cos )/(I – μh) ± g sin 
Use positive sign for going up the plane and negative sign for going down.
On a level track, f μg  /(I – μh)

7 A clutch is a device used to transmit the rotary motion of one shaft to another when desired.

8 Friction clutches:
 (i) Single-plate clutch

(a) Uniform pressure
Intensity of pressure, p W r r/ ( )2

2
1
2

Total frictional torque, T W r r r rf ( ) [( ) ( )]2/3 / 2
3

1
3

2
2

1
2

Mean radius of friction surface, r r r r rm 2/3 [( ) / ( )]2
3

1
3

2
2

1
2

(b) Uniform wear
Total frictional torque, T

f
μW (r

1
r

2
)/2

 r
m

(r
1

r
2
)/2
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 (ii) Multi-plate clutch
n

1
number of plates on the driving shaft

n
2

number of plates on the driven shaft
Number of pairs of contact surfaces, n n

1
n

2
 – 1

Total frictional torque transmitted, T nμWr
m

 (iii) Cone clutch
(a) Uniform pressure

Total frictional torque, T
f

μWr
m
 cosec 

(b) Uniform wear
Total frictional torque, T

f
μW r

m
 cosec 

where r
m

(r
1

r
2
 /2)

Also T p b rf n m2 2 
Axial force required to engage the clutch,
 W

e
W

n
 (sin μ cos )

9 Dynamometers are the devices to measure the power developed by a prime mover.

10 Dynamometers.
 (a)  In absorption dynamometers, the entire power produced by the prime mover is absorbed by 

the frictional resistance of the brake and is transformed into heat, during the process of meas-
urement. The absorption type of dynamometer are: Prony brake dynamometer, and Rope 
brake dynamometer.

 (i) Prony brake dynamometer:
Brake power, BP 2 NWL/(60  103) kW

 (ii) Rope brake dynamometer:
  Brake power, BP (W – S)   (D d) N/(60  103) kW

 (b)  In transmission dynamometers, the energy is used for doing work. The power developed by 
the prime mover is transmitted through the dynamometer to some other machine where the 
power is suitably measured. These type of dynamometers are: Epicyclic train dynamometer, 
belt transmission dynamometer, and Torsion dynamometer.

 (i) Epicyclic gear train dynamometer:
  Brake power, BP 2 NPR/(60  103) kW, P WL/(2a)

 (ii) Belt transmission dynamometer:
  Brake power, BP DNWL/(2a  60  103) kW

 (iii) Torsion dynamometer:
  Brake power, BP 2 NT/(60  103) kW, T (GJ/I) 

Multiple Choice Questions

1 The following dynamometer is widely used for the absorption of wide range of power at wide 
range of speed
(a) Hydraulic (b) Belt transmission (c) Rope brake (d) Electric generator.

2 The equivalent coefficient of friction for a block brake is
(a) 4 μ sin /(sin ) (b) 4 μ sin ( /2)/[sin ( /2) /2]
(c) 4 μ sin ( /2)/(sin ) (d) μ sin /(sin ).
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3  The equivalent radius of a block brake is
(a) 4 r sin /(sin ) (b) 4 r sin ( /2)/(sin ( /2) /2)
(c) 4 r sin ( /2)/(sin ) (d) r sin /(sin )
where r  drum radius.

4  The ratio of tensions on the tight side to slack side of multi-block brake is
(a) (1 – nμ tan )/(1 nμ tan ) (b) (1 nμ tan )/(1 – nμ tan )
(c) [(1 μ tan )/(1 – μ tan )]n (d) [(1 – μ tan )/(1 μ tan )]n.

5 The stopping distance for a vehicle by applying brakes when all the four wheels are sliding as 
compared with when all the four wheels are in a limiting state of sliding is
(a) More (b) Less (c) Same (d) Unpredictable.

6 The stopping distance for a four-wheel vehicle is
(a) Unaltered by an increase in weight of vehicle
(b) Decreases with increase of coefficient of friction
(c) Directly proportional to square of velocity of vehicle
(d) All of the above.

7 Dynamometer is a device used on a prime mover for measuring
(a) Torque developed (b) Power developed
(c) Power absorbed (d) All of the above.

8  Which of the following is an absorption dynamometer?
(a) Prony brake dynamometer (b) Rope brake dynamometer
(c) Froude’s hydraulic dynamometer (d) All of the above.

9 Which of the following is a transmission dynamometer?
(a) Torsion dynamometer (b) Belt dynamometer
(c) Hydraulic dynamometer (d) Prony brake dynamometer.

10 Which type of brake is commonly used in cars?
(a) Band brake (b) Shoe brake
(c) Band and block brake (d) Internal expanding shoe brake.

11 In a self-locking brake, the force required to apply the brake is
(a) Zero (b) Minimum (c) Maximum (d) Average.

12 When the frictional force helps the applied force in applying the brake, the brake is called
(a) Automatic (b) Self-locking (c) Self-energizing.

Answers:

1. (a) 2. (c) 3. (c) 4. (c) 5. (a) 6. (d) 7. (d) 8. (d) 9. (b) 10. (d) 11. (a) 12. (c)

Review Questions

1 What is a brake?

2 What are the various types of brakes?

3 Differentiate between a self-locking and self-energizing brake.

4 What are the advantages of internal expanding shoe brake?

5 What is the effect of applying brakes only to the front wheels of a vehicle?

6 What is the advantage of a pivoted shoe brake?
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7 What is the difference between a shoe brake and band brake?

8 How do the internal expanding shoe brakes become self-locking?

9 What is a dynamometer?

10 What are the various types of dynamometers?

11 What is the principle of working of an absorption dynamometer?

12 What is a transmission dynamometer?

13 Why the pulley of a rope brake dynamometer water cooled?

14 What is a clutch? State its different types.

15 Differentiate between dry and wet clutches.

16 Where do we use multi-plate clutches?

Exercises

7.1 The drum diameter of a single-block brake is 1 m. It sustains 240 Nm of torque at 400 rpm. The 
coefficient of friction is 0.32. The distance of the fulcrum from the vertical centre line of the 
drum is 150 mm and length of lever is 800 mm. The frictional force acts above the fulcrum by a 
distance of 25 mm. Determine the required force to be applied when the drum rotates clockwise 
and angle of contact is 100°.

[Ans. 265.7 N]

7.2 A bicycle and rider of mass 90 kg are travelling at a speed of 15 km/h on a level road. A brake 
is applied to the rear wheel which is 0.7 m in diameter. How far will the bicycle travel? The 
pressure applied on the brake is 100 N and coefficient of friction is 0.06.

[Ans. 130.2 m]

7.3 A car moving on a level road at a speed of 45 km/h has a wheel base 2.8 m, distance of CG from 
ground level 0.6 m, and the distance of CG from rear wheels 1.1 m. Find the distance travelled 
by the car before coming to rest when the brakes are applied to (a) the rear wheels, (b) to the 
front wheels, and (c) all the four wheels.
The coefficient of friction between road and types may be taken as 0.5.

[Ans. 29 m, 36.2 m, 15.93 m]

7.4 In a belt transmission dynamometer, the distance between the centre of driving pulley and dead 
weights is 1 m. Find the value of dead weights required to keep the lever in horizontal position 
if power transmitted is 7.5 kW and the diameter of each of the driving as well as the intermedi-
ate pulleys is equal to 0.4 m. The driving pulley runs at 400 rpm.

[Ans. 716.2 N]

7.5 In a Prony brake dynamometer, the spring balance reading is 200 N, radius of brake drum is 
0.3 m, and distance between the drum axis and hinge of the blocks is 0.6 m. Determine the pres-
sure exerted on the drum by tightening the screw, tangential force acting on the brake drum, and 
the output power of the prime mover if the record speed is 300 rpm. Take coefficient of friction 
equal to 0.25.

[Ans. 3048 N, 762 N, 14.36 kW]
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7.6 A single-plate clutch transmits 20 kW at 1000 rpm. The maximum pressure intensity between 
the plates is 0.09 MPa. The outer diameter of the plate is 350 mm and both the sides of the plate 
are effective. The coefficient of friction is 0.25. Determine (a) inner diameter of the plate and 
(b) axial force required to engage the clutch.

[Ans. 0.147 m, 2327.5 N]

7.7 A clutch in a motor car is of single-plate type having both sides of the plate effective. It is 
required to transmit 35 kW at 1500 rpm. The axial thrust is 0.075 MPa. The ratio between 
the external and internal radii of the plate is 1.5 and coefficient of friction is 0.25. Assuming 
 uniform pressure, determine the dimensions of the clutch.

[Ans. 106 mm, 159 mm]

7.8 A multi-plate clutch of alternate bronze and steel plates having effective diameters of 175 mm 
and 72.5 mm has to transmit 25 kW at 2000 rpm. The end thrust is 1600 N and coefficient of 
friction is 0.1. Calculate the number of plates necessary assuming uniform pressure.

[Ans. 12]

7.9 A cone clutch has a radii of 130 mm and 150 mm. The semi-cone angle is 20°. If coefficient  
of friction is 0.25 and uniform normal pressure is 0.15 MPa, find (a) necessary axial load and 
(b) power that can be transmitted at 1000 rpm.

[Ans. 902.57 N, 28.327 kW]

7.10 The external and internal radii of a friction plate of a clutch are 120 mm and 60 mm respec-
tively. The total axial thrust is 1500 N. For uniform wear, find the maximum, minimum and 
average pressure on the contact surfaces.

[Ans. 0.066 MPa, 0.033 MPa, 0.044 MPa]

7.11 A power of 60 kW is transmitted by a multi-plate clutch at 1500 rpm. The axial intensity of 
pressure is not to exceed 15 MPa. The coefficient of friction for the friction surfaces is 0.15. 
The external radius of friction surface is 120 mm and internal radius is 100 mm. Find the 
number of plates required to transmit the power of 60 kW.

[Ans. 12]

7.12 A cone clutch of semi-cone angle 15° is used to transmit 30 kW at 800 rpm. The mean fric-
tional surface radius is 150 mm and normal intensity of pressure of the mean radius is not to 
exceed 0.15 MPa. The coefficient of friction is 0.2. Assuming uniform wear, determine:
(a) Width of contact surface, and
(b) Axial force required to engage the clutch

[Ans. 84 mm, 3089.4 N]





8

CAMS

 8.1 Introduction 395
 8.2 Classification of Cams 396
 8.3 Types of Followers 399
 8.4 Cam Nomenclature 400
 8.5 Follower Motions 402
 8.5.1  Simple Harmonic Motion 

(SHM) 402
 8.5.2  Motion with Uniform 

Acceleration and 
Deceleration 405

 8.5.3  Motion with Uniform 
Velocity 407

 8.5.4 Parabolic Motion 408
 8.5.5 Cycloidal Motion 411
 8.6  Cam Profile with Knife-Edge 

Follower 414
 8.6.1  Radial Knife-Edge Follower 414
 8.6.2  Offset Knife-Edge Follower 417
 8.7 Cam Profile with Roller Follower 418
 8.7.1  Radial Roller Follower 418

 8.7.2 Offset Roller Follower 420
 8.8  Cam Profile with Translational  

Flat-Faced Follower 427
 8.9  Cam Profile with Swinging Roller 

Follower 433
 8.10  Cam Profile with Swinging Flat-Faced 

Follower 434
 8.11 Analytical Methods 444
 8.11.1  Tangent Cam with Roller 

Follower 444
 8.11.2  Circular Arc Cam Operating 

Flat-Faced Follower 451
 8.11.3  Circular Cam with Roller 

Follower 456
 8.12  Radius of Curvature and 

Undercutting 464
 8.12.1  Kloomok and Muffley 

Method 465
 8.12.2 Pressure Angle 466
 8.13 Cam Size 469

Ch
ap

te
r 

Ou
tli

ne

8.1 INTRODUCTION
A cam is a rotating or a reciprocating element of a mechanism, which imparts rotating, reciprocating 
or oscillating motion to another element, called the follower. There is line contact between the cam 
and the follower, and thereby forms a higher pair. Cams are used in clocks, printing machines, auto-
matic screw cutting machines, internal combustion engines for operating the valves, and shoe making 
machines etc. In this chapter, we shall study the various types of planar cams from the point of view 
of drawing their profile and motion analysis.
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The three essential components of a cam mechanism are as follows:

 (i)  the cam,

 (ii)  the follower, and

 (iii)  the frame.

The cam revolves at a constant speed and drives the follower. The motion of the follower depends 
upon the profile of the cam. The frame supports and guides the follower and the cam.

8.2 CLASSIFICATION OF CAMS
The planar cams can be classified according to their shape as follows:

1. Wedge and flat cams: Such a cam has a wedge A to which translational motion is given to actuate 
the follower B in order to either reciprocate or oscillate it, as shown in Fig.8.1(a) and (b). The fol-
lower is guided in the guides C. In Fig.8.1(c), the cam is stationary and the follower guide C causes 
the relative motion of the cam A and follower B. Fig.8.1(d) shows a flat plate with a groove in which 
the follower is held to obtain the desired motion.

Fig.8.1 Wedge and flat cams
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2. Radial and offset cams: A cam in which the follower moves radially from the centre of rotation of 
the cam is called a radial (or disc or plate) cam, as shown in Fig.8.2(a) and (b). In such a cam, the 
axis of the follower passes through the axis of the cam.
 If the axis of the follower does not pass through the axis of the cam, it is called an offset cam, as 
shown in Fig.8.2(c).

3. Cylindrical cams: In a cylindrical cam, a cylinder which has a circumferential groove cut in the 
surface, rotates about its axis. The follower motion can be either oscillatory or reciprocating type, 
as shown in Fig.8.3(a) and (b). They are also called barrel or drum cams.

Fig.8.2 Radial and offset cams
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4. Spiral cams: A spiral cam is a face cam in which a groove is cut in the form of a spiral, as shown in 
Fig.8.4. The spiral groove consists of teeth which mesh with a pin gear follower.

5. Conjugate cams: It is a double disc cam in which the two discs keyed together are in constant touch 
with the two rollers of a follower, as shown in Fig.8.5. Such a cam gives low wear, low noise, better 
control of follower, high speed, and high dynamic loads, etc.

6. Globoidal cams: A globoidal cam has either a convex or a concave surface. A circumferential 
groove is cut on the surface of rotation of the cam to impart motion to the follower, which has oscil-
latory motion, as shown in Fig.8.6(a) and (b). This is used where the angle of oscillation is large.

7. Spherical cams: In a spherical cam, the follower oscillates about an axis perpendicular to the 
axis of rotation of the cam. The spherical cam is in the form of a spherical surface, as shown in 
Fig.8.7.

Fig.8.3 Cylindrical cams

Fig.8.4 Spiral cam
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Fig.8.5 Conjugate cam

Fig.8.6 Globoidal cam

Fig.8.7 Spherical cam

8.3 TYPES OF FOLLOWERS
The followers can be of the following types:

1. Based on the surface in contact: The followers based on the type of surface in contact can be clas-
sified as: knife edge, roller, flat faced (or mush room), and spherical-faced follower, as shown in 
Fig.8.8(a) to (g).



400 Theory of Machines

2. Based on the motion of the follower: Depending upon the motion, the follower could be of the 
reciprocating or translating, oscillating or rotating types.

3. Based on the path of motion of follower: When the axis of the follower passes through the centre 
of rotation of the cam, it is called a radial follower, and when the axis of the follower does not pass 
through the axis of the cam, it is called an offset follower.

8.4 CAM NOMENCLATURE
A radial cam with reciprocating roller follower is shown in Fig.8.9. The following nomenclature is 
used in reference to planar cam mechanisms:

Base circle: It is the smallest circle that can be drawn to the cam profile from the centre of rotation.

Fig.8.8 Types of followers



401 Cams 

Fig.8.9 Cam nomenclature

Prime circle: It is the smallest circle drawn to the pitch curve from the centre of rotation of the cam.

Pitch point: It is a point on the pitch curve having the maximum pressure angle.

Pitch circle: It is the circle drawn through the centre and pitch point.

Trace point: It is a reference point on the follower and is used to generate the pitch curve. In the case 
of a knife edge follower, it is the knife edge, and in the case of a roller follower, it is the centre of the 
roller.

Pitch curve: It is the curve generated by the trace point as the follower moves relative to the cam.

Cam angle: It is the angle turned through by the cam from the initial position.

Pressure angle: It is the angle between the direction of the follower motion and a normal to the pitch 
curve.

Lift: It is the maximum travel of the follower from the lowest position to the topmost position. It is also 
called throw or stroke of the cam.
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Cam profile: The surface in contact with the follower is known as the cam profile.

Angle of ascent: It is the angle of rotation of the cam during which the follower rises up.

Angle of descent: It is the angle of rotation of the cam during which the follower lowers down.

Angle of dwell: It is the angle of rotation of cam during which the follower remains stationary.

8.5 FOLLOWER MOTIONS
The follower can have following type of motions:

1. Simple harmonic motion (SHM)

2. Uniform acceleration and deceleration

3. Uniform velocity

4. Parabolic motion, and 

5. Cycloidal motion.

We shall discuss all these motions.

8.5.1 Simple Harmonic Motion (SHM)
Consider a particle at A rotating in a circle about point O with uniform angular speed, as shown in 
Fig.8.10(a), and executing simple harmonic motion (SHM). The displacement curve shown in Fig.8.10(b) 
can be constructed as follows:

1. Draw a semicircle with follower lift as the vertical diameter.

2. Divide this semicircle into n equal parts (say 6, i.e., 30º each).

3. Draw cam rotation angle along the x-axis. Mark the angles of ascent, dwell, descent, and dwell on 
this line.

4. Divide the angles of ascent and descent into same equal number of parts.

5. Draw vertical lines at these points.

6. Draw horizontal lines from the points on the circumference of the semicircle to intersect the vertical 
lines.

7. Mark the points of intersection and join by a smooth curve to obtain the displacement diagram.

Fig.8.10 Simple harmonic motion of follower
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Motion Analysis
Let y displacement of the follower
 h lift of the follower (maximum displacement or rise)

angle turned through by the crank OA from given datum
 cam rotation angle for the maximum follower displacement
 angle on harmonic circle
Then y OA  OB

h

2
(1 cos )

 
(8.1a)

For the ascent or descent h of the follower displacement, the cam is rotated through an angle , 
whereas a point on the harmonic semicircle traverses an angle radians. Thus, the cam rotation is 
proportional to the angle turned through by the point on the harmonic semicircle, i.e.,





Thus Eq. (8.1a) becomes,

y
h

2
1 cos




 

(8.1b)

Now t

y
h

2
1 cos

t

 

(8.1c)

Velocity, v
d

d

y

t

Differentiating Eq. (8.1c), we get

v
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2
sin

h

2
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(8.2)

Let 
1

angle of ascent
 

2
angle of dwell

 
3

angle of descent

Then, Velocity during ascent, va

h

2 1 1

sin  (8.3a)

Velocity during descent, vd

h

2 3

sin
3

 (8.3b)

The velocity is maximum when 

2

.

vmax

h

2  

(8.4)
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Maximum velocity of follower during ascent h

2 1

 (8.5a)

Maximum velocity of follower during descent 
h

2 3

 (8.5b)

Acceleration, f
t

d

d

v

Differentiating Eq. (8.2), we get f
h

2

2






cos  (8.6)

Fig.8.11 Displacement, velocity and acceleration distribution in SHM of follower
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Acceleration during ascent,  
1 1

f
h

a 2

2






cos  (8.7a)

Acceleration during descent,  cos
3

2

3

f
h

d 2







 (8.7b)

The acceleration is maximum when °.

f
h

max 2

2



  (8.8)

Maximum acceleration of follower during ascent  
h

2

2

1

  (8.9a)

Maximum acceleration of follower during descent 
h

2

2

3

  (8.9b)

The motion of the follower is shown in Fig.8.11.
It can be observed from Fig.8.11 that there is an abrupt change of acceleration from zero to maxi-

mum at the beginning of the follower motion and also from maximum (negative) to zero at the end 
of the follower motion. The same pattern is repeated during descent. This leads to jerk, vibration and 
noise etc. Therefore, SHM should be adopted only for low and moderate cam speeds.

8.5.2 Motion with Uniform Acceleration and Deceleration
In such a motion, there is acceleration during the first half of the follower motion and deceleration dur-
ing the later half. The magnitude of both acceleration and deceleration is the same in the two halves.

The displacement diagram, as shown in Fig.8.12, can be constructed as follows:

1. Draw the cam rotation angle along the x-axis and the follower lift along the y-axis.

2. Mark the angles of ascent, dwell, descent and dwell on the horizontal line and the lift on the vertical 
line at the origin.

3. Divide the angles of ascent and descent into equal number of parts (say 6). Also divide the lift line 
into same equal number of parts.

4. Draw horizontal and vertical lines at these points.

Fig.8.12 Displacement diagram for uniform acceleration and deceleration of follower
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5. Join the origin with the points of intersection on the middle line of ascent upto half the lift. Also 
join the points on the other half of the middle line of lift with the topmost point of the last line.

6. Mark the points of intersection of these lines with the vertical lines.

7. Join these points with a smooth curve to get the displacement diagram.

Motion analysis
Let f uniform acceleration or deceleration of the follower.

y displacement of follower

Then 
d

d

v

t
f

Integrating, we have

v    ft C
1

where C
1
 is a constant of integration

If at t 0, v 0, then C
1

0. Hence

v ft

Now v
d

d

y

t
ft

Integrating again, we have

y
ft

C
2

22

where C
2
 is another constant of integration.

As y 0 at t 0, therefore C
2

0. Hence

y
ft 2

2

f
y

t

2
2

const.  (8.10 a)

Considering the follower at midway, we have

y
h

t

f
h

2

2

2
2

42 2

and
/

/

4 2

2

h


 (8.10 b)

Maximum acceleration during ascent,  f
h

max

4 2

1
2




 (8.11 a)

Maximum acceleration during descent,  f
h

max

4 2

3
2




  (8.11 b)

Velocity,  v ft
h4 2

2

4
2

h


  (8.12)
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The velocity is maximum when the follower is at midway position, i.e., 

2

Maximum velocity,  vmax

4

22

h

2h


 (8.13)

Maximum velocity during ascent 
2

1

h


 (8.14 a)

Maximum velocity during descent 
2h
3

 (8.14 b)

The motion of the follower is shown in Fig.8.13.
It may be observed from Fig.8.13 that there are abrupt changes in the acceleration at the begin-

ning, midway and at the end of the follower motion. At the midway, an infinite jerk is produced. There-
fore, this motion is adopted for moderate speeds only.

8.5.3 Motion with Uniform Velocity
In this case, the displacement of the follower is proportional to the angle of cam rotation. Therefore, 
slope of the displacement curve is constant.

Let y c

Where c constant of proportionality, and angle of cam rotation.

If h follower rise

angle through which the cam is to rotate to lift the follower by h.

Then h c

so that c
h



 y
h


 (8.15)

 v
h d

dt
Velocity,

            h


 (8.16)

Acceleration, f
h

t


.
d

d
0  (8.17)

The variation of displacement, velocity and acceleration are shown in Fig.8.14. It may be observed 
that although the acceleration is zero during ascent or descent of the follower, it is infinite at the begin-
ning and end of the motion. There are abrupt changes in velocity at these points. This results in infinite 
inertia forces and is therefore unsuitable from practical point of view.

This can be avoided by rounding the sharp corners of the displacement curve so that the velocity 
changes are gradual at the beginning and end of the follower motion. During these periods the accel-
eration may be assumed to be constant and of finite values. A modified uniform velocity motion is 
shown in Fig.8.15.
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Fig.8.13 Motion with uniform acceleration and deceleration

8.5.4 Parabolic Motion
In the parabolic motion, the displacement of the follower is proportional to the square of the angle of 
cam rotation.

Let the parabolic motion, for the first half, be represented by
y c 2

where c a constant of proportionality
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Fig.8.14 Motion with uniform velocity

For y
h

2 2
, 



 
h c

2 4

2

or c
h2
2

Hence, y h2
2




  (8.18)

Velocity, v
4h

2
 (8.19)

Acceleration, f h4
2




const.  (8.20)

For velocity to be maximum, 

2

, and

vmax

2h
 (8.21)
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For the second half, we have
y c

1
  c

2
 c

3
2

For and  = 0. Also for  = , , .maxy h v v v
2
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1
  c

2
 c

3
2

0 c
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3
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2
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3
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h
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h

1 2 3 2

4 2
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y h 1 2 1
2




 (8.22)

v
4

1
h  (8.23)

f h4
2




 (8.24)

The variation of displacement, velocity and acceleration are shown in Fig.8.16.
In this case, the displacement of the follower is proportional to the angle of cam rotation.

Fig.8.15 Modified motion with uniform velocity
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8.5.5 Cycloidal Motion
A cycloid is the locus of a point on a circle rolling on a straight line. The cycloidal curve, as shown in 
Fig.8.17, can be constructed by adopting the following steps:

1. Draw a horizontal line to a convenient scale equal to the angle of ascent of the cam.

2. At the origin, draw another line perpendicular to the previous line, on a convenient scale, equal to 
the lift of the cam.

3. Divide the angle of ascent into equal number of parts (say 6), and number them from 0 to 6.

4. Erect vertical lines at these points.

5. Draw the diagonal QR passing through the origin and produce it backward.

6. Calculate the radius of the circle, r
h

2
, where h lift.

7. Select a convenient point P on the diagonal produced backwards and draw a circle with radius 
equal to r.

8. Divide the circle into six equal parts and number the ends of the diameters from 0 to 6.

9. Join points 1 2 and 4 5, intersecting the vertical diameter at points m and n, respectively.

Fig.8.16 Parabolic motion
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10. From points m and n, draw lines parallel to QR intersecting vertical lines at 1 and 2 at a and b and 
lines at 4 and 5 at d and e. The diagonal PQR shall intersect line at 3 at c.

11. Join the points Q, a, b, c, d, e, and R by a smooth curve to get the cycloidal curve.

Fig.8.17 Cycloidal curve

Motion Analysis
A cycloid is expressed by,
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h








1

2

2
sin  (8.25)

v
d

d

d

d

d

d

y

t

y

t

h h

2

2 2
cos

h h
cos

2

h





1
2

cos  (8.26)

vmax

2

2

h
at 

 (8.27)



413 Cams 

f
t t

h

d

d

d

d

d

d

sin

v v

2 2

( )2
2

2

h






sin  (8.28)

 
f hmax ( )2

4

2








at 
  

(8.29)

Fig.8.18 Displacement, velocity and acceleration with cycloidal motion
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The variation of cycloidal motion is shown in Fig.8.18. It may be observed that there are no abrupt 
changes in the velocity and acceleration at any stage of the motion. Therefore, cycloidal motion is the 
most ideal for high speed follower motion.

8.6 CAM PROFILE WITH KNIFE–EDGE FOLLOWER
The following procedure may be adopted to draw the cam profile with knife edge follower:

1. Draw the displacement diagram for follower motion.

2. Consider that cam remains stationary and that the follower moves round it in a direction opposite 
to the direction of cam rotation.

3. Draw the cam base circle and divide its circumference into equal number of divisions depending 
upon the divisions used in the displacement diagram.

4. Draw various positions of follower with dotted lines corresponding to different angular displace-
ment from the radius from which ascent is to commence.

5. Draw a smooth curve tangential to the contact surface in different positions.

8.6.1 Radial Knife-Edge Follower
Draw the cam profile as explained in Example 8.1.

Example 8.1

A disc cam is to give SHM to a knife edge follower during out stroke of 50 mm. The angle of ascent 
is 120° , dwell 60°, and angle of descent 90°. The minimum radius of cam is 50 mm. Draw the profile 
of the cam when the axis of the follower passes through the axis of the camshaft.

Also calculate the maximum velocity and acceleration during ascent and descent when the cam-
shaft revolves at 240 rpm.

Solution 

Given: h 50 mm, N 240 rpm, 
1

120°, 
3

90°

Angular velocity of camshaft, 
2 240

60
25 133.  rad/s

With SHM, maximum velocity during ascent,

vmax

.

h

2 1

50 10

2

25 133

180
120

3

0 942.  m/s

and during descent, vmax

h

2 3




50 10

2

25 133

180
90

1 257
3 .

.  m/s
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Maximum acceleration during ascent,

f
h

max

.







1

2

2

2

25 133

180
120

50 10

2
35 53

3

.  m/s2

and during descent, f
h

max


3

2

2




25 133

180
90

50 10

2
63 17

2

3.
.  m/s2

Displacement diagram
The displacement diagram shown in Fig.8.19(a) may be drawn as follows:

1. Draw a vertical line 0 6 equal to the lift of 50 mm.

2. Draw a semicircle on this line and divide the semicircle into six equal parts of 30° each.

3. Draw a horizontal line 00  perpendicular to 0 6 line representing cam rotation angle  on a scale 
of 1 cm 20°.

4. Divide the ascent angle of 120° into six equal parts and also the descent angle of 90° into six equal 
parts.

5. Erect perpendiculars at points 0 to 6 and 6  to 0 .

6. Draw horizontal lines from points 1 to 5 on the semicircle to intersect vertical lines drawn previ-
ously, as shown in the figure.

7. Join the points of intersection with a smooth curve to get the displacement diagram.

Cam profile
The cam profile shown in Fig.8.19(b) may be drawn as follows:

1. Draw a circle of radius equal to the base circle radius of 50 mm with center O.

2. Draw angles of ascent, dwell and descent of 120°, 60° and 90°, respectively. Divide the angles of 
ascent and descent into six equal parts. Draw radial lines for these angles.

3. Mark points 0 to 6 and 6  to 0  on the base circle in the angles of ascent and descent, respectively.

4. Measure distance 1a, 2b, 3c, 4d, 5e, and 6f from the displacement diagram for ascent and cut-off 
corresponding distances on the radial lines drawn in the cam profile. Repeat the same process  
during descent.

5. Join the points so obtained by a smooth curve to get the cam profile.
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Fig.8.19 Cam profile with radial knife-edge follower having SHM



417 Cams 

8.6.2 Offset Knife-Edge Follower
Draw the cam profile as explained in Example 8.2.

Example 8.2

Draw the cam profile for the data given in Example 8.1 when the knife-edge follower is offset by  
20 mm.

Solution 

Displacement diagram remains the same as in Example 8.1.
The cam profile as shown in Fig.8.20 can be drawn as follows:

Fig.8.20 Cam profile with offset knife-edge follower having SHM
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1. Draw the offset circle with radius equal to the offset of 20 mm and the base circle with radius 50 
mm at centre O.

2. Divide the angles of ascent and descent in the offset circle into six equal parts. Draw radial lines 
intersecting the offset circle from g to m and n to u in the angle of ascent and descent respectively.

3. Draw tangents at points g to u intersecting the base circle at 0 to 6 and 6  to 0  in the angle of ascent 
and descent, respectively.

4. Measure distances 1a, 2b, 3c, 4d, 5e, and 6f on the displacement diagram for ascent and cut-off 
corresponding distances on the tangential lines drawn in the cam profile. Repeat the same process 
for the angle of descent.

5. Join the points so obtained by a smooth curve to get the cam profile.

8.7 CAM PROFILE WITH ROLLER FOLLOWER

8.7.1 Radial Roller Follower
The profile of a cam with radial roller follower has been shown in Fig.8.21. The following steps may 
be used to draw the cam profile:

1. Draw the base circle.

2. Draw the follower in its 0° position, tangent to the base circle.

3. Draw the reference circle through the centre of the follower in its 0° position.

4. Draw radial lines from the centre of the cam, corresponding to the vertical lines in the displacement 
diagram.

5. Transfer displacements 1a, 2b, 3c, . . . , etc. from the displacement diagram to the appropriate radial 
lines, measuring from the reference circle.

6. Draw in the follower outline on the various radial lines.

7. Draw a smooth curve tangent to these follower outlines.

Example 8.3

A disc cam with base circle radius of 50 mm is operating a roller follower with SHM. The lift is  
25 mm, angle of ascent 120° , dwell 90°, return 90°, and dwell during the remaining period. The cam 
rotates at 300 rpm. Find the maximum velocity and acceleration during ascent and descent. The roller 
radius is 10 mm. Draw the cam profile when the line of reciprocation of follower passes through the 
cam axis.

Solution 

Given: N 300 rpm, h 25 mm, 
1

120° , 
3

90°


2 300

60
31 416.  rad/s

Maximum velocity during ascent, va

h

2 1
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0 025

2

31 416 180

120
0 589

. .

. m/s

Fig.8.21 Cam with radial roller follower
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Maximum velocity during descent, vd

h

2 3




0 025

2

31 416 180

90
0 785

. .

. m/s

Maximum acceleration during ascent   
2 2 0 589

0 025
27 75

2 2

2va

h

.

.
.  m/s

Maximum acceleration during descent 
2 2 0 785

0 025

2 2
vd

h

.

.

  49.35 m/s2

Displacement diagram
Draw the displacement diagram shown in Fig.8.22(a) following the procedure explained in Example 8.1.

Cam profile
The cam profile shown in Fig.8.22(b) may be drawn as explained below:

1. Draw the base circle with centre O and radius 50 mm.

2. Draw the reference circle with radius equal to the sum of the radius of base circle and roller radius, 
i.e., 60 mm. Draw angles of ascent, dwell, and descent of 120°, 60°, and 90°, respectively.

3. Divide the angle of ascent and descent into six equal parts.

4. Draw radial lines intersecting the reference circle at point 0 to 6 in the angle of ascent and 6  to 0  
in the angle of descent.

5. Measure distances 1a, 2b, etc. from the displacement diagram and mark corresponding distances 
on the radial lines in the cam profile from the reference circle.

6. Repeat the same process in the angle of descent.

7. Draw circles at points 0 to f and f  to 0  with radius equal to the roller radius of 10 mm.

8. Draw a smooth curve touching (asymptotic) the roller radii to obtain the cam profile.

8.7.2 Offset Roller Follower
A cam profile with offset roller follower is shown in Fig.8.23. The following steps may be used to draw 
the cam profile:

1. Draw the base circle.

2. Draw the follower in its 0° position, tangent to the base circle.

3. Draw the reference circle through the centre of the follower in its 0° position.

4. Draw the offset circle tangent to the follower centre line.

5. Divide the offset circle into a number of divisions corresponding to the divisions in the displace-
ment diagram.

6. Draw tangents to the offset circle at each number.
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7. Lay off various displacements 1a, 2b, 3c, . . . , etc. along the appropriate tangent lines, measuring 
from the reference circle.

8. Draw in the follower outlines on the various tangent lines.

9. Draw a smooth curve to these follower outlines.

Fig.8.22 Cam profile with radial roller follower having SHM
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Fig.8.23 Cam profile with offset roller follower

Example 8.4

Draw the cam profile for the data given in Example 8.3 when the roller follower is offset by 20 mm.

Solution 

The displacement diagram remains the same as in Example 8.3.
The cam profile shown in Fig.8.24 may be drawn as explained below:

1. Draw the base circle at centre O with radius 50 mm and reference circle with radius 60 mm.

2. Draw the offset circle with radius 20 mm.
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3. Draw angles of ascent, dwell, and descent of 120°, 60°, and 90° respectively in the offset circle.

4. Divide the angle of ascent and descent into six equal parts intersecting the offset circle at points  
g to m and n to u, respectively.

5. Draw tangents at points g to u intersecting the reference circle at points 0 to 6 and 6  to 0  in the 
angle of ascent and descent, respectively.

6. Measure off distances 1a, 2b, etc. from the displacement diagram in the angle of ascent and measure 
the corresponding distances in the cam profile. Repeat the same process for the angle of descent.

7. Draw circles with radius of roller at points 0 to f and f  to 0 .

8. Draw a smooth curve touching these circles to get the cam profile.

Fig.8.24 Cam profile with off-set roller follower having SHM
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Example 8.5

A cam with 30 mm as minimum diameter and 20 mm lift is rotating clockwise at a uniform speed of 
1200 rpm and has to given the following motion to a roller follower 10 mm in diameter:

1. Outward stroke during 120° with equal uniform acceleration and deceleration.

2. Dwell for 60°.

3. Return during 90°.

4. Dwell during the remaining period.

Draw the cam profile if the cam axis coincides with the follower axis. Also calculate the maximum 
velocity and acceleration during ascent and return strokes.

Solution 

Given: N 1200 rpm, h 2 mm, 
1

120°, 
3

90°.





2 1200

60
40  rad/s

Maximum velocity during ascent, va h2
1

2 0 02
40 180

120

2 4

.

.




m/s

Maximum velocity during descent, vd h2
3

2 0 02
40 180

90

3 2

.

.




m/s

Maximum acceleration during ascent  
va

2 2

22 4

0 02
288

h

.

.
 m/s

Maximum acceleration during descent 
vd

2 2

23 2

0 02
512

h

.

.
 m/s

Displacement diagram
The displacement diagram is shown in Fig.8.25(a) for uniform acceleration and deceleration may be 
drawn as follows:

1. Draw a vertical line OB representing the lift of the follower equal to 20 mm to a scale of 1:2. To 
divide this line into six equal parts, draw a line OA inclined at any angle with OB such that OA 60 
mm. Divide the line OA into six equal parts. Join AB and draw parallel lines from C , D , E , F  and 
G , to line AB to meet OB at C, D, E, F, and G, respectively.

2. Draw a horizontal line at 0 to represent angle  turned through by the cam to a scale of 1 cm 20°. 
Mark the angles of ascent, dwell and descent of 120°, 60° and 90°, respectively.

3. Divide the angles of ascent and descent into six equal parts and erect perpendiculars at these points 
to intersect the horizontal lines from points B to G.
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4. Join the points o and f with the points of intersection on the middle vertical line in the angle of 
ascent. Join the points of intersection of these lines with the vertical lines by a smooth curve o a b 
c d e f. Repeat the similar process for the angle of descent to get the curve f  e  d  c  b  a o .

Cam profile
The cam profile has been drawn in Fig.8.25(b) to a scale of 1:2. The procedure described in Example 
8.3 may be followed to draw the profile.

Fig.8.25 Cam profile with radial roller follower having uniform acceleration and deceleration
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Example 8.6

Draw the cam profile for the data given in Example 8.5 when the roller follower is offset by 10 mm 
from the axis of the cam.

Solution 

The displacement diagram remains the same as drawn in Example 8.5. The cam profile has been 
drawn in Fig.8.26 following the same procedure as explained in Example 8.4.

Fig.8.26 Cam profile with off-set roller follower
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8.8 CAM PROFILE WITH TRANSLATIONAL FLAT-FACED FOLLOWER
A cam with flat-faced follower is shown in Fig.8.28. The following steps may be adopted to draw the 
cam profile:

1. Draw the base circle, which also serves the reference circle in this case.

2. Draw the follower in the home position, tangent to the base circle.

3. Draw radial lines corresponding to the divisions in the displacement diagram, and number accor dingly.

4. Draw in the follower outline on the various radial lines by laying off the appropriate displacements 
and drawing lines perpendicular to the radial lines.

5. Draw a smooth curve tangent to the follower lines.

Example 8.7

A cam is to operate a flat faced follower having uniform acceleration and deceleration during ascent 
and descent. The least radius of the cam is 50 mm. During descent, the deceleration period is half 
of the acceleration period. The ascent lift is 37.5 mm. The ascent is for 1/4th period, dwell for 1/4th, 
descent for 1/3rd, and dwell for the remaining 1/6th period. The cam rotates at 600 rpm. Find the 
maximum velocity and acceleration during ascent and descent. Draw the cam profile.

Solution 

Acceleration period during descent  
1

3
360

2

3
80

Deceleration period during descent 40°

Distance moved during acceleration period 80

120
37 5 25.  mm

Distance moved during deceleration period 12.5 mm

Angular velocity of cam, 
2 600

60
20  rad/s

Maximum velocity during ascent,   vmax

2

1

h

2 20 30 5 10

2

3
3


.

 m/s

Maximum velocity during descent, vmax

2h

t
2 37 5 180

80
3 375

.
.


 m/s

Maximum acceleration during ascent   
4 2

1
2




h

4 20 37 5 10

2

240

2 3

2

2





.

m/s
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Maximum acceleration during descent
vmax

t
3 3750 360 600

80 60

151 875 2

.

. m/s

Maximum deceleration during descent
vmax

t
3 375 360 600

40 60
303 75 2.

.  m/s

The velocity and acceleration diagrams are shown in Fig.8.27.

Fig.8.27 Velocity and acceleration diagram for a flat-faced follower having uniform  
acceleration and deceleration

Displacement diagram
1. Draw a vertical line equal to the lift of 37.5 mm and a horizontal line perpendicular to it represent-

ing the cam angle. Mark angle of ascent 90°, dwell 90° and descent 120°.

2. Divide the angle of ascent and lift into six equal parts. Join point O with three points of intersection 
of vertical and horizontal lines at point 3, and the other three points with point f.

 Join the points of intersection of these inclined lines with the vertical lines with a smooth curve.

3. Divide the angle of descent into two parts of 80° and 40°. Divide these angles and the lift into four 
equal parts. Join the intersection of vertical and horizontal lines with a smooth curve. The displace-
ment diagram has been shown in Fig.8.28(a).
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Cam profile
1. Draw the base circle with 50 mm radius.

2. From the vertical line, measure angle of ascent 90°, dwell 90°, and angle of descent 120°, in 
the anti-clockwise direction.

3. Divide the angle of ascent into six equal parts. Divide the angle of descent into 80° and 40°. Divide 
80° and 40° angles into four equal parts.

4. From the circumference of the base circle, mark distances 1a, 2b, 3c, . . . , etc. along the radial lines 
at 1, 2, 3, . . . , etc. Draw perpendiculars at these points to the radial lines. Draw a smooth curve 
tangential to these perpendiculars to get the cam profile.

5. Repeat this procedure for the descent.

The cam profile has been shown in Fig.8.28(b).

Example 8.8

A flat-faced reciprocating follower has the following motion with uniform acceleration and retarda-
tion: Ascent for 80°, dwell for 80°, and return for 120°. The base circle diameter of the cam is 60 mm 
and the stroke of the follower is 20 mm. The line of motion of the follower passes through the axis of 
the cam. Draw the cam profile.

Solution 

Displacement diagram: Draw the displacement diagram shown in Fig.8.29(a) according to the proce-
dure explained in Example 8.5.

Cam profile
1. Draw the base circle with radius 30 mm and centre O as shown in Fig.8.29(b).

2. Lay off angles of ascent, dwell and descent of 80°, 80° and 120°, respectively.

3. Divide the angles of ascent and descent into six equal parts and draw radial lines intersecting the 
base circle at points 0 to 6 and 6  to 0  in the angles of ascent and descent, respectively.

4. Measure distances 1a, 2b, 3c, 4d, 5e, and 6f from the displacement diagram in the angle of ascent. 
Cut off the corresponding distances on the redial lines in the cam profile diagram.

5. Draw perpendicular on the radial lines at these points ‘a’ to f.

 Repeat the same process in the angle of descent.

6. Draw a smooth curve touching the perpendicular lines to get the cam profile.

Example 8.9

Draw the profile of a cam to raise a valve with harmonic motion through 50 mm in 1/3 of a revolu-
tion, keep it fully raised through 1/12 of a revolution, and to lower it with harmonic motion 1/6 of a 
revolution. The valve remains closed during the rest of the revolution. The diameter of the roller is 20 
mm and the minimum radius of the cam is to be 25 mm. The diameter of the cam shaft is 25 mm. The 
axis of the valve rod passes through the axis of the cam shaft. Assume the camshaft to rotate with a 
uniform velocity.

Solution 

Given: Life 50 mm, angle of ascent 
1

3
360 120 ,
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Fig.8.28 Cam profile with a flat-faced follower
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Fig.8.29 Cam profile for a flat faced follower having uniform acceleration and retardation
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dwell  descent
1

12
360 30

1

6
360 60,

Roller diameter 20 mm, minimum radius of cam 25 cm
Diameter of cam shaft 25 mm

Fig.8.30 Cam profile with roller follower having SHM
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Displacement diagram: Draw the displacement diagram shown in Fig.8.30 (a) according to the  
procedure explained in Example 8.1.

Cam profile: Draw the cam profile shown in Fig.8.30(b) according to the procedure described in 
Example 8.3.

8.9 CAM PROFILE WITH SWINGING ROLLER FOLLOWER
The cam with swinging roller follower is shown in Fig.8.31. The following steps may be used to draw 
the cam profile:

 1. Draw the base circle.

 2. Draw the follower in its 0° position, tangent to the base circle.

 3. Draw the reference circle through the centre of the follower.

 4. Locate points around the reference circle corresponding to the divisions in the displacement  
diagram and number them accordingly.

 5. Draw a pivot circle through the follower point.

 6. Locate the pivot points around the pivot circle corresponding to each point on the reference circle, 
and number them accordingly.

 7. From each of the pivot points, draw an arc where radius is equal to the length of the follower arm.

Fig.8.31 Cam with swinging roller follower
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 8. At the zero position, draw the two extreme positions of the follower lever by laying off the arc AB 
equal to the maximum displacement.

 9. Lay off the various displacements 1a, 2b, 3c, . . . , along this arc.

10. Rotate each of the points on arc AB to its proper position around the cam profile.

11. Draw the follower outline at each of the points just located.

12. Draw a smooth curve tangent to the follower outlines.

8.10 CAM PROFILE WITH SWINGING FLAT-FACED FOLLOWER
A cam with swinging flat-faced follower is shown in Fig.8.32. The following steps may be followed 
to draw the cam profile:

1. Draw the base circle, which in this case also serves the reference circle.

2. Draw the follower in its home position, tangent to the base circle.

3. Draw radial lines corresponding to the divisions in the displacement diagram, and number accord-
ingly.

4. Draw the pivot circle through the follower pivot.

Fig.8.32 Cam with swinging flat-faced follower
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 5. Locate the pivot points around the pivot circle.

 6. Locate the trace point on the flat face at a radius r from the pivoted point at zero position.

 7. At the zero position, draw the two extreme positions of the follower lever laying off the arc AB 
equal to the maximum displacement.

 8. Lay off the various displacements, 1a, 2b, 3c, . . . along this arc.

 9. Locate the trace point a relative to the cam at the intersection of the arc of radius R, centred at 1  
and the arc 1a with centre O

2
. Establish points b, c, d, . . . similarly.

10. The first position of the flat follower, relative to the cam is the straight line through point a that is 
tangent to the circle of radius r

f
, centred at 1 . Construct the successive positions of follower face 

in a similar manner.

11. Draw a smooth curve tangent to the family of straight lines representing the follower face.

Example 8.10

Draw the cam profile for the data given below:

Base circle radius of cam 50 mm
Lift 40 mm

Angle of ascent 60°
Angle of dwell 40°

Angle of descent 90°
Speed of cam 300 rpm

Motion of follower SHM
Type of follower knife-edge

Also calculate the maximum velocity and acceleration during ascent and descent.

Solution 

Angular velocity, 2   300/60 31.416 rad/s
Maximum velocity, v

max
( h/2) . ( /

1
)

  



40 10 2 10 3

1 885

2

3 / / /

 m/s during ascent

/

.

h  

  

/

/ / /

 m/s during des

3

340 10 2 10 2

1 257. ccent

Maximum acceleration, f
max

( /
1
) . (h/2)

  

 

30 0 02

174 65

2

2

3

2

/

 m/s  during ascent

/ /

2

.

.

h

  20 0 02

78 957

2
/

 m/s  during descent.2

.

.
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Displacement diagram
1. Dra w a vertical line 0 6 equal to the lift of 40 mm.

2. Draw a semicircle on this line and divide the semicircle into six equal parts of 60° each.

3. Choosing a scale of 1 mm 2°, mark of the angles of ascent, dwell, descent, and dwell of 60°, 40°, 
90°, and 170° respectively.

4. Divide the angles of ascent and descent into six equal parts and draw vertical lines at those points 
parallel to 0 6.

5. Draw horizontal lines from the points 0 to 6 on the semicircle to intersect the vertical lines.

6. Join the points of intersection with a smooth curve to get the displacement diagram.

 The displacement diagram is shown in Fig.8.33(a).

Cam profile
1. Draw a circle of radius equal to the base circle radius of 50 mm.

2. Draw angles of ascent, dwell, and descent equal to 60°, 40°, and 90°, respectively. Divide the angles 
of ascent and descent into six equal parts and draw radial lines.

3. Mark points 0 to 6 and 6  to 0  on the base circle in the angles of ascent and descent respectively.

4. Measure distances 1a, 2b, 3c, 4d, 5e and 6f from the displacement diagram and cut off correspond-
ing distances on the radial lines. Repeat the same procedure during the descent.

5. Join the points so obtained by a smooth curve to get the cam profile.

 The cam profile has been drawn in Fig.8.33(b).

Example 8.11

A cam of base circle 50 mm is to operate a roller follower of 20 mm diameter. The follower is to have 
SHM. The angular speed of the cam is 360 rpm. Draw the cam profile for the cam lift of 40 mm. Angle 
of ascent 60°, angle of dwell 40°, and angle of descent 90°, followed by dwell again. Also cal-
culate the maximum velocity and acceleration during ascent and descent.

Solution 
Angular velocity of cam, 2 360/60 12 rad/s

Maximum velocity, v
max

( h/2).( /
1
) 

40 10 2 12 3

2 262

2

3 / / /

 m/s during ascent

/

.

h /

/ / /

 m/s during des

3

340 10 2 12 2

1 507. ccent

Maximum acceleration, f
max

( /
1
)2. (h/2)

  36 0 02

255 82

2
/

 m/s  during ascent2

.

.
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Fig.8.33 Cam with knife-edge follower having SHM

 

  

/ /

/

 m/s  during descent2

3

2

2

2

24 0 02

113 7

h

.

.

Draw the displacement diagram as explained in Example 8.10.
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Cam profile
1. Draw the base circle with 50 mm radius, and another circle, with base circle plus roller radius,  

of 60 mm.

2. Draw the angle of ascent of 60°, angle of dwell of 40°, and angle of descent of 90°.

3. Divide the angle of ascent and descent into six equal parts, and draw radial lines for these angles.

4. Cut off distances on the radial lines as measured from the displacement diagram with roller centre 
path as the datum.

5. At these points, draw roller circles.

6. Draw a smooth curve tangential to the roller circles to obtain the cam profile.

The cam profile has been drawn in Fig.8.34.

Example 8.12 

A cam is to operate an offset roller follower. The least radius of the cam is 50 mm, roller diameter is  
30 mm, and offset is 20 mm. The cam is to rotate at 360 rpm. The angle of ascent is 48°, angle of dwell 
is 42°, and angle of descent is 60°. The motion is to be SHM during ascent and uniform acceleration 
and deceleration during descent. Draw the cam profile.

Also calculate the maximum velocity and acceleration during descent.

Fig.8.34 Cam with roller follower having SHM
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Solution 

  2    360/60 12 rad/s

Maximum velocity during descent with uniform acceleration and deceleration,

vmax

.

2

2 40 36

2 88

3h /  during descent

/

 m/s

Maximum acceleration, f hmax 4 2
3
2w q/  during descent

4 12 40 10 3

204 36

2 3 2

2

 / /

 m/s.

Cam profile
1. Draw the displacement diagram as shown in Fig.8.35(a).

2. Draw the base circle with 50 mm radius. Draw another circle with 65 mm radius to represent the 
path traced out by the roller centre.

3. Draw a circle 20 mm radius equal to the offset.

4. Divide the angle of ascent and the angle of descent into six equal parts.

5. Draw tangents at the circumference of the offset circle at the above points.

6. From the circle of the path of the roller centre, measure off distances from the displacement dia-
gram along the tangential lines.

7. Draw circles at these points equal to the roller radius.

8. Draw a smooth curve tangential to these circles to get the cam profile.

The cam profile has been shown in Fig.8.35(b).

Example 8.13

A cam is operating an oscillating roller follower having SHM, as shown in Fig.8.36. Draw the cam 
profile for the data given below:

Roller centre from cam centre at beginning of ascent 60 mm
Angle of ascent 60°

Minimum radius of cam 40 mm
Dwell 45°

Angle of descent 90°
Angle of oscillation of arm during ascent or descent 15°

Solution 
Length of circular arc during movement of follower arm

 80 15 /180 20.94 mm

Length of chord joining the roller centre in extreme position

 2 80 sin 4.5° 20.88 mm

For small angle, arc chord. Therefore, we take displacement 20.88 mm
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Fig.8.35 Cam with offset roller follower having SHM during ascent uniform acceleration  
and retardation during descent
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Cam profile
1. Taking lift of cam to be equal to 20.88 mm, draw the displacement diagram, as shown in Fig.8.37(a) 

and explained in Example 8.1.

2. Draw cam base circle with 40 mm radius, roller centre path with 60 mm radius, and another circle 
with 100 mm radius, which is equal to the distance between cam centre and the fulcrum.

3. Now OA 60 mm, and let it be a vertical line. With O and A as centres, and radii equal to 100 mm 
and 80 mm, respectively, draw arcs to meet at B. Point B represents the fulcrum position before 
follower begins to ascend.

4. Mark off BOC 60°, COD 45°, and DOE 90°. Divide the angles of ascent and descent 
into six equal parts.

5. With a
1
, b

1
, c

1
, . . . , etc. As centers, draw arcs of 80 mm radius. From the points of intersection of these 

arcs with the 60 mm radius circle, mark along the chords of the displacement arcs, distances pa,  
qb, rc, . . . , etc, equal to 1a, 2b, 3c,  . . . , etc., of the displacement diagram.

6. Repeat the above procedure for the angle of descent.

7. Join the points a, b, c, . . . , etc. To obtain the pitch profile of the cam.

8. From the above pitch points, draw the roller radius circles.

9. The envelope of the arcs of roller radius gives the cam profile.

The cam profile has been shown in Fig.8.37(b).

Fig.8.36 Cam with oscillating roller follower
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Fig.8.37 Cam operating on oscillating roller follower having SHMs
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Example 8.14

It is required to set out the profile of a cam to give motion to the follower in such a way that it rises 
through 31.4 mm during 180° of cam rotation with cycloidal motion and returns with cycloidal motion 
during 180° of cam rotation. Determine the maximum velocity and acceleration of the follower dur-
ing the outstroke when the cam rotates at 1800 rpm clockwise. The base circle diameter of the cam is 
25 mm and roller diameter of the follower is 10 mm. The axis of the follower passes through the cam 
centre.

Solution 

Stroke, h 2 R
Radius of circle generating the cycloid, R 31.4/2 5 mm
The displacement diagram is shown in Fig.8.38(a).

2 1800/60 188.5 rad/s

2 / 2 188.5 31.4/( 1000) 3maxv h ..77 m/s

2 / 2 (188.5) 31.4/( 1000) 710.3 m/smax
2 2 2 2a h 22

The cam profile has been drawn in Fig.8.38(b).
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Fig.8.38 Cam profile with cycloidal motion follower

8.11 ANALYTICAL METHODS

8.11.1 Tangent Cam with Roller Follower
A tangent cam with roller follower is shown in Fig.8.39.

Let  r distance between cam and nose centres
r

1 
least radius of cam

r
2

nose radius
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Fig.8.39 Tangent cam with roller follower

r
3

roller radius
l r

2
  r

3

angle of ascent
angle of contact of cam with straight flank

(a) Roller in contact with straight flank

At position B, let  be the angle turned through by the cam, as shown in Fig.8.39(a). Then lift, 

 x OB  OA

OA
OA

cos

OA( cos )

cos

1 


( )( cos )

cos

r r1 3 1 
   

(8.30)

Velocity,
  

v
d

d

d

d

d

d

x

t

x

t

 





( )
sin

cos1 3 2
r r

  

(8.31)
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Maximum velocity occurs at .

 
vmax ( )

sin

cos
r r1 3 2

  

(8.32)

Acceleration,  f
t t

d

d

d

d

d

d

v v

 





( + )

2 cos

cos1 3

2

3
r r

  
(8.33)

Minimum acceleration occurs at 0°

f
min

2(r
1

r
3
)  (8.34)

(b) Follower in contact with circular nose

Fig.8.39(b) shows the follower in contact with circular nose.
Let  OP r const.
 PD r

2
  r

3
l const.

OPD is a slider crank chain in which OP is the crank, PD the connecting rod, and D the slider.  
Let 

1
  

For a slider crank chain, the displacement from top dead centre is given by,

x r 1 cos + sin2 2 0.5
 n n

where n l/r

For the cam mechanism shown in Fig.8.41, we have

 
x r r r r r r r1 1 2 3 2 3

2 2
1

0 5

cos ( ) / / sin
.

 r l l r( cos ) ( sin ) .1 1
2 2 2

1
0 5

  (8.35)

 
v

d

d

x

 

 



r r

r

l r
sin

sin

sin
.1

2
1

2 2 2
1

0 5

2

2
  

(8.36)
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f

d

d

v

 

 
 


2

1

2
1

3 4
1

2 2 2
1

3 2

2
r

l r r

l r
cos

cos sin

sin
/

  

(8.37)

Example 8.15

A symmetrical tangent cam operating a roller follower has the following particulars:
Radius of base circle of cam 40 mm
Roller radius 20 mm
Angle of ascent  =  75°
Total lift 20 mm
Speed of cam shaft 300 rpm

Determine (a) the principal dimensions of the cam, (b) the equation of the displacement curve, 
when the follower is in contact with the straight flank, and (c) the acceleration of the follower, when it 
is in contact with the straight flank where it merges into the circular nose.

Solution 

Given: r
1

40 mm, r
3

20 mm, h 20 mm, N 300 rpm, 75°
 (a) With reference to Fig.8.40, we have

OP r r h

OP r

OQ r r

OQ r

2 1

2

2 1

2

40 20

60

40

40

cos  = 
OQ

OP
r

r

r

r

cos

.

75
40

60

0 25882
40

60

2

2

2

2

 15.52914  0.25882 r
2

40  r
2

Nose radius,  r2

24 47085

0 74118
33

.

.
 mm
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Distance between cam and nose centre,

r OP 60  33 27 mm

tan

sin

sin

.

.







RA

OA

PQ

OA
OP

OA
27 75

60
0

23 49

43467

(b) Equation of displacement curve

1. When contact is with straight flank

x r r( )
cos

( )
cos

cos

1 3

1
1

40 20
1

1

60
1

1






mm

Fig.8.40 Tangent cam operating roller follower
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2. When contact is with circular nose

 

x r r r l r( cos ) ( ) ( sin )

( cos ) ( )

.1

27 1 33 20

1 2 3
2 2 2

1
0 5

1

 

 (( sin )

( cos ) ( sin )

.

.

53 27

27 1 53 2809 729

2 2 2
1

0 5

1
2

1
0 5



 

where 
1
 is measured from apex position,

(c) Acceleration of follower
When in contact with straight flank,

 

f r r2
1 3

2

3

2

2 300

60
31 416

( )
cos

cos

.  rad/s

When 0°,  f ( . ) ( . . )31 416 0 040 0 020
2 1

1
2

  59.22 m/s2

When in contact with straight flank, .

 

f r r



2

1 3

2

3

2 2

2

31 416 0 04 0 02 2

( )
cos

cos

. ( . . )( cos 223 493

23 439

52 94

3

2

. )

cos .

. m/s

When contact is on circular nose,

 
1

  75  23.493 51.507°

 

f r
l r r

l r
 

 


2

1

2
1

3 4
1

2 2 2
1

1 5

2

3

cos
cos sin

sin

(

.

11 416 0 027 51 507 0 060 0 027 103 014

0 027

2 2

3

. ) . [cos . ( . . cos .

. ssin . ) / ( . . sin . ) ]

.

.4 2 2 2 1 5

2

51 503 0 060 0 027 51 507

13 33 m/s

When at apex, 
1

0°



450 Theory of Machines

 

f r
r

l
 2

2

1

31 416 0 027 1
0 027

0 060
38 64( . ) .

.

.
.  m//s2

Example 8.16

The follower of a tangent cam is operated through a roller of 50 mm diameter and its line of stroke 
passes through the axis of the cam. The minimum radius of the cam is 40 mm and the nose radius  
15 mm. The lift is 25 mm. If the speed of the camshaft is 600 rpm, calculate the velocity and accel-
eration of the follower at the instant when the cam is (a) in full lift position, and (b) 20° from full lift 
position.

Solution 

Given: r
3

25 mm, r
1

40 mm, r
2

15 mm, h 25 mm, N 600 rpm

(a)  cos .
r r

r h r
1 3

1 2

40 15

40 25 15

25

50
0 5

 60°

 

2 600

60
62.83 rad/s

At full lift position, .

 

v  ( )
sin

cos

62.83 65 sin60

cos 60
14147 mm/s1 3 2 2

2

r r

f (( )
2 cos

cos

(62.83) 65
2 cos 60

cos 60

1 3

2

3

2
2

3

r r

35,92,324 mm/s2

(b) 60° 20° 40°

 

v ( )
sin

cos

62.83 65 sin 40

cos 40
4473.4 mm/s1 3 2 2

r r

f 22
1 3

2

3

2
( )

cos

cos
r r

(62.83) 65
2 cos 40

cos 40
2

2

3
8,06,649 mm/s2
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Example 8.17

A cam profile consists of two circular arcs of radii 30 mm and 15 mm, joined by straight lines, giv-
ing the follower a lift of 15 mm. The follower is a roller of 25 mm radius and its line of action is a 
straight line passing through the cam shaft axis. When the cam shaft has a uniform speed of 600 rpm, 
find the maximum velocity and acceleration of the follower while in contact with the straight flank of  
the cam.

Solution 

Given: r
1

30 mm, r
2

15 mm, r
3

25 mm, h 15 mm, N 600 rpm

 

OP r h r

OQ r r

OQ

OP

1 2

1 2

30 15 15 30

30 15 15

15

3

 mm

 mm

cos
00

0 5

60

30 60

55
0 27272

15 25

.

tan
sin sin

.

.











OP

OA

2 6000

60
62.83 rad/s

Contact with straight flank:

 

vmax ( )
sin

cos

.
sin .

cos .

r r1 3 2

2
62 83 55

15 25

15 25
976 4

22
1 3

2

3

.

( )
cos

cos

 mm/s

f r r

At  0°
 f (62.83)2  0.055 217.12 m/s2

At  

 
( . ) .

cos .

cos .
62 83 0 055

2 15 25

15 25
2

2

3
    258.5 m/s2

8.11.2 Circular Arc Cam Operating Flat-Faced Follower
(a) Follower in contact with circular flank
The follower in contact with circular flank is shown in Fig.8.41(a).
Let r distance between cam and nose centers
 r

1
OB least circle radius
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 r
2

nose circle radius
 r

3
QD flank circle radius

 angle of ascent
 angle of contact on circular flank

Displacement of follower, x OC − OB
  DE  r

1

  (QD − QE)  r
1

  (r
3
  OQ cos )  r

1

 r
3
  (r

3
  r

1
) cos   r

1
 (8.38)

Fig.8.41 Circular arc cam operating flat-faced follower

Velocity,  v
d

d

d

d

d

d

x

t

x

t
.

  (r
3
  r

1
)  sin   (8.39)

Maximum velocity occurs at .

 vmax ( ) sinr r3 1   (8.40)
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Acceleration, f
t t

d

d

d

d

d

d

v v
.

  (r
3
  r

1
)  2 cos   (8.41)

Maximum acceleration occurs at 0°.
 f

max
(r

3
  r

1
)  2  (8.42)

Minimum acceleration occurs at .
 f

min
(r

3
  r

1
)  2 cos   (8.43)

(b) Follower in contact with circular nose
The follower in contact with circular nose is shown is Fig.8.41(b).

 

x OC OB

DE r

DP PE r
1

1

  r
2
  OP cos (   )  r

1
  (8.44)

 

r r r

x
2 1cos( )

v
d

d

  r sin (   )  (8.45)

Velocity is maximum when    is maximum. This happens when contact changes from circu-
lar flank to circular nose. Minimum velocity occurs when   0°, i.e., at the apex of the circular 
nose.
 v

min
0  (8.46)

Acceleration, f
d

d

v

  2r cos(   )  (8.47)

Maximum acceleration occurs when   0°, i.e., apex of circular nose.

 f
max

 2r  (8.48)

Minimum acceleration occurs when    is maximum, i.e., when contact changes from circular flank 
to circular nose.

Example 8.18

The following data refers to a circular arc cam working with a flat-faced reciprocating follower:
Minimum radius of cam 30 mm, total angle of cam action 120° , radius of circular arc 80 mm 

and nose radius 10 mm.
Find (a) the distance of the centre of the nose circle from the cam axis, (b) the angle through which 

the cam turns when the point of contact moves from the junction of minimum radius arc and circular 
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arc of the junction of nose arc and circular arc, and (c) velocity and acceleration of the follower when 
the cam has turned through an angle of 20° . The angular velocity of the cam is 10 rad/s.

Solution 

Given: r
1

30 mm, r
2

10 mm, r
3

80 mm, 2 120°, 10 rad/s, lift 10 mm
(a) OP  r 

2
r

1
  lift

 OP 30  10  lift 20  lift
 x (r

3
  r

1
) (1  cos )

At 60°, Lift, x (80  30) (1  cos 60°) 25 mm
OP 20  25 45 mm

(b) tan 
 


PM CM

OP

OC OM

OP

OC OP
/

sin sin

sin

 

45 60

80 45 60
0 38

sin

cos
.

 20.8° (see Fig.8.42)

(c) Velocity, v  (r
3
  r

1
) sin 10  (80  30) sin 20° 171 mm/s

Acceleration, f 2 (r
3
  r

1
) cos 100  (80  30) cos 20° 4698.5 mm/s2

Fig.8.42 Circular arc cam operating a flat-faced follower

Example 8.19

The suction valve of a four stroke petrol engine is operated by a circular arc cam with a flat-faced 
follower. The lift of the follower is 10 mm; base circle diameter of the cam is 40 mm and the nose 
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radius is 2.5 mm. The crank angle when suction valve opens is 4° after top dead centre and when 
the suction valve closes, the crank angle is 50° after bottom dead centre. If the cam shaft rotates at  
600 rpm, determine (a) maximum velocity of the valve, and (b) maximum acceleration and retardation 
of the valve.

 Solution

Given: h 10 mm, r
1

20 mm, r
2

2.5 mm, N 600 rpm,
2 (180°  4°  50°) / 2 226 / 2 113°, 56.5°

In Fig.8.44, r
3

CP  r
2

OC  r
1

CP OC OC

OP r r h

OP r

20 2 5 17 5

20 10 2 5 27 5
2 1

. .

. .  mm

In COP, we have

CP OC OP OC OP

OC OC OC

2 2 2

2 2 2

2 180

17 5 27 5 2

 cos( )

( . ) ( . )



27 5 123 5

96 9

114 4

96 9 20 1163 1

. cos .

.

.

.

 

 mm

 mm

OC

CP

r OC r ..

sin sin ( )

sin ( . / . )sin . .

9

180

27 5 114 4 123 5 0 2004

mm

OP CP

 
 55

11 56



.

2 600

60
62.83 rad/s

Maximum velocity, vmax

max

( )sin . ( . )sin .r r

f

3 1 62 83 116 9 20 11 56 1.22 m/s
2

3 1
262 83 96 9 382 52( ) ( . ) . .r r m/s2

Example 8.20

A cam having a lift of 10 mm operates the suction valve of a four stroke SI engine. The least radius of 
the cam is 20 mm and nose radius is 2.5 mm. The crank angle for the engine when suction valve opens 
is 4° after TDC and it is 50° after BDC when the suction valve closes. The crank shaft speed is 2000 
rpm. The cam is of circular type with circular nose and flanks. It is integral with cam shaft and oper-
ates a flat faced-follower. Estimate (a) the maximum velocity of the valve, (b) the maximum accelera-
tion and retardation of the valve, and (c) the minimum force to be exerted by the spring to overcome 
inertia of the valve parts which weigh 2 N.

 Solution

Given: r
1

20 mm, r
2

2.5 mm, h 10 mm, N 2000 rpm,
2 (180°  4°  50°)/2 226/2 113° , 56.5°
In Fig.8.42, r

3
CP  r

2
OC  r

1
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CP OC  20  2.5 OC  17.5
OP  r

2
r

1
  h

OP r 20  10  2.5 27.5 mm

In COP, we have

 

CP OC OP OC OP

OC OC OC

2 2 2

2 2 2

2 180

17 5 27 5 2

cos ( )

( . ) ( . )

 

27 5 123 5

96 98

114 48

114 48 23 2

. cos .

.

.

. .

 

 mm

 mm

OC

CP

r CP r 55 116 98

180

27 5 114 48 123 5

.

sin sin ( )

sin ( . / . ) sin .

 mm

OP CP

0 2003

11 55

2 2000

60
209 44

3 1

.

.

.

( )sinmax

À
 rad/s

v r r 209 44 116 9 20 11 55 4 070

2093 1

. ( . )sin . .

( ) (max

 m/s
2f r r .. ) .44 96 98 42542  m/s2

Inertia force spring force 2  4254/9.81 867.3 N.

8.11.3 Circular Cam with Roller Follower
The circular arc cam with roller follower is shown in Fig.8.43.
Let  R    CF radius of flank

r
1

base circle radius of cam
r

2
nose radius of cam

r
3

roller follower radius
h total lift or stroke
x lift at the instant the cam has rotated by an angle 

semi-angle of action of cam
 angle of action of cam from the beginning of rise to the point it leaves the 
flank

ODC

(a) Roller Follower on Flank

The roller follower on flank is shown in Fig.8.43(a).
Let  R  r

1
A

R  r
3

B
CG CD sin OC sin 

or (R  r
3
) sin (R  r

1
) sin 

or  B sin A sin 
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sin sin

cos sin

.

 

 

A

B

A

B
1

2

2

0 5

Lift,  x AB OB  OA OB  OF
Cams

 (OD  BD)  OF (DG  OG)  BD  OF

 (CD cos   r
3
)  r

1

 (R  r
3
) cos   (R  r

1
) cos   (r

3
  r

1
)

 B cos   A cos   (B  A)

 [B2  A2 sin2 ]0.5  A cos   (B  A) (8.49)

Velocity,
 

v
d

d

d

d

d

d

x

t

x

t

  [0.5 (B2  A2 sin2 )  0.5  (  2A2 sin  cos )  A sin ]

 
 




A
A

B A
sin

sin

( sin ) .

2

2 2 2 0 52

  
(8.50)

Acceleration,  f
t t

d

d

d

d

d

d

v v

 

 







2

2 2 2 0 5

3 2

2 2 2 0 5

2 2

4
A

A

B A

A

B A
cos

cos

sin

sin

sin
. .

  

(8.51)

(b) Roller Follower on Nose

The roller follower on circular nose has been shown in Fig.8.43(b).

Let PQ r
2
  r

3
l, OP r

PQO , POQ (   )
1

 

v vl l l r l
l

l
sin sin / sin sin

sin
1

2
1

2 2
1 1

2
1

2
2 2

rr2 2
1sin

 
(8.52)

 

f l
l

l r

l

l r
 








2

1

2
1

2 2 2
1

0 5

4 2

2 2 2
1

2 2

4
cos

cos

sin

sin

sin
.

1
1 5.

  

(8.53)
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Fig.8.43 Circular arc cam operating roller follower

Example 8.21

A cam of circular arc type is to operate a flat-faced follower of a four-stroke engine. The exhaust valve 
opens 50° before top dead centre and closes 15° after bottom dead centre. The valve lift is 10 mm, base 
circle radius of cam 20 mm and nose radius 3 mm. Calculate the maximum velocity, acceleration and 
retardation, if cam shaft rotates at 1800 rpm. Also calculate the minimum force required, which must 
be exerted by the spring in order to overcome the inertia of moving parts of mass 0.25 kg.

 Solution

Given:

2
50 180 15

2
122 5

61 25

2 1800

60
188 5








.

.

.  rad/s

In Fig.8.44, we have
CP CE  EP (OC  OG  )  EP OC  20  3 OC  17
OP OD  PD OG  R  r

2
r

1
  h  r

2
20  10  3 27 mm

CP 2 OC 2  OP 2  2 OC OP cos 118.75°
(OC  17)2 OC 2  272  2 OC 27 cos 118.75°

OC 55 mm
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OC OP CP

OC

sin . sin sin .

sin sin .

61 25 118 75

27 17

118 75





sin 27  sin 118.75°/72 0.32877
19.19°

R OC  r
1

55  20 75 mm
v

max
 (R  r

1
) sin 188.5  0.055  sin 19.19° 3.4 m/s

f
max

2 (R  r
1
) (188.5)2 0.055 1954.3 m/s2

Maximum retardation 2 OP (188.5)2 0.027 959.4 m/s2

Force, F 0.25  959.4 239.84 N

Fig.8.44 Circular arc cam operssating a flat-faced follower

Example 8.22

The particulars of a symmetrical tangent cam operating a roller follower are given below:
Least radius of cam 30 mm; roller radius 20 mm; angle of ascent 75°; total lift 20 mm; speed 

of cam shaft 600 rpm. Calculate the (a) principal dimensions of the cam, (b) the equation of the dis-
placement curve when the follower is in contact with straight flank and circular nose and (c) accele ration 
of the follower at the follower at the beginning of lift, where straight flank merges into the circular nose 
and at the apex of the circular nose. Assume that there is no dwell between ascent and return.

 Solution

 Here r
1

30 mm, r
3

20 mm, 75°, lift 20 mm and N 600 rpm.
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(a) With reference to Fig 8.45, we have
 OP  r

2
30  20

OP 50  r
2

OQ  r
2

30
OQ 30  r

2

cos OQ/OP
cos 75° (30  r

2
) /(50  r

2
)

0.25882 (30  r
2
)     /(50  r

2
)

12.941  0.25882 r
2

30  r
2

Nose radius, r
2

14.059/0.7412 23 mm
Distance between cam and nose centre,

r OP 50  23 27 mm
tan RA/OA PQ/OA

 OP sin /OA
 23 sin 75°/ 50°
 0.44432
23.96°

(b) Equation of displacement curve
1. When contact is with straight flank

x (r
1
  r

3
) (1/cos   1)

 (30  20) (1/cos   1)
 50 (1/cos   1) mm

2. When contact is with circular nose
x r (1  cos 

1
)    ( 2  r2 sin2 

1
)0.5]

 23 (1  cos 
1
)  (23  20)  (432  232 sin2 

1
)0.5]

 23 (1  cos 
1
)  43  (1849  529 sin2 

1
)0.5 ]

where 
1
 is measured from apex position.

(c) Acceleration of follower
When in contact with straight flank,

f 2 (r
1
  r

3
) (2  cos2 ) /cos3 

2   600 /60 62.83 rad/s
When 0°,  f (62.83)2 (0.030  0.020) (2  1) /1

 194.4 m/s2

When in contact with straight flank, .
f 2 (r

1
  r

3
) (2  cos2 ) /cos3 

 (62.83)2 (0.03  0.02) (2  cos2 23.96°) /cos3 23.96°
 301.3 m/s2

When contact is on circular nose,

1
  75  23.96 51.04°

f 2 r [cos
1
  (l 2 r cos 2

1
  r3 sin4 

1
) /(l 2  r 2 sin2 

1
)1.5]

 (62.83)2  0.023 [cos 51.04°  (0.0432   0.023 cos 102.08°  
 0.0233 sin4 51.04°) /(0.0432  0.0232 sin2 51.04°)1.5]
 50.33 m/s2

When at apex, 
1

0°
f 2 r [1  r / ]

 (62.83)2  0.023 [1  0.023 /0.043]
 139.36 m/s2
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r3

r2

r1 O

r3

r

A
Q

R P

Fig.8.45 Tangent cam operating a roller follower

Example 8.23

A flat-faced mushroom follower is operated by a symmetrical cam with circular arc flank and nose 
profile. The axis of tappet passed through the cam axis. Total angle of action is 162°, lift 10 mm and 
base circle diameter 40 mm. Period of acceleration is half the period of retardation during the lift. 
The cam rotates at 1200 rpm. Determine (a) nose and flank radii and (b) maximum acceleration and 
retardation during lift.

 Solution
162/2 81°, h 10 mm, r

1
40/2 20 mm, N 1200 rpm

Acceleration takes place on flank and retardation on nose.
Angle of action on flank, 81/3 27°
Angle of action on nose, 2  81/3 54°

2   1200/60 125.66 rad/s

In COP (Fig.8.46), we have
CP CE  EP OC  OG  EP OC  20  r

2

OP OD  PD OG  h  r
2

20  10  r
2

30  r
2

 

OC OP CP

OC r r
sin sin sin

. . .

54 27 99

0 809

30

0 454

20

0 987
2 2OC

77

OC 0.819 (OC  20  r
2
)

OC 90.5  4.525 r
2
  (a)

Also 30  r
2

0.45965 (OC  20  r
2
)

or OC 45.267  1.1756 r
2
  (b)

From Eqs. (a) and (b), we get
r

2
13.36 mm
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OC 29.57 mm
OP 30  13.36 16.64 mm

Maximum acceleration   2 OC (125.66)2  0.02957 466.95 m/s2

Maximum retardation     2 OP (125.66)2  0.01664 262.75 m/s2

Fig.8.46 Circular arc cam operating a flat-faced follower

Example 8.24

For a flat-faced follower 75°, 40° and the cam is of circular arc type with r
1

30 mm, r
2

10 
mm and r 40 mm, N 600 rpm. Combined mass of follower and valve is 5 kg.
Calculate the spring force required to close the valve.

 Solution
2   600/60 62.83 rad/s

In COP (Fig.8.49), we have
CP OC  OG  r

2
OC  30  10 OC  20

OP r 40 mm
CP 2 OC OP OC OP cos

C OC OC cos
C 2.17 mm

At the start of the nose, acceleration, f
sn

2  r cos(   )
  (62.8 cos 

 m/s2

At the top of the nose, acceleration,f
tn

 2  r
  (62.83)2  0.04 157.9 m/s2

Spring force required to maintain contact between the follower and cam,
F m · f

tn
5  157.9 789.5 N

Acceleration at beginning of the flank,
f
sf

2  OC cos 
 (62.83)2  0.06217  cos 0°
 245 m/s2

Acceleration at the end of the flank, f
ef

2 OC cos 
 (62.83)2  0.06217  cos 40°
 188 m/s2

Force required to stop the acceleration of 188 m/s2 and decelerate at 129.35 m/s2,
F m (f

ef
  f

sn
) 5(188 129.35) 1586.75 N
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Fig.8.47 Circular arc cam operating a flat-faced follower

Example 8.25

A reciprocating roller follower has cycloidal motion and its stroke of 30 mm is completed in 90° of the 
cam rotation. The follower is offset against the direction of rotation by 6.25 mm and the radius of the 
roller is 12.5 mm. Determine the base circle radius which would limit the pressure angle to 30°. Also 
discuss the conditions that would lead to undercutting in the present case.

 Solution

h 30 mm, 90°, e 6.25 mm, R
r

12.5 mm, 
max

30°, r
1

?
For cycloidal motion, y f ( ) h [ /   (1/2) sin (2  / )]

30[2 /  (1/2) sin 4 ]
 (15/ ) [4   sin 4 ]

d f /d (60/ ) (1 cos 4 )
d2 f /d 2 (240/ ) sin4

tan 
max

d 2f /d  2 /d f /d (240/ ) sin 4 /(60/ ) (1  cos 4 )
tan 30° 4 cot 2

40.89°
tan [df /d   e] /[f ( )  (r2

1
  e2)0.5]

 [(60 / ) (1 cos 4 )  e] / [(15 / )(4   sin 4 )  (r2
1
  e2)0.5]

tan 30° [(60/ )(1  cos 163.56°)  6.25] /[(15/ )(2.8547  sin 163.56°)  (r2
1
  39.06)0.5]

r
1

42.22 mm

Example 8.26

The cam shown in Fig 8.48 rotates about O at an uniform speed of 500 rpm and operates a follower 
attached to the roller with centre Q. The path of Q is a straight line passing through O. Draw the time-
lift diagram of the roller centre on a base of 10 mm equaling 0.005 s and to a vertical scale of four 
times full size for a movement of 180° from the position shown. Find also the cam angle for which the 
velocity of the follower is a maximum and determine the magnitude of the velocity.

 Solution
N 500 rpm, r

3
11.25 mm, r

1
15 mm, r

2
7.5 mm, r 20 mm

2  500 /60 52.36 rad /s
For maximum velocity, 

cos (r
1
  r

2
) /r 7.5 /20 0.375

67.97°, 2 135.94°
tan r sin  /(r

1
  r

3
) 20 sin 67.97° /26.25 0.706

25.23°
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v  (r
1
  r

3
) sin  /cos2 52.36  26.25 sin 35.23° /cos2 35.23° 1188.5 mm/s

Fig.8.48

8.12 RADIUS OF CURVATURE AND UNDERCUTTING
There is no restriction on the radius of curvature of the cam profile with a knife-edge follower. The 
cam profile must be convex everywhere for a flat-faced follower. In the case of a roller follower, the 
concave portion of the cam profile must have a radius of curvature greater than that of the roller to 
ensure proper contact along the cam profile.

To determine the pitch surface of a disc cam with radial roller follower, let the displacement R of 
the centre of the follower from the centre of the cam be given by (Fig.8.49):

R R
0
  f ( )  (8.54)

where R
0

minimum radius of the pitch surface of the cam.
f ( ) radial motion of the follower as a function of cam angle.

Once the value of R
0
 is known, the polar coordinates of the centres of the roller follower can be generated.

Fig.8.49 Disc cam operating roller follower
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8.12.1 Kloomok and Muffley Method
Let radius of curvature of the pitch surface

R
r

radius of roller
These values are shown in Fig.8.50 together with the radius of curvature 

c
 of the cam surface,  is 

held constant and R
r
 is increased so that 

c
 decreases. If this continued until R

r
 equals , then 

c
 will 

be zero and the cam becomes pointed as shown in Fig.8.51(a). As R
r
 is further increased, the cam 

becomes undercut as shown in Fig.8.51(b), and the motion of the follower will not be as prescribed. 
Therefore, to prevent a point or an undercut from occurring on the cam profile, R

r
 must be less than 

min
, where 

min
is the minimum value of  over the particular segment of profile being considered.  

It is impossible to undercut a concave portion of a cam.
The radius of curvature at a point on a curve can be expressed as:

Fig.8.50 Cam and pitch surfaces

Fig.8.51 Undercutting in cams
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Where R f ( ). Here f ( ) f ( ).

 

d

d

d

d
)

R
f

R
f







( )

(
2

2

Hence  




 

[ ( ) ]

[ ( ( ) ]

/R f

R f R f

2 2 3 2

2 2
2 )

  (8.55)

For a convex cam surface, R
r
  

min

For concave cam surface,   R
r

 R
cutter

Pressure angle, 


tan 1 1

R

Rd

d
  (8.56)

8.12.2 Pressure Angle
The pressure angle is one of the most important parameters in cam design. By increasing the size of 
the cam, the pressure angle can be reduced.

Consider a cam with offset roller follower, as shown in Fig.8.52

Fig.8.52 Cam with offset roller follower
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Let pressure angle
 r

1
prime circle radius

 e offset
 y f ( )
 angle of cam rotation
 angular velocity of cam

The cam mechanism has four elements, namely, the fixed link 1, cam 2, roller 3, and follower rod 
4. The instantaneous centres are :

12 : at O
34 : at roller centre
14 : at infinity
23 : lies on the common normal at the point of contact of the roller and cam surface
24 :  at the intersection of common normal at the point of contact and horizontal axis on 

which 14 lies.
As the movement of the follower rod is pure translation, all points on it have the same velocity. 

Thus, the velocity of follower during rise is:

d

d
 

y

t
e a yv24 12 24( ) [ ( ) tan ]

  
(8.57)

where a (r2
1
  e2)0.5

tan
[ ( ) ].




d

d

) + ( 2

y

t
e

f r e1
2 0 5

 

d

d

) + ( 2

f
e

f r e


[ ( ) ].

1
2 0 5

  
(8.58)

During the return, we get

 

tan
( ) ( ) .






d

d

f
e

f r e1
2 2 0 5

  (8.59)
For maximum pressure angle, using rise, we have

 

d

d

d

d

d

d

d

d

tan
[ ( ) ( ) ].




  
f r e

f f
e

f2
1

2 0 5
2

2
00

 

d

d
d

d

d

d

f
e

f r e

f

f








( ) ( ) .2

1
2 0 5

2

2

0

  

(8.60)
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Solve Eq. (8.60) to get the value of 
0
. Then




  

max tan 1

2

2

d

d

d

d

f

f

  

(8.61)

Example 8.27

An off-set translating roller follower is driven by a SHM cam rotating at 450 rpm. The lift of the  
follower is 25 mm during 120  cam rotation. The base circle radius of cam is 40 mm. The off-set is 
10 mm. Calculate (a) the pressure angle at a cam angle of 60 , and (b) the pressure angle for radial 
follower.

 Solution

Given: N 450 rpm, h 25 mm, 
1

120°, 60°, e 10 mm, r
1

40 mm

 


2 450

60
47.124 rad/s

For SHM, x
h

2
1 cos


1

 

25

2
1 cos

60

120
12.5 mm



Velocity,  v = 
d

d
 sin

1 1

x

t

h

2

 

25

2
  

180

120
  47.124  sin

60

120
 = 883.6 mm/s

Now  tan

v
e

r e x1
2 2

 

883 6

47 124
10

40 10 12 5
0 171

9 693

2 2

.

.

.
.

.

For a radial follower, e 0

 

tan
( )

.

. ( . )
.

.

v

r x1

883 6

47 124 40 12 5
0 357

19 654
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8.13 CAM SIZE
The cam size is defined by the following parameters:

1. Pressure angle
2. Radius of curvature of cam profile
3. Hub size.

The following methods may be used to reduce the pressure angle:

1. Increase the diameter of the base circle.
2.  Increase the angle of rotation of the cam, thereby lengthening the pitch curve for the specified  

follower displacement. The cam profile becomes flatter and the pressure angle becomes smaller.
3. Select the motion curve for a smaller pressure angle.
4. By changing the offset of the follower.

Summary for Quick Revision

1 A cam is a mechanical member used to impart desired motion to a follower by direct contact.

2 The essential components of a cam mechanism are: cam, follower and frame.

3 Cams can be classified as: wedge and flat cams, radial and offset cams, cylindrical cams, spiral 
cams, conjugate cams, spheroidal cams and spherical cams.

4 The followers can be classified as: knife edge, roller, flat faced and spherical faced; translating, 
oscillating and rotating; radial and offset followers.

5 Pressure angle of a cam is the angle between the direction of follower motion and a normal to the 
pitch curve.

6 Lift is the maximum travel of the follower from the lowest position to the topmost position.

7 Follower motions can be: simple harmonic, uniform acceleration and deceleration, uniform veloc-
ity, parabolic motion and cycloidal motion.
(a) Simple Harmonic Motion

Displacement, y (h /2) [1  cos  / )]
Velocity, v (h /2) (   / ) sin (  / )
Acceleration, f (h /2) (  / )2 cos (  / )

(b) Motion with Uniform Acceleration and Deceleration
Displacement, y  =  ft2 /2
Velocity, v  =  2hw /
Acceleration, f 4 2 h / 2

(c) Motion with Uniform Velocity
Displacement, y h  /
Velocity, v h  /
Acceleration, f 0

(d) Parabolic Motion
For the first half, y 2 h (  / )2

v 4 h  / 2

f 4 h (  / )2 const
For the second half, y h [1  2 (1   / )2]

v (4h  / ) (1   / )
f  4h(  / )2
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(e) Cycloidal Motion
y (h / ) [  /   (1/2) sin (2   / )]
v (h  / ) [1  cos (2  / )]
f (2h ) (  / )2 sin (2  / )

Cycloidal motion is the most ideal for high speed follower motion.

8 Tangent cam with roller follower
Let  r distance between cam and nose centres

r
1

least radius of cam
r

2
nose radius

r
3

roller radius
l r

2
  r

3

angle of ascent
angle of contact of cam with straight flank

(a) Roller in contact with straight flank
 Lift, x (r

1
  r

3
) (1  cos ) /cos 

 Velocity, v (r
1
  r

3
) ( sin  /cos2 )

 Maximum velocity occurs at 
 v

max
(r

1
  r

2
) (  sin /cos2 )

 Acceleration, f 2(r
1
  r

2
) (2  cos2 ) /cos3 

 Minimum acceleration occurs at 0°.
 f

min
2 (r

1
  r

3
)

(b) Follower in contact with circular nose
 Let 

1
  

For a slider crank chain the displacement from top dead centre is given by,
x r [ (1  cos )  n  (n2  sin2 ) 0.5]
where n r /l.

For the cam mechanism,
x r (1  cos 

1
)  l  (l 2  r 2 sin2 

1
)0.5]

v  [r sin 
1
  r 2 sin 2

1
 /2 (l 2  r 2 sin2 

1
) 0.5]

f 2 r [cos 
1
  (l 2 r cos 2

1
  r 3 sin4 

1
)/(l2  r 2 sin2 

1
) 1.5]

9 Circular arc cam operating flat-faced follower
(a) Follower in contact with circular flank

Let r distance between cam and nose centers
r

1
least circle radius

r
2

nose circle radius
r

3
flank circle radius
angle of ascent
angle of contact on circular flank

Displacement of follower, x (r
3
  r

1
) (1  cos )

Velocity, v (r
3
  r

1
)  sin 

Maximum velocity occurs at .
 v

max
(r

3
  r

1
)  sin 

Acceleration, f (r
3
  r

1
) 2 cos 

Maximum acceleration occurs at 0°.
 f

max
(r

3
  r

1
) 2

Minimum acceleration occurs at .
 f

min
(r

3
  r

1
) 2 cos 
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(b) Follower in contact with circular nose
x r

2
  r cos (   )  r

1

v r sin (   )
Velocity is maximum when    is maximum. This happens when contact changes from circular 
flank to circular nose. Minimum velocity occurs when   0°, i.e. at the apex of circular nose.

v
min

0
Acceleration, f 2 r cos (   )
Maximum acceleration occurs when   0°, i.e. apex of circular nose.

f
max

2 r
Minimum acceleration occurs when    is maximum, i.e. when contact changes from circular 
flank to circular nose.

10 Circular arc cam with roller follower
Let  R radius of flank

 r
1

base circle radius of cam
 r

2
nose radius of cam

 r
3

roller follower radius
 h total lift or stroke
 x lift at the instant the cam has rotated by an angle 

semi  angle of action of cam
 angle of action of cam from the beginning of rise to the point it leaves the flank
  ODC

(a) Roller Follower on Flank
Let R  r

1
A

R  r
3

B
Lift, x [B2  A2 sin2 ]0.5  A cos (B  A)
Velocity, v  A [sin   {(A sin 2 ) /2 (B2  A2 sin2 )0.5}]
Acceleration, f 2 A[cos   (A cos 2 ) /(B2  A2 sin2 )0.5  (A3 sin2 2 )/{4(B2  A2 sin2 )0.5}]
(b) Roller Follower on Nose

Let r
2
  r

3
, (   )

1

v  [l sin 
1
  {l2 sin 2 

1
 } /{l2  r2 sin2 

1
}]

f 2 [ l cos 
1
  {l2 cos 2

1
} /{l2  r2 sin2 

1
}0.5  {l4 sin2 2

1
} /4{l2  r2 sin2 

1
}1.5]

11 Radius of curvature
 The cam profile must be convex everywhere for a flat-face follower. In the case of a roller fol-
lower the concave portion of the cam profile must have a radius of curvature greater than that of 
the roller to ensure proper contact along the cam profile.

12 Pressure angle
 Pressure angle is the angle between the direction of the follower motion and a normal to the pitch 
curve. The following methods may be used to reduce the pressure angle:
1. Increase the diameter of the base circle.
2.  Increase the angle of rotation of the cam, thereby lengthening the pitch curve for the specified 

follower displacement. The cam profile becomes flatter and the pressure angle becomes smaller.
3. Select the motion curve for a smaller pressure angle.
4. By changing the offset of the follower.

13 Cam Size
The cam size is defined by the following parameters:
1. Pressure angle
2. Radius of curvature of cam profile
3. Hub size.
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Multiple Choice Questions

1 The pitch point on a cam is
(a) any point on the pitch curve
(b) the point on cam pitch curve having the maximum pressure angle
(c) any point on pitch circle
(d) a point at a distance equal to pitch circle radius from the centre.

2 In its simplest form, a cam mechanism consists of following number of links
(a) 1 (b) 2 (c) 3 (d) 4.

3 The type of follower used in automobiles is
(a) knife edge (b) roller
(c) mushroom with flat face (d) mushroom with spherical face.

4  The minimum radius circle drawn to the cam profile is called
(a) prime circle (b) base circle (c) pitch circle (d) pitch curve.

5  The reference point on the follower for the purpose of laying the cam profile is known as
(a) pitch point (b) trace point (c) roller centre (d) cam centre.

6 The pressure angle of a cam is defined as the angle between the line of motion of the follower 
and the
(a) tangent on the pitch curve (b) normal on the pitch curve
(c) tangent on the cam profile (d) normal on the cam profile.

7 The cam profile and pitch curves are same for
(a) roller follower (b) knife edge follower
(c) mushroom follower (d) flat-faced follower.

8 The size of the cam depends upon
(a) base circle (b) prime circle (c) pitch circle (d) pitch curve.

9 The point on the cam with maximum pressure angle is called the
(a) pitch point (b) trace point (c) cam centre (d) roller centre.

10 Pressure angle of a cam is directly proportional to
(a) base circle diameter (b) pitch circle diameter
(c) prime circle diameter (d) lift of cam.

11 The throw of a cam is the maximum lift of the follower from
(a) base circle (b) pitch circle (c) prime circle (d) pitch curve.

12 For S.H.M cam and follower, the maximum velocity is
(a) wh/(2  (b) h/ (c) h/4  (d) h/(3
where h lift.

13 For S.H.M cam and follower, the maximum acceleration is
(a) ( / )2(h/2) (b) ( / )2h (c) / )2(h/4) (d) 2h( / )2.

14 For a uniformly accelerated cam, the maximum velocity is
(a) 2( h/ ) (b) 0.5( h/ ) (c) ( h/ ) (d) 4( h/ ).

15 For a uniformly accelerated cam, the maximum acceleration is
(a) 2( / )2h (b) 0.5( / )2h (c) 4( / )2h (d) 0.25( / )2h.

Answers

1. (b) 2. (c) 3. (d) 4. (b) 5. (b) 6. (b) 7. (b) 8. (a) 9. (a) 10. (a) 11. (a) 12. (a)  
13. (a) 14. (a) 15. (c)
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Review Questions

1 What is a cam? What is its use?

2 How cams can be classified?

3 What are the various types of followers?

4 Name the different motions that a follower can have.

5 Differentiate between (a) base circle and prime circle and (b) cam angle and pressure angle.

6 Compare the knife-edge follower with roller follower.

7 What is a tangent cam?

8 Compare various types of follower motions.

9 Define pressure angle of a cam.

10 Differentiate between trace point and pitch point.

11 How the cam size is defined?

12 What are the methods for reducing pressure angle of a cam?

13 How undercutting can be avoided in cams?

14 What is an offset follower?

Exercises

8.1 Draw the profile of a cam operating a knife-edge follower when the axis of the follower passes 
through the axis of the cam shaft. The following data is given: Lift 40 mm, angle of ascent 60°, 
dwell 45°, angle of descent 90° and dwell for the remaining period of cam rotation.

The motion of the cam is simple harmonic during both ascent and descent. The least radius of 
cam is 50 mm. If the cam rotates at 300 rpm, determine the maximum velocity and acceleration 
of the follower during ascent and descent.

[Ans. 1.88 m/s, 1.26m/s; 177.47 m/s2, 78.87 m/s2]

8.2 If the follower in Exercise 8.1 is offset by 25 mm, then draw the cam profile.

8.3 A cam with 30 mm as minimum diameter is rotating clockwise at a uniform speed of 1200 rpm 
and operates a roller follower of 10 mm diameter as given below:
   (i)  Outward stroke of 30 mm during 120° of can rotation with equal uniform acceleration 

and retardation.
 (ii) Follower is to dwell for 50° of cam rotation.
(iii) Inward stroke during 90° of cam rotation with equal uniform acceleration and retardation.
 (iv) Follower is to dwell for the remaining period of cam rotation.
Draw the cam profile if the axis of follower passes through the axis of the cam. Determine the 
maximum velocity and acceleration during outward and inward strokes.

[Ans. 3.6 m/s, 4.8 m/s; 432 m/s2, 768 m/s2]

8.4 If the follower in Exercise 8.3 is offset by 20 mm, then draw the cam profile.

8.5 Draw the cam profile from the following data if the radial follower moves with simple harmonic 
motion during ascent and uniform acceleration and deceleration during descent: Lift 40 mm, 
Least radius of cam 60 mm, Angle of ascent 54°, Dwell 40°, Angle of descent 72°, 
Roller diameter 20 mm.
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8.6 If the roller follower is offset by 20 mm in Exercise 8.5, then draw the cam profile.

8.7 Draw the profile of a cam to give reciprocating motion to a flat-faced follower for the following 
data:
Lift 25 mm, Ascent 120°, Dwell 30°, Descent 120°, Dwell 90°
Minimum radius of cam 25 mm
The ascent and descent is to take place with SHM. The line of movement of follower passes 
through the cam centre.

8.8 The following data refers to a symmetrical circular arc cam operating a flat-faced follower: 
Least radius of cam 30 mm, Lift 12.5 mm, Angle of lift 55°, Nose radius 3 mm, Speed 
of cam 600 rpm. Calculate (a) distance between cam and nose centres, (b) radius of circular 
flank, and (c) angle of contact on the circular flank.

[Ans. 39.5 mm, 125.6 mm, 15.3°]

8.9 The following data refers to a circular arc cam operating a flat-faced reciprocating follower:
Minimum radius of cam 30 mm, Total angle of cam 120°, Radius of circular arc 100 mm, 
Nose radius 10 mm, angular velocity of cam 10 rad/s
Determine the velocity and acceleration of the follower when the cam has turned through 20°.

[Ans. 239.4 mm/s, 6578 mm/s2]

8.10 A symmetrical tangent cam with least radius of 30 mm operates a roller follower of 10 mm 
radius.
The angle of ascent is 60° and lift is 20 mm. The speed of cam is 450 rpm. Calculate (a) distance 
between cam and nose centres, (b) nose radius, (c) angle of contract of cam with straight flank, 
and (d) acceleration of follower:
(i) at the beginning of lift,
(ii) where the roller just touches the nose, and

(iii) at the apex of circular nose.
[Ans. 40 mm, 10 mm; 88.83 m/s2, 293.7 m/s2, 266.5 m/s2]

8.11 The following data refers to a tangent cam operating a radial roller follower: Minimum radius 
of cam 45 mm, Lift 15 mm, Nose radius 18 mm, Radius of roller 20 mm, Semi-angle 
of cam action 70°, Angular velocity of cam 10 rad/s. Draw the displacement, velocity and 
acceleration diagrams for one rotation of cam.

8.12 The following data refers to a cam with circular nose and flanks operating the suction valve of 
a four-stroke petrol engine:
Lift 10 mm, Least radius of cam 20 mm, Nose radius 2.5 mm, Crank angle when suction 
valve opens after TDC 4°, Crank angle when suction valve closes after BDC 50°, camshaft 
speed 1000 rpm.
The follower is of flat-faced type. Determine (a) the maximum velocity of valve, (b) the maxi-
mum acceleration and retardation of valve, and (c) maximum force to be exerted by the spring 
to overcome inertia of the valve parts of weight 0.2 kg.

[Ans. 2.03 m/s, 1063.73 m/s2, 301.57 m/s2, 60.3 N]
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9.1 INTRODUCTION
A governor is a device to maintain, as closely as possible, a constant mean speed of rotation of the 
crankshaft over long periods during which the load on the engine may vary. The governor meets the 
varying demand for power by regulating the supply of working fluid.

9.2 TYPES OF GOVERNORS
There are basically two types of governors.

1. Centrifugal governors, and

2. Inertia governor.
In centrifugal governors, the centrifugal force is balanced by the controlling force. These types of 

governors are used extensively. In inertia type of governors, the inertia force is balanced by the con-
trolling force. They are not used popularly.

The centrifugal governors can be further classified as follows:

1. Pendulum type—Watt governor

2. Loaded type
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(a) Dead weight type

  (i) Porter governor

(ii) Proell governor

(b) Spring loaded type

    (i) Hartnell governor

  (ii) Hartung governor

(iii) Wilson–Hartnell governor

(iv) Pickering governor

9.3 TERMINOLOGY
1. Height of governor (h): It is the vertical distance from the centre of the ball to a point on the spindle 

axis where the axes of upper arms intersect.

2. Centrifugal force (F
c
): It is the radially outward force acting on the balls due to the rotational speed. 

F
c

m r  2, where r radius of rotation of balls, m mass of ball, angular speed.

3. Controlling force: An equal and opposite force to the centrifugal force is called the controlling force.

4. Equilibrium speed: It is the speed of the governor at which the sleeve does not move upward or 
downward on the spindle.

5. Radius of rotation: It is the horizontal distance between centre of ball and the axis of rotation.

6. Mean equilibrium speed: It is the average of the maximum and minimum speeds of rotation.

7. Sleeve lift: It is the vertical distance travelled by the sleeve on the spindle due to change in equilib-
rium speed.

9.4 CENTRIFUGAL GOVERNORS
These governors work on the principle of centrifugal action. They have two balls which rotate along 
with the sleeve. As the centrifugal forcer is directly proportional to the radius of rotation of the mass, 
therefore, when the speed of a device increases, the balls rotate at a larger radius. As a result of it, the 
sleeve slides upwards on the spindle and with the help of lever, the throttle is closed to the required 
extent. With the decrease in speed, the balls rotate at smaller radius of rotation, compelling the sleeve 
to move down on the spindle. The downward movement of the sleeve opens the throttle to the required 
extent to admit more fuel into the prime movers. By this process, the speed of the prime mover and in 
turn that of the driven device is maintained constant.

9.4.1 Simple Watt Governor
A simple Watt governor is shown in Fig.9.1(a). It consists of two balls attached to the spindle through 
four arms. The upper two arms meet at the pivot, which may be on the spindle axis or offset from the 
spindle axis. The arms may be of the open type or crossed type. The lower arms are connected to a 
sleeve by pin joints. The movement of the sleeve is restricted by means of two stops.
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(a) Neglecting weight of the arms.

Let w    weight of the balls
 r radius of the balls
 h height of the governor
 T tension in the arms
 angular speed of rotation

Fig.9.1 Simple Watt governor
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The forces acting on the ball are shown in Fig.9.1(b).

Centrifugal force due to the balls, F
w

g
rc  2

Taking moments about the pivot O, we have

F
c
h wr

or 
w

g
rh wr 2

or h
g

 2

or h
g

N

k

N2

60

2 2
 (9.1)

where k 9 81 894 565. .
60

2

2


 is a constant.

Now 
d

d

h

N

k

N

2
3

Change in height,  


h
k

N

N

N
–

2
2

 (9.2)

With increasing speed, h becoms insignificant, and governor stops functioning. It is used for slow 
speed engines.

(b) Considering weight of the arms.

Let w
a

weight of the arm per unit length
 W

a
total weight of the arm w

a
l

 l length of the arm
  angle subtended by the arm with the spindle axis

The forces acting on the ball are shown in Fig.9.1(c).
Consider an elementary length dx of the arm at a distance x from the pivot O. Weight of the 

elementary length w
a
  dx

Radius of the elementary length x sin 

Centrifugal force due to the elementary length, d
d

sinF
w x

g
xa

a  2

Moment about the pivot dF
a
  x cos 

Total moment 
w

g
x xa

l

  2 2

0

sin  cos d

w

g

la   2
3

3
 sin cos 

w l

g
l l

W

g
rha

3

1

3
2 2    sin  cos · a

where r l sin  and h l cos 
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Therefore, the effect of the weight of the arm is equivalent to that produced by a weight 
Wa

3
 

placed at the centre of the ball.
Taking moments about the pivot O, we have

W

g
rh

W

g
rh

W
l wra a

3 2
2 2 sin

w
W

g
rh

w W
r

a

a3
2

2

or h
g w

W

w
W 2
2

3

a

a

 (9.3)

9.4.2 Gravity-Loaded Type Governors
In the gravity-loaded governors, a central load is attached to the sleeve, which slides on the spindle. 
There is a force of friction between the loaded sleeve and the spindle. The frictional force acts down-
wards when the sleeve moves up and acts upwards when the sleeve moves down. Thus, the height of 
the governor increases or decreases from normal value.

(a) Porter governor
The Porter governor is a modification of the Watt governor in which a central mass is attached to the 
sleeve. The Porter governor is shown in Fig.9.2(a). The forces acting on the governor are shown in 
Fig.9.2(b).

Let W dead weight of sleeve
 w weight of ball
 T

1
tension in upper arm

 T
2

tension in lower arm
 r radius of the balls

 r
o

r  c
 c distance of hinge B from axis of rotation
 angular speed of rotation

The forces acting at the hinge B are:

1. Half of the central load W.

2. Tension T
2
 in the lower arm.

3. Reaction of the hinge.

Resolving the forces vertically, we have

T
W

2  cos 
2

or T
W

2 2cos
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The ball is in equilibrium under the following forces:

1. Centrifugal forces, F
c
.

2. Weight of the ball, w.

3. Tension in upper arm, T
1
.

Resolving the forces horizontally, we have

F T T

T
W

c 1 2

1

sin sin

sin tan 

 

 
2

Resolving the forces vertically, we have

T w T w
W

1 2cos cos  
2

Therefore, F
W

w
W

c 2 2
tan tan 

w

g
r 2

Fig.9.2 Porter governor
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If tan
r

h
 and tan 

r

l
o

o

,  then

w

g
r

W
w

W
  2

2 2
tan tan

w
W W r

h2 2

tan

tan




w
W

k
r

h2
1( )

or h
g W

w
k

2
1

2
1( )  (9.4)

where k
tan

tan
.




If , then

w

g
r w W

r

h
 2 ( )

h
g W

w2
1  (9.5)

If F is the frictional force acting on the sleeve, then

h
g w W F

w2

 
(9.6)

Take ve sign when the sleeve moves upwards or the governor speed increases and ve sign when 
the sleeve moves downwards or the governor speed decreases.

(b) Proell governor

The Proell governor is shown in Fig.9.3(a) in which the balls are fixed at C and D to the extension of 
links EB and FA. The forces acting on the governor are shown in Fig.9.3(b).

Considering the equilibrium of forces at point E, we have

T
W

2 cos 
2

or T
W

2 2cos
At point B, we have

T T w
W

w1 2cos cos  
2

Taking moments about E, we have
F CF w FE T FE T BF

F CF w BF w
W

c

c

1 1cos sin 

 tan 

 



0

2
BF w

W
BF

F
BF

CF
w

W
c

 tan  tan  
2

0

2
tan tan 

W

2
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Now tan 
r

h
, and let k

tan

tan
.




w

g
r

BF

CF

W
k w

r

h

BF

C





2

2

2
1( )

FF

W

w
k

g

h
1

2
1( )  (9.7)

If , i.e. k 1, then

 2 1
BF

CF

W

w

g

h
 (9.8)

9.4.3 Spring-Loaded Governors
In a spring-loaded governor, a compressed spring is placed on the sleeve so that it may exert some 
force on it. When speed increases, balls move outwards compelling the sleeve to slide on the spindle 
upwards against the spring force. If the speed decreases, the sleeve moves downwards.

(a) Hartnell governor

The Hartnell governor is of the spring loaded type, and is shown in Fig.9.4(a). It consists of two bell 
crank levers pivoted at point A to the frame. The frame is attached to the governor spindle and rotates 
with it. Each lever carries a ball at the end of the vertical arm AB and a roller at the other end of the 

Fig.9.3 Proell governor
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horizontal arm. A helical compression spring provides equal downwards force on the two rollers 
through the sleeve. The spring forces may be adjusted by the nut.

Let w weight of the ball
 W weight of the sleeve
 r

1
, r

2
maximum and minimum radii of rotation of the ball

 
1
, 

2
maximum and minimum angular speeds of rotation

 S
1
, S

2
maximum and minimum spring forces

 F
c1

, F
c2

centrifugal forces at speeds 
1
 and 

2
 respectively

 k stiffness of the spring
 a, b vertical and horizontal length of arms of bell crank lever
 r radius of the ball

The forces acting on half of the governor are shown in Fig.9.4(b).  The forces acting on half of the 
governor at maximum and minimum speeds are shown in Fig.9.4(c) and (d), respectively.

From Fig.9.4(b), taking moments about A, we have

F a W S
b

W S
F a

b

c ( )
2

2 c

 
(9.9)

From Fig.9.4(c), taking moments about A, we have

F a wc W S
b

c1 1 1 1
1

2  
(9.10)

From Fig.9.4(d), taking moments about A, we have

F a wc W S
b

c2
2

22 2 2

Now  c c r r1 2 1 2  (9.11)

Neglecting obliquity effect of arms, we have

a a a b b b

W S
F a

b
c

1 2 1 2

1

and

2 1

and

 

W S
F a

b

S S
a F F

b

c

c c

2

1 2

2

2

2

1 2( )
 (9.12)

Now sin
c

a

h

b
1 1

or h
c b

a1
1

Similarly h
c b

a

h h
b c c

a

2
2

1 2
1 2

( )
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Lift of sleeve, h h h
b r r

a1 2

( )1 2

S S kh
kb r r

a1 2

( )1 2

 
(9.13)
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Fig.9.4 Hartnell governor

Comparing Eqs. (9.12) and (9.13), we get

k
a

b

F F

r r
c c2

2

1 2

1 2

( )

 
(9.14)

(b) Gravity and spring controlled governor

The gravity and spring controlled governor is shown in Fig.9.5(a). This type of governor has the pivots 
for the bell crank levers on the moving sleeve. The spring is compressed between the sleeve and the 
cap, which is fixed to the end of the governor shaft. As the rollers of the bell crank lever press on the 
cap, the sleeve is lifted against the spring compression. The forces acting on half the governor are 
shown in Fig.9.5(b). Taking moments about D, we have

F c w d e W S
d

W S
F c w d e

d

c

c

( ) ( )

[ ( )]
2

2

 
(9.15)

(c) Wilson–Hartnell governor

In this governor, the balls are connected by a spring in tension, as shown in Fig.9.6(a). An auxiliary 
spring is attached to the sleeve mechanism through a lever by means of which the equilibrium speed 
for a given radius may be adjusted. The forces acting on the governor are shown in Fig.9.6(b).

Let w weight of each ball
 W weight of sleeve
 P combined pull of the ball springs
 S pull of the auxiliary spring
 k

a
stiffness of auxiliary spring

 k
b

stiffness of each ball spring
 r radius of the balls
 F

c
centrifugal force of each ball

 a, b lengths of the arms of the bell crank lever
 x, y distance of hinge O for the lever from M and N, respectively.
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Fig.9.5 Governor with gravity and spring control

Total downward force on the sleeve W
S y

x

Taking moments about the fulcrum A of the bell crank lever, and neglecting the pull of gravity on 
the balls, we have

( )F P a W
S y

x

b
c 2

If suffices 1 and 2 refer to maximum and minimum equilibrium speeds respectively, then

( )

( )

F P a W
S y

x

b

F P a W
S y

x

b

c

c

1 1
1

2 2
2

2

2

Subtracting, we get

[( ) ( )]
( )

F F P P a
S S y b

xc c1 2 2 1
1 2

2
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If the radius increases from r
2
 to r

1
, the ball springs extend by the amount 2(r

1
  r

2
) and the auxiliary 

spring extends by the amount 
( )r r b y

ax
1 2 .

P
1
  P

2
4k

b
 (r

1
  r

2
)

and S S
k b y r r

a x
a

1 2

( )1 2

F F k r r k
by

ax

r r
c c b a1 2 1 24

2

1 2

2

( )

or 4
2

2

1 2

1 2

k
F F

r rb
c c

ka
by

ax ( )

( )
 (9.16)

If k
a

0, then

k
F F

r rb
c c1 2

1 24( )
 (9.17)

Fig.9.6 Wilson–Hartnell governor
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(d) Hartung governor

The Hartung governor is shown in Fig.9.7(a). In this governor, the vertical arms of the bell crank levers 
are fitted with spring balls, which compress against the frame of the governor when the rollers at the 
horizontal arm press against the sleeve. The forces acting on the governor are shown in Fig.9.7(b).

Taking moments about the fulcrum A, we have

( )F P a
W b

c 2
 (9.18)

Fig.9.7 Hartung governor

(e) Pickering governor

The Pickering governor is shown in Fig.9.8. It consists of three straight leaf springs arranged at equal 
angular intervals around the spindle. Each spring carries a weight at the centre. The weights move 
outwards and the springs bend as they rotate about the spindle axis with increasing speed.

It is mostly used for driving gramophones.

Let m mass attached at the centre of the leaf spring
 a distance from the spindle axis to the centre of gravity of the mass when the governor is at rest
 deflection of the centre of the leaf spring
 angular speed of the spindle
 h lift of the sleeve
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Fig.9.8 Pickering governor

The deflection of a leaf spring with both ends fixed and carrying a central load W, is given by


WL

EI

3

192

where L length of the spring
 E modulus of elasticity
 I moment of inertia of the spring cross-section about the neutral axis

bt 3

12

 b width of the spring leaf
 t thickness of the spring leaf

In the Pickering governor, the central load is the centrifugal force.

W F m ac ( )  2

Hence m a L

EI

( ) 2 3

192
 (9.19)

The lift of the sleeve, h  2.4  2/L  (9.20)

9.4.4 Inertia Governor
The principle of the inertia governor is depicted in Fig.9.9. A mass of weight W, whose centre of grav-
ity is at G is attached to an arm, the other end of which is pivoted at a point A on the rotating disc. The 
point A is selected such that points O, A and G are not collinear. The end of the arm is connected to an 
eccentric, which operates the fuel supply valve to the prime mover.

Let v velocity of G
 r radial distance of G from the centre of disc

Centrifugal force due to the rotating weight W, F
W

g rc  
v2
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If  x perpendicular distance of A from OG, then
Moment of F

c
 about A F

c 
  ·  x

The inertia force acting on the ball perpendicular to OG
W

g t

d

d

v

For a governor to be rapid in action, the arm should be arranged such that as the mass moves out-
wards, the arm rotates in a direction opposite to that of the rotation of shaft.

9.5 PERFORMANCE OF GOVERNORS

9.5.1 Definitions
1. Sensitiveness: For maintaining constant speed of rotation, the movement of sleeve of governor 

should be as large as possible and the corresponding change of equilibrium speed as small as pos-
sible. The bigger the displacement of the sleeve for a given fractional change of speed, the more 
sensitive is the governor. Sensitiveness is more correctly defined as the ratio of the difference 
between the maximum and minimum equilibrium speeds to the mean equilibrium speed.

If N
max

maximum equilibrium speed
 N

min
minimum equilibrium speed

 N
mean

mean equilibrium speed

N Nmax min

2

Range of speed N
max

  N
min

Then, Sensitiveness 
N N

N

N N

N N
max min max min

max min

( )

( )mean

2
 (9.21)

A too sensitive governor changes the fuel supply by a large amount when a small change in the 
speed of rotation takes place. This causes wide fluctuations in the engine speed, resulting in hunting 
of the governor.

2. Stability: A governor is said to be stable, when for each speed within the working range, there is 
only one radius of the governor balls at which the governor is in equilibrium. For a stable governor, 
if the equilibrium speed increases, the radius of the governor balls must also increase.

Fig.9.9 Inertia governor
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3. Isochronism: A governor is said to be isochronous, when the equilibrium speed is constant for all 
radii of rotation of the balls, within the working range. An isochronous governor will be infinitely 
sensitive. For a Porter governor,

1
2

1

1

2
1

g

wh
w

W h

2
2

2

2

2
1

g

wh
w

W h

For the governor to be isochronous, N
max

  N
min

0, or N
max

N
min

. Therefore, h
1

h
2
, which is 

not possible. Hence, a Porter governor cannot be isochronous.
For a Hartnell governor, we have

W S
F a

b

w

g

N r a

b
c

1
1

2
12

2
2( )min

and W S
F a

b

w

g

N r a

b
c

2
2

2
22

2
2( )max

For isochronism, N
max

N
min

. Hence

W S

W S

r

r
1

2

1

2

Therefore, a Hartnell governor can be isochronous.
An isochronous governor is not of much practical use, as the sleeve will move to one of its 

extreme positions immediately when the speed deviates from its isochronous speed.

4. Hunting: It is a condition in which the speed of the engine controlled by the governor fluctuates 
continuously above and below the mean speed. It is caused by a governor which is too sensitive.

5. Governor effort: The effort of a governor is the force it can exert at the sleeve on the mechanism, 
which controls the supply of fuel to the engine. The mean force exerted during the given change of 
speed is termed as effort. Generally efforts are defined for 1% change of speed.

6. Power: The power of a governor is defined as the work done at the sleeve for a given percentage 
change of speed.

Power effort displacement of sleeve

9.5.2 Effort and Power of a Porter Governor
For the Porter governor, shown in Fig.9.2, let

 N equilibrium speed
 c a factor by which speed increases

For , we have

h
w W

w

g w W

w

g

N 2 2 2

3600

4  
(9.22)

If the speed increases to (1 c)N, and the height remains the same, a downward force has to be 
exerted on the sleeve, then we have
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h
w W

w

g

c N
1

2 2 2

3600

4 1 ( )
 (9.23)

where W
1
 is the required sleeve load.

From Eqs. (9.22) and (9.23) we have

 W
1

w (W w) (1 c)2

or W
1

(W w) (1 c)2  w

and W
1
  W (W w) [(1 c)2  1]

Let P W
1
  W downward force which must be applied in order to prevent the sleeve from  

rising when increase of speed takes place.

and  Q
W W1

2

P

2
mean force exerted by the sleeve during the change of speed from N to (1 c)N.

Now           (1 c)2  1 2c
Therefore,           P  2c (W w)

Governor effort, Q
P

c W w
2

( )  (9.24)

If x 2(h  h
1
) lift of the sleeve

Where h
1

height corresponding to the increased speed (1 c)N
h

c( )1 2

Then x h
c

2 1
1

1 2( )

4

1 2

hc

c

Governor power Qx

4

1 2

2c

c
w W h( )   (9.25)

When  , then

Q c W
w

k

2

1

where k
tan

tan




and x  (1 k) (h  h
1
)

where h
h

c1 21( )

so that  x k h
c

( )
( )

1 1
1

1 2
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( )1
2

1 2
k h

c

c

Governor power 
2

1 2
1 2

2c

c
W k w h[ ( ) ]

4

1 2

1

2

2c

c

W k
w h

( )

 
(9.26)

9.5.3 Quality of a Governor
The quality of a governor is ascertained by the following:

1. Sensitiveness,

2. Stability, and

3. Effort and power.

9.5.4 Controlling Force
When the speed of rotation is uniform, each ball of the governor is subjected either directly or indi-
rectly to an inward pull, which is equal and opposite to the outward centrifugal reaction. This inward 
pull is termed the controlling force. A curve drawn to show how the pull varies with the radius of rota-
tion of the ball is called a controlling force curve, as shown in Fig.9.10.

Fig.9.10 Controlling force diagram

(a) Controlling force diagram for a Porter governor

Controlling force, F
w

g
rc  2

or 
gF

wr
c

0 5.

g

w
tan

.


0 5

 (9.27)

If controlling force curve is a straight line, then

tan 
w

g

kN

2

2

 

(9.28)



494 Theory of Machines

where k w

g

2

60

2
 a constant, and N rpm.

Using Eq. (9.28), the angle  may be determined for different values of N, and lines are drawn 
from the origin, as shown in Fig.9.11. These lines enable the equilibrium speed, corresponding to a 
given radius of rotation, to be determined.

(b) Controlling force diagram for spring controlled governors
The controlling force diagram for spring controlled governors is a straight line, as shown in 

Fig.9.12.

Fig.9.12 Controlling force for a spring loaded governor

Fig.9.11 Controlling force vs Radius of rotation
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Controlling force, F
w

g
rc  2

or 
F

r

w

g
c  2

The stability of a spring controlled governor can be ascertained as follows:

1. For a stable governor, the controlling force must increase as radius increases, i.e. F
c
/r must increase 

as r increases. Therefore, the controlling force line AB when produced must intersect the control-
ling force axis below the origin, as shown in Fig.9.12. The equation of line AB is given by,

F ar bc
 (9.29)

where a and b are constants.

2. When b 0, the controlling force line CD passes through the origin, and the governor becomes 
isochronous, because F

c
/r will remain constant for all radii of rotation. The equation of line CD is

F arc  (9.30)

3. If b is positive, then F
c
/r decreases as r increases, so that the equilibrium speed of the governor 

decreases with an increase of the radius of rotation of the balls, which is not possible. Such a gov-
ernor is said to be unstable. The equation of line EF is,

F ar bc  (9.31)

9.5.5 Coefficient of Insensitiveness
There is always friction in the joints and operating mechanism of the governor. The friction force 
opposes the motion of the sleeve. To account for the forces, let

F
s

force required at the sleeve to overcome friction
F

b
corresponding radial force required at the balls

F
c

controlling force on each ball
W total load on the sleeve
For decrease in speed, sleeve load, W

1
W  F

s

For increase in speed, sleeve load, W
2

W F
s

For decrease in speed, controlling force, F
c1

F
c
  F

b

For increase in speed, controlling force, F
c2

F
c

F
b

Now F
w

g
r KNc  2 2

F K N

F K N

c

c

1 1
2

2 2
2

Similarly, F F K N

F F K N

c b

c b

1
2

2
2

Subtracting, we get

2 1
2

2
2

2

F

F

N N

N
b

c
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( )( )N N N N

N
1 2 1 2

2

Now N N N1 2 2

F

F

N N

N
b

c

1 2  (9.32)

The coefficient of insensitiveness F
b
/F

c
, and is defined as the ratio of the difference of speed at 

ascent and descent for same radius of rotation to the steady speed at same radius of rotation.
For a Porter governor, as shown in Fig.9.2, we have

F w
W

kc tan ( )
2

1

and F F w
W F

kc b
stan

( )
( )

2
1  (9.33)

and F
F k

b
stan ( ) 1

2
 (9.34)

Similarly, for a spring loaded governor of Hartnell type (Fig.9.4), neglecting obliquity of the arms, 
we have

F a
Pb

c 2

and ( )
( )

F F a
P F b

c b
s 

2

or F
F b

ab
s

2
 (9.35)

Fig.9.13 Effect of friction on the controlling force diagram

Figure 9.13 shows the effect of friction on the controlling force diagram. We see that for one value 
of the radius of rotation, there are three values of controlling force, as discussed below:
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1. For decreasing speed, the controlling force reduces to F
c2

, and the corresponding speed is N
2
.

2. For increasing speed, the controlling force increases to F
c1

, and the corresponding speed is N
1
.

3. For friction neglected, the controlling force is F
c
, and the corresponding speed is N.

Example 9.1

A simple Watt governor rotates at 75 rpm. Calculate its vertical height and the change if the speed increases 
to 80 rpm. Also calculate the height at 75 rpm if the weight of the ball is 20 N and that of the arm 5 N.

h

O

r
w

Wa

Fc

Fig.9.14 Simple Watt governor

Solution 

Refer to Fig.9.14. N
1

75 rpm, N
2

80 rpm, w 20 N, W
a

5 N
 h

1
g/(4  2 N 2)

  (9.81 3600)/(4 2 752)
  0.159 m
 h

2
0.159 (75/80)2

  0.14 m

Change in height h
1
  h

2

  0.159  0.14 0.019 m or 19 mm
Height of the governor considering the weight of the arm,

 h (g/ 2) [(w W
a
/2) / (w W

a
/3)]

  
9 81 3600

4 75

20
5

2

20
5

3

2 2

.

  0.165 m

Example 9.2

The arms of a Porter governor are each 200 mm long. The weight of each ball is 40 N and that of the 
sleeve is 200 N. The radius of rotation of the balls is 125 mm when the sleeve begins to rise and reaches 
a value of 150 mm for maximum speed. Determine the speed range of the governor. If the friction at 
the sleeve is equivalent to 20 N of load at the sleeve, determine how the speed range is modified.

Solution 

Refer to Fig.9.15. w 40 N, W 200 N, F 20 N, l 200 mm
 h

1
[2002  1252]0.5 156.12 mm

 2
1
 (1 W/w) (g/h

1
)

  (1 200/40) 9 81

156 12 10 3

.

.  378.02
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1

19.417 rad/s
 N

1
185.4 rpm

 h
2

[2002  1502]0.5 132.28 mm

  2
2

(1 200/40) 9 81

132 28 10 3

.

.  444.96
 

2
21.09 rad/s

 N
2

201.4 rpm

Range of speed N
2
  N

1
201.4  185.4 16 rpm

When the sleeve moves downwards, the force of friction acts upwards, therefore

  2
1

[(w W  F)/w] (g/h
1
)

  [(40 200  20)/40] 
9 81

156 12 10 3

.

.  345.6
 

1
18.59

 N
1

178.52 rpm
When the sleeve moves upwards, the force of friction acts downwards, therefore

  2
2

[(w W F)/w] (g/h
2
)

  [(40 200 20)/40] 9 81

132 28 10 3

.

.  482.04
 

2
21.96 rad/s

 N
2

209.66 rpm

Range of speed N
2
  N

1
209.66  178.52 32.14 rpm

Example 9.3

The arms of a Porter governor are 250 mm long. The upper arms are pivoted on the axis of revolution, 
but the lower arms are attached to a sleeve at a distance of 50 mm from the axis of rotation. The weight 
on the sleeve is 600 N and the weight of each ball is 80 N. Determine the equilibrium speed when the 
radius of rotation of the balls is 150 mm. If the friction is equivalent to a load of 25 N at the sleeve, 
determine the range of speed for this position.

Fig.9.15 Porter governor
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Solution 

Refer to Fig.9.2. l 250 mm, c 50 mm, W 600 n, w 80 N, F 25 N
 h [2502  1502]0.5 200 mm 0.2 m
 r

o
r  c 150  50 100 mm

 l
o

[2502  1002]0.5 229.13 mm 0.22913 m
 tan r/h 150/200 0.75
 tan r

o
/l

o
100/229.13 0.43643

 k tan /tan 0.43643/0.75 0.582
 2 [1 {W/(2w)}(1 k)] (g/h)
  [1 (600/160) (1 0.582)] (9.81/0.2)
  340.04
 18.44 rad/s
 N 176 rpm

Maximum equilibrium speed shall occur when the sleeve is going upwards.
 2

2
 [1 {(W F)/(2w)}(1 k)] (g/h)

  [1 {(600 25)/160} (1 0.582)] (9.81/0.2)
  352.16
 

max
18.766 rad/s

 N
max

179.2 rpm
  2

1
[1 {(W  F)/(2w)}(1 k)] (g/h)

  [1 {(600  25)/160} (1 0.582)] (9.81/0.2)
  328.91
 

min
18.11 rad/s

 N
min

172.9 rpm
Range of speed 179.2  172.9 6.3 rpm

Example 9.4

The arms of a Proell governor are 300 mm long. The pivots of the upper and lower arms are 30 mm 
from the axis. The load on the sleeve is 250 N and the weight of each ball is 30 N. When the governor 
sleeve is in mid-position, the extension link of the lower arm is vertical and the radius of rotation of 
the balls is 160 mm. The vertical height of the governor is 200 mm.

If the speed of the governor is 150 rpm when in mid-position, find (a) length of the extension link, 
and (b) tension in the upper arm.

c

C A

W

w

EI
F

W/2

rB

Fc

T1

T1

T2

T2

C

Fig.9.16 Proell governor
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Solution 

Given: l 300 mm, c 30 mm, W 250 N, w 30 N, r 160 mm
(a) Let BC length of the extension link (Fig.9.16)
In mid-position, , or k 1.

 w2 (BF /CF) [1  W/w](g/h)
 BF [3002  1302]0.5 270.37 mm
 (2 150/60)2 (270.37/CF) [1 250/30] (9.81/0.2)
 246.74 123775.4/CF

or CF 501.64 mm
 BC CF  BF 501.64  270.37 231.27 mm

(b) cos 200/300 0.667
 T

1
 cos w W/2

  30 250/2 155
 T

1
232.5 N

Example 9.5

A Hartnell governor moves between 300 rpm and 320 rpm for a sleeve lift of 20 mm. The sleeve 
arms and the ball arms are 80 mm and 120 mm, respectively. The levers are pivoted at 120 mm from 
the governor axis. The weight of each ball is 25 N. The ball arms are parallel to the governor axis at 
the lowest equilibrium speed. Determine (a) loads on the spring at the minimum and the maximum 
speeds, and (b) stiffness of the spring.

Fig.9.17 Hartnell governor

Solution 

Refer to Fig.9.17.
(a) Here N

max
320 rpm, N

min
300 rpm, h 20 mm, a 120 mm,

 b 80 mm, w 25 N, r 120 mm.
At the minimum equilibrium speed N

min
300 rpm, the ball arms are parallel to the governor 

axis. Therefore r r
2

120 mm.
 F

c2
(w/g) 2

min
r

2

  (25/9.81) (2 300/60)2 0.12
  301.82 N

Radius at the maximum speed, r
1

r
2

h (a/b)
  120 20 (120/80) 150 mm or 0.15 m
 F

c1
(25/9.81) (2 320/60)2 0.15

  429.26 N
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For lowest position,
 W S

2
 2 F

c2
a/b

 0 S
2

2 301.82 120/80
 S

2
905.46 N

For highest position,
 W S

1
2 F

c1
a/b

 0 S
1

2 429.26 120/80
 S

1
1288.78 N

(b) Stiffness of spring, k (S
1
  S

2
)/h

  (1288.78  905.46)/20
  19.116 N/mm

Example 9.6

In a gravity and spring controlled governor, the weight of each ball is 15 N, and the weight of the 
sleeve is 80 N. The two arms of the bell crank lever are at right angles and their lengths are AB 100 mm 
and AC 50 mm. The distance of the fulcrum A of each lever from the axis of  rotation is 50 mm. The 
minimum radius of rotation of the governor balls is also 50 mm, with a corresponding equilibrium 
speed of 250 rpm. The sleeve lift is 15 mm for an increase in speed of 5%. Find the stiffness and initial 
compression of the spring.

e d
A

ac

Fc
B

r

W+S

b
C

D

S

W

w

h

2

Fig.9.18 Gravity and spring-controlled governor

Solution 

Here w 15 N, W 80 N, a 100 mm, b 50 mm, r 50 mm, r
2

50 mm,
 N

2
250 rpm, h 15 mm, N

1
1.05 rpm.

From Fig.9.18, we have
 F

c2
(w/g) 2

2
r

2

  (15/9.81) (2 250/60)2 0.05
  52.4 N
 F

c2
a [w (W S

2
)/2] b

 52.4 100 [15 (80 S
2
)/2] 50
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 5240 750 2000 25 S
2

 S
2

99.6 N
 r

1
r

2
h a/b

  50 15 100/50 80 mm
 N

1
1.05 250 262.5 rpm

 F
c1

 (15/9.81)(2 262.5/60)2 0.08
  92.43 N
 W S

1
2 [ F

c1
c  w (d e)]/d

 d b cos , e a sin , and c a cos 
 sin h/b 15/50 0.3, and cos 0.954
 d 50 0.954 48.7 mm
 e 100 0.3 30 mm
 c 100 0.954 95.4 mm
 80 S

1
2 [92.43 95.4  15 (48.7 30)]/48.7

  320.85
 S

1
240.85 N

Stiffness of spring, k (S
1
  S

2
)/h

  (240.85  99.6)/15
  9.41 N/mm

Example 9.7

Two springs of the Wilson–Hartnell governor are designed for a tension of 1 kN in each. The weight 
of each ball is 75 N. In the mean position, the radius of the governor balls is 125 mm and the speed is 
600 rpm. Find the tension in the auxiliary spring for this position.

When the sleeve moves up 20 mm, the speed is to be 650 rpm. Find the stiffness of the auxiliary 
spring, if the stiffness of each spring is 10 N/mm.

Take a 100 mm, b 90 mm, x 80 mm, and y 160 mm.

P

B kb

kb

ka

Fc

A

w
2

C

W
DD b

OM

E

a

s

F

N
w
2

x y

b

ra

Fig.9.19 Forces on Wilson–Hartnell governor

Solution 

Given: w 75 N, r
2

125 mm, N
2

600 rpm
At minimum speed, from Fig.9.19 we have

 F
c2

(w/g)  2
2 
r

2

  (75/9.81) (2 600/60)2 0.125
  3772.78 N
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Total pull of ball springs, P 2 kN
Taking moments about the fulcrum A, we have

 F
c2

a P a W b/2
 3772.78 100 2000 100 W 90/2

or W 3939.5 N
Taking moments about point O, we have

 S
2

y W x
 S

2
3939.5 80/160 1969.75 N

Let k
a

stiffness of auxiliary spring
 h (r

1
  r

2
) b/a

or r
1

r
2

h a/b
  125 20 100/90 148.22 mm
 F

c1
(w/g)  2

1
r

1

  (75/9.81) (2 650/60)2 148.22 10 3

  5214.86 N
Extension of the spring 2 (r

1
  r

2
) number of springs

  2 (148.22  125) 2
  88.88 mm

Total spring force 2000 88.88 10
  2888.8 N

Taking moments about A, neglecting the obliquity of arms, we have
 F

c1
100 2888.8 100 (W/2) 90

 W [5214.86 100  288880]/45
  5169 N

Now taking moments about O, we have
 S

1
160 5169 80

 S
1

2584.5 N
Extension of auxiliary spring 20 80/160

  10 mm
Stiffness of auxiliary spring (S

1
  S

2
)/extension

  (2584.5  1969.75)/10
  61.47 N/mm

Example 9.8

In a Hartung governor, the length of the ball and sleeve arms are 80 mm and 120 mm, respectively. The 
total travel of the sleeve is 25 mm. In the mid-position, each spring is compressed by 50 mm and the 
radius of rotation of the balls is 140 mm. The weight of each ball is 40 N and the spring has a stiffness 
of 10 N/mm. The equivalent weight of the governor gear at the sleeve is 160 N. Neglecting the moment 
due to the revolving masses when the arms are inclined, determine the ratio of range of speed to the 
mean speed of the governor. Also find the speed in the mid position.

Solution  

Refer to Fig.9.20.
Here a 80 mm, b 120 mm, h 25 mm, r 140 mm, w 40 N,

 W 160 N, k 10 N/mm, initial compression 50 mm.
 F

c
(w/g) 2 r (40/9.81) 2 0.14 0.57  2 N
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Spring force, S 10 50 500 N
Taking moments about the fulcrum A of the lever (Fig.9.20), we have

 F
c

a S a W b/2
 0.57 2 80 500 80 160 120/2
 45.6 2 49600
 2 1088.72
 32.98 rad/s

Mean speed of the governor, N 314.9 rpm
At maximum position:

 (r
1
  r)/h

1
a/b

or r
1

r h
1 
a/b

  140 (25 80)/(2 120)
  148.3 mm
 F

c1
 (w/g) 2

1
r

1

  (40/9.81)  2
1

0.1483
  0.6047 2

1
 N

Spring force, S
1

[initial compression (r
1
  r)] stiffness

  [50 (148.3  140)] 10
  583 N

Taking moments about the fulcrum of the lever, we have
 F

c1
a S

1
a W b/2

 0.6047  2
1

80 583 80 160 120/2
 48.376 2

1
56240

  1162.56
 

1
34.1 rad/s

 N
1

325.63 rpm
At minimum position:

 (r  r
2
)/h

2
a/b

or r
2

r  h
2
 a/b

  140  (25 80)/(2 120)
  131.67 mm
 F

c2
(w/g) 2

1
 r

1

  (40/9.81) 2
1

0.13167

W/2

b

C

A

Fc

ws
a

Fig.9.20 Hartung governor



505 Governors 

  0.537 2
1
 N

 S
2
 [initial compression  (r  r

2
)] stiffness

  [50  (140  131.67)] 10
  416.7 N

Taking moments about the fulcrum of the lever, we have
 F

c2
a S

2
a W b/2

 0.537 2
2

80 416.7 80 160 120/2
 42.96 2

2
42936

  2
2

999.44
 2 31.614 rad/s
 N

2
301.9 rpm

Range of speed N
1
  N

2
325.63  301.9 23.73 rpm

Ratio of range of speed N N N 23.73/314.9 0.07536 or 8.536%

Example 9.9

A gramophone is driven by a Pickering governor. The mass of each disc attached to the centre of a leaf 
spring is 20 g. Each spring is 5 mm wide and 0.125 mm thick. The effective length of each spring is 
40 mm. The distance from the spindle axis to the centre of gravity of the mass when the governor is 
at rest, is 10 mm. Find the speed of the turntable when the sleeve has risen 1 mm and the ratio of the 
governor speed to the turntable speed is 10. Take E 210 GPa.

Fig.9.21 Pickering governor

Solution 

Refer to Fig.9.21.
Moment of inertia of the spring about the neutral axis,

I b t3/12 5 (0.125)3/12 0.000814 mm4

Length of spring between fixed ends, L 40  1 39 mm
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Lift of the sleeve, h 2.4  2/L
 1 2.4  2/39 0.06154  2

 4.03 mm
Let N speed of the governor

 N
t

speed of the turntable
 N/N

t
10

 m  2 (a ) L3/(192 EI)
 4.03 0.02 2 (10 4.03)  393/(192 210 103 0.000814)
 2 8.946
 2.819 rad/s
 N 26.92 rpm
 N

t
2.692 rpm

Example 9.10

A Porter governor has equal arms of 250 mm length each and pivoted on the axis of rotation. Each 
ball is of 50 N weight and the weight of the central load is 250 N. The radius of rotation of the ball is  
150 mm when the governor begins to rise and 200 mm when the governor is at maximum speed. Find 
the range of speed, sleeve lift, governor effort, and power of the governor, when the friction at the 
sleeve is neglected.

Solution 

Given: l 240 mm, w 50 N, W 250 N, r
1

150 mm, r
2

200 mm
Let N

1
maximum speed

 N
2

minimum speed
 h

1
[2502  2002]0.5 150 mm

 h
2

[2502  1502]0.5 200 mm
  2

1
(1 W/w) (g/h

1
)

  (1 250/50) (9.81/0.15)
  392.4
 

1
19.81 rad/s

 N
1

189 rpm
and  2

2
(1 W/w) (g/h

2
)

  (1 250/50) (9.81/0.2)
  294.3
 

2
18.15 rad/s

 N
2

163.8 rpm
Range of speed N

1
  N

2

  189  163.8 25.2 rpm
Sleeve lift, x 2 (h

2
  h

1
) 2 (r

2
  r

1
)

  2 (200  150) 100 mm
Let c percentage increase in speed

  (N
1
  N

2
) /N

2

  25/163.8 0.1526
Governor effort, P c (w W)

  0.1526 (50 250)
  45.78 N

Power of the governor P . x
  45.78 0.1 4.578 N m
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Example 9.11

The radius of rotation of the balls of a Hartnell governor is 100 mm at the minimum speed of  
300 rpm. Neglecting gravity effects, determine the speed after the sleeve has lifted by 50 mm. Also 
determine the initial compression of the spring, governor effort, and the power. Take length of ball 
arm of lever 150 mm, length of sleeve arm 100 mm, weight of each ball 40 N, and stiffness of 
spring 25 N/mm.

Solution 

Given: r
2

100 mm, N
2

300 rpm, h 50 mm, a 150 mm, b 100 mm, w 40 N, k 25 N/mm
For maximum speed:

 h (r
1
  r

2
) b/a

 r
1

r
2

h a/b
  100 50 150/100 175 mm
 F

c1
(w/g)  2

1
 r

1

  (40/9.81) (2  N
1
/60)2 0.175

  0.007825 N2
1
 N

 F
c2

(w/g) 2
2
r

2

  (40/9.81) (2 300/60)2 0.1
  402.43 N

Taking moments about the fulcrum of the lever, we have
 F

c2
 a (W S

2
) b/2

 402.43 150 (0 S
2
) 100/2

 S
2

1208.3 N
 S

1
  S

2
h k

 S
1

1208.3 50 25 2458.3 N
 F

c1
 a (W S

1
) b/2

 0.007825 N 2
1

150 (0 2458.3) 100/2
 N

1
323.54 rpm

Initial compression of spring S
2
/k 1208.3/25 48.29 mm

Governor effort, P (S
1
  S

2
)/2

  (2458.3  1208.3)/2 625 N
Governor power Ph

  625 0.05 31.25 N m

Example 9.12

A Porter governor has equal arms 250 mm long pivoted on the axis of rotation. The weight of each 
ball is 25 N and the weight of the sleeve is 150 N. The ball path is 120 mm when the governor begins 
to lift and 150 mm at the maximum speed. Determine the range of speed. If the friction at the sleeve 
is equivalent to a force of 15 N, find the coefficient of insensitiveness.

Solution  

Given: l 250 mm, w 25 N, W 150 N, r
1

120 mm, r
2

150 mm, F 15 N
At maximum speed, h

1
[2502  1502]0.5 200 mm

At minimum speed, h
2

[2502  1202]0.5 219.32 mm
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 2
1

(1 W/w) (g/h
1
)

  (1 150/25) (9.81/0.2)
  343.35
 

1
 18.53 rad/s

 N
1

176.95 rpm
  2

2
(1 W/w) (g/h

2
)

  (1 150/25) (9.81/0.21932)
  313.1
 

2
18.69 rad/s

 N
2

168.97 rpm
Range of speed   N

1
  N

2

  176.95  168.97 8.98 rpm
Coefficient of insensitiveness F/(w W )

  15/(25 150) 0.0857 or 8.57 %

Example 9.13

In a spring-controlled governor, the curve of controlling force is a straight line. When balls are 400 mm 
apart, the controlling force is 1200 N, and when 200 mm apart, 450 N. At what speed will the governor 
run when the balls are 250 mm apart. What initial tension on the spring would be required for isochro-
nism and what  would then be the speed? The weight of each ball is 100 N.

Solution 

Given: F
c1

1200 N, r
1

400 mm
 F

c2
450 N, r

2
200 mm

 w 100 N
For the stability of the spring controlled governor, we have

 F
c

a r  b
 1200 0.2 a  b
 450 0.1 a  b

Solving for a and b, we get
 a 7500, b 300
 F

c
7500 r  300

 For r 125 mm, F
c

7500 0.125  300 638.5 N
 F

c
(w/g) (2  N/60)2r

 638.5 (100/9.81) (2 N/60)2 0.125
 N 213.6 rpm

For an isochronous governor, b 0. Therefore, the initial tension required is 300 N.
 F

c
a r

 (w/g)  2r a r
or  2 a g/w 7500 9.81/100

  735.75
 28.125 rad/s
 N 259 rpm
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Example 9.14

A Porter governor has two balls of 25 N weight each and a central load 150 N. The arms are 200 mm 
long, pivoted on the axis. If the maximum and minimum radii of rotation of the balls are 150 mm and 
120 mm, respectively, find the range of speed.

Solution 

Given:  w 25 N, W 150 N, r
1

120 mm, r
2

150 mm, l 200 mm

 h
1

[l 2  r 2
1
]0.5 [2002  1202]0.5 160 mm

 h
2

[l 2  r 2
2
]0.5 [2002  1502]0.5 132.3 mm

  2
1

(1 W/w) (g/h
1
) (1 150/25) (9.81/0.16) 429.2

 
1

20.717 rad /s

 N
1

60 20.717/(2 ) 197.83 rpm

  2
2

(1 W/w) (g/h
2
) (1 150/25) (9.81/0.1323) 519.09

  
2

22.78 rad /s
 N

2
60 22.78/(2 ) 217.56 rpm

Range of speed N
2
  N

1
217.56  197.83 19.73 rpm

Example 9.15

A loaded governor of the Porter type has equal arms and links each 300 mm long. The weight of each 
ball is 20 N and the central weight is 120 N. When the ball radius is 150 mm, the valve is fully open 
and when the radius is 180 mm, the valve is closed. Find the maximum speed and the range of speed. 
If the maximum speed is to be increased 25% by an addition of weight to the central load, find its 
value.

Solutio n 

Given: w 20 N, W 120 N, r
1

150 mm, r
2

180 mm, l 300 mm

 h
1

[l 2  r 2
1
]0.5 [3002  1502]0.5 259.8 mm

 h
2

[l 2  r 2
2
]0.5 [3002  1802]0.5 240 mm

 2
1

(1 W/w) (g/h
1
) (1 120/20) (9.81/0.2598) 264.32

 
1

16.258 rad /s

 N
1

60 16.258/(2 ) 155.25 rpm

 2
2

(1 W /w) (g/h
2
) (1 120/20) (9.81/0.240) 286.125

 
2

16.91 rad/s

 N
2

60 16.91/(2 ) 161.53 rpm

Range of speed N
2
  N

1
161.53  155.25 6.28 rpm

 N
max

161.53 rpm

with 25% increase in maximum speed, N 
2

161.53 1.25 201.91 rpm

 
2

2 201.91/60 21.144 rad/s

 (21.144)2 (1 W/20) (9.81/0.24)

 W 198.75 kg
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Example 9.16

The arms of a Porter governor are 250 mm long. The upper arms are pivoted on the axis of rotation 
and the lower arms are attached to the sleeve at a distance of 40 mm from the axis of rotation. The load 
on the sleeve is 525 N and the weight of each ball is 75 N. Determine the equilibrium speed when the 
radius of the balls is 200 mm. What will be the range of speed for this position, if the frictional resist-
ance to the motion of the sleeve are equivalent to a force of 30 N?

Solution 

Given: l 250 mm, c 40 mm, r 200 mm, W 525 N, w 75 N, F 30 N

 h [l 2  r 2]0.5 [2502  2002]0.5 150 mm

 r
o

r  c 200  40 160 mm

 l
o

[l 2  r 2
o
]0.5 [2502  1602]0.5 192.1 mm

 tan r/h 200/150 4/3
 tan r

o
/l

o
160/192.1 0.833

 k tan /tan (0.833 3)/4 0.6247

 h (g/ 2) [1 (1 k) {W/(2w)}]

 0.15 (9.81/  2) [1 1.6247 525/150]

  2 437.29
 20.91 rad/s
 N 60 20.91/(2 ) 199.69 rpm

(i)  Sleeve going upwards:
 2

2
[1 (1   k) {(W    F)/(2w)}] (g/h)

  [1    (1    0.6247) {(525    30)/(2 75)}] (9.81/0.15)
  458.545
 2    21.41 rad/s
 N 2    21.48 60/(2 ) 204.48 rpm

(ii) Sleeve going downwards:
 2

1
[1    (1    k) {(W  F)/(2w)}] (g /h)

  [1    (1    0.6247) {(525  30)/(2 75)}] (9.81/0.15)
  416.04
 

1
    20.397 rad/s

 N
1
    20.397 60/(2 ) 194.78 rpm

Range of speed N
2
  N

1
204.48  194.78 9.70 rpm

Example 9.17

A Proell governor has all the four arms of length 300 mm. The upper and lower ends of the arms 
are pivoted on the axis of rotation of the governor. The extension arms of the lower links are each 
100 mm long and parallel to the axis when the radius of the ball path is 150 mm. The weight of 
each ball is 45 N and the weight of the central load is 350 N. Determine the equilibrium speed of 
the governor.

Solution 

Refer to Fig.9.22.
Given:  w  45 N, W  350 N, r  150 mm, l

o
100 mm, l  300 mm
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 h BF [l2  r2]0.5 [3002  1502]0.5 259.8 mm
 CF CB BF 100 259.8 359.8 mm
 2 (BF/CF ) (1 W/w) (g/h)
  (259.8/359.8) (1 350/45) (9.81/0.2598) 240.07
 15.494 rad/s
 N 60 15.494/(2 ) 147.96 rpm

Example 9.18

A spring controlled governor of the Hartnell type with a central spring under compression has 
balls of weight 20 N. The ball and sleeve arms of the bell crank lever are, respectively, 120 mm and  
80 mm long and are right angles. In the lower position of the sleeve, the radius of rotation of the balls is  
80 mm and the ball arms are parallel to the governor axis. Find the initial load on the spring in order 
that the sleeve may begin to lift at 325 rpm. If the stiffness of the spring is 25 N/mm, what is the equi-
librium speed corresponding to a sleeve lift of 15 mm?

Solution 

Given: w 20 N, a 120 mm, b 80 mm, r
2

80 mm, S ?,
 N

2
325 rpm, k 25 N/mm, h 15 mm, N

1
?

For ball arms parallel to the governor axis, r r
2

80 mm

 F
c2

(w/g)  2
2
r

2
(20/9.81) (2 325/60)2 0.08 188.92 N

 F
c2

a S
2

b/2

 S
2

188.92 120 2/80 566.76 N

 r
1

r
2

h a/b 80 15 120/80 102.5 mm

 F
c1

(w/g)  2
1
r

1
(20/9.81) (2 N

1
/60) 2 0.1025 2.2916 10 3 N 2

1

 r
1
  r

2
ha/b 15 120/80 22.5 mm

 k 2 (a/b)2 [ (F
c1

  F
c2

)/(r
1
  r

2
)]

 25 2 (120/80)2 [(2.2916 10 3 N 2
1
  188.92)/22.5]

 N
1

290.9 rpm

Example 9.19

A governor of the Hartnell type has each ball of weight 15 N and the lengths of vertical and horizontal 
arms of the bell crank lever are 120 mm and 60 mm, respectively. The fulcrum of the bell crank lever 
is at a distance of 100 mm from the axis of rotation. The maximum and minimum radii of rotation 

C

B

wo

F

W

O

h

r

Fig.9.22 Proell governor
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Solution 

Refer to Fig.9.23.
Given: w 15 N, a 120 mm, b 60 mm, r 100 mm, r

1
120 mm, r

2
80 mm,

 N
1

325, N
2

300 rpm, k ?.

 F
c1

(w/g) 2
1
r

1
(20/9.81) (2 325/60)2 0.08 188.92 N

 F
c2

a S
2

b/2

 S
2

188.92 120 2/80 566.76 N

 r
1

r
2

h a/b 80 15 120/80 102.5 mm

 F
c1

(w/g) 2
1
r (20/9.81) (2 N

1
/60)2 0.1025 2.2916 10 3 N2

1

 r
1
  r

2
ha/b 15 120/80 22.5 mm

 k 2 (a/b)2 [(F
c1

  F
c2

)/(r
1
  r

2
)]

 25 2 (120/80)2 [ (2.2916 10 3 N2
1
  188.92)/22.5]

 N
1

290.9 rpm

Example 9.20

The Hartnell governor balls are of 30 N weight each. The balls radius is 120 mm in the mean position 
when the ball arms are vertical and the speed is 150 rpm, with the sleeve rising. The length of the ball 
arms is 150 mm and the sleeve arm 100 mm. The stiffness of the spring is 8 N/mm and the total sleeve 
movement is 15 mm from the mean position. Allowing for a constant frictional force of 15 N acting 
at the sleeve, determine the speed range of the governor in the lowest and highest sleeve positions. 
Neglect the obliquity of the ball arms.

Solution 

Refer to Fig.9.24.
Given: w 30 N, a 150 mm, b 100 mm, r 120 mm, N 150 rpm,

 h 15 mm, F 15 N, k 8 N/mm
 r

1
r h a/b 120 15 150/100 142.5 mm

a

w

b

W+S

Fc

S

C

W

2

r

Fig.9.23 Hartnell governor

of the balls are 120 mm and 80 mm and the corresponding equilibrium speeds are 325 and 300 rpm, 
respectively. Find the stiffness of the spring and the equilibrium speed when the radius of rotation is 
100 mm.
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 r
2

r  h a/b 120  15 150/100 97.5 mm
 F

c1
(w/g) 2

1
r

1
(30/9.81)  2

1
0.1425 0.43578 2

1

 F
c2

(w/g) 2
2
r

2
(30/9.81) 2

2
0.0975 0.29816  2

2

Total compression of spring 2h 30 mm

 S
1

S
2

2k h 8 30 240 N

 F
c1

a (S
1

F) b/2

 0.43578  2
1

0.15 (240 15) 0.1/2

 2
1

195.05, 
1

13.966 rad/s, N
1

133.4 rpm

 F
c2

a (S
2
  F) b/2

 0.29816  2
2

0.15 (240  15) 0.1/2

  2
2

251.54, 
2

15.86 rad/s, N
2

151.45 rpm

Range of speed at the highest position N  N
1

150  133.4 16.6 rpm

Range of speed at the lowest position N
2
  N 151.45  150 1.45 rpm

S1

S1

F1

Fc1 r1

r

a

w

b

+ F
2

(a) Maximum position

C
S2r2

Fc2

wa

b
F

S2 –  F
2

(b) Minimum position

r

C

Fig.9.24 Maximum and minimum positions of Hartnell governor

Example 9.21

In a spring controlled governor of the Hartung type, the lengths of the horizontal and vertical arms 
of the bell crank lever are 120 mm and 90 mm, respectively. The fulcrum of the bell crank lever is 
at a distance of 120 mm from the axis of rotation of the governor. Each revolving weight is 100 N. 
The stiffness of the spring is 25 N/mm. If the length of each spring is 120 mm when the radius 
of rotation is 75 mm and the equilibrium speed is 350 rpm, find the free length of the spring. If 
the radius of rotation increases to 120 mm, what will be the corresponding percentage increase in 
speed?

Solution 

Given: a 90 mm, b 120 mm, w 100 N, r 120 mm, k 25 N/mm

(i) When radius of rotation, r 75 mm
 2 350/60 36.652 rad/s
 F

c
(w/g)   2r (100/9.81) (36.652)2 0.075 1027 N
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 Distance of weight of ball from the fulcrum towards the spindle,
 c 120  75 45 mm
 Taking moments about the fulcrum, we have

 F
c

(a2  c2)0.5 w c S a

 1027 (902  452)0.5 100 45 S 90

 S 839.4 N
 Compression of spring 839.4/25 33.57 mm
 Length of each spring 120 mm
 Free length of each spring 120 33.57 153.57 mm

(ii) When radius is 120 mm,
 Additional compression of spring 120  75 45 mm
 Force exerted by spring, S

1
839.4 25 45 1964.4 N

 At this position the bell crank lever arms are horizontal and vertical.
 F

c1
S

1

 (100/9.81) 2
1

0.12 1964.4

 
1

40.07 rad/s, N
1

382.7 rpm

Example 9.22

The following particulars refer to a Wilson-Hartnell governor:
 Weight of each ball 50 N
 Minimum radius 100 mm
 Maximum radius 120 mm
 Minimum speed 240 rpm
 Maximum speed 256 rpm
 Length of ball arm of lever 80 mm
 Length of sleeve arm of lever 60 mm
 Combined stiffness of ball springs 0.75 N/mm
Find the stiffness of the auxiliary spring, if the lever is pivoted at the middle position.

Solution 

Given:  w 50 N, r
1

100 mm, r
2

120 mm, N
1

240 rpm, N
2

256 rpm,

  a 80 mm, b 60 mm, k
b

0.75 N/mm, x y, k
a

?

  F
c1

(w/g)  2
1
r

1
(50/9.81) (2 240/60)2 0.1 321.94 N

  F
c2

(w/g)  2
2
r

2
(20/9.81) (2 256/60)2 0.12 439.56 N

 4k
b

k
a

0.5 (b y/a x)2 (F
c1

  F
c2

)/(r
1
  r

2
)

 4 0.75 k
a

0.5 (60/80) (321.94  439.56)/(100  120)

  k
a

10.24 N/mm

Example 9.23

A Porter governor has arms 250 mm long. The upper arms are pivoted on the axis of rotation and the 
lower arms are attached to a sleeve at a distance of 30 mm from the axis. Each ball has a weight of 20 
N and the weight of the load on the sleeve is 200 N. If the radius of rotation of the balls at a speed of 
260 rpm is 100 mm, find the speed of the governor after the sleeve has lifted 50 mm. Also determine 
the effort and power of the governor.
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Solution 

Given:  l 250 mm, c 30 mm, w 20 N, W 200 N, N 260 rpm,

 r 100 mm, h 50 mm.

 r
o

r  c 100  30 70 mm

 
1

2 260/60 27.227 rad/s

 h
1

[l 2  r 2]0.5 [2502  1002]0.5 229.13 mm

 l
o

[l 2  r 2
0
]0.5 [2502  702]0.5 240 mm

 h
2

h
1
  50 229.13  50 179.13 mm

 r
2

[l 2  h 2
2
]0.5 [2502  (179.13)2]0.5 174.4 mm

 tan r
2
/h

2
174.4/179.13 0.9736

 r
o2

r
2
  c 174.4  30 144.4 mm

 l
o2

[l 2  r 2
o2

]0.5 [2502  (144.4)2]0.5 204 mm

 tan r
02

/l
o2

144.4/204 0.7078

 k tan /tan 0.7078/0.9736 0.727

 h
2

(g/  2) [1 (1 k){W/(2w)}]

 0.17913 (9.81/  2
2
) [1 1.727 200/20]

 2
2

527.65

 
2

22.97 rad/s

 N 60 22.97/(2 ) 219.35 rpm
 Percentage decrease in speed , s (N

1
  N

2
)/N

1

  (260  219.35)/260 0.1563 or 15.63%
  Effort, P s (w W ) 0.1563 (20 200) 34.392 N
  Total lift of sleeve, x 2h 100 mm
  Power Px 34.392 0.1 3.4392 N m

Example 9.24

The upper arms of a Porter governor are pivoted on the axis of rotation and the lower arms are pivoted 
to the sleeve at a distance of 40 mm from the axis of rotation. The length of each arm is 350 mm and 
the weight of each ball is 50 N. If the equilibrium speed is 240 rpm, when the radius of rotation is  
200 mm, find the weight of the sleeve. If the friction is equivalent to a force of 50 N at the sleeve, find 
the coefficient of insensitiveness at 200 mm radius.

Solution 

Given: c 40 mm, l 350 mm, w 50 N, N
1

240 rpm, r 200 mm, W ?, F 50 N.
 h [l 2  r 2] 0.5 [3502  2002] 0.5 287.23 mm
 r

o
r  c 200  40 160 mm

 l
o

[l 2  r 2
o
] 0.5 [350 2  160 2] 0.5 311.29 mm

 tan r/h 200/287.23 0.6963
 tan r

o
/l

o
160/311.69 0.5133

 k tan /tan 0.5133/0.6963 0.7372
 h (g/  2

1
) [1 (1 k){(W/ (2w)}]

 0.28723 [9.81/(25.13)2] [1 1.7372 W/100]
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 W 1007 N

 F
b

tan F (1 k)/2

  0.6963 25 1.7372 30.24 N

Considering friction:

 h (g/  2
2
) [1 (1 k) {(W F )/(2w)}]

 0.28723 [ 9.81/  2
2
] [1 1.7372 1057/100]

  2
2

661.293, 
2

25.716 rad/s, N
2

245.57 rpm

 N
mean

(N
1

N
2
)/2 (240 245.57)/2 242.783 rpm  242.8 rpm

Coefficient of insensitiveness (N
1
  N

2
)/N

mean

  (245.57  240)/242.8 0.0229

Example 9.25

A Pickering governor employed in a gramophone consists of three leaf springs each 40 mm long,  
5 mm wide and 1.5 mm thick. Each of the springs has disc of mass 20 g, attached to the centre. The 
distance between the axis of the governor spindle and the centre of gravity of the disc when at rest is 
10 mm. Find the equilibrium speed of the turntable to which this governor is fixed, if the ratio of the 
governor speed to the speed of the turntable is 10 and the lift of the sleeve is 0.75 mm. Take modulus 
of elasticity of leaves as 210 GPa.

Solution 

Given: L 40 mm, b 5 mm, t 1.5 mm, m 20 gram, a 10 mm,
 N ?, h 0.75 mm, E 210 GPa, i 10.
 h 2.4  2/L
 0.75 2.4 2/40, 3.535 mm
 I bt 3/12 5 (1.5)3/12 1.406 mm4

 m (a )  2L3/(192 EI)
 3.535 20 10–3 13.535  2 403/(192 210 103 1.406)
  2 11567, 107.55 rad/s, N 1027 rpm

Speed of turntable N/10 102.7 rpm

Example 9.26

In an inertia governor the disc has two weights, each weighing 50 N, attached to the ends of a 300 mm 
long rod. The rod is pivoted at its centre to the disc such that the pivot falls on the vertical axis of the 
disc. The rod is horizontal in its neutral position and is 50 mm from the horizontal axis of the disc. 
Each of the weights is circular in shape of 50 mm radius. Find the torque required about the pivot of 
the rod if the disc revolves at 300 rpm and receives an angular acceleration of 1 rad/s2.

Solution 

Refer to Fig.9.25.
Given: W 50 N, N 300 rpm, 1 rad/s2.

 AG 150 mm, OA 50 mm

 r OG ( ) ( )AG OA2 2 [1502 502]0.5 158.1 mm
 tan AG/OA 150/50 3
 71.565°
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 sin AB/OA 0.94868
 AB 50 0.94868 47.43 mm
 2 300/60 31.416 rad/s
 Centrifugal force, F

c
(w/g)  2

  
r

 
(50/9.81) (31.416)2 0.1581 795.3 N

 Moment of F
c
 about A F

c
AB 795.3 0.04743 37.72 N m

 Inertia force acting on the ball perpendicular to OG (W/g) r 

  (50/9.81) 0.1581 1 0.8058 N

Example 9.27

The controlling force F
c
 for a spring loaded governor is given by  F

c
300 r  80 N where r is in 

mm. The weight of each ball is 50 N and the extreme radii of rotation of the balls are 100 mm and  
175 mm, respectively. Find the maximum and minimum equilibrium speeds. If the friction of the 
governor mechanism is equivalent to a radial force of 5 N at each ball, find the extent to which the 
equilibrium speeds are affected at the extreme radii of rotation.

Solution 

Given:  w 50 N, r
1

100 mm, r
2

175 mm
 F

c
300r  80

 At r 100 mm (50/9.81) 2
1

0.1 300 100  80
  2

1
58703, 

1
242.287 rad/s, N

1
2313.7 rpm

 At r 175 mm, (50/9.81)  2
2

0.1 300 175  80
  2

2
58770, 

2
242.42 rad/s, N

2
2315 rpm

Considering friction force, F 5 N
  F

c
  F (w/g)  2 r

  At r 100 mm, (50/9.81) 2
1

0.1 300 100  80  5
     2

1
58693, 

1
242.27 rad/s, N

1
2313.48 rpm

  At r 175 mm, (50/9.81)  2
2

0.1 300 175  80  5
     2

2
58764.7, 

2
242.414 rad/s, N

2
2314.88 rpm

Example 9.28

A Proell governor has arms of 305 mm length. The upper arms are hinged on the axis of rotation, 
whereas the lower arms are pivoted at a distance of 38 mm from the axis of rotation. The extension 
of lower arms to which the balls are attached are 102 mm long. Each ball mass is 4.8 kg and the load 
on the sleeve is 54 kg. At minimum radius of rotation of 165 mm, the extensions are parallel to the 
governor axis, determine the equilibrium speed at radii 165 mm and 216 mm.

300 rpm

1 rad/s2

A

O
PivotB

G50

300

Fig.9.25 Inertia governor
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Solution 

Refer to Fig.9.26.

Given: l 305 mm, c 38 mm, m 4.8 kg,  M 54 kg, r
1

165 mm, r
2

216 mm

 FE r  c 165  38 127 mm

 BF [l 2  FE 2]0.5 [3052  1272]0.5 277.3 mm

 h
1

[l 2  r2
1
]0.5 [3052  1652]0.5 256.5 mm

 2
1

(BF/CF) [1 M/m}] (g/h
1
)

  (277.3/379.3) [1 54/4.8] (9.81/0.2565)

  342.52

 
1

18.5 rad/s

 N
1

18.5 60/(2 ) 176.73 rpm

 For r
2

216 mm, FE 216  38 178 mm

 BF [l2  FE 2]0.5 [3052  1782]0.5 247.67 mm

 h
2

[l2  r2
2
]0.5 [3052  2162]0.5 215.33 mm

 2
2

(BF/CF) [1 M/m}] (g/h
1
)

  (247.67/376.67) [1 54/4.8] (9.81/0.21533)

  375.937

 
2

19.389 rad/s

 N
2

19.389 60/(2 ) 185.15 rpm

Example 9.29

A centrifugal governor shown in Fig.9.27 has two masses each of weight w connected by a helical 
spring. The arms carrying the weights are parallel to the axis of rotation at the speed of 900 rpm. If 
the speed is increased by 10%, it requires a force of 30 N to maintain the sleeve at the same position. 
Determine (a) the value of the masses, (b) the stiffness of the spring and its initial extensions if the 
sleeve moves by 10 mm for a change of speed of 250 rpm.

C 4.8 kg O

l

E

c

Mg

F

B

102

165 mm

305mm
h

r

Fig.9.26 Proell governor
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Fig.9.27 Centrifugal governor

Solution  

Refer to Fig.9.27.
Given: N 900 rpm, r 70 mm, a 75 mm, b 50 mm

(a)
  


2 900

60
94 248 rad/s.

Let S spring force. Taking moments about fulcrum, we have

w

g
r S 2 75 75

w

g
r S 2

  
(1)

When speed is increased by 10%, then

w

g
r S( . )1 1 75 75 30 702

  
(2)

Solving Eqs. (1) and (2), we get
 w 2.1028 N
(b)  N

2
900 250 1150 rpm

 
sin 

10

50
0 2.

 11.537°
 x 75 sin 15 mm
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 r
2

70 15 85 mm

 

F
w

g
rc2

2





2
2

2

2
2 1028

9 81

2 1150

60
0 085

.

.
.

664 24 N.

 F
c2

S
2

264.24 N

Extension of spring, x 15 mm

Stiffness of spring, k
S

x
2 264 24

15
17 616

.
.  N/mm

Example 9.30

A loaded Porter governor has four links each 250 mm long, two revolving masses each weighing  
30 N and a central dead weight weighing 200 N. All the links are attached to respective sleeves at 
radial distances of 40 mm from the axis of rotation. The masses revolve at a radius of 150 mm at mini-
mum speed and at a radius of 200 mm at maximum speed. Determine the range of speed.

Fig.9.28 Loaded Porter governor

Solution 

Refer to Fig.9.28.
Given: l 250 mm, w 30 N, W 200 N, c 40 mm, r

1
150 mm, r

2
200 mm

For r r
1
 r

o
r

1
  c 150  40 110 mm

 h
1

(l 2  r
o
2)0.5 (2502  1102)0.5 224.5 mm

 h
1

g W

w1
2

1

 0.2245
9 81

1
200

301
2

.

 
1
2 335.01,  

1
18.3 rad/s, N

1
174.78 rpm
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For r r
2
, r

o
r

2
  c 200  40 160 mm

 h
2

(l 2  r
o
2)0.5 (2502  1602)0.5 192.1 mm

 

h
g W

w2

1921 

2
2

2
2

1

9 81
1

200

30
0.

.



  2
2 391 51 19 786 rad/s 188 95 rpm2 2. , . , .N

Range of speed 192.1  188.95 3.15 rpm

Example 9.31

In a loaded Proell governor shown in Fig.9.29 each ball weighs 3 kg and the central sleeve weighs 25 kg. 
The arms are of 200 mm length and pivoted about axis displaced from the central axis of rotation by  
38.5 mm, y 238 mm, x 303.5 mm, CE 85 mm, MD 142.5 mm. Determine the equilibrium speed.

Fig.9.29 Loaded Proell governor

Solution  

Refer to Fig.9.29.
Given: m 3 kg, M 25 kg, l 200 mm, c 37.5 mm, x 303.5 mm, y 238 mm, CE 85 mm, 
MD 142.5 mm

 
tan

.
.

MD

CM

MD

y

142 5

238
0 59874

  30 91.

 cos 0.858
 FE CE sin 43.66 mm
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 GD  MD  FE 98.84 mm
 EG FM CM  CF y  CE cos 165.07 mm
 r c MD 180 mm

At point D, T
Mg

T2 22
142 92cos . or N 

At point E,  T
1
 cos T

2
 cos or T

1
T

2
142.92 N

 F
c

mr 2 3 0.18 2 0.54   2

Taking moments about D, we have

 F y mg MD T GD T EGc 1 1 0cos cos 

 0 54 238 3 9 81 142 5 142 92 0 858 98 84 165 07 02. . . . . ( . . )

  2 219.17, 14.8 rad/s, 141.37 rpmN

Example 9.32

The arms of a Porter governor are pivoted on the governor axis and are each 250 mm long. The mass 
of each ball is 0.5 kg and mass of the sleeve is 2 kg. The arms are inclined at an angle of 30  to the 
governor axis in the lowermost position of the sleeve. Lift is equal to 50 mm. Determine the force of 
friction if the speed at the moment the sleeve starts lifting from the lowermost position is the same as 
the speed at the moment it falls form the uppermost position.

Fig.9.30 Porter governor

Solution  

Refer to Fig.9.30.
Given: l 250 mm, m 0.5 kg, M 2 kg, 30 , lift, h 50 mm
 h

1
l cos 250 cos 30 217.5 mm

 Lift 2(h
1
  h

2
)

 25 2 (217.5  h
2
)

 h
2

204 mm
When the sleeve starts lifting from lower position,

 
h

g Mg F

mg1 2
1
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 0 2165
9 81

1
2 9 82

0 5 9 812
.

. .

. .
F

  

(1)
 

 2 227.559 9.238 F

When the sleeve starts lowering down,

 
h

g Mg F

mg2 2
1



 

0 204
9 81

1
2 9 82

0 5 9 81

0 0

2
.

. .

. .

. .





F

F2 24 49 9 8 4   (2)

Solving Eqs. (1) and (2), we get

  F 0.729 N

Example 9.33

In a spring-controlled governor of the Hartung type, the length of the horizontal and vertical arms of 
the bell crank levers are 100 mm and 80 mm, respectively. The fulcrum of the bell crank lever is at a 
distance of 120 mm from the axis of the governor. Each revolving mass is 8 kg. The stiffness of the 
spring is 20 kN/m. If the length of each spring is 120 mm, when the radius of rotation is 70 mm and 
the equilibrium speed is 380 rpm, find the free length of the spring. If the radius of rotation increases 
to 120 mm, what will be the corresponding percentage increase in speed? Ignore sleeve mass.

Fig.9.31 Harting governor

Solution  

Refer to Fig.9.31.
Given: a 80 mm, b 100 mm, m 8 kg, k 20 kN/m, r 70 mm, N 380 rpm

 


2 380

60
39.79 rad/s

Let extensions of spring, m
Spring force, S 20  N



524 Theory of Machines

F
c

mr  2 8 0.70 (39.79)2 887.77 N
 20 887.7, or 44.34 mm
 Free length of spring 120  44.34 75.66 mm
When r increase to 120 mm, Fc 8 0 12 0 961

2
1
2. .  N

Spring force,  S 20 [(r
1
  r

2
) ]

  20 [(120  70) 44.34] 1887.8  N
For F

c
S, we have

 0 96 1887 81
2. .

  1
2

1 11965 4 44 33 423 35  rad/s   rpm. , . , .N

 Percentage increases in speed
423.35 380

380
11.4%

Example 9.34

The length of the arms of a Porter governor is 300 mm long. The upper and lower arms are pivoted to 
links at 50 mm and 60 mm, respectively, from the axis of rotation. The mass of each ball is 5 kg and 
the sleeve is of mass 60 kg. The frictional force on the sleeve is 35 N. Determine the range of speed 
for extreme radii of rotation of 120 mm and 150 mm.

Fig. 9.32 Porter governor

Solution  

Refer to Fig.9.32.
Given: l 300 mm, c

1
50 mm, c

2
60 mm, r

1
120 mm, r

2
150 mm, m 5 kg, M 60 kg, 

F 35 N

             r r co 1 1 120 50 70 mm

 h l r o1
2 2 0 5 2 2 0 5300 70 291 72( ) ( ) .. . mm

 
sin .

r

l
o 70

300
0 233

  13.4934 , tan 0.24
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sin .

r c

l
1 2 60

300
0 2

 11.537  tan 0.204

 
k

tan

tan

.

.
.




0 204

0 24
0 8505

For r r
1
, the sleeve lowers and the force of friction acts upwards.

 

h k
W F

w1 1 1
2

g

1
2

( )

 

0 29172
9 81

1 1 8505
60 9 81 35

2 5 9 811
2

.
.

.
.

.

  1
2

1 187 3384.8, 19.616 rad/s  rpm1 , .N

For r r
2
, the sleeve rises and F acts downwards.

 r r co 2 1 150 50 100 mm

 h l r o2
2 2 0 5 2 2 0 5300 100 282 84( ) ( ) .. .  mm

 
sin .

r

l
o 100

300
0 333

  19 47 0 3535. , tan .

 
sin .

r c

l
2 2 90

300
0 3

  17 4576 0 3144. , tan . 

 
k

tan

tan

.

.
.




0 3144

0 3535
0 8896

For r r
1
, the sleeve lowers and the force of friction acts upwards.

 

h
g

k
W F

w2
2
2

1 1
2

( )

 

0 28284
9 81

1 1 8896
60 9 81 35

2 5 9 812
2

.
.

.
.

.

  2
2

2 2451 3 21 244 202 86. , . , .rad/s rpmN  

Range of speed 202.86  187.3 15.56 rpm

Example 9.35

In a Porter governor, all four arms are of equal length of 250 mm and are hinged on the spindle axis.
Mass of each ball is 2.5 kg and sleeve mass is 25 kg. The force of friction at the sleeve is 30 N. The 
inclination of arms to spindle axis is 30  and 45  in the lowest and highest position respectively. 
Calculate (a) the sleeve lift, (b) speeds at the bottom, middle and top of the sleeve by neglecting and 
considering friction.
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Solution  

Given: l 250 mm, m 2.5, M 25 kg, F 30 N, 30  and 45

 (a) h
1

l cos 30 250 cos 30 217.5 mm
 h

2
l cos 45 250 cos 45 177.78 mm

 The arms being of equal length, form a rhombus. Hence,
 Lift of sleeve 2 (217.5  177.78) 79.45 mm

 (b) Neglecting friction:

 

At the bottom position, 1
2

1

1

9 81

0 2165
1

25

2 5

498

g

h

M

m

.

. .

.443

1 122.32 rad/s, 213.2 rpmN

At the top position,  N N
h

h2 1
1

2

0 5.

 
213.2

217.5

177.78
235.94 rpm

0.5

At the middle position, h 0.5(h
1

h
2
) 0.5 (217.5 177.78) 197.64 mm

 
N N

h

hm 1
1

0.5 0.5

213.2
217.5

197.64
223.65 rpm

 (c) Considering friction:
 At the lowest position, (i) when the sleeve is lowering

 

1
2

1

1

9 81

0 2165
1

25 9 81 30

2

 
g

h

Mg F

mg

.

.

.

.. .5 9 81

443

 1 121.05 rad/s 201 rpm, N

(i) When sleeve is rising

1
2

1

1

9 81

0 2165
1

25 9 81 30

2

g

h

Mg F

mg

.

.

.

.55 9 81.

.553 86
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1 123.53 rad/s 224.7 rpm, N

At the highest position, (i) when the sleeve is lowering

 

2
2

2

1
g

h

Mg F

mg

 

9 81

0 17678
1

25 9 81 30

2 5 9 81

.

.

.

. .

.542 54

 2 123.29 rad/s 222.4 rpm, N

(ii) When sleeve is rising

 

2
2

2

1
g

h

Mg F

mg

 

9 81

0 2165
1

25 9 81 30

2 5 9 81

0

.

.

.

. .

.68 56

 2 127.08 rad/s, 249.1 rpmN

Example 9.36

The following data refer to a Proell governor:
Mass of each ball 5 kg
Mass of sleeve 60 kg
Length of each arm 250 mm
Distance of pivots of lower arms from axis of rotation 30 mm
Length of extensions of lower arms 100 mm

The extensions arms are parallel to the axis of the governor at the minimum radius. Determine the 
equilibrium speeds corresponding to extreme radii of 160 mm and 220 mm.

Solution 

Refer to Fig.9.33.
Given: m 5 kg, M 60 kg, l 250 mm, c 30 mm, BC 100 mm, r

1
160 mm, r

2
220 mm

AF r
o

r
1
  c 160  30 130 mm

 
BF l l ro o( ) .. .2 2 0 5 2 2 0 5

250 130 213 54 mm

 FC e BF BC 213.54 100 313.54 mm

 
sin .

r

l
o 130

250
0 52

 
 31.33

 AC (e2 AF 2 )0.5 [(313.54)2 1302]1/2 339.4 mm
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tan

.
.

AF

FC

130

313 54
0 41462

  22 52.

    31.33 22.528.8

 h l r1
2

1
2 0 5 2 2 0 5250 160( ) ( ). . 192.1 mm

Fig.9.33 Proell governor
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tan

.
.

r

h1

160

192 1
0 8329

tan
.

.
r

l
o

o

130

213 54
0 6087

 
k

tan

tan

.

.
.




0 6087

0 8329
0 7309

 CF CB BF 100 213.54 = 313.54 mm

 

1
2

1

1 1
2

BF

CF

g

h
k

M

m
( )

 

213 54

313 54

9 81

0 1921
1

1 7309 60

10

395

.

.

.

.

.

..983

 1 119 9 190.  rad/s,  rpmN

 
h l r2

2
2
2 0 5 2 2 0 5

250 220 118 74( ) .. .
 mm

 
tan

.
.

r

h
2

2

220

118 74
1 853

  61.64

 r r co 2 220 30 190 mm

 
BF l r o( ) .. .2 2 0 5 2 2 0 5

250 190 162 48 mm

 
tan

.
.

r

BF
o 190

162 48
1 169

  49 46.

At point A,  T
Mg

1 2
cos

 
T1

60 9 81

2 0 65
452 78

.

.
.  N

At point B,  T T1 2cos cos 

 
T2

60 9 81

2 0 475
619 56

.

.
.  N
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 A F A B1 1 sin  250 sin 190 mm

 IF BF tan . . 162 48 1 853 301 mm

 A F A F IF1 1 491 mm

    49 46 8 8 40 66. . .

 AC AC1 1

 e AC AC1 1 cos cos  339.4 cos 40.66 287.46 mm

 r AC2 30 251 14sin .  mm

 IM IF A F r( ) .1 230 269 86 mm

Taking moments about the lowest point, we have

 
mr e mg IM

MG
IA2 2

2

2
 1  

 5 0.25114 0.25746 5 9.81 0.26986 60 8.81 0.4912
2

  2
2

2487.9,  22.09 rad/s  210.93 rpm2 , N

Example 9.37

In a spring-controlled governor, the controlling force curve is a straight line. The balls are 450 mm 
apart when the controlling force is 1450 N and 250 mm when it is 750 N. The mass of each ball is  
8 kg. Determine the speed at which the governor runs when the balls are 300 mm apart. By how much 
should the initial tension be increased to make the governor isochronous? Also find the isochronous 
speed.

Solution 

 (i) F
c

ar b
 For r 225 mm, 1450 0.225 a b

 For r 125 mm, 750 0.125 r b
Solving for a and b, we get

 

  a b

F mr rc

7000 125

7000 1252

,



When r 150 mm, and m 8 kg, we have

8 0.15 2    7000 0.15  125
2    770.83,     27.764 rad/s, N    265.1 rpm

 (ii) For governor to be isochronous, b 0. This can be done by increasing initial tension by 125 N.

 (iii) 8 r  2 7000 r

  2 875, 29.58 rad/s, 282.47 rpmN
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Example 9.38

In a Porter governor, each arm is 250 mm long and is pivoted at the axis of rotation. The mass of each 
ball is 4.5 kg and the load on the sleeve is 25 kg. The extreme radii of rotation are 100 mm and 150 mm.  
Plot a graph of controlling force’s radius of rotation and set off a speed scale along the ordinate  
corresponding to a radius of 150 mm.

Fig.9.34 Controlling force curves for Porter governor

Solution 

Controlling force for a Porter governor is,

F mg k
Mg F

c tan ( )1
2

where
 

tan ,
tan

tan





r

h
k

Here k 1 and F 0

F
r

h
m M g

m M gr

l rc  ( )
( ) .2 2 0 5

Here l 250 mm, m 4.5 kg, M 25 kg

F
r

rc

( . ) .

( ) .

4 5 25 9 81

2502 2 0 5

289 395

2502 2 0 5

.

( ) .

r

r
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r, mm 20 40 60 80 100 120 140 150 160

F
c
, N 23.22 47.91 71.54 97.75 127.30 158.34 195.61 217.05 241.04

The graph has been plotted in Fig.9.34.

To set off speed scale, F mr
N

c 
2

2

24 5 0 15
2

60
0 0074. . .  N

N, rpm 100 150 180 200 210 220 230 240

F
c
, N 74 167.5 239.76 296 327.34 358.16 391.46 427.24

Now mark off speed scale on the graph shown in Fig.9.34. To obtain the range of  equilibrium 
speeds, draw vertical lines through r    100 mm and r    150 mm meeting the controlling force 
curve at A and B, respectively. Draw straight lines from the origin and through points A and B. 
Points A and B correspond to speeds 130 rpm and 171 rpm, respectively. The range of speed 
is from 162 rpm to 178 rpm.

Example 9.39

The arms of a Porter governor are each 260 mm long and pivoted on the governor axis. The weight of 
each ball is 50 N and weight of central sleeve is 300 N. The radius of rotation of the balls is 140 mm 
when the sleeve begins to rise and reaches a value of 210 mm for maximum speed. Determine the 
speed range of governor. If the friction at the sleeve is equivalent to 25 N of load at the sleeve, find 
the range of speed.

h
l

l

W/2

w

Fc r

Fig.9.35 Porter governor

Solution 

Refer to Fig.9.35.
Given: l 260 mm, w 50 N, W 300 N, r

1
140 mm, r

2
210 mm, F 25 N

h l r1
2

1
2 2 2260 140 219 1.  mm

h
g

1
1
2

1
W

w
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1
2 9 81

0 2191
1

300

50
313 42

.

.
.

1 17 7. rad/s

N1 rpm
60 17 7

2
169

.



h l r2 mm2
2
2 2 2260 210 153 3.

2
2 9 81

0 1533
1

300

50
447 94

.

.
.

2 21 165. rad/s

N2

60 21 165

2
202

.


rpm

Range of speed N
2
  N

1
202  169 33 rpm

With friction on the sleeve,

 
h

g F
2

w

w

W

When sleeve is moving downwards, F is ve.

 
1

2 9 81

0 2191

50 300 25

50
291 03

.

.
.

1
17.06 rad/s

N
1

162.9 rpm

When sleeve is moving upwards, F is ve.

 
2

2 9 81

0 1533

50 300 25

50
479 94

.

.
.

 
2

21.91 rad/s

N
2

209.2 rpm

Range of speed 209.2  162.9 46.3 rpm

Example 9.40

A Porter governor has all four arms 240 mm long. The upper arms are attached on the axis of rota-
tion and the lower arms are attached to the sleeve at a distance of 25 mm from the axis. The weight of 
each ball is 50 N and the sleeve weighs 500 N. The extreme radii of rotation are 160 mm and 220 mm. 
Determine the range of speed of the governor.
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Solution 

Refer to Fig.9.36.

Given: l 240 mm, c 25 mm, w 50 N, W 500 N, r
1

160 mm, r
2

220 mm

h l r1
2

1
2 2 2240 160 178 9.  mm

tan
.

.1
1

1

160

178 9
0 894

AD

OD

r

h

AC AD  CD r
1
  c 160  25 135 mm

BC AB AC2 2 2 2240 135 198 43. mm

tan
.

.1

135

198 43
0 680

AC

BC

k1
1

1

0 680

0 894
0 761

tan

tan

.

.
.




h
g

w
k1

1
2 11

2
1


W

( )





1
2

1

9 81

0 1789
1

500

2 50
1 0 761 537 66

23 187

.

.
( . ) .

.  rad//s

N1 rpm
60 23 187

2
221 4

.
.



h l r2 mm2
2
2 2 2240 220 95 92.

O

l

r
C

l

A

B

Fc

c

W

W

D

h

w

2

C

Fig.9.36 Porter governor
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tan
.

.2
2

2

220

95 92
2 29

r

h

AC r
2
  c 220  25 195 mm

BC 240 195 139 912 2 .

tan
.

.2

195

139 91
1 39

k2
2

2

1 39

2 29
0 61

tan

tan

.

.
.




h
g

w
k2

2
2 21

2
1


W

( )

2
2 9 81

0 09592
1

500

2 50
1 0 61 925 68

.

.
( . ) .

2 30 42. rad/s

N2

60 30 42

2
290 5

.
.


rpm

Range of speed N
2
  N

1
290.5  221.4 69.1 rpm

Example 9.41

The following particulars refer to a Proell governor with open arms:
Length of all arms 220 mm, distance of pivot of arms from axis of rotation 50 mm, length of 

extension of lower arms to which each ball is attached 100 mm, weight of each ball 60 N, and 
weight of central load 1500 N.

If the radius of rotation of the balls is 180 mm when the arms are inclined at an angle of 30° to the 
axis of rotation, find the equilibrium speed for the above configuration.

C

r

l

D

B

C

N

MI F W/2
c

E

A

w

W

G

l30°
30°

Fc

Fig.9.37 Proell governor
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Solution 

Refer to Fig.9.37.

l 220 mm, c 50 mm, BC 100 mm,  w 60 N, W 1500 N, r 180 mm, 30°

 AD BD cos l cos 220 cos 30° 190.5 mm

 AB BD sin l sin 220 sin 30° 110 mm

 NB NG  AG  AB r  c  AB

  180  50  110 20 mm

CN BC NB2 2 2 2100 20 97 98. mm

 CM CN NM CN AE CN AD 97.98 190.5 288.48 mm

 IM IF  MF FE  MF AB  NB 110  20 90 mm

 IE IF FE 2 AB 2 110 220 mm

Taking moments about the instantaneous centre I, we have

F CM w IM
W

IEc 2

Fc 288 48 60 90
1500

2
220.

 F
c

590.68 N

F
w

g
rc  2

590 68
60

9 81

2

60
0 18

2

.
.

.
 N

 N 221.2 rpm

Example 9.42

A Proell governor has all four arms of length 300 mm. The upper arms are pivoted on the axis of 
rotation and the lower arms are attached to a sleeve at a distance of 40 mm from the axis. The mass 
of each ball is 5 kg and are attached to the extension of the lower arms, which are 100 mm long. The 
mass on the sleeve is 50 kg. The minimum and maximum radii of governor are 160 mm and 210 mm. 
 Assuming that the extensions of lower arms are parallel to the governor axis at the minimum radius, 
find the corresponding equilibrium speeds.

Solution 

Refer to Fig.9.38 for minimum radius of governor.

Given: l 300 mm, c 40 mm, m 5 kg, M 50 kg, BC 100 mm, r
1

160 mm

sin .

.





BG

BD

r

l
1 160

300
0 533

32 23

 AB BG  AG r
1
  c 160  40 120 mm
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sin .
AB

BE

120

300
0 4

 23.58°

 tan tan 32.23° 0.6305

 tan tan 23.58° 0.4365

k
tan

tan

.

.
.




0 4365

0 6305
0 6923

 h DG l cos 300 cos 32.23° 253.8 mm

 FE r
1
  c AB 120 mm

 BF l cos 300 cos 23.58° 275 mm

 CF BC BF 100 275 375 mm

1
2 1

2
1

BF

CF

M

m
k

g

h
( )

 
275

375
1

50

2 5
1 0 6923

9 81

0 2538
( . )

.

.

 268.188

 
1

16.376 rad/s

N1

60 16 376

2
156 4

.
.


 rpm

The configuration of governor at maximum radius is shown in Fig.9.39. CBE is a one rigid link. 
Therefore C

1
E

1
 and C E B1 1 1  does not change.

 r
2

210 mm

D

h

A

C

B

l

FI
E

G

H

Mg

Mg

c

mg

Fc
l

r1

2

C

Fig.9.38 Proell governor
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From Fig.9.38,

CE CF FE2 2 2 2375 120 393 7. mm

tan .

.





FE

CF

120

375
0 32

17 7

From Fig.9.39,

sin .

.





1
1 1

1 1

2

1

210

300
0 7

44 43

B G

B D

r

l

 A
1
B

1
r

2
  c 210  40 170 mm

sin .1
1 1

1 1

170

300
0 567

A B

B E

 
1

34.52°

 C
1
E

1
CE 393.7 mm

 
1
  

1
  

 
1 1

  34.52  23.58 17.7 28.64°

Radius of rotation, r
2

 L
1
E

1
E

1
H

1
C

1
E

1
 sin 

1
c

  393.7 sin 28.64° 40 228.7 mm

 C
1
L

1
C

1
E

1
 cos 

1
393.7 cos 28.64° 345.53 mm

D1

1

1

1
1

r2

1

C1
Fc

B1K1

mg

1
E1

L1 I1 F1 

H

K1C1E1 = 1
             =    A1E1C1

1

c

Mg

A1
G1

r 2

2

C

Fig.9.39 Proell governor
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 B
1
F

1
l cos 

1
300 cos 34.52° 247.18 mm

 I
1
F

1
B

1
F

1
 tan 

1
247.18 tan 44.43° 242.9 mm

 F
1
E

1
l sin 

1
300 sin 34.52° 170 mm

 I
1
E

1
I

1
F

1
F

1
E

1
242.9 170 412.9 mm

 L
1
E

1
C

1
E

1
 sin 

1
393.7 sin 28.64° 188.7 mm

 I
1
L

1
I

1
E

1
  L

1
E

1
412.9  188.7 224.2 mm

F m r
N

Nc  


2
2

2
2

2

25
2

60
0 2287 0 01254. . N

Taking moments about I
1
,

F C L I L I Ec 1 1 1 1 1 12
mg

Mg

0 01254 345 53 5 9 81 224 2
50 9 81

2
412 92. . . .

.
.N

 N2 25908.6
 N 161 rpm

Example 9.43

In a spring-loaded governor of the Hartnell type, the mass of each ball is 5 kg and lift of sleeve is  
50 mm. The governor begins to float at 240 rpm when the ball path is 120 mm. The mean working 
speed of the governor is 20 times the range of speed when friction is neglected. The lengths of ball and 
roller arm of bell crank lever are 120 mm and 90 mm respectively. The distance between the centre of 
pivot of bell crank lever and axis of governor spindle is 140 mm. Determine the initial compression of 
spring taking into account the obliquity of arms.

If friction is equivalent to a force of 30 N at the sleeve, find the total alteration in speed before the 
sleeve beings to move from mid-position.

Fc2

(b)

W+S2

2

r2

c2

a2 S2

C

W

b

A
b2

h2

mg

B

a

r0

c1

r0

h1

b1

S1

a1

Fc1

a

A

b

C W

W+S1

2
(a)

mg

B

r1

C

C

Fig.9.40 Hartnell governor
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Solution 

Given: m 5 kg, h 50 mm, N
1

240 rpm, r
1

120 mm, a 120 mm, b 90 mm, r
o

140 mm, 
F 30 N
Mean working speed, 

 
m

1 2

2
Range of speed, neglecting friction, 

r 2
  

1

m
20 

r

 
 1 2

1 22
20( )

39 
2

41 
1

 2 1

41

39
 


 

1
12

60

2 240

60
25 13

N
. rad/s

2

41

39
25 13 26 42. .  rad/s

Lift of sleeve, h r r
b

a2 1–

r r
ha

b2 1 120 50
120

90
186 7. mm

At minimum speed,

F m rc1 1
2

1
25 25 13 0 12 378 9   N ( . ) . .

At maximum speed,

F m rc2 2
2

2
25 26 42 0 1867 651 6  N ( . ) . .

From Fig.9.40(a), we have

c r r h h
h

1 0 1 140 120 20
2

50

2
25 mm,  mm1 2

a a c1 mm2
1
2 2 2120 20 118 3.

b b h1
2

1
2 2 290 25 86 46. mm

From Fig.9.40(b),

c
2

r
2
  r

0
186.7  140 46.7 mm

a a c2
2

2
2 2 2120 46 7 110 54( . ) . mm

b b h2
2

2
2 2 290 25 86 46. mm
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Taking moments about fulcrum A of bell crank lever, (Here W 0)

S
b F a cc

1
1 1 1 12

mg

S

S

1

1

86 46

2
378 9 118 3 5 9 81 20

1014 2

.
. . .

.  N

S
b F a cc

2
2 2 2 22

mg

S

S

2

2

86 46

2
651 6 110 54 5 9 81 46 7

1719 14

.
. . . .

.  N

Spring stiffness, k
S S

h
2 1 1719 14 1014 2

50
14 1

. .
. N/mm

Initial compression of spring 
S

k
1 1014 2

14 1
71 93

.

.
. mm

Taking friction into account:

Spring force in mid-position, S S
1

h
1
k 1014.2 25 14.1 1366.7 N

m

25 13 26 42

2
25 775

. .
. rad/s

Nm

60 25 775

2
246

.


rpm

Speed when the sleeve begins to move downwards from mean position,

N N
S F

Sm 246
1366 7 30

1366 7
243 3

.

.
. rpm

and when begins moving upwards,

N N
S F

Sm 246
1366 7 30

1366 7
248 7

.

.
. rpm

Alteration in speed N N 248 7 243 3 5 4. . .  rpm

Example 9.44

In a spring-controlled governor of Hartung type, the length of the ball and sleeve arms are 80 mm 
and 120 mm respectively. The total travel of sleeve is 30 mm. In the mid-position, each spring is com-
pressed by 50 mm and radius of rotation of mass centres is 150 mm. Each ball has a mass of 5 kg and 
the spring has a stiffness of 10 N/mm. The equivalent mass of governor gear at the sleeve is 15 kg. 
Neglecting the moment due to revolving masses when the arms are inclined, determine the ratio of 
range of speed to mean speed of the governor. Also find the speed in mid-position.
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Fc2

(c) Maximum position

a2

S2

b2c2

mg a

B

b

C Mg

A
h2

C

r

c1 r1
S1

B

mgaa1

Fc1

h1

b1
C

Mg

b

A

(b) Minimum position
2

Mg

C

r

Fc

Mg

Mg

Cb

2

A

(a) Mean position

a mg

SB

C

Fig.9.41 Harting governor

Solution 

Given: a 80 mm, b 120 mm, h 30 mm, r 150 mm, m 5 kg,

 k 10 N/mm, M 15 kg, 
i

50 mm

Refer to Fig.9.41. Let 
m

mean angular speed
Mean position:

F m rc m m m  2 2 24 0 15 0 6. . N

Spring force, S k i 10 50 500 N

Taking moments about fulcrum A,

F a S a bc

Mg

2

0 6 80 500 80
15 9 81

2
1202.

.
m  

m
2 01 17 27.

m 31 895. rad/s

Nm

60 31 895

2
304 6

.
.


rpm

From Fig.9.41(b), we have

r r

h

a

b
h

h
h1

1
1 22

30

2
15, mm

r r h
a

b1 1 150
30

2

80

120
140 mm
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F m rc1 1
2

1 1
2

1
25 0 14 0 7   . .

S
1

[
i
  (r  r

1
)] k

 [50  (150  140)] 10 400 N
Taking moments about A,

F
c1

a S
1

a
Mg

2
b

0 80 400 80
15 9 81

2
1201

2.
.

7

1
2 0729 9.

1
27 rad/s

N1 rpm
60 27

2
257 8


.

From Fig.9.41(c),

r r

h

a

b
2

2

r r
a

b
h2 2

 150
80

120
15 160 mm

F m rc2 2
2

2 2
2

2
25 0 16 0 8     . .

S
2

[
i

(r
2
  r)] k

 [50 (160  150)] 10 600 N

Taking moments about A,

F a S a bc2 2 2

Mg

0 8 80 600 80
15 9 81

2
1202

2.
.



2
2 887 95.

2
29.8 rad/s

N2

60 29 8

2
284 5

.
.


rpm

Range of speed N
2
  N

1
284.5  257.8 26.7 rpm

N N

N
2 1 26 7

304 6
0 0876

m

.

.
. . %    or 8 76
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Example 9.45

The two balls of a Wilson-Hartnell governor, each of mass 6 kg, are connected across by two springs. 
An auxiliary spring provides an additional force at the sleeve through the medium of a lever which 
pivots about a fixed centre as shown in Fig.9.42. In the mean position, the radius of the governor balls 
is 120 mm and the speed is 600 rpm. Find the tension in the auxiliary spring in this position when 
tension in each spring is 800 N.

x 80 mm, y 180 mm, a b 100 mm, r r
1

120 mm, k
b

10 N/mm
When the sleeve moves up by 20 mm, the speed is to be 650 rpm. Find the stiffness k

a
.

Sb

mg
a

b

Mg

Mg

O1

Sa

ka

2

O

Fc1
kb kb

r r

x y

Fig.9.42 Wilson–Hartnell governor

Solution 

 
1

2 600/60 62.83 rad/s

 F
c1

m  2
1 
r

1
6 (62.83)2 0.12 2842.3 N

 S
b1

2 800 1600 N

Taking moments about the fulcrum O of bell crank lever,

F a S a
Mg

bc b1 2

2
100

1

2842.3 100 = 1600 100 + 
Mg

 Mg 2484.6 N

Taking moments about O
1
,

 Mg x s
a

y

Sa

2484 6 80

180
1104 25

.
.  N

Now h 20 mm, N
2

650 rpm
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2
2

2 1

2

2

60

2 650

60
68 1

10

N

k

h r r
a

b

r
a

b
h r

b

.

/

( )

 rad/s

 N mm

11

2 2
2

2
2

100

100
20 120 140

6 68 1 0 14 3892

 mm

 NF m rc  ( . ) .

Extension of springs of balls, S
b

2 (r
2
  r

1
) number of springs

  2(140  120) 2 80 mm

Total spring force, S
b2

S
b1 b

k
b

  1600 80 10 2400 N

Taking moments about O,

F S
Mg

S
Mg Mg

Mg

c b

b

2 2100 100
2

100

3892
2

2400
2

2984

2

 N

Taking moments about O
1

Mg x S y

S

a

a

2

2  N2984
80

100
1326 2.

Extension of auxiliary spring,  S h
y

xa 20
180

80
45 mm

Stiffness of auxiliary spring, k
S S

a
a a

a

2 1



1326 2 1104 25

45
4 93

. .
.  N/mm

Summary for Quick Review

1 A governor is a device to maintain, as closely as possible, a constant mean speed of rotation of the 
crankshaft over long periods during which the load on the engine may vary. The governor meets 
the varying demand for power by regulating the supply of working fluid.

2 There are basically two types of governors: centrifugal governors and inertia governor. In cen-
trifugal governors, the centrifugal force is balanced by the controlling force. In inertia type of 
governors, the inertia force is balanced by the controlling force. The centrifugal governors can be 
either of pendulum type or dead weight and spring loaded type.

3 Dead weight type of governors are: Porter governor and Proell governor.
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4 Spring loaded type governors are: Hartnell governor, Hartung governor, Wilson  Hartnell gover-
nor, and Pickering governor.

5 Simple Watt governor.
(a) Neglecting weight of the arms.

h g/ 2

With increasing speed, governor stops functioning. It is used for slow speed engines.
(b) Considering weight of the arms.

h (g/ 2)[(w W
a
/2)/(w W

a
/3)]

6 Porter Governor

h (g/ 2 ) [1 (W/2w) (1 k)]

where k tan /tan .
If , then

h (g/ 2 ) [1 W/w]

If F is the frictional force acting on the sleeve, then

h (g/ 2 ) [(w W ± F)/w]

Take ve sign when the sleeve moves upwards or the governor speed increases and –ve sign when 
the sleeve moves downwards or the governor speed decreases.

7 Proell governor.
2 (BF/CF ) [1 (W/(2w)}(1 k)] · (g/h)

Where tan r/h, and k tan /tan .
If , i.e. k 1, then

2 (BF/CF ) [ 1 W/w] (g/h)

8 Hartnell governor

k 2 (a/b)2 [(F
c1

  F
c2

)/(r
1
  r

2
)]

9 Gravity and spring controlled governor

W S 2 [F
c
c  w (d e)]/d

10 Wilson-Hartnell governor

4 k
b

k
a
 (by/ax)2/2 (F

c1
  F

c2
)/(r

1
  r

2
)

If k
a

0, then

k
b

(F
c1

  F
c2

)/[4(r
1
  r

2
)]

11 Hartung governor

(F
c
  P) a W b/2

12 Pickering governor

h lift of the sleeve

The deflection of a leaf spring with both ends fixed and carrying a central load W, is given by

m (a ) 2L3/(192 E I )

The lift of the sleeve, h  2.4 2/L
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13 Inertia governor
For a governor to be rapid in action, the arm should be arranged such that as the mass moves 
outwards, the arm rotates in a direction opposite to that of the rotation of shaft.

14 Performance of governors.
(a)  Sensitiveness: It is defined as the ratio of the difference between the maximum and minimum 

equilibrium speeds to the mean equilibrium speed.
(b)  Stability: A governor is said to be stable, when for each speed within the working range, there 

is only one radius of the governor balls at which the governor is in equilibrium.
(c)  Isochronism: A governor is said to be isochronous, when the equilibrium speed is constant 

for all radii of rotation of the balls, within the working range. An isochronous governor will 
be infinitely sensitive.

(d)  Hunting: It is a condition in which the speed of the engine controlled by the governor fluctu-
ates continuously above and below the mean speed. It is caused by a governor which is too 
sensitive.

(e)  Governor effort: The effort of a governor is the force which it can exert at the sleeve on the 
mechanism which controls the supply of fuel to the engine. The mean force exerted during 
the given change of speed is termed the effort. Generally effort is defined for 1% change of 
speed.

(f)  Power: The power of a governor is defined as the work done at the sleeve for a given percent-
age change of speed.

Power Effort Displacement of sleeve

15 Quality of a governor
The quality of a governor is ascertained by 1. Sensitiveness, 2. Stability, and 3. Effort and power.

16 Controlling force
When the speed of rotation is uniform, each ball of the governor is subjected either directly or 
indirectly to an inward pull, which is equal and opposite to the outward centrifugal reaction. This 
inward pull is termed the controlling force. A curve drawn to show how the pull varies with the 
radius of rotation of the ball is called a controlling force curve.

17 The stability of a spring controlled governor can be ascertained as follows:
(a)  For a stable governor, the controlling force must increase as radius of rotation increases, i.e. 

F
c
/r must increase as r increases. Therefore, the controlling force line, F

c
a r  b, produced 

must intersect the controlling force axis below the origin
(b)  When b 0, the controlling force line, F

c
ar, passes through the origin, and the governor 

becomes isochronous, because F
c
/r will remain constant for all radii of rotation.

(c)  If b is positive, then F
c
/r decreases as r increases, so that the equilibrium speed of the gov-

ernor decreases with an increase of the radius of rotation of the balls, which is not possible. 
Such a governor is said to be unstable. The equation of line is, F

c
a r b.

18 Coefficient of insensitiveness
The coefficient of insensitiveness is defined as the ratio of the difference of speed at ascent and 
descent for same radius of rotation to the steady speed at the same radius of rotation.
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Multiple Choice Questions

1 The height of Watt's governor is proportional to
(a) speed (N) (b) N2 (c) 1/N (d) 1/N2.

2  In a Hartnell governor, if the stiffness of spring is increased, the governor will
(a) become more sensitive (b) become less sensitive
(c) remain unaffected (d) start hunting.

3 The function of a governor is to
(a) reduce the speed fluctuations during a cycle
(b) maintain the prime mover speed within prescribed limits
(c) not to influence the speed of the prime mover
(d) not to control the variation in load on the prime mover.

4 The following governor is spring loaded
(a) Watt governor (b) Porter governor
(c) Proell governor (d) Hartnell governor.

5 The gravity controlled governor is
(a) Hartnell governor (b) Pickering governor
(c) Hartung governor (d) Proell governor.

6 The height of a Watt’s governor is
(a) 2/g (b) g/ 2 (c) g 2 (d) 2 g 2

7 The Proell governor as compared to Porter governor, at same speed
(a) is more sensitive (b) requires smaller size
(c) has less lift (d) all of the above.

8 The sensitivity of a governor due to frictional resistance at the sleeve
(a) increases (b) decreases (c) remains same (d) depends on speed.

9 The spring loaded governors as compared to gravity controlled governors
(a) can operate at higher speeds (b) are more compact and smaller in size
(c) are capable of being fixed at any inclination (d) all of the above.

10 If the ball masses of a governor occupy a definite specified position for each speed, it is said  
to be
(a) stable (b) hunting (c) isochronous (d) sensitive.

11 If the ball masses of a governor have same equilibrium speed for all the radii of rotation, it is said 
to be
(a) stable (b) hunting (c) isochronous (d) sensitive.

12 Isochronous governor is
(a) more sensitive (b) less stable (c) less sensitive (d) less stable.

13 Governor effort is defined as the force applied for
(a) 1% change in speed (b) 2% change in speed
(c) 5% change in speed (d) the total range of speed.

14 Governor which is hunting is
(a) more sensitive (b) less sensitive (c) more stable (d) less stable.

15 Governor power is defined as the product of governor effort and
(a) sleeve lift (b) reciprocal of sleeve lift
(c) difference of radii of rotation for maximum and minimum speeds
(d) square of sleeve lift.
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Answers

1. (d) 2. (b) 3. (b) 4. (d) 5. (d) 6. (b) 7. (d) 8. (d) 9. (d) 10. (a) 11. (c) 12. (c)  
13. (a) 14. (d) 15. (a)

Review Questions

1  What is the main function of a governor? How does it differ from that of a flywheel?

2 What are the various types of governors?

3 How does centrifugal governor differ from an inertia governor?

4 What is the effect of friction on the functioning of a Porter governor?

5 Why an auxiliary spring is used along with main springs in a Wilson-Hartnell governor?

6 Which type of governor is used in a gramophone?

7 Explain the meaning of sensitiveness, hunting and stability of a governor?

8 What is the condition of isochronism in case of a Hartnell governor?

9 Define effort and power of a governor.

10 What is the controlling force of a governor? How does the controlling force curve help in estab-
lishing the stability or instability of a governor?

Exercises

9.1 A Porter governor has all the four arms of 250 mm length each. All the upper arms and the sleeve 
arms are pivoted on the axis of rotation. The mass of each governor ball is 0.9 kg. The mass on 
the sleeve is 15 kg. Find the speed of rotation when the balls rotate at a radius of 160 mm.

9.2 The lengths of upper and lower arms of a Porter governor are 220 mm and 260 mm respectively. 
All the arms are pivoted on the axis of rotation. The central load is 125 N and weight of each ball 
is 15 N. The friction of sleeve together with the resistance of the operating gear is equivalent to a 
force of 25 N at the sleeve. If the limiting inclinations of the upper and lower arms to the vertical 
are 30° and 40°, respectively, determine the range of speed of the governor.

9.3 A Porter governor has all four arms 200 mm long. The upper arms are attached on the axis of 
rotation and the lower arms are attached to the sleeve at a distance of 25 mm from the axis. The 
mass of each ball is 5 kg and the mass of sleeve is 40 kg. The extreme radii of rotation are 150 mm  
and 200 mm. Determine the range of speed of governor.

9.4 A loaded Porter governor has four arms each 240 mm long, two revolving masses each weigh-
ing 25 N and a central dead weight of 200 N. All the arms are attached to respective sleeves at 
radial distances of 40 mm from the axis of rotation. The masses revolve at a radius of 150 mm 
at minimum speed and 200 mm at maximum speed. Determine the range of speed.

9.5 In a Proell governor, the mass of each ball is 5 kg and central load on sleeve is 50 kg. The length 
of each upper and lower arms is 250 mm. The minimum and maximum radii are 120 mm and 
180 mm respectively. The distances of point of suspension of upper and lower links from gover-
nor axis are 20 mm and 30 mm, respectively. The length of links to which balls are attached is 
75 mm. Assuming that the links to which balls are attached are parallel to governor axis at the 
minimum radius, determine the equilibrium speeds corresponding to extreme radii.
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9.6 The arms of a Proell governor are 250 mm long. The upper arms are pivoted on the axis of 
rotation, while the lower arms are pivoted at a radius of 35 mm. Mass of each ball is 5 kg and 
is fixed to the extension 100 mm long of the lower arms. The central sleeve load is 100 N. At 
minimum radius of 160 mm the extension to which the balls are attached are parallel to the 
governor axis. Determine the equilibrium speeds for radii of 160 and 200 mm.

9.7 The fly balls of spring loaded governor of Hartnell type running at 600 rpm have a radius of 
rotation of 80 mm with sleeve in mid-position and ball arms vertical. The ball arms and sleeve 
arms are of equal length. The maximum sleeve movement is 20 mm with ±5% variation in 
speed. The mass of sleeve is 5 kg and friction may be assumed to be equivalent to an additional 
load of 20 N at the sleeve. The governor effort is sufficient to overcome the friction at the sleeve 
by 1% change of speed at mid-point. Determine (a) mass of each ball, (b) spring rate, (c) initial 
compression of spring, (d) governor effort for 1% change of speed, and (e) governor power.

9.8 In a Hartnell type governor, the two masses are 5 kg each and the load on the sleeve is 45 kg. 
With the mass arms vertical, the path radius is 80 mm and the equilibrium speed, neglecting 
friction, is 450 rpm. Determine (a) the corresponding compressive force in the spring, and  
(b) the friction force at the sleeve, which can be overcome in this position for an increase in 
speed of 1%.

9.9 In Hartnell governor, the lengths of ball and sleeve arms of a bell crank lever are 120 mm and 
100 mm respectively. The distance of the fulcrum of the bell crank lever from the governor 
axis is 150 mm. Each governor ball has a mass of 4 kg. The governor runs at a mean speed of  
300 rpm with the ball arms vertical and sleeve arms horizontal. For an increase of speed of 4%, 
the sleeve moves 10 mm upwards. Neglecting friction, determine (a) minimum equilibrium 
speed if the total sleeve movement is limited to 20 mm, (b) spring stiffness, (c) sensitiveness of 
governor, and (d) spring stiffness if the governor is to be isochronous at 300 rpm.

9.10 In a Wilson-Hartnell spring loaded governor, the two balls are of 5 kg each, which are con-
nected by two springs. The speed of the governor is 600 rpm in its mean position. The radius of 
the governor ball is 150 mm. The tension in each spring is 1200 N. Find the tension in the other 
spring and its stiffness, if the speed is 650 rpm when the sleeve moves up by 20 mm from mean 
position and stiffness of each spring is 10 N/mm.

9.11 In a spring-controlled governor, the curve of controlling force is a straight line. When balls of  
8 kg mass each are 400 mm apart, the controlling force is 1 kN and when 200 mm apart is 560 N.  
At what speed will the governor run when the balls are 250 mm apart? What initial tension on 
the spring would be required for isochronisms and what would then be the speed?

9.12 The controlling force F in N and radius of rotation r in cm for a spring loaded governor are 
related by the expression: F 3r  8. The mass of each ball is 5 kg and extreme radii of rotation 
of the balls are 100 mm and 175 mm, respectively. Find the maximum and minimum speeds. If 
the friction of governor mechanism is equivalent to a radial force of 5 N at each ball, find the 
extent to which the equilibrium speeds are affected at the extreme radii of rotation.

9.13 The controlling force curve of a spring controlled governor is a straight line. The weight of 
each governor ball is 40 N and the extreme radii of rotation are 120 and 200 mm. The values 
of the controlling force at the above radii are respectively 200 N and 400 N. The friction of the 
mechanism is equivalent to 3 N at each ball. Determine (a) the extreme equilibrium speeds of 
the governor, and (b) the equilibrium speed and the coefficient of insensitiveness at a radius of 
150 mm.
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9.14 The following data refer to a Hartnell governor:

Length of ball arm of bell crank lever 150 mm; length of sleeve arm 100 mm;

Mass of ball 5 kg; spring stiffness 250 N/mm.

At minimum speed of 300 rpm the radius of rotation of ball is 80 mm. Neglecting gravity effect, 
determine (a) the speed after the sleeve has lifted by 50 mm, (b) the initial compression of the 
spring, (c) governor effort, and (d) power.
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10.1 INTRODUCTION
The inertia force arises due to the mass and acceleration of the reciprocating parts whereas turning 
moment arises due to the crank effort. Inertia force is equal to the acceleration force in magnitude and 
opposite in direction. Dynamic forces arise due to eccentricity of the centre of mass from the axis of 
rotation or the geometric centre. It causes vibrations in the system, which are undesirable.
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10.2 MOTION ANALYSIS OF RECIPROCATING MECHANISM
Consider the slider crank mechanism, as shown in Fig.10.1. OC is the crank, BC the connecting rod,  
C the crank pin, and B the gudgeon pin or the cross head. The crank is rotating clockwise with angular 
speed .

Fig.10.1 Slider-crank mechanism

10.2.1 Velocity and Acceleration of Piston
Displacement of the piston from top dead centre,
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Velocity of piston,
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Acceleration of piston, 
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10.2.2 Angular Velocity and Acceleration of Connecting Rod
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Angular acceleration of connecting rod,
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Example 10.1

The length of the crank of a reciprocating engine is 120 mm and its connecting rod is 600 mm long. 
It rotates at 360 rpm and at a particular instant makes an angle of 50° with the inner dead centre. Find 
the (a) velocity and acceleration of the piston, (b) velocity and acceleration of the midpoint of the con-
necting rod, and (c) angular velocity and angular acceleration of the connecting rod.

Solution 

Given: r 120 mm, l 600 mm, N 360 rpm, 50°

n
l

r

600

120
5

2 360

60
37 7


.  rad/s

The slider-crank mechanism is shown in Fig.10.2(a).
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(b) vc r 37.7 0.12 = 4.524 m/s  

Draw velocity polygon as shown in Fig 10.2(b) to a scale of 1 cm 1 m/s.

vc poc OC CP op OP, , . c  

Fig.10.2 Slider-crank mechanism
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Velocity of midpoint of connecting rod,

vb ob 4 cm = 4 m/s

Velocity of CP cp 3 cm 3 m/s
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Draw acceleration diagram as shown in Fig.10.2 (c) to scale of 1 cm 20 m/s2.
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10.3 INERTIA FORCES IN THE RECIPROCATING ENGINE
The piston reciprocates along the line of stroke. On account of the acceleration and mass of the piston 
pin, inertia force is generated along the line of stroke. On the other hand, the connecting rod oscillates 
between its two extreme positions. Some mass of the connecting rod may be considered as reciprocat-
ing with the piston and remaining mass rotating with the crank pin. In this article, we shall study the 
inertia force generated due to the reciprocating parts.

10.3.1 Analytical Method
Consider the slider crank chain, as shown in Fig.10.3.

Let W
c

weight of the connecting rod

M
r

mass of reciprocating parts

K  radius of gyration of connecting rod about its centre of gravity and perpendicular to the 
plane of rotation

l
1

 distance of centre of gravity G of connecting rod from the gudgeon (or piston) pin 
(point P)
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Fig.10.3 Inertia forces in reciprocating engine
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Let F
y
 be two equal and opposite forces applied at P and C.

Then
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Vertical force through C W
PG

PC

W l

lc
c 1

Torque exerted on crankshaft by gravity,
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Total torque exerted on the crankshaft by the inertia of moving parts

 T
i

T
c
 T

g
 (10.9)
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10.3.2 Graphical Method
The graphical construction for calculating the inertia forces in a reciprocating engine is shown in 
Fig.10.4. The following procedure may be adopted for this purpose:

1. Draw the acceleration diagram OCQN by Klein’s construction. The acceleration of the piston P 
with respect to the crank centre O is,

f NOp
2

 and is acting in the direction from N to O. Therefore the inertia force F
i
 shall act in the opposite 

direction from O to N.

2. Replace the connecting rod by dynamically equivalent system of two masses as explained in 
 Section 10.8. Let one of the masses be placed at P. To obtain the position of the other mass, draw 
GZ  perpendicular to CP such that GZ K, the radius of gyration of the connecting rod. Join PZ and 
from Z draw perpendicular to DZ which intersects CP at D. Now D is the position of the second 
mass. Otherwise, GP  ·  GD K 2.

Fig.10.4 Graphical method to determine inertia forces in reciprocating engine

3. Locate the points g and d on NC, the acceleration image of the rod, by drawing parallel lines from 
G and D to the line of stroke, Join gO and dO. Then

f gOG
2  and f dOD

2

4. From D, draw DE parallel to dO to interect the line of stroke at E. The inertia force of the rod F
r
 acts 

through E and in the opposite direction.

F m gOr r
2

 where m
r
 is the mass of the rod.
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 The forces acting on the connecting rod are:

 (i) Inertia force of the reciprocating parts F
i
 acting along the line of stroke PO.

 (ii)  The side thrust between the cross-head and the guide bars S acting at P and right angles to the 
line of stroke.

 (iii) The weight of the connecting rod, W
r

m
r
g.

 (iv) Inertia force of the connecting rod F
r
.

 (v) The radial force F
r
 acting through O and parallel to the crank OC.

 (vi) The force F
t
 acting perpendicular to the crank OC.

5. Now produce the line of action of F
r
 and S to intersect at a point I. From  I draw IX and IY perpendi-

cular to the lines of action of F
r
 and W

r
. Taking moments about I, we have

F IC F IP F IX W IYit r r

 The value of F
t
 may be obtained from this equation and from the force polygon, the forces S

 
 and F

r
 

may be calculated. Then, torque exerted on the crankshaft to overcome the inertia of moving parts 
is F

t
  ·  OC.

10.4 EQUILIBRIUM OF FORCES IN SLIDER CRANK CHAIN
Due to the gas (or steam) force on the piston, the connecting rod and crank are subjected to various 
forces. The connecting rod is under compression as the crank moves from inner dead centre during 
outstroke, i.e. expansion. This produces axial thrust in the rod. During instroke, i.e. compression, the 
rod is under tension. The forces in the rod give rise to radial and tangential forces on the crank. We 
shall study the equilibrium of these forces in detail for various types of reciprocating engines.

10.4.1 Piston Effort (or Effective Driving Force)
Piston effort is the net or effective force applied on the piston. In reciprocating engines, the reciprocat-
ing masses accelerate during the first half of the stroke and the inertia tends to resist the same. Thus, 
the net force on the piston is decreased. During the later half of the stroke, the reciprocating masses 
decelerate and the inertia force opposes this deceleration or acts in the direction of the applied gas 
pressure, thereby increasing the effective force on the piston.

In a vertical engine, the weight of the reciprocating masses assists the piston during the outstroke 
(i.e. downstroke), thus increasing the piston effort. During the instroke (i.e. upstroke), piston effort is 
decreased by the same amount.

The various forces acting on the links of the slider crank chain during outstroke are shown in 
Fig.10.5(a).

Let F piston effort

F
c

thrust in the connecting rod

F
t

crank pin effort

F
r

force in the crank or bearing reaction

F
n

reaction of guide bars

In PCD
F F Fc n,

sin( ) sin sin
 

90 90 
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Fig.10.5 Equilibrium forces in slider-crank mechanism

or F F Fc n

cos sin 1
 

Thrust along the connecting rod, F
F

c cos
 (10.10)

(a)  Thrust on the sides of the cylinder: The piston effort produces thrust on the sides of the cylinder. 
This results into reaction of the guide bars.

 F Fn tan  (10.11)

  The connecting rod is in compression during outstroke.

(b) Crank pin effort: It is the net force applied at the crankpin perpendicular to the crank.
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(c)  Thrust on the bearings:The component of the thrust in the connecting rod along the crank in the 
radial direction F

r
 produces thrust on the crankshaft bearings.

 
F F

F
r c cos ( )

cos( )

cos
 

 


 (10.13)
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(d)  Crank Effort: It is the turning moment produced by the crankpin effort on the crankshaft. Crank 
effort,
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10.4.2 Piston Effort for Various Types of Engines

(a)  Double Acting Horizontal Steam Engine: The net force acting on the cross-head pin along the line 
of stroke is called piston effort.

Let D diameter of piston
d diameter of piston rod

p
1
, p

4
steam pressure on cylinder end during outstroke and instroke respectively

p
1
, p

3
steam pressure on crank end during outstroke and instroke respectively

M
r

mass of reciprocating parts

 (i) Outstroke

Force on piston due to steam pressure during outstroke, F D p D d ppo


4

2
1

2 2
2( )

Accelerating force due to mass of reciprocating parts, F M r
ni r  
2 2

cos
cos

Piston effort during outstroke,

 PEO, F F Fpo i , neglecting frictional resistance (10.15a)

 F F Fpo i f , considering frictional resistance (10.15b)

where F
f

frictional resistance
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 (ii) Instroke

Force on piston due to steam pressure during instroke, F D p D d ppi


4

2
3

2 2
4( )

Net force on piston during instroke, PEI, F F Fpi i  neglecting frictional  
resistance (10.16a)

F F Fpi i f , considering frictional resistance (10.16b)

(b) Double Acting Vertical Steam Engine

 (i) Downstroke

Piston effort during downstroke for vertical steam engine,

PED, F F M g F Fpd r i f
 (10.17)

 (ii) Upstroke

Piston effort during upstroke for vertical steam engine,

PEU, F F M g F Fpu r i f  (10.18)

(c) Four Stroke Horizontal Internal Combustion Engine
Substitute p p p2 3, a  atmospheric pressure, and d 0 in Eqs. (10.14) and (10.15) to obtain the 
piston effort during outstroke and instroke, respectively.

PED,  F D p p M r
na r


 


4

22
1

2( ) cos
cos

 (10.19)
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(d) Four Stroke Vertical Internal Combustion Engine

PED,   F D p p M r
n

M ga r r
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n
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10.5 CRANK EFFORT (OR TURNING MOMENT) DIAGRAMS
The diagrams obtained on plotting crank effort for various positions of crank are known as crank effort 
diagrams, From Eq. (10.1), we have

Displacement, x r n n( cos ) ( sin ) .1 2 2 0 5 

Length of stroke, L r2
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x

L
n n0 5 1 2 2. ( cos ( sin ) + )0.5  (10.23)

x

L
 is called the displacement constant.

10.5.1 Procedure for Determination of Turning Moment Diagram
The following steps may be followed to determine the turning moment diagram:

1. Determine the pressure of the working fluid on both sides of the piston either from the indicator 
diagram or from theoretical calculations.

2. Calculate the load on the piston due to steam or gas pressure, F
p
.

3. Calculate the acceleration of the piston, f
p
.

4. Calculate the inertia force due to reciprocating parts, F
i

M
r
  f

p
.

5. Calculate the piston effort, PE F F M g M f Fp r r p f

 Remember that second term is zero for a horizontal engine. For a vertical engine, take positive sign 
for downstroke and negative sign for upstroke before M

r
 g.

6. Calculate the crank effort, CE T F r
n

sin
sin




+
2

2

10.5.2 Turning Moment Diagram for a Vertical Steam Engine
The turning moment diagram for a vertical steam engine is shown in Fig.10.6. The hatched area below 
the mean torque shows deficient energy, and the area above the mean torque is the surplus energy. One 
cycle is completed during 360° of the crank rotation.

Fig.10.6 Turning moment diagram for a vertical steam engine

10.5.3 Turning Moment Diagram for a Four Stoke I.C. Engine
The turning moment diagram for a four stroke I.C. engine is shown in Fig.10.6. Here one cycle is 
completed during 720° of the crank rotation. Energy is supplied mainly during the expansion stroke. 
This diagram is more nonuniform as compared to Fig.10.6.
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Fig.10.7 Turning moment diagram for a four stroke I.C. engine

10.5.4 Turning Moment Diagram for a Multicylinder Engine
The turning moment diagram for a three-cylinder engine is shown in Fig.10.8. The diagram becomes 
more uniform above and below the mean torque.

Fig.10.8 Turning moment diagram for a multi-cylinder engine

10.5.5 Uses of Turning Moment Diagram
The uses of turning moment diagram are as follows:

1. The area under the turning moment diagram represents work done per cycle. This area multiplied 
by number of cycles per second gives the power developed by the engine in Watts.

2. Dividing the area of the turning moment diagram with the length of the base gives the mean turning 
moment. This enables to find the fluctuation of energy.

3. The maximum ordinate of the turning moment diagram gives the maximum torque to which the 
crankshaft is subjected to. This enables to find the diameter of the crankshaft.
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Example 10.2

The following data refers to a steam engine:

 Diameter of the piston 230 mm

 Stroke 600 mm

 Length of connecting rod 1.5 m

 Mass of reciprocating parts 250 kg

 Speed 120 rpm

Determine the magnitude and direction of the inertia force on the crankshaft when the crank has 
turned through 30° from inner dead centre.

Solution 

Given: d
p

230 mm, L 600 mm, or r 300 mm, l 1.5 m, M
r

250 kg, N 120 rpm, 30°

n
l

r

f r
np

1 5

0 3
5

2 120

60
13 57

22

.

.

.

cos
cos




 


 rad/s

( . ) . cos
cos

.

13 57 0 3 30
60

5

45 791

250

2

2 m/s

F M fi r p 445 791 11447 8. .  N

Example 10.3

A horizontal steam engine running at 180 rpm has a bore of 320 mm and stroke 560 mm. The connect-
ing rod is 1 m long and the mass of the reciprocating parts is 50 kg. When the crank is 50° past inner 
dead centre, the steam pressure on the cover side of the piston is 1.2 MPa, while that on the crank side 
is 0.15 MPa. Neglecting the area of the piston rod, determine (a) The force on the piston, and (b) turn-
ing moment on the crankshaft.

Solution 

Given: N 180 rpm, d
p 

320 mm, L 560 mm or r 280 mm, l 1m, M
r

50 kg, 50°

p
1

1.2 MPa, p
2

0.15 MPa.

n
l

r

1

0 28
3 571

2 180

60
18 85

.
.

.


 rad/s
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(a) Force on piston, F
p p

p

pd 2
1 2

2

4

320 1 2 0 15

4

( ) ( . . )
84446 N

(b)

 

f r
np

2

2

2

18 85 0 28 50 0 28 100

cos
cos

( . ) . [cos . cos ]

59 11 2.  m/s  

Inertia force due to reciprocating parts, F M fi r p 50 59 11. 2955.66 N

Piston effort, F F Fp i 84446 2955 66. 81490.34 N  

Crank effort, CE F r
n

sin
sin

. . sin
sin

.


2

2

81490 34 0 28 50
100

2 3 5711

20625 3.  N m  

Example 10.4

A vertical single cylinder engine has a cylinder diameter of 240 mm and a stroke of 420 mm. The mass 
of the reciprocating parts is 200 kg. The connecting rod is 4.25 times the crank radius and the speed 
is 340 rpm. When the crank has turned through 40° from the top dead centre, the net pressure on the 
piston is 1 MPa. Calculate the effective moment on the crankshaft for this position.

Solution 

 Given:  N 340 rpm, d
p

240 mm, L 420 mm or r 210 mm, n 4.25, M
r

200 kg, 40°, 
p 1 mpa


2 340

60
35 6.  rad/s

(a) Force on piston, F
d p

p

p
2 2

4

240 1

4
45238 93.  N

 

(b)

 

f r
np

2

2

2

35 6 0 21 40
80

4 25

cos
cos

( . ) . cos
cos

.

214 75 2.  m/s  

Inertia force due to reciprocating parts, F M fi r p 200 214.75 42950 N

Piston effort, F  F
p

M
r
 g  F

i
45238.93 200 9.81  42950 4250.93 N
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Crank effort,

 

CE F r
n

sin
sin

. . sin
sin

.


2

2

4250 93 0 21 40
80

2 4 25

677 24.  N m  

Example 10.5

A petrol engine 100 mm in diameter and 120 mm stroke has a connecting rod 250 mm long. The piston 
has a mass of 1 kg and the speed is 1800 rpm. The gas pressure is 0.5 MPa at 30° from top dead centre 
during the explosion stroke. Find (a) the resultant load in the gudgeon pin, (b) the thrust on the cylinder 
walls, (c) the speed above which the gudgeon pin load will be reversed, and (d) the crank effort at this 
position.

Solution 

 Given: N 1800 rpm, d
p

100 mm, L 120 mm or r 60 mm, l 250 mm, M
r

1 kg, 30°,  
p 0.5 MPa.

 

n
l

r

250

50
5

2 1800

60
188 5


.  rad/s

Force on piston due to gas pressure, F
d p

p

p
2 2

4

100 0 5

4
3927

.
 N

Acceleration of reciprocating parts, f r
np  
2

2

2

188 5 0 05 30
60

5

cos
cos

. . cos
cos

11716 25 2.  m/s

Inertia force due to reciprocating parts, F
i

M 
r
  f

p
1 1716.26 1716.25 N

(a) Piston effort, F F
p
  F

i
3927  1716.25 2210.75 N 

(b) sin
sin sin

. , .



n

30

5
0 1 5 74

Thrust on cylinder walls, F Fn tan . tan . . 2210 75 5 74 222 22 N

Resultant load on gudgeon pin F F n
2 2 0 5 2 2 0 52210 75 222 22

. .[( . ) ( . ) ] 2221.9 N
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(c)

 

 

f r
np  




2

2

2

0 05 30
60

5

0 0483

cos
cos

. cos
cos

.   

 

2

2 21 0 0483 0 0483F M fi r p . .
 

For F
p
  F

i
0

 

0 0483 3927

81304

285 14

285 14 60

2
2723 8

2

2

.

.

.
.

 

 rad/s

 r







N ppm

 

(d) Crank effort,

 

CE F r
n

sin
sin

. . sin
sin


2

2

2210 75 0 05 30
60

2 5

64 84.  N m  

Example 10.6

The following data refers to a horizontal reciprocating engine:

Length of crank 300 mm

Length of connecting rod 1.5 m

Speed 120 rpm, cw

Mass of reciprocating parts of engine 290 kg

Mass of connecting rod 250 kg

Centre of gravity of connecting rod from crankpin centre 475 mm

Radius of gyration of connecting rod about an axis through centre of gravity 625 mm

Find the inertia torque on the crankshaft when 40°.

Solution 

 Given: r 300 mm, l 1.5 m, N 120 rpm, M
r

290 kg, M
c

250 kg, l
2

475 mm, K 625 mm, 
40°

 

n
l

r

1 5

0 3
5

2 120

60
13 57

.

.

.


 rad/s
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Distance of centre of gravity of connecting rod from gudgeon pin: l l l1 2 1500 475 = 1025 mm
Let m

1
mass of connecting rod placed at gudgeon pin

( )l l M

l
c1 475 250

1500
 = 79.17 kg

Total equivalent reciprocating mass, M
re

M
r

m
1

290 79.17 369.17 kg

Acceleration of piston, f r
np  
2

2

2

0 3 13 57 40
80

5

3

cos
cos

. ( . ) cos
cos

77 96 2.  m/s  

Total equivalent inertia force, F M fi re p 369.17 37.96 = 14013.9 N.

 

sin
sin sin

.

. , . , (




   
n

40

5
0 12855

7 386 47 386 180   550 47 386 83 614

0 3 47 386

83

. ) .

sin( )

sin

. sin .

sin
OC

OA  
 ..

.
614

0 2226 m
 

Approximate inertia torque exerted on crankshaft F
i
 OC

T
i

14013.9 0.2226 3119.6 N m

Correction couple, T M l l Lc c e c1( )  

where
 

L
K l

l

2
1
2

1

2 2625 1025

1025
 = 1406.1 mm

 

 


 

c

c

n
T

2 213 57 40

5
20 31

250 1 025 1

sin ( . ) sin
.

. ( .

 rad/s

55 1 4061 20 31 488 7. ) . .  N m  

Torque on crankshaft due to correction couple, T
T

nc
c cos

 

4888 7 40

5

. cos
74.87 N m

 

Mass of connecting rod at crankpin, m M mc2 1 250  79.17  170.83 kg

Weight of connecting rod at crankpin, W m g2 2 170 83 9 81 1675 87. . .  N

Torque exerted by W
2
 on crankshaft, T W rw 2 cos 1675.87  0.3cos40°  385.14 N m

Total torque exerted on the crankshaft due to inertia of moving parts

 T T Tc wi 3579.6 N m* . . .3119 6 74 87 385 14  
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Example 10.7

A single cylinder vertical engine has a bore of 300 mm and a stroke of 400 mm. The connecting rod 
is 1 m long. The mass of the reciprocating parts is 150 kg. The gas pressure is 0.7 MPa with the crank 
at 30° from the top dead centre during expansion stroke. The speed of crank is 250 rpm. Determine 
(a) net force acting on the piston, (b) resultant load on the gudgeon pin, (c) thrust on the cylinder wall, 
and (d) the speed above which, other things remaining same, the gudgeon pin load would be reversed 
in direction.

Solution 

Given: D 300 mm, L 400 mm or r 200 mm, l 1 m, M
r

150 kg, p 0.7 MPa, 30°, 

N 250 rpm, n
l

r

1

0 2
5

.


2 250

60
26 18.  rad/s

Inertia force due to reciprocating parts, F
i

  M
r
 f

p

M r
nr    
2

2

2

150 0 2 26 18 30
60

5

cos
cos

. ( . ) cos
cos

19863.2 N

Force due to gas pressure, F
D p

p

2 2

4

300 0 7

4
49480

.
 N

Weight of reciprocating parts, W
r

M
r
 g 150  9.81 1471.5 N

(a) Net force acting on the piston, F F
p
  F

i
W

r
49480  19863.2 1471.5 31088.3 N

(b) sin
sin sin

. , .



n

30

5
0 1 5 739 

Resultant load on gudgeon pin 
F

cos

.

cos .
.


31088 3

5 739
31249 9 N

(c) Thrust on cylinder wall F tan 31088.3 tan 5.739° 3124.4 N

(d) The gudgeon pin load would be reversed if F
i
  (F

p
W

r
)

M r
n

F W

N

r p r 




2

2

2

2

150 0 2
2

60
30

cos
cos

. cos
ccos

.
60

5
49480 1471 5

N 2  160320.8

N  400.4 rpm
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Example 10.8

A vertical double-acting steam engine has a cylinder 300 mm diameter and 450 mm stroke and runs at 
200 rpm. The reciprocating parts weigh 2250 N and piston rod is 50 mm diameter and the connecting 
rod is 1.2 m long. When the crank has turned through 125° from the top dead centre, the steam pressure 
above the piston is 0.3 MPa and below the piston is 0.015 MPa gauge. Calculate the effective turning 
moment on the crankshaft.

Solution 

Given: N 200 rpm, d
p

50 mm, r 225 mm, l 1.2 m, W
r

2250 N, 125°, d
c

300 mm, 
p

1
0.3 MPa, p

2
0.015 MPa.

n
l

r

1200

225
5 33

2 200

60
20 944

.

.


 rad/s

(a) Force on piston, F
p


4

2
1

2 2
2[ ( ) ]d d dc c pp p

 


4

300 0 3 300 50 0 015 201752 2 2[ . ( ) . ]  N

(b)

 

f r
np  
2

2

2

20 944 0 255 125
250

5 33

cos
cos

. . cos
cos

.

– .63 94 m/s2

Inertia force due to reciprocating parts, F M fi r p

2250 63 94

9 81
14436

.

.
 N

Piston effort, F F
p
  F

i
20175  14436 5739 N

sin
sin sin

.
. , .




n

125

5 33
0 1537 8 84 

Force in connecting rod, F
F

c  N
cos cos .

5739

8 84
5808

F
t

F
c
 sin ( ) 5808 sin (125° 8.84°) 4189 N

Turning moment on crankshaft, T F
t
  r 4189  0.225 943.5 N m

10.6 FLUCTUATION OF ENERGY
Fluctuation of Energy (E

f
 ): It is the excess energy developed by the engine between two crank positions.

E
f

C
e
 E (10.24)

where E I m=
1

2
2 ,  I moment of inertia of the flywheel, and 

m
 its mean angular speed.



575 Inertia Force and Turning Moment 

Coefficient of Fluctuation of Energy (C
e
): It is the ratio of the maximum fluctuation of energy to the 

indicated work done by the engine during one revolution of crank.

C
E E

Te

m

max min


 (10.25)

4  for steam engines and 4  for four stroke I.C. engines

Mean torque, Tm

m

Power developed



Coefficient of Fluctuation of Speed (C
s
): It is defined as the ratio of the difference between the maxi-

mum and minimum angular velocities of the crankshaft to its mean angular velocity.

Cs

m

 


max min

N N

Nm

max min

 
(10.26)

where N
N N

m
max min

2
mean speed

10.6.1 Determination of Maximum Fluctuation of Energy
As shown in Fig.10.9, let E be the energy at point A. Then

Fig.10.9 Fluctuation of energy diagram

 Energy at B E A
1

 Energy at C E A
1
  A

2

 Energy at D E A
1
  A

2
A

3

 Energy at E E A
1
  A

2
A

3
  A

4

  Energy at A, i.e., E

Let the maximum energy be at point B and minimum at point D. Then
 E

max
E A

1

 E
min

E A
1
  A

2
A

3

Maximum fluctuation of energy E
max

  E
min

  A
2
  A

3
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10.7 FLYWHEEL
A flywheel is a device that serves as a reservoir to store energy when the supply of energy is more  
than the requirement, and releases energy when the requirement is more than the supply. Thereby, it 
controls the fluctuation of speed of the prime mover during each cycle of operation. The differences 
between the functions of a flywheel and governor are given in Table 10.1.

Table 10.1 Differences between the Functions of a Flywheel and a  Governor

Flywheel Governor

1. It decreases the variation of speed of prime 
mover during each cycle of operation

2. It decreases the fluctuation of speed due 
to difference in output and input.

3. A flywheel controls 
d

d

N

t
.

4. It stores energy and gives up when 
required.

5. It has no control over the quality of the 
working medium.

6. It is not an essential part of every prime 
mover.

1. It regulates the speed of the prime mover from 
cycle to cycle.

2. It decreases the fluctuation of speed by adjusting 
the output of the prime mover

3. A governor controls dN.

4. It regulates speed by regulating the quantity of 
working medium of the prime mover.

5. It takes care of the quality of the working medium.

6. It is an essential part of every prime mover.

10.7.1 Size of Flywheel
 Let N

max
maximum speed of flywheel in rpm

 N
min

Minimum speed of flywheel in rpm
 I moment of inertia of flywheel about its polar axis (kg m2)
  m K 2

 m mass of the flywheel, kg
  Dbt
 D mean diameter of flywheel (m)
 b width of rim (m)
 t thickness of rim (m)
 density of rim material (kg/m3)
 K radius of gyration of the flywheel (m)

K
D2

2

8
,  for a solid flywheel

Maximum kinetic energy of the flywheel, E Imax
1

2
2

1

2

2

60
2

2

mK
Nmax
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Minimum kinetic energy of the flywheel, E I mK
N

min min
min1

2

1

2

2

60
2 2

2




Fluctuation of energy, E E Ef max min

1

2

2

60

1800

2

2

2 2

2
2

mK N N

mK N





max min

maxx min max minN N N

mK N N Cm m s

 2
2

1800
2

or m
E

K N C
kgf

m s

900
2 2 2

 (10.27)

Also E I If

1

2

1

2
2 2     max min max min max min

1

2
2

1

2
2

2

2

2

I C

I C

I C C E

m s m

m s

m s s

 



   (10.28)

There are two types of flywheels: Disc type and arm type. In the arm type of flywheels, the weight of 
the flywheel is mainly located in the rim and the arms and boss do not contribute much in storing the 
energy. A rimmed type flywheel is shown in Fig.10.10.

Fig.10.10 Rimmed type flywheel
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Mass of the rim, m
r

 0.9 m, m total mass of flywheel

The hoop stress in the flywheel can be determined by assuming it as a ring.

Hoop stress, v2 (10.29)

Where  is the density of the rim, and v is its peripheral speed.

10.7.2 Flywheel for a Punching Press
In a punching press, the crank is driven at a constant torque by an electric motor. The load is maximum 
when operation of punching takes place and it is zero during the rest of the cycle. Thus, there are vari-
ations in load which causes fluctuations in speed of the press.

Consider the punching press shown in Fig.10.11. Punching operation is performed during the 
period when the crank rotates from 

1
 to 

2
. There is no load on the crank during the remaining angle 

of rotation of the crank.

Fig.10.11 Punching a hole 

Let E energy required for one punching operation
Then energy supplied by the electric motor to the crankshaft during actual punching operation,

E
E

a

 


2 1

2

Balance energy available for punching, E Eb 1
2

2 1 


 (10.30)

Maximum shearing force required for punching one hole, F
s u

  dt (10.31)

where 
u

ultimate shear strength of the material in which hole is being punched, N/mm2
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 d diameter of hole punched, mm
 t thickness of plate, mm

Average energy consumed for punching one hole, E F ts

1

2
 (10.32)

Eq. (10.30) represents the fluctuation of energy, which can be written as:

1

2
1

2
2 2 2 1I E 

 
max min

For approximation, 
 


2 1

2 2 4

t

L

t

r
 (10.33)

where L stroke of punch
r crank radius

1

2
1

4
2 2I E

t

r
 max min

 
(10.34)

The mechanism used for punching of holes in plates is shown in Fig.10.12.

Fig.10.12 Punching press

It consists of a driving motor whose speed is reduced to the desired value by a set of gears to drive 
the slider–crank mechanism. The slider of the slider–crank is used as the punch to punch a hole in the 
plate placed on the die. The punching takes place for a very short interval of the angle of rotation of 
the crank. The punching operation requires huge amount of energy for a short time. For the remaining 
period, the device remains idle. Therefore, the flywheel is used to store energy during the idle period 
and supply the desired energy during the working period. The distribution of force on the punch during 
the punching operation is shown in Fig.10.13.
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Example 10.9

A punching machine makes 20 working strokes per minute and is capable of punching 20 mm diameter 
hole in 15 mm thick steel plate having an ultimate shear strength of 240 MPa. The punching operation 
takes place during 1/10th of a revolution of the crankshaft. Estimate the power required for the driving 
motor, assuming a mechanical efficiency of 95%. Determine the size of the rim of the flywheel having 
width equal to twice the thickness. The flywheel is to revolve 10 times the speed of the crankshaft. 
The fluctuation of speed is 10%. Assume the flywheel to be made of cast iron having working stress 
of 6 MPa and density 7300 kg/m3. The diameter of the flywheel should not exceed 1.5 m. Neglect the 
effect of arms and hub.

Solution 

Punching force required, F dt
u

  20  15  240 226195 N

Work done in punching the hole, E
1

0.5 Ft 0.5  226195  0.015 1696.5 N m

Time between punching operations
60

20
3s

Punching time
3

10
0 3. s

Average power required without flywheel, E2

1696 5

0 3
5654 87

.

.
.  W

Instantaneous power required 2  5654.87 11309.74 W

Motor power required in punching the hole 
1696 5

3
565 5

.
.  W

Fig.10.13 Distribution of forces during punching
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Work supplied by the motor during 0.3s of punching time 565.5  0.3 169.5 N m

Energy to be taken from flywheel 1696.5  169.5 1527 N m

Taking motor efficiency 95%

Power of motor required
565 5

0 95

.

.
.595 2 W

Flywheel:
 v2

 6  106 7300 v2
m

 v
m

28.67 m/s

Mass of flywheel, m
E

C
f

s mv2

1527

0 1 821 97
18 57

28 67 0

. .
.

, . .max min
max min

 kg

 Cs
m

v v

v
v v 11 3 867

2 57 34

18 57 7300 1

.

.

.

max min

 m/s

 m/s

d

v v vm

m bt

..

. , .

5 2

16 4 33 8

2t

t b mm   mm

Example 10.10

A vertical double acting steam engine develops 80 kW at 240 rpm. The maximum fluctuation of energy 
is 25% of the work done per stroke. The maximum and minimum speeds are not to vary more than  

1% of the mean speed. Find the mass of the flywheel, if the radius of gyration is 0.65 m.

Solution 

Given: P 80 kW, N
m

240 rpm, C
e

25%, C
s

1%, K 0.65 m

m
E

K N C
E C E

T

T

f

m s

f e

m

m

900

2 240

60
25 13

10

2 2 2

3

 
 

 rad/s

P

,

.

880 10

25 13
3183

900 3183 0 25

0 65 240 0 01
29

3

2 2 2

.
.

. .

 N m E

m 88 kg
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Example 10.11

The turning moment diagram for a multicylinder engine shown in Fig.10.14 has been drawn to a scale 
of 1 mm 5000 N m vertically and 1 mm 3.5° horizontally. The areas between output torque curve 
and mean resistance line taken in order from one end are: 340, 21, 245, 300, 118, 230, 225, 

377 mm2, when the engine is running at 180 rpm. If the mass of the flywheel is 1000 kg and the total 
fluctuation of speed is not to exceed 3% of the mean speed, find the minimum value of the radius of 
gyration.

Fig.10.14 Turning moment diagram for a multi-cylinder engine

Point Energy (mm2)

A
B
C
D
E
F
G
H
J

E
E  340
E  319
E  564
E  264
E  382
E  152
E  377

E

Solution 

Let E energy at A

 E
max

E  152

 E
min

E  564

 E
f

[(E  152)  (E  564)]  Horizontal scale  Vertical scale

412 5000 3 5

180
89884

900

900 89884

2 2 2

2
2

.
 N m

m
E

K N C

K

f

m s

1180 0 03 1000
8 4326

2 9

2 .
.

.

 m

 m

2

Radius of gyration, K
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Example 10.12

The torque exerted on the crankshaft of a two stroke engine is given by

T 15000 2500 sin   2000 cos 2

where  is the crank angle measured from the inner dead centre. Assuming the resulting torque to be 
constant, determine (a) the power of the engine when the speed is 180 rpm, (b) the moment of inertia 
of the flywheel if the speed variation is not to exceed 0.5% of the mean speed, and (c) the angular 
acceleration of the flywheel when the crank has turned through 30° from inner dead centre.

Solution 

(a) For a two-stroke engine, cycle is repeated after every crank rotation of 180°.

T Tm

1 1
15000 2500 2 2000 2

0 0

dd ( sin cos )

1
15000 1250 2 1000 2 15000

2 180 1500

0
cos sin  N m

Power
00

60 10
283 74

3
.  kW

(b) Change in torque,   T T  T
m

(2500 sin 2   2000 cos 2 )

For T  0, tan 2 0.8, 2 38.66° and 218.66°

The T-  diagram is shown in Fig.10.15.

Fig.10.15 T-  diagram

Fluctuation of energy, E f ( sin cos )
.

.

2500 2 2000 2
38 66

218 66

  d

1250 2 1000 2

1250 218 66 1000
38 66

218 66
cos sin

cos . sin
.

.

2218 66 1250 38 66 1000 38 66

3201 6

. cos . sin .

.  N m
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(c) 

I
E

N C

T

f

m s

900

900 3201 6

180 0 005
1802

2

2 2

2 2
2

 

 kg m

excess

.

.
5500 2 2000 2

30 1165

 

At ,  N mexcess

excess

sin cos

T

T I

11165

1802
0 6465 2.  rad/sAngular acceleration,

Example 10.13

A steam engine runs at 150 rpm. Its turning moment diagram gave the following area measurements 
in mm2 taken in order above and below the mean torque line:

500,  250, 270,  390, 190, 340, 270, 250

The scale for the turning moment is 1 mm 500 N m and for crank angle is 1 mm 5°. If the 
fluctuation of speed is not to exceed 1.5% of the mean speed, determine the cross-section of the rim 
of the flywheel assuming rectangular with axial dimension equal to 1.5 times the radial dimension. The 
hoop stress is limited to 3.5 MPa and the flywheel is 7470 kg/m3.

Fig.10.16 Turning moment diagram for a steam engine

Solution 

The T  diagram is shown in Fig.10.16. Let E energy at A.

Point Energy(mm3)

A
B
C
D
E
F
G
H
J

E
E 500
E 250
E 520
E 130
E 320
E  20
E 250

E
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E E E Emax min,520 20

E E Ef ( ) ( )520 20  Horizontal scale    Vertical scale

540 500 5

180
23562 N m

, 3.5 10 7470 , 18.3 m/s2 6 2v v v

2 150

60
15.7 rad/s

3.33 m

747

v
D

D

m Dbt

2

18 3 2

15 7
,

.

.

00 3.33 1.5  t t2 282019

Considering flywheel rim as a ring, K
D2

2 2

8

3 33

8

.
0.6786 m2

m
E

K N C

t

t

f

m s

900

900 23562

0 6786 150 0 015

0

2 2 2

2

2 2

2




82019 

. .

..

. , .

11438

0 338 338 1 5 507t b tm or mm mm

Example 10.14

A cast iron flywheel used for a four stroke I.C. engine is developing 150 kW at 240 rpm. The hoop 
stress developed in the flywheel is 5 MPa. The total fluctuation of speed is to be limited to 3% of the 
mean speed. If the work done during the power stroke is 1/3 times more than the average work done 
during the whole cycle, find (a) mean diameter of the flywheel, (b) mass of the flywheel, and (c) cross-
sectional dimensions of the rim when the width is twice the thickness. The density of cast iron may be 
taken as 7300 kg/m3.

Solution 

Power, P
Tm2 240

60
150

Tm 5968.31 N m

During power stroke, T
T

max

4

3
m 7957.75 N m

Ef

2

6 2

1989.4 N m

5 10 7300 

26.17 m/s

7957 75 5968 31. .

v

v

v
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2 240

60
25.13 rad/s

3.08 m

v
D

D

m Dbt

2
26 17 2

25 13

73

.

.

000 3 08 2 2. t t95404 2

Considering flywheel rim as a ring, K
D2

2 2

8

3 08

8

.
0.542 m2

m
E

K N C

t

t

f

m s

900

95404
900 1989 4

0 542 240 0 03

0 3

2 2 2

2 2
2

2




.

. .

. ..03 10 3

t 0.045 m or 45 mm

b 2t 90 mm

Example 10.15

A machine has to carry out punching operations at the rate of 10 holes per minute. It does 6 kN m of 
work per mm2 of the sheared area in cutting 25 mm diameter holes in 20 mm thick plates. A flywheel 
is fitted to the machine shaft, which is driven by a constant torque. The fluctuation of speed is between 
180 and 200 rpm. The actual punching operation takes 2 s. The frictional losses are equivalent to 1/6th 
of the work done during punching. Find (a) power required to drive the punching machine, and (b) 
mass of the flywheel, if the radius of gyration of the wheel is 0.5 m.

Solution 

Given: d 25 mm, t 20 mm, C
e

25%, N
min

180 rpm, N
max

200 rpm, K 0.5 m

Time taken for punching a hole
60

10
6 s

Energy required  25 20 6 9424.8 N m

N

N N

C

m

s

180 200

2
200 180

20

190
0 105

190 rpm

20 rpmmax min

.

Energy required during punching operation
9424 8 2

6

.
1341.6 N m

Energy stored by flywheel 9424.8 1343.6 6283.2 N m

Energy lost in friction 1341.6

6
22.36 N m
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Total energy required 9424 8 223 6 9648 4. . .  N m

(a) Power required 
9648 4

6 103

.
1.6 kW

(b) m
E

K N C
f

m

900 900 6283 2

0 5 190 0 1052 2 2 2 2 2 s

604.6 kg
.

. .

Example 10.16

A 17 mm diameter hole is to be punched in a steel plate 19 mm thick at the rate of 20 holes per minute. 
The actual punching takes place in 1/5th the interval between punches. The driving motor runs at 1200 
rpm and is geared to a countershaft, which runs at 160 rpm and upon which the flywheel is mounted. 
The countershaft in turn is geared to the crankshaft of the press. The resistance to shear for the plate 
may be taken as 310 MPa. Find (a) the power required for the motor if no flywheel is used, (b) the 
power required for the motor assuming a flywheel is used, and (c) the mass of the flywheel rim required 
assuming that 90% of the effective mass at the rim is due to the rim alone. The average speed at the rim 
diameter is 20 m/s, and the coefficient of speed fluctuation is 0.10.

Solution 

Time taken for punching a hole
60

20
3s

Actual punching time
3

5
0.6 s  

Energy required for punching   17 19  310 314567 N m

v 20 m/s, C
s

0.1, N
m

160 rpm

(a) Motor power without flywheel 
314567

3 10
0

3
1 4 85 kW.

(b) Energy required during punching operation
314567 0 6

3
62913 4

.
.  N m

Energy stored by flywheel 314567  62913.4 251653.6 N m

Motor power with flywheel
251653 6

3 10
83 88

3

.
.  kW

(c)

 

2 160

60
16 75

2 40

16 75
3 388

8
0 7132

2
2

.

.
.

.

 rad/s

m

m

D

K
D

v

Mass of flywheel, m
E

K N C
f

m s

900 900 251653 6

0 713 160 0 1
12572

2 2 2 2 2 
.

. .
 kg
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Example 10.17

The crankshaft of a punching machine runs at a mean speed of 300 rpm. During punching of 10 mm 
diameter holes in mild steel sheets, the torque required by the machine increases uniformly from 1 kN

 
m 

to 4 kN.m, while the shaft turns through 40°, remains constant for the next 100°, decreases uniformly 
to 1 kN m for the next 180°. This cycle is repeated during each revolution. The power is supplied by a 
constant torque motor and the fluctuation of the speed is to be limited to 3% of the mean speed. Find 
the power of the motor and the moment of inertia of the flywheel fitted to the machine.

Fig.10.17 T-  diagram for a punching machine

Solution 

Given:  N
m

300 rpm, C
s

3%, d 10 mm
The T  diagram is shown in Fig.10.17.

Mean torque, Tm

0 5 3 40 4 100 0 5 3 180 1 320

320
3 28

. .

. kN m

Surplus torque [ . . . . . . . ]0 5 0 72 9 6 0 72 100 0 5 0 72 43 2

180



1 5884

1 5884 3 300

900
2

2 2

.

. , %,

kN m

kN m rpmE C N

I mK
E

N C

f s m

f

m s

9900 1 5884 10

300 0 03
53 65

3

2 2
2.

.
. kg m

Motor power 
2 300 3 28 10

60 10
103

3

3

 .
kW

Example 10.18

A single-cylinder double acting pump is driven through gearing at 50 rpm. The resisting torque of 
pump shaft may be assumed to follow a sine curve in half revolution with a maximum value of 6 kN m  
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at 90° and 270°. Find the weight of the flywheel required to be mounted on a pump shaft to keep the 
speed within 1.5% of the mean speed, if the radius of gyration of the flywheel is 1.5 m. The effect of 
motor armature and gear wheel is equivalent to a flywheel of 4.5 kN with a radius of gyration of 1 m 
on the pump shaft.

Fig.10.18 T-  diagram for a single cylinder double acting pump

Solution 

Given: N
m

50 rpm, C
s

1.5%, K 1.5 m
The T  diagram is shown in Fig.10.18.
Moment of inertia of motor armature and gear wheel

4 5 1

9 81
458 7

1
6

6 6

3 2
2

0 0

.

.
.

sin cos

10
kg m

dTm 2 3 82. kN m

At points A and B, 6 sin 3.82
sin

( sin )
.

.

0.06367, 39.5 and 140.5

3.82 dE f 6
39 5

140 5

6 3 82

6 3 82 140

39 5

140 5

cos .

( ) . ( .

.

.

cos140.5 cos39.5 55 39 5
180

. )

9.2595 6.7338

2.5257 kN.m

Mass of flywheel, m
E

K N C
f

m s

900 900 2 5257 10

1 5 50 0 015
2729 7

2 2 2

3

2 2 2

.

. .
. kg

Work done per stroke 3.82  12 kN m

Power kW
2 50 12 10

60 10
20

3

3

Example 10.19

A cast iron flywheel is fitted to a punch press to run at 90 rpm and must supply 12 kN m of energy dur-
ing 1/5th revolution and allow 15% change of speed. The rim speed is limited to 350 m/min. Find the 
mean diameter and weight of the flywheel and the motor power. Assume overall efficiency as 80%.
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Solution 

Given: N
m

90 rpm, E 12 kN m, C
s

0.15, v 350 m/min, D ?, W ?

2 90

60
9 427

2 700

60 9 427
1 2375

8
191452

2

.

.
.

rds/s

m

m

D

K
D

v

22

Energy supplied by motor during actual punching operation
E

5

12

5
3 4. kN m

Balance energy supplied by flywheel E 1
1

5

12 4

5
9 6. kN m

Mass of flywheel, m
E

K N C
f

m s

900
2 2 2

900 9600

0 19145 90 0 15
3763

2 2 . .
kg

Time taken to punch one hole 
60

90 5

2

15
s

Motor power required 
12 10 15

2 10 0 8
113 5

3

3 .
. kW

Example 10.20

A machine punching 38 mm diameter holes in a 32 mm thick plate, does 6 N m of work per square mm 
of sheared area? The punch has a stroke of 102 mm and punches 6 holes per minute. The maximum 
speed of the flywheel at its radius of gyration is 27.5 m/s. Find the weight of the flywheel so that its 
speed at the same radius does not fall below 24.5 m/s. Also determine the power of the motor driving 
the machine.

Solution 

Given: d 38 mm, t 32 mm, L 102 mm
Energy supplied in punching a hole   38  32  6 22,921 N m

Time taken for punching one hole 
60

6
10 s

Power required 
22921

10
2293 1.  N m/s or 3.2921 kW

Speed of punching 
2 102

10
20 4. mm/s

Cs
m

v v

v
max min . .

.
27 5 24 5

26
0 1154

Time to punch a hole in 32 mm thick plate 
32

20 4
1 568

.
. s
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Energy supplied by motor in 1.568 s
22921 1 568

10
3595

.
N m

Energy supplied by flywheel, E
f
 22921  3595 19326 N m

vm m
m

mK K
K

KN
2

60

26 60

2
248 3, . 

Mass of flywheel, m
E

K N C
f

m s

900
2 2 2

900 19326

248 3 0 1154
247 7

2 2 ( . ) .
. kg

Example 10.21

An engine runs at a constant load at a speed of 480 rpm. The crank effort diagram to a scale of 1 cm
2 kN m torque and 1 cm 36° crank angle. The areas of the diagram above and below the mean torque 
line are measured in square cm and are in the following order:

1.1, 1.32, 1.53, 1.66, 1.97, 1.62

Design the flywheel if the total fluctuation of speed is not to exceed 10 rpm and the centrifugal 
stress in the rim is not to exceed 5 N/mm3. You may assume that the rim breadth is approximately 3.5 
times the rim thickness and 90% of the moment of inertia is due to the rim. The density of the material 
of the flywheel is 7250 kg/m3.

Fig.10.19 Crank effort diagram for an engine

Solution 

Let E energy at A (Fig.10.19)

Point Energy, mm3

A
B
C
D
E
F
G

E
E 1.1
E  0.22
E 1.31
E  0.35
E 1.62

E
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 E
max

E 1.62, E
min

E  0.35
 E

f
[(E 1.62)  (E  0.35)]  Horizontal scale  Vertical scale

1 97 2000 36

180
2475 6

490 470

480
0 0417

5 10

2

6

.
.

.

N m

Cs

v

  

 m/s

7250

26 26

2v

v .

m

D

D

2 480

60
50 26

2
26 26 2

1 045

.

.
.

rad/s

50.26
m

v m

m Dbt 7470    1.045  3.5  t2 61309 t2

Considering flywheel rim as a ring, K
D2

2 2
2

8

1 045

8
0 1365

.
. m

Mass of flywheel, m
E

K N C

900
2 2 2

f

m s

61309
900 2475 6

0 1365 480 0 0417

0 006035

0 051

2

2 2

2

t

t

t

.

. .

.

.



   m or  mm

 mm

51

3 5 127 5b t. .

Example 10.22

The equation of the turning moment curve of a three crank engine is (5 1.5 sin 3 ) kN m, where  
is the crank angle. The moment of inertia of the flywheel is 1000 kg m2 and the mean engine speed is 
300 rpm. Calculate (a) power of the engine, (b) the maximum fluctuation of the speed of the flywheel 
in percentage, (i) when the resisting torque is constant, and (ii) when the resisting torque is (5 0.6 
sin ) kN m.

Solution 

T (5 1.5 sin 3 ) kN m

Work done per crank per cycle 
0

120

05 1 5 sin 3  d 1 472 kN m. .
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(a) Power of engine  3 300 10 472 10

60 10
157

3

3

.
kW

Tm

10 472 180

120
5

.


kN m

 For T
m

T, 5 1.5 sin 3 5

 sin 3 0, 3 0°, 180°, 360° or 0°, 60°, 120°

 Excess torque 5 1.5 sin 3   5 1.5 sin 3

E f
0

60

1 5 sin 3  d 1 kN m.

m
E

K N C

C

f

m s

s

900

900 1000

1000 300
0 001 0 1

2 2 2

2 2




. . %or

(ii) Change in torque (5 1.5 sin 3 )  (5 0.6 sin )

 1.5 sin 3   0.6 sin 

For change in torque to be 0, 53.72°, 126.28°

The T  diagram is shown in Fig.10.20.

Ef 1 5 sin 3 6 sin  d 7282 kN m
.

. – . .
126 28

180

0 0

C
s

1.01  10 3  0.7282 0.7355  10 3 or 0.07355%.

Fig.10.20 Turning moment diagram for a three-crank engine

Example 10.23

A punch press is fitted with a flywheel capable of furnishing 3 kN m of energy during quarter of a 
revolution near the bottom dead centre while blanking a hole on sheet metal. The maximum speed of 
the flywheel during the operation is 200 rpm and the speed decreases by 10% during the cutting stroke. 
The mean radius of the rim is 900 mm. Calculate the approximate weight of the flywheel rim assuming 
that it contributes 90% of the energy requirements.
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Solution 

N
min

200  0.9 180 rpm

N

C

R

K
R

m

s

m

m

200 180

2
190

20

190

2

19
900

2
0 4052

2
2

rpm

mm

 m.

Work required for one punch 3 kN m

Energy supplied by motor 
300

4
075  kN m

Energy to be supplied by flywheel, E
f

3000  750 2250 kN m

m
E

K N C
f

m s

900

900 2250 0 9 19

0 405 190 2
120

2 2 2

2 2




.

.
kg

Example 10.24

The equation of turning moment for a three-crank engine is:

T
c

25.0  7.5 sin  kN m

where  is the crank angle measured from inner dead centre. The resisting torque exerted by the driven 
machine is given by:

T
r

25.0 3.6 sin 3  kN m

The moment of inertia of the flywheel is 360 kg m2 and the mean engine speed is 450 rpm. Calcu-
late (a) power of the engine, (b) maximum fluctuation of flywheel energy per cycle, and (c) the coef-
ficient of fluctuation of speed [IES, 1996]

Solution 

Change in torque T
r
  T

c
(25 3.6 sin )  (25  7.5 sin 3 )

 3.6 sin 7.5 sin 3

Work done per crank per cycle
0

120

3 6 sin  7 5 sin 3  d 5 4 kN m. . .

(a) Power of engine
3 450 5 4 10

60 10
121 5

3

3

.
. kW

Tm

5 4 180

120
3 578

.
.


kN m
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For T
m

T, 3.6 sin 7.5 sin 3 0

sin 0, 0°, 180°, 360°, and 68.866°, 111.134°

The T  diagram is shown in Fig.10.21.

(b) Ef 3 6 sin 7 5 3  d 7 39 kN m
111 134

180

0
.

. .

m
E

K N C

900
2 2 2

f

m s

(c) Cs

900 7039

360 450
0 0088 0

2 2
. . % or 88

Fig.10.21 Turning moment diagram for a three-crank engine

Example 10.25

An engine coupled to a machine produces a torque given by T
c

10 sin 2  kN m where  is the angle 
of rotation of shaft. The resisting torque of machine is T

r
10 0.75 sin  kN m. The engine runs at 

a mean speed of 240 rpm and has a flywheel of mass 350 kg and radius of gyration 0.5 m fixed to it. 
Determine (a) fluctuation of energy, (b) fluctuation of speed, and (c) maximum and minimum accelera-
tion of flywheel.

Solution 

Change in torque, T T
r
  T

c
(10 sin 2 )  (10 0.75 sin )

 sin 2   0.75 sin 

For T 0, sin 2   0.75 sin 0

sin 0, 0°, 180°, 360°, and 67.98°, 293.02°

The T  diagram is shown in Fig.10.22.

Fig.10.22 T-  diagram for an engine
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(a) Maximum fluctuation of energy,

E f
180

293 02

0 0
.

. .sin 2 75 sin  d 189 62 N m

(b)

 

m
E

K N C

C

f

m s

s

900

900 1890 62

350 0 5 240
0 0342 3

2 2 2

2 2 2




.

.
.  or .. %42

(c) For acceleration to be maximum or minimum, 
d

d

( )T


0

2 cos 2   0.75 cos 0

36.27° and 128.17°

( T)
max

510.23 N m

( T)
min

 1561.34 N m

Maximum acceleration 
( ) .

( . )
.maxT

I

510 23

350 0 5
5 83

2
2rad/s

Minimum acceleration   
( ) .

( . )
.minT

I

1561 34

350 0 5
17 84

2
2 rad/s

Example 10.26

The turning moment exerted by two stroke engine at crankshaft is given by:

T 10 sin 2   3 cos 2  kN m

where inclination of crank to inner dead centre.
The mass of the flywheel is 600 kg and its radius of gyration 0.8 m. The engine speed is 360 rpm. 

Assuming external resistance as constant, determine (a) power developed, (b) fluctuation of speed, and 
(c) maximum angular retardation of flywheel.

Solution 

T (10 sin 2   3 cos 2 ) kN m

(a) Work done per stroke 1 sin 2 3 cos 2  d 1  kN m0 0
0

–

Power of engine 
2 360 10 10

60 10
377

3

3


 kW

Tm

10
10




 kN m

 For T
m

T, 10 sin 2   3 cos 2 10

 tan 2 3, 35.78° and 125.78°
The T  diagram is shown in Fig.10.23.
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Excess torque T  T
m

sin 2   3 cos 2

E d

m
E

K

f

f

35 78

125 78

2

2 3 2 3 1621

900
.

.

sin cos .    kN m

22 2

2 2 2

900 3163 1

600 0 8 360
0 0058 0

N C

C

m s

s

.

.
. . % or 58

 

(b) For torque to be maximum or minimum, 
d

d

( )T


0

2 cos 2 6 sin 2 0

tan 2
1

3
2 161.56° and 341.56°

or 80.78° and 170.78°

T
max

10 sin 161.56°  3 cos 161.56° 13.1623 kN m

T
min

6.8377 kN m

Maximum acceleration
( )T T

I
m min

( . )

( . )
.

10 6 8377 10

600 0 8
8 235

3

2

2rad/s

Example 10.27

A three-cylinder single-acting engine has its cranks set equally at 120° and runs at 750 rpm. The 
torque-crank angle diagram for each cylinder is a triangle for the power with maximum torque 100 N m  
at 60° after dead centre of the corresponding crank. The torque on return stroke is zero. Determine (a) 
the power developed, (b) the coefficient of fluctuation of speed if the mass of the flywheel is 10 kg and 
the radius of gyration of 100 mm, (c) coefficient of fluctuation of energy, and (d) maximum angular 
acceleration of flywheel.

Fig.10.23 Turning moment diagram for a two-stroke engine
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100

75
A H

B C D E F G

50

0° 60° 120° 180°

(b)

240° 300° 360°

T 
(N

.m
)

Fig.10.24 Turning moment diagram for a three-cylinder single-acting engine

Solution 

Work done per cycle
3 100

2
150

  N m

(a) Power developed
150 750

60 10
5 89

3
. kW

(b) Mean torque, Tm

150

2
7 5




. N m

The torque-crank angle diagram is shown in Fig.10.24(a) and (b).
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Let total energy at A E

Location Energy

B

C
D
E
F
G
H

E E
0 5 25

6
6 545

.
.



E 6.545
E  6.545
E 6.545
E  6.545
E 6.545

E

E
f

E
max

  E
min

(E 6.545)  (E  6.545) 13.09 N  m

m
E

K N C
f

m s

900
2 2 2

Cs

900 13 09

10 0 1 750
0 0212

2 2 2

.

.
.

  
or 3.12%

(c) C
E

Ee

f 13 09

150
0 0278

.
.


 or 3.78%

(d) I T
max

  T
m

100  75 25 N m


25

10 0 1
250

2

2

( . )
 rad/s

10.8 EQUIVALENT DYNAMICAL SYSTEM
A continuous body may be replaced by a body by two masses assumed to be concentrated at two points 
and connected rigidly together. Such a system of two masses is termed an equivalent dynamical sys-
tem. The conditions to be satisfied by an equivalent dynamical system are as follows:

1. The total mass must be equal to that of the rigid body.

2. The centre of gravity must coincide with that of the rigid body.

3. The total moment of inertia about an axis through centre of gravity must be equal to that of the rigid 
body.

Consider a rigid body as shown in Fig.10.25.
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Fig.10.25 Truely dynamical system

Let m mass of the rigid body

 K radius of gyration about an axis through G

 m
a
, m

b
two masses for equivalent dynamical system

 a, b distance of m
a
, m

b
 from G, respectively.

Then m
a

m
b

m (10.34)

 m
a
  ·  a m

b
 . b (10.35)

 m
a
  ·  a2 m

b
  ·  b2 m K2 (10.36)

Solving Eqs. (10.35) and (10.36), we have

 m
a
 . a2 m

a
 . ab mK2

or m
mK

a a ba

2

( )
 (10.37)

From Eqs. (10.34) and (10.35), we get

 
m

mb

a ba ( )  (10.38)

Comparing Eqs. (10.37) and (10.38), we get

 K 2 ab

Let L length of a simple pendulum which has the same period of oscillations as the body with 
length equal to (a b).

Therefore the second mass is situated at the centre of percussion of the body.
A compound pendulum equivalent to the rigid body is shown in Fig.10.26. The centre of oscillation 

is A and the centre of percussion is at A .

Therefore L a
K

a
a b

2

or b
K

a

2

or K ab2
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Fig.10.26 Compound pendulum

Fig.10.27 Approximate dynamical system

In an approximate dynamical system, as shown in Fig.10.27, the distances ‘a’ and ‘c’ are fixed 
arbitrarily, then

m
c

a c
ma

m
a

a c
mc

Mass moment of inertia of m
a
, and m

c
 about G is

I
m

a c
a c c a m ac m a m ca c1

2 2 2 2

Let K
1

radius of gyration of two-mass system.

Then I
1

mK2
1

Therefore K 1
2 ac (10.39)

Difference in mass moment of inertia I
1
  I

  m ( K1
2   K2)

Let angular acceleration of the body

Difference in torque or correction couple,

 T
0

m ( K1
2   K 2)  ·  
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Let l Distance between two masses m
a
 and m

c
 fixed arbitrarily

L distance between two masses m
a
 and m

b
 which form a true dynamically equivalent 

system.

Then c  b (a c)  (a b) l  L

Now I
1
  I mac  mab ma (c  b) ma (l  L)

and T
o

ma (l  L)  ·  (10.40)

10.8.1 Compound Pendulum
A compound pendulum is a rigid body suspended vertically at a point and oscillating with very small 
amplitude under the action of gravitational force. Consider a compound pendulum shown in Fig.10.28 
suspended from a point A. G is its centre of gravity at which its weight acts.

Fig.10.28 Compound pendulum

Let m mass of the pendulum

K radius of gyration about an axis passing through centre of gravity perpendicular to the 
plane of rotation.

 a Distance of the point of suspension from centre of gravity

If the pendulum is displaced through a small angle  from its mean position, then restoring couple 
T acting on it is,

T mga sin   mga (for  to be small, sin   )

Mass moment of inertia of the pendulum, I m(K 2 a2)

Angular acceleration, 
T

I

mga

m K a


( )2 2

ga

K a2 2


const.  
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Thus, angular speed, 
n

ga

K a2 2

1 2/

rad/s (10.41)

Equivalent length of a simple pendulum, l
K

a
ae

2

 (10.42)

The point A  on the other side of centre of gravity at a distance of 
K

a

2

 is called the centre of 
percussion.

Example 10.28

The length of the connecting rod of an engine is 600 mm and its mass is 20 kg. The centre of gravity 
is 150 mm from the crankpin centre and the crank radius is 120 mm. Determine the dynamically 
equivalent system keeping one mass at the small end. The frequency of oscillations of the rod when 
suspended from the centre of the small end is 40 vibrations per minute.

Solution 

Given: l 600 mm, m 20 kg, a 150 mm, r 120 mm, f
n

40 cycles/min

f
gl

K ln

1

2
1

2
1
2

0 5



.

Here l
1

a 150 mm

40

60

1

2

9 81 0 15

0 152 2

0 5


. .

.

.

K

K 2 0.06136

K 0.2477 m

K 2 ab

b
( . )

.
.

0 2477

0 15
0 409

2

m

m
bm

a ba

0 409 20

0 15 0 409
14 63

.

. .
. kg

m
b

20  14.63 5.37 kg

Example 10.29

A connecting rod 240 mm long has a mass of 2 kg and a moment of inertia of 0.02 kg m2 about the 
centre of gravity. The centre of gravity is located at a distance of 150 mm from the small end centre. 
Determine the dynamically equivalent two mass system when one mass is located at the small end 
centre. If the connecting rod is replaced by two mass system located at the two centres, find the correc-
tion couple that must be applied for complete dynamical equivalence of the system when the angular 
acceleration of the connecting rod is 20,000 rad/s2 ccw.
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Solution 

Given: l 240 mm, m 2 kg, I 0.02 kg m2, a 150 mm

 I mK 2, K 2
I

m

0 02

2
0 01

.
.  m2

K ab b2
20 01

0 15
66 67,

( . )

.
. mm

m
bm

a ba

66 67 2

150 66 67
0 615

.

.
. kg

 m
b

2  0.615 1.385 kg

Correction couple, T
o

ma (l  L)  ·  

  l a c 240 mm, L a b 216.67 mm

  T
o

2  0.15 (240  216.67)  10 3  20,000

 139.98 N m

Example 10.30

The connecting rod of an oil engine weighs 600 N and the distance between the bearing centers is  
1 m. The diameter of the big end bearing is 120 mm and of the small end bearing is 75 mm. When 
suspended vertically with a knife edge through the small end, it makes 100 oscillations in 190 s, and 
with knife edge through the big end it makes 100 oscillations in 165s. Find the moment of inertia of 
the rod in kg m2 and distance of the centre of gravity from the small end centre.

Solution 

Given: m
600

9 81.
61.16 kg, l 1 m, D 120 mm, d 75 mm

Refer to Fig.10.29.

Fig.10.29 Connecting rod
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fn1

100

190
 cps

fn2

100

165
 cps

Let a
1

distance of centre of gravity from the top of small end bearing
a

2
distance of centre of gravity from the top of big end bearing

For a simple pendulum, natural frequency of rod when suspended from small end bearing is given by,

f
g

ln1
1

1

2 e

100

190

1

2

9 81

1
.

le

l
e1

0.897 m

K a

a

2
1
2

1

 K 2 a
1
 (0.897  a

1
) (10.43)

When suspended from the big end,

f
g

ln2
2

1

2 e

100

165

1

2

9 81

2
.

le

 l
e2

0.676 m

 
K a

a

2
2
2

2

or K 2 a
2
 (0.676  a

2
) (10.44)

From Eqs. (10.43) and (10.44), we have

 a
1
 (0.897  a

1
) a

2
 (0.676  a

2
) (10.45)

Also a
1

a
2

l
1

2
 (D d)

  1.0
1

2
 (0.120 0.075)

  1.0975 m

or a
2

1.0975  a
1
 (10.46)

Substituting in Eq. (10.45), we have

 0.897 a
1
  a1

2 0.676 (1.0975  a
1
)  (1.0975  a

1
)2

  0.742  0.676 a
1
  1.204  a1

2
2.195 a

1
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 0622 a
1

0.462

 a
1

0.743 m

 K 2 0.743 (0.897  0.743) 0.181 m2

 I mK 2 61.16  0.181 11.1 kg m2

Distance of centre of gravity from small end centre

  a
d

1 2

  743  37.5 705.5 mm

Example 10.31

The length of connecting rod of a gas engine running at 340 rpm is 600 mm and the crank is 120 mm 
long. When the piston has moved 1/4th stroke during outstroke, determine (a) the angular position of 
crank, (b) the angular speed of connecting rod and (c) the acceleration of the piston.

Solution 

(a) n
r

600

120
5

 2
340

60
35 6. rad/s

r
L

2
,  where L is the stroke length

x r n n( cos ) sin
.

1 2 2 0 5
 

x

L

x

r
n n

2
0 5 1 2 2 0 5

. ( cos ) sin
.

 

1

4
0 5 1 2 2 0 5
. ( cos ) sin

.
 n n

0 5 1 5 25 2 0 5
. cos sin

.
 

5 5 5 25 2 0 5
. cos sin

.
 

or (5.5  cos )2 25  sin2 

 30.25 cos2   11 cos 25  sin2 

 6.25  11 cos 0

 55.37°

Angular speed of the connecting rod,

 


cos

( sin ) .n2 2 0 5

35 6 55 37

25 55 37
4 1

2 0 5

. cos .

( sin . )
.

.
rad/s
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Acceleration of the piston,

2 2
r

n
cos

cos

( . ) . cos .
cos .

.35 6 0 12 55 37
110 74

5
75 652 2m/s

Example 10.32

In a vertical double-acting steam engine running at 360 rpm, the cylinder diameter is 0.3 m, piston 
rod diameter is 40 mm and length of connecting rod is 0.7 m. When the crank has moved 120° from 
top dead centre, the pressure of steam at the cover end is 0.35 N/mm2 and that at the crank end is 0.03  
N/mm2. If the weight of reciprocating parts is 500 N and length of stroke is 300 mm, find (a) piston 
effort and (b) turning moment on the crankshaft for the given crank position.

Solution 

(a) Net force on the piston,  F
p

p
1
A

1
  p

2
A

2

 


4

0 35 300 0 03 40 247022 2. . N

 
n

r

700

150
4 67.

Acceleration of the piston,  f r
np

2 2
cos

cos

 
2 360

60
0 150 120

240

4 67

2

. cos
cos

.

129.4 m/s2

Piston effort,  PE F R
Rf

gp

p

 24702 500
500 129 4

9 81
31797

.

.
N

(b) Turning moment on the crankshaft

 PE r
n

sin
sin

( sin ) .





2

2 2 2 0 5

 31797 0 150 120
240

2 4 672 1202 0 5
. sin

sin

( . sin ) .

3680.5 N m
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Example 10.33

The radius of crank of a horizontal engine is 300 mm. The mass of the reciprocating parts is 200 kg. 
The difference between the driving and the back pressures is 0.4 N/mm2 when the crank has travelled 
60° from I.D.C. The length of connecting rod is 1.2 m and the cylinder bore is 0.5 m. The engine runs 
at 240 rpm. Neglecting the effect of the piston rod, find (a) pressure on the slide bar, (b) thrust in the 
connecting rod, (c) tangential force, and (d) turning moment on the crankshaft.

Solution 

Given : r 300 mm, M
r

200 kg, l 1.2 m, D 0.5 m, N 240 rpm, p
1
  p

2
0.4 MPa

 2   240/60 25.13 rad/s

 n l/r 1.2/0.3 4

Force on the piston, F
p

( p
1
  p

2
)   D2/4

  0.40    5002/4

  78540 N

Inertia force due to reciprocating parts, F
i

M
r
 2r [cos cos 2 /.n]

  200  (25.13)2  0.3 [cos 60° cos 120°/4]
  14209 N

Piston effort, PE F
p
  F

i
78540  14209 64331 N

(a) Pressure on the slide bar:
 sin  sin /n sin 60°/4 0.2165

  12.5°

Pressure on the slide bars, F
n

PE tan 
64331 tan 12.5° 14266 N

(b) Thrust in the connecting rod, F
n

PE/cos 
64331/cos 12.5° 65893 N

(c) Tangential force on the crankpin, F
t

F
c
 sin (  )

65893 sin 72.5° 62843 N

(d) Turning moment on the crankshaft F
t
 r

62843  0.3 18853 N m

Example 10.34

The turning moment diagram for one revolution of a multicylinder engine is shown in Fig.10.30. The 
vertical and horizontal scales are:
1 mm 600 N m and 2.5°, respectively. The fluctuation of speed is limited to 1.5 % of mean speed, 
which is 250 rpm. The hoop stress in rim material is limited to 5.6 N/mm2. Neglecting effect of boss 
and arms, determine the suitable diameter and cross-section of flywheel rim. Take density of rim mate-
rial as 7200 kg/m3, and width to be four times the thickness.

Solution 

Hoop stress, v2

 v  dN
m
K

s
/60

  13.286 d m/s
 5.6  106 7200  (13.286 d)2

 d 2.1 m
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Let  E energy at A

Point Energy (mm2)

B
C
D
E
F
G
H
J
K

E  30
E  30 410 E 380
E 380  275 E 105
E 105 340 E 445
E 445  320 E 125
E 125 245 E 370
E 370  385 E - 15
E  15 276 E 261
E 261  261 E

Fluctuation of energy, E
f

E
max

  E
min

  (E 445)  (E  30)

  475 mm2

  475  10 6  (2.5    103/180)  600  103

  12435.47 N m

 W (900  g  E
f
)/( 2  K2  N2

m
  C

s
)

  (900  9.81  12435.47)/( 2  1.052  2502  0.03)
  5381.4 N

Now W  d b t  g
 5381.4   2.1  4 t  t  7200  9.81
 t 53.73 mm and b 214.92 mm

A

-30
B C D E

-320

F G

-385
-261

H J K

+276+340 +245
+410

-275

Fig.10.30 Turning moment diagram for a multi-cyclinder engine

Example 10.35

The variation of torque for an intermittent operation of a machine is shown in Fig.10.31. The machine 
is directly coupled to a motor, which exerts a constant torque at a mean speed of 200 rpm. The flywheel 
has a moment of inertia of 2000 kg m2. Determine (a) the mean power of the motor, and (b) total fluc-
tuation of speed of machine shaft.

Solution 

Area of turning moment diagram Area OAEF Area ABCD

 
13800 6

4 2

2
13800 9

 


 T
m
  6
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or T
m

20700 N m

Power developed, P
N Tm m2

60 1000


kW

 

2 200 20700

60 1000


433.54 kW

2
2

M

J
H

B

T
N.m

27,600

20,700 G

13,800 A

C

K L

E

F

Tm

3 4 5 67
2

Fig.10.31 Variation of torque for an intermittent operation

Surplus energy is represented by the area HBCK and deficient energy by the areas AGH and 
KLED.

Now  
GH

HJ

GA

BJ

or  
GH

GH HJ

GA

GA BJ

 

GH

GJ

GA

BM

20700 13800

27800 13800

6900

13800

 
GH

 6900

13800 2

Therefore,  
H


2

Similarly  
K

7

2



Surplus energy Area HBCK

 

3 2

2
27600 20700 54192

 
( ) N m

 

 2

1800
I N N N N( ) ( )max min max min
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 2

1800
200 200 2( )( )max minN N

 N
max

  N
min

12.35 rpm

Percentage fluctuation  
12 35 100

200
6 18

.
. %

Example 10.36

A certain machine requires a torque of (500 50 sin ) N m to drive it, where  is the angle of rotation 
of shaft measured from a certain datum. The machine is directly coupled to an engine which produces a 
torque of (500 60 sin 2 ) N m. The flywheel and the other rotating parts attached to the engine weigh 
500 N and have a radius of gyration of 0.4 m. The mean speed is 180 rpm. Determine (a) The fluctua-
tion of energy, (b) the percentage fluctuation of speed, and (c) the maximum and minimum angular 
acceleration of the flywheel and corresponding shaft positions.

Solution 

(a) Change in torque (500 60 sin 2 )  (500 50 sin )

  60 sin 2   50 sin 

  120 sin  cos   50 sin 

  sin  (120 cos   50)
For change in torque to be zero,  sin 0, or 0° 180° and 360°.

Also, cos
50

120
0.4167 or 65.4° and 294.6°

The variation of T against  is shown in Fig.10.32.

Fig.10.32 Variation of T against  for a machine

Fluctuation of energy, E f
180

294 6

60 2
.

( sin sin )d

 
–

.
3  cos 2  5  cos N m0 0 121

180

294 6 
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(b)  E
WK

g
N N N Nf

 2 2

1800
( ) ( )max min max min

 

121
1800

500 0 4

9 81
180 2

2 2 .

.
( ) ( )max minN N

 N
max

  N
min

7.45 rpm

Percentage fluctuation of speed   
7 45 100

180
4 14

.
. %.

(c) T 60 sin 2   50 sin 
For maximum or minimum value of T,

  
d

d

T


 120 cos 2   50 cos 0

or 120(2 cos2   1)  50 cos 0

or 240cos2   5 cos   120 0

or 24 cos2   5 cos   12 0

 cos 
5 25 1152

48

0 5( ) .

 0.8189 and 0.61057

 35° and 127.6°
 T

max
60 sin 70°  50 sin 35° 27.7 N m

Maximum acceleration,  
max

T g

W K
max

2

 

27 7 9 81

500 0 16
3 397

. .

.
. rad/s2

 T
min

60 sin 255.2°  50 sin 127.6° 97.62 N m

Minimum acceleration,  
min

 
97 62 9 81

500 0 16
11 97

. .

.
. rad/s2

Example 10.37

A single cylinder, single acting, four stroke gas engine develops 25 kW at 320 rpm. The work done by 
the gases during the expansion stroke is three times the work done on the gases during the compres-
sion stroke. The work done during the suction and exhaust strokes are negligible. The fluctuation of 
speed is not to exceed 2% of the mean speed. The turning moment diagram during compression and 
expansion is assumed to be triangular in shape. Find the weight of the flywheel if its radius of gyration 
is 0.5 m.

Solution 

Coefficient of fluctuation of speed, K
s

4%

Work done per cycle
60P

n
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60 25000

160
9375 N m

Net work done per cycle Work done during expansion  Work done during compression

W W
W W

e c
e e

3

2

3
9375

We

or W
e

14062.5 N m

The T  diagram is shown in Fig.10.33.

Fig.10.33 Variation of T against for a single cyclinder, single acting, four-stroke engine

Work done during expansion stroke area ABC 0.5  BC  AG

14062.5 0.5    AG

or AG 8952.5 N m T
max

Mean turning moment, T
m

FG
9375

4
746 N m

Excess turning moment, T
excess

AF AG  FG

 8952.5  746 8206.5 N m
From similar triangles ADE and ABC, we have

 

DE

BC

AF

AG
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or
  

DE
AF

AG
BC

8206 5

8952 5
2 88

.

.
. rad

Maximum fluctuation of energy,  E
f

area ADE 0.5 · DE · AF

  0.5  2.88  8206.5 11817.4 N m

Now E
f

K
s
 

W

g
K 2 2

 11817.4 0.04 
W

9 81
0 5

2 320

60
2

2

.
( . )


 

W 10324 N

Example 10.38

An Otto cycle engine develops 45 kW at 180 rpm with 90 explosions per minute. The change of speed 
from the commencement to the end of power stroke must not exceed 0.5% of mean on either side. Find 
the mean diameter of the flywheel and rim cross-section having width four times the thickness so that 
the hoop stress does not exceed 3.5 MPa. Assume that the flywheel stores 6% more energy than the 
energy stored by the rim and the work done during power stroke is 1.4 times the work done during the 
cycle. Take density of rim material to be 7300 kg/m3.

Solution 


2 180

60
18 85. rad/s

Power developed, P T
m

or
 

Tm

45000

18 85
2387 3

.
. N m

Since the number of explosions are half of the rpm, therefore, it is a four-stroke engine. The turning 
moment diagram is shown in Fig.10.34.

Work done per cycle T
m

2387.3  4 30000 N m.
Work done during the power stroke 1.4  30000 42000 N m.
Triangle ABC shows the work done during the power stroke.
Work done during the working stroke area ABC 0.5 · AC · BF

 42000 0.5T
max

  

or T
max

26738 Nm
Excess torque, T

excess
BG BF  GF T

max
 T

m

  26738  2387.3 24350.7 N m

From similar triangles ABC and BDE, we have

 

DE

AC

BG

BF
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Fig.10.34 Variation of T against for a four-stroke petrol engine

or DE
BG

BF
AC

T

T
excess

max



 

24350 7

26738
0 9107

.
. 

Maximum fluctuation of energy,
E

f
area BDE 0.5DE · BG

0.5  0.9107   24350.7

 34834 N m

Hoop stress in flywheel rim v2

 3.5  106 7300 v2

or v 21.896 m/s
Let d be the diameter of flywheel.

  21.896 d  180

60
or  d 2.32 m
Fluctuation of speed 1%

Coefficient of fluctuation of speed,  K
s

0.01

Now E
f

2 EK
s

 34834 2  0.01  E 

 E 1741.7  103 N m

Energy stored by the flywheel  1.06 E 1846.2  103 N m
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0.5

 

W

g  
v2

0.5  W 
 

( . )

.

21 896

9 81

2

or W 75552 N dbt g

    2.32  4t2  7300  9.81

or t 190 mm

 b 760 mm

Example 10.39

A punching press is required to punch 30 holes per minute of 20 mm diameter in a steel plate 13 mm 
thick. The actual punching takes place at 1/6th of the interval between punches. The shear strength of 
the plate is 310 N/mm2. The driving motor runs at 900 rpm with a reduction in the velocity through 
gears to give the desired speed of 30 punching operations per minute. Find the mass of the flywheel 
required if its mean diameter is 900 mm. Take K

s
10%.

Solution 

Required punching force,  F  dt u

 20 13 310 253212 N

The force versus displacement diagram is shown in Fig.10.13. The area under the curve can be 
approximated as a triangle, so that the work done in punching the hole is,

  0.5 Ft

  0.5 253212 0.013 1645.9 N m

Time between punching operations
60

30
2 s

Punching time
2

6

1

3
s

Average power required without the flywheel
1645 9

1 3
4937 6

.

( / )
.  W

Since F in Fig.10.13(a) is twice as large as in Fig.10.13(b), therefore the instantaneous power 
required will be 9875 W.

When a flywheel is used, the force-displacement curve is shown in Fig.10.13(c). The work required 
to punch the hole is represented by the area ABCDE. The same amount of energy to be supplied by the 
flywheel is represented by the area FGIE. Therefore, 1645.9 N m of energy is to be supplied in 2 s, that 
is, a 822.95 W motor is required. During the 1/3 second punching interval, the motor supplies the energy 
represented by the area AHIE, which is 822.95/3 274.3 N m. But the energy required is 1645.9 N m. 
Therefore, the energy to be taken from the flywheel is, E

f
1645.9  274.3 1371.6 N m.

Mean velocity,  vm 0 9
150

60
. 7.07 m/s
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v v m1 2 2 14 14v .

v v K vs m1 2 0 1 7 07 0 707. . .

 v v1 7.424 m/s  and  6.717 m/s2

Mass of flywheel required, M
E

K
f

s mv 2 2

1371 6

0 1 7 07

.

. .
274.4 kg

Example 10.40

A punching machine is required to punch 5 holes per minute of 50 mm diameter in 40 mm thick plate. 
The ultimate shear strength of plate material is 225 MPa. The punch has a stroke of 100 mm. Find the 
power of motor required if mean speed of flywheel is 18 m/s. If coefficient of fluctuation of energy is 
4%, find the mass of the flywheel.

Solution 

Punching force, F u  dt 1413717 N50 40 225

Punching time per hole
60

5
12 s

Energy required in punching one hole, E
1

0.5 FK
e

  0.5 1413717 0.04 28274 N m

Power required E
1
/punching time

28274

12
2356 W  or 2.356 kW

The punch travels a total distance of 2 100 200 mm (upstroke downstroke) in 12 s.

Time required to punch a hole in 40 mm thick plate
12 40

200
2.4 s

Energy required to be supplied by motor in 12 s 28,274 N m

Energy supplied by the motor in 2.4 s 28274 
2 4

12

.
5654.8 N m

Energy supplied by flywheel,  E f 28274 5654 8. 22619.8 N m

  
E

E

K
f

e2

22619 2

2 0 04

.

.
282740 N m

If M is the mass of the flywheel, then

 0 5 2. M Ev

 
M 2

282740

18 2( )
1745 kg
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Example 10.41

A punching press makes 25 holes of 20 mm diameter per minute in a plate 15 mm thick. This causes 
variation in the speed of flywheel attached to press from 240 to 220 rpm. The punching operation  
takes 2 seconds per hole. Assuming 6 N m of work is required to shear 1 mm2 of the area and frictional 
losses account for 15% of the work supplied for punching, determine (a) the power required to operate 
the punching press, and (b) the mass of flywheel with radius of gyration of 0.5 m.

Solution 

 Work required for punching one hole Area of shear in mm2  Work per mm2

  dt 6 20 15 6

  5654.86 N m

Accounting 15% for frictional losses, the actual work supplied

 
5654.86

0.85
 = 6652.78 N m

Total work required per minute for drilling 25 holes

 = 6652.78  25 = 166,319 N m

(a) Power required
166319

60 103
 = 2.772 kW

Energy supplied during the punching operation 2 772 1000 2. 5544 N m

Energy supplied by the flywheel, E f 6652 78 5544. 1108.78 N m

 
E If 0 5 1

2
2
2.  

 
1108 78 0 5 0 5

2

60
240 2202

2

2 2. . ( . )M


 M 87.92 kg

Example 10.42

An electric motor drives a punching press to which a flywheel of radius of gyration 0.5 m is fitted. The 
flywheel runs at 240 rpm. The press is capable of punching 600 holes per hour with each punching 
operation taking 2 seconds and requiring 15 kN m of work. Determine (a) the rating of the motor, and 
(b) mass of the flywheel if its speed does not drop below 220 rpm.

Solution 

(a) Total work required per hour Work per hole  Number of holes per hour

  15  600 9 106 Nm

Motor power 
9 10

10 3600
0

6

3
2.5 kW
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(b) Energy delivered by motor during the punching operation,

 E2 2 5 1000 2. 5000 N m

Energy required per punch operation,  E1 15,000 N m

Fluctuation of energy,  E E Ef 10,000 N m1 2 15 000 5000,

 
E If 0 5 1

2
2
2. ( )  

 10000 0.5M (0.5)2 
2

60
240 220

2

2 2

 M 792.95 kg

Example 10.43

A 5 kW induction motor running at 750 rpm operates a rivetting machine. A flywheel of mass 80 kg 
and radius of gyration 0.45 m is fitted to it. Each rivetting takes 1 s and requires 10 kW. Determine  
(a) number of rivets closed per hour and (b) fall in speed of the flywheel after the riveting operation.

Solution 

Mean speed,  m 2
750

60
78.54 rad/s

Energy supplied by the motor in one hour 5  103  3600 18  106 N m

Energy required for one riveting operation 10  10  1  = 10  N m3 4

Number of rivets closed per hour = 
18 10

10
1800

6

4

Energy supplied by the motor in 1 s 5  103 1 5000 N m

Energy to be supplied by the flywheel 10000  5000 5000 N m

E E E If max min max min.0 5 2 2 

Now  max m

 
5000 0 5 80 0 45 78 5402 2 2. ( . ) ( . min

 min 74.5 rad/s

or  Nmin 711.5 rpm

Fall in speed  750  711.5 38.5 rpm

Example 10.44

A connecting rod of an internal combustion engine has a mass of 1.5 kg and the length of the rod  
is 250 mm. The centre of gravity of the rod is located at a distance of 100 mm from the gudgeon  
pin. The radius of gyration about an axis through the centre of gravity perpendicular to the plane of 
rotation is 110 mm. Find the equivalent dynamical system if only one of the masses is located at the 
gudgeon pin.
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If the connecting rod is replaced by two masses, one at the gudgeon pin and the other at the crank 
pin and the angular acceleration of the rod is 24000 rad/s2 clockwise, determine the correction couple 
applied to the system to reduce it to a dynamically equivalent system.

Solution 

Here m 1.5 kg, L 250 mm, a 100 mm, K 110 mm

Now  ab K 2

 
b

110

100

2

121 mm

Let m
a

mass at the gudgeon pin
m

b
mass at the crank pin

Then
 

m
m

La
b 1 5 121

250

.
0.72 kg

 mb 1 5 0 72. . 0.78 kg

Correction couple
Now  a c100 mm 150 mm,

 K ac1
2 100 150 15000

 K1 122.47 mm

Correction couple, 
 

T m K Ko 1
2 2 

  1.5(15000  12100) 24000  10 6

  104.4 N m

Example 10.45

A vertical engine running at 1200 rpm with a stroke of 120 mm, has a connecting rod 300 mm long 
and of 1.5 kg mass. The mass centre of the rod is 100 mm from the big end centre. When the rod is 
suspended from the gudgeon pin as a pendulum, it makes 20 complete oscillations in 20 seconds. 

(a) Calculate the radius of gyration of the rod about an axis through the mass centre. (b) When 
the crank is at 35° from the top dead centre and the piston is moving downwards, find the accelera-
tion of the piston and the angular acceleration of the rod. Hence, find the inertia torque exerted on the 
crankshaft.

Solution 

Angular speed,  
2 1200

60
126.66 rad/s

 
L

L
120

2
60mm or r = mm

 
l m n

l

r
300 mm  1.5 kg   , , , 35

300

600
5
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(a) Radius of gyration of the rod
Distance of the centre of gravity of rod from the point of suspension,

l1 300 100 200 mm

Frequency of oscillation of a compound pendulum,

f
gl

K ln

1

2
1

2
1
2

0 5



.

20

20

1

2

9 81 200 10

200

3

2 2

0 5


.

.

K

 
4

9 81 200 10

200
2

3

2 2


.

K

or  K 2 40000 49698
or K 2 9698
or K 98.47 mm

(b) Acceleration of the connecting rod:

 Angular acceleration of the rod, f
nr

2 sin

 
( . )

sin
126 66

35

5
2

 = 1840.35 rad/s2

Acceleration of the piston, f p r
n

2 2
cos

cos

 
( . ) . cos

cos
126 66 0 06 35

70

5
2

  854.33 m/s2

Inertia torque exerted on the crankshaft

Mass of the rod at the gudgeon pin, m
m l l

lg

( ) . ( )
.1 1 5 300 200

300
0 5 kg

Vertical inertia force due to m
g
,  F m fi g p 0 5 854 3. . 3 = 427.16 N

Now  sin
sin sin

.


n

35

5
0 1147

  6 587.

 

OM r

sin( ) cos  
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OM

60 41 587

6 587
40

sin .

cos .
.1 mm

Torque due to F
i

T F OMi 427 16 0 0401. .

 17 12. 5 Nm  or  17.125 Nm (counter-clockwise)

Equivalent length of a pendulum,  l
K l

le

2
1
2

1

29698 200

200
248 4. 9 mm

Correction couple,  T ml l lo e r1( )

  –1.5  200(300  248.49)10–6 1840.35
  –28.44 N m

Corresponding torque on the crankshaft, T
T

ncs
o cos . cos 28 44 35

5
4.66 Nm

 4.66 N m (counter-anticlockwise)

Torque due to the mass at the gudgeon pin,

 
T m g OMg g 0 5 9 81 0 0401. . .

 0.1967 N m (clockwise)

Equivalent mass of the rod at the crank pin, mc

1 5 200

300

.
1 kg

Torque due to this mass,  T m g lc c sin . . sin . 1 9 81 0 3 6 587

  0.3376 N m (clockwise)

Inertia torque exerted on the crankshaft T T T Tcs g c

  17.125 4.66  0.1967  0.3376

  21.25 N m (counter-clockwise)

Example 10.46

The connecting rod of an oil engine weighs 800 N, the distance between the bearing centers is 1 m. The 
diameter of the big end bearing is 120 mm and of the small end bearing is 75 mm. When suspended 
vertically with a knife edge through the small end it makes 100 oscillations is 200 s, and with knife 
edge through the big end it makes 100 oscillations in 170 s. Find the moment of inertia of the rod in 
kg m2 and distance of the center of gravity from the small end centre.

Solution: 

Given: m
800

9 81.
81.55 kg, l 1m, D 120 mm, d 75 mm

fn1

100

200
 0.5 cps
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fn2

100

170
 cps

Let a
1

distance of centre of gravity from the top of small end bearing

 a
2

distance of centre of gravity from the top of big end bearing
For a simple pendulum, natural frequency of rod when suspended from small end bearing is  

given by, 

f
g

ln

e

1
1

1

2

0 5
1

2

9 81

1

.
.

le

le1 0 994. m

K a

a

2
1
2

1

K a a2
1 10 994( . )  (1)

When suspended from the big end,

f
g

ln

e

2
2

1

2

100

170

1

2

9 81

2

.

le

Fig.10.35 Connecting rod
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le2 0.718 m

K a

a

2
2
2

2

or K2 a
2
 (0.718  a

2
) (2)

From Eqs. (1) and (2), we have

 a a a a1 1 2 20 994 0 718( . ) ( . )   (3)

Also a a l D1 2

1

2
( )d  (see Fig.10.35)

 1.0 
1

2
0 120 0 075( . . )

 1.0975 m

or a
2

1.0975  a
1
 (10.50)

Substituting in Eq. (3), we have

 0 994 0 718 1 0975 1 09751 1
2

1 1
2. . ( . ) ( . )a a a a

 0 788 0 718 1 204 2 1951 1
2

1. . . . a a a

 0 483 0 4161. .a

 a
1

0.861 m

 K 2 0 861 0 994 0 861. ( . . ) 0.1145 m2

 I mK2 81.55 0.1145 9.34 kg m2

Distance of centre of gravity from small end centre

 
a

1

d

2

  861  37.5 823.5 mm

Example 10.47

A punching press is required to punch 40 mm diameter holes in a plate of 15 mm thickness at a rate of 
30 holes per minute. It requires 6 N m of energy per mm2 of sheared area. Determine the moment of 
inertia of the flywheel if the punching takes one-tenth of a second and the speed of the flywheel varies 
from 160 to 140 rpm.

Solution 

Given: d 40 mm, t 15 mm
Energy supplied in punching a hole  40 15  6 11309.7 N m
Time taken for punching one hole 60/30 2 s
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Power required 11309.7/2 5654.87 N m/s or 5.655 kW

C
s

(v
max 

 v
min

)/v
m

(27.5  24.5)/26 0.1154

Time to punch a hole in 15 mm thick plate 1/10 s

Energy supplied by motor in 0.1 s 11309.7 0.1/2 565.5 N m

Energy supplied by flywheel, E
f

11309.7  565.5 10744.2 N m

N
m

( 160 140 )/2 150 rpm, C
s

20/150 2/15

W 900 g E
f
/ (  2K 2N 2

m
C

s
)

I WK2/g 900  10744.2 15/[ 2 2150 2( ) ] 326.6 kg m2

Example 10.48

A machine is required to punch 4 holes of 40 mm diameter in a plate of 25 m thickness per minute. The 
work required is 6 N m per square mm of sheared area. The stroke of punch is 100 mm and maximum 
speed of flywheel at its radius of gyration is 30 m/s. Find the mass of the flywheel so that the speed 
does not fall below 27 m/s at the radius of gyration. Also determine the motor power required.

Solution 

Work required per punch, E  40 25 6 18849 6. N m

Now ( ) / 2 = /2  = 25/200 = 1/82 1   t L

E
f

(1  t/2L) E (1  1/8) 18849.6 16493.4 

 0.5 MK2 ( 2
1
  2

2
)

 0.5 M(K2 2
1
  K2 2

2
)

 0.5 M(302  272)

 85.5 M

M 192.9 kg

Energy supplied per minute 18849.6 4 75398.4 N m

Motor power 75398.4/(60 1000) 1.257 kW

Example 10.49

A punching press is required to punch 30 mm dia holes in a plate of 20 mm thickness at the rate of 20 
holes per minute. It requires 6 N m of energy per mm2 of sheared area. If punching takes place 1/10th 
of a second and the speed of the flywheel varies from 160 to 140 rpm, determine the mass of the  
flywheel having radius of gyration of 1 m.

Solution 

Work required per punch, E
1

 30 20 6 11309.7 N m

Time required to punch a hole 60/20 3 s

Energy required for punching per second 11309.7/3 3769.91 N m/s

Energy supplied by motor in 1/10th second , E
2

3769.91/10 376.991 N m

E
f

E
1 

 E
2

11309.7  376.991 10932.71 N m

 0.5  MK  2 (2 /60) 2(N  2
1
  N  2

2
)

 0.5M 1 (2 /60) 2(160 2  140 2)

M 332.3 kg
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Example 10.50

The turning moment diagram for a four-stroke gas engine may be assumed for simplicity to be rep-
resented by four triangles, the areas of which from the line of zero pressure are as follows: suction 
stroke 0.45 10 3 m2, compression stroke 1.7 10 3 m2, expansion stroke 6.8 10 3 m2, exhaust 
stroke 0.65 10 3 m3. Each m2 of area represents 3 MN m of energy.

Assuming the resisting torque to be uniform, find the mass of rim of flywheel required to keep the 
speed between 202 and 198 rpm. The mean radius of the rim is 1.2 m.

Fig.10.36 Turning moment diagram for a four-stroke engine

Solution 

Given: N
max

202 rpm, N
min

198 rpm, R 1.2 m.

N
m

(N
max

N
min

)/2 (202 198)/2 200 rpm

Coefficient of fluctuation of speed, C
s

(N
max

  N
min

)/N
m

 (202  198)/200 4/200 0.02

 2 200/60 20.944 rad/s

The turning moment diagram is shown in Fig.10.36.

Net area, A A A A A3 1 2 4
36 8 0 45 1 7 0 65 10( ) [ . ( . . . ]

4 10 3 m2

Net work done A  Scale 4 10–3 3 106 12,000 N m

Work done per cycle Tmean 4  N m

T
mean

12,000

4
 = 954.93 N m
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Work done during expansion stroke A3
3 610 3 10 20 40Scale = 6.8 0 N m.

 Area ABC

1

2

1

2
AC BF BF

        BF
20400 2


12987 N m

Excess torque, BG BF  FG 12987  954.93 12033.07 N m

Now s ABC and DBE are similar. Thus
DE

AC

BG

BF

DE
12033 07

12987

.
 3.91 radian

Maximum fluctuation of energy,  E
f

Area BDE DE BG
1

2
1

2
3 91 12033 07. . 17506.7 N m

Mass of flywheel,
  

m
E

R C
f

s
2 2

17506 7

1 2 20 944 0 022 2

.

( . ) ( . ) .
1385.8 kg

Example 10.51

A vertical single cylinder engine has a cylinder diameter 300 mm, stroke length 500 mm, and connect-
ing rod length 4.5 times the crank length. Engine runs at 180 rpm. The mass of reciprocating parts is 
280 kg, compression ratio is 14, and the pressure remains constant during the injection of oil for 1/10th 
of the stroke. If the compression and expansion follow the law pV1.35 constant, find:

(i) Crank pin effort, (ii) Thrust on the bearings, (iii) Turning moment on the crankshaft when the 
crank displacement is 45° from the I.D.C. position during expansion stroke. Suction pressure may be 
taken as 0.1 N/mm3

Solution 

Given: D L r n
l

r
N Mr= 300 mm 500 mm or 250 mm 180 rpm  k, , , . , ,4 5 280 gg

r
V

V
V V V V V pc s

1

2
3 2 1 2 114, 0.1 0.1 , 0.1 N/mm , 452( )

The p-V diagram for the diesel engine is shown in Fig.10.37.

Angular speed of engine, 
 2 2 180

60
18.85 rad/s

N

60
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Process 1 2:  pV p V1 1
1 35

2 2
1 35. .

 

p p
V

V2 1
1

2

1 35

1 350 1 14 3

.

.. ( ) .526 N/mm2

Swept volume, V D Ls

 
4 4

300 500 10 0 035342 2 9 . 3 m3

Now  
V

V

V V

V
s1

2

2

2

 
14

1 0 035343

2

.

V

Also  p p V V Vs2 3 3 2 0 1 0 00272 0 0035343 and 0.00625 m3. . .

The displacement of the piston for 45° crank rotation from I.D.C. during expansion stroke is indi-
cated by point 5 in Fig.10.37.

Fig.10.37 p-V diagram for a diesel engine

 
x r n n( cos ) ( sin1 2 2  )0.5

 
250 1 45 4 5 4 5 452 2 0 5( cos ) . ( . sin ) .

 87.2 mm or 0.0872 m

 
V V D x5 2

2 2 9

4
0 00272

4
300 87 2 10

 
. .

  0.0089 m3
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Process 3 5:
p V p V3 3

1 35
5 5

1 35. .

 

p p
V

V5 3
3

5

1 35 1 35

3 526
0 00625

0 0089

. .

.
.

.
3.188 N/mmm2

Difference of pressure on two sides of the piston, p p p5 1 3 188 0 1. . 3.088 N/mm2

Force on the piston due to gas pressure during outstroke,

 
F D pp

 
4 4

300 3 0882 2 . 147592 N

Inertia force due to the reciprocating parts, F M r
ni r 
2 2

cos
cos

 
280 18 85 0 25 45

90

4 5
2( . ) . cos

cos

.

 17587.6 N

Piston effort during down stroke of a vertical four-stroke diesel engine.

 
F F F M gp i r 147592 17587 6 280 9 81. . 132751.2 N

(i) Crank pin effort.

Angle of inclination of the connecting rod with the line of stroke,

 
sin

sin sin

.
.


n

45

4 5
0 15713

  9 04.

 CPE, F
t

F  
sin( )

cos

 


 
132751 2

45 9 04

9 04
.

sin( . )

cos .

  108803.9 N

(ii) Thrust on bearings,

  
F Fr

cos( )

cos

 


 132751.2 
( . )

cos .

45 9 04

0 94

 78934.65 N
(iii) Turning moment on the crankshaft or crank effort,

 T F rt 108803 9 0 25. . 27200.975 N m
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Example 10.52

The following data relate to a connecting rod of a reciprocating engine:
Mass 60 kg, distance between bearing centres 900 mm, diameter of small end bearing 80 mm, 

diameter of big end bearing 100 mm, time of oscillation when the connecting rod is suspended from 
small end 1.85 s, time of oscillation when the connecting rod is suspended from big end 1.70 s. 
Determine (a) the radius of gyration of the rod about an axis passing through the centre of gravity and 
perpendicular to the plane of oscillation, (b) the moment of inertia of the rod about the same axis, and 
(c) the dynamically equivalent system for the connecting rod, consisting of two masses, one of which 
is situated at the small end centre.

Solution 

Refer to Fig 10.38.
Given:m 60 kg, l 900 mm, d

1
80 mm, d

2
100 mm, T

1
1.85 s, T

2
1.70 s

(a) For an equivalent simple pendulum,

T
l

g

l

l

K a

a

K a a

T

e

e

e

1
1

1

1

2
1
2

1

2
1 1

2

2

1 85 2
9 81

0 85

0 85

.
.

.

( . )

 m

2

1 70 2
9 81

0 718

2

2

2

2
2
2

2

l

g

l

l

K a

a

e

e

e

.
.

.  m

 

(1)

 K2 a
2
 (0.718  a

2
) (2)

From Eqs. (1) and (2)

 a
1
 (0.85  a

1
) a

2
 (0.718  a

2
)

Now a
1

a
2

0.900
1

2
(80 100) 10 3 0.990 m

or a
2

0.990  a
1

 a
1
 (0.85  a

1
) (0.99  a

1
) (0.718  0.99 a

1
)

 0.85 a
1
  a1

2  (0.99  a
1
) (a

1
  0.272)

  0.99 a
1
  a1

2   0.26928 0.272 a
1
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  1.262 a
1
  a1

2   0.26928
 0.412 a

1
0.26928

 a
1

0.6536 m
 K2 0.6536 (0.85  0.6536) 0.1284 m2

 K 0.3583 m
(b) I mK  2 60  0.1284 7.704 kg m2

(c) Distance of centre of gravity from small end centre, a a
d

1
1

2

 
0 6536

0 08

2
0 6136.

.
. m

Let  m
a

mass placed at small end centre 
m

b
second mass

 b distance of m
b
 from centre of gravity

For dynamically equivalent system,
  ab K  2

 
b

K

a

2 0 1284

0 6136
0 2092

.

.
. m

Now m
bm

a ba

0 2092 60

0 6136 0 2092
15 25

.

. .
. kg

 m m mb a 60 15 25 44 75. . kg

a1

900 mm

100 mm

80 mm

G

a2

Fig.10.38 Connecting rod
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Summary for Quick Revision

1 The inertia force arises due to the mass and acceleration of the reciprocating parts.

2 Piston effort is the net force applied on the piston.

3 Crank effort is the net force applied to the crank pin perpendicular to the crank which gives the 
required turning moment on the crankshaft.

4 The plot of torque T v’s. crank angle  is called the turning moment diagram.

5 The area under the turning moment diagram represents the work done per cycle.

6 Mean turning moment is obtained by dividing the area of turning moment diagram by the length 
of base.

7 The maximum ordinate of the turning moment diagram gives the maximum torque to which the 
crankshaft is subjected to.

8 Displacement, Velocity and Acceleration of Piston:
Displacement of the piston from top dead centre,
x r [(1  cos ) {n  (n2  sin2 )0.5}]
Velocity of piston, v  r [ sin sin 2 /{2 (n2  sin2  )1/2}]

 r [ sin sin 2 /(2n)]
Acceleration of piston, f

p
  2r [ cos (cos 2 )/n]

where n /r

9 Angular velocity and acceleration of connecting rod
Angular velocity of connecting rod, 

c
 cos /(n2  sin2 )0.5

Angular acceleration of connecting rod
f
c

2 sin  [(n2  1)/(n2  sin2 )1.5]
 2 sin /n

10 Inertia forces in reciprocating engines.
(a) Slider crank chain.
W

c
weight of the connecting rod, M

r
mass of reciprocating parts,

l length of connecting rod, L length of stroke 2r, r radius of crank,
l
1

distance of centre of gravity G of connecting rod from the gudgeon pin
Total equivalent reciprocating weight, M

re
M

r
(l  l

1
) W

c
 / (gl)

The inertia force due to M
re
, F

i
M

re
 · f

p

Torque exerted on the crankshaft due to inertia force, T
i

F
i
  OM

where OM r sin (  )/cos   and sin  sin /n.
Correction couple, T

o
W

c
 l

1
 (l  L) 

c  
/g

where 
c
  angular acceleration of rod   2 (n2  1) sin /(n2  sin2 2 )1.5  2 sin /n

Torque on the crankshaft, T
c
   [W

c
 l

1
 (l  L)/g] . [ 2 sin 2 /(2n2)]

Vertical force through crankpin W
c
 l

1
/1

Torque exerted on crankshaft by gravity, T
o

(W
c
 l

1
/n) . cos 

Total torque exerted on the crankshaft by the inertia of moving parts T
i

T
c

T
g
 

11 Equilibrium of forces in slider crank mechanism

(a) Outstroke

F
c

F/cos  , F
n

F tan 
The connecting rod is in compression during outstroke.
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Crank pin effort, F
t

F
c
 sin ( ) F sin (  )/cos 

Thrust on the bearings, F
b

F
c
 cos ( ) F cos ( )/cos 

(b) In stroke
The connecting rod is under tension now.

(c) Crank effort

Crank effort , CE Fr [sin sin 2 /{2(n2  sin2 )0.5}]

 F  OM

12 Piston effort:

(a) Double acting horizontal steam engine
Force on piston due to steam pressure during outstroke, F ( /4) [D2 p

1
  (D2  d2) p

2
]

Inertia force due to mass of reciprocating parts, F
i

M
r
 · 2 r [cos cos 2 /n]

Piston effort during outstroke (PEO), F F
p
  F

i

Piston effort during instroke, PEI, F ( /4) [D2 p
3
  (D2  d2) p

4 
]  F

i

(b) Double acting vertical steam engine 
PED F

2
  F

i
M

r
g

PEU F
p
  F

i
  M

r
g

(c) Four-stroke horizontal internal combustion engine 
PEO ( /4) D2 (p

1
  p

a
)  F

i

PEI ( /4)D2 (p
a
  p

4
)  F

i

(d) Four-stroke vertical Internal Combustion Engine
PED ( /4) D2 (p

1
  p

a
)  F

i
M

r
g

PEU ( /4)D2 (p
a
  p

4
)  F

i
  M

r
g

13 Fluctuation of energy (E
f
): It is the excess energy developed by the engine between two crank 

positions.

E
f

C
e 
E

where E 1/2 · I 2
m
, I moment of inertia of the flywheel, and 

m
 its mean angular speed. 

14 Coefficient of fluctuation of energy (C
e
): It is the ratio of the maximum fluctuation of energy to 

the indicated work done by the engine during one revolution of crank.

C
e

(E
max

  E
min

)/(T
m
 · )

4  for steam engines and four stroke I.C. engines.
Mean torque, T

m
power developed/

m
.

15 Coefficient of fluctuation of speed (C
s
): It is defined as the ratio of the difference between the 

maximum and minimum angular velocities of the crankshaft to its mean angular velocity.
C

s
(

max
  

min
)/

m
(N

max
  N

min
)/N

m

where N
m

(N
max

N
min

)/2

16 A flywheel is a device which serves as a reservoir to store energy when the supply of energy is 
more than the requirement, and releases energy when the requirement is more than the supply.

17 A flywheel controls the fluctuation of speed pf the prime mover during each cycle.

18 Size of flywheel:
Mass,  m ( 900  E

f
 )/( 2  K 2 N 2

m
C

s
 ) kg

E
f 

2C
s
E
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Hoop stress in rim of flywheel, v2

For a punching press, (1/2) | ( 2
max

  2
min

) E [1  t/(4r) ]

19 Equivalent dynamical system 
A continuous body may be replaced by a body two masses assumed to be concentrated at two points 
and connected rigidly together. Such a system of two masses is termed an equivalent dynamical 
system. The conditions to be satisfied by an equivalent dynamical system are as follows:

1. The total mass must be equal to that of the rigid body.

2. The centre of gravity must coincide with that of the rigid body.

3. The total moment of inertia about an axis through centre of gravity must be equal to that of the 
rigid body.

m
a

m
b

m
 m

a
 · a m

b
 · b

m
a
 · a2  m

b
 · b2 mK2

 K2 ab

20 In an approximate dynamical system, the distances ‘a’ and ‘c’ are fixed arbitrarily, then 
m

a
[c/(a c) ] m

m
c

[ a/(a c)] m
Correction couple,

T
o

ma (I  L) · 

where I distance between two masses m
a
 and m

c
 fixed arbitrarily 

L distance between two masses m
a
 and m

b
,
 
which form a true 

dynamically equivalent system.

21 Compound Pendulum
Natural frequency, 

n
[ ga/(K2 a2 ) ]1/2 rad/s

Equivalent length of a simple pendulum, I
e

K2/a a

Multiple Choice Questions

1 The flywheel influences the

(a) variation of load demand on prime mover

(b) mean speed of the prime mover

(c) cyclic variation in speed of the prime mover

(d) mean torque developed by the prime mover.

2 If mean speed of the prime mover is increased then the coefficient of fluctuation of speed will

(a) increase (b) decrease (c) remains same (d) unpredictable.

3 The maximum fluctuation of energy of flywheel is directly proportional to

(a) coefficient of fluctuation of speed

(b) square of angular speed of flywheel

(c) moment of inertia of flywheel

(d) all of the above.
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4 The acceleration of piston of a reciprocating engine is:

(a)  
2 2

r
n

sin
cos

 (b)  
2 2

r
n

cos
cos

 

(c)  
2 2

r
n

sin
sin

 (d)  
2 2

r
n

cos
sin

5 Crank pin effort in a reciprocating engine is:

(a) 
F sin

cos

 


 (b) 
F sin

sin

 


(c) F cos

cos

 


 (d) F cos

sin

 


where F piston effort

6 Crank effort in a reciprocating engine is

(a) F
nr sin
sin 2

2
 (b) F

nr cos
cos 2

2

(c) F
nr sin

cos


2
2

 (d) F
nr cos
sin 2

2

7 Coefficient of fluctuation of speed is given by:

(a) 
 


max min

m

 (b) 
 


max min

m

(c) 
 


max min

2 m

 (d) 
 


max  m

m

8 Fluctuation of energy of a flywheel is

(a) C
s
E (b) 2C

s
E (c) 1

2
C

s
E (d) 4C

s
E

Answers

1. (c) 2. (c) 3. (d) 4. (b) 5. (a) 6. (a) 7. (b) 8. (b)

Review Questions

1 Define piston effort and crank effort.

2 What do you mean by dynamically equivalent system?

3 How do you account for the inertia of the connecting rod?
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4 What is a turning moment diagram? What are its advantages?

5 Define coefficient of fluctuation of energy and coefficient fluctuation of speed.

6 What is the main function of a flywheel?

7 Write the relationship between coefficient of fluctuation of speed, maximum fluctuation of energy 
and kinetic energy of flywheel.

8 Write the procedure for determining the turning moment diagram.

9 What is a compound pendulum?

Exercises

10.1 A horizontal steam engine running at 250 rpm has a bore of 210 mm and a stroke of 350 mm. 
The piston rod is 20 mm in diameter and connecting rod length is 1050 mm. The mass of the 
reciprocating parts is 6 kg and frictional resistance is equivalent to a force of 500 N. Determine 
the following when the crank is at 120° form IDC, the mean pressure is 5 kN/m2 on the cover 
side and 0.1 kN/m2 on the crank side:
(a) Thrust in the connecting rod, (b) thrust on the cylinder walls, (c) load on the bearings, and 
(d) turning moment on the crankshaft.

10.2 A single cylinder vertical engine has a bore of 250 mm and a stroke of 500 mm. The connecting 
rod is 1000 mm long. The mass of the reciprocating parts is 150 kg. The gas pressure is 0.75 MPa  
during expansion stroke when the crank is at 30° form TDC. The speed of the engine is 240 rpm. 
Determine: (a) net force acting on the piston, (b) resultant load on the gudgeon pin, (c) thrust on 
the cylinder walls, and (d) the speed above which, other things remaining same, the gudgeon pin 
load would be reversed in direction.

10.3 In a reciprocating engine, the length of stroke is 250 mm and connecting rod is 500 mm long 
between centres. Determine: (a) the angular position of the crank, (b) velocity and acceleration 
of the piston, and (c) angular velocity of the connecting rod if the engine speed is 240 rpm.

10.4 The following data refer to a horizontal reciprocating engine:
Mass of reciprocating parts 125 kg, crank length 100 mm, length of connecting rod between 
centres 500 mm, engine speed 600 rpm, mass of connecting rod 100 kg, distance of mass 
centre of connecting rod from the small end centre 200 mm, radius of gyration about mass 
centre axis 160 mm.
Determine the magnitude and direction of the inertia torque on the crankshaft when the crank 
has turned 30° from IDC.

10.5 The following data refer to a connecting rod of a reciprocating engine:
Mass 60 kg; Distance between bearing centres 900 mm; Diameter of small end bearing 80 
mm; Diameter of big end bearing 120 mm; Time of oscillation when the connecting rod is 
suspended from small end 1.85 s; time of oscillation when the connecting rod if suspended 
from big end 1.70 s.

Determine:
(a) The radius of gyration of the rod about an axis passing through the centre of gravity and per-
pendicular to the plane of oscillation, (b) the moment of inertia of the rod about the same axis, 
and (c) the dynamically equivalent system for the connecting rod, consisting of two masses, one 
of which is situated at the small end centre.
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10.6 A connecting rod of length 400 mm between centres has a mass of 4.5 kg. The centre of grav-
ity is 260 mm from the small end and its radius of gyration about an axis through the centre of 
gravity perpendicular to the plane of rotation is 125 mm. Determine a dynamically equivalent 
system having one mass at the centre of small end and the other at a point somewhere in between 
the centre of big end and the centre of gravity.

10.7 The connecting rod of a vertical reciprocating engine is 2 m long between centres and its mass 
is 250 kg. The mass centre is 750 mm from the big end bearing. When suspended as a pendulum 
from the gudgeon pin axis, it makes 10 complete oscillations in 25 seconds. Calculate the radius 
of gyration of the rod about an axis through its mass centre. The crank is 400 mm long and 
rotates at 250 rpm.
When the crank has turned through 35° from the TDC and the piston is moving downwards, find 
the inertia torque exerted on the crankshaft.

10.8 A single cylinder vertical engine has a bore of 300 mm, a stroke of 350 mm and a connecting 
rod of length 700 mm. The weight of the reciprocating parts is 125 kg. When the piston is at 
quarter-stroke from TDC and is moving downwards, the net pressure on it is 0.55 MPa. If the 
speed of the engine is 240 rpm, calculate the turning moment on the crankshaft.

10.9 The turning moment curve for one revolution of a multicylinder engine above and below the line 
of mean resisting torque are given by:

0.32, 4.06, 3.71, 3.29, 3.16, 3.32, 3.74, 3.71, and 3.45 sq. cm.
The vertical and horizontal scales are: 1 cm 60000 kg cm and 1 cm 24°, respectively. The 
fluctuation of speed is limited to 1.5% of mean speed, which is 250 rpm. The hoop stress in the 
rim material is limited to 5.5 N/mm2. Neglecting effect of boss and arms, determine the suitable 
diameter and cross-section of flywheel rim. The density of rim material is 7200 kg/m3. Assume 
width of rim equal to four times its thickness.

10.10 A constant torque 3 kW motor drives a punching machine. The mass of the moving parts includ-
ing the flywheel is 130 kg at 750 mm radius. One punching operation absorbs 1 kg of energy 
and takes 1 s. Speed of the flywheel is 240 rpm before punching: Determine (a) the number of 
punches per hour and (b) reduction in speed after the punching operation.
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11
STATIC AND DYNAMIC 

FORCE ANALYSIS

11.1 INTRODUCTION
Forces in mechanisms arise form various sources, e.g. forces of gravity, forces of assembly, forces 
from applied loads, forces from energy transmission, frictional forces, spring forces, impact forces, 
and forces due to change of temperature. All these forces must be considered in the final design of a 
machine for its successful operation.

In the design of mechanisms, the following forces are generally considered:

1. Applied forces

2. Inertia forces, and

3. Frictional forces.

The applied forces act from outside on the mechanism. The inertia forces arise due to the mass of 
the links of the mechanism and their acceleration. Frictional forces is the outcome of friction in the 
joints. A pair of action and reaction forces acting on a body are called constraint forces.

Ch
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r 

Ou
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ne
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11.2 STATIC FORCE ANALYSIS
In the analysis of static forces, the inertia forces are not taken into account. Often the gravity forces 
are also small, and are neglected as compared to other forces.

11.2.1 Static Equilibrium
A body is in static equilibrium if it remains in its state of rest or of motion. The conditions for static 
equilibrium are the following:

1. The vector sum of all the forces acting on the body is zero.

2. The vector sum of all the moments about any arbitrary point is zero.

Mathematically, this can be stated as:

 F  0 (11.1)

  M  0 (11.2)

In a planar mechanism, forces can be described by two-dimensional vectors. Thus

 F
x
  0 (11.3)

  F
y
  0 (11.4)

  M
x
  0 (11.5)

11.2.2 Equilibrium of Members
(a) Two-force member
A member under the action of two forces, as shown in Fig.11.1, shall be in equilibrium, if:

1. The forces are of the same magnitude,

2. The forces are collinear i.e. act along the same line, and

3. The forces act in opposite directions.

Fig.11.1 Two-force system

(b) Three-force member
A member under the action of three forces shall be in equilibrium, if:

1. The resultant of the forces is zero, and

2. The forces are concurrent, i.e. the line of action of the forces intersect at the same point.

Fig.11.2(a) shows a member acted upon by three forces F
1
, F

2
, and F

3
 such that the lines of action 

of these forces intersect at point O and their resultant is zero. The resultant of three forces shall be zero 
if the triangle of forces is closed, as shown in Fig.11.2(b).
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Fig.11.2  Three-force system

(c) Two-forces and torque
A member under the action of two forces and an applied torque shall be in equilibrium, if:

1. the forces are equal in magnitude, parallel and opposite in direction, and

2. the forces form a couple, which is equal and opposite to the applied torque.

Fig.11.3 shows a member acted upon by two equal and opposite forces F
1
 and F

2
 and an applied 

torque T. For equilibrium, we have

Fig.11.3  Two-forces and torque system 

 T  F
1
  h  F

2
  h  (11.6)

We may remember that a couple can be balanced by a couple only of opposite sense.

(d) Four-force members
A four-force member is completely solvable if one force is known completely in magnitude and direc-
tion along with lines of action of the other three forces. The conditions of equilibrium as stated above 
are sufficient.

Consider a system of four non-parallel forces as shown in Fig.11.4(a). Let O
1
 be the point of 

intersection of the lines of action of F
1
 and F

2
. Similarly, O

2
 is the point of intersection of the lines of 

action of the forces F
3
 and F

4
. Join O

1
O

2
. The resultant of F

1
 and F

2
 and that of F

3
 and F

4
 is parallel 

to O
1
O

2
. The force polygon for the four forces can be drawn as shown in Fig.11.4(b) and the forces F

3
 

and F
4
 can be known completely.



642 Theory of Machines

Fig.11.4  Four-force system

11.2.3 Force Convention

1. The force exerted by member i on member j is represented by F
ij
 , and force exerted by member  

j on member i by F
ji
, such that F

ij
  F

ji
 , i.e. magnitude of both the forces is same but direction  

is opposite.
Consider two links 1 and 2 of a mechanism as shown in Fig.11.5(a). Link 1 rotates clockwise 

about point A. At point B, let F
12

 be the force exerted by link 1 on link 2.

Then the force exerted by link 2 on link 1 at point B shall be F
21

.

For equilibrium of point B, F
12

  F
21

, as shown in Fig.11.5(b).

In general, F
ij
  F

ji
.

2. A force unknown in magnitude but known in direction is represented by a solid straight line with-
out arrowhead , e.g. ___________. 

3. A force unknown in magnitude and direction is represented by a wavy line, e.g. .

Fig.11.5 Force convention
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11.2.4 Free Body Diagrams
A free body diagram is the diagram of a link isolated from the mechanism showing all the active and 
reactive forces acting on the link in order to determine the nature of forces acting on the link. Refer to 
Section 11.2.6 to understand the concept of free-body diagrams.

11.2.5 Principle of Superposition
This principle states that if number of forces act on a system, the net effect is equal to the sum of 
the individual effects of the forces taken one at a time. In a linear system, the output force is directly 
 proportional to the input force.

11.2.6 Static Force Analysis of Four-Bar Mechanism
(a) One known force
Consider a four-bar mechanism subjected to a force F applied to link 4, as shown in Fig.11.6(a).  
The free body diagrams of the forces acting on the various members are shown in Figs.11.6(b) to (d):

1. Member 2 is subjected to two forces F
12

, F
32

 and a torque T
2
 (Fig.11.6(b)).

2. Member 3 is subjected to two forces F
23

 and F
43

 (Fig.11.6(c))

3. Member 4 is subjected to three forces F, F
34

 and F
14

 (Fig.11.6(d))

 (i)  We observe that member 3 is a two-force member. For its equilibrium, F
23

 and F
43

 must act 
along BC. Their magnitudes are not known at this stage.

 (ii)  Draw the force polygon for member 4, as shown in Fig.11.6(e). At point C draw a line 
 parallel to BC to represent F

34
 to intersect the line of action of F at G. Then the line of 

action of F
14

 shall also pass through G. Now draw the triangle of forces as shown in 
Fig.11.6(f ) to know the forces F

34
 and F

14
 completely in magnitude and direction. From 

the triangle of forces, we have

F
34

  F
43

  F
23

  F
32

 (iii)  Member 2 shall be in equilibrium, as shown in Fig.11.6(g), if F
12

 is equal, parallel and oppo-
site to F

32
 and ,

T  F
32

  h

Input torque, T
2
  T

(b) Two known forces
Consider a four-bar mechanism as shown in Fig.11.7(a), subjected to two forces, P and Q. A moment T

2
 

must be applied to link 2 to maintain equilibrium. The free body diagram of the various links is shown 
in Fig.11.7(b). The unknowns for the various links are: five (magnitude  direction of F

12
 and F

32
 and 

magnitude of T
2
) for link 2, four (magnitude  direction of F

23
 and F

43
) for link 3, and four (magnitude  

direction of F
34

 and F
14

) for link 4. Therefore, these links cannot be solved by the equilibrium equations. If 
we consider links 3 and 4 together then there are six unknowns, because F

ij
  F

ji
. Since there are six equa-

tions of equilibrium, three for each link, we can obtain a solution. The forces on links 3 and 4 are shown in 

Fig.11.7(c). The force F
34

 is broken into components F n
34 and F t

34 , which are parallel and perpendicular 

respectively, to O
4
C. The magnitude of F t

34 is found by taking moments about O
4
, i.e.

F
Pa

O C
t

34
4
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Fig.11.6 Static force analysis of four-bar mechanism: one known force
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On link 3 the reactions at C are equal and opposite to those at C on link 4. The magnitude of 
F Ft t

43 34 On link 3, there are three unknowns: magnitude and direction of F
23

 and magnitude of F n
34 .

The  magnitude of F n
43  can be found by taking moments about point B:

or
  

Qb F d F e

F
F d Qb

e

t n

n
t

43 43

43
43

0  

Next we draw the force polygon for link 3, as shown in Fig.11.7(d), to obtain the magnitude and 
direction of F

23
. In Fig.11.7(e), F

32
  F

23
. Then F

12
  F

32
. Taking moments about O

2
, we obtain T

2
, the 

torque which the shaft at O
2
 exerts on link 2.

T
2
  F

32
 h

F
14

 is obtained from the force polygon for bodies 2, 3 and 4, taken as a whole system as shown in Fig.11.7(f ).

Fig.11.7  Static force analysis of four-bar chain: two known forces
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11.2.7 Static Force Analysis of Slider–Crank Mechanism
(a) One known force
Consider the slider crank mechanism with one known force P only due to the gas force on the piston, as 
shown in Fig.11.8(a). The system is kept in equilibrium by applying a couple T

2
 to crank link 2 through 

the shaft at O
2
. It is required to find the forces in all the links and the couple applied to link 2.

Fig.11.8  Static force analysis of slider-crank mechanism: One known force

The forces acting on the various links are shown in Fig.11.8(b).

1. Link 2 is subjected to two forces F
12

, F
32

 and a torque T
2
. Thus link 2 has three unknowns: force F

32
 

known in direction only, force F
12

 unknown in magnitude and direction and the unknown moment 
T

2
 exerted on crank 2 by the shaft. A wavy line placed at O

2
 indicates that we do not know the 

 magnitude or direction of the force F
12

, which acts through that point.

2. Link 3 is subjected to two forces F
23

 and F
43

.

3. Link 4 is subjected to three forces P, F
34

 and F
14

. Force F is known in magnitude and direction.  
The two unknown forces for link 4 are F

34
 and F

14
 in magnitude only.

Link 4, which has only two unknowns, is analyzed first. The two unknown magnitudes can be 
found by laying out a force polygon as shown in Fig.11.8(c). From Fig.11.8(d), we note that F

12
 must 

be equal and opposite to F
32

 to balance forces on link 2. However, the two equal, opposite and parallel 
forces produce a couple, which can be balanced by another couple only. The balancing couple T

2
 is 
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equal to F
32

  h, where h is the perpendicular distance between F
32

 and F
12

. It is clockwise and is the 
torque, which the shaft exerts on the crank 2. From the triangle of forces, we have

F
34

  F
43

  F
23

  F
23

  cb

F
14

  bo

Member 2 shall be in equilibrium, as shows in Fig.11.8(e), if F
12

 is equal, paraller and opposite to F
23

.

 T  F
32

  h

Input torque, T
2
  T

(b) Two known forces
Figure 11.9(a) shows a slider crank mechanism with two known forces P and Q. A force P is applied 
to the piston due to gas pressure and force Q is applied to link 3. It is required to determine the forces 
in the links and the torque T

2
. The free body diagrams are shown in Fig.11.9(b).

Link 3: Link 3 is a three-force member, F
23

, F
43

 , and Q. Let F
43

 be broken into its normal and 
 tangential components F n

43  and F t
43 , respectively. The normal component is along the link 3 and 

 tangential component is perpendicular to the link 3. Now consider the equilibrium of link 3 by taking 
moments about point B, as shown in Fig.11.9(c):

or

 

F CB Q DB

F Q
DB

CB

F F

t

t

t t

43

43

43 43

sin

sin





Then 

Link 4: The forces acting on link 4 are shown in Fig.11.9(d). F t
43  and P are known completely. 

Their resultant is found as shown in Fig.11.9(e). F n
34  is perpendicular to F t

34  and F
14

 is perpendicular 
to the path of the slider link 4 and passes through O. F

34
  F

43
 can be determined from Fig.11.9(e).

Again consider the equilibrium of link 3. There are three forces F
43

 known fully, Q known fully and 
F

23
, as shown in Fig.11.9(f). By polygon of forces, the direction and magnitude of F

23
 is determined 

as shown in Fig.11.9(g).
Link 2: F

23
  F

32
  F

21
  F

12
. With the help of Fig.11.9(h), the couple T

2
 is given by,

T
2
  F

32
  h (cw)

Example 11.1

A four-bar mechanism shown in Fig.11.10(a) is acted upon by a force P  100 120° N on link CD. 
The dimensions of the various links are:

AB  40 mm, BC  60 mm, CD  50 mm, AD  30 mm, DE  20 mm

Determine the input torque on link AB for the static equilibrium of the mechanism.

Solution 

Draw the configuration diagram to a scale of 1 cm  10 mm as shown in Fig.11.10(a). The forces 
acting on the various members are as follows:

1. Member 2 is subjected to two forces F
12

, F
32

, and a torque T
2
 (Fig.11.10(b)).

2. Member 3 is subjected to two forces F
23

 and F
43

 (Fig.11.10(c)).

3. Member 4 is subjected to three forces F, F
34

, and F
14

 (Fig.11.10(d)).
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Fig.11.9 Static force analysis of slider-crank mechanism: Two-known forces

 (i)  We observe that member 3 is a two-force member, as shown in Fig.11.10(c). For its 
equilibrium, F

23
 and F

43
 must act along BC. Their magnitudes and direction are not known at 

this stage.
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 (ii)  Draw free body diagram for member 4, as shown in Fig.11.10(d). At point C, draw a line par-
allel to BC to intersect the line of action of P at G. Then the line of action of F

14
 shall also pass 

through G. Now draw the triangle of forces to a scale of 1 cm  20 N, as shown in Fig.11.10(e) 
to know the forces F

34
 and F

14
 completely in magnitude and direction. From the triangle of 

forces, we have

 F
34

  F
43

  F
23

  F
32

  ab  2.4 cm  28 N

 F
14

  bo  4.9 cm  98 N

 (iii)  Member 2 shall be in equilibrium, as shown in Fig.11.10(b), if F
12

 is equal, parallel and 
opposite to F

32
. By measurement, h  3.9 cm  39 mm.

 T  F
32

  h  28  39  1092 N mm (ccw)

Input torque, T
2
  T  1092 N mm (cw)

Fig.11.10 Four-bar mechanism static force analysis

Example 11.2

The links 3 and 4 of a four-bar mechanism are subjected to forces of Q  100 60° N and P  50 
45° N. The dimensions of various links are:
O

2
O

4
  800 mm, O

2
B  500 mm, BC  450 mm, O

4
C  300 mm, BD  200 mm, O

4
E  150 mm.
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Calculate the shaft torque T
2
 on the link 2 for static equilibrium of the mechanism. Also find the 

forces in the joints.

Solution 

The mechanism has been drawn in Fig.11.11(a) and forces in various links have been shown in 
Fig.11.11(b).

Let F t
34  and F n

34  be the forces at joint C on link 4, perpendicular and parallel to the link O
4
C. Draw 

a line at O
4
 parallel to force P  50 N 60°. The perpendicular distance between these two lines is 

‘a’  140 mm. Taking moments about O
4
, we get

F
Pa

O C

F F

t

t t

34
4

43 34

50 140

300
23 33

23 33

.

.

 N

 N

Measure distances b  200 mm, d  320 mm, e  310 mm from joint B of forces Q, F t
43 , and F n

43 , 
respectively. Taking moments about joint B, we get

Qb F d F e

F

F F

t n

n

n

43 43

43

34 4

0

100 200 23 33 320

310
30 53

.
. N

33
n

Knowing forces Q, F t
43  and F n

43 , draw the force polygon to obtain F
23

 from Fig.11.11(c). By 
 Measurement, F

23
  108 N.

 F
32

  F
23

 F
12

  F
32

  108 N

 T  F
32

  h  108  180  19440 N mm (cw)
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Fig.11.11 Static force analysis of four-bar mechanism

Torque exerted by the crank shaft on link 2, T
2
  T  19440 N mm (ccw)

Now complete the force polygon for all the forces acting on the mechanism, as shown in 
Fig.11.11(d).

F
14

  52.5 N

Example 11.3

Link O
4
C of a four-bar mechanism is subjected to a torque T

4
  1 N m (ccw). The link BC is subjected to 

a force Q 45 90  N downwards. Determine the torque T
2
 on link O

2
B and the reactions at O

2
 and O

4
.  

The lengths of the various links are as follows:

O
2
O

4
  90 mm, O

2
B  50 mm, BC  55 mm, O

4
C  30 mm, BD  BC  27.5 m.
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Fig.11.12 Static force analysis of four-bar mechanism
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Solution  

The mechanism has been drawn in Fig.11.12(a) and the forces have been shown in various links 
in Fig.11.12(b). Taking moments about O

4
, we have

F O C T

F

F F

34 4 4

34

34 43

1

1

0 03

t

t

t n

.
33.3 N

Measure perpendicular distances b  26 mm, d  36 mm, and e  40 mm, as shown in Fig.11.12(b).

Taking moments about joint B, we have

Qb F e F d

F

F F

n t
43 43

43

34 43

0

45 26 33 3 36

40
n

n n

.

.59 22 N

Draw the force polygon for link BC, as shown in Fig.11.12(c) F
23

  53 N  F
32

. Also F
12

  F
32

. 
Now draw the force polygon for Q, F

12
 and F

14
, as shown in Fig.11.12(d), F

14
  63 N and h  42 mm. 

Then
 T  F

32
  h

  53  0.042  2.226 N m (ccw)

Torque on link O
2
B, T

2
  T  2.226 N m (cw)

Example 11.4

For the four-bar mechanism shown in Fig.11.13(a), T
3
 on link BC is 30 N m clockwise and T

4
 on CD 

is 20 N m counter-clockwise. Find the torque exerted by crankshaft on AB. AD  800 mm, AB  300 mm, 
BC  700 mm, CD  400 mm.

Solution 

The forces in various links have been shown in Fig.11.13(b).
Taking moments about joint D, we get

F CD T

F

t

t

34 4

34

20

20

0 4
50

.
 N

F Ft t
43 34

a  670 mm, b  200 mm
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Fig.11.13 Static force analysis of four-bar mechanism
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Taking moments about joint B, we get

F b F a T

F

F

F

t n

n

n

n

43 43 3

43

43

34

50 0 2 0 67 30

20

0 67
29 85

. .

.
.  N

F n
43

Draw force polygon for link BC, as shown in Fig.11.13(c). F
23

  59 N. F
32

  F
23

, F
12

  F
32

.  
c  280 mm.

T  F
32

  c  59  0.28  16.52 N m (cw)

Torque exerted by crankshaft on crank, T
2
  T  16.52 N m (ccw)

Example 11.5

In the slider crank mechanism shown in Fig.11.14(a), the value of force applied to slider 4 is 2 kN. 
The dimensions of the various links are:

AB  80 mm, BC  240 mm,   60°

Determine the forces on various links and the driving torque T
2
.

Solution 

Draw the configuration diagram to a scale of 1 cm  40 mm, as shown in Fig.11.14(a). The free 
body diagrams for the links 2, 3 and 4 are shown in Fig.11.14(b).

On link 4 there are three forces: F  2 kN to the right; F
14

 in unknown in magnitude, 
perpendicular to F but direction is unknown; F

34
 whose magnitude and direction is unknown 

but acts along BC. To determine the forces and couple, the following procedure may be 
adopted:

1. Draw the force polygon for link 4, as shown in Fig.11.14(c).

 (a) Draw a line oa  5 cm and parallel to F to a scale of 1 cm  400 N.

 (b) From ‘a’ draw a line perpendicular to oa representing F
14

.

 (c) From ‘o’ draw a line parallel to BC representing F
34

 to intersect the pervious line at b.

 (d) They by measurement, we have

F
14

  ab  1.5 cm  600 N, and F
34

  ob  5.3 cm  2120 N

2. Now F
34

  F
43

  F
32

  F
23

  F
21

  F
12

3. The forces on link 2 are shown in Fig.11.14(d). F
12

 is parallel to F
32 

, By measurement, h  2.98 
cm  79.2 mm

Couple T  F
32

  h  2120  79.2  167.9 N m (ccw)

Torque on link AB, T
2
  –T  167.9 N m (cw)
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Fig.11.14 Static force analysis of slider-crank mechanism

Example 11.6

A slider crank mechanism shown in Fig.11.15(a) is subjected to two forces: P  3 kN and 
Q 1000 60 . The dimensions of various links are:

AB  250 mm, BC  600 mm, BD  250 mm,   45°

Determine the torque T
2
 applied to link 2.

Solution 

 Draw the configuration diagram to a scale of 1 cm  100 mm, as shown in Fig.11.15(a). The 
forces on the various links are shown in Fig.11.15(b), (c), and (d).

1. Consider the equilibrium of link 3 shown in Fig.11.15(c).
Taking moments about point B, we have

Q BD F BC

F
Q BD

BC

t

t

sin

sin .
.

60

60 1000 0 866 250

600
360

43

43 88 N
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2. Now consider the equilibrium of link 4 shown in Fig.11.15(b). The direction of F
14

 is 
perpendicular to force P. F t

34  is completely known. Draw the force polygon as shown in 
Fig.11.15(d).

Fig.11.15 Static force analysis of slider-crank mechanism
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 (a)  Draw P  3 k N  bc  6 cm to a scale of 1 cm  500 N and parallel to the line of 
action of P.

 (b) From ‘c’ draw cd F t
34 360 8 0 72. .  cm  perpendicular to link BC.

 (c)  From ‘d’ draw a line perpendicular to cd representing F n
34 . This line is known in direction 

only.

 (d)  From point ‘b’ draw a line perpendicular to bc representing F
14

 intersecting the previous 
line at point ‘a’. Join ‘a’ to ‘c’ then F

34
  ca. By measurement, F

34
  6.7 cm  3350 N.

3. For the equilibrium of link 3, it is a three-force member. The forces are: F
43

 known in mag-
nitude and direction, Q known in magnitude and direction, and F

23
 unknown in magnitude 

and direction. These forces are shown in Fig.11.15(e). Draw the force polygon as shown in 
Fig.11.15(f). By  measurement, F F23 23 7 7 3850. .cm  N

4. Couple on link 2 can be calculated as shown in Fig.11.15(g). By measurement,

 h  2.1 cm  210 mm

 T  F
32

  h  3850  0.21  –808.5 N m (ccw)

Torque on link AB, T
2
  T  808.5 N m (cw)

Example 11.7

In the four-bar linkage shown in Fig.11.16(a), the shaft at O
2
 exerts a torque of 0.6 N m clockwise  

on link 2. Also there is a 45 N force acting vertically downward on link 3 midway between B 
and C. Determine the resisting torque, which the shaft at O

4
 exerts on crank 4 and find the forces 

exerted on the frame at O
2
 and O

4
. O

2
O

4
  90 mm, O

2
B  50 mm, BC  55 mm, O

4
C  30 mm, 

BD  DC  27.5 mm.

Solution 

The forces acting on the various links are shown in Fig.11.16(b).

 

F O B T

F F F

t
21 2 2

21 21 12

0 6

0 05
t t t.

.
12 N, 

 b  25 mm, d  14 mm, e  51 mm, h  7 mm

 M
c
  0 gives

Fig.11.15 Static force analysis of slider-crank mechanism (Contd.)
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  Q t n

n

b F d F e

F

12 12

12

45 25 12 14

53
24.4 N

Draw the force polygon as shown in Fig.11.16(c). From the figure, we have

Fig.11.16 Static force analysis of four-bar linkage
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 F
43

  37 N, F
34

  F
43

, F
14

  F
34

  37 N

 T
4
  F

34
  h  37  0.007  0.259 N m (ccw)

Now draw the force polygon for the whole mechanism as shown in Fig.11.16(d).

 F
12

  27 N

11.2.8 Static Force Analysis of Shaper Mechanism
The shaper mechanism is shown in Fig.11.17(a). We begin in by considering link 7 as a free body, as 
shown in Fig.11.17(b). The direction of F

67
 and F

17
 are known and their magnitudes can be found from 

a force polygon as shown. In Fig.11.17(c), the free body diagram for link 6 is drawn. F
76

  F
67

, and 
because 6 is a two-force member, therefore F

56
  F

76
.

The free body diagram of link 5 is shown in Fig.11.17(d), where F
65

  F
56

. Force F
45

 is directed 
perpendicular to link 5 but its magnitude is unknown. F

15
 is unknown in magnitude and direction. 

 Taking moments about O
5
, we have

 F
65

 b  F
45

 e

or
 

F
F b

e45
65

The magnitude and direction of F
15

 can be determined from force polygon shown in Fig.11.17(e). 
The free body diagram for slider 4 is shown in Fig.11.17(f ), where F

54
  F

45
. Also F

34 
  F

54
.

The free body diagram for link 3 is shown in Fig.11.17(g), where F
45

  F
34

 and F
13

 is unknown 
in magnitude and direction. The values of moment arm h and the radius R

b3
 of the base circle can be 

measured, where  is the pressure angle of the gear. By taking moments about O
3
, the magnitude of 

F
23

 can be calculated. Next the magnitude and direction of F
13

 can be found from a force polygon as 
shown in Fig.11.17(h). Finally, from Fig.11.17(i), F

32
  F

23
 and F

12
  F

32
. The torque exerted by the 

pinion shaft on the pinion, T
2
  F

32
. R

b2
 and is clockwise.
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11.3 DYNAMIC FORCE ANALYSIS
Dynamic forces in mechanisms arise due to mass of the links and their accelerations. Dynamic analysis 
has to be carried out when the dynamic forces are comparable with the externally applied forces.

11.3.1 D’ Alembert’s Principle
For rectilinear motion, this principle states that inertia forces and external forces acting on a body 
taken together give statical equilibrium. Thus 

Inertia force, F
i
  m · f

G
 (11.7a)

or F
i
  m · f

G
  0 (11.7b)

where m  mass of the body, and f
G
  acceleration of centre of gravity or (mass) of the body.

Fig.11.17  Static force analysis of shaper mechanism



662 Theory of Machines

Negative sign indicates that the inertia force acts in the opposite direction to that of acceleration. 
The force acts through the centre of gravity of the body.

Similarly for angular motion, this principle states that inertia couples and external torques applied 
to a body keep it in statical equilibrium. Thus,

Inertia couple, C
i
  I

G
 ·  (11.8a)

or  C
i
  I

G
 ·   0 (11.8b)

where I
G 
 

  
 moment of inertia of the body about an axis passing through centre of gravity G and per-

pendicular to plane of rotation.

   angular acceleration of the body.

According to D’Alembert’s principle, for a body subjected to number of external forces, the vector 
sum of external forces and inertia forces must be equal to zero. Thus,

 F Fi 0  (11.9a)

 F m fG– 0  (11.9b)

Similarly T Ci 0  (11.10a)

 T IG  0  (11.10b)

where F  vector sum of external forces F
1
, F

2
, F

3
, etc. acting on the body.

T  vector sum of external torques, T
G1

, T
G2

, T
G3

, etc. acting on the body about centre of gravity.
These equations are similar to the equations for a body in static equilibrium. Thus, a dynamic 

problem can be reduced to a static problem by adding the inertia forces and couples taken in the 
reverse direction to the externally applied forces and torques.

11.3.2 Equivalent Offset Inertia Force
In rectilinear motion involving acceleration, the inertia force acting on a body passes through its 
centre of mass. If the resultant of the forces acting on the body does not pass through the centre of 
mass, then a couple also acts on the body. In graphical solutions, it is possible to replace inertia force 
and inertia couple by an equivalent offset inertia force, which can account for both. This is done by 
displacing the line of action of the inertia force from the centre of mass. The perpendicular displace-
ment h of the force from the centre of mass is such that the torque so produced is equal to the inertia 
couple acting on the body.

Consider a body whose centre of mass is G, its linear acceleration f
G
, and angular acceleration 

, as shown in Fig.11.18(a). Let a force F
i
  m · f

G
 be applied at G, from left to right upwards. This 

force can be replaced by another force F
i
 acting at a distance h (Fig.11.18(b)) together with a torque  

T
i
  I

G
· , where I

G
 is the moment of inertia of the body about an axis passing through G and perpen-

dicular to the plane of rotation. Hence

 T
i
  C

i

 F
i
  h  I

G
·

or  h
I

F

mK

m f

K

f
G

i G G

  2 2

 (11.11)
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Fig.11.18  Equivalent offset inertial force

The radius of gyration K is taken in such a way that the force produces a moment about the centre 
of mass, which is opposite in sense to angular acceleration .

11.3.3 Dynamic Force Analysis of Four-Bar Mechanism
Consider a four-bar mechanism shown in Fig.11.19(a), where the magnitude of 

2
 is assumed known and 

constant. Points G
2
, G

3
, and G

4
 denote the centres of mass of the links 2, 3, and 4 respectively. We are inte-

rested to determine the torque which the shaft at O
2
 must exert on crank 2 to give the desired motion.

To determine the linear acceleration of the points G
2
, G

3
, and G

4
, we construct the acceleration 

polygon. From the magnitude and sense of the tangential components of acceleration, the magnitude 
and sense of 

3
 and 

4
 can be determined.

Link 2 is shown in Fig.11.19(c), where f
G2

 is the acceleration of the centre of mass G
2
. The resultant 

force F
2
  m

2
· f

G2
, where m

2
 is the mass of the link 2, has the same sense and line of action as f

G2
. The 

inertia force f
2
  F

2
.

Link 3 is shown in Fig.11.19(d) with the acceleration of the centre of mass G
3 
indicated as f

G3
. 

The resultant force F
3
  m

3
·f

G3
, where m

3
 is the mass of the link 3, has the same sense and line of 

action as f
G3

· f
3
  F

3
 is the inertia force. In order to produce 

3
, there must be a resultant torque 

T
3
  I

3
· 

3
 having the same sense as 

3
. Inertia torque t

3
  T

3
. Link 3 is again shown in Fig.11.19(e), 

where the inertia force f
3
 and inertia torque t

3
 have been replaced by a single force f

3
. The direction 

and sense of f
3
 is the same as in Fig.11.19(d), but the line of action is displaced from G

3
 by an 

amount h
3
, such that

f h t h
t

f

I

m fG

3 3 3 3
3

3

3 3

3 3

or


In Fig.11.19(e),  f
3
 can be located by drawing a circle of radius h

3
 with its centre at G

3
· f

3
 is drawn 

tangent to the left side of the circle rather than the right side because f
3
 must produce a torque about 

G
3
 in the same sense as t

3
.

Link 4 is shown in Fig.11.19(f) where f
4
  F

4
 and T

4
  I

4
· 

4
. Inertia torque t

4
  T

4
. Link 4 appears 

again in Fig.11.19(g), where the inertia force f
4
 and inertia torque t

4
 have been replaced by a single 

force f
4
. Since f

4
· h

4
 must equal t

4
, therefore

h
t

f

I

m fG

4
4

4

4 4

4 4





664 Theory of Machines

Fig.11.19  Inertia forces in a four-bar mechanism
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To find the forces at each pin connection and the torque which the shaft exerts on crank 2, we 
draw the free body diagrams of links 2, 3, and 4 as shown in Fig.11.20(a) to (c). For the known iner-
tia forces in each link, the forces in each pin can be determined by using the equilibrium equations.  
Starting with link 4, we take the moments about point O

4
 and determine F t

34 . Then on link 3, F Ft t
43 34  

For Equilibrium of link 3, the sum of the moments about B equal zero. This determines F n
43 . The force 

polygon for link 3 is shown in Fig.11.20(d) to determine F
23

.

Link 2 appears in Fig.11.20(e). Here F
32

  F
23

. Then F
12

  (  f
2
  f

32
 ). Taking moments about 

O
2
, we obtain T

2
, as

T
2
  (  f

2
  F

32
 ) a

where  represents vector sum.
Force F

14
 obtained from the force polygon for bodies 2, 3, and 4 taken as a whole system as shown 

in Fig.11.20(f ).

Fig.11.20  Force polygons
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Fig.11.20  Force polygons (Contd.)

Shaking force: It is defined as the resultant of all the forces acting on the frame of a mechanism due 
to inertia forces only.

The inertia forces on a four-bar mechanism are shown in Fig.11.21(a). The force polygon is shown 
in Fig.11.21(b). Taking moments about point O

2
, we get

     F
s
e  f

3
 b  f

4
 d

or
 

e
f b f d

Fs

3 4

Fig.11.21  Force polygons
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11.3.4 Dynamic Force Analysis of Slider–Crank Mechanism
The slider crank mechanism is shown in Fig.11.22(a). Let P be the force on the piston due to gas pres-
sure and 

2
 the angular velocity of link 2, be known. Points G

2
, G

3
, and G

4
 are the centres of mass of 

links 2, 3, and 4. We are interested to find the torque T
2
, which the crank 2 exerts on the crankshaft 

and the shaking force.
The velocity and acceleration polygons are constructed first, as shown in Fig.11.22(b) and (c), 

respectively. Link 3 and 4 combined as a free body are shown in Fig 11.22(d). The inertia force f
3
, its 

moment about G
3
 and f

4
 are determined as explained in Section 11.3.3. The unknowns are the magni-

tudes of F
23

 and F
14

. By taking moments about B, we have

F
14

a  f
3
b  f

4
d Pd  0

or
 

F
Pd f b f d

a14
3 4

Force F
23

 can then be found by a summation of forces on bodies 3 and 4 together as a free body. 
The force polygon is shown in Fig.11.22(e).

Fig.11.22  Static and inertia force analysis of slider-crank mechanism
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The free body diagram for link 2 is shown in Fig.11.22(f ), where

 F
12

  (  f
2
  F

32
)

The torque exerted by the shaft on the crank 2 at O
2
 is,

 T
2
  (  f

2
  F

32
) e

The torque exerted by the crank on the crankshaft is equal to T
2
 but opposite in sense to T.

Example 11.8

A four-bar mechanism shown in Fig.11.23(a) has the following length of various links:
O

2
O

4
  80 mm, O

2
B  330 mm, BC  500 mm, O

4
C  400 mm, O

2
G

2
  200 mm, BG

3
  250 mm, 

O
4
G

4
  200 mm. The masses of links are: m

2
  2.2 kg, m

3
  2.5 kg, m

4
  2 kg. The moment of inertia 

links about their C.G. are l
2
  0.05 kg · m2, l

3
  0.07 kg · m2. l

4
  0.02 kg · m2.

The crank O
2
B rotates at 100 rad/s. Neglecting gravity effects, determine the forces in the joints 

and the input torque.

Solution 

The mechanism has been drawn in Fig.11.23(a) to a scale of 1 cm  100 mm. 
2
  100 rad/s. 

v
b
  100  0.33  33 m/s. The forces acting on the various links have been shown in Fig.11.23(b). 

Draw the velocity diagram as shown in Fig.11.23(c) to a scale of 1 cm  10 m/s. v
c
  25 m/s. 

v
cb

 = 26 m/s.

f
O B

f
BC

f

b
n b

cb
n cb

cb
n

v

v

2

2

2
2

2 2
2

33

0 33
3300

26

0 5
1352

.

.

m/s

m/s

vc

O C

2

4

2
225

0 4
1562 5

.
. m/s

Fig.11.22  Static and inertia force analysis of slider-crank mechanism (Contd.)
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Fig.11.23 Dynamic force analysis of four-bar chain
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Fig.11.23 Dynamic force analysis of four-bar chain (Contd.)

Draw the acceleration diagram, as shown in Fig.11.23 (d to a scale of 1 cm  500 m/s2). o
2
b  6.6 cm, 

bc  2.8 cm, O
4
C  8.4 cm.

o G
O G o b

O B

bG
BG bc

BC

2 2
2 2 2

2

3
3

200 6 6

330
4

250 2 8

500
2

.

.

cm

..

.
.

4

200 8 4

400
4 24 4

4 4 4

4

cm

cmo G
O G o c

O C
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 Acceleration of G f o GG2 2 2 2
24 500 2000,   m/s

Acceleration of  G f o GG3 3 2 3
27 4 500 3700, .  m/s

 Acceleration of G f o GG4 4 2 4
24 2 500 2100, .  m/s

f b c

f b c

f

BC

cb
t

c
t

cb
t

0 5 250

7 8 3900

4

.

.

 cm  m/s

 cm  m/s

2

2


250

0 5
500

3900

0 4
97504

4

.

.

rad/s  (ccw)

rad/s  (ccw)

2

2
f

O C
c
t

 

 F
2
  m

2
 f

G2
  2.2  2000  2400 N

Inertia force,  f
2
  F

2

 F
3
  m

3
 f

G3
  2.5  3700  4550 N

Inertia force,  f
3
  F

3

 T
3
  I

3
 

3
  0.07  500  35 N m (ccw)

Inertia torque,  t
3
  T

3
  35 N m (cw)

 F
4
  m

4
   f

G4
  2  2100  4200 N

Inertia force,  f
4
  F

4

 T
4
  I

4
 

4
  0.02  9750  195 N m (ccw)

Inertia torque, t
4
  T

4
  195 N m (cw)

h
t

f

h
t

f

3
3

3

4
4

4

35

4550
7 7

195

4200
46

. mm

mm

The forces and perpendicular distances are shown in Fig.11.23(e).

 a  230 mm, b  150 mm, d  90 mm, e  490 mm

F
f a

O C

F F

t

t t

43
4

4

43 34

4200 230

400
2415

2415

N

N

Taking moments about B, we have

f b f d F e

F

F

t n

n

n

3 43 43

43

43

0

4550 150 2415 90 490

1836 4

 

 N.
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Draw the force polygon for link BC, as shown in Fig.11.23(f ).
 F

23
  6500 N

 F
32

  F
23

 F
12

  F
32

The resultant of f
2
 and F

32
 has been obtained in Fig.11.23(f ) and is equal to f

2
  F

32
  8600 N.

 T  (  f
2
  F

32
) c

  8600  0.13  1118 N m (cw)

Torque exerted by the crankshaft on crank O
2
B, T

2
  T  1118 N m (ccw)

Now draw the force polygon for the whole mechanism, as shown in Fig.11.23(g).

 F
14

  5600 N

Example 11.9

The slider crank mechanism of a single cylinder diesel engine is shown in Fig.11.24(a). A gas force 
P  17800 N acts to the left through piston pin C. The crank rotates counter-clockwise at a constant 
speed of 1800 rpm. Determine (a) the force F

14
 and F

12
 and the torque T

2
 exerted by the crank-

shaft on the crank for equilibrium and (b) the magnitude and direction of the shaking force and its 
location from point O

2
. O

2
B  75 mm, O

2
G

2
  50 mm, BC  280 mm, BG

3
  125 mm, m

2
  2.25 kg,  

m
3
  3.65 kg, m

4
  2.75 kg, I

2
  0.0055 kg · m2, I

3
  0.041 kg · m2.

Solution 

The forces acting on the various links have been shown in Fig.11.24(b).


2 1800

60
188 5. rad/s

 v
b
  O

2
B    0.075  188.5  14.14 m/s

Draw the velocity diagram to a scale of 1 cm  2 m/s, as shown in Fig.11.24(c).

 v
cb

  bc  3.7 cm  7.4 m/s

 v
c
  o

2
c  0.7 cm  2.4 m/s

f
O B

f
BC

b
n b

cb
n cb

v

v

2

2

2
2

2 2

14 14

0 075
2665 8

7 4

0 28

( . )

.
.

( . )

.

m/s

1195 6 2. m/s

Draw the acceleration diagram to a scale of 1 cm  500 m/s2, as shown in Fig.11.24(d).

f b c f bccb
t

cb4 6 2300 4 7 2350. , . cm  m/s   cm  m/s2 2

 f
c
  o

2
c  2.1 cm  1050 m/s2

3

2 2
2 2 2

2

2300

0 28
8214 3

50 5 3

75

f

BC

o G
O G o b

O B

cb
t

.
.

.

 rad/s2

3 55

125 4 7

280
2 13

3

.

.
.

cm

cmbG
BG bc

BC
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Fig.11.24 Dynamic force analysis of slider-crank chain
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f o G f o GG G3 2 3 2 2 23 4 1700 3 55 1775. , . cm  m/s  cm  m/s2 2

 f
G4

  f
c
  1050 m/s2

 F
2
  m

2
 f

G2
  2.25  1775  3993.75 N, f

2
  F

2

 F
3
  m

3
 f

G3
  3.65  1700  6205 N, f

3
  F

3

 F
4
  m

4
 f

G4
  2.75  1050  2997.5 N, f

4
  F

4

h
I

f3
3 3

3

0 041 8214 3

6205
0 0542

 . .
. m or 54.2 mm

a  272.5 mm, b  52.5 mm, d  65 mm, e  67.5 mm, c  35 mm, s  17.8 mm

 MB 0  gives

 F
14

  a P  d  f
3
  b  f

4
  d  0

F14

17800 65 6205 52 5 2887 5 65

272 5
3437 7

. .

.
. N

Draw the force diagram as shown in Fig.11.24(e).

 F
23

  6.5 cm  13000 N, F
32

  F
23

 F
12

  7.1  2000  14200 N

 T  F
12

  e  14200  0.0675  958.5 N m (ccw)

Input torque on O
2
B, T

2
  T  958.5 N m (cw)

Shaking force, F
s
  6.1  2000  12200 N

 F
s
  s  f

3
  c

s
6205 32

12200
17 8. mm.

Fig.11.24 Dynamic force analysis of slider-crank chain (Contd.)
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Example 11.10

For the reciprocating engine mechanism in Figure 11.25(a), the following data is given:
Length of crank is 7.5 cm, Length of connecting rod is 28 cm, Distance of centre of gravity 

(C.G.) of link 2 from main bearings is 5 cm, Distance of centre of gravity of link 3 from crank pin 
is 12 cm, Crank angle from line of stroke is 60°, Crank speed is 2000 rpm counter-clockwise, Mass 
of link 2 is 2.5 kg, Mass of link 3 is 4 kg, Mass of link 4 is 3 kg, Mass moment of inertia of link 2 
is 60 kg · cm2 and mass moment of inertia of link 3 is 500 kg · cm2. Make a complete inertia force 
analysis.

Solution 

Given: r  7.5 cm, l  28 cm, O
2
G

2
  5 cm, BG

3
  12 cm,   60°, N

2
  2000 rpm ccw, m

2
  2.5 kg,  

m
3
  4 kg, m

4
  3 kg, I

2
  60 kg · cm2, I

3
  500 kg · cm2

Let force on the piston, P   20 kN to the left (not given in the data)
The forces acting on the various links have been shown in Fig 11.25(b).


2 2000

60
209 44. rad/s

 v
b
  O

2
B    0.075  209.44  15.71 m/s

Draw the velocity diagram to a scale of 1 cm  2 m/s, as shown in Fig.11.25(c).

 v
cb

  bc  4.1 cm  8.2 m/s 

 v
c
  o

2
c  7.8 cm  15.6 m/s

f
O Bb

n bv2

2

215 71

0 075
3290 7

( . )

.
. m/s

f
BCcb

n cbv2 2
28 2

0 28
240 14

( . )

.
. m/s

Draw the acceleration diagram to a scale of 1 cm  300 m/s2, as shown in Fig.11.25(d).

 f b ccb
t 9 5 2850.  cm  m/s ,2   f

cb
  bc  9.6 cm  2880 m/s2

 f
c
  o

2
c  4.3 cm  1290 m/s2

3
2

2 2
2 2 2

2

2880

0 28
10178 6

5 11

7 5

f

BC

o G
O G o b

O B

cb
t

.
.

.

rad/s

77 3. cm

bG
BG bc

BC3
3 12 9 6

28
4 11

.
. m/s2

 f
G3

  o
2
G

3
  7.2 cm  2160 m/s2, f

G2
  o

2
G

2
  7.3 cm

  2190 m/s2

 f
G4

  f
c
  4.3 cm  1290 m/s2
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 F
2
  m

2
 f

G2
  2.5  2190  5475 N, f

2
  F

2

 F
3
  m

3
 f

G3
  4  2160  8640 N, f

3
  F

3

 F
4
  m

4
 f

G4
  3  1290  3870 N, f

4
  F

4

h
I

f3
3 3

3

0 05 10178 6

8640
0 058

 . .
. m or 58 mm

 a  AC  275 mm, b  45 mm, d  65 m, e  66.25 mm

MB 0  gives

 F
14

  a P  d  f
3
  b  f

4
  d  0

 
F14

20000 65 8640 45 3870 65

275
2398 7.  N

Draw the force diagram as shown in Fig.11.25(e).

 F
23

  6.9 cm  13800 N, F
32

  F
23

 F
12

  7.9  2000  15800 N

 T  F
12

  e  15800  0.06625  1046.75 N m (ccw)

Torque on link O
2
B, T

2
  T  1046.75 N m (cw)
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11.3.5 Static and Inertia Force Analysis of Shaper Mechanism
Consider the shaper mechanism shown in Fig.11.26(a), where the link 2 rotates with constant velo city 

2
 

and the force P is known on the slider 6. We are interested to determine the forces at all the points and the 
torque T

2
 exerted by the shaft to drive the crank. The acceleration diagram is shown in Fig.11.26(b).

The force analysis is started with link 6, shown in Fig.11.26(c). The unknowns are: magnitude of 
F

16
, magnitude and direction of F

56
. The horizontal component of F

56
 is F h

56  and its magnitude can be 
found from the summation of horizontal forces on link 6.

In Fig.11.26(d), F Fh h
65 56 . The magnitude of F v

65  can be found by summation of moments  
about C. Then from a force polygon for link 5, the magnitude and direction of F

45
 are found. Next, 

in Fig.11.26(e), F F54 45 is known. There are four unknowns in Fig.11.26(e): the magnitude and 
direction on F

14
 and the magnitude and location of F

34
. For link 3 shown in Fig.11.26(f), there are also 

four unknowns: F
23

 in magnitude and direction and F
43

 in magnitude, which is perpendicular to link 4. 

Fig.11.25 Dynamic force analysis of slider-crank machanism
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Fig.11.26  Static and inertia force analysis of shaper mechanism

However, for the combination of links 3 and 4, there are six unknowns that can be analyzed in combi-
nation. From the free body of link 3 we see that F

23
 causes no torque about the centre of mass B

3
 and 

thus F
43

 must be of such a magnitude as to balance the forces and its line of action must be displaced 
from B

3
 and a torque about B

3
 sufficient to balance the inertia torque. This is shown in Fig.11.26(g).  

The equal and opposite force and torque on link 4 as shown in Fig.11.26(h) makes the free body of  
link 4 with three unknowns. The magnitude of F

34
 can be found by setting the sum of the moments 

about O
4
 equal to zero. F

14
 can then be found from a force polygon for link 4.
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We replaced F
43

 in Fig.11.26(f) with the force F
43

 and T
43

, which are shown in Fig.11.26(g). Thus 
in Fig.11.26(f),

 F
43

a  T
43

  I
3 3

or a
I

F
3 3

43



F
23

 can now be determined from a force polygon for link 3. The free body diagram of link 2 is 
shown in Fig.11.26(i) and F

32
  F

23
.  F

12
 can be determined from a force polygon on link 2. Finally, 

by summing moments about O
2
, the torque T

2
 can be determined.

Example 11.11

The value of force applied to slider in a four-bar mechanism shown in Fig.11.27(a) is 4 kN. Determine 
the forces in various links and driving torque T

2
.

Fig.11.27 Static force analysis of a slider-crank mechanism
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Solution 

The free-body diagrams of links are shown in Fig.11.27(b).
There are three forces acting on link 4.

 (i) F  4 kN towards left, which is known as magnitude and direction.

 (ii) F
34 

acting along AB whose magnitude is unknown.

 (iii) F
14

 acting perpendicular to OB whose magnitude is unknown.

Draw the force polygon for member 4 as shown in Fig.11.27(c).

 (i) Draw Oa  F  4 kN to a scale of 1 cm  0.5 kN

 (ii) Draw ab perpendicular to OB and ob parallel to ab to intersect at b.

Then F
14

  ab  1.3 cm  0.65 kN

 F
34

  bO  8.1 cm  4.05 kN

 h  3.8 cm

Now F
34

  F
43

  F
23

  F
32

  F
21

 F
12

 T  F
32

  h  4.05  3.8  153.9 N m (ccw)

 T
2
  T  153.9 N m (cw)

Example 11.12

In the four-bar mechanism shown in Fig.11.28(a), determine the force acting perpendicular to link 2 
passing through its midpoint.

O
2
O

4
  25 cm, O

2
A  AB  O

4
B  10 cm, AC  BD  5 cm.

Solution 

Draw the configuration diagram as shown in Fig.11.28(a) to a scale of 1 : 2.5. All links are three 
force members.
First consider link 4 as shown in Fig.11.28(b).
Draw a line through O

4
 parallel to Q. By measurement, a  1.1  2.5  2.75 cm F

34
 force is resolved 

into F t
34  and F n

34

   M04 0 given

F BO Q a

F

t

t

34 4

34

2000 2 75

10
550

.
N

 Ft
34

  Ft
34

  550 N

For the link 3, as shown in Fig.11.28(c), draw lines parallel to F t
43

, F t
43

 and P through A. Then

 b  2.2  2.5  5.5 cm

 c  3.1  2.5  7.75 cm

 d  1.5  2.5  3.75 cm

 M A 0  gives
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Fig.11.28 Static force analysis of a four-bar mechanism
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F b P d F c

F

F

t n

n

t

43 43

43

43

1

7 75
550 5 5 1000 3 75

874 2
.

[ . . ]

.  N

F n
43 874 5.  N  

Draw the force polygon shown in Fig.11.28(d).

 F
23

  co  2.6 cm  520 N

 F
32

  F
23

Lines of action of F and F
32

 meet at G. Join O
2
G. Then O

2
G is the line of action of F

12
. Draw force 

polygon for link 2 (Fig.11.28). Then F  bo  2.5 cm  500 N, F
12

  4.3 cm  860 N.

Example 11.13

The crank of a four-bar mechanism shown in Fig.11.29(a) is balanced and rotating in anti-clockwise 
direction at a constant angular speed of 200 rad/s. The particulars of the mechanism are: O

2
A  50 mm,  

AB  450 mm, AG
3
  225 mm, O

4
B  200 mm, O

4
G

4
  100 mm, O

2
O

4
  350 mm, W

3
  1.2 kg,  

W
4
  3 kg, I

3
  68.6 kg · cm2, I

4
  55 kg · cm2. G

3
 and G

4
 are mass-centres of links 3 and 4, W

3
, W

4
 their 

respective masses and I
3
, I

4
 their respective mass moment of inertia about their mass centres. For the 

given angular position of the crank 2, draw velocity and acceleration diagrams and find the angular 
accelerations of links 3 and 4. Determine also the forces acting at the pin-joints A, B and the external 
torque which must be applied to link 2. Ignore the gravitation effects.

Solution 

  200 rad/s

 v
a
  O

2
A    0.05  200  10 m/s

Fig.11.28 Static force analysis of a four-bar mechanism (Contd.)
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Draw the velocity diagram as shown in Fig.11.29(b).

 v
ba

  ab  7.3 cm  14.6 m/s, v
b
  o

4
b  7.6 cm  15.2 m/s

 f  n
a
  v 2

a 
/O

2
A  (10)2/0.05  2000 m/s2, f  n

ba
 v 2

ba
/AB (14.6)2/0.45  473.7 m/s2

 f  n
b
  v2 

b 
/O

4
B  (15.2)2/0.2  1155.2 m/s2

Draw the acceleration diagram as shown in Fig.11.29(c).

 f  t
ba

  0, Hence, f  n
ba

  f
ba

 f
b
 o

2
b  9.7 cm  1940 m/s2, f  t

b
  7.2 cm  1440 m/s2

3
  f  t

ba
/AB  0, 

4
  f  t

b
/O

4
B  1440/0.2  7200 rad/s2 (cw)

 o
4
G

4
  O

4
G

4
  o

4
b/O

4
B  100  9.7/200  4.85 cm

G4
G3

B

A (a)

45°

3

O4O2

4

1 12 (b)

3
1

2

b

d

p

F12

F32

G3

C

F3

O41

a

t4

G4

f4

4
h4

F34

F43

B t

F43
nF34

t

n

4

45°

O2

e
A Scale: 1 cm = 50 mm

a

a

ba

b
bO2,O4

Scale: 1 cm = 2 m/s

(c) Velocity diagram

fb

b

n

fb

fb

fa
O2,O4

G4G3

b

a

fG4fG3

t

Scale: 1 cm = 200 m/s2

(d) Acceleration diagram

Scale: 1 cm = 500 N

(e) Force polygon

F43
n

F43
t

F23

f3

2

fba fba
n=

Fig.11.29 Dynamic force analysis of four-bar chain
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 aG
3
  AG

3
  ab/AB  225  2.368/450  1.184 cm

 f
G3

  o
2
G

3
  9.8 cm  1960 m/s2, f

G4
  o

4
G

4
  4.85 cm  970 m/s2

 F
3
  m

3  
f
G3

  1.2  1960  2352 N, f
3
  F

3

 F
4
  m

4
  f

G4
  3  970  2910 N, f

4
  F

4

 T
3
  I

3
 

3
  0, t

3
  T

3
  0

 T
4
  I

4
 

4
  55  10 4  7200  39.6 N m (cw), t

4
  T

4
 ccw

 h
3
  t

3
/f

3
  0, h

4
  t

4
/f

4
  39.6/2910  13.6 mm

 a  65 mm, b  345 mm, c  290 mm, d  225 mm, e  40 mm

 MO4 0  gives

 F t
34

  BO
4

 f
4
  a

 F t
34

  2910  65/200 945.75 N, F t
43 

  F t
34

 M A 0  gives

 F t
43 

  b F n
43

  c  f
3
  d  0

 F n
34

  (945.75  345  235  225)/290  2950 N, F n
34

  F n
43

Draw the force diagram as shown in Fig.11.29(d).

 F
23

  3500 N, F
32

  F
23

, F
12

  F
32

 T
2
  F

32
  e  3500  0.04  140 N m (cw)

Torque exerted on O
2
A  140 N m (ccw)

Example 11.14

The lengths of the links of a four-bar chain shown in Fig.11.30(a) are: AB  60 mm, BC  180 mm, 
CD  110 mm, and AD  200 mm. Link AD is fixed and AB turns at a uniform speed of 180 rpm ccw. 
The mass of link BC is 2.5 kg, its centre of gravity is 100 m from C and its radius of gyration about 
an axis through the centre of gravity is 75 mm. The mass of link CD is 1.5 kg, its centre of gravity is  
40 mm from C and its radius of gyration about an axis through D is 80 mm. When BA is at right angles 
of AD and B and C lie on opposite sides of AD, find the torque on AB to overcome the inertia of the 
links and the forces which act on the pins at B and C. Neglect gravity effects.

Solution 

   2   180/60  18.85 rad/s

 v
ba

  AB   0.06  18.85  1.13 m/s

Draw the velocity diagram as shown in Fig.11.30(b).

 v
cb

  bc  4.1/5  0.82 m/s, v
cd

  dc  3.8/5  0.76 m/s

 f n
ba

  v2
ba

/AB  (1.13)2/0.06  21.28 m/s 2

 f  n
cb

  v2
cd  

/BC  (0.82)2/0.18  3.735 m/s2

 f  n
cd

  v2
cd 

/CD  (0.76)2/0.11  5.25 m/s2

Draw the acceleration diagram as shown in Fig.11.30(c).

 f  t
cb

  c c  3.8 cm  19 m/s2, f
cb

  bc  3.9 cm 19.5 m/s2

 f
cd

  cd  4 cm  20 m/s2, f  t
cb

  c c  3.8 cm  19 m/s2
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3
  f  t

cb
/BC  19/0.18  105.5 rad/s2 (cw),

 
4
  f  t

cd
/CD  19/0.11  172.7 rad/s2 (cw)

 cG  
4
  CG

4
  cd/CD  40  4/110  1.45 cm

 bG
3
  BG

3
  bc/BC  80  3.9/180  1.73 cm

 dG
4
  4 1.45  2.55 cm

 f
G3

  aG
3
  3.7 cm  18.5 m/s2, f

G4
  dG

2
  2.55 cm  12.75 m/s2

 F
3
  m

3  
f
G3

  2.5  18.5  46.25 N, f
3
  F

3

 F
4
  m

4
  f

G4
  1.5  12.75  19.125 N, f

4
  F

4

 I
3
  m

3
K 2

3
  2.5  (0.075)2  0.014 kg · m2

 I
4
  m

4
K 2

4
  1.5  (0.082 0.072)  0.00225 kg · m2

 T
3
  I

3
 

3
  0.014  105.5  1.477 N m (cw), t

3
  T

3
 ccw

 T
4
  I

4
 

4
  0.00225  172.7  0.388 N m (cw), t

4
  T

4
 ccw

A

(a)

C

B

D
G3

G4

b

t3

C F34

F43 F43

3

4F12

G3

G4

t4

a

h4

D
1

f4

h3

f3

(b)

Scale: 1 cm = 20 mm

B

F32

1
A

C

2

3

4

n

n

F34
t

t

C

cdv
v

v

cb

ba
a,d b

Scale: 1 cm = 0.2 m/s
(c) Velocity diagram

F
23

f
3

F n
43

F t
43

f43

Scale: 1 cm = 10 N
(e) Force polygon

c

G
3

G
4

c

c

b

f
n
cb

f t
cb

f t
cd

f n
ba

fG3

a,d

Scale: 1 cm = 5 m/s2

(d) Acceleration diagram

f
G4

fcb

f cd

f n
cd

Fig.11.30 Dynamic force analysis of a four-bar chain
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 h
3
  t

3
/f

3
  1.477/46.25  32 mm, h

4
  t

4 
/
 
 f

4
  0

 a  44 mm, b  56 mm, c  40 mm

 M
D
  0 gives

 F t
34

  CD  f
4
  a

 F t
34 

  19.125  44/110  7.65 N, F t
34 

  F t
34

 M
B
  0 gives

 F n
43 

  BC  f
3
  b

 F n
43

  46.25  56/180  14.4 N, F n
34

  F n
43

Draw the force diagram as shown in Fig 11.30(d).

 F
23

  37 N, F
32

  F
23

, F
12

  F
32

 T
2
  F

32
  c  37  0.04  1.48 N m (cw)

Torque exerted on AB  1.48 N m (ccw)

Example 11.15

The crank of a four-bar chain shown in Fig.11.31 is rotating at a speed of 24 rad/s in a clockwise direc-
tion. The particulars of the chain are: O

2
A  75 mm, AB  250 mm, O

4
B  250 mm, AG

3
  125 mm,  

O
2
G

4
  150 mm, BC  130 mm, m

2
  4.5 kg, m

3
  2 kg, m

4
  4 kg, I

2
  0.025 kg · m2, I

3
  0.008 

kg · m2, I
4
  0.035 kg · m2. The mass moment of inertias are about the respective mass centres. Deter-

mine the forces acting the pin-joints A, B and the external torque, which must be applied to link 2.  
Ignore the gravitation effects.

Solution 

2
  24 rad/s

 v
a
  AB  

2    
0.075  24  1.8 m/s

Draw the velocity diagram as shown in Fig.11.31(b)

 v
cb

  bc  1.6 cm  0.8 m/s, v
c
  o

4
c  3.1 cm  1.55 m/s,

 v
ba

  ab  1.9 cm  0.95 m/s, v
b
  o

4
b  3.1 cm  1.55 m/s

 v
G4

  o
4
G

4
  1.8 cm  0.9 m/s

Draw the acceleration diagram as shown in Fig.11.31(c).

 f  n
a
  v2

a
/O

2
A  (1.8)2/0.075  43.2 m/s2, f  n

ba
  v2

 ba
/AB  (0.95)2/0.25  3.61 m/s2

 f  n
b
  v2

b
/O

4
B  (1.55)2/0.25  9.61 m/s2, f  n

c
  v2

 c
/O

4
C  (1.55)2/0.25  9.61 m/s2

 f  n
cb

  v2
cb

/BC  (0.8)2/0.13  4.92 m/s2, f  n
G4    

v2
G4

/O
4
G

4
  (0.9)2/0.15  5.4 m/s2

 o
4
G

4
  O

4
G

4
  o

4
d/O

4
D  150  2.5/250  1.5 cm, f

G4
  1.5  10  15 m/s2

 f  t
ba

  b b  4.6 cm  46 m/s2 , f
ba

  ab  4.7 cm  47 m/s2

 f  t
b
  b b  2.4 cm  24 m/s2, f

b
  o

4
b  2.6 cm  26 m/s2

3
  f  t

ba
/AB  46/0.25  18.4 rad/s2 (ccw), 

4
  f  t

b
/O

4
B  24/0.25  96 rad/s2 (cw)

 aG
3
  AG

3
  ab/AB  125  4.7/250  2.35 cm, f

G3
  o

2
G

3
  2.5 cm  25 m/s2

 F
2
  0
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45°

15° 15°

G2

G3

(a)

G4

B
D

C

A

O2

O4

4

45°

24 rad/s

b 50 N

60 N
B

D
C

120°

90°

15°15°

A

O2

G2

F12

F3

G3

G4

h3

h4

f3

F
4 a

O4
f14

f4

F32

e

2
1

3

1

F
34
t

F
43

t

F
34

n

F
43
n

(b)
Scale: 1 cm = 50 mm

Scale: 1 cm = 0.5 m/s

(c) Velocity diagram

a

b

d

c

O2,O4

G4

ba

cb

cv

v v

v

v

v

d

b

a

Fig.11.31 Dynamic force analysis of a four-bar chain
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 F
3
  m

3 
 f

G3
  2  25  50 N, f

3
  F

3

 F
4
  m

4
  f

G4
  4  15  60 N, f

4
  F

4

 T
3
  I

3 3
  0.008  184  1.472 N m (ccw), t

3
  T

3 
cw

 T
4
  I

4 4
  0.035  96  3.36 N m (cw), t

4
  T

4
 ccw

 h
3
  t

3
/f

3
  1.472/50  29 mm, h

4
  t

4
/ f

4
  3.36/60  56 mm

 a  195 mm, b  35 mm, e  60 mm

 M
O4

 0 gives

 F t
34

  O
4
B  f

4
  a

 F t
34

  60  195/250 46.8 N, Ft
43

  Ft
34

 M
a
  0 gives

G
4

G
3

fc

fa

O2,O4

fbd

c

a

c
b

b

b

fG3
fG4

fba

f t
ba

f n
ba

f t
b f t

c

f n
b

f n
c

Scale: 1 c m = 10 m/s2 

(d) Acceleration diagram

f3

f4

F12

F14

Scale: 1 cm = 10 N

F23

f3F
43
t

F
43

n

Scale: 1 cm = 10 N

(e) Force polygon

Fig.11.31 Dynamic force analysis of a four-bar chain (Contd.)
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 Fn
43

  BC  f
3
  b

 Fn
43

  50  35/250  7 N, F n
34

  Fn
43

Draw the force diagram as shown in Fig.11.31(d).

 F
23

  93 N, F
32

  F
23

, F
12 

  F
32

 T
2
  F

32
  e  93  0.06  5.58 N m (cw)

Torque exerted on AB  5.58 N m (ccw)

Draw the force polygon for the mechanism as shown in Fig.11.31(e).

 F
14

  12 N

Summary for Quick Revision

1 Forces acting on the system from outside are called applied forces.

2 A member under the action of two forces shall be in equilibrium if the forces are of the same 
magnitude, act along the same line, and are in equilibrium.

3 A member under the action of three forces shall be in equilibrium if the resultant of the forces is 
zero and the lines of action of the forces intersect at a point, i.e. the forces are concurrent.

4 A member under the action of two forces and an applied torque shall be in equilibrium if the 
forces are equal in magnitude, parallel having different lines of action and opposite in sense, i.e. 
form a couple which is equal and opposite to the applied torque.

5 The force exerted by a member i on another member j is represented by F
ij
.

6 A force unknown in magnitude and known in direction is represented by a solid line without an 
arrow.

7 A force unknown in magnitude and direction is represented by a wavy line.

8 A free body diagram is a diagram of a link isolated from the mechanism showing both active and 
reactive forces acting on it.

9 The principle of superposition states that if a number of forces act on a system the net effect is 
equal to the superposition of the effects of the individual forces taken one at a time.

10 A linear system is one in which the output force is directly proportional to the input force. The 
principle of superposition holds good for a linear system.

11 D’Alembert’s principle can be used to convert a dynamic system into an equivalent static 
system.

12 Equivalent offset inertia force accounts for both inertia force and inertia couple. This is obtained 
by displacing the line of action of the inertia force from the centre of mass.

Multiple Choice Questions

1 The forces generally considered in the design of mechanisms are:
(a) applied forces (b) inertia forces (c) frictional forces (d) all of them.

2 A pair of action and reaction forces acting on a body are called

(a) applied forces (b) inertia forces (c) frictional forces (d) constraint forces.

3 For the static equilibrium of planar mechanisms
(a) Fx 0 b) Fy 0  (c) MO 0  (d) all of the above.
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4 If the resultant of forces acting on a body does not pass through the centre of mass, then the iner-
tia force and inertia couple is replaced by
(a) Equivalent inertia force (b) equivalent inertia couple
(b) Equivalent offset inertia force (c) equivalent offset inertia couple

Answers

1. (d) 2. (d) 3. (d) 4. (c)

Review Questions 

1 State the conditions of static equilibrium.

2 State the principle of superposition.

3 State the D’Alembert’s principle.

4 What is equivalent offset inertia force?

5 What is inertia force?

6 Which do you mean by a static force?

7 What is an applied force?

8 State the conditions for the equilibrium of a body under the following system of loading. (a) Two 
forces, (b) three forces, and (c) two forces and a torque.

Exercises

11.1 A four-bar mechanism shown in Fig.11.32 is subjected to a force of 2 60° k N of link CD. The 
dimensions of the various links are:

Fig.11.32 Four-bar mechanism

AB  AD  300 mm, BC  450 mm, CD  400 mm, CE  150 mm.

Calculate the required value of torque to be applied to link AB for static equilibrium of the 
mechanism.
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11.2 A four-bar mechanism shown in Fig.11.33 is subjected to a force as shown. The dimensions of 
the various links are:

Fig.11.33 Four-bar mechanism

AB  CD  200 mm, BC  300 mm, AD  400 mm, CE  100 mm.

Calculate the input torque to link AB for the static equilibrium of the mechanism.

11.3 A four-bar mechanism shown in Fig.11.34 is subjected to torques T
3
  50 N m and T

4
  60 N m. 

The dimensions of the various links are:

Fig.11.34 Four-bar mechanism

AB  CD  400 mm, BC  800 mm, AD  1000 mm

Calculate the input torque to link CD for the static equilibrium of the mechanism.

11.4 A slider crank mechanism is loaded as shown in Fig.11.35. AB  400 mm, BC  600 mm, AD  200 
mm, CE  300 mm. Calculate the input torque for the static equilibrium of the mechanism.

Fig.11.35 Slider-crank mechanism

11.5 The lengths of crank and connecting rod of a slider crank mechanism are 40 mm and 100 mm, 
respectively. It is subjected to piston force of 2000 N. Determine the required input torque on 
the crank for the static equilibrium.
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11.6 A four-bar mechanism is loaded as shown in Fig.11.36. AB  CD  300 mm. 
BC  250 mm, AE  CG  150 mm, BF  100 mm, AD  500 mm

Fig.11.36 Four-bar mechanism

Determine the magnitude of force F.

11.7  A slider-crank mechanism shown in Fig.11.37 is subjected to piston load of 1 kN, AB  250 mm,  
BC  600 mm. Determine the input torque to link AB for the static equilibrium of the 
mechanism.

Fig.11.37 Slider-crank mechanism

11.8 A slider-crank mechanism shown in Fig.11.38 is subjected to piston load of 3 kN and a force  
1 45° kN or link BC.

Fig.11.38 Slider-crank mechanism

AB  300 mm, BC  750 mm, BD 300 mm.
Determine the input torque to link AB for the static equilibrium of the mechanism.
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BALANCING

12.1 INTRODUCTION
The high-speed engines and other machines are being used frequently. Unbalance in these machines 
arises either due to eccentric rotating or reciprocating masses or geometric centre not coinciding with 
the mass centre of the rotating components. These masses give rise to dynamic forces that increase the 
bearing loads and introduce severe stresses in the machine components.

The eccentric rotating or reciprocating mass is called the disturbing mass.

The various causes of unbalance are:

1. Eccentric rotating or reciprocating masses.

2. Unsymmetry caused during production process.
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3. Non-homogeneity of materials.

4. Elastic deformations during running.

5. Faulty mounting resulting in eccentricity.

6. Misalignment of bearings.

7. Plastic deformations.

Unbalance introduces severe stresses and result in undersirable vibrations in the machines.
By balancing we mean to eliminate either partially or completely the effects due to unbalanced 

resultant inertia forces and couples to avoid vibration of a machine or device.

12.2 BALANCING OF ROTATING MASSES
A system of rotating masses are in static balance if the combined mass centre of the system of masses 
lies on the axis of rotation. For dynamic balance of a system of masses, there does not exist any result-
ant centrifugal force as well as resultant couple.

12.2.1 Single Rotating Mass
(a) Balance mass in the same plane as the disturbing mass: Consider a single mass M rotating with 
angular speed  at a radius r, as shown in Fig.12.1. The centrifugal force due to this mass is

 F
m
  Mr 2

If a balancing mass B is placed on this rotating machine component in the same plane at a radius 
b and in line with the mass M at 180 , then the centrifugal force due to mass B will be

 F
b
  Bb 2

Fig.12.1 Single rotating mass

For the equilibrium of the system, we have

 F
m
 = F

b

or Mr = Bb (12.1)
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(b) Two balance masses in different planes: If the balance mass cannot be placed in the same plane 
as the rotating mass, then two parallel masses in different planes may be used to balance the rotat-
ing mass. A force in a plane can be replaced by a force in a parallel plane having the direction of the 
original force along with a couple in the reference plane formed by the product of the force and the 
perpendicular distance (arm of the couple) between the parallel planes. A plane passing through a 
point on the parallel plane perpendicular to the axis of the shaft is called the reference plane (RP).

The balance masses may be either on the same side of the unbalance mass or on opposite sides. 
The equilibrium equations would require that the resultant sum of their moments about any point in 
the same plane must be zero.

1. Balance masses on the same side of the disturbing mass
Consider a mass M at A rotating at a radius r and two balance masses B

1
 and B

2
 at B and C, parallel 

to M, rotating at radii b
1
 and b

2
 respectively, as shown in Fig.12.2(a). Let l

1
 and l

2
 be the distances of 

these masses from M.

Taking moments about B, we have

 Mrl
1
  B

2
b

2
(l

2
 – l

1
)

or B b Mr
l

l l2 2
1

2 1

 (12.2a)

Taking moments about C, we have

Fig.12.2 Two balance masses

 Mrl
2
  B

1
b

1
 (l

2
 – l

1
)

or B b Mr
l

l l1 1
2

2 1

 (12.2b)
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2. Balance masses on the opposite sides of the disturbing mass
Consider now that the two balance masses B

1
 and B

2
 are on the opposite sides of the disturbing mass 

M, as shown in Fig.12.2(b). Taking moments about B, we have

 Mrl
1
  B

2
b

2
(l

1
  l

2
)

or B b Mr
l

l l2 2
1

1 2

 (12.3a)

Now taking moments about C, we have

 Mrl
2
  B

1
b

1
(l

1
  l

2
)

or B b Mr
l

l l1 1
2

1 2

 (12.3b)

12.2.2 Many Masses Rotating in the Same Plane
Let there be M

i
, i  1 to n, masses rotating in the same plane with radii r

i
, i  1 to n and with same 

angular speed , as shown in Fig.12.3(a), so that the centrifugal force due to each mass is,

 F
i
  M

i
r

i
2

Fig.12.3 Many masses rotating in same plane

Since these forces are in the same plane, therefore, they can be represented by the sides of a regular 
polygon taken in order, as shown in Fig.12.3(b). Let R be the resultant of these forces. Then the result-
ant centrifugal force due to R,

 R M ri i
2

If a balancing mass B is placed at a radius b at 180  with R, then the centrifugal force due to B is

 F
b
  Bb 2



697 Balancing 

For the equilibrium of the system, we have

 R = F
b

or M r Bbi i  (12.4)

From Eq. (12.4), it may be seen that the force polygon may be drawn for M
i
 r

i
 instead of M

i
 r

i
 2.

Example 12.1

Four masses 150, 250, 200 and 300 kg are rotating in the same plane at radii of 0.25, 0.2, 0.3 and 0.35 m, 
respectively. Their angular location is 40 , 120  and 250  from mass 150 kg, respectively, measured 
in counter-clockwise direction. Find the position and magnitude of the balance mass required, if its 
radius of rotation is 0.25 m.

Fig.12.4 Balancing of four masses in the same plane

Solution 

The mass space diagram is shown in Fig.12.4(a). The problem can be solved either analytically or 
graphically.

Analytical Method

Table 12.1

M kg r (m) Mr 
(kgm)

 (deg) H = Mr cos   
(kgm)

V = Mr sin  
(kgm)

150 0.25 37.5 0 37.5 0

250 0.20 50.0 40 38.3 32.14

200 0.30 60.0 120 –30.0 51.96

300 0.35 105.0 250 –35.9 –98.67
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From Table 12.1,

 H V9 9 14 57. .

Resultant, R H V
2 2 0 5

2 2 0 5

9 9 14 57 17 61

.

.

( . ) . . kgm

Let B be the balancing mass, then

 0.25 B  17.61

or B  70.46 kg

Let 
r
 be the angle of the resultant with 150 kg mass, then

 
tan

.

.
.r

14 57

9 9
1 47172

or 
r
  –55.8

The angle of the balance mass from the horizontal mass 150 kg is

 
b
 = 180° – 55.8° = 124.2° ccw

Graphical Method
The graphical construction is shown in Fig.12.4(b). By measurement

R = 17.61 kgm. Then B = 70.46 kg, 
r
 = –55.8° and 

b
 = 124.2°

12.2.3 Many Masses Rotating in Different Planes
Consider a force F in plane B, as shown in Fig.12.5. Let this force be transferred to a reference plane 
A at a distance ‘a’. The effect of transferring a force F from plane B to plane A is:

Fig.12.5 Equivalence of a single force into a force and a couple
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 (i) an unbalance force F
2
  F on plane A, and

 (ii) an unbalanced couple, C = F
a
.

The couple is represented by a vector at right angles to the plane of the couple and the arrow head 
points in the direction in which a right hand screw would move if acted upon by the couple. In practice, 
the phase of the couple diagram is rotated through 90  ccw.

This leads to the balancing equations, in general

 

M r

M ra
i i

i i

0

0

Let us consider the mass system as shown in Fig.12.6(a). The orientation of the forces is shown in 
Fig.12.6(b). The couples acting on the system are:

 C
1
  M

1
 r

1
 l

1

 C
2
  M

2
 r

2
 l

2

 C
3
  M

3
 r

3
 l

3

 C
4
  M

4
 r

4
 l

4

The couples are shown in Fig.12.6(c), and when turned through 90 , are shown in Fig.12.6(d). The 
couple vectors may be fixed in their correct relative positions by drawing them radially outwards along 
the corresponding radii for all masses, which lie on one side for the fixed point A. Similarly all masses 
which lie on the other side of the fixed point A can be represented radially inwards along the correspond-
ing radii. The fixed point A is taken as the point of intersection of the plane of rotation of one of the bal-
ancing masses B

1
 and the axis of rotation, in order to eliminate the couple due to the mass in this plane. 

The plane at A is known as the reference plane. The couple polygon has been drawn in Fig.12.5(e). The 
resultant couple is represented by C

B
, the closing side of the couple polygon, as shown

Now C
B
 = B

2
 b

2
 d

or

 
B

C

b d
B

2
2  

(12.5)

Fig.12.6 Several masses rotating in different planes



700 Theory of Machines

Knowing B
2
 and its direction, draw the force polygon, as shown in Fig.12.6(f). The closing side of 

the force polygon will represent the magnitude and direction of the force due to the balancing mass 
required in plane A. The whole process can be represented as shown in Table 12.2.

Table 12.2 Balancing of many masses rotating in different planes

Plane Mass M 
(1)

Radius r 
(2)

Mr (3)  
(1)  (2)

Distance from plane A  
l (4)

Couple Mrl  
(5)  (3)  (4)

1 M
1

r
1

M
1
 r

1
–l

1
–M

1
 r

1
 l

1

A B
1

b
1

B
1
 b

1
0 0

2 M
2

r
2

M
2
 r

2
l
2

M
2
 r

2
 l

2

3 M
3

r
3

M
3
 r

3
l
3

M
3
 r

3
 l

3

B B
2

b
2

B
2
 b

2
d B

2
 b

2
 d

4 M
4

r
4

M
4
 r

4
l
4

M
4
 r

4
 l

4

Fig.12.6 Several masses rotating in different planes (Contd.)



701 Balancing 

12.2.4 Analytical Method for Balancing of Rotating Masses
(a) Several masses in the same plane
 Let M

i
  number or masses, i  1, 2, 3, …l 

 r
i
  radius of mass M

i

 
i
  angle of mass M

i
 with x-axis measured ccw

 B  Balancing mass
 b  radius of balancing mass
 

b
  angle of mass B with x-axis measured ccw.

Considering forces along the x- and y-axis, we have

 

M r Bb

M r Bb

M r M r

i i i b

i i i b

i i i i

cos cos

sin sin

cos

 
 



0

0

2

ii b Bbsin
.

 2 0 5

or B
M r M r

b

i i i i i bcos sin
.

 2 2 0 5

 (12.6)

 tan
sin

cos



b

i i i

i i i

M r

M r
 (12.7)

(b) Several masses in different planes
If M

L
 and M

M
 be the balance forces at radii r

L
 and r

M
 respectively, then for the balance of couples 

about plane L, we have

 ( cos ) ( sin )
.

M rl M r M r li i i i i i i M M M 2 2 0 5
 (12.8)

 tan
sin

cos



M

i i i i

i i i i

M rl

M rl
 (12.9)

For the balance of forces, we have

 ( cos ) ( sin ) ( cos ) ( sin
.

M r M r M r M ri i i i i i L L L M M M   2 2 0 5 2 ))

( cos cos ) ( sin sin

.2 0 5

2M r M r M r M r M rL L i i i M M M i i i M M   M )
.2 0 5

 

(12.10)

 
tan

( sin sin )

( cos cos )


 
 L

i i i M M M

i i i M M M

M r M r

M r M r  

(12.11)

Example 12.2

A shaft carries four masses as shown in Fig.12.7(a) and (b). The balancing masses are to be placed 
in planes L and M. If the balancing masses revolve at a radius of 100 mm, find their magnitude and 
angular positions.
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v

Solution 

Assume the plane L as the reference plane.

Table 12.3

Plane Mass, M 
(kg)

Radius, r 
(m)

Mr 
(kgm)

Distance from plane 
L, l (m)

Mr l 
(kgm2)

A 150 0.07 10.5 −0.1 −1.05

L M
L

0.10 0.1 M
L

0 0

B 200 0.06 12.0 0.2 2.40

C 300 0.05 15.0 0.3 4.50

M M
M

0.10 0.1 M
M

0.4 0.04 M
M

D 250 0.18 20.0 0.5 10.0

Fig.12.7 Shaft carrying four masses in different planes
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1. Draw the couple polygon from the data in the last column of Table 12.3 as shown in Fig.12.7(c). 
By measurement,

 0.04 M
M
  vector d  o   7.7 cm

or M
M
  192.5 kg

The angular position of M
M
 is obtained by drawing OB parallel to d'o' in Fig.12.7(b). 

M
  8 .

2. Now draw the force polygon from the data in column 4 of the table, as shown in Fig.12.7(d). The 
vector mo represents the balance force. By measurement

 0.1 M
L
  vector mo  4.7  5

or M
L
  235 kg

The angular position of M
L
 is obtained by drawing a line parallel to mo in Fig.12.7(b). 

L
  30   

180   210 .

Analytical Method 
Reference plane L

From Table 12.4, we have

 

M rl

M r

M rl

M r

i i i i

i i i

i i i i

i i

cos .

sin .

cos .







0 961

8 832

7 589

lli isin . 1 028

 

M rl M rl M r li i i i i i i i M M Mcos sin

. .

.

 2 2 0 5

2
7 589 1 0028 0 04

7 658

0 04
191 45

2 0 5.

.

.

.
.

tan

 

 kg

M

M

M rl

M

M

M
i i i

ssin

cos

( . )

( . )
.

.






i

i i i i

M

M rl

1 028

7 589
0 13546

7 71 
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Table 12.4

Plane M(kg) r (m) Mr 
(kg.m)

 
deg

Mr  cos  
(kg.m)

Mr  
sin  

(kg.m)

l  
(m)

Mrl 
(kg. 
m2)

Mrl  
cos  

(kg.m2)

Mrl  
sin  

(kg.m2)

A 150 0.07 10.5 0 10.5 0 –0.1 –1.05 –1.05 0

B 200 0.06 12 45 8.485 8.485 0.2 2.40 1.697 1.697

C 300 0.05 15 105 –3.882 14.489 0.3 4.50 –1.165 4.346

D 250 0.08 20 225 – – 0.5 10.0 –7.071 –7.071

L M
L

0.10 0.1M
L L

0.1 M
L
 

cos 
L

0.1 M
L
 

sin 
L

0 0 0 0

M M
M

0.10 0.1 
M

M

M
0.1 M

M
 

cos 
M

0.1 M
M
 

sin 
M

0.4 0.04 
M

M

0.04 
M

M
  

cos 
M

0.04 
M

M
  

sin 
M

Since the numerator and denominator are both positive, therefore 
M
 lies in the first quadrant.

M r M r M r M r M rL L i i i M M i i i M MM Mcos cos sin sin
2 2 0..

. . . . cos . . . . sin

5

2
0 1 0 961 0 1 191 45 7 71 8 832 0 1 191 45ML 77 71

19 933 11 400 22 963

229

2 0 5

2 2 0 5

.

. . .

.

.

.

ML 663 kg

tan
sin sin

cos cos
L

M r m r

M r m r

i i i

i i i

m m M

m m M

11 400

19 933
0 5719 29 76 180 209 76

.

.
. ; . .L

Since the numerator and denominator are both negative, therefore 
L
 lies in the third quadrant.

Example 12.3

A shaft has three eccentrics of mass 1 kg each. The central plane of the eccentrics is 50 mm apart. The 
distances of the centers from the axis of rotation are 20, 30 and 20 mm and their angular positions are 
120  apart. Find the amount of out-of-balance force and couple at 600 rpm. If the shaft is balanced 
by adding two masses at a radius of 70 mm and at a distance of 100 mm from the central plane of the 
middle eccentric, find the amount of the masses and their angular positions.

Solution 

Analytical Method
Let L and M be the planes at which the balancing masses are to be placed, as shown in Fig.12.8(a). 
Take L as the reference plane.
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Table 12.5

Plane M 
(kg)

r
(m)

Mr 
(kg.m)

 
deg

Mr  
cos 

Mr  sin l 
(m)

Mr l 
(kg m2)

Mrl  
 cos 

Mrl  
 sin 

A 1 0.02 0.02 0 0.02 0 0.05 0.001 0.001 0

B 1 0.03 0.03 120 –0.015 0.0259 0.10 0.003 – 0.0026

C 1 0.02 0.02 240 –0.01 8 0.15 0.003 0.0015 –0.0026

L M
L

0.07 0.07  
M

L

L
0.07 M

L
 

cos 
L

–0.01732 
0.07

0 0 –0.0015 0

M M
M

0.07 0.07  
M

M

M
0.07 M

M
 

 cos 
M

0.07 M
M
  

 sin 
M

0.2 0.014  
M

M

0.014 M
M
 

 cos 
M

0.014 M
M
  

 sin 
M

Fig.12.8 Three rotating masses in different planes
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From Table 12.5, we have

 

M r

M r

M rl

M r

i i i

i i i

i i i i

i

cos .

sin .

cos .





0 005

0 00866

0 005

ii i il sin 0

 

M rl M rl MMr li i i i i i i i M Mcos sin

( . ) ( )

.

 2 2 0 5

20 002 0 22 0 5
0 014

0 002

0 014
0 1428

.
.

.

.
.

tan
sin

M

M

M rl

M

M

M
i i i

 kg


ii

i i i i

M

M rl cos

( )

( . )


0

0 002
0

0 360 or 

Since the numerator is negative and denominator is positive, therefore 
M
 lies in the fourth quadrant.

 

M r M r M r M r M rL L i i i M M M i i i M M Mcos cos sin sin
.2 2 0 55

20 07 0 005 0 07 0 1428 0 0 00866 0 07 0 1428. ( . . . cos ) . . . sML iin

. . .

.

.

.

0

0 005 0 00866 0 01

0 1428

2 0 5

2 2 0 5

ML  kkg

tan
sin sin

cos cosL
i i i M M M

i i i M M M

M r M r

M r M r

0..

.
. ,

00866

0 005
1 732 240L

Since the numerator and denominator are both negative, therefore 
L
 lies in the third quadrant.

Graphical Method
Out-of-balance force: The out-of-balance force is obtained by drawing the force polygon, as shown in 
Fig.12.8(c), drawn from the data in column 4 of the Table 12.5.

The resultant oc represents the out-of-balance force.

Out-of-balance force vector oc  2

2

0 01 2
600

60

3

. 

99.48 N

Out-of-balance couple: The out-of-balance couple is obtained by drawing the couple polygon from 
the data in column 9, as shown in Fig.12.8(d).
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Out-of-balance couple

 Nm

o c  2

2

0 002 2
600

60

7 9

.

.



Balancing masses: The vector c' o' from c' to o', as shown in Fig.12.8(d), represents the balancing couple.

 0.014 M
M
  vector c' o'   0.002

or M
M
  0.1428 kg

Draw OM parallel to c' o'  in Fig.12.8(b). We find that the angular position of mass M is from mass A.

To find the balancing mass M
L
, draw the force polygon, as shown in Fig.12.8(e). The closing side 

do of the polygon represents the balancing force.

 0.07 M
L
  Vector om  0.01

or M
L
  0.1428 kg

Now draw O
L
 in Fig.12.8(b), parallel to om. We find that the angular position of M

L
 is 120  from mass A.

Example 12.4

Three masses M
1
 = 3 kg, M

2
 = 4 kg, and M

3
 = 3 kg are rotating in different planes as shown in Fig.12.9. 

Two balancing masses are B
1
 and B

2
 are placed at 100 mm from each end at 80 mm radius. Find the 

magnitude and angular location of the balancing masses.

Fig.12.9 Three masses rotating in different planes

Solution 

Reference plane 1.
From Table 12.6, we have

 

M r

M r

M rl

M

i i i

i i i

i i i i

cos .

sin .

cos .





0 2020

0 2458

0 14973

ii i i ir l sin . 0 01627
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M rl M rl B r li i i i i i i icos sin

.

.

 2 2 0 5

2 2 2

2
0 14973 0.. .

.

.
.

tan

.

01627 0 064

0 15061

0 064
2 35

2 0 5

2

2

2

B

B

Mi

 kg


rr l

M rl
i i i

i i i i

sin

cos

.

.
.






 

0 01627

0 14973
0 10866

2 6 2 353 8. . or   ccw

Table 12.6

Plane M 
(kg)

r 
(m)

Mr 
(kg.m)

 
(deg)

Mr  
cos 

Mr  
sin 

l 
(m)

Mrl 
(kg m2)

Mrl  
cos 

Mrl  
sin 

M
1

3 0.08 0.24 45 0.1697 0.1697 0.1 0.024 0.01697 0.01697

M
2

4 0.09 0.36 150 0.3117 0.1800 0.4 0.144 0.1247 0.0720

M
3

3 0.04 0.12 240 –0.0600 –0.1039 0.7 0.084 –0.0420 0.0727

1 B
1

0.08 0.08B
1 1

0.08B
1
  

cos 
1

0.08 B
1
 

 sin 
1

0 0 0 –0

2 B
2

0.08 0.08B
2 2

0.08B
2
  

cos 
2

0.08 B
2
 

 sin 
2

0.8 0.064B
2

0.064B
2
 

 cos 
2

0.064 B
2
  

 sin 
2

Since the numerator is negative and denominator is positive, therefore 
2
 lies in the fourth  

quadrant.

B r M r B r M r B ri i i i i i1 1 2 2 2
2

2 2 2
2 0

( cos cos ) ( sin sin )
.55

1

2
0 08 0 2020 0 08 2 35 353 8 0 2458 0 08 2 35. . . . cos . . . . sB iin .

. . .

.

.

353 8

0 0151 0 22549 0 226

2

2 0 5

2 2 0 5

1B ..

tan sin sin cos cos

825

1 2 2 2 2 2

 

/

kg

M r B r M r B ri i i i i i 22

1

0 22549 0 0151 14 93311

86 169 273 831

. . .

. .

/

 or 

Since the numerator is negative and denominator is positive, therefore 
1
 lies in the fourth 

quadrant.
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12.3 RECIPROCATING MASSES
Reciprocating masses occur in internal combustion engines and steam engines. The reciprocating 
masses are due to the mass of the piston, piston pin and part of the mass of connecting rod considered 
as reciprocating. For static balancing or reciprocating masses, the resultant of all centrifugal forces 
should be equal to zero. For dynamic balancing, the resultant of centrifugal forces and resultant of 
couples must be equal to zero.

12.3.1 Reciprocating Engine
Consider the reciprocating engine mechanism shown in Fig.12.10.

Acceleration of the piston, f f
np c cos

cos


2

Fig.12.10 Forces in reciprocating engine mechanism
where f

c
  acceleration of the crankpin

 2r

 
n

l

r

length of connecting rod

radius of crank

   inclination of crank to inner dead centre
 F

c
  force in the connecting rod 

 F
n
  thrust on the piston or guide bars

 x  perpendicular distance between the connecting rod and the crankpin
 Let R = mass of the reciprocating parts

Accelerating force, F Rf p

where f
p
  acceleration of piston or reciprocating parts.

The force F
c
 at C is equivalent to a force F

c
 at O and a couple F

c
x tending to retard the rotation of 

the crankshaft.
 Thrust couple  F

n
 · OP

Now triangles Oba and POM are similar. Therefore

 

ba

Ob

F

F

OM

OP
n

or F
n
· O P = F· OM

Also ba

Oa

F

F

OM

PM
n

c
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and 
x

OM

OP

PM
cos

So that OM

PM

x

OP

Hence F

F

x

OP
n

c

and F
n
· O P  F· OM = F

c
· x

The full effect on the engine frame of the inertia of the reciprocating mass is equivalent to the force 
F along the line of stroke at O and the clockwise thrust couple of magnitude F

n
·OP·

Now F Rf
nc cos

cos


2

 
Rf

Rf

nc
ccos

cos


2

   F
p
 + F

s
 (12.12)

where F
p
 is the primary force, which represents the inertia force of reciprocating mass having simple 

harmonic motion, and F
s
 is the secondary force, which represents the correction required to account 

for the obliquity of the connecting rod.
The unbalanced force due to the reciprocating mass varies in magnitude but is constant in direc-

tion. A single revolving mass can neither be used to balance a reciprocating mass, nor vice-versa.
The graphical representation of the various forces is shown in Fig.12.11.

where oa  primary disturbing force

 ob  centrifugal force due to the revolving balance mass

 oc  residual unbalanced force parallel to the line of stroke

 oe  unbalanced force at right angles to the line of stroke

 of  resultant unbalanced force on engine frame

Let od  oa/2, for 50% balancing of reciprocating parts

Then oc  od and cof  .

Fig.12.11 Graphical representation of forces in reciprocating engine mechanism
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12.3.2 Partial Primary Balance
Consider the reciprocating engine mechanism shown in Fig.12.12. The primary unbalanced force,

 F
p
  Rf

c
 cos 

  R 2r cos 

   component parallel to the line of stroke of the centrifugal force  
produced by an equal mass attached to and revolving with the crankpin.

Fig.12.12 Primary balancing of reciprocating mass

Let a balance mass B be placed along the line of crank at a radius b opposite to the crankpin. Com-
paring the horizontal components of forces, we have

 R 2r cos   B 2 b cos 

or Rr  Bb

Component of revolving balance mass perpendicular to the line of stroke  B 2 b sin .
This is the component of the balancing force which remains unbalanced. It is usually preferable 

to make Bb  cRr.
where c is a fraction less than one.
Reduced value of unbalanced force parallel to line of stroke,

 F
h
  (1 – c) R  2r cos  (12.13)

Unbalanced force perpendicular to line of stroke, F
v
  c R  2 r sin  (12.14)

Resultant unbalanced force, F  R 2r [(1 – c)2 cos2   c 2 sin2 ]0.5 (12.15)

For F to be minimum or maximum, d

d

F

c
0

 2(1 – c) (–1)  2c  0

 c  0.5

Thus for unbalanced force to be least, c  0.5



712 Theory of Machines

If the balance mass B has to balance the revolving parts M as well as give a partial balance of the 
reciprocating parts R, then

 Bb  Mr  cRr  (M  cR) r (12.16)

In practice, two balance masses, each equal to B/2, would be attached to the crank webs.

Example 12.5

A single cylinder reciprocating engine has speed 240 rpm, stroke 300 mm, mass of the reciprocating 
parts 50 kg and mass of the revolving parts 40 kg at 150 mm radius. If two-third of the reciprocating 
parts and all the revolving parts are to be balanced, find (a) the balance mass required at a radius of 400 mm, 
and (b) the residual unbalanced force when the crank has rotated 60  from top dead centre.

Solution 

(a)  Bb  (M  cR)r

 0 4 40
2 50

3
0 15. .B

or B  27.5 kg

(b) Residual unbalanced force R r c c  



2 2 2 2 2
0 5

2

1

50 2
240

60
0 15 1

2

cos sin

.

.

33
60

2

3
60

2846 9

2

2

2

2

0 5

cos sin

.

.

 N

12.4 BALANCING OF LOCOMOTIVES
Locomotives are of two types, coupled or uncoupled. If two or more pairs of wheels are coupled 
together to increase the adhesive force between the wheels and the track, it is called a coupled locomo-
tive. Otherwise, it is an uncoupled locomotive. Locomotives usually have two cylinders. If the cylin-
ders are mounted between the wheels, it is called an inside cylinder locomotive and if the cylinders are 
outside the wheels, it is an outside cylinder locomotive. The cranks of the two cylinders are set at 90  
to each other so that the engine can be started easily after stopping in any position. Balance masses are 
placed on the wheels in both types.

Wheels are coupled by connecting their crank pins with coupling rods in coupled locomotives. 
In uncoupled locomotives, there are four planes, two of the cylinders and two of the driving wheels, 
for consideration. In coupled locomotives, there are six planes, two each for cylinders, coupling rods 
and driving wheels. Coupled locomotives result in reduced hammer blow as the mass of reciprocating 
parts is distributed among all the coupled wheels.

12.4.1 Partial Balancing of Uncoupled Locomotives
In an uncoupled locomotive, two cylinders are placed symmetrically either inside or outside the 
frames. The two cranks are at right angles to each other, as shown in Fig.12.12(a). In an uncoupled 
locomotive, the effort is transmitted to one pair of wheels only, whereas in a coupled locomotive, the 
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driving wheels are connected to the leading and trailing wheels by an outside coupling rod. c  2/3 to 3/4 
with two pairs of coupled wheels, and c  2/5 for four cylinder locomotives.

Fig.12.13 Inside cylinders uncoupled locomotive

The location of the cranks and balance masses is shown in Fig.12.13(b) and couple polygen 
in Fig.12.13(c), and force polygon in Fig.12.13(d). The couple polygon may be drawn by using  
Table 12.7.

Table 12.7 Partial balancing of uncoupled locomotive

Plane Mass M Radius r M.r Distance from plane L  
l

Couple Mrl

L B
L

b
L

B
L
b

L
0 0

A M
1

r
1

M
1
r

1
l
1

C
A
 = M

1
r

1
l
1

B M
2

r
2

M
2
r

2
l
2

C
B
 = M

2
r

2
L

2

M B
M

b
M

B
M
b

M
l
3

C
M
 = B

M
b

M
l
3
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or

 

C C C

B b l

B
C

b l

C

C

M A B

M M

M
M

M

A

B

[ ]

tan

.2 2 0 5

3

3



If mass of revolving parts to be balanced  M
and mass of reciprocating parts to be balanced  R
Then total equivalent mass of revolving parts to be balanced,

 M
1
, M

2
  M  cR

Part of each balance mass required for reciprocating masses, B
cRB

Mr
M

1Then draw force polygon to determine B
L
.

12.4.2 Effects of partial Balancing in Locomotives
(a) Hammer blow: The unbalanced force perpendicular to the line of stroke due to balance mass B

r
 at 

radius b to balance the reciprocating parts only is equal to B
r

2b sin . The maximum magnitude of 
this force is known as hammer blow. This occurs at   90  and 270 .

 Hammer blow  B
r

2b (12.17)

If P is the downward pressure on rails due to dead load. Then

 Net pressure  P − B
r

2b

Permissible speed, 
mg

B b

P

B br r

 (12.18)

Where m  mass of locomotive.

(b) Variation of Tractive Effort
Variation of tractive effort, F

T
  (1 –c) R 2r [cos   cos(90   ]

  (1 – c) R 2r [cos  – sin ]

For its value to be maximum, 
d

d
 (cos sin ) 0

or – sin – cos  0

or tan 1

or  –45 315 135 i.e. and

At  315  F c RrT max
cos sin1 315 3152

 
1

1

2

1

2
2c Rr

 2 1 2( )c Rr

At  315  F c RrT max
( )2 1 2

Maximum variation of tractive effort F c RrT max
( )2 1 2  (12.19)
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(c) Swaying Couple: The unbalanced part of the primary disturbing forces cause a horizontal swaying 
couple to act on the locomotive owing to the distance l between the cylinder centers. Taking moments 
about the engine center line, the resultant unbalanced couple,

 
T c R r

l
1

2
902 – cos cos  

Swaying couple,  T c R r
l

1
2

2 – cos sin  

This is maximum when   45  and 225 .

Maximum swaying couple 1

2
2c

R r l   (12.20)

Example 12.6

An inside cylinder locomotive has its cylinder centre lines 0.8 m apart and has a stroke of 0.6 m. The 
rotating masses are equivalent to 150 kg at the crank pin and the reciprocating masses per cylinder 
are 300 kg. The wheel centre lines are 1.8 m apart. The cranks are at right angles. The whole of the 
rotating and 2/3rd of the reciprocating masses are to be balanced by masses placed at a radius of 0.5 m. 
Find (a) the magnitude and direction of the balancing masses, (b) the fluctuation in rail pressure under 
one wheel, (c) the variation of tractive effort and (d) the magnitude of swaying couple at a crank speed 
of 300 rpm.

Solution 

Equivalent mass to be balanced 150 2
300

3
350 kg

Balancing masses
Let M

A
 and M

D
 be the balancing masses at angular location 

A
 and 

D
 respectively. The position of 

the planes is shown in Fig.12.14(a) and angular position of the masses in Fig.12.14(b). Take A as the 
reference plane.Table 12.8

Now draw the couple polygon, as shown in Fig.12.14(c), from the data in column 6 of Table 12.8 
The closing side co represents the balancing couple.

 0.9 M
D
  vector c' o'   3.7  40  148

 M
D
  164.4 kg

Draw oD parallel to c' o'  in Fig.12.14(b). By measurement, 
D

 250 .
To find the balancing mass M

A
, draw the force polygon, as shown in Fig.12.14(d), from the data in 

column 4. The vector do represents the balancing force.
 0.5 M

A
  vector od  4.1  20  82

or M
A
  164 kg

To find the angle 
A
, draw oA parallel to od in Fig.12.14(b). By measurement, 

A
  200 .

Analytically 0.9M
D
  [(52.5)2  (136.5)2]0.5  146.248

 

MD

D

162 5

180
136 5

52 5

180 68 96 248 96

1

.

tan
.

.

. .

 kg



 ccw

0 9 136 5 52 5 146 248
2 2 0 5

. . . .
.

M A
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Fig.12.14 Balancing of inside cylinder locomotive

 

M A

D

162 5

180
52 5

136 5

180 21 03 201 03

1

.

tan
.

.

. .

 kg



 ccw

Table 12.8

Plane Mass 
M

Radius 
r

M· r Distance from plane A 
l

Couple 
Mrl

A M
A

0.5 0.5 M
A

0 0

B 350 0.3 105 0.5 52.5

C 350 0.3 105 1.3 136.5

D M
D

0.5 0.5 M
D

1.8 0.9 M
D
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(c) Each balance mass  162.5 kg

Balance mass for the rotating masses   150
162 5

300
81 25

.
.  kg

Balance mass for the reciprocating masses, B
2

3

300

350
162 5 92 86. .  kg

Fluctuation in the rail pressure or hammer blow B b 2

2

92 86 2
300

60
0 5. .

  45824 N

(d) Maximum variation of tractive effort 2 1 2( )c R r

 

2 1
2

3
300 2

300

60
0 3

41873

2

.

 N

(e) Maximum swaying couple 
1

2
2c

R r d

 

1
2

3
2

300 10 0 3 0 8

16749

2( ) . .

 N m

Example 12.7

The following data refer to an outside cylinder uncoupled locomotive:
Mass of rotating parts per cylinder  350 kg
Mass of reciprocating parts per cylinder  300 kg
Angle between cranks  90
Crank radius  0.3 m
Cylinder centers  1.8 m
Radius of balance masses  0.8 m
Wheel centers  1.5 m
If whole of the rotating and 2/3rd of the reciprocating parts are to be balanced in planes of the 

driving wheels, find (a) magnitude and angular positions of balance masses, (b) speed in km/h at 
which the wheel will lift off the rails when the load on each driving wheel is 30 kN, and the diameter 
of tread of driving wheels is 1.8 m, and (c) swaying couple at speed found in (b) above.

Solution 

(a) Equivalent mass of the rotating parts to be balanced per cylinder,

 M 350 2
300

3
550 kg

Let M
B
 and M

C
 be the balance masses, and 

B
 and 

c
 their angular positions. Let B be the 

reference plane. The position of planes is shown in Fig.12.15(a), and the position of masses in 
Fig.12.15(b).
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Table 12.9

Plane Mass 
M

Radius 
r

M·r Distance from plane B 
 l

Couple Mrl

A 550 0.3 165 –0.15 –24.75

B M
B

0.8 0.8 M
B

0 0

C M
c

0.8 0.8 M
c

1.5 1.2 M
c

D 550 0.3 165 1.65 272.25

Fig.12.15 Balancing of outside cylinder uncoupled locomotive
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Draw the couple polygon, as shown in Fig.12.14(c), from the data in column 6 of Table 12.9. The 
closing side do represents the balancing couple.

 1.2 M
c
  vector; d' o'   5.5 50

or M
c
  229.17 kg

Now draw OC parallel to d' o'  in Fig.12.15(b) to find 
c
. By measurement, 

c
  84 .

To find the balancing mass M
B
, draw the force polygon, as shown in Fig.12.15(d), from the data in 

column 4 of the above table.

 0.8 M
B
  vector co  3.7 50

or M
B
  231.25 kg

Now draw OB parallel to coin Fig.12.15(b) to find 
B
. By measurement, 

B
  186

Analytically, 1.2 M
c
  [(24.75)2 (272.25)2]0.5  273.37

 

M

M M

c

c

B C

227 8

272 25

24 75
11 84 81 1

.

tan
.

.
tan .

 kg

 cw

B 180
24 75

272 25

180 5 2 185 2

1tan
.

.

. .

(b) M
B
 = M

C
  227.8 kg

Balancing mass of reciprocating parts, B
cR

M
M B

2 300

3 550
227 8 82 83. .  kg

 

P

B b

v
D

0 5 3 0 5
30 10

82 83 0 8

21 28

2

. .

. .

.  rad/s

21 28 0 9
3600

1000
68 94. . .  km/h

(c) Maximum swaying couple 1

2
2c

R r d

 

1 2 3

2
300 21 28 0 3 1 8 17 293

2
. . . .  k Nm

Example 12.8

The following data rafer to a two cylinder uncoupled locomotive:
Rotating mass per cylinder  300 kg
Reciprocating mass per cylinder  330 kg
Distance between the wheels  1.4 m
Distance between the cylinder centres  0.6 m
Diameter of treads of the driving wheels  1.8 m
Crank radius  0.3 m
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Radius of centre of the balance mass  0.6 m
Speed of the locomotive  45 km/h
Angle between the cylinder cranks  90
Dead load of each wheel  40 kN

Determine

(a) the balancing mass required in the planes of driving wheels if the complete revolving and 2/3rd of 
the reciprocating masses are to be balanced;

(b) swaying couple;

(c) variation in tractive effort;

(d) maximum and minimum pressure on rails; and

(e) maximum speed of locomotive without lifting the wheels from the rails.

Solution 

(a) Mass to be balanced  300  2  300/ 3  520 kg
Taking 1 as the reference plane in Fig.12.16.

Fig 12.16 Two cylinder uncoupled locomotive

Table 12.10

Plane M 
kg

r 
m

Mr 
(kg.m)

 
deg

Mr 
cos 

Mr 
sin 

l 
m

Mrl 
(kg.m2)

Mrl 
 cos 

Mrl 
 sin 

M
2

520 0.3 156 0 156 0 0.4 62.4 62.4 0

M
3

520 0.3 156 90 0 156 1.0 156 0 156

M
1

M
1

0.6 0.6 B
1 1

0.6 M
1
  

 cos 
1

0.6 M
1
  

 sin 
1

0 0 0 0

M
4

M
4

0.6 0.6 B
4 4

0.6 M
2
  

 cos 
4

0.8 M
4
  

 sin 
4

1.4 0.84 M
4

0.08 M
4
 

 cos 
4

0.08 M
4
  

 sin 
4
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From Table 12.10, we have M ri i icos 156

 

M r

M rl

M rl

i i i

i i i i

i i i i

sin

cos .

sin





156

62 4

156

M rl M rl M r li i i i i i i icos sin

( . ) ( )

.

 2 2 0 5

4 4 4

262 4 156 22 0 5

4

4

4

0 84

168 02

0 84
200

.
.

.

.

tan
sin

 

 kg

M

M

M rli i i i


MM rli i i icos

( )

( . )
.

. .




156

62 4
2 5

180 68 2 248 24  ccw

Since the numerator and denominator are both negative, therefore 
4
 lies in the third quadrant.

M r M r M r M r M ri i i i i i1 1 4 4 4

2

4 4 4

2 0

cos cos sin sin
.

   
55

1

2
0 6 156 0 6 200 248 2 156 0 6 200 248 2. . cos . . sin .M   

22 0 5

2 2 0 5

1

1

111 43 44 58 120 02

200

.

.

. . .

tan

M  kg


M r M r

M r M r
i i i

i i i

sin sin

cos cos

.

.

 
 

4 4 4

4 4 4

44 58

111 443
0 4

180 21 8 201 81

.

. .

Since the numerator and denominator are both negative, therefore 
1 
lies in the third quadrant.

(b)  v

v

45
1000

3600
12 5

12 5

0 9
13 889

.

.

.
.

 m/s

 rad/s
r

Swaying couple 
1

2

1 2 3

2
300 0 3 13 889 0 6

2455

2

2

c
Rr l

/
. ( . ) .

.33 Nm

(c) Variation in tractive effort 2 1 2( )c R r

 

2 1
2

3
300 13 889 0 3

8184 2

2( . ) .

.  N
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(d) Balance mass for the reciprocating parts only, R1 200
2

3

330

520
84 6.  kg

 Hammer blow  R
1
b 2  84.6  0.6 (13.889)2  9791.8 N

 Dead weight  40 kN
 Maximum pressure on rails  40,000 9791.8  49791.8 N
 Minimum pressure on rails  40,000 – 9791.8  30208.2 N
(e) Let 

1
 be the speed, then 84 6 0 6 40 0001

2. . ,

 

1 28 07

28 07 0 9
3600

1000
90 95

.

. . .

 rad/s

 km/hv

12.5 COUPLED LOCOMOTIVES
In a coupled locomotive, the driving wheels are connected to the leading and trailing wheels by an 
outside coupling rod, as shown in Fig.12.17. By such an arrangement, a greater portion of the engine 
mass is utilised for tractive purposes. The coupling rod cranks are placed diametrically opposite to the 
adjacent driving cranks. The coupling rods together with cranks and pins may be treated as rotating 
masses and completely balanced by masses in the respective wheels. Therefore, in a coupled locomo-
tive, the rotating and reciprocating masses must be treated separately and the balanced masses for the 
two systems are then suitably combined in the wheel. The hammer blow may also be considerably 
reduced.

Fig.12.17 Coupled locomotive wheels

Fig.12.18(a) shows the arrangement of coupling rods, wheels, and cylinders of a coupled locomotive, 
Fig.12.18(b) the angular position of cranks and coupling pin, Fig.12.18(c) the couple polygon when 
wheel E is driving and Fig.12.18(d) the force polygon when wheel B is the driver.

Example 12.9

The following data refer to a two cylinder locomotive with two coupled wheels on each side:
Length of stroke  600 mm;         Mass of reciprocating parts  280 kg
Mass of revolving parts 200 kg; Mass of each coupling rod  240 kg
Radius of centre of coupling rod pin  250 mm
Distance between cylinders  0.6 m
Distance between wheels  1.5 m
Distance between coupling rods  1.8 m
The main cranks are at right angles and the coupling rod pins are at 180  to their respective main 

cranks. The balance masses are to be placed in the wheels at a mean radius of 670 mm in order to 



723 Balancing 

balance the complete revolving and 3/4th of the reciprocating masses. The balance mass for the recip-
rocating masses is divided equally between the driving wheels and the coupled wheels. Find (a) the 
magnitude and angular positions of the masses required for the driving and trailing wheels, and (b) the 
hammer blow at 120 km/h, if the wheels are 1.8 m diameter.

Solution 

(a) The position of planes for the driving wheels B and E, cylinders C and D, and coupling rods A and 
F, are shown in Fig.12.19(a). The angular position of cranks C and D and coupling pins A and F are 
shown in Fig.12.19(b).

Mass of the reciprocating parts per cylinder to be balanced 3
280

4
210 kg

Mass to be balanced for driving wheels and trailing wheels 
210

2
105 kg

Masses to be balanced for each driving wheel:

1. Half of the mass of coupling rod 
240

2
120 kg  or M

A
  M

F
  120 kg

2. Complete the revolving mass (200 kg) and 3/4th the mass of reciprocating parts (105 kg).

or     M
C
 = M

D
  200 105  305 kg

Driving wheels: Let M
B
 and M

E
 be the balance masses placed in the driving wheels B and E, respec-

tively in plane of B as the reference plane.

Fig.12.18 Coupled locomotive arrangement
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Table 12.11

Plane Mass  
M (kg)

Radius, r 
(m)

M·r  
(kg m)

Distance from  
plane B, l (m)

Couple, Mrl 
(kg m2)

A 120 0.25 30.0 –0.15 –4.5

B M
B

0.67 0.67 M
B

0 0

C 305 0.30 91.5 0.45 41.175

D 305 0.30 91.5 1.05 96.075

E M
E

0.67 0.67 M
E

1.5 1.005M
E

F 120 0.25 30.0 1.65 49.5

Draw the couple polygon from the data in column 6 of Table 12.11, as shown in Fig.12.19(c).

Fig.12.19 Balancing of two-cylinder coupled wheel locomotive
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 1.005 M
E
  vector a' o'  3.3 20

or M
E
   65.67 kg

and 
E
  45

Now draw the force polygon from the data in column 4 of the Table 12.11, as shown in Fig.12.19(d).
 0.67M

B
  vector eo  2.2 20

or M
B
  65.67 kg

and 
B
  45

Trailing wheels: The following masses are to be balanced for each trailing wheel:

1. Half of the mass of the coupling rod. M
A
  M

F
  120 kg

2. Mass of the reciprocating parts, M
C
  M

D
  105 kg

Let M
B
 and M

E
 be the balanced masses placed in the trailing wheels. We take wheel B as the reference 

plane.

Table 12.12

Plane Mass, M 
(kg)

Radius, r 
(m)

M·r  
(kg m)

Distance from plane B, l  
(m)

Couple, Mrl 
(kgm2)

A 120 0.25 30.0 –0.15 –4.5

B M
B

0.67 0.67 M
B

0 0

C 105 0.30 31.5 0.45 14.175

D 105 0.30 31.5 1.05 33.075

E M
E

0.67 0.67 M
E

1.5 1.00 M
E

F 120 0.25 30.0 1.65 49.5

Draw the couple polygon from the data in column 6 from the Table 12.12, as shown in Fig.12.20(a).
 1.005M

E
  vector a o    2.55  10

or  M
E
  25.37 kg

and  
E
  41

Now draw the force polygon from the data in column 4 from the above table, as shown in 
Fig.12.20(b).

Fig.12.20 Force and couple polygons
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 0.67 M
B
  vector eo  1.7 10

or M
B
  25.37 kg

and 
B
  42

The balance masses in all the four wheels are shown in Fig.12.21.
(b) To find the hammer blow, we find the balance mass required for the reciprocating masses only.

Fig.12.22 Couple polygon

Fig.12.21 Location and magnitude of balance masses

Table 12.13

Plane Mass M 
(kg)

Radius r 
(m)

M·r  
(kg m)

Distance from plane B 
l (m)

Couple Mrl 
(kg m2)

B M
B

0.67 0.67 M
B

0 0

C 105 0.30 31.5 0.45 14.175

D 105 0.30 31.5 1.05 33.075

E M
E

0.67 0.67 1.5 1.005 M
E

Draw the couple polygon from the data in column 6 of Table 12.13, as shown in Fig.12.22:

 1.005M
E
  vector c'o'  3.6  10

or M
E
  35.8 kg

Linear speed of the wheel  120 km/h  33.33 m/s

Diameter of wheel, D  1.8m

Angular speed of wheel, 
2

2
33 33

1 8
37

v

D

.

.
 rad/s

Hammer blow B b 2 2
35 8 37 0 67 32836 8. . .  N
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Example 12.10

The following data refer to a four-coupled wheel locomotive with two inside cylinders, as shown in 
Fig.12.23.

Reciprocating mass per cylinder  300 kg
Revolving mass per cylinder  250 kg
Diameter of the driving wheel  1.9 m
Revolving parts for each coupling rod crank  120 kg
Engine crank radius  0.3 m
Coupling rod crank radius  0.25 m

Fig.12.23 Four-coupled wheel locomotive

Distance of centre of balances mass in the planes of the driving wheels from the axle centre  0.75 
m
Angle between the engine cranks  90
Angle between the coupling rod crank with adjacent engine crank  180
The balance mass required for the reciprocating parts is equally divided between each pair of coupled 
wheels. Determine

(a) the magnitude and position of the balance mass required to balance 2/3rd of reciprocating and the 
complete revolving parts.

(b) The hammer blow and

(c) The maximum variation of tractive force when the locomotive speed is 75 km/h.

Solution 

Leading wheels
Balance mass  250  0.5  2/3  300  350 kg
Take 2 as reference plane with 

3
  0 .

From Table 12.14, we have M ri i icos 75



728 Theory of Machines

 

M r

M rl
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M rl

i i i
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sin

cos .

sin .
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61 5
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2 2 0 5

5 5 5
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58 5 61 5

sin

( . ) ( . )

.
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11 2

84 88

1 2
70 73

5

5

5

.

.

.
.

tan
sin

cos

M

M

M rl

M rl
i i i i

i i i i

 kg





61 5

58 5
1 0513

180 46 43 226 435

.

.
.

. .  ccw

Table 12.14

Plane M 
(kg)

r 
(m)

Mr 
(kg.m)

 
deg

Mr cos Mr sin l 
(m)

Mr l 
(kg. m2)

Mrl  
cos 

Mrl  
sin 

1 120 0.25 30 180 –30 0 –0.2 –6 6 0

2 M
2

0.75 0.75 M
2 2

0.75M
2
  

 cos 
2

0.75 M
2
  

 sin 
2

0 0 0 0

3 350 0.3 105 0 105 0 0.5 52.5 52.5 0

4 350 0.3 105 90 0 105 1.1 115.5 0 115.5

5 M
5

0.75 0.75 M
5 5

0.75M
5
  

 cos 
5

0.75 M
5
  

 sin 
5

1.6 1.2 M
5

1.2 M
5
 

 cos 
5

1.2 M
5
  

 sin 
5

6 120 0.25 30 270 0 –30 1.8 54 0 –54

Since the numerator and denominator are both negative, therefore 
5
 lies in the third quadrant.

 

M r M r M r M r M ri i i i i i2 2 5 5 5

2

5 5 5

2 0

cos cos sin sin
.

   
55

2

2
0 75 75 70 73 0 75 226 43 75 70 73 0 75 226. . . cos . . . sin .M 443

38 43 36 56 53 046

70 73

2 0 5

2 2 0 5

2

.

.

. . .

.

t

M  kg

aan
sin sin

cos cos

.


 
 2

5 5 5

5 5 5

36 56

M r M r

M r M r
i i i

i i i

38 43
0 95134

180 43 57 223 572

.
.

. .
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Since the numerator and denominator are both negative, therefore 
2
 lies in the third quadrant.

Trailing wheels: Balance mass 0 5 2
300

3
100. kg

Take 2 as reference plane with 
3
  0 .

Table 12.15

Plane M 
(kg)

r  
(m)

Mr 
(kg.m)

 
(deg)

Mr 
cos 

Mr  
sin 

l 
(m)

Mr l 
(kg.m2)

Mrl  
cos 

Mrl  
 sin 

1 120 0.25 30 180 –30 0 –0.2 –6 6 0

2 M
2

0.75 0.75 M
2 2

0.75 M
2
  

 cos 
2

0.75 M
2
  

 sin 
2

0 0 0 0

3 100 0.3 30 0 30 0 0.5 15 15 0

4 100 0.3 30 90 0 30 1.1 33 0 33

5 M
5

0.75 0.75 M
5 5

0.75 M
5
  

 cos 
5

0.75 M
5
  

 sin 
5

1.6 1.2 M
5

1.2 M
5
  

 cos 
5

1.2 M
5
  

 sin 
5

6 120 0.25 30 270 0 –30 1.8 54 0 –54

From Table 12.15, we have

 M
i
r

i
 cos 

i
  0

 M
i
r

i
 sin 

i
  0

 M
i
r

i
l
i
 cos 

i
  21

 M
i
r

i
l
i
 sin 

i
  –21

M rl M rl M r li i i i i i i icos sin

( ) ( )

.

 2 2 0 5

5 5 5

2 221 21
0 5

5

5

5

1 2

29 698

1 2
24 75

.
.

.

.
.

tan
sin

M

M

M rl

M r
i i i i

i

 kg




ii i il cos

( )

( )


21

21
1

180 45 1355 ccw

Since the numerator is positive and denominator is negative, therefore 
5
 lies in the second quadrant.

By symmetry, M
2
  24.75 kg

 

tan
( )

( )
2

2

21

21
1

360 45 315

Since the numerator is negative and denominator is positive, therefore 
2
 lies in the fourth quadrant.
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(b) v

v

75
1000

3600
20 83

20 83

0 95
21 93

.

/
.

.
.

 m/s

rad/sr

Neglecting M
1
 and M

6
, we have

 1.2M
5
  [152  332]0.5  36.249

 M
5
  30.2 kg

Hammer blow  M
5
b 2  30.2 0.75 (21.93)2 10893 N

(c) Maximum variation in tractive effort  2 1 2( )c R r

 2 1 2 3 300 21 93 0 3 204042( / ) ( . ) .  N

12.6 MULTICYLINDER IN-LINE ENGINES
In a multi cylinder in-line engine, the cylinder centre lines lie in the same plane and on the same side 
of the crankshaft centre line, as shown in Fig.12.24.

Fig.12.24 Multi-cylinder inline engine

12.6.1 Primary Balancing
The conditions to be satisfied for the primary balancing are:

1. The algebraic sum of the primary forces should be equal to zero, i.e. the primary force polygon 
must close.

  R 2r cos   0 (12.21a)

2. The algebraic sum of the primary couples about any point in the plane of the forces must be equal 
to zero, i.e. the primary couple polygon must close.

  R 2r a cos   0 (12.21b)
where a  distance of the plane of rotation of the crank from a parallel reference plane.

Hence, if a system of reciprocating masses is to be in primary balance, the system of reciprocating 
masses, which is obtained by substituting an equal revolving mass at the crankpin for each reciprocat-
ing mass, must be balanced.

The graphical construction for the balancing of primary forces is represented in Fig.12.25.
 ef, fg, gh, eh  primary forces
   angle turned through by the crankshaft, clockwise.
   angle turned through by the line of stroke, ccw, i.e. PQ 

goes to PS.
 kl, ml, mn, nk

1
  primary forces whose resultant is kk

1
.
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For balance of primary forces d must coincide with o. In a similar way, the primary couples can 
only be balanced if the couple polygon for the corresponding centrifugal forces is closed.

12.6.2 Secondary Balancing
The conditions to be satisfied for the secondary balancing are as follows:

1. The algebraic sum of the secondary forces should be equal to zero, i.e. the secondary force  
polygon must close.

 R
r

n
( ) cos2

4
2 02   (12.22a)

2. The algebraic sum of the secondary couples about any point in the plane of the forces must be 
equal to zero, i.e. the secondary couple polygon must close.

 R
r

n
a( ) cos2

4
2 02   (12.22b)

where a  distance of the plane of rotation of the crank from a parallel reference plane

 Imaginary crank length 
r

n4
 (12.23a)

 Speed  2  (12.23b)

Angle made by imaginary secondary crank with inner dead centre  2 . The actual and imaginary 
cranks are shown in Fig.12.26.

Fig.12.25 Graphical method for primary balancing of multi-cylinder inline engine
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Example 12.11

A four crank engine has two outer cranks set at 120  to each other, and their reciprocating masses are 
each 400 kg. The distance between the planes of rotation of adjacent cranks are 450 mm, 750 mm, 
and 600 mm. If the engine is to be in complete primary balance, find the reciprocating mass and the 
relative angular position for each of the inner cranks.

If the length of each cranks is 300 mm, length of each connecting rod is 1.2 m and the speed of 
rotation is 240 rpm, what is the maximum secondary unbalanced force?

Solution 

Reciprocating masses:
Let M

2
 and M

3
 be the reciprocating masses for inner cranks 2 and 3; 

2
 and 

3
 their angular loca-

tions respectively. The position of planes and primary crank positions is shown in Fig.12.27(a) and 
(b), respectively.

Table 12.16

Plane Mass,  
M (kg)

Radius, r 
(m)

M  r  
(kg.m)

Distance from plane 2, l 
(m)

Couple, M r l, 
(kg.m2)

1 400 0.3 120 –0.45 –54.0

2 M
2

0.3 0.3 M
2

0 0

3 M
3

0.3 0.3 M
3

0.75 0.225 M
3

4 400 0.3 120 1.35 162.0

Since the engine is to be in complete primary balance, therefore, the primary couple and force 
polygons must close. The primary couple polygon is shown in Fig.12.27(c), drawn from the data in 
column 6 of Table 12.16.

 0.225 M
3
  vector 0' 4'  4.9 cm  196

or M
3
  871 kg

and 
3
  314

The force polygon is drawn in Fig.12.27(d), from the data in column 4.

 0.3M
2
  vector 03  284

or M
2
  947 kg

and 
2
  168

Fig.12.26 Actual and imaginary cranks
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Secondary unbalanced force: The secondary cranks at twice the angle are shown in Fig.12.27(e). The 
secondary force polygon is drawn in Fig.12.27(f). The closing side of the polygon gives the unba-
lanced secondary force.

Maximum unbalanced secondary force
582

582

2
240

60

1 2 0 3
91 96

2

2




n . / .
.  KN.

Fig.12.27 Primary and secondary balancing of multi-cylinder inline engine
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12.6.3 In-Line Two-Cylinder Engine
Consider the line diagram of a two-cylinder in-line engine shown in Fig.12.28. The cranks are 180  
apart and have equal reciprocating masses. Taking a plane through the centre line as the reference 
plane, we have

Fig.12.28 Inline two-cylinder engine

Primary force,  F
p
  Rr 2 [cos   cos (180   )]  0

Primary couple, C
p
  Rr 2 [0.5  cos  – 0.5  cos (180   )]

  Rr 2  cos  (12.24a)

 (C
p
)

max
  Rr 2  at   0  and 180 . (12.24b)

Secondary force, F
Rr

ns

 
  


 

2

2 2 180cos cos ( )

 
Rr

n

 


2

2cos  (12.25a)

 ( ) , , ,maxF
Rr

ns

2
0 90 180 270

2 
at   (12.25b)

Secondary couple, C
Rr

n
a as

2
0 5 2 0 5 2 180 0

2
    . cos . cos ( )

The force and couple polygons for primary and secondary cranks are shown in Fig.12.29 (a) to (d).
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12.6.4 In-line Four-cylinder Four-stroke Engine
A line diagram of a four cylinder engine is shown in Fig.12.30. The forces and couples are as follows:

Primary force, F
P
  Rr 2 [cos   cos (180   )  cos (180   )  cos ]  0

Primary couple, C
P
   Rr 2 [ 1.5  cos   0.5  cos (180   ) – 0.5  cos (180   )  

– 1.5  cos ]
  0

Secondary force, F
Rr

nS

 
 


   

2

2 2 180 2 180 2cos cos ( ) cos ( ) cos

 
4

2
2Rr

n

 
cos  (12.26a)

 ( ) , , ,maxF
Rr

nS

4
0 90 180 270

2 
at


  (12.26b)

Fig.12.29 Force and couple polygons for inline two cylinder engine
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Secondary couple,  C
Rr

n
a a

a

s


 

2

1 5 2 0 5 2 180

0 5 2 1

. cos . cos

. cos

   

 880 1 5 2

0

 . cos a

The force and couple polygons for primary and secondary cranks are shown in Fig.12.31(a) to (d).

Example 12.12

In a marine oil engine, the cranks of four cylinders are arranged at angular displacements of 90 .The 
speed of the engine is 105 rpm and the mass of reciprocating parts for each cylinder is 850 kg. Each 
crank is 0.4 m long. The outer cranks are 3 m apart and the inner cranks are 1.2 m apart and are placed 
symmetrically between the outer cranks.

Find the firing order of the cylinders for the best primary balancing of reciprocating parts and also 
the maximum unbalanced primary couple for this arrangement.

Solution 

 

 2
105

60
10 996

0 4

.

.

 rad/s

 r m

Fig.12.30 Inline four-cylinder four-stroke engine.
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The primary forces are always balanced as cranks are arranged at an angular displacement of 
90  to each other. The primary couples need to be investigated. The position of cranks is as shown in 
Fig.12.32.

Fig.12.31 Force and couple polygons for four-cylinder four-stroke engine

Fig.12.32 Marine oil engine

The possible firing orders are: 1234, 1243, 1423, 1324, 1342, 1432, as shown in Table 12.18.
The disturbing force along the axis of the cylinder  Mr 2cos 
Let K  Mr 2  850  0.4  (10.996)2  41107 N, as shown in Table 12.17.
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Total disturbing force 

K I
I

cos( ) 
1

4

where 
1
  angle between the reference crank and the crank considered.

Table 12.17

Plane of 
cylinder

M Mr K = Mr 2 Arm length 
l

Couple Kl

1 850 340 41107 0 0

2 850 340 41107 0.9 0.9 K

3 850 340 41107 2.1 2.1 K

4 850 340 41107 3 3 K

Table 12.18

Disposition of 
Cranks

Crank positions Primary Couple Polygon Resultant primary Couple

1234 ( . ) ( . )

.

.
3 0 9 2 1

2 97

2 2 0 5
K

K  

1243 ( . . ) ( )

.

.
2 1 0 9 3

2 97

2 2 0 5
K

          K

1423 ( . ) ( . )

.

.
3 2 1 0 9

1 273

2 2 0 5
K

      K

1324
( . ) ( . )

.

.
3 2 1 0 9

1 273

2 2 0 5
K

K      
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Disposition of 
Cranks

Crank positions Primary Couple Polygon Resultant primary Couple

1342 ( . . ) ( )

.

.
2 1 0 9 3

3 231

2 2 0 5
K

K             

1432 ( . ) ( . )

.

.
3 0 9 2 1

2 97

2 2 0 5
K

K      

Least value of primary couple  1.273 K
 1.273  41107  52329 N m

Best firing order is 1423 and 1324.

12.7 BALANCING OF RADIAL ENGINES
In the case of radial engines, the cranks are arranged radially and lie in the same plane. We shall study 
the direct and reverse crank method to balance the radial engines.

12.7.1 Direct and Reverse Cranks Method
This method is used to balance radial or V-engines, in which connecting rods are connected to a com-
mon crank, as shown in Fig.12.33. Since the plane of various cranks is the same, Therefore, there is no 
unbalanced primary or secondary couple.

Fig.12.33 Balancing of radial engines

Let the direct crank OC rotate uniformly at  (rad/s) speed in a clockwise direction. Then the 
reverse crank OC' will rotate in the ccw direction. The reverse crank OC's the mirror image of the 
direct crank OC.
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1. Primary Forces
Now the primary force, F

p
  R 2r cos 

This force is equal to the component of the centrifugal force along the line of stroke, produced 
by a mass R placed at the crankpin C. Let us suppose that the mass R is divided into two equal parts, 
each equal to R/2. It is assumed that R/2 is fixed at the direct crankpin C and the other R/2 is fixed at 
the reverse crankpin C'.

Centrifugal force acting on the primary direct and reverse crankpins  0.5 R 2r 

Component of the centrifugal force on the direct crank acting along the line of stoke from O to P,

F R rpd 0 5 2. cos 

Component of the centrifugal force on the reverse crank acting along the line of stroke from O to P

F R rpr 0 5 2. cos 

Total component of the centrifugal force along the line of stroke

    F
p
  F

pd
  P

pr
  R 2r cos  (12.27)

which is the primary force itself. Hence, for primary force effects, the mass of the reciprocating 
parts at P may be replaced by two masses at crankpins C and C', each of mass R/2 at radii equal to r.

2. Second Forces

The secondary force,
  

F R r
ns 
2 2cos

 
(12.28)

In the similar way as discussed for the primary force, the secondary force effect may be taken into 
account by dividing the mass R into two equal parts and placing it at the imaginary crankpins at radii r/4n.

Example 12.13

The three cylinders of an air compressor have their axes 120  to one another and their connecting rods 
are coupled to a common crank. The stroke is 100 mm and the length of each connecting rod is 150 mm. 
The mass of the reciprocating parts per cylinder is 2 kg. Find the maximum primary and secondary 
forces acting on the frame of the compressor when running at 3000 rpm.

Solution 

The position of three cylinders is shown in Fig.12.34(a), with the common crank along the inner dead 
centre of cylinder 1.

Primary Forces

The primary direct and reverse crank positions are shown in Fig.12.34(b).

1. Since   0  for cylinder 1, both the primary direct and reverse cranks will coincide with the com-
mon crank.

2. Since   ±120  for cylinder 2, the primary direct crank is 120  clockwise and the primary reverse 
crank is 120  counter-clockwise from the line of stroke of cylinder 2.

3. Since  = ±240° for cylinder 3, the primary direct crank is 240° clockwise and primary reverse 
crank at 240° counter-clockwise from the line of stroke of cylinder 3.
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From Fig.12.34(b-ii), we find that the primary reverse cranks form a balanced system. Therefore, 
there is no unbalanced primary force due to the reverse cranks. From Fig.12.34(b-i), we find that the 
resultant primary force is equivalent to the centrifugal force of a mass 1.5 M attached to the end of 
the crank.
Maximum primary force  1.5 M 2r

 

1 5 2 2
3000

60
0 05

14804 4

2

. .

.



 N

The maximum primary force may be balanced by a mass attached diametrically oppo-
site to the crank pin and rotating with the crank, of magnitude B

1
 at radius b

1
, such that 

B
1
b

1
  1.5 Mr  1.5  2  0.05  0.15 N m

Fig.12.34 Direct and reverse crank method
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Secondary Force
The secondary direct and reverse crank positions are shown in Fig.12.34(c).

1. Since 2   0  for cylinder 1, both the secondary direct and reverse cranks will coincide with the 
common crank.

2. Since 2   ± 240  for cylinder 2, the secondary direct crank is 240  clockwise and the secondary 
reverse crank is 240  counter-clockwise from the line of stroke of cylinder 2.

3. Since 2  = ± 480  for cylinder 3, the secondary direct crank is 480  or 120 clockwise and second-
ary reverse crank is 480  or 120  counter-clockwise from the line of stroke of cylinder 3.

The resultant secondary force  1.5 M attached to a crank at radius r/4n rotating at 2  speed.

Maximum secondary force 1 5 2
4

2. ( )M w
r

n

1 5 2 4
3000

60

0 05

4 3

4934 8

2

.
.

.



 N

The maximum secondary force can be balanced by a mass B
2
 at radius b

2
 attached diametrically 

opposite to the crank pin, and rotating ccw at twice the speed, such that

B b M
r

n2 2 1 5
4

1 5 2
0 05

4 3
0 0125

.

.
.

.  N m

12.8 BALANCING OF V-ENGINES
Consider a symmetrical two cylinder V-engine, as shown in Fig.12.35. The common crank OC is 
driven by two connecting rods PC and QC. The lines of stroke OP and OQ are inclined to the vertical 
OY, at an angle .

Fig.12.35 Balancing of V-engines
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Inertia force due to the reciprocating parts of cylinder 1, along the line of stroke

R r
n

  
 2 2

cos( )
cos ( )

Inertia force due to the reciprocating parts of cylinder 2, along the line of stroke

R r
n

  
 2 2

cos( )
cos ( )

Since the plane of cranks is the same, therefore, there are no primary or secondary couples.

1. Primary Force
Primary force of cylinder 1 acting along the line of stroke

F R rp1
2  cos ( )

Component of F
p1

 along the vertical line OY= F
p1

 cos 

R r   2 cos ( ) cos

Component of F
p1 

along the horizontal line OX= F
p1

 sin 
R r   2 cos ( ) sin

Similarly, for the cylinder 2, we have

F R rp2
2  cos ( )

Component of F
p
2 along the vertical line OY= F

p2
 cos 

R r   2 cos ( ) cos

Component of F
p2

 along the horizontal line OX'= F
p2

 sin 

R r   2 cos ( ) sin

Total component of primary force along the vertical line OY

F R r

R r

pv
2

2 22

[cos ( ) cos ( )] cos

cos cos

Total component of primary force along the horizontal line OX

F R r

R r

ph      

  

2

2 22

[cos ( ) cos ( )] sin

sin sin

Resultant primary force,
  

F F Fp pv ph
2 2 0 5.

  2R 2r[(cos2  cos )2  (sin2  sin )2]0.5

For    45 , we have
 F

p
  R 2r  (12.30)

2. Secondary Force
Secondary force of cylinder 1 acting along the line of stroke
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F R r
ns1

2 2


 cos ( )

Component of F
s1

 along the vertical line OY  F
s1

 cos 

R r
n


 

2 2cos ( )
cos

Component of F
s1

 along the horizontal line OX  F
s1

 sin 

R r
n


 

2 2cos ( )
sin

Similarly, for the cylinder 2, we have

F R r
ns2

2 2


 cos ( )

Component of F
s2

 along the vertical line OY  F
s2 

cos 

R r
n


 

2 2cos ( )
cos

Component of F
s2

 along the horizontal line OX'  F
s2 

sin 

R r
n


 

2 2cos ( )
cos

Total component of secondary force along the vertical line OY

F R r
n

R
r

n

sv
2

2

2 2

2 2

cos ( ) cos ( )
cos

cos cos c

 

oos 2

Total component of secondary force along the horizontal line OX

 

F R r
n

R
r

n

sh     


  

2

2

2 2

2 2

[cos ( ) cos ( )]
sin

sin sin

 

 ssin 2

Resultant secondary force,

F F FS sv sh[ ] .2 2 0 5

2 2 2 2 22 2 2 0 5R
r

n
    [cos cos cos ) (sin sin sin ) ] . 

 
(12.31)

For   45 , we have
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F R
r

ns

3

2
2 

 

(12.32)

Example 12.14

A V-twin engine has the cylinder axes at right angles and the connecting rods operate a common 
crank. The reciprocating mass per cylinder is 10 kg and the crank radius is 80 mm. The length of con-
necting rod is 0.4 m. Show that the engine may be balanced for primary forces by means of a revolving 
balance mass. 

If the engine speed is 600 rpm, what is the value of maximum resultant secondary force?

Solution 

Here
  

 45
0 4

0 08
5,

.

.
n

And
  

 2
600

60
62 86.  rad/s

 

Resultant primary force,  F
p
  2R 2r[(cos2  cos )2 (sin2  sin )2]0.5

Since the resultant primary force R 2r is the centrifugal force of a mass R at the crank pin radius 
rotating at speed , the engine may be balanced by a rotating balance mass.

Maximum resultant secondary force,

 
F R

r

ns 2 2 2 2 22 2 2 0 5      [(cos cos cos ) (sin sin sin ) ] .

For
  

  45 2 22, sinF R
r

ns

For a maximum value sin 2   ± 1, or   45  and 135 .

Maximum resultant secondary force,

 
F R

r

ns max

.
( . ) .2 2 10

0 08

5
62 83 893 242 2  N

Example 12.15

A rotating shaft carries four radial masses A  8 kg, B, C  6 kg, D  5 kg. The mass centres 
are 30, 40, 40 and 50 mm, respectively, from the axis of the shaft. The axial distance between 
the planes of rotation of A and B is 400 mm and between B and C is 500 mm. The masses A and 
C are at right angles to each other. Find for a complete balance, (a) the angle of the masses B 
and D from mass A, (b) the axial distance between the planes of rotation of C and D, and (c) the 
magnitude of mass B.
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Solution  

Reference plane B (Fig.12.36).

Table 12.19

Plane M 
(kg)

r  
(m)

Mr 
(kg.m)

  
(deg)

Mr cos Mr sin  l 
(m)

Mrl 
(kg.m2)

Mrl 
cos 

Mrl 
sin 

A 8 0.03 0.24 0 0.24 0 –0.4 –0.096 –0.096 0

B M
2

0.04 0.04 M
2 2

0.04 M
2
 sin 

2
0 0 0 0

C 6 0.04 0.24 90 0 0.24 0.5 0.12 0 0.12

D 5 0.05 0.25
4

0.25 
cos 

4

0.25 
sin 

4

l
4

0.25l
4

0.25 l
4
  

cos 
4

0.25 l
4
 

sin 
4

Fig.12.36 Balancing of four masses in different planes
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From Table 12.19, we have        M ri i icos . . cos 0 24 0 25 4

M r

M rl

M rl

i i i

i i i i

i i i i

sin . . sin

cos .

sin

 



0 24 0 25

0 096
4

00 12.

( cos ) ( sin )
.

M rl M rl M r li i i i i i i i 2 2 0 5

2 2 2  

– . . .

.

.
.

.

0 096 0 12 0 25

0 15367

0 25
0 6147

2 2 0 5

4

4

 

 m o

l

l rr  mm

 mm

614 7

614 7 500 114 7

4

.

. – .

tan
sin

d

M rl

M rl
i i i i

i i i




ccos

( . )

( . )
.

– . .





i

0 12

0 096
1 25

51 34 308 664  i.e. 

Since the numerator is negative and denominator is positive, therefore 
4
 lies in the fourth quadrant.

M r M r M r M r M ri i i M M M i i i M M M2 2
2 2 0 5

0

[( cos cos ) ( sin sin ) ] .   

.. . cos . . . sin . .04 0 25 308 66 0 24 0 25 308 66 0 242

2 2 0

 M
..

.

. .

.

.

tan
(

5

2 2 0 5

2

2

0 3962 0 04478

0 39869

9 967M  kg


M r M r

M r M r
i i i M M M

i i i M M M

sin sin )

( cos cos )

.

.

 
 

0 04478

0 39962
0 11302

6 45 186 452

.

. .  i.e. 

Since the numerator and denominator are both negative, therefore, 
2
 lies in the third quadrant.

Graphical Method
From force polygon in Fig.12.36(d), od  4.2 mm, M

2
  10.5 kg, 

2
  186 . From couple polygon in 

Fig.12.36(c), 0.25 l
4
  o c   7.7 cm, l

4
  616 mm, d  116 mm, 

d
  309 .

Example 12.16

A rotating shaft carries four unbalanced masses 20, 15, 18 and 12 kg at radii 50, 60, 70 and 60 mm, 
respectively. The second, third and fourth masses revolve in planes 100, 150 and 300 mm, respectively, 
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measured from the plane of first mass, and at angular locations of 60 , 120  and 280 , respectively, 
measured clockwise from the first mass. The shaft is dynamically balanced by two masses, both located 
at 50 mm radii and revolving in planes midway between those of first and second masses and midway 
between those of third and fourth masses. Determine graphically the magnitudes of the masses and 
their angular positions.

Solution 

Reference plane L (Fig.12.37)

Table 12.20

Plane M 
(kg)

r  
(m)

Mr 
(kg.m)

 
(deg)

Mr cos Mr sin l  
(m)

Mrl 
(kg.m2)

Mrl 
cos 

Mrl sin 

A 20 0.05 1 0      1 0 –0.05 –0.05 –0.05 0

B 15 0.06 0.9 60  0.45 0.7794 0.05 0.045 0.0225  0.039

C 18 0.07 1.26 120 –0.63 1.0912 0.10 0.126 –0.063  0.1090

D 12 0.06 0.72 280 0.125 –0.7091 0.25 0.18 –03126 –0.1773

L M
L

0.05 0.05 M
L L

0.05 M
L

 cos 
L

0.05M
L
  

 sin 
L

0 0 0 0

M M
M

0.05 0.05 M
M M

0.05 M
M
 

cos 
M

0.05 M
M
 

 sin 
M

0.175 0.0087 
M

M
  

cos 
M

0.0087 
M

M
  

sin 
M

  0.008751

From Table 12.20, we have 
M ri i icos . 0 945

M r

M rl

M rl

i i i

i i i i

i i i i

 

 

sin .

cos .

sin .







1 1615

0 0448

0 2902

( cos ) ( sin )
.

M rl M rl M r li i i i i i i i M M M 2 2 0 5

0 0448 0 0292 0 00875

0 05347

0 00875
6

2 2 0 5

. . .

.

.
.

.

 M

M

M

M 111

0 0292

0 0448

 kg

tan
sin

cos

( . )

( . )



M

i i i i

i i i i

M rl

M rl
0 65178

33 147

.

M  i.e. 

Since the numerator is positive and denominator is negative, therefore M lies in the second 
quadrant.
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M r M r M r M r M rL L i i i M M M i i i M M M[ cos cos ) ( sin sin ) ]

.

.   2 2 0 5

0 005 0 945 0 05 6 11 147 1 1615 0 05 6 11 147
2

ML . . . cos . . . sin
2 0 5

2 2 0 5

0 689 1 3279 1 496

29 92

.

.

. . .

.

tan

ML

L

 kg


( sin sin )

( cos cos )

.

M r M r

M r M r
i i i M M M

i i i M M M

 
   

1 32799

0 689
1 92728

62 57 242 57
.

.

. .L  i.e. 

Since the numerator and denominator are both negative, therefore 
L 
lies in the third quadrant.

Graphical Method

Fig.12.37 Graphical method for balancing many masses in different planes
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From couple polygon in Fig.12.37(c), 0.00875 M
M

 = o d  = 2.5 cm, M
M

 = 5.7 kg, M = 147°. From 
force polygon, Fig.12.37(d), 0.05 M

L
 = od = 7.6 cm, M

L
 = 30.4 kg, L = 242°.

Example 12.17

A shaft of span 3 m between two bearings carries two masses of 15 and 30 kg acting at the extremi-
ties of the arms 0.5 and 0.6 m, respectively. The planes in which these masses rotate are 1 and 2 m, 
respectively, from the left end bearing. The angle between the arms is 60 . The speed of rotation of 
the shaft is 240 rpm. If the masses are balanced by two counter masses rotating with the shaft acting 
at radii of 0.25 m and placed at 0.3 m from each bearing centre, determine the magnitude of the two 
balance masses and their orientation with respect to the 15 kg mass.

Solution  

Reference plane L (Fig.12.38):

Fig.12.37 Graphical method for balancing many masses in different planes (Contd.)
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Table 12.21

Plane M 
(kg)

r  
(m)

Mr 
(kg.m)

  
(deg)

Mr cos Mr sin  l 
(m)

Mrl 
(kg.m2)

Mrl  
cos 

Mrl  
sin 

L M
L

0.25 0.25 M
L L

0.25 M
L

0.25 M
L
 

sin 
L

0 0 0 0

A 15 0.5 7.5 0 7.5 0 0.7 5.25 5.25 0

B 30 0.6 18 60 9 15.5884 1.7 30.6 15.3 26.5

M M
M

0.25 0.25 
M

M

M
0.25 M

M
  

cos 
M
 

0.25 M
M
 

sin 
M

2.7 0.675 
M

M

0.675 
M

M
 cos 

M

0.675 
M

M
 sin 

M

From Table 12.21, we have

M r

M r

M rl

M rl

i i i

i i i

i i i i

i i

cos .

sin .

cos .





16 5

15 5884

20 55

 

ii i

i i i i i i i i M MM rl M rl M r l

  sin .

( cos ) ( sin )
.



 

26 5

2 2 0 5

MM

M

M

M

M

[( . ) ( . ) ] .

.

.
.

tan

.26 5 20 55 0 675

34 534

0 675
49 68

2 2 0 5

 kg

MM
i i i i

i i i i

M

M rl

M rl

sin

cos

( . )

( . )
.






26 5

20 55
1 28954

52.. .2 232 2 i.e. 

Since the numerator and denominator are both negative therefore  
M
 lies the in the third quadrant

.

M r M r M r M r M rL L i i i M M M i i i M M M[( cos cos ) ( sin sin ) ] .   2 2 0 5

0.. . . cos . . . . sin .25 0 25 49 68 232 2 16 5 0 25 49 68 232 2 15
2

 ML ..

. . .

.

.

.

5884

8 888 5 7746 10 599

42 4

2 0 5

2 2 0 5

ML  kgg

tan
( sin sin )

( cos cos )

.


 
 L

i i i M M M

i i i M M M

M r M r

M r M r

5 77746

8 888
0 6497

33 213

.
.

L  i.e. 

Since the numerator and denominator are both negative, therefore L lies in the third quadrant.
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Fig.12.38 Graphical method for balancing of two masses in different planes
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Graphical Method:
From couple polygon in Fig.12.38(c), 0.675 M

M
  ob  6.8 cm, M

M
  50.37 kg, M  233 . From force 

polygon in Fig.12.38(d), 0.25 M
L
  o’d’  5.3 cm, M

L
  42.4 kg, L  213

Example 12.18

A 4 m long shaft carries three pulleys, two at its ends and third at the midpoint. The two end pulleys 
have mass of 80 and 40 kg and their centre of gravity are 3 and 5 mm, respectively, from the axis of 
the shaft. The middle pulley mass is 50 kg and its center of gravity is 8 mm from the shaft axis. The 
pulleys are keyed to the shaft and the assembly is in static balance. The shaft rotates at 300 rpm in two 
bearings 2.5 m apart with equal overhang on either side. Determine (a) the relative angular positions 
of the pulleys and (b) dynamic reactions at the two bearings.

Solution  

For static balance, M
E
 = 0, gives (Fig.12.39).

Fig.12.39 Shaft carrying three pulleys

R

R R

D

D E

2 5 80 4 25 50 1 25 40 0 75 9 81

1147 8 519 9

. . . . .

. , . N  NN

rad/s

 N


2 300

60
31 416

80 0 003 31 416 236 87

5

2

.

. . .F

F

A

B 00 0 008 31 416 394 78

40 0 005 31 416 197 39

2

2

. . .

. . .

 N

 NF

R

C

DD

D ER N R

2 5 236 87 4 25 394 78 1 25 197 39 0 75

446 1 382

. . . . . . .

. , ..94 N

Taking components of forces in horizontal and vertical directions, we have
80  50 cos 

1
  40 cos 

2
  0

50 sin 
1
  40 sin 

2
  0

Solving we get,

1
  – 24.14 , 

2
  149.25
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Example 12.19

A two-cylinder uncoupled locomotive with cranks at 90  has a crank radius of 320 mm. The distance 
between the centers of driving wheels is 1.5 m. The pitch of cylinders is 0.6 m. The diameter of 
treads of driving wheels is 1.8 m. The radius of centers of gravity of balance masses is 0.7 m. The 
pressure due to dead load on each of the wheels is 40 kN. The masses of reciprocating and rotating 
parts per cylinder are 300 and 350 kg, respectively. The speed of the locomotive is 60 km/h. Find (a) 
the balancing masses in magnitude and position in the planes of driving wheels to balance whole of 
the revolving and 2/3rd of the reciprocating parts, (b) the swaying couple, (c) the variation in tractive 
effort, (d) the maximum and minimum pressure on the rails and (e) the maximum speed at which it is 
possible to run the locomotive, in order that the wheels are not lifted from the rails.

Solution  

Give: M = 350 kg, R = 300 kg, r = 0.32 m, l = 0.6 m, d
w
 = 1.8 m, b = 0.7 m,

P  40 kN, v  60 km/hr, Equivalent mass M
R2

3
350

2 300

3
550 kg

Table 12.22

Plane M 
(kg)

r 
(m)

Mr  
(deg)

Mr cos Mr sin l 
(m)

Mrl Mrl 
cos 

Mrl 
sin 

A M
A

0.7 0.7 M
A A

0.7 M
A
  

cos 
A

0.7 M
A
  

sin 
A

0 0 0 0

B 550 0.32 176 0 176 0 0.45 79.2 79.2 0

C 550 0.32 176 90 0 176 1.05 184.8 0 184.8

D M
D

0.7 0.7 M
D D

0.7 M
D
 

cos 
D

0.7 M
D
 

sin 
D

1.5 1.05 
M

D

1.05 M
D
 

cos
D

1.05 M
D
 

sin
D

From Table 12.22, we have

M r

M r

M rl

M rl

i i i

i i i

i i i i

i i i i

cos

sin

cos .

sin






176

176

79 2

1184 8.

M rl M rl M r li i i i i i i i D D Dcos sin
.

 2 2 0 5

79 2 184 8 1 05

201 05

1 05
191 5

2 2 0 5

. . .

.

.
.

tan

.

M

M

D

D

D

kg


M rl

M rl
i i i i

i i i i

D

sin

cos

( . )

( . )
.

.






184 8

79 2
2 3333

66 8  ii.e. 246 8.
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Since the numerator and denominator are both negative, therefore 
D
 lies in the third quadrant,

M r M r M r M r M rA A i i i D D D i i i D D Dcos cos sin sin
.

   2 2 0 55

2
0 7 0 7 191 5 246 8 176 0 7 191 5 246 8 176. . . cos . . . sin .M A

22 0 5

2 2 0 5

124 192 52 79 134 02

191 5

.

.

. . .

.

tan

M A

A

kg


M r M r

M r M r
i i i D D D

i i i D D D

sin sin

cos cos

.

 
 

52 79

1244 192
0 42852

24 2 204 2
.

.

. .A i.e.

Since the numerator and denominator are both negative, therefore 
A
 lies in the third quadrant,

(b) v

v

60 10

3600
16 67

2 2 16 67

1 8
18 52

3

.

.

.
.

m/s

rad/s
dw

Maximum swaying couple ( )1

2

2c R rl

 

1
2

3
300 18 52 0 32 0 6

2
4656 6

2( . ) . .

.  N m  

(c) Maximum tractive effort variation    2 1 2( )c R r

 

2 1
2

3
300 18 52 0 32

15522

2( . ) .

 N

(d) M
A
  M

L
  191.5 kg

Balance mass for reciprocating parts, B
191 5 2 300

3 350
69 636

.
. kg

Net pressure on rails  P  B 2b
 40  69.636  (18.52)2  0.7
 40  16.719
 56.719 kN, 24.281 kN
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40  103  69.636  2  0.7

2  820.59,   28.646 rad/s

v
28 646 0 9 3600

1000
92 81

. .
. km/h
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Graphical Method
From couple polygon in Fig.12.40(c), 1.05 M

A
  a’c’  8.05 cm, M

A
  191.67 kg, 

A
  202 .

From force polygon in Fig.12.40(d), 0.7 MD  ad  2.8 cm, M
D
  200 kg, 

D
  247 . 

Example 12.20

A four-cylinder engine has two outer cranks at 120  to each other and their reciprocating masses are 
each 400 kg. The distance between the planes of rotation of adjacent cranks are 0.4, 0.7, 0.7 and 0.5 m. 
Find the reciprocating mass and the relative angular position for each of the inner cranks, if the engine 
is to be in complete primary balance. Also find the maximum secondary force, if the length of each 
crank is 0.4 m, the length of each connecting rod 1.8 m and the engine speed 480 rpm.

Solution  

(a) Primary cranks
Reference plane 2 (Fig.12.41):

Fig.12.40 Graphical method for balancing of four masses in different planes
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Table 12.23

Plane M 
(kg)

r (m) Mr   
(deg)

Mr cos Mr sin l 
(m)

Mrl Mrl 
cos 

Mrl sin 

1 400 0.4 160 0 160 0 –0.4 –64 –64 0

2 M
2

0.4 0.4 M
2 2

0.4 M
2
  

cos 
2

0.4 M
2
 

sin 
2

0 0 0 0

3 M
3

0.4 .04 M
3 3

0.4 M
3
 

cos
3

0.4 M
3
 

sin
3

0.7 0.28 
M

3

0.28 M
3
 

cos 
3

0.28 M
3
 

sin
3

4 400 0.4 060 0120 –80 138.564 1.2 190 –96 066.277

From Table 12.23, we have

M r

M r

M rl

M rl

i i i

i i i

i i i i

i i i

cos

sin .

cos

sin





80

138 564

160

i 166 277.

M rl M rl M r li i i i i i i icos sin

.

.

 2 2 0 5

3 3 3

2
160 166 2277 0 28

230 755

0 28
824 12

2 0 5

3

3

3

.

.

.

.
.

tan

M

M

M rli i i

kg


ssin

cos

( . )

( )
.

.






i

i i i iM rl

166 277

160
1 03923

46 13   i..e. 314 9.

Since the numerator is negative and denominator is positive, therefore 
3
 lies in the fourth quadrant.

M r M r M r M r M ri i i i i i2 2 3 3 3

2

3 3 3

2 0

cos cos sin sin
.

   
55

2

2
0 4 0 4 824 12 314 9 80 0 4 824 12 314 9 138. . . cos . . . sin . M ..

. .

.

.

.

.

564

308 58 98 964

324 06

810 1

2 0 5

2 2 0 5

2M 55

2
3 3 3

3 3 3

kg

tan
sin sin

cos cos


 
 

M r M r

M r M r
i i i

i i i

(( . )

.
.

. .

98 964

308 58
0 32070

17 78 162 222 i.e.
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Since the numerator is positive and the denominator is negative, therefore, 
2
 lies in the second 

quadrant.
(b) Secondary cranks

n
l

r

1 8

0 4
4 5

.

.
.

Secondary crank length

r

n4

0 4

4 4 5
0 022

.

.
. m

Reference plane 2:

Fig.12.41 Graphical method for balancing of four masses in different planes
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Fig.12.41 Graphical method for balancing of four masses in different planes (Contd.)
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Table 12.24

Plane M 
(kg)

r (m) Mr  
(deg)

Mr cos Mr sin l(m) Mrl Mrl cos Mrl sin 

1 400 0.022 8.8 0 8.8 0 –0.4 –4.52 –4.52 0

2 M
2

0.022 0.022 M
2 2

0.022 M
2

0 0 0 0

3 M
3

0.022 0.022 M
3 3

0.022 M
3

0.022 M
3

0.7 0.0154 
M

3

0.015 M
3
  

cos 
3

0.015 M
3
 

sin
3

4 400 0.022 8.8 240 –4.4 –7.621 1.2 10.56 –5.28 t–9.145

From Table 12.24, we have
M r

M r

M rl

M rl

i i i

i i i

i i i i

i i i

cos .

sin .

cos .

sin





4 4

7 621

8 8

i 9 145.

M rl M rl M r li i i i i i i icos sin

. .

.

 2 2 0 5

3 3 3

2
8 8 9 145

2 0 5

3

3

3

0 0154

12 691

0 0154
824 12

.

.

.

.
.

tan

M

M

M rli i i

kg


ssin

cos

( . )

( . )
.

.






i

i i i iM rl

9 145

8 8
1 0392

46 13      

Since the numerator and denominator are both positive, therefore 
3
 lies in the first quadrant

M r M r M r M r M ri i i i i i2 2 3 3 3

2

3 3 3

2 0

cos cos sin sin
.

   
55

2

2
0 022 0 022 824 12 46 1 4 4 0 022 824 12 46 1. . . cos . . . . sin .M 7 621

16 972 5 443 17 823

810 1

2 0 5

2 2 0 5

2

.

. . .

.

.

.

M 55

2
3 3 3

3 3 3

kg

 tan
sin sin

cos cos


 
 

M r M r

M r M r
i i i

i i i

55 443

16 972
0 3207

17 78 197 782

.

.
.

. . i.e.

Since the numerator and denominator are both negative, therefore, 
2
 lies in the third quadrant.
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Speed of secondary crank 2
480

60
50 27 . rad/s

Maximum unbalanced secondary force
760 50 27

4 5
426795

2( . )

.
N

Graphical Method
From couple polygon for primary crank in Fig.12.41(c), 0.28 M

3
. o’4’  9.2 cm, M

3
  821.4 kg, 

3
  

315 .
From primary force polygon in Fig.12.41(d), 0.4 M

2
  o3  8.2 cm, M

2
  820 kg, 

2
  164 . From 

secondary crank force polygon in Fig.12.41(f), unbalanced secondary force  o4  7.6 cm  760 
kg-m.

Example 12.21

In a four-crank symmetrical engine, the reciprocating masses of the two outside cylinders A and D 
are each 600 kg and those of the two inside cylinders B and C are each 900 kg. The distance between 
the cylinder axes of A and D is 5 m. Taking the reference line to bisect the angle between the cranks 
A and D, and the reference plane to bisect the distance between the cylinder axes of A and D, find the 
angles between the cranks and the distance between the cylinder axes of B and C for complete balance 
except for secondary couples.

Fig.12.42 Four-cranks symmetrical engine

Determine the maximum value of the unbalanced secondary couple if the length of the crank is 0.4 m, 
length of connecting rod 1.8 m and speed is 180 rpm.

Solution  

Let the cranks 1 and 4 be inclined at an angle  with the reference line and cranks 3 and 4 at angle . 
Also let a = distance of B and C from the reference plane, as shown in Fig.12.42(a).
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Primary Forces:
Horizontal component,

F
HP

  2r [M
1
 cos   M

3
 cos (180  – )  M

2
 cos (180   )  M

4
 cos (360  – )]

 2r [600 cos  – 900 cos  – 900 cos   600 cos ]
 2r [1200 cos  – 1800 cos ]

Vertical component,
F

VP
  2r [M

1
 sin   M

3
 sin (180  – )  M

2
 sin (180   )  M

4
 sin (360  – )]

 2r [600 sin   900 sin  – 900 sin  – 600 sin ]
 0

For primary force balance, F
HP

  0
1200 cos  – 1800 cos   0

cos

cos
.




1 5
 (12.33)

Primary couple about RP:
C

HP
  2r [M

1
 cos   (– 2.5)  M

3
 cos (180  – ) –   M

2
 cos (180   )  (– )  

M
4
 cos (360  – )  2.5]

 2r [– 1500 cos  – 900  cos   900  cos   1500 cos ]

 0

C
VP

  2r [M
1
 sin   (– 2.5)  M

3
 sin (180  – )    

M
2
 sin (180   )  (– )  M

4
 sin (360  – )  2.5]

 2r [– 1500 sin   900  sin   900  sin  – 1500 sin ]

2r [– 3000 sin   1800  sin ]

For complete balance of primary couple, C
VP

  0 – 3000 sin   1800  sin   0

sin

sin
.




0 6 a
 (12.34)

From (12.33) and (12.34), we get

tan

tan
.




0 4 a
 (12.35)

Secondary Forces:

Speed  2 , Imaginary crank length
r

n

r

l4 4

2
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F
r

l
M M M MHS

( )
[ cos cos ( ) cos ( ) cos

2

4
2 2 180 2 180 2

2 2

1 3 2 4


   (( )]

[ cos cos cos cos

360

600 2 900 2 900 2 600 2
2 2




   

r

l
]]

[ cos cos ]


 
2 2

1200 2 1800 2
r

l

For secondary force to be zero,
1200 cos 2   1800 cos 2   0

cos

cos
.

2

2
1 5




Vertical component

F
r

l
M M M MVS


  

2 2

1 3 2 42 2 180 2 180[ sin sin ( ) sin ( ) sinn ( )]

[ sin sin sin sin

2 360

600 2 900 2 900 2 600
2 2




  

r

l
22

0

 ]

From Eq. (4), we have
2 cos2  – 1  – 1.5 (2 cos2  – 1)

2 cos2   3 cos2  – 2.5  0
From Eq. (12.33), we have

cos
cos

.

cos
cos

.
.

cos .

co

1 5

2
3

2 25
2 5 0

2
4

3
2 5 0

2
2

2

ss . , cos . , , cos . , .

.
sin

2 0 75 0 866 30 0 57735 54 73

0 6
3

a a

a

 

00

54 73
0 6124

1 02
sin .

.

.a m
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Secondary Couple

C
r

l
M M a

M

HS


 

2 2

1 3

2

2 2 5 2 180

2 18

[ cos ( . ) cos ( )

cos ( 00 2 360 2 5

1500 2 900 2 9

4

2

 

  

) ( ) sin ( ) . ]

[ cos cos

a M

r a 000 2 1500 2

0

2 2 5
2 2

1 3

a

C
r

l
M MVS

cos cos ]

[ sin ( . ) sin

 


 22 180

2 180 2 360 2 52 4

2 2

( )

sin ( ) ( ) sin ( ) . ]



 



a

M a M

r

 

ll
a a

r

l

[ sin sin sin sin ]1500 2 900 2 900 2 1500 2

2 2

   


[ sin sin ]

( . )

.

3000 2 1800 2

2
180

60

0 4

1 8

2 2

 



a

[ sin . sin . ]3000 60 1800 1 02 109 46

136733 N m

Example 12.22

A three-cylinder radial engine (Fig.12.43) driven by a common crank has the cylinders spaced at 120 . 
The stroke is 120 mm, length of connecting rod 240 mm and the mass of the reciprocating parts per 
cylinder is 1 kg and the speed of the crank shaft is 2400 rpm. Determine the magnitude of the primary 
and secondary forces.

Fig.12.43 Three-cylinder radial engine
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Solution  

Given: r = 60 mm, l = 240 mm, M = 1 kg, N = 2400 rpm.
Maximum primary force

  1.5 Mr 2

1 5 1 0 06 2
2400

60

2

. . 

 568

N.m

Maximum secondary force 1 5 2
4

2
. M

r

n


1 5 1 0 06

4
2400

60

16
1421 2

1 5

4

1 5 1 0

2

2 2

. . .

. .


N

B b
Mr

n

..
.

06

4 4
0 005625 N m

Example 12.23

A two cylinder V-engine has the cylinders set at an angle of 45 , with both pistons connected to the 
single crank. The crank radius is 60 mm and the connecting rods are 300 mm long. The reciprocating 
mass per line is 1.5 kg and the total rotating mass is equivalent to 2 kg at the crank radius. A balance 
mass fitted opposite to the crank is equivalent to 2.5 kg at a radius of 90 mm. Determine for an engine 
speed of 1800 rpm, the maximum and minimum values of the primary and secondary forces due to 
the inertia of reciprocating and rotating masses.

Solution  

Given:  = 45° r = 60 mm, l = 300 mm, R = 1.5 kg, M = 2 kg, B = 2.5 kg, b = 90 mm, N = 1800 rpm

 2
1800

60
188 5

2 5 90 60

4 75

.

( )

. ( )

.

rad/s

 k

Bb M cR r

M cR

M cR gg

Primary force, F
P
  (M  cR) r 2  4.75  0.06  (188.5)2  7994.7 N

Secondary force, F M cR
r

lS

3

2

2 2

( )
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3

2
4 75 188 5

0 06

0 3
1384 72

2

( . ) ( . )
( . )

.
. N

Example 12.24

A two cylinder locomotive with cranks at 90  has a crank radius of 325 mm. The distance between 
centres of driving wheels is 1.5 m. The pitch of cylinders is 600 mm. The diameter of treads of driving 
wheels is 1.8 m. The radius of centres of gravity of balance weights is 650 mm. The pressure due to 
dead load on each wheel is 40 kN. The weights of reciprocating and rotating parts per cylinder are 4.3 
kN and 3 kN respectively. The speed of the locomotive is 60 km/h. Find

 (a)  the balancing weights both in magnitude and position required to be placed in the planes of driv-
ing wheels to balance whole of the revolving and two-third of the reciprocating masses;

 (b) the swaying couple;

 (c) the variation of tractive effort;

 (d) the maximum and minimum pressure on rails; and

 (e)  what is the maximum speed at which it is possible to run the locomotive, in order that the wheels 
are not lifted from the rails?

Solution  

Given Mg = 3 kN, Rg = 4.3 kN, r = 0.325 m, l = 0.6 m, d
w
 = 1.8 m, b = 0.65, P = 40 kN, v = 60 km/h

Reference plane 1 (Fig.12.44):

 (a) Mass to be balanced 

3000 2
4300

3

9 81
530

.
kg

Table 12.25

Plane M 
(kg)

r 
(m)

Mr  
(deg)

Mrcos Mr sin l 
(m)

Mrl Mrl cos Mrl sin 

1 M
1

0.65 0.65 M
1 1

0.65 M
1
 

cos 
1

0.65 M
1
 

sin 
1

0 0 0 0

2 500 0.325 172.25 0 172.25 0 0.45 77.5125 77.5125 0

3 530 0.325 172.25 90 0 172.25 1.05 180.8625 0 180.8625

4 M
4

0.325 M
4 4

0.65 M
4
 

cos
4

0.65 M
4
 

sin
4

1.5 0.97 M
4

0.975 M
4
 

cos 
4

0.957 M
4
 

sin
4
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Fig.12.44 Two-cylinder locomotive with orthogonal cranks

From Table 12.25, we have

M r

M r

M rl

M r

i i i

i i i

i i i i

i

cos .

sin .

cos .







172 25

172 25

77 5125

ii i il sin . 180 8625

M rl M rl M r li i i i i i i icos sin

.

.

 2 2 0 5

4 4 4

2
77 5125 1800 8625 0 975

196 772

0 975
201 81

2 0 5

4

4

4

. .

.

.
.

tan

.

M

M

M

kg

 ii i i i

i i i i

r l

M rl

sin

cos

( . )

( . )
.






180 8625

77 5125
2 3333

664 .. .8 246 8i.e.

Since the numerator and denominator are both negative, therefore, 
4
 lies in the third quadrant.
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M r M r M r M r M ri i i i i i1 1 4 4 4

2

4 4 4

2 0

cos cos sin sin
.

   
55

1

2
0 65 0 65 201 81 246 8 172 25 0 65 201 81 246 8. . . cos . . . . sin .M 172 25

120 574 51 681 131 183

20

2 0 5

2 2 0 5

1

.

[( . ) ( . ) ] .

.

.

M 11 81

1
3 3 3

3 3 3

.

tan
sin sin

cos cos

kg


 
 

M r M r

M r M r
i i i

i i i

51 681

120 574
0 4286

24 2 204 21

.

.
.

. . i.e.

Since the numerator and the denominator are both negative, therefore, 
1
 lies in the third quadrant.

 


60 1000 2

3600 1 8
18 52

.
. rad/s

(b) Swaying couple 
( )1

2

2c Rr

 

( ) . . ( . ) .

.

1 2 3 4 3 10 0 325 18 52 0 6

2 9 81
5303

3 2/

 N

(c) Variation of tractive effort 2 1 2( )c R r

 

2 1 2 3 4 3 10 18 52 0 325

9 81
17676 8

3 2( ) . ( . ) .

.
.

/

 N

(d) Balance mass for reciprocating parts, B M
R

M R1

2

3

 
201 81

2

3

4 3

5 2
111 25.

.

.
. kg

Hammer blow  Bb 2  111.25  0.65  (18.52)2  24.8 kN

Net pressure on rails  P  B 2 b
  40  24.8
  64.8 kN, 15.2 kN
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(e) 40  103  111.25  2  0.65
   73.96 rad/s

 
v

73 96 0 9 3600

1000
70 164

. .
. km/h

Example 12.25

Four weights A, B, C and D revolve at equal radii and are equally spaced along the shaft. The weights 
weigh 70 N and the radii of C and D make angles of 90  and 240  respectively with the radius of B. 
Find the magnitude of the weights A, C and D and the angular position of A so that the system may be 
completely balanced.

Solution  

Reference plane B (Fig.12.45)

 
m r

70

9 81
7 136 1

.
. . kg, let m

Table 12.26

Plane M 
(kg)

r 
(m)

Mr  
(deg)

Mr cos Mr sin 

A M
A

1 M
A  A

M
A
 cos 

A
M

A
 sin 

A

B 7.136 1 7.136 0 7.136 0

C 7.136 1 7.136 90 0 7.136

D 7.136 1 7.136 240 – 4.568 – 6180

Fig.12.45 Balancing of four masses in different planes
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From Table 12.26, we have

M r

M r

M rl a

M rl

i i i

i i i

i i i i

i i

cos .

sin .

cos .







4 568

0 956

7 136

ii i asin . 5 224

M r M r M ri i i i i i A acos sin

. .

.

 2 2 0 5

2 2
4 568 0 956

0 5

4

4 64

0 956

4

.

.

tan
sin

cos

( . )

(

M

M

M r

M r

A

A

i i i

i i i

kg





.. )
.

568
0 26794

15 195A i.e.

Since the numerator and denominator are both negative, therefore 
A
 lies in the third quadrant.

Example 12.26

A twin cylinder uncoupled locomotive has its cylinders 0.6 m apart and balance weights are 60  apart. 
The planes are symmetrically placed about the centre line. For each cylinder, the revolving masses are 
300 kg at crank pin radius of 320 mm and reciprocating parts 285 kg. All the revolving and 2/3rd of 
the reciprocating masses are balanced. The driving wheels are 1.8 m diameter. When the engine runs 
at 60 km/h, find (a) the swaying couple, (b) the variation in tractive effort, and (c) the hammer blow.

Solution  

Given: M = 300 kg, r = 320 mm, R = 285 kg, c
2

3
, l = 0.6 m, d

w
 = 1.8 m, v = 60 km/h

Total mass to be balanced M cR 300 2
285

3
490 kg

v
v

dw

60 m/s   rad/s
1000

3600
16 67

2
2

16 67

1 8
18 52. ,

.

.
.

 

Reference plane: 1 (Fig.12.46)
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Fig.12.46 Twin-cylinder uncoupled locomotive

Table 12.27

Plane M  
(kg)

r 
(m)

Mr  
(deg)

Mr cos Mr sin l 
(m)

Mrl Mrl cos Mrl sin 

1 M
1

0.32 0.32 M
1 1

0.32 M
1

0.32 M
1

0 0 0 0

2 490 0.32 165.8 0 165.8 0 A 156.8a 156.8a 0

3 490 0.32 156.8 90 0 156.8 a  0.6 156.8a  
94.08

0 156.8a  
94.08

4 M
4

0.32 0.32 M
4 4

0.32 M
4
 

 cos 
4

0.32 M
4
 

 sin 
4

2a  0.6 0.32 M
4
  

(2a  0.6)
0.32 M

4
  

(2a  0.6) 
 cos 

4

0.32 M
4
  

(2a  0.6) 
 sin 

4

From Table 12.27, we have

M r

M r

M rl a

M rl

i i i

i i i

i i i i

i i i

cos .

sin .

cos .







156 8

156 8

156 8

ssin . .i a156 8 94 08

tan
sin

cos

. .

.

.



4

156 8 94 08

156 8

0

M rl

M rl

a

a

a

i i i i

i i i i

66

a

Taking 4 as the reference plane, we get



773 Balancing 

tan
.

tan tan

tan( ) tan

tan



 
 

 



1

1 4

4 1

1 1

2

0 6
1

60

60 1

a

a

11 1

1

1

2 3 1 0

0 268 4 732

195 285

0 268
0 6

tan

tan . , .

,

.
.



  

a

a
a 00 22

0 32 2

4 4 4
2 2 0 5

.

cos ) ( sin )

.

.

 m

M r l M rl M rl

a

i i i i i i i i 

00 6 156 8 156 8 94 08

0 32 0 44 0 6

4

2 2 0 5

4

. . . .

. . .

.

M a a

M 156 8 0 22 156 8 0 22 94 08

0 3328 134 123

2 2 0 5

4

. . . . .

. .

.

M

MM

M

Bb

4

1

400

400

400 0 32 213 285

490
49

 kg

By symmetry,  kg

. ( )
..

. .

63

49 63 18 53 170232 2

 N m

Hammer blow  N

Swaying cou

Bb

pple
/

 N m

V

1
2

1 2 3 285 0 32 18 52 0 6

2
4424 76

2 2

–
( ) . ( . ) .

.

c
Rr l

aariation of tractive effort

 

2 1

2 1
2

3
285

2( )c R r

( . ) .

.

18 52 0 32

14745 87

2

 N  

Example 12.27

The reciprocating mass per cylinder in a 60  V-engine is 1.2 kg. The stroke and the connecting rod 
length are 100 and 250 mm, respectively. If the engine runs at 2000 rpm, determine the maximum and 
minimum values of the primary and secondary forces. Also find out the crank positions corresponding 
to these values.

Solution 

Given: R = 1.2 kg, 2  = 60°, r = 100 mm, l = 250 mm, N = 2000 rpm, n
l

r
2 5.
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2
2000

60
209 44

2 2 2 2 2 2

.

[(cos cos ) (sin sin )

 rad/s

 F rP ]]

. . . [(cos cos ) (sin sin ) ]

.

.

0 5

2 2 2 2 2 02 1 2 209 44 0 1 30 30  55

2 2 0 510527 6 0 75 0 25. [ . cos . sin ] .     

For F
P
 to be maximum or minimum,

d

d

FP


0

–1.5 cos  sin   0.5 sin  cos   0
sin 2  sin   0.5 sin  cos   0

sin 2   0

  0 , 90 , 180

For 7 N 

For 9  N

2







0 91171

0 5264 8

, .

, .
max

min

F

F

F R

P

P

S
22 2 2cos  cos 2  cos 2  sin  sin 2  sin 2

r

n
[( ) ( ) ]      00.5

For   0 , F
S
  1824.4 N

For   45 , F
S
  1824.4 N

Example 12.28

The following data refer to a two-cylinder locomotive with cranks at 90 :
Reciprocating mass per cylinder  300 kg
Crank radius  300 mm
Diameter of the driving wheels  1.8 m
Distance between the cylinder centre lines  0.65 m
Distance between the driving wheel centre planes  1.55 m
Determine (a) the fraction of the reciprocating masses to be balanced by placing the balancing 

masses on the driving wheels, if the hammer blow is not to exceed 46 kN at 96.5 km/h, and (b) the 
variation in tractive effort.

Solution  

Given: R = 300 kg, r = 300 mm, d
w
= 1.8 m, hammer blow = 46 kN, v = 96.5 km/h, l = 0.65 m,


96 5 1000

3600 0 9

.

.
.29 784 rad/s

Mass to be balanced M
0
  M + cR  0  300  c  300 c kg

Taking 1 as the reference plane, we have
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Table 12.28

Plane Mass, M 
(kg)

Radius, r 
(m)

Mr 
(kg.m)

 
(deg)

l 
(m)

Couple, Mrl 
(kg.m2)

1 M
1

r
1

M
1
r

1
 
1

0 0

2 300 c 0.3 90 c 0 0.45 40.5c

3 300 c 0.3 90 c 90 1.10 99.0c

4 M
4

r
4

M
4 
r

4
 
4

1.55 1.55 M
4
r

4

M
o
  0.3  0.45 cos 0   M

o
  0.3  1.1 cos 90   M

4
  r

4
  1.55 cos 

4
  0

0.135M
o
  1.55 M

4
r

4
 cos 

4
  0 (12.36)

M
o
  0.3  0.45 sin 0   M

o
  0.3  1.1 sin90   M

4
 r

4
  1.55 sin 

4
  0

0.33M
o
  1.55 M

4 
r

4
 sin 

4
  0 (12.37)

From (12.36) and (12.37), we get

 
tan 4

0 33

0 135
2 44

.

.
.

 
 

4
  247.75

Fig.12.47 Two-cylinder locomotive with orthogonal cranks

M r
M

M4 4
0

0

0 33

1 55 0 9255
0 23 

.

. .
.

By symmetry, M
1
  M

4

Taking 4 as the reference plane, we have 
M

1 
r

1
  0.23 M

0

tan
.

.
.1

0 135

0 33
0 409
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1
  202.25

Balance mass for reciprocating parts only, B
M c

b c

0 23 300

300
0.

0 23 0. M

b

Hammer blow  B 2 b  0.23 M
0
  (29.784)2  46  103 N m

 M
0
  225.46 kg  300c

 
c 0

3

4
.75 or

Variation of tractive effort 2 1 2( )c R r

 

2 0 00 01 75 3 29 784 3

28227 N

2
– . . .

Example 12.29

The cranks and connecting rods of a four-cylinder in-line engine running at 2000 rpm are 50 mm and 
200 mm each respectively. The cylinders are spaced 0.2 m apart. If the cylinders are numbered 1 to 4 
in sequence from one end, the cranks appear at intervals of 90  in an end view in the order 1–4–2–3, 
reciprocating mass for each cylinder is 2 kg. Determine (a) unbalanced primary and secondary forces, 
and (b) unbalanced primary and secondary couples with reference to central plane of engine.

Solution  

Given: l = 200 mm, r = 50 mm, n
200

50
4 , N = 2000 rpm, M = 2 kg 

2 2 2000

60
209 44

N

60
. rad/s

The position of cylinder planes is shown in Fig.12.48(a), with the central as the reference plane.

Table 12.29

Plane  
(1)

Mass, M 
(kg)  
(2)

Radius, r 
(m)  
(3)

Mr (kg m) 
(4)

Distance from 
RP, l (m)  

(5)

Mrl (kg m2)  
(6)

1 2 0.05 0.1 – 0.3 – 0.03

2 2 0.05 0.1 – 0.1 – 0.01

3 2 0.05 0.1  0.1  0.01

4 2 0.05 0.1  0.3  0.03

Primary force polygon: The primary crank position is shown in Fig.12.48(b). The primary force poly-
gon has been drawn in Fig.12.48(c) with the data from column (4). There is no unbalanced primary 
force as the polygon in closed.
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Fig.12.48 Balancing of four-cylinder in-line engine
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Primary couple polygon: The primary couple polygon is drawn in Fig. 4.31 (d) with the data in column 
(6). The unbalanced primary couple (UPC)  d’o’  2.7 cm  0.027

Unbalanced primary couple  0.27  (209.44)2  1184.36 N m

Secondary force polygon: The secondary crank positions is shown in Fig. 4.31(e) by taking crank 3 as 
the reference crank. The secondary force polygon has been drawn in Fig. 4.31(f) with the data from 
column (4). There is no unbalanced secondary force as the polygon is closed.

Secondary couple polygon: The secondary couple polygon has been drawn in Fig. 4.31(g). The sec-
ondary unbalanced couple (USC) is proportional to,

 USC  0.03  0.01  0.01  0.03  0.08 kg. m2

or
  

USC 877 2 N m
0 08 0 08 209 44

4

2 2. . ( . )
.


n

Example 12.30

In a marine oil engine, the cranks of four cylinders are arranged at angular displacement of 90 . The 
speed of the engine is 100 rpm and the mass of reciprocating parts for each cylinder is 900 kg. Each 
crank is 0.5m long. The outer cranks are 3 m apart and the inner cranks are 1.2 m apart and are placed 
symmetrically between the outer cranks.

Find the firing order of the cylinders for the best primary balancing of reciprocating parts and also 
the maximum unbalanced primary couple for that arrangement.

Solution  
2 100

60
10 47.  rad/s  

r  0.5 m
The primary forces are always balanced as cranks are arranged at an angular displacement of 90  to each 

other. The primary couples need to be investigated. The position of cranks is as shown in Fig.12.49.

Fig.12.49 Marine oil engine
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The possible firing orders are: 1234, 1243, 1423, 1324, 1342, 1432

The disturbing force along the axis of the cylinder  M r 2cos

Let K  M r 2 900  0.5  (10.47)2  49348 N

Total disturbing force K
i

i
1

4

cos( ) 

where 
i
  angle between the reference crank and the crank considered.

Table 12.30

Plane of 
cylinders

M 
(kg)

r 
(m)

Mr K  Mr 2 Arm length 
l(m)

Couple Kl

1 900 0.5 450 49348 0 0

2 900 0.5 450 49348 0.9 0.9 K

3 900 0.5 450 49348 2.1 2.1 K

4 900 0.5 450 49348 3 3 K

Disposition of 
Cranks

Crank positions Primary couple  
Polygon

Resultant primary couple

1234

[(3 – 0.9)2  (2.1)2]0.5  K  
2.97 K

1243

[(2.1 – 0.9)2  (3)2]0.5  K  
2.97 K

1423

[(3 – 2.1)2  (0.9)2]0.5  K  
1.273 K

1324

[(3 – 2.1)2  (0.9)2]0.5  K  
1.273 K
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Least value of primary couple  1.273 K
 1.273  49348  62820 N.m

Best firing order is 1423 and 1324.

Example 12.31

A four-cylinder steam engine is in complete primary balance. The arrangement of reciprocating 
masses in different planes is as shown Fig. 4.39. The stroke of each piston is 2r mm. Determine the 
reciprocating mass of the L.P. cylinder and the relative crank position.

Solution 

Reference plane 2 (refer to Fig.12.50).

Table 12.31

Plane M 
(kg)

r 
(m)

Mr  
(deg)

Mr  
 cos 

Mr  
 sin 

l 
(m)

Mrl Mrl  
cos

Mrl  
sin 

1 380 r 380 r 0 380 r 0 –1.3 – 494 r – 494 r 0

2 M
2

r M
2 
r 2 M

2 
r cos 2 M

2
r sin 2 0 0 0 0

3 580 r 580 r 90 0 580r 2.8 1624 r 0 1624 r

4 480 r 480 r
4

480r cos 
4

480r sin 
4

4.1 1968 r 968 r  
 cos 

4

968 r  
 sin

4

From Table 12.31, we have

 M
i 
r

i 
cos i  380r  480r cos 

4

 M
i 
ri sin i  580r  480r sin 

4

 M
i 
rili cos i  –494r

 M
i 
rili sin i  1624r

Disposition of 
Cranks

Crank positions Primary couple  
Polygon

Resultant primary couple

1342

[(2.1 – 0.9)2  (3)2]0.5  K  
3.231 K

1432

[(3 – 0.9)2  (2.1)2]0.5  K  
2.97 K
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Fig.12.50 Four-cylinder steam engine

tan
sin

cos

( )

( )
.



4

1624

494
3 2874

M rl

M rl

ri i i i

i i i i

 

 
55

4
 

 – 73.98 i.e.286.92
Since the numerator is negative and denominator is positive, therefore 

4
 lies in the fourth quad-

rant.

M r M r M r M r M ri i i M M M i i i M M M2 2
2 2     ( cos cos ) ( sin sin )   

0 5.

 M
2
r  [(380r  480r cos 286.92 )2  (580r  480r sin 286.92 )2]0.5

  r[(519.7)2  (120.78)2]0.5  535.55r

 M
2
  535.55 kg

 
tan

( sin sin )

( cos cos )


 
 2

M r M r

M r M r
i i i M M M

i i i M M M

   

   

120 78

519 7
0 2324

.

.
.

 2  13.08 , i.e. 193.08

Since the number and denominator are both negative, therefore 
2
 lies in the third quadrant.

Example 12.32

The following data refer to a two-cylinder uncoupled locomotive:
Rotating mass per cylinder  280 kg
Reciprocating mass per cylinder  300 kg
Distance between wheels  1400 mm
Distance between cylinder centres  600 mm
Diameter of treads of driving wheels  1800 mm
Crank radius  300 mm
Radius of centre of balance mass  620 mm
Locomotive speed  50 km/hr
Angle between cylinder cranks  90
Dead load on each wheel  3.5 tons
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Determine (i) the balancing mass required in the plane of driving wheels, if whole of the revolving 
mass and 2/3rd of reciprocating mass are to be balanced.

Solution  

Given: M = 280 kg, R = 300 kg, l = 0.6 m, d
w
 = 1.8 m, r = 0.3 m, b = 0.62 m, v = 50 km/hr,

P = 3.5 tons, c
2

3

Equivalent mass M
R2

3
0

2 300

3
028 48  kg  

(a) Reference plane A (Refer to Fig.12.40).

Table 12.32

Plane M 
(kg)

r (m) Mr  
(deg)

Mr  
 cos 

Mr 
 sin

l 
(m)

Mrl Mrl 
 cos 

Mrl sin 

A M
A

0.62 0.62 M
A A

0.62 M
A 

 cos 
A

0.62 M
A 

 sin 
A

0 0 0 0

B 480 0.3 144 0 144 0 0.4 57.6 57.6 0

C 480 0.3 144 90 0 144 1.0 144 0 144

D M
D

0.62 0.62M
D D

0.62 M
D 

 cos 
D

0.62 M
D 

 sin 
D

1.4 0.868 M
D

0.868 M
D 

 cos
D

0.868 M
D 

 sin
D

From Table 12.32, we have

  M
i 
r

i 
cos i  144

  M
i 
r

i 
sin i  144

  M
i 
r

i 
l
i 
cos i  57.6

  M
i 
r

i 
l
i 
sin i  144

 
( cos ) ( sin )

.
M rl M rl M r li i i i i i i i D D D 2 2 0 5

 [(57.6)2 (144)2]0.5  0.868 M
D

 

M

M rl

M rl

D

D
i i i i

i i i

155 093

0 868

.

.
.

tan

178 68 kg

 sin 

 cos



  

68 2  i e  248 2





i

D

( )

( . )
.

. , . . . .

144

57 6
2 5

  
Since the numerator and denominator are both negative, therefore D lies in third quadrant.
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M r M r M r M r M rA A i i i D D D i i i D D D     ( cos cos ) ( sin sin )   2 2 0 5

2
0 62 144 0 62 178 68 248 62 144 0 62 1178 6

.

. . . cos . . .M A 88 248 2
2 0 5

sin .
.

1 2 86 41 14

11 78

178 68 kg

2 2 5

0

0

0

. .

.

.

.

M A

 
tan

( sin sin )

( cos cos )


 
 A

i i i D D D

i i i D D D

M r M r

M r M r

  

  

411 14

102 86
0 4

.

.
.

 

A  21.8  i.e. 201.8

Since the numerator and denominator are both negative, therefore A lies in the third quadrant.

(b)
 

v
50 10

3600

3

13 89 m/s.

 

2 2 13 89

1 8

v

d
15 432 rad/s

.

.
.

Maximum swaying couple
 

( )
( . ) . .

1

2

1 2

3
300 15 432 0 3 0 6

2

2

2

c R rl

 
 3031.1 N m

(c) Maximum tractive effort variation 2 1 2( )c R r

 

2 1
2

3
300 15 432 0 3

10103 7

2( . ) .

.  N

Example 12.33

Four masses A, B, C and D, as shown below are to be completely balanced:

  A  B  C  D
 Mass (kg)  –  30  50  40
 Radius (mm)  180  240  120  150

The planes containing masses B and C are 300 mm apart. The angle between the planes containing 
B and C is 90 . B and C make angles of 210  and 120  respectively with D in the same sense. Find (i) 
magnitude and angular position of mass A (ii) the positions of planes A and D.

Solution 

Given: BOC  90 , BOD  210 , COD  120
Reference plane B (Fig. 4.40)
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Let M
A
  mass at A

 a  distance of plane A from B
 b  distance of plane D from B
 Refer to Fig.12.51.

Table 12.33

Plane Mass, M 
(kg)

Radius, r 
(m)

Centrifugal force, Mr 
(kg.m)

Distance from 
RP, l (m)

Couple Mrl  
(kg.m2 )

A M
A

0.18 0.18 M
A

– a – 0.18 M
A
a

B 30 0.24 7.2 0 0

C 50 0.12 6.0 0.3 1.8

D 40 0.15 6.0 b 6 b

Fig.12.51 Balancing of four masses in different planes
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Force Polygon: Draw the force polygon with the data from column 4 as shown in Fig.12.51(c).

1. Draw ob  7.2 units parallel to OB.
2. Draw bc  6 units parallel to OC.
3. Draw cd  6 units parallel to OD.
4. Join od and measure it.

 od  3.6  0.18 M
A

 M
A
  20 kg

To locate the angular position of A, draw OA from O in Fig. 4.40 (b) parallel to od. AOB = 235
and AOD = 25°  

Couple polygon: Form the data in column 6 draw the couple polygon as shown in Fig.12.51(d).

1. Draw o'c' parallel to OC and equal to 1.8 units upwards.
2. Draw a line from c' parallel to OD and another line from o' parallel to OA to intersect at d'.
3. o'd'  3.8 units  – 0.18 M

A 
 

a
3 8

0 18 20
0

.

.
.1 5 m

Negative sign indicates that plane A is towards right of B instead of the left as assumed. 

 c’d’  2.4 units  6b
 b  0.4 m

We observe that the direction of c'd' is opposite to the direction of mass D. Therefore, the plane of 
mass D is 0.4 m towards left of plane B and not towards right of plane B as assumed. 

Example 12.34

The following data refer to two-cylinder locomotive with cranks at 90 . Reciprocating mass per cylin-
der  300 kg, crank radius  0.3 m, driving wheel diameter  1.8 m, distance between cylinders centre 
lines  0.7 m, distance between the driving wheel central planes  1.6 m. Determine

 (i)  The friction of reciprocating masses to be balanced, if the hammer blow is not to exceed  
46 kN at 96.5 km/h,

 (ii) The variation of tractive effort,
 (iii) The maximum swaying couple.

Solution  

Given: R = 300 kg, r = 0.3 m, d
w
 = 1.8 m, hammer blow = 46 kN, v = 96.5 km/h, l = 0.7 m

  


96 5 1000

3600 0 9

.

.  
  29.784 rad/s

Mass to be balanced M
o
  M +cR

 0  300  c  300c kg

Reference plane 1 (Fig.12.52)
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Table 12.34

Plane Mass, M (kg) Radius, r (m) Mr (kg.m)  (deg) l (m) Couple, Mrl (kg m2)

1 M
1

r
1

M
1
r

1 1
0 0

2 300c 0.3 90c 0 0.45 40.5c

3 300c 0.3 90c 90 1.15 103.5c

4 M
4

r
4

M
4
r

4 4
1.6 1.6M

4
r

4

 M
o
  0.3  0.45 cos0   M

o
  0.3  1.15 cos 90   M

4 
r

4
  1.6 cos 

4
  0

 0.135 M
o
  1.6 M

4
r

4
 cos 

4
  0 (12.38)

 M
o
  0.3  0.45 sin 0   M

o
  0.3  1.15 sin 90   M

4
  r

4
  1.6 sin 

4
  0

 0.345 M
o
  1.6 M

4
r

4
 sin 

4
  0  (12.39)

Fig.12.52 Two-cylinder locomotive with orthogonal cranks

From Eqs. (12.38) and (12.39), we get

 

tan
.

.
.

.

.

. .





4

4

4 4

0 345

0 135
2 5556

248 63

0 345

1 6 0 9
M r

Mo 

33124
0 23154.  Mo

 
By symmetry,  M

1
  M

4

Taking 4 as the reference plane, we have

  

M r Mo1 1

1

1

0 23154

0 135

0 345
0 39130

201 37

.

tan
.

.
.

.
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(i) Balance mass for reciprocating parts only,
 
B

M c

b c
o.0 23154 300

300

0 23154. M

b
o

Hammer blow  B 2b  0.23154 M
o
  (29.784)2  205.4 M

o
 N m

  46 103

 M
o
  224 kg  300 c

 
c .

224

300
0 7467

(ii) Variation of tractive effort 2 1 2( )c R r

 2 1 0 7467 300 29 784 0 32( . ) ( . ) .

 28.6 kN

(iii) Maximum swaying couple
 

( )1

2

2c R rl

 

( . ) ( . ) . .1 0 7467 300 29 784 0 3 0 7

2

2

 
 10009.83 N m

Example 12.35

A shaft carries four rotating masses A, B, C and D in this order along its axis. The mass A may be 
assumed to be concentrated at a radius of 12cm, B at 15 cm, C at 14 cm and D at 18 cm. The masses 
A, C and D are 15 kg, 10 kg, and 8 kg respectively. The planes of revolution of A and B are 15 cm 
apart and of B and C are 18 cm apart. The angle between the radii of A and C is 90 . If the shaft is in 
complete dynamic balance, determine (i) the angles between the radii of A, B and D, (ii) the distance 
between the planes of revolution of C and D, and (iii) the mass B.

Solution  

Reference plane B (refer to Fig.12.53) Table 12.35

Table 12.35

Plane M 
(kg)

r  
(m)

Mr  
(deg)

Mr cos Mr sin l  
(m)

Mrl Mrl  
 cos

Mrl  
 sin

A 15 0.12 1.8 0 1.8 0 –0.15 –0.27 –0.27 0

B M
2

0.15 0.15 M
2 2

0.15 M
2  

 cos 
2

0.15 M
2 

 sin 
2

0 0 0 0

C 10 0.14 1.4 90 0 1.4 0.18 0.252 0 0.252

D 8 0.18 1.44
4

1.44  
 cos 

4

1.44  
 sin 

4

l
4

1.44 l
4

1.44 l
4 

 cos 
4

1.44 l
4 

 
 cos 

4
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Fig.12.53 Shaft carrying four masses
From Table 12.35, we have

 

M r

M r

M rl

i i i

i i i

i i i

cos . . cos

sin . . sin

cos

 
 

1 8 1 44

1 4 1 44
4

4




i

i i i iM rl

0 27

0 252

.

sin .

 [( cos ) ( sin ) ] .M rl M rl M r li i i i i i i i  2 2 0 5
2 2 2

 

– . . .

.

.
.

.

  

 m or

0 27 0 252 1 44

0 36933

1 44
0 2565

2 2 0 5

4

4

l

l 225 65

25 65 18 7 65

4

.

. – .

tan
sin

cos

 cm

 cm

 

 

d

M rl

M rl
i i i i

i i i






i

( . )

( . )
.

. .

0 252

0 27
0 93333

43 025 316 9754  i.e.   

Since the numerator is negative and denominator is positive, therefore 
4
 lies in the fourth quadrant.

 

Now M r M r M r M r M ri i i M M M i i i M M M2 2
2 2[( cos cos ) [( sin sin ) ]    00 5

2

2 2
0 15 1 44 316 975 1 8 1 44 316 975 1 4

.

. . cos . . . sin . .M
0 5

2 2 0 5

2

2

2 853 0 41746

2 8834

19 22

.

.

. .

.

.

tan
(

M  kg


M r M r

M r M r
i i i M M M

i i i M M M

sin sin )

( cos cos ) .

 
 

041746

2 8533
0 14632

8 32 188 322

.

. .  i.e. 

Since the numerator and denominator are both positive, therefore 
2
 lies in the third quadrant.
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Example 12.36

Determine the bearing reactions for a system of four unbalance masses, shown in Fig.12.54. The rotor 
speed is 600 rpm.

Solution  

Reference plane 1 (refer to Fig.12.54)

 


 



2

60

2 600

60
62 832

2

N
.

.

 rad/s

3947 84 rad/s
2

 

Fig.12.54 Shaft carrying for masses

Table 12.36

Plane M 
(kg)

r 
(cm)

Mr  
(kg cm)

 
(deg)

Mr cos Mr  
 sin 

l 
(cm)

Mrl Mrl  
 cos 

Mrl  
 sin 

1 21 5 105 140 – 107.25 67.49 0 0 0 0

2 11 5 55 220 – 42.13 – 35.35 10 550 – 
421.32

– 
353.53

3 10 3 30 60 15.0 25.98 18 540 270.00 467.65

4 15 4 60 270 0 – 60 23 1380 0 – 1380

For dynamic balance of the system, taking moments about bearing B, we have

 R
A
  22  (105  27  55 17 30  9  60  4)  9.81  10–2  3947.84

 R
A
  75344.17 N

 R
A
  R

B
  (105  55  30  60)  9.81  10–2  3947.84  96820.77 N

 R
B
  21476.6 N
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Example 12.37

The firing order in a six cylinder vertical four-stroke in-line engine is 1– 4 – 2 – 6 – 3 – 5. The piston 
stroke is 100 mm and the length of each connecting rod is 200 mm. The pitch distances between the cyl-
inder centre lines are 100, 100, 150, 100 and 100 mm, respectively. The reciprocating mass per cylinder 
is 1 kg and the engine runs at 2500 rpm. Determine the out-of-balance primary and secondary forces 
and couples on this engine, taking a plane midway between cylinders 3 and 4 as the reference plane.

Solution  

Given: L = 100 mm or r = 50 mm, l = 200 mm, M = 1 kg, N = 2500 rpm

 


2 2500

60
261 8.  rad/s

 
 Let  K  Mr 2  1  0.05  (261.8)2  3426.95 N

In a four-stroke engine, the cycle is completed in two revolutions of the crank and the cranks are 
120° apart. Primary and secondary crank positions (Fig.12.55(a) and (d)) for different cylinders for 
the firing order 142635 for clockwise rotation of the crankshaft are: 



791 Balancing 

Fig 12.55 Firing order 1–4–2–6–3–5 engine
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Table 12.37

Crank number  (deg)

Primary cranks Secondary cranks

1 0 0

2 240 120

3 120 240

4 120 240

5 240 120

6 0 0

Table 12.38

Plane of 
cylinders

M 
(kg)

r 
(m)

Mr  
(kg m)

K  Mr 2 

N
Arm length 

l (m)
Couple  

Kl (N m)

1 1 0.05 0.05 3426.95 – 0.275 0.275 K

2 1 0.05 0.05 3426.95 0.175 0.175 K

3 1 0.05 0.05 3426.95 0.075 0.075 K

4 1 0.05 0.05 3426.95  0.075  0.075 K

5 1 0.05 0.05 3426.95  0.175  0.175 K

6 1 0.05 0.05 3426.95  0.275  0.275 K

Primary cranks: The force polygon is shown in Fig.12.55(b) and the couple polygon in Fig.12.55(c). 
Both the polygons are closed one. Therefore, there is no unbalanced primary force and couple.
Secondary cranks: The force polygon for secondary cranks is shown in Fig.12.55(e) and the couple  
polygon in Fig.12.55(f). Both are closed polygons, therefore, no unbalanced secondary force and cou-
ple.

Example 12.38

Four masses, A, B, C and D, i.e. 40 kg, 50 kg, 60 kg and M kg respectively are rigidly connected to 
shaft at 30, 24, 28 and 24 cm, respectively from the axis of the shaft. The shaft revolves about its axis 
and the planes of revolution of masses are at equal intervals apart. Determine M and the angular posi-
tions of B, C and D in relation to that of A in order that masses may completely balance one another.

Solution  

Reference plane D (Fig.12.56)

Table 12.39

Plane M (kg) r (m) Mr (kg m) l (m) Mrl (kg m2)

A 40 0.30 12 – 3d –36 d

B 50 0.24 12 –2d –24 d

C 60 0.28 16.8 –d –16.8 d
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D M 0.24 0.24 M 0 0

Couple Polygon: Assume the position of mass A in horizontal direction to the right. Draw the couple 
polygon shown in Fig.12.56(c) as described below from the data in column 6 of Table 12.39.

 1. Draw o'a'  36d horizontally to the left, being negative, to a scale of 1 cm  5d units.

 2. From points o' and a', draw arcs o'b'  24d and a'b'  16.8d.

 3. By measurement, we find that 
B
 = 238° and c = 33°

Force polygon: To find the magnitude of mass M at D and its angular location, draw the force polygon 
as described below from the data in column 4 of Table 12.39.

 1. Draw oa  12 units to the right to a scale of 1 cm  2 units.

 2. Draw ab  12 units and parallel to a'b'.

 3. Draw bc  16.8 units and parallel to o'b'.

 4. Join oc. Then oc  0.24 M. By measurement oc  7.8 cm  15.6 units

 0.24 M  15.6
 M  65 kg
 and 

D
  200

The angular position of the masses B, C and D in relation to A have been shown in Fig.12.56(b).

Fig.12.56 Balancing of four masses in different planes
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Fig.12.56 Balancing of four masses in different planes (Contd.)

Example 12.39

A shaft carries four masses in parallel planes A, B, C and D. The rotating masses and their eccentrici-
ties are:

 m
b
  25 kg, e

b
  20 cm

 m
c
  40 kg, e

c
  10 cm

 m
d
  35 kg, e

d
  18 cm

The mass at A has an eccentricity of 15 cm. Masses at and C and D make angles of 90  and 195  
respectively with B in the same sense. The axial distance between B and C is 25 cm. Determine the 
mass at A and its angular position. Also determine the positions of planes A and D.

Solution  

Reference plane B (Fig.12.57)

Table 12.40

Plane M (kg) r (m) Mr (kg m)  (deg) l (m) Mrl (kg m2)

A M
1

0.15 0.15 M
1 1

–l
1

–0.15 M
1
l
1

B 25 0.20 5.0 0 0 0

C 40 0.10 4.0 90 0.25 1.0

D 35 0.18 6.3 195 l
4

6.3 l
4
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Force polygon: Draw the force polygon shown in Fig.12.57(c) with the help of data in column 4 of 
Table 12.40.

 1. Draw ob  5 units parallel to OB on a scale of 1 cm  1 unit.

 2. From b draw bc = 4 units parallel to OC.

 3. From c draw cd = 6.3 units parallel to OD.

 4. Join d with o. Then od  balanced force. By measurement, we have

 0.15M
1
  od  2.5

 M
1
  16.67 kg

To locate the angular position of A, draw OA from O in Fig.12.57(b) parallel to od. DOA  98
Couple polygon: Draw the couple polygon shown in Fig.12.57(d) with the help of data in column 6 
of Table 12.40.

 1. Draw o'c'  1.0 units parallel to OC.

 2. From c' draw a line parallel to OD.

 3. From o' draw another line parallel to OA to intersect the above line at d'.

Then c'd'  6.3l
4

 o'd'  – 1.5M
1
l
1

By measurement, we have

 –0.15M
1
l
1
  1.0 units

 
l1 4 m or 40 cm

1 0

0 15 16 67
0

.

. .
.

–ve sign indicates that the plane of A is towards right of B and to the left as assumed. 

 c'd'  0.4 units

 1.3 l
4
  0.4

 l
4
  0.0635 m or 6.35 cm

Distance between the planes of C and D  6.35 – 25  – 18.65 cm i.e.D is to the left of C and not 
to the right as assumed.

Fig.12.57 Balancing of four masses in different planes
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Fig.12.57 Balancing of four masses in different planes (Contd.)

Example 12.40

A single cylinder horizontal engine runs at 120 rpm with a stroke of 400 mm. The mass of the revolv-
ing parts assumed concentrated at the crankpin is 100kg and mass of the reciprocating parts is 150 kg. 
Determine the magnitude of the balancing mass to be placed opposite to the crank at a radius of 150 
mm which is equivalent to all the revolving and 2/3 rd of the reciprocating parts. If the crank turns 30  
from the inner dead centre, find the magnitude of the unbalanced force due to the balancing mass.

Solution 

 N  120 rpm, L  400 mm, M  100 kg, R  150 kg, b  150 mm, c  2/3,   30

 Bb  (M  c R) r
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 0.15 B  (100  2  150/3)  0.2

 B  266.67 kg

   2  120 / 60  12.57 rad/s

 Residual unbalanced force  R 2r [(1 – c)2cos2   c2 sin2 ]0.5

   150  (12.57)2  0.2 [(1 – 2/3)2  cos230   4  sin2 30 /9]0.5

   2090.2 N

Example 12.41

A single cylinder engine runs at 240 rpm and has a stroke of 200 mm. The reciprocating parts have 
a mass of 120 kg and the revolving parts are equivalent to a mass of 80 kg at a radius of 100 mm. A 
mass is placed opposite to the crank at a radius of 150 mm to balance the whole of the revolving mass 
and 2/3rd of the reciprocating mass. Determine the magnitude of the balancing mass and the result-
ant residual unbalance force when the crank has turned 30  from the inner dead centre. Neglect the 
obliquity of the connecting rod.

Solution 

 N  240 rpm, L  200 mm, M  80 kg, R  120 kg, b  150 mm, c  2/3,   30

 B b  (M  c R) r

 0.15 B  (80  2  120 / 3 )  0.1

 B  106.67 kg

   2  240 / 60  25.13 rad/s

 Residual unbalanced force  R 2r [(1 – c)2cos2   c2 sin2 ]0.5

   120  (25.13)2  0.1 [(1–2/3)2  cos230   4  sin230 /9]0.5

   3341.7 N

Example 12.42

A shaft with 3 m span between two bearings carries two weights of 100 N and 200 N acting at the 
extremities of arms 0.45 m and 0.60 m long, respectively. The planes in which these weights rotate 
are 1.2 and 2.4 m, respectively from the left end bearing supporting the shaft (Fig.12.58). The angle 
between these arms is 60 as indicated in the inset (a) of Fig.12.58. The speed of rotation of the shaft is 
200 rpm. If the weights are balanced by two counter- weights rotating with the shaft acting at radii of 
0.3 m and placed at 0.3 m from each bearing centre, estimate the magnitude of the two balance weights 
and their orientation with respect to the x-axis, i.e. load A.

Solution 

Given:  r
1
  r

4
  0.3 m, r

2
  0.45 m, r

3
  0.6 m, W

2
  100 N, W

3
  200 N

 l
2
  0.9 m, l

3
  2.1 m, l

4
  2.4 m

 Taking 1 as the reference plane, we have

 100  0.45  0.9 cos 0   200  0.6  2.1 cos 60   W
4
  0.3  2.4 cos 

4
  0

 40.5  126  0.72 W
4
 cos 

4
  0

 W
4
 cos 

4
  –231.25
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 100  0.45  0.9 sin 0   200  0.6  2.1 sin 60   W
4
  0.3  2.4 sin 

4
  0

 W
4
 sin 

4
  - 303

 tan 
4
  –303/–231.25  1.31

 
4
  232.66

 W
4
  381 N

 Taking 4 as the reference plane, we have

 100  0.45  1.5 cos 0   200  0.6  0.3 cos 60   W
1
  0.3  2.4 cos 

4
  0

 W
1
 cos 

1
  –118.75

 100  0.45  1.5 sin 0   200  0.6  0.3 sin 60   W
1
  0.3  2.4 sin 

4
  0

 W
1
 sin

1
  –43.3

 tan 
4
  –43.3 / –118.75  0.3646

 
1
  200

 W
1
  126.6 N

Fig.12.58 Shaft carrying two weights

Example 12.43

A shaft is supported in bearings 2 m apart and projects 0.5 m beyond bearings at each end. The shaft 
carries three pulleys one at each end and one at the middle of its length. The mass of end pulleys is 
50 kg and 20 kg and their centre of gravity are 20 and 15 mm, respectively from the shaft axis. The 
centre pulley has a mass of 55 kg and its centre of gravity is 15 mm from the shaft axis. If the pulleys 
are arranged so as to give static balance, determine (a) relative angular positions of the pulleys, and 
(b) dynamic forces produced on the bearings when the shaft rotates at 300 rpm.

Solution  

Given: m
A
 = 50 kg, m

B
 = 55 kg, m

C
 = 20 kg, r

A
 = 20 mm, r

B
 = r

C
 = 15 mm, N = 300 rpm

The position of shaft and pulleys is shown in Fig.12.59(a).
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 Let M
L
, M

M
  mass at the bearings L and M

 r
L
, r

M
  radium of rotation of masses m

L
 and m

M
 , respectively.

Table 12.41

Plane 
(1)

Mass m (kg) 
(2)

Radius r (m) 
(3)

Mr (kg m) 
(4)

l (m) 
(5)

Mrl (kg m2) 
(6)

A 50 0.020 1 0 – 0.5 – 0.5

L(RP) M
L

r
L

M
L 
r

L
0 0

B 55 0.015 0.825 1.0 0.825

M M
M

r
M

M
M 

r
M

2.0 2M
M 

r
M

C 20 0.015 0.30 2.5 0.75

 


 2

60

2 300

60

N
31 42 rad/s.

 

Draw the force polygon as shown in Fig.12.59(c) from the data in column (4).

ob  0.825 kg m is a vertical line. bc  1.0 and oc  0.30.

In Fig.12.59(b), draw OA parallel to BC and OC parallel to OC.

AOB  165 , BOC  61 , AOC  134

Draw couple polygon as shown in Fig.12.59(d).

o’b’  0.825 kg.m2 is vertical, b’a’ parallel to OA and a’c’ parallel to OC.

c’o’  2 M
M 

r
M
  9.2 cm  1.84 kg. m2

M
M 

r
M
  0.92 kg m

Dynamic force on bearing M  M
M 

r
M
w2  0.92  (31.42)2  908.24 N

Now draw force polygon as shown in Fig.12.59(e).

 Ob  0.825 kg.m is a vertical line. bm || o’c’ and bm  M
M 

r
M
  0.92 kg.m, mc || oc, mc  0.3 kg m, 

cd || OA and cd  1.0 kg.m.

Od  M
L 
r

L
  4.6 cm  0.92 kg m 

Dynamic force on bearing L  M
L 
r

L
w2  0.92  (31.42)  908.24 N

Example 12.44

A shaft carries four masses in parallel planes A, B, C and D in order. The masses at B and C are 
18 kg and 12.5 kg respectively and each has an eccentricity of 6 cm. The masses at A and D have 
an eccentricity of 8 cm. The angle between the masses at B and C is 100  and that between the 
masses at B and A is 190  (both angles measured in the same sense). The axial distance between 
the planes A and B is 10 cm and between B and C 20 cm. If the shaft is in complete dynamic bal-
ance, determine 

 (i) the masses at A and D

 (ii) the distance between the planes C and D

 (iii) the angular position of the mass at D.
[IAS, 2004]
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Solution  

Given: M
B
 = 18 kg, M

C
 = 12.5 kg, r

B
 = r

C
 = 60 mm, r

A
 = r

D
 = 80 mm, 

 BOC = 100°, BOA = 190°

 Let M
A
, M

D
  mass at A and D

 L  distance between A and D

Table 12.42

Plane  
(1)

Mass m 
(kg) (2)

Eccentricity, r 
(m) (3)

Mr (kg m) 
(4)

L (m) 
(5)

Mrl (kg m2) 
(6)

A (RP) M
A

0.08 0.08 M
A

0 0

B 18 0.06 1.08 0.1 0.108

C 12.5 0.06 0.75 0.3 0.225

D M
D

0.08 0.08 M
D

L 0.08 M
D
L

Draw couple polygon as shown in Fig.12.60(c) from the data in column (6) of Table 12.42

o’c’  0.08 M
D
L  5.9 cm  0.236 kg.m2

In Fig.12.60(b), draw OD parallel to o’c’. AOD  71  so that BOD  251

Now draw the force polygon as shown in Fig.12.60(d) from the data in column (4) of Table 12.42.

1. Draw ob || OB, ob  1.08 kg m

2. Draw bc || OC, bc  0.75 kg m

3. Draw cd || OA and od || OD to meet at d.

cd  0.08 M
A
  3.9 cm  0.78 kg m, M

A
  9.75 kg

od  0.08 M
D
  3.3 cm  0.66 kg m, M

D
  8.25 kg

0.08  8.25  L  0.236

L  0.3576 m or 35.76 cm

1m
3m

(a) Position of pulleys

1m 0.5
M

CBL
A

RP +ve-ve

0.5m

(b) Angular position of pulleys

61°15 mm 15 mm

20 mm

o

50 kg
A

B

C
20 kg

55 kg

165°

134°
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Scale: 1 cm = 0.2 kg.m
(c) Force polygon

0.30

1.0

c

o

0.825

b

Scale: 1 cm = 0.2 kg.m2

(d) couple polygon

c

a

b

o c =9.2 cm

o

0.825

2m
mmr

-0.5

0.75

Scale: 1 cm = 0.2 kg.m
(e) Force polygon

 = 0.920.825

0.3 m

1.0

o

mLrL

c

b

mmrm 

Fig.12.59 Graphical method for Example 12.43

C 12.5 kg

18 kg

8 cm

MA

MD

6 cm

100°
190°

8 cm

71°
6 cmO

B
A

D

(b) Position of masses

A

RP
+ve

B
C

D

10 20 cm

L

(a) Position of planes

Fig.12.60 Graphical method for Example 12.44



802 Theory of Machines

12.9 BALANCING OF ROTORS
A balancing machine is a device to indicate whether a component is in balance or not and if it is not, 
then to measure the unbalance by indicating its magnitude and location.

12.9.1 Static Balance
A system of rotating masses is said to be in static balance if the combined mass centre of the system 
lies on the axis of rotation. Static balance can be achieved by adding mass at suitable location in one 
plane as shown in Fig.12.61.

c

bo

0.225

0.108

Scale: 1 cm = 0.04 kg.m2

(c) Couple polygon

0.08MDL

0.75

c

bo

d

0.08 MD

1.08

0.08 MA

Scale: 1 cm = 0.2 kg.m
(d) Force polygon

Fig.12.60 Graphical method for Example 12.44 (Contd.)

Fig.12.61 Static balancing

12.9.2 Dynamic Balance
A system of rotating masses is said to be in dynamic balance when there does not exist any resultant 
centrifugal force as well as resultant couple. Dynamic balance is said to have been achieved when the 
principal axis of the rotor coincides with its axis of rotation. It is implied in the definition of dynamic 
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balance that a dynamically balanced rotor must be statically balanced but a statically balanced rotor 
may not necessarily be dynamically balanced rotor.

12.9.3 Flexible Rotor Balancing
When the balancing is achieved considering the flexibility of elements like bearings, rotor, lubricant 
etc., the process is called flexible rotor balancing.

12.9.4 Balancing Machines
Machines that help determine the unbalance and reduce it are called balancing machines.

Fig.12.62 Pendulum static balancing machine
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1. Static Balancing Machine
(a) Pendulum Balancing Machine: A pendulum balancing machine, as shown in Fig.12.62 is a single 
plane or static balancing machine and is used for small rotors in mass production. In such a case, the 
reading for the location of the unbalance and its amount could be directly made. Pendulum balanc-
ing machines are based on the principle that when an unbalanced rotor is placed on a pendulum, the 
pendulum will tilt by an amount depending on the extent of unbalance. Usually it is tilted with a uni-
versal level indicator which gives the extent and location of unbalance directly by moving the bubble 
to different locations, as shown in Fig.12.62(b).

Fig.12.63 Cradle static balancing machine

(b)  Cradle Balancing Machine: A cradle balancing machine, as shown in Fig.12.63, consists of 
a cradle supported on two pivots A-A parallel to the axis of rotation of the part and held in posi-
tion by two springs B-B. The part to be tested is mounted on the cradle and if flexibly coupled 
to an electric motor. The motor is started and its speed is adjusted so that it coincides with the 
natural frequency of the part to obtain resonance. Under this condition even a small amount of 
unbalance generates large amplitude of the cradle. If the part is in static balance and dynamic 
unbalance, no oscillation of the cradle will be observed as the pivots are parallel to the axis of 
rotation.

2. Dynamic Balancing Machine
For dynamic balancing of a rotor, two balancing masses are required to be used in any two convenient 
planes. The complete unbalance of any rotor system can be represented by two unbalance in those two 
planes. Balancing is achieved by the addition or removal of masses in these two planes, whichever is 
convenient.

(a) Pivoted-Cradle Balancing Machine: A pivoted-cradle balancing machine is shown in 
Fig.12.64. In this machine, the rotor to be balanced is mounted on half-bearings in a rigid car-
riage and is rotated by a drive motor through a universal joint. Two balancing planes A and B are 
chosen on the rotor. The cradle is pivoted with pivots on left and right sides of the rotor which are 
purpiosely adjusted to coincide with the two correction planes. Also the pivots can be put in the 
locked or unlocked position. Thus, if the left pivot is released, the cradle and the specimen are free 
to oscillate about the locked (right) pivot. At each end of the cradle, adjustable springs and dashpots 
are provides to have a single degree of freedom system. Usually, their natural frequency is tuned to 
the motor speed.
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Procedure for Testing
1. Lock the left (say) pivot and take the readings of the amount and angle of location of the correction 

in the right-hand plane.

2. Attach a trial mass at a known radius to the right hand plane and note the amplitude of oscillations 
of the cradle.

3. Repeat the procedure at various angular positions with the same trial mass.

4. Plot a graph of amplitude v’s angular position of the trial mass to know the optimum angular 
position for which amplitude is minimum, as shown in Fig.12.65. Then at this position, vary the 
magnitude of the trial mass and find the exact amount by trial and error which reduces the unbal-
ance to almost zero.

5. Now lock the cradle in the right-hand pivot and release the left hand pivot. Repeat the above pro-
cedure to obtain the exact balancing mass required in that plane.

6. This requires a large number of test runs to determine the exact balance mass and is very time 
consuming.

(b)  Balancing by Four Observations  
Procedure:

1. Make a test run without attaching any trial mass and note down the amplitude of the cradle vibra-
tions.

2. Attach a trial mass m at some angular position and note down the amplitude of the cradle vibra-
tions by rotating the rotor at the same speed.

3. Detach the trial mass from the present location and again attach it at 90  angular position relative 
to the first position and at the same radial distance.

4. Rotate the rotor at the same speed and note down the amplitude.

Fig.12.64 Pivoted-cradle dynamic balancing machine
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5. Now attach the trial mass at 180  from the first position and note down the amplitude.

6. Record the readings in the following Table 12.43.

Table 12.43

Trial mass Amplitude 

 0 A
1

m at 0˚ A
2

m at 90˚ A
3

m at 180˚ A
4

Fig.12.65 Cradle amplitude vs rotor angle plot

Fig.12.66 Balancing by four observations

Make the following construction, as shown in Fig.12.66.

1. Draw a triangle OBE by taking OE  2A
1
, OB  A

2
 and BE  A

4
.

2. Mark the mid-point A on OE. Join AB.
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3. Now OB  OA  AB (vector sum)
where OB  effect of unbalanced mass  effect of the trial mass m at 0 .
OA  effect of unbalanced mass
Thus AB  effect of the attached mass at 0
Proof:

2. Extend BA to D such that AD  AB.

3. Join OD and DE.

4. When the mass m is attached at 180  at the same radial distance and speed, the effect must be equal 
and the opposite to the effect at 0 , i.e., if AB represents the effect of the attached mass at 0 , AD 
represents the effect of the attached mass at 180 .

5. Since OD  OA  AD (vector sum), OD must represent the combined effect of unbalance mass and 
the trial mass at 180  (A

4
).

6. Now, as the diagonals of the quadrilateral OBED bisect each other at A, it is a parallelogram, which 
means BE is parallel and equal to OD. Thus, BE also represents the combined effect of unbalance 
mass and trial mass at 180  or A

4
, which is true as it is made in the construction.

7. Now, as OA represents the unbalance, the correction has to be equal and opposite of it or OA thus, 
the correction mass is given by:

 

m

m

OA

AB

m m
OA

AB

c

cor                  at an angle  from thee second reading at 0

For the correction of the unbalance, the mass m
c
 has to be put in the proper direction relative to AB 

which may be found by considering the reading A
3
.

Draw a circle with A as centre and AB as the radius. As the trial mass as well as the speed of the 
test run at 90  is the same, the magnitude must be equal to AB or AD, and AC or AC’ must repre-
sent the effect of the trial mass. If OC represents A

3
, then angle measurement is taken in the same 

direction.

Example 12.45

 During the field balancing of a cooling tower fan, the measurement taken are: A
1
  0.7 mm, A

2
  1.06 

mm, A
3
  1.18 mm and A

4
  0.5 mm. The trial mass used is 250 g. Determine the necessary balancing 

mass (to be placed at the same radius as the trial mass) and its angular location with respect to the 
position of the trial mass during the second run when the vibration amplitude is 1.06 mm.

Solution 

Refer to Fig.12.61
Draw a triangle OBE by taking OE  2A

1
, OB  A

2
 and BE  A

4
. Mark the mid-point A of OE. Join AB. 

Then AB  0.46 mm and   135 .

Correction mass, m
c
  m.

OA

AB
25 38 4 gm0

0 7

0 46
0

.

.
. .  

The balancing mass is attached 135  in the clockwise direction from that of the trial mass during the 
second run.
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12.9.5 Field Balancing
In heavy machinery like turbines, compressors and generators, it is not possible to balance the motors 
by mounting them on the balancing machines. In such cases, the balancing of motors has to be done 
under actual conditions on their own bearings.
Consider two balancing planes A and B of a motor shown in Fig.12.62(a).

A

C

E

B

C

O

Fig.12.67 Field balancing of a fan

ma

mb

B

(b)

(c)

(d)

(a)

A

A2
A2 A1

A1 B1
B2

B2 B1

A3

A3
A1

A1

B3

B1

B3 B1

a
b

Fig.12.67 Field balancing
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The following procedure is adopted to balance the motor:

1. First the motor is rotated at a speed which provides measurable amplitudes at planes A and B. Let 
the rectors A

1
 and B

1
 represent the amplitudes due to the unbalance of the motor in planes A and 

B respectively.

2. Attach a trial mass m
a
 in plane A at a known radius and angular position. Run the motor at the 

same speed as in the first case. Measure the amplitudes in the two planes A and B.

Let A
2
 and B

2
 represent the amplitudes of the motor in planes A and B respectively. Thus, A

2 
 

effect of unbalance of motor (A
1
)  effect of trial mass in plane A. 

Thus, effect of trial mass ma in plane A  A
2
 – A

1
, and effect of trial mass m in plane A at  

B  B
2
 – B

1
, as shown in Fig.12.62(c).

3. Make a third run of the motor by attaching a trial mass m
b
 in plane B at a known radius and angular 

position. Run the motor at the same speed as in the first two cases. Measure the amplitudes in the 
two planes A and B. Let A

3
 and B

3
 represent the amplitudes of the motor in planes A and B, respec-

tively. Thus B
3
  effect of unbalance of motor B

1
  effect of trial mass in plane B.

Thus, effect of trial mass m
b
 in plane B  B

3
 – B

1
 and effect of trial mass m

b
 in plane A  A

3
 – A

1
 as 

shown in Fig.12.62(d).

Let m
ca

 and m
cb

 be the counter or balancing masses in planes A and B respectively placed at the same 
radii as the trial masses.

Let m
ca

  
ma

 and m
cb

  m
b

where e
i a

 and e
i b

Thus A
2
 –A

1
  effect of m

ca
 at plane A

B
2
 – B

1
  effect of m

ca
 at plane B

and A
3
 – A

1
  effect of m

cb
 at plane A

 B
3
 – B

1
  effect of m

cb
 at plane B

Let A
2
 and B

2
 represent the amplitudes of the motor in planes A and B respectively. Then effect 

of trial mass m
a 
 in plane A = A

2
 – A

1
, and effect of trial mass m

a 
 in plane B = B

2
 – B

1
.
 
This

 
 is shown 

vectorially in Fig.12.62 (c) 

4. Make a third run of the motor by removing mass m
a 
and attaching a trial mass m

b
 in plane B at 

a known radius and angular position. Run the motor at the same speed as in the first two cases. 
Measure the amplitudes in the two planes A and B. Let A

3
 and B

3
 represent the amplitudes of the 

motor in planes A and B, respectively. Then, effect of trial mass m
b
 in plane B  B

3
 – B

1
 and effect 

of trial mass m
b
 in plane A  A

3
 – A

1
. This is shown vectorially in Fig.12.62(d). Let m

ca
 and m

cb
 be 

the counter or balancing masses in planes A and B respectively placed at the same radii as the trial 
masses.

Let m
ca

  m
a
 and m

cb
  m

b

where e
i a

 and e
i b

For complete balancing of the motor, the total effect of m
ca

 and m
cb

 at the plane A should be – A
1
 and 

that at the plane B it should be –B
1
. Thus

 (A
2
 – A

1
)   (A

3
 – A

1
)  – A

1

 (B
2
 – B

1
)   (B

3
 – B

1
)  – B

1
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Solving for  and  simultaneously, we get

 





B A A A B B

A A B B A A B B

A

1 3 1 1 3 1

2 1 3 1 3 1 2 1

1

( ) ( )

( )( ) ( )( )

  

  

(( ) ( )

( )( ) ( )( )

B B B A A

A A B B A A B B
2 1 1 2 1

2 1 3 1 3 1 2 1

  

  

Example 12.46

For balancing an alternator motor by the field-balancing technique, the experimental results obtained 
are listed in Table 12.44. Determine the correct balance masses that should be placed in two planes for 
complete dynamic balancing of the motor.

Table 12.44

Trial 
number

Trial mass 
(kg) 

 Plane A  Plane B

Amplitude 
cm 

Phase angle 
deg

Amplitude 
cm

Phase angle 
deg

1 0 3.5 10-4 15 4.2 10-4 65

2 2 at plane A 4.5 10-4 75 3.1 10-4 81

3 2 at plane B 4.0 10-4 35 2.2 10-4 155

Solution 

Fig.12.63(a) shows the vectors A
1
, A

2
 and A

3
 to some scale and Fig.12.63(b) shows B

1
, B

2
 and B

3
 drawn 

to the same scale.

123°

B1

65°155° 81°

B2

B3

211°

218°

(B 2
-B 1

)

(B 3
-B 1

)

94.5°
(b)(a)

A3

A3

A1

A2

A1

15°

35°
75°

A2 A1
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From Figs. 12.63(a) and (b), we get

 
A A e A A ei

2 1 3 14 1 1 4– . , – .( )10 104 123 4

 B B e B B ei i
2 1

4 211
3 1

4 2181 5 10 4 75 10– . , – .( ) ( ) 

From the given data

 

A e B e

e e

i i

i

1 13 5 4 2. , .

. .

( ) ( )

( )

10 10

4 2 1 4

4 15 4 65

65 ii i i

i i

e e

e e

( . ) ( ) ( )

( ) (

. .

. .

94 5 15 218

123 21

3 5 4 75

4 1 4 75 88 94 5 211

159 5

1 4 1 5

5 88 16 625

) ( . ) ( )

( . ) (

. .

. .

e e

e e

i i

i i 2233

341 305 5

15 2

19 475 2 1

3 5 1 5

)

( ) ( . )

( ) (

. .

. .

e e

e e

i i

i i 111 65 123

341 305 5

4 2 4 1

19 475 2 1

) ( ) ( )

( ) ( .

. .

. .

e e

e e

i i

i i )

( ) ( )

( ) (

. .

. .

5 25 17 22

19 475 2 1

226 188

341 138

e e

e e

i i

i i )

The valves of  and  are obtained graphically as explained in Fig.12.63(c).

 





1 59

1 77
0 902

1 36

74

345

271

350

.

.
.

.

( )

( )

( )

(

e

e
e

e

i

i

i

i

 

))

( )

( )

.
.

1 77
0 768

345

5

e
e

i

i 

Balance mass at plane A  0.902  2  1.804 kg at 271  cw or 89  ccw.
Balance mass at plane B  0.768  2  1.536 kg at 5  ccw from the position of trial mess

(c)

159.5°

341°

305°

188°

226°
233°

74°

350°

Fig.12.63 Field balancing of alternator rotor
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Summary for Quick Revision

1 By balancing we mean to eliminate either partially or completely the effects due to unbalanced 
resultant inertia forces and couples to avoid vibration of a machine or device.

2 A system of rotating masses are in static balance if the combined mass centre of the system of 
masses lies on the axis of rotation.

3 A system of rotating masses are said to be in dynamic balance if there does not exist any resultant 
centrifugal force as well as resultant couple.

4 A system which is dynamically balanced is deemed to be statically balanced also.

5 A system that is statically balanced may or may not be dynamically balanced.

6 Balancing of rotating masses.

 (a) Single Rotating Mass

   (i) Balance mass in the same plane as the disturbing mass Place the balancing mass B in the 
same plane at a radius b and in line with the mass M at 180  such that: M r  B b

  (ii) Two balance masses in different planes

  1. Balance masses on the same side of the disturbing mass
 B

1
 b

2
  M r [l

2
 / (l

2
 – l

1
) ]

  2. Balance masses on the opposite sides of the disturbing mass
 B

2
 b

2
  M r [l

1
 / (l

1
  l

2
) ]

 B
1
 b

1
  M r [l

2
 / (l

1
  l

2
) ]

 (b) Many masses rotating in the same plane
  M

i
 r

i
  B b

 The force polygon must close, i.e. the resultant force should be equal to zero.

 (c) Many Masses Rotating in Different Planes
 The balancing equations are:
  M r  0
  M r a  0
The force and couple polygons must close, i.e. there should not exist any resultant force and resultant 
force and resultant couple.

7 Reciprocating masses.

 (a) Reciprocating engine.
  The full effect on the engine frame of the inertia of the reciprocating mass is equivalent to the 

force F along the line of stroke at O and the clockwise couple of magnitude S. OP. 
 F  R f

c
 cos   R f

c
 cos 2  / n 

  F
p
  F

s

  where F
p
 is the primary force, which represents the inertia force of reciprocating mass hav-

ing simple harmonic motion, and F
s
 is the secondary force, which represents the correction 

required to account for the obliquity of the connecting rod.
  The unbalanced force due to the reciprocating mass varies in magnitude but is constant in 

direction.
 A single revolving mass can neither be used to balance a reciprocating mass, nor vice versa.

 (b) Partial primary balance
 For complete balancing, R r  B b.
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 It is usually preferable to make B b  c. R r, where c < 1.
 For unbalanced force to be least, c  0.5
  If the balance mass B has to balance the revolving parts M as well as give  a partial balance 

of the reciprocating parts R, then
 B b  M r  c R r  (M  c R) r
 In practice, two balance masses, each equal to B/2, would be attached to the crank webs.

8 Partial balancing of uncoupled locomotives

 (a) Hammer Blow: The maximum magnitude of unbalanced force perpendicular to the line of 
stroke is known as hammer blow. This occurs at   90  and 270 . Hammer blow  B

r
 2 b

 If P is the downward pressure on rails due to dead load. Then 
 Net pressure  P  B

r
 2 b

 Permissible speed,   [ P/(B
r
 b)]1/2

 (b) Variation of Tractive Effort  (1–c) R 2 r [ cos  – sin  ]

 Maximum variation of tractive effort  − 2  ( 1– c ) R 2

 (c) Swaying couple - The unbalanced part of the primary disturbing forces cause a horizontal 
swaying couple to act on the locomotive owing to the distance l between the cylinder centers.
Swaying couple  (1 – c) R 2 r . /2 . [ cos   sin  ]
Maximum swaying couple  − [(1 – c) / 2  ] R 2 

9 Multiple cylinder in-line engines
 In a multi-cylinder in-line engine, the cylinder centre lines lie in the same plane and on the same 
side of the crankshaft centre line.

 (a) Primary Balancing
The conditions to be satisfied for the primary balancing are:

 (i) The algebraic sum of the primary forces should be equal to zero, i.e. the primary force polygon 
must close, i.e.  R 2 r cos   0

 (ii) The algebraic sum of the primary couples about any point in the plane of the forces must be 
equal to zero, i.e. the primary couple polygon must close, i.e.  R 2 r a cos   0
where a  distance of the plane of rotation of the crank from a parallel reference plane.

 (b) Secondary Balancing 
The conditions to be satisfied for the secondary balancing are:
 (i) The algebraic sum of the secondary forces should be equal to zero, i.e. the secondary force 
polygon must close, i.e. 

 R (2 )2 [r/(4n)] cos 2   0
 (ii) The algebraic sum of the secondary couples about any point in the plane of the forces must be 
equal to zero, i.e. the secondary couple polygon must close, i.e.  R (2 )2 [r/(4n)] a cos 2   0
where a  distance of the plane of rotation of the crank from a parallel reference plane. 
Imaginary crank length  r/(4n), speed  2
Angle made by imaginary secondary crank with inner dead centre  2

10 In-line two-cylinder engine
Primary force, F

p
  R r 2 [ cos   cos (180   )]  0

Primary couple, C
p
  R r 2 a cos 

(C
p
)

max
  R r 2 a

Secondary force, F
s
  (2 R r 2 / n) cos 2

(F
s
)

max
  2 R r 2 / n

Secondary couple, C
s
  0
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11 In-line Four-Cylinder Four – Stroke Engine
Primary force, F

p
  0

Primary couple, C
p
  0

Secondary force, F
s
  (4 R r 2/n) cos 2

(F
s
)

max
  4 R r 2 / n

Secondary couple, C
s
  0

12 Balancing of radial engines

 (a) Direct and Reverse Cranks Method

 Since the plane of various cranks is the same, therefore, there is no unbalanced primary or second-
ary couples.

 (i) Primary Forces
 Component of the centrifugal force on the direct crank acting along the line of stroke from O to P, 
F

pd
  0.5 R 2 r cos 

 Component of the centrifugal force on the reverse crank acting along the line of stroke from O to 
P, 
F

pr
  0.5 R 2 r cos 

Total component of the centrifugal force along the line of stroke
F

p
  F

pd
  F

pr
  R 2 r cos 

 Which is the primary force itself. Hence, for primary force effect, the mass of the reciprocat-
ing parts at P may be replaced by two masses at crankpins C and C´, each of mass R / 2 at radii 
equal to r.

 (ii) Secondary Forces

The secondary force, F
s
  R 2 r cos 2 /n

 The secondary force effect may be taken into account by dividing the mass R into two equal  
parts and placing it at the imaginary crankpins at radii r/4n.

13 Balancing of V-engines
Resultant primary force, F

p
  2 R 2 r [ (cos2  cos )2  (sin2  sin )2]0.5

Resultant secondary force, F
s
  2 R 2 (r/n) [(cos  cos 2  cos 2 )2 

 (sin  sin  sin 2 )2]0.5

Multiple Choice Questions

1 In case of reciprocating engines the ratio of primary to secondary forces is
(a) cos /cos 2  (b) cos /(n cos 2 )
(c) n cos /cos 2  (d) cos2 /cos 2 

2 Partial balancing in locomotives results in 
(a) hammer blow  (b) variation in tractive effort
(c) swaying couple  (d) all of the above

3 In reciprocating engines, primary forces are
(a) completely balanced (b) partially balanced
(c) can not be balanced  (d) balanced by secondary forces.
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4 In case of locomotives, the effect of hammer blow is counteracted by
(a) flanges of the tyres of the wheels (b) balancing weights
(c) inside section of the rails (d) dead weight of the engine.

5 Hammer blow in locomotives results in 
(a) pulsating torque  (b) tendency to lift wheels from rails.
(c) uneven speed  (d) variable horizontal force.

6 Swaying couple results due to
(a) primary disturbing force (b) secondary disturbing force
(c) partial balancing  (d) hammer blow.

7 Inertia force acts
(a) perpendicular to the accelerating force
(b)  along the direction of the accelerating force
(c) opposite to the direction of the accelerating force
(d)  in any direction with respect to accelerating force.

8 If the balance mass is to be placed in a plane parallel to the plane of the unbalance mass then the 
minimum number of balance masses required are
(a) one  (b) two
(c) three (d) four.

9 The frequency of secondary force as compared to that of primary force is
(a) half  (b) twice
(c) four times (d) sixteen times.

10 If the ratio of the length of connecting rod to crank radius increases, then
(a) primary force increases (b) primary force decreases
(c) secondary force increases (d) secondary force decreases.

11 The resultant unbalanced force is minimum in reciprocating engines when the part of the recipro-
cating mass balanced by rotating masses are
(a) 1/3 (b) 1/2
(c) 2/3 (d) 3/4

12 In partial balancing of locomotives, the maximum variation of tractive effort is

(a) (2/3) M r 2 (b) 2 3 2/  M r

(c) 3 2 2/  M r  (d) (3/2) M r 2

13 Static force balancing involves balancing of
(a) forces (b) couples
(c) forces as well as couples (d) masses

14 If a system is dynamically balanced, then it is statically
(a) balanced (b) unbalanced
(c) partially balanced

Answers

1. (c) 2. (d) 3. (b) 4. (d) 5. (b) 6. (a) 7. (c) 8. (b) 9. (b) 10. (d) 11. (b) 12. 
(b) 13. (a) 14. (a)
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Review Questions

1 What is the necessity of balancing high speed machinery?

2 What do you mean by static and dynamic balance of machinery

3 What do you mean by primary and secondary unbalance in reciprocating engines?

4 What is partial balancing of reciprocating engines?

5 Define hammer blow, tractive effort and swaying couple.

6 What are direct and reverse cranks in radial engines?

7 What is a coupled locomotive?

8 Differentiate between primary and secondary cranks.

Exercises

12.1 A shaft carries four rotating masses A, B, C and D in this order along its axis. The mass A may 
be assumed concentrated at a radius of 120 mm, B at 150 mm, C at 130 mm, and D at 180 mm. 
The masses at A, C and D are 10, 15 and 12 kg, respectively. The planes of rotation of A and B 
are 150 mm apart and of B and C are 200 mm apart. The angle between A and C is 90 . If the 
shaft is in complete dynamic balance, determine (a) the angles between the radii of A, B and D, 
(b) the distance between the planes of rotation of C and D, and (c) the mass B.

12.2 A shaft rotating at 1000 rpm carries two unbalances of magnitudes 0.2 kg m and 0.1 kg m in 
planes A and B respectively. The planes A and B are 0.5 m apart and the directions of the unbal-
ances are at 90 . A third unbalances has to be attached to the shaft at a location C so that the 
shaft is statically balanced and the magnitude of the bearing reactions is minimum possible. The 
bearings are 0.6 m from A and B. Determine (a) location of C with respect to A and B, (b) the 
magnitude of unbalance at C, (c) the angular position of unbalance at C with respect to A and 
B.

12.3 The cranks and connecting rods of a 4-cylinder in-line engine running at 1800 rpm are 50 mm 
and 200 mm long respectively. The cylinders are spaced 150 mm apart. If the cylinders are 
numbered 1 to 4 in sequence from one end, the cranks appear at intervals of 90  in an end view 
in the order 1–4–2–3. Reciprocating mass corresponding to each cylinder is 1.5 kg. Determine  
(a) unbalanced primary and secondary forces, and (b) unbalanced primary and secondary cou-
ples with reference to central plane of engine.

12.4 A four-crank engine has the two outer cranks set at 120  to each other, and their reciprocating 
masses are each 400 kg. The distance between the planes of rotation of adjacent cranks are 0.5, 
0.8 and 0.6 m. If the engine is to be in complete primary balance, determine the reciprocating 
mass and the relative angular position for each of the inner cranks.

  If the length of each crank is 0.3 m, the length of each connecting rod 1.2 m and the speed of the 
engine 240 rpm, what is the maximum secondary unbalanced force?

12.5 A rotating shaft carries four unbalanced masses 20, 15, 18 and 10 kg at radii 50, 60, 70 and 65 
mm, respectively. The 2nd, 3rd and 4th masses revolve in planes 80, 150 and 300 mm respectively 
measured from the plane of the first mass and are angularly located at 60 , 130  and 270  respec-
tively measured anti-clockwise from the first mass looking from this mass end of the shaft. The 
shaft is dynamically balanced by two masses, both located at 50 mm radii and revolving in 
planes mid way between those of first and second masses and midway between those of 3rd and 
4th masses. Determine the magnitudes of the masses and their respective angular position.
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12.6   A single cylinder reciprocating engine has a reciprocating mass of 50 kg. The crank rotates at 
80 rpm and the stroke is 300 mm. Mass of revolving parts at 150 mm radius is 40 kg. If 2/3rd 
of the reciprocating parts and whole of the revolving parts are to be balanced, determine (a) the 
balance mass required at a radius of 340 mm, and (b) the unbalanced force when the crank has 
turned through 40  form TDC.

12.7   The reciprocating mass per cylinder in a V-twin engine is 1.5 kg. The stroke is 100 mm for each 
cylinder. If the engine runs at 1800 rpm, determine the maximum and minimum values of the 
primary forces and the corresponding crank position.

12.8   The cranks of a two-cylinder uncoupled inside cylinder locomotive are at right angles and are 
300 mm long. The distance between the centre lines of the cylinders is 650 mm. The wheel 
centre lines are 1.6 m apart. The reciprocating mass per cylinder is 300 kg. The driving wheel 
diameter is 1.8 m. If the hammer blow is not to exceed 45 kN at 100 km/h, determine (a) the 
fraction of reciprocating is 1.8 m. If the hammer blow is not to exceed 45 kN at 100 km/h, 
determine (a) the fraction of reciprocating masses to be balanced, (b) the variation in tractive 
effort, and (c) the maximum swaying couple.

12.9   The pistons of a 60  twin V-engine have strokes of 120 mm. The connecting rods driving a 
common crank have a length of 200 mm. The mass of the reciprocating parts per cylinder is 
1 kg and the speed of the crankshaft is 2500 rpm. Determine the magnitude of primary and 
secondary forces.

12.10  For an inside cylinder locomotive with two cranks at right angles, the reciprocating parts are 
300 kg per cylinder. The distance between the cylinder centre lines is 0.6 m and between the 
plane of rotation of wheels 1.5 m. Each crank is 0.3m long and the driving wheels are 1.8 m 
diameter. Revolving balance masses are introduced in the planes of wheels partially to balance 
2/3 rd of the reciprocating parts. Determine the maximum variative of (a) tractive effort, and 
(b) wheel load when the locomotion is running at 90 km/h.
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GYROSCOPIC AND 
 PRECESSIONAL MOTION

13.1 INTRODUCTION
In vehicles having engines with rotating parts of high moment of inertia, gyroscopic forces are in 
action when the vehicle is changing direction of motion. When automotive vehicles turn with high 
velocities, gyroscopic forces act on spinning parts such as crankshaft, flywheel, clutch, transmission 
gears, propeller shaft and wheels. Engine parts as well as the propeller and the gear reduction system 
of an airplane are under the influence of gyroscopic effects in turns and pullouts. Locomotives and 
ships are similarly affected. In this chapter, we shall study the gyroscopic and precessional motion of 
road vehicles, aeroplanes and ships.

13.2 PRECESSIONAL MOTION
Consider a plane disc spinning about the axis OX with angular speed , as shown in Fig.13.1(a). After 
a short interval of time t, let the disc be spinning with angular speed  about the new axis OX  
inclined at a small angle  with OX. The angular speed  is represented by vector OX and  by 
vector OX  in Fig.13.1(b). The vector XX  represents the change of angular speed in time t.
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Fig.13.1 Precessional motion
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Angular (or gyroscopic) acceleration perpendicular to OX,
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where 
p
 is the precessional angular speed of the spin axis.

Total angular acceleration of disc XX 
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where  represents vector sum.

13.3 FUNDAMENTALS OF GYROSCOPIC MOTION
Gyroscope: It is a body which while spinning about an axis is free to move in other direction under 
the action of external forces.

Axis of spin: It is axis about which the body revolves.

Gyroscopic effect: Consider a body spinning about an axis OX (Fig.13.2). If a couple represented by 
a vector OZ perpendicular to OX is applied, then the body tries to precess about an axis OY, which is 
perpendicular to both OX and OZ. This combined effect is called gyroscopic or precessional effect. 
The plane of spin, plane of precession, and plane of gyroscopic couple are mutually perpendicular.

Precession: It means the rotation about the third axis OY, which is perpendicular to both the spin axis 
OX and the couple axis OZ.

Axis of precession: The third axis OY about which a body revolves and is perpendicular to both the spin 
axis OX and couple axis OZ, is called the axis of precession.

Mechanical gyroscope: It is a special mechanism generally employed for the control of angular motion 
of a body. Gyroscope is an instrument, which appears as a device possessing intelligence. Gyroscopic 
effects can be used in several applications for directional control, e.g. in Gyrocompass used on aero-
planes and ships and in inertia guidance control system for missiles and space craft control.

Fig.13.2 Gycoscopic effect
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Principle of gyroscope: The principle of a gyroscope can be easily understood from the toy gyroscope 
shown in Fig.13.3. A rotating disc supported on gimbal rings rotates with an angular velocity, called 
the velocity of spin, . The axis of the rotating shaft rotates about the vertical axis OY with an angular 
velocity 

p
, called the velocity of precession. A force F I

p
/l will be automatically developed on 

the bearings of the rotor shaft in the direction indicated. The reaction at the bearings will be (–F). The 
axis of rotation of the rotating disc would revolve in the horizontal plane XOZ. In case of vehicles, 
ships and other such devices, the spinning masses may be forced to precess in a desired direction. 
Thus, couples will be applied to the shaft carrying such spinning masses when the axis of spin is 
forced to precess in a desired direction.

Fig.13.3 Mechanical gyroscope

Right-hand screw rule: Consider the disc rotating anti-clockwise when looking from the front as 
shown in Fig.13.4(a). OX is the axis of spin. Let OX change to OX  making an angle . Applying 
right-hand thumb rule, the vector diagram of angular momentum is shown in Fig.13.4(b). If we look in 
the ab direction, the thumb will be in the direction of ab, which is the change in the angular momen-
tum. The direction of curling of the fingers is in the clockwise direction, which is the direction of 
applied couple. The reactive gyroscopic couple will thus act in the anti-clockwise sense.

13.4 GYROSCOPIC COUPLE OF A PLANE DISC
Consider a plane disc of moment of inertia I spinning with angular speed  about the spinning axis, 
as shown in Fig.13.5(a). The angular momentum H of the spinning disc is,

H I



823 Gyroscopic and  Precessional Motion 

Fig.13.4 Right hand thumb rule

The rate of change of angular momentum with respect to time is proportional to the applied 
couple C.
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where  is the angular acceleration.
If the spin axis is made to change angular position, gyroscopic action results. For constant , the 

magnitude of the angular momentum remains constant for an angular displacement  of the spin 
axis. However, a change in angular momentum H exists because of the change in direction of the 
momentum, as shown in Fig.13.5(b).
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Fig.13.5(c) shows the X-axis as the spin axis and the Y-axis as the precession axis. The Z-axis becomes 
the couple axis.

Fig.13.5 Gyroscopic couple

Example 13.1

Determine the gyroscopic couple of a 3 m diameter solid aluminium alloy four-bladed propeller in 
which each blade has a mass of 20 kg. The test manoeuver of the airplane is a power-on flat spin in 
which the propeller speed is 1500 rpm and the rotation of the flat spin is 1 rad/s. The radius of gyration 
of the propeller with respect to the propeller axis is approximately half of the propeller radius.

Solution 

 Radius of gyration, K r
m

0.5 3 1.5 m
 Moment of inertia, I M K2

  20 (1.5)2 45 kg m2

 Angular speed,  2
1500

60
157 08.  rad/s
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 Precessional speed, 
p

1 rad/s

 Couple, C I
p

  45 157.08 1

  7068.6 N m

Example 13.2

A boat is propelled by a steam turbine. The moment of inertia of the rotor, shaft and propeller is  
60 kg m2. The turbine runs at 3000 rpm in clockwise direction looking from the front. The boat 
describes a circular path towards the right making one revolution in 10 s. Find the magnitude and 
direction of the couple acting on the boat hull.

Solution 





2

60
2

3000

60
314 16

N
.  rad/s

Applied couple,

 




 

p

pC I

2

10
0 628

60 314 16 0 628

11837 5

.

. .

.

 rad/s

 Nm

The vector diagram of the gyroscopic effect is shown in Fig.13.6. The applied couple ab will lower the 
front and raise the stern. The reaction couple b ; a  will raise the front and lower the stern of the boat.

a

b

a

b

Fig.13.6 Gyroscopic effect on a boat

13.5 EFFECT OF GYROSCOPIC COUPLE ON BEARINGS
Consider a disc of mass m and radius of gyration K mounted centrally on a horizontal axle of length l 
between the bearings. Let the disc spin with angular speed  counter-clockwise when viewed from the 
right-hand side bearing, as shown in Fig.13.7(a). The axle precesses about a vertical axis at 

p
 speed 

in the clock-wise direction when viewed from above. Then

I mK2

C I 
p
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Fig.13.7 Effect of gyro-couple on bearings

The applied (active) and reaction couples are shown in Fig.13.7(b). The reaction couple is clock-
wise when viewed from front and tends to raise the bearing A and lower the bearing B.

Force on bearing A due to gyro-couple, R
C

lg
(upwards)

Force on bearing B due to gyro-couple, R
C

lg (downwards)

Force on each bearing due to self weight of disc, R
mg

w 2
(upwards)

Reaction at bearing A R
g

R  (upwards)

Reaction at bearing B R
g
 – R  (downwards)

Example 13.3

A uniform disc of 100 mm diameter and 5 kg mass is mounted midway between bearings 100 mm apart, 
which keeps it in a horizontal plane. The disc spins about its axis with a constant speed of 1200 rpm,  
as shown in Fig.13.8(a). Find the resultant reaction at each bearing due to the mass and gyroscopic 
effects.

Solution 

 2 1200/60 125.66 rad/s

 
p

2 50/60 5.236 rad/s

 I 0.5 mr2 0.5 5 (50 10–3)2 0.00625 kg. · m2

 C I  · 
p

 0.00625 125.66 5.236

  4.112 N m

The direction of reaction gyroscopic couple is shown in Fig.13.8(b).
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Bearing reactions:

(a) Due to self weight of the disc.

R
A

R
B

5 9.81/2 24.525 N

(b) Due to reaction gyroscopic couple.

R
A

F 4.112/0.1 41.12 N

R
B

F 41.12N

Resultant bearing reactions:

R
A

24.525 41.12 65.645 N

R
B

24.525 – 41.12 –16.515 N

Fig.13.8 Gyro effect on bearing reactions

13.6 GYROSCOPIC COUPLE ON AN AEROPLANE
The top and front views of an aeroplane taking a left turn, when viewed from the rear, are shown 
in Fig.13.9(a) and (b), respectively. Let the propeller rotate clockwise as seen from the rear (or tail 
end).

Gyroscopic couple acting on the aeroplane, C I
p

where  I moment of inertia of the engine and propeller

  mK 2

 m mass of engine and propeller

 K radius of gyration

 angular speed of engine

 
p

angular speed of precession v/R

 v linear velocity of aeroplane

 R radius of curvature.

In Fig.13.9(a), oa is the angular momentum vector before turning, ob is the momentum vector 
after turning to left. Vector ab is the active gyro-couple and b a  the reactive gyro-couple, which is 
equal to active gyro-couple but opposite in direction.
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The vector ab is perpendicular to the plane of applied couple, which is vertical. Its sense is  
clockwise when seen from the right side view of the plane, as shown in Fig.13.9(b). Using the right 
hand screw rule, the reactive gyro-couple will be counter-clockwise, which will raise the nose and 
lower the tail of the aeroplane.

Fig.13.9 Gyroscopic effect on an aeroplane
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Example 13.4

An aeroplane makes a complete half circle radius towards left when flying at 210 km/h. The rotary 
engine and the propeller of the plane is of 50 kg mass having a radius of gyration of 300 mm. The 
engine rotates at 2400 rpm clockwise as seen from the rear. Find the gyroscopic couple on the aircraft 
and its effect on the plane.

Solution 

 2 2400/60 251.33 rad/s

 
p

v/R 210 103 /(3600 60) 0.972 rad/s

 I m K2 50 (0.3)2 4.5 kg m2

 C I
p

4.5 251.33 0.972 1099.32 N m

The reaction gyro-couple will raise the noise and dip the tail.

13.7 GYROSCOPIC EFFECTS ON A NAVAL SHIP
The following terms for a naval ship in reference to Fig.13.10 are defined:

Fig.13.10 Gyroscopic effects on a naval ship
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 Bow is the fore-end of the ship.

 Stern is the rear-end of the ship.

 Starboard is the right hand side of the ship while looking in the direction of motion.

 Port is the left hand side of the ship while looking in the direction of motion.

 Steering is the turning of the ship in a curve while moving forward.

 Pitching is the moving of the ship up and down the horizontal position in a vertical plane about 
transverse axis.

 Rolling is the sideway motion of the ship about longitudinal axis.

(a) Steering: The gyroscopic effect on a naval ship during steering can be obtained as explained 
for the aeroplane in Section 13.6. When the ship turns to right, the angular momentum vector changes 
from oa to ob, as shown in Fig.13.10(d). The reaction couple b a  is shown in the reverse direction. 
If the rotor rotates in clockwise direction looking from the rear end then the reaction couple tends to 
lower the bow and raise the stern.

Table 13.1 may be used to determine the gyroscopic effects:

Table 13.1 Gyroscopic effects on a naval ship

Direction of 
steering

Direction of rotor  rotation 
(viewed from stern)

Bow Stern

Left CW Raised Lowered

Right CW Lowered Raised

Left CCW Lowered Raised

Right CCW Raised Lowered

(b) Pitching: The pitching of the naval ship is assumed to take place with simple harmonic motion. 
The movement of the ship is up and down in vertical plane about the transverse axis, which is the axis 
of precession.

Fig.13.11 Pitching of a naval ship
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The pitching angle at time t is (see Fig.13.11).

A sin 
o
t

where A amplitude of swing in radians
 

o
angular velocity of simple harmonic motion
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Maximum gyro-couple, C
max

I ·  · (
p
)

max
 (13.6)

 where I moment of inertia of turbine rotor and other masses of the naval ship.
 angular velocity of rotating masses.

The effects of pitching are as follows:

1. When the pitching is upward, the gyroscopic effect will try to move the ship towards starboard.

2. On the other hand, if the pitching is downward, the gyroscopic effect is to turn the ship towards port side.

3. The pitching of a ship produces forces on the bearings which act horizontally and perpendicular to 
the motion of the ship.

4. The maximum gyroscopic couple tends to shear the holding down bolts.

Angular acceleration during pitching,

 




 

 


d

d

2

2

2

2

2

2

t
A t

A A
t

o o

o

p

sin

max

 

(13.7)

(c) Rolling: The axis of rolling and that of rotor of turbine are generally same. So, there is no pre-
cession of axis of spin and there is no gyroscopic effects during rolling of the naval ship.

13.7.1 Ship Stabilization
A naval ship is normally stable, but it requires stabilization when it faces heavy sea. The ship will either 
pitch or roll. The amplitude of rolling is much higher than that of pitching. The ship in such a case is sta-
bilized by producing couples in the opposite direction to that of the disturbing couples which are applied 
by the waves on the ship. The couples in opposite direction are produced by mechanical gyroscopes.

Example 13.5

A ship is propelled by a turbine rotor of mass 500 kg and has a speed of 2400 rpm. The rotor has a 
radius of gyration of 0.5 m and rotates in clockwise direction when viewed from stern. Find the gyro-
scopic effects in the following cases:
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(a)  The ship runs at a speed of 15 knots (1 knot 1860 m/h). It steers to the left in a curve of 60 m 
radius.

(b)  The spin pitches  5° from the horizontal position with the time period of 20 s of simple harmonic 
motion.

(c)  The ship rolls with angular velocity of 0.04 rad/s clockwise when viewed from stern. Also  calculate 
the maximum angular acceleration during pitching.

Solution 

 (a) 2 2400/60 251.3 rad/s

 I mK 2 500 (0.5)2 125 kg m2

 
p

15 1860/(3600 60) 0.129 rad/s

 C I
p

  125 251.3 0.129 4052.2 N m

 (b) 
o

2 /t
p

2 /20 0.314 rad/s

 (
p
)

max
A

o
(5 /180) 0.314 0.0274 rad/s

 C
max

I (
p
)

max

  125 251.3 0.0274 860.7 N m

 (c) 
p

0.04 rad/s

 C I
p

  125 251.3 0.04 1256.5 N m

 
max

A 
o

2 (5 /180) (0.314)2 0.0086 rad/s2

Example 13.6

An aeroplane makes a complete half circle of 60 m radius towards left when flying at 250 km/h. The rotary 
engine and the propeller of the plane have a mass of 450 kg with a radius of gyration of 300 mm. The engine 
runs at 2400 rpm clockwise when viewed from the rear. Find the gyroscopic effect on the aircraft.

Solution 

Given: R 60 m, v 250 km/h, m 450 kg, K 300 mm, N 2400 rpm

 I mK 2 450 (0.3)2 40.5 kg m2

 

2 2400

60
251 33

250 1000

3600 60
1 157

.

.

 rad/s

 rad/sp R
C

v

I p 40 5 251 33 1 157 11777. . .  Nm

Example 13.7

The rotor of the turbine of a ship makes 1500 rpm clockwise when viewed from stern. The rotor has a 
mass of 800 kg and its radius of gyration is 300 mm. Find the maximum gyro-couple  transmitted to the 
hull when the ship pitches with maximum angular velocity of 1 rad/s. What is the effect of this couple?
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Solution 

Given: m 800 kg, K 300 mm, N 1500 rpm, 
p

1 rad/s

 I mK2 800 (0.3)2 72 kg m2

 






2 1500

60
158 08

72 158 08 1 11309 7

.

. .

 rad/s

NmC I p

Example 13.8

The mass of a turbine rotor of a ship is 8000 kg and has a radius of gyration of 0.75 m. It rotates at 
1800 rpm clockwise when viewed from the stern. Determine the gyroscopic effects in the following 
cases:

(a)  If the ship traveling at 100 km/h steers to the left along a curve of 80 m radius.

(b)  If the ship is pitching and the bow is descending with maximum velocity. The pitching is with sim-
ple harmonic motion with periodic time of 20 s and the total angular movement between extreme 
position is 10°.

(c)  If the ship is rolling with an angular velocity of 0.03 rad/s clockwise when looking from stern.

In each case, determine the direction in which the ship tends to move.

Solution 

(a) Given: R 80 m, v 100 km/h, m 8000 kg, K 0.75 m, N 1800 rpm

 I mK  2 8000 (0.75)2 4500 kg m2

 

w p

w
ww

2 1800

60
188 5

100

3600 60
0 347

.

.

 rad/s

 rad/s

C

p R

v

I p 44500 188 5 0 347 294531. . Nm

The ship tends to move to the left.

 
(b) t

p
20 s, A 10° or

 


18

rad

 

( ) .
  

p
p

A

tmax  rad/s
2 2

18 20
0 05483

 C
max

I (
p 
)

max
4500 188.5 0.05483 46510 N m

The ship tends to move up.

(c) In case of rolling, C 0 as 
p

0.

Example 13.9

A diesel locomotive moving at a speed of 100 km/h turns around a curve of radius 400 m to the right. 
The driving wheels are 2 m in diameter and along with the axle has a mass of 2000 kg. The radius of 
gyration of the wheels together with the axle may be taken as 0.6 m. Find the gyro effect on the pair 
of driving wheels.
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Solution 

Given: R 400 m, v 100 km/h or 28.78 m/s, m
w

2000 kg, K
w

0.6 m, d
w

2 m

 I
w

m
w
K

w
2 2000 (0.6)2 720 kg m2

 

v

v
w

p

r

R

28 78

1
28 78

28 78

400
0 06945

.
.

.
.

 rad/s

 rad/s 

 C I
p

720834    28.78 0.06945 1389.1 N m

Example 13.10

A small high-speed ship is driven by a turbine, the rotor of which is rotating at 12,000 rpm in a clockwise 
direction, when viewed from the bow. The moment of inertia of the rotor is 15 kg m2 and the ship is 
travelling at 20 m/s in a curve of 600 m radius, the direction being clockwise viewed from the above.

Determine the gyroscopic couple acting on the ship and its effect on the ship.

Solution 

Given: R 600m, v 20 m/s, I 15 kg m2, N 12000 rpm

 I mK  2 8000 (0.75)2 4500 kg m2

 

2 12000

60
1256 637

20

600

1

30

.  rad/s

 rad/sp R

v

 C I pww 15 1256 637
1

30
628 32. .  N m tending to lift the bow.

Example 13.11

The propeller shaft of an aero-engine is rotating at 1800 rpm. If the distance between the two bearings 
of the propeller shaft is 1 m, and radius of gyration of propeller is 0.75 m, find the extra pressure on 
the bearings, when the aero-plane is whirling round in a horizontal circle of 300 m radius at a speed of 
300 km/h. The mass of the propeller is 60 kg.

Solution 

Given: R 300 m, v 300 km/h, m 60 kg, K 0.75 m, N 1800 rpm, l 1 m

 I mK2 60 (0.75)2 33.75 kg m2

 

2 1800

60
188 5

300 1000

3600 60
0 278

.

.

 rad/s

 rad/sp R

v

 C I
p

33.75 188.5 0.278 1768.2 N m

Bearing reaction 
C

l

1768 2

1
1768 2

.
.  N
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Example 13.12

A turbine rotor of a ship which rotates clockwise when viewed from aft has a mass of 1500 kg, radius 
of gyration 0.7 m, and a speed of 2400 rpm. The ship pitches 5° above and below the horizontal 
 position with simple harmonic motion of period 24 s.

Determine the maximum reaction couple exerted by the rotor on the ship and the direction in 
which the bow will turn when falling.

Solution 

Given: m 1500 kg, K 0.7 m, N 2400 rpm, 5°, t
p

24 s

 
A

180 180 36

5
rad

 

p max
.

.

A

t p

2 2

24
0 0274

2

60
251 32

36
rad/s

2400
rad/s

 I mK  2 1500 (0.7)2 735 kg m2

 C
max

I  (
p 
)

 max
4220.86 N m

The bow will turn to left (port) (see Table 13.1).

Example 13.13

A turbine rotor of a ship is of 2000 kg mass and has a radius of gyration of 0.8 m. Its speed is 
2000 rpm. The ship pitches 5° above and below the mean position. A complete oscillation takes place 
in 20 s and the motion is simple harmonic. Determine

(a) the maximum couple tending to shear the holding down bolts of the turbine,

(b) the maximum acceleration of the ship during pitching, and

(c)  the direction in which the bow will tend to turn while rising, if the rotation of the rotor is clock-
wise, when looking from aft.

Solution 

Given: m 2000 kg, K 0.8, N 2000 rpm, 5°, t
p

20 s

 

A

A

t p

180
rad

rad/s

2000

5

180 36
2

0 0274

2

p max
.

660
209 44. rad/s

 I mK 2 2000 (0.8)2 1280 kg m2

 (a)  C
max

I  (
p
)

max
1280 7345.48 N m

(b) max .A
t p

2

36

2

20
8 613 10

2 2

3 rad/s2

 (c) To starboard.
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Example 13.14

The turbine rotor of a ship has a mass of 4000 kg. Its radius of gyration is 0.5 m and a speed of 3000 
rpm clockwise when looking from stern. Determine the gyroscopic couple and its effect on the ship: 
(a) when the ship is steering to the left on a curve of 105 m radius at a speed of 36 km/h and (b) when 
the ship is pitching in a simple harmonic motion, the bow falling with its maximum velocity. The 
period of pitching is 45 s and the total angular displacement between the two extreme positions of 
pitching is 15°.

Solution 

Given: m 4000 kg, K 0.5 m, N 3000 rpm, R 105 m, v 36 km/h,  t
p

45 s, 
2A 15°

 
v

36 10

3600
10

2 3000

60
314 2

3

m/s, rad/s.

 I mK 2 4000 (0.5)2 1000 kg m2

 
p

v

R

10

105
0 09524. rad/s

Gyroscopic couple, C I
p

1000 314.2 0.09524 29924 N m

When the rotor rotates clockwise and ship takes left turn, looking from stern, the effect of 
reactive gyroscopic couple is to raise the bow and lower the stern.

 (b) A 7.5° or 


180
7 5 0 131. . rad

Angular velocity of SHM, o
pt

2 2

45
0 1396

 
. rad/s

 (
p
)

max
A 

0
0.131 0.1396 0.0183 rad/s

Gyroscopic couple, C I  (
p
)

 max
1000 314.2 0.0183 5750 N m

When the bow is falling, the effect of gyro-couple is to move the ship towards port side.

Example 13.15

The rolling moment on a ship at a given instant is 12 106 N m clockwise viewed from the rear. The 
rotor of the stabilizing gyroscope is of 12 104 kg mass and spins at 1200 rpm clockwise when viewed 
from above. If the radius of the wheels about the spin axis is 2 m, determine the angular velocity of the 
precession to maintain the ship in an upright position.

Solution 

Given: C 12 106 N m, m 12 104 kg, N 1200 rpm, d 2 m
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I
md

I

2

4 2

4

12 10

2

60

2 1200

60
125 664

12

w

p

kg m

N

rad/s

C

.

10

12 10 125 664

0 796

6

4 .

. rad/s  (Counter-clockwise viewed from rear)

Example 13.16

For a single cylinder engine determine the bearing forces caused by the gyroscopic action of the 
 flywheel (I 0.32 kg m2) as the engine traverses a 305 m radius curve at 96.6 km/h in a turn to  
the right. The engine speed is 3300 rpm and is turning clockwise when viewed from the front of the 
engine. The centre distance between the bearings is 152 mm.

Solution 

Given: I
w

0.32 kg m2, R 305 m, v 96.6 km/h or 26.83 m/s, N
e

3300 rpm, L 152 mm

 

e
e

p

v

2

60

2

60
345 6

26 83

305
0 088

N

R

C I

3300

rad/s

rad/s

.

.
.

ww e p

0 32 345 6 0 088 9 728. . . . N m  

Bearing reaction 
C

L

9 728

0 152
64

.

.
N

13.8 STABILITY OF A FOUR-WHEEL VEHICLE TAKING A TURN
Consider a four-wheel vehicle taking a left turn as shown in Fig.13.12.

Let M mass of the vehicle
 a track width
 l wheel base
 h height of C.G. of vehicle above the ground
 l

1
horizontal distance of C.G. from the front axle

 l
2

horizontal distance of C.G. from the rear axle
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Fig.13.12 Four wheel vehicle taking a turn

 M
w

mass of each wheel
 K

w
radius of gyration of each wheel

 M
e

mass of engine flywheel and transmission etc.
 K

e
radius of gyration fo engine flywheel and transmission etc.

 i speed ratio from wheel to engine
 R radius of curve being negotiated
 v liner speed of vehicle
The forces accounting for the stability of the vehicle are:

1. Weight of the vehicle W Mg, giving rise to upward reaction at each wheel.

2. Precession of vehicle.

(a) Dead weights:

Reaction of ground on each front wheel, 
W Wl

l
f

2 2
2 (upwards) (13.8a)

Reaction of ground on each rear wheel, W Wl

l
r

2 2
1 (upwards) (13.8b)

(b) Centrifugal couple:

Centrifugal force acting outward at the C.G. of the vehicle, F
M

Rc

v2

Centrifugal couple, C F h
M h

Rc c

v2

The couple is balanced by the vertical reactions at the four wheels being ve at the outer and 
–ve at the inner wheels.

Reaction of ground on each outer wheel, Q C

a
c

2 2
 (upwards) (13.9a)

Reaction of ground on each inner wheel, Q C

a
c

2 2
 (downwards) (13.9b)
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(c) Gyroscopic couple:
(i) Due to wheels.

Moment of inertia of each wheel, I
w

M
w
K

w
2

Moment of inertia of engine, flywheel, etc., I
e

M
e
K

e
2

Velocity of spin of each wheel about its own axis, 
w

wr

v

Velocity of spin of engine, flywheel etc., 
e

i
w

Angular velocity of precession of wheels, pw pe

v

R
Gyroscopic couple due to four wheels, C

gw
4I

w
 · 

w
 · 

pw

Reaction of ground on each outer wheel, P C

a
gw

2 2
(upwards) (13.10a)

Reaction of ground on each inner wheel, P C

a
gw

2 2
(downwards) (13.10b)

(ii) Gyroscopic couple due to other rotating parts of the engine, like flywheel etc.,

C
ge

I
e
 · 

e
 · 

pe

Load due to gyro-couple due to engine etc., F C

l
ge

2 2

Reaction of ground on each outer wheel, F C

l
ge

2 2
(upwards) (13.11a)

Reaction of ground on each inner wheel, F C

l
ge

2 2
(downwards) (13.11b)

Take ve sign when the wheel and engine rotating parts rotate in the same direction, otherwise 
take –ve sign. Vertical reaction will be produced due to this gyroscopic couple. The reaction will be 

ve at the outer wheels and –ve on the inner wheels.
Total vertical reactions at the wheels are given in Table 13.2 with the assumption that the engine 

and the wheel rotate in the same direction clockwise.

Table 13.2 Vertical reactions in a four wheeler

Wheel (wheel number)
Vertical reaction

Vehicle taking left turn Vehicle taking right turn

Front outer (1)
W P Q Ff

2 2 2 2

W P Q Ff

2 2 2 2

Front inner (2)
W P Q Ff

2 2 2 2

W P Q Ff

2 2 2 2

Rear outer (3)
W P Q Fr

2 2 2 2

W P Q Fr

2 2 2 2

Rear inner (4)
W P Q Fr

2 2 2 2

W P Q Fr

2 2 2 2
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The reaction on the rear inner wheel will be minimum when the vehicle is taking a left turn.

 
R

W P Q F
4 2 2 2 2

r

 
(13.12)

When R
4
 is zero or negative, the tyres of the vehicle of rear inner wheels will leave the ground 

tending to overturn the vehicle.

For
 

R
W P Q Fr

4 0
2 2

,
( )

or W
r
  (P Q F) (13.13)

Thus, the vehicle may overturn when

1. 
w
 is high, i.e., the vehicle is running at a high speed.

2. h is high, i.e., the C.G. of the loaded vehicle is sufficiently high above the ground.

3. R is small, i.e., the vehicle is taking a sharp turn.

4. W is large, i.e., the vehicle is overloaded.

In order to reduce the total gyroscopic couple, the engine must be provided with a heavy flywheel, 
which should rotate in the opposite direction to that of the wheels.

Example 13.17

A motor car negotiates a curve of 40 m radius at a speed of 60 km/h. Determine the magnitudes of the 
centrifugal and gyroscopic couples acting on the motor car and state the effect of each of these on the 
road reactions on the wheels. Assume the following:

(a) Each road wheel has a moment of inertia of 4 kg m2 and an effective wheel radius of 0.5 m.

(b) The rotating parts of the engine and transmission are equivalent to a flywheel of mass 80 kg with a 
radius of gyration of 0.1 m. The engine turns in a clockwise direction when viewed from the front.

(c) The back axle ratio is 4:1 and the drive through the gear box is direct.

(d) The car weighs 10 kN and has its centre of gravity at 0.6 m above the road level. The car takes a 
right hand turn.

Solution 

Given: R 40 m, v 60 km/h, I
w

4 kg m2, r
w
  0.5 m, M

e
  80 kg, K

e
  0.1 m, i  4, W  10 

kN, h  0.6 m

Angular velocity of wheel,

 

  v 60
1000

3600
116 67

1

. m/s

w r

v 66 67

0 5
314 33

.

.
.  rad/s

Angular velocity of precession of wheels, 

pw R

v 16 67

40
0

.
.417 rad/s

(a) Gyroscopic couple due to wheels,
 C

w
4I

w
  

w
  

pw

 4 4 314.33 0.417 223 N m
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The reaction gyro-couple due to wheels will tend to lift the inner wheels and depress the outer wheels.
(b) Gyroscopic couple due to engine rotating parts,

 C
e

I
e
  

e
  

pe

  M
e
K

e
2   i

w
  

pe
  [  

pe
  

pw
]

  80 0.12 4 314.33 0.417

  44.48 N m

The reaction gyro-couple due to engine rotating parts will tend to lift the front wheels and depress 
the rear wheels.

(c) Centrifugal force,

 

F
W

gRc

v2

2

10 1000
16 67

9 81 40
0

( . )

.
.7 78 95 N

Centrifugal couple, C
c

F
c
 h  7078.95 0.6 4247.4 N m

The reaction centrifugal couple will tend to lift the inner wheels and depress the outer wheels.

Example 13.18

A rear engine automobile is travelling along a track of 100 m mean radius. Each of the four wheels has 
a moment of inertia of 2 kg · m2 and an effective diameter of 0.6 m. The rotating parts of the engine 
have a moment of inertia of 1.25 kg · m2. The engine axis is parallel to the rear axle and the crankshaft 
rotates in the same direction as the wheels. The gear ratio of engine to back axle is 3:1. The automo-
bile mass is 1500 kg and its centre of gravity is 0.5 m above the road level. The width of track of the 
vehicle is 1.5 m.

Determine the limiting speed of the vehicle around the curve for all four wheels to maintain con-
tact with the road surface if it is not banked.

Solution 

Given: R 100 m, I
w

2 kg m2 d
w

0.6 m, i 3, m 1500 kg,  h 0.5 m, a 1.5 m
Let v linear speed of the vehicle, m/s
Angular speed of the vehicle, 

w
wd

2 2

0 6 0 3

v v v

. .
rad/s

Angular speed of engine, 

e i
3v

v 
0 3

10
.

rad/s

Angular velocity of precession, 

pw

v

R

v

100
rad/s

Gyroscopic couple of 4 wheels and engine etc., C
g

4I
w
 · 

w
 · 

pw
I

e
 · 

e
 · 

pw
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4
0 3 100

10
100

4 2
30

1 25
10

0 2667 0 125

2 2

I Iw e

v v
v

v

v v

.

.

. . v

v

2

20 3917.  N m

Centrifugal force, F
m

Rc

v v
v

2 2
21500

100
15 N

Centrifugal couple, C
c

F
c
 · h

Maximum lift due to centrifugal couple on one wheel, Q
C

a
F

h

a
c

c2
2 2

15
0 5

3
2 52 2v v

.
.  N

Maximum lift due to gyro-couple,

P C

a
g

2 2
0 3917

3
0 13062 2. .

v
v  N

For safe driving, weight on one wheel should be greater than the maximum lift.
Mg P

4 2 2

Q

or
 

1500 9 81

4
0 0

1500 9 81

4 2 6306

. . .

.

.

2 5 13 6 2

2

v

v

or v 37.396 m/s or 134.62 km/h

Example 13.19

A rail car has a total mass of 4000 kg. The moment of inertia of each wheel together with its gearing is 
20 kg · m2. The centre distance between the two wheels on an axle is 1.5 m and each wheel is 400 mm 
radius. Each axle is driven by a motor, the speed ratio between the two being 1:14. Each motor with its 
gear has a moment of inertia of 15 kg · m2 and runs in a direction opposite to that of its axle. The centre 
of gravity of the car is 1 m above the rails.

Determine the limiting speed for the car when moving on a curve of 250 m radius such that no 
wheel leaves the rails.

Solution 

Given: W 1000 N, I
w

20 kg · m2, a 1.5 m, r
w

0.4 m, i 3, I
m

15 kg · m2, R 250 m, h 1 m.

Let N
w

rpm of wheel, then speed of motor, N
m

3N
w

w
w w

m w

w w w
w

w

N N

v r
N

N

2

60 30
3

0 4

30
0 0

rad/s

41888  

,

.
. mm/s

1 6755  rad/sp
w w

w

v

R

N
N

0 4

30 250
10 4.

.
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Gyroscopic couple due to four wheels: 
C

w
4 I

w w p

4 20
30

1 6755 10

14 037 10

4

4 2

N
Nw

w.

. Nw Nm

 Gyroscopic couple due to motor:
  C

m
I

m m p

15
3

30
1 6755 10

8 8956 10

4

4 2

N
N

N

w
w

w

.

. Nm

Total gyroscopic couple: 

C C C Nw m w– . –6 1414 10 4 2 Nm

Negative sign has been taken because the speed of motor is opposite to that of wheels. Vertical 
reaction at each of the outer or inner wheels due to gyroscopic effect,

P C

a

N

N

w

w

2 2

6 1414 10

2 1 5

2 04713 10

4 2

4 2

.

.

. N

Centrifugal couple, C
Wv h

gRc
w
2

1000
0 041888 1

9 81 250

0 7154 10

2

3 2

( . )

.

.

Nw

 NmNw

Vertical reaction at each outer or inner wheel due to centrifugal effect, 

Q C

a

N

N

c

w

w

2 2

0 7154 10

3

2 3848 10

3 2

4 2

.

. N

For no wheel to leave the rails,

W P Q

Nw w

2

1000 4 2 04713 10 2 3848 10

18 72772

4 2 4 2( . . )

.

N

110

751

113 26

4 2N

N

v

w

w

w

 rpm

 km/h.
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Example 13.20

A four wheel trolley car of total mass 2000 kg running on rails of 1 m gauge, rounds a curve of 30 m 
radius at 45 km/h. The track is banked at 10°. The wheels have an external diameter of 0.6 m and each 
pair of an axle has a mass of 250 kg. The radius of gyration of each pair is 250 mm. The height of C.G. 
of the car above the wheel base is 1 m. Allowing for centrifugal force and gyroscopic couple action, 
determine the pressure on each rail.

Solution 

Given: M 2000 kg, a 1 m, R 30 m, v 45 km/h or 12.5 m/s, 10°,
d

w
0.6 m, M

w
250 kg, K

w
250 mm, h 1 m

R R g
v

RA B M cos
sin

. cos
( . ) sin

M 2

2

2000 9 81 10
2000 12 5 10

330
21131 N

Refer to fig. 13.14.
Taking moments about B, we have

R a g
R

a
g

R
h

R

A

A

M
Mv

M
Mv

cos
sin

sin
cos2 2

2

37114 17417

12 5

0 3
41 67

12 5

30
0

   N

 rad/s

N R

r

R

B

w
w

p

,

.

.
.

.
.

v

v
44167

272 3

2

 rad/s

 

 N m

C I

K w

w p

w w w p

cos

cos

.

M

Force at each pair of wheels on inner wheels on rail due to gyroscopic couple,

P
C

a

272 3

1

.
.272 3 N

Total pressure on inner wheels, P
i

R
A
 – P 3441.7 N

Total pressure on outer wheels, P
o

R
B

P 17689.3 N

Example 13.21

A racing car of mass 2000 kg has a wheel base of 2 m and track width of 1 m. The C.G. lies midway 
between the front and rear axles and is 0.4 m above the ground. The engine of the car has a flywheel 
rotating in a clockwise direction when seen from the front at 6000 rpm. The moment of inertia of the 
flywheel is 50 kg · m2. If the car takes a curve of 15 m radius towards right, while running at 45 km/h, 
find the reaction between the wheels and the ground considering the gyroscopic and centrifugal effects 
of the flywheel and the weight of the car, respectively.
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Solution 

Given: M 2000 kg, a 1 m, l 2 m , I
e

50 kg · m2, R 15 m, h 0.4 m, N
e

6000 rpm, v 45 km/h.

e
e

p

N

R

2

60

2 6000

60
45 1000

3600 15
0

.

.

628 3 rad/s

833
v

  rad/s

Gyroscopic couple due to engine:
 C

e
I

e e p
50 628.3 0.833 26179 N m

P C

a
e

2 2

26179

2
13089 5.  N

Centrifugal couple, C
h

Rc

Mv
 N m

2 22000 12 5 0 4

15
8333 3

( . ) .
.

Q C

a
c

2 2

8333 3

2
4166 7

.
.  N

Total pressure on inner wheels,  PP
g P Q

P

i

o

M

4 2 2
12351 2.  N

Total pressure on outer wheels, 
Mg P Q

4 2 2
22162 2.  N

Example 13.22

A racing car of mass 3000 kg has a wheel base of 2.5 m and track of 1.5 m. The C.G. is located 
0.6 m above the ground level and 1.5 m from the rear axle. Each wheel is of 1 m diameter and  
0.8 kg · m2 moment of inertia. The back axle ratio is 4.5. The drive shaft engine flywheel and 
 transmission are rotating cw when viewed from the front with equivalent mass of 150 kg with radius 
of gyration 0.2 m. Determine the load distribution on the wheels if the car is rounding a curve of  
80 m radius at 120 km/h when (a) taking a right turn, and (b) taking a left turn.

Solution  Given: M = 3000 kg,  = 2.5 m, a = 1.5 m, h = 0.6 m, 
2
 = 1.5 m, d

w
 = 1m, I

w
 = 0.8 kg m2, i = 4.5, 

M
c 
= 150 kg, K

e
 = 0.2 m, R = 80 m, V = 120 km/h

Dead weights:

On each rear wheel, 
W M

r g

2 2

3000 9 81 1

2 5 2
58862 .

.
 N

On each front wheel, 
W Mf g

2 2

3000 9 81 1 5

2 5 2
2( ) . .

.
8829 N

Centrifugal couple: C
Mv h

Rc

2 2

000
120 1000

3600

0 6

80
0003 25  N m

.

Q C

a
c

2 2

25000

3
8333 3 N. ,  vertically upwards on outer and downwards on inner wheels.
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Gyroscopic couple due to wheels: 

w
w

pw

v

r

v

R

120 1000

3600 0 5
66 67

33 33

80
0 4167

.
.

.
.

 rad/s

 raad/s

 NmC I

P C

a

gw w w pw

gw

4 4 0 80 66 67 0 4167 88 9

2 2

88 9

. . . .

.

33
29 63.  N, downwards on inner and upward on outer

wheels.

Gyroscopic couple due to engine flywheel and transmission etc.

 
e

4.5 
w
 rad/s

 
pe pw

, I
e
 = M

e
K

e
2 = 150  (0.2)2 = 6 kg m2

 C
ge

I
e e pe

6 4.5 66.67 0.4167 750 N m

F C

l2 2

750

5
0ge 15  N, downwards on front and upwards on rear wheels.

(a) For left turn, the reactions are:

 R
1

W
f
 Q P F 17341.93 N

 R
2

W
f
 – Q–P–F 316.07 N

 R
3

W
r
 Q P F 14398.93 N

 R
4

W
r
 – Q–P–F –2626.93 N

(b) For right turn, the reactions are:

 R
1

W
f
 – Q – P – F 316.07 N

 R
2

W
f

Q P F 17341.93 N

 R
3

W
r
 – Q – P – F –2626.93 N

 R
4

W
r

Q P F 14398.93 N

Example 13.23

A four-wheel vehicle of mass 2500 kg has a wheel base 2.5 m, track width 1.5 m, and height of 
centre of gravity 0.6 m above the ground level and lies at 1 m from the front axle. Each wheel 
has an effective diameter of 0.8 m and a moment of inertia of 0.8 kg · m2. The drive shaft, engine 
flywheel and transmission are rotating at four times the speed of road wheels, in clockwise direc-
tion when viewed from the front, and is equivalent to a mass of 80 kg having a radius of gyration 
of 100 mm. If the vehicle is taking a right turn of 60 m radius at 60 km/h, find the load on each 
wheel.
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Solution 

Given: M 2500 kg, 2.5 m, a 1.5 m, h 0.6 m, 1 m, r
w

0.4 m, I
w

0.8 kg · m2, i  4, 
M

e
80 kg, K

e
100 mm, R 60 m, v 60 km/h.

Let W
f
 , W

r
weight on the front and rear wheels, respectively.

Taking moments about the front wheels (Fig.13.13), we have

 W
r
    mg

1

 2.5W
r

2500 9.81 1

 W
f

9810 N

 W
f

Mg  W
2
  2500 9.81 – 9810 14715 N

Weight on each of the front wheels 
Wf

2
7357 5.  N

Weight on each of the rear wheels 
Wr

2
4905 N

Gyroscopic Effect

v

I M K

v

r

e e e

w
w

60 1000

3600

0 0 0

16 67 m/s

8 1 8 kg m2 2 2

.

. .

116 67

0 4

.

.
.41 675 rad/s

Fig.13.13 Force diagram for a four wheeler taking a turn
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p

w w w p

v

R
C I

16 67

60
0

0 0

.
.

. . .

2778 rad/s

4

4 8 41 675 2778 37 5 Nm.0  

This gyroscopic couple tends to lift the inner wheels and depress the outer wheels. In other words, 
the reaction will be vertically downward on the inner wheels and vertically upward on the outer wheels. 
The magnitude of this reaction at each of the inner or outer wheels,

 

P C

a
w

2 2

37 05

3

.
.12 35 N

C
e

I
e
 · i

w
 · 

p

  0.8 4 41.675 0.2778 37.05 N m

This gyroscopic couple tends to lift the front wheels and depress the rear wheels. In other words, 
the reaction will be vertically downwards on the front wheels and vertically upwards on the rear 
wheels. The magnitude of this reaction at each of the front or rear wheels,

F Ce

2 2

37 05

5
0

.
.7 1 N

Centrifugal couple

Centrifugal force, F
Mv

Rc

2 22500 16 67

60
11578 7

( . )
.  N

C
c

F
c
 · h 11578.7 0.6 6947.2 Nm

The reactions due to this couple are vertically downwards on the inner wheels and vertically 
upwards on the outer wheels. The magnitude of this reaction on each of the inner and outer wheels, 

Q C

a
c

2 2

6947 2

3

.
.2315 7 N

Load on the inner front wheel 
W P F Qf

2 2 2 2

 7357.5 – 12.35 – 7.01 – 2315.7 5022.44 N

Load on the front outer wheel 
W P F Qf

2 2 2 2
 7357.5 12.35 – 7.01 2315.7 9678.54 N

Load on the rear inner wheel 
W P F Qr

2 2 2 2

 4905 – 12.35 7.01 – 2315.7 25814.96 N

Load on the rear outer wheel 
W P F Qr

2 2 2 2

 4905 12.35 7.01 2315.7 7240.06 N
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Example 13.24

A four-wheel trolley car of total mass 2500 kg running on rails of 1.6 m gauge, negotiates a curve of 
40 m radius at 60 km/h. The track is banked at 10°. The wheels have an external diameter of 0.8 m and 
each pair with axle has a mass of 250 kg. The radius of gyration for each pair is 0.4 m. The height of 
centre of gravity of the car above the wheel base is 0.9 m. Determine the pressure on each rail, allow-
ing for centrifugal and gyroscopic couple actions.

 Solution

Here M 2500 kg, a 1.6 m, R 40 m, v
60 1000

3600
16 67 m/s. , 10°, r

w
0.4 m, 

M
w

250 kg, K
w

0.4 m, h 0.9 m.
Let R

A
 and R

B
 be the reactions at A and B, respectively. The various forces acting on the trolley 

car are shown in Fig.13.14.

Fig.13.14 Forces acting on a vehicle negotiating a curve

Resolving the forces perpendicular to the track, we have

R R Mg
Mv

RA B  cos
sin

. cos
( . ) sin

2

2

2500 9 81 10
2500 16 67 100

40
24152 4 3015 93

27168 33

. .

.  N

Now taking moments about B, we have

R a Mg
Mv

R

a
Mg

Mv

RA cos
sin

cos
cos2 2

2
hh

RA 2500 9 81 10
2500 16 67 10

40
0 5

250

2

. cos
( . ) sin

.

00 9 81 10
2500 16 67 10

40
0 91 6

1358

2

. sin
( . ) cos

. / .

44 17 7225 58 6358 59. . .  N
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R

v

r

v

R

B

w
w

p

20809 74

16 67

0 4
41 675

16 67

40
0 4

.

.

.
.

.
.

 N

 rad/s

11675

250 0 4 41 675

2

2

 rad/s

 C I

M K

p

w w w p

cos

cos

. . cos .

.

10 0 41675

684 17 Nm

The force at each pair of wheels on each rail due to the gyroscopic couple,

P
C

a
684 17

1 6
427 6

.

.
.  N

Due to this force the car would tend to overturn about the outer wheels. Total pressure on the inner 
rail,
 P

i
R

A
 – P

  6358.59 – 427.6

  5930.99 N

Pressure on the outer rail,

 P
o

R
B

P

  20809.74 427.6

  21237.34 N

13.9 STABILITY OF A TWO-WHEEL VEHICLE TAKING A TURN
Consider a two-wheel vehicle taking a right turn as shown in Fig.13.15(a).

Let W weight of the vehicle and its rider
 h height of C.G. of the vehicle and the rider

 r
w

wheel radius

 R track radius

 I
w

moment of inertia of each wheel

 I
e

moment of inertia of engine rotating parts

 
w

angular velocity of wheels

 
e

angular velocity of engine rotating parts

 i
e
/

w
gear ratio

 v linear velocity of vehicle r
w w

 angle of heel or inclination of vehicle to the vertical
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The effects of various forces are as follows:

1. Gyroscopic couple.

v r
w w

or 
w

w

e w
w

P

v

r

i
iv

r

v

R

Gyroscopic couple, C I I v I iI
r Rg w w e e p w e
w

( ) cos ( )
cos

2 22
 

Take ve sign when direction of rotation of wheels and engine is same.

Fig.13.15 Two wheel vehicle taking a turn
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2. Centrifugal couple.

Centrifugal force, F
Wv

Rgc

2

Centrifugal couple, C
c

F
c
  ·  h cos

Total overturning couple, C
o

C
g

C
c

v
I iI

r

Wh

g R
w e

w

2 2 cos

 

(13.14)

Balancing couple, C
b

Wh sin  (13.15)

For equilibrium of the vehicle (i.e. no skidding),

C
o

C
b

v
I iI

r

Wh

g R
Whw e

w

2 2 cos
sin 

or                              tan /v
l il

r

Wh

g
WhRw e

w

2 2

 

(13.16)

Example 13.25

The road wheels of a motor cycle have 0.6 m diameter and moment of inertia of 1.5 kg m2. Its rotating 
parts have a moment of inertia of 0.3 kg m2. The speed of engine is six times the speed of wheels and 
in the same direction, the weight of the motor cycle and its rider is 2 kN and its C.G. is 0.6 m above 
the road level.

Find the heel angle if the motor cycle is travelling at 45 km/h and taking a turn of 30 m radius, 
when the motor cycle is standing upright and the rider is sitting on it.

 Solution

Given: I
w

1.5 kg m2 , I
e

0.3 kg m2 , W 2 kN, h 0.6 m, r
w

0.3 m,

 v 45 km/h, i 6, R 30 m

 tan v2[(2I
w

iI
e
)/r

w
Wh/g]/(WhR)

  (45 1000/3600)2 [(2 1.5 6 0.3)/0.3 2000 0.6/9.81]/(2000 0.6×30)

  0.60036

 30.98°

Example 13.26

A thin disc is fixed to a shaft in such a way that it makes an angle of 2° with a plane at right angles 
to the axis of the shaft. The disc weights 25 N and it has a diameter of 0.5 m. If the shaft rotates at 
1000 rpm, find the gyroscopic couple acting on the bearing.

 Solution

Given: W 25 N, r 0.25 m, 2°, 2 1000/60 104.72 rad/s

 C
disc

W 2 r2 sin 2 /(8g)

  25 (104.72)2 (0.25)2 sin 4°/ (8 9.81)

  184.45 N m
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Example 13.27

A wheel of a vehicle travelling on a level track at 80 km/h, falls in a spot hole 15 mm deep and rises 
again in a total time of 0.15 s. The displacement of the wheel of the vehicle takes place with simple 
harmonic motion. The diameter of wheel is 1.5 m and the distance between the wheel centres is 1.8 m. 
The wheel pair with axle have a moment of inertia of 500 kg m2. Determine the magnitude and gyro-
scopic effects produced with this phenomenon.

 Solution

 Given: v 80 1000/3600 22.22 m/s

 I
w

500 kg m2, r
w

0.75 m, a 1.8 m, h 15 mm, t 0.15 s

Amplitude, A
o

h/2 7.5 mm

Maximum velocity while falling, v
max

2  A
o
/t

  2 7.5 10 3/0.15 0.314 m/s

 
p

v
max

/a 0.314/1.8 0.174 rad/s

 v/r
w

22.22/0.75 29.63 rad/s

 C I
w
 ·  · 

p

  500 29.63 0.174 2577.8 N m

As the axle goes down, the effect of this is to tend to turn the vehicle towards left as it moves 
forward.

Example 13.28

The moment of inertia of each wheel of a motorcycle is 1.5 kg m2. The rotating parts of the engine 
of the motor cycle have a moment of inertia of 0.28 kg m2. The speed of the engine is six times the 
speed of the wheels and is in same direction. The mass of the motor cycle is 250 kg and its centre of 
gravity is 0.6 m above the ground level.

Find the angle of heel if the motor cycle is travelling at 45 km/h and is taking a turn of 30 m radius. 
The wheel diameter is 0.6 m.

 Solution 

Given I
w

1.5 kg m2, I
e

0.28 kg m2, M 250 kg, h 0.6 m, v
w

45 km/h or 12.5 m/s, i 6, 
R 30 m, d

w
0.6 m

tan

.
.

v

I iI

r
Mh

WhRw

w e

w2

2

2

12 5
2 1 5 6 0 28

0 3
250 0 6

250 9 81 0 6 30
0 58614

30 376

.

.
.

. .
.

.
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Example 13.29

A racing motor cycle travels at 150 km/h round a curve of 120 m radius measured horizontally. The 
motor cycle and rider have a mass of 160 kg and their centre of gravity lies at 0.75 m above the ground 
level when the motor cycle is vertical. Each wheel is 0.6 m in diameter and has moment of inertia 
about its axis of rotation 1.5 kg m2. The engine has rotating parts whose moment of inertia about their 
axis of rotation is 0.3 kg m2 and rotates at five times the wheel speed in the same direction.

Find (a) the correct angle of banking of the track so that there is no tendency to side slip, and  
(b) the correct angle of inclination of the motor cycle and the rider to the vertical.

 Solution

Given: I
w

1.5 kg m2, I
e

0.3 kg m2, M 160 kg, h 0.75 m, v
w

150 km/h or 41.67 m/s, i 5, 
R 120 m, d

w
0.6 m

tan

.
.

v

I iI

r
Mh

WhRw

w e

w2

2

2

41 67
2 1 5 55 0 3

0 3
160 0 75

160 9 81 0 75 120

.

.
.

. .
.

.

1 65915

58 922 ,, . 31 65915

Example 13.30

The moment of inertia of each wheel of a motor cycle is 2 kg m2. The rotation parts of the engine of 
the cycle have a moment of inertia of 0.3 kg m2. The speed of the engine is 6 times the speed of the 
wheels and in the same sense. The weight of the motor cycle together with the rider is 2600 N and its 
CG is 0.6 m above the ground level when the cycle is standing upright and rider is sitting on it. Find 
the average angle of inclination with vertical for equilibrium if the cycle is travelling at 60 km/h and 
taking a turn of 30 m radius. Wheel diameter is 0.6 m.

 Solution

Given: I
w

2 kg m2, I
e

0.3 kg m2, W 2600 N, h 0.6 m, v 60 km/h or 16.67 m/s, R 30 m, 
d

w
0.6 m

w
w

e

p

v

r

v

R

16 67

0 3
55 56

6 55 56 333 33

16

.

.
.

. .

 rad/s

 rad/s

..
.

cos

. .

67

30
0 556

2

12 2 55 56 0 3 333

 rad/s

C I I wg w w e e p

.. . cos

.

33 0 556

179 165 cos N.m.
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F
Wv

gR
C F hc c c

2 22600 16 67 0 6

9 81 30
1473, cos

( . ) . cos

.
co  ss

. cos . cos

sin

 Nm

C C C

C Wh

o g c

b

179 165 1473 1652 165

26000 0 6 1560

1652 165

. sin sin

sin . cos

tan

C Cb o  gives, 1560 

1 059

46 64

.

.

13.10  EFFECT OF PRECESSION ON A DISC FIXED RIGIDLY  
AT A CERTAIN ANGLE TO A ROTATING SHAFT

Consider a disc of radius r fixed rigidly to a rotating shaft (Fig.13.16) at a certain angle such that the 
polar axis of the disc makes an angle  with the shaft axis. The shaft revolves with angular speed  
about its axis OX. Let OA be the diametral axis and OP the polar axis of the disc.

Fig.13.16 Disk fixed rigidly at certain angle to a rotating shaft

Angular velocity of spin of the disc about OP  cos 

Angular velocity of precession about OA  sin 

Let I
p

polar moment of inertia of the disc about axis OP
Wr

g

2

2
Couple producing the precession, C

P
I

P
 cos  sin 

 0.5 I
P

2 sin 2

The reaction couple, C
P
 tends to turn the disc in anti-clockwise direction, when viewed from the 

top, about an axis through O in the plane of paper.
Now consider the movement of point A about the polar axis OP. In this case, OA is the axis of spin 

and OP the axis of precession.

Angular velocity of spin about OA  sin 
Let I

A
polar moment inertia of the disc about OA

Gyroscopic couple about OA, C
A

I
A
 ·  sin ·  cos 

 0.5 I
A

2 sin 2

The effect of this couple will be opposite to that of C
P
.
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Resultant gyroscopic couple acting on the disc,

C C
P
 – C

A

 0.5  2 sin 2  (I
P
 – I

A
) (13.17)

This resultant couple will be acting in anti-clockwise direction, as seen from top.

Now

 

 where radius of disc

where 

I
Wr

g
r

I

W
b r

g

P

A

2

2 2

2

12 4

,

, bb

Wr

g
l

width of disc

neglecting  for a thin disc
2

4
,

The couple exerted by a thin disc on the shaft,

 

C

W
r r

g

W r

g

disc

 

 

2
2 2

2 2

2
2 4

2

2

8

sin

sin

 (13.18)

The shaft tends to turn in the plane of paper in counter-clockwise direction as seen from the top. 
As a result, the horizontal force is exerted on the bearings.

Example 13.31

A disc has a mass of 25 kg and a radius of gyration about its axis of symmetry 120 mm while its radius 
of gyration about a diameter of the disc right angles to the axis of symmetry is 80 mm. The disc is 
pressed on to the shaft but due to incorrect boring, the angle between the axis of symmetry and the 
actual axis of rotation is 0.3°, though both these axes pass through the centre of gravity of the disc. 
Assuming that the shaft is rigid and is carried between bearings 200 mm apart, determine the bearing 
forces due to the misalignment at a speed of 4800 rpm.

Solution 

Given: M 25 kg, K
A

120 mm, K
P

80 mm, 0.3°, N 4800 rpm, l 200 mm

I MK

I MK

P P

A A

2 2 2

2 2 2

25 0 08 0 16

25 0 12 0 36

. .

. .

 kg m

 kg m

2

60

2 4800

60
502 65

0 5 2

0 5 1

2

N

C I IP A

.

. sin

. (

 rad/s

 

5502 65 0 6 0 16 0 36 264 6

264

2. ) sin . ( . . ) .

.

 Nm

Bearing force
C

l

66

0 2
1322 9

.
.  N
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Example 13.32

A gyrowheel D of mass 0.6 kg and radius of gyration 20 mm is mounted in a pivoted frame C as shown 
in Fig.13.17. The axis AB of the pivots passes through the centre of rotation O of the wheel, but the 
centre of gravity G of the frame C is 10 mm below O. The frame has a mass of 0.25 kg and the speed 
of rotation of the wheel is 3000 rpm in the counter-clockwise direction.

The entire unit is mounted on a vehicle so that the axis AB is parallel to the direction of motion of 
the vehicle. If the vehicle travels at 15 m/s in a curve of 60 m radius, find the inclination of the gyro-
wheel from the vertical, when (a) the vehicle moves in the direction of the arrow X taking a left hand 
turn along the curve and (b) the vehicle reverses at the same speed in the direction of arrow Y along 
the same path.

 Solution

Here M
w

0.6 kg, K
w

0.02 m, OG h 0.01 m, M
f

0.25 kg, N 3000 rpm,

v R

N

I M Kw w w

15 m/s  6  m

 rad/s

,

.

.

0

2

60

2 3000

60
314 2

0 62 (( . ) .

.

0 02 0 00024

15

60
0 25

2 2 kg m

 rad/sp

v

R

Let angle of inclination of gyrowheel from the vertical.w

(a) Vehicle moving in the direction of arrow X while taking left turn along the curve.
Gyro-couple about O, C

g
I

w p
 cos 0.00024 314.2 0.25 cos 

  0.018852 cos  N m

Fig.13.17 Gyrowheel mounted in a pivoted frame
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Centrifugal couple about O, C
M v

R
hc

f
2 20 25 15

60
0 01cos

.
. cos

  0.009375 cos  N m

Total overturning couple, C
o

C
g
 – C

c
(0.018852 – 0.009375) cos 

  0.009477 cos  N m (ccw)

Balancing couple due to the weight of the frame,

 C
b

M
f
gh sin 

  0.25 9.81 0.01 sin 
  0.024525 sin  N m (cw)

For the equilibrium condition, C
o

C
b

 0.009477 cos 0.024525 sin 
 tan 0.38642
 21.12°

(b) Vehicle reverses at the same speed in the direction of arrow Y along the same path.

 C
o

C
g

C
c

(0.018852 0.009375) cos 

  0.028227 cos 

For the equilibrium condition, C
o

C
b

 0.028227 cos 0.024525 sin 

 tan 1.15095

 49.01°

13.11 GYROSCOPIC ANALYSIS OF A GRINDING MILL
A grinding mill uses the gyroscopic effects to boost the crushing force. The grinding mill is shown in 
Fig.13.18. It consists of a conical roller, which is placed symmetrically in a pan and is free to rotate 
on a shaft which is hinged to the central driving shaft. When the driving shaft rotates, the roller moves 
around the pan and crushes the material placed within it. The crushing is caused not only by the weight 
of the roller but by additional force which is produced by gyroscopic action.

Let  angular velocity of roller, represented by OA
 

1
angular velocity of driving shaft, represented by OB

 
r

resultant velocity vector
Point D is the intersection of the vector for 

r
 and the line of contact between roller and pan floor. 

At this point, the roller will have no relative velocity with respect to the pan floor.

In OAC, we have

   

or                                  

OA AC

OA

sin( ) sin  

AAC w

D
r

r
o

sin( )

sin

 







1

1

Also at point ,            

where r radius of the roller at the cross-section containing point D.
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Fig.13.18 Gyroscopic analysis of grinding mill

The gyroscopic couple,         C I I ig p p e   1 1
2sin sin ccos

sin sin cos

( ) cos



    



I
r

r
I I

I I
I

p
o

p e

p e

p

1
2

1
2

rr

r
o  1

2 sin
 

(a)

By taking moments of all forces, we have

C
g

F(r
o

r cos ) cot  – mg (r
o

r cos ) Pr
o
 (b)

where P total crushing force

 m mass of roller

 F centrifugal force

From (a) and (b), we get

P

mg

r

r mgr
I I I

r

ro o

p e p
o1 1

2

cos
sin

cos
 


F

mg

r

ro

cot
cos


1

 

(13.19)

For 90°, that is when the roller is circular, we get

or 

P

mg

I

mgr

P mg
I

r

p

p

1 1
2

1
2




 (13.20)
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Example 13.33

In a crushing mill for cereals, the mass of roller is 100 kg. The roller is cylindrical in shape with 100 cm  
diameter. The polar mass moment of inertia of each roller is 160 kgm2. The driving shaft runs at 90 rpm  
and the radius of roller at the centre of the grinding point is 70 cm. Determine the total crushing 
force.

 Solution

Here  cm  m kg  kg m  m 90
100

2
50 0 5 100 16 0 72, . , , , .r m I rp o






1

1
2

2

2 90

60
9 42

1

1
16 9 42

100 9 81

.

( . )

.

 rad/s

P

mg

I

mgr
p

00 5
3 89

.
.

Example 13.34

A thin circular disc is fitted to a shaft as shown in Fig.13.19. Weight of the disc is 500 N and diameter 
is 1.2 m. Shaft rotates at 300 rpm in anti-clockwise direction when seen from the right side. Find the 
effect of gyroscopic couple on the shaft and the bearing reactions at A and B taking the effect of weight 
of the disc.

Fig.13.19 Inclined disc mounted on a shaft

 Solution

Given: W 500 N, r 0.6 m, N 300 rpm, 20°




 

2 300

60
31 41

2

8

500 31 41 0 62 2
2 2

.

sin . . s

 rad/s

C
W r

g

iin

.
.

40

8 9 81
1454 5 N m

Bearing reactions due to gyroscopic couple, R
C

RA B2 5
581 8 581 8

.
. , . , N   N
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Bearing reactions due to self weight, R RA B

500 1 5

2 5
300 200

.

.
,N  N

Resultant bearing reactions, R R R R R RA A A B B B881 8 318 8. , . N  N

Example 13.35

The rotor of a turbojet engine has a mass of 200 kg and a radius of gyration 250 mm. The engine 
rotates at a speed of 1000 rpm in the clockwise direction if viewed from the front of the aeroplane. The 
aeroplane while flying at 1000 km/h turns with a radius of 2 km to the right. Compute the gyroscopic 
moment exerted by the rotor on the plane structure. Also determine whether the nose of the plane tends 
to rise or fall when the plane turns.

 Solution

Given: M
e

200 kg, K
e

250 mm, N
e

1000 rpm, v 1000 km/h, R 2 km

I
e

M
e
K

e
2 200 (0.25)2 12.5 kg m2

e

p

2 1000

60
104 72

1000 1000

3600 2000
0 139

.

.

 rad/s

 ra
v

R
dd/s

C I
e e p

12.5 104.72 0.139 181.95 N m

The nose tends to fall.

Example 13.36

A disc of mass 100 kg and radius of gyration 0.5 m is supported as shown in Fig.13.20. When the disc is 
rotating at 100 rad/s the cord on the right hand side bearing gets broken. Discuss the motion of the disc.

 Solution 

Given: M 100 kg, K 0.5 m, 100 rad/s, 
1

0.3 m, 
2

0.7 m
Applied torque due to disc mass, C mg

1
100 9.81 0.3 294.3 N m

Gyroscopic couple, C
g

mk2 w
p
  100 (0.5)2 100

p
2500 

p

C
g

C gives, 
p

0.11772 rad/s

Fig.13.20 Disc mounted on a hanging shaft
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Example 13.37

A uniform disc of 250 mm diameter has a mass of 15 kg. It is mounted centrally on a horizontal shaft 
running bearings 200 mm apart. The disc spins with a uniform speed of 1800 rpm in vertical plane 
in ccw direction looking from RHS bearing. The shaft precesses with a uniform speed of 60 rpm in 
horizontal plane in ccw direction when looking from top.

Determine the bearing reactions due to the disc mass and gyroscopic effects.

 Solution

Given: r = 0.125 m, M = 15 kg,  = 200 mm, N = 1800 rpm, N
p
 = 60 rpm

 I 0.5 mr2 0.5 15 (0.125)2 0.1172 kg m2

2

60

2 1800

60
2

60

2 60

60

N

N

C

p

p

188 5 rad/s

6 28 rad/s

.

.

I wp 0. . . .1172 188 5 6 28 138 81 Nm (ccw)

Taking moments about bearing B, we have

0.2 F
A

138.81, F
A

F
B

694 N

Reaction force, F
A

694 N , F
B

694 N

Reaction due to disc mass, R RA B  73 58 N
15 9 81 0 1

0 2

. .

.
.

Resultant reactions, R RA B– . , .62 42 N  768 58 N0

Example 13.38

The turbine rotor of a ship has a mass of 2000 kg and rotates at a speed of 3000 rpm clockwise when 
looking from stern. The radius of gyration of the rotor is 0.5 m. Determine the gyroscopic couple and 
its effects upon the ship when the ship is steering to the right in a curve of 100 m radius at a speed of 
16.1 knots (1 knot 1855 m/hr). Calculate also the torque and its effect when the ship is pitching in 
simple harmonic motion, the bow falling with its maximum velocity. The period of pitching is 50 and 
total angular displacement between the two extreme positions of pitching is 12°. Find the maximum 
acceleration during pitching motion.

 Solution

Given: M 2000 kg, N 3000 rpm (cw), K 0.5 m, R 100 m,

v t p16 1 knots 8 3 m/s  5  s  2 12  or

6

.
.

. , ,
16 1 1855

3600
0

  or 1 47 rad0 0.

(i) Gyroscopic couple:

2 N

60

2 3000

60
314 16 rad/s

83 rad/s

.

.
.p

v

R

8 3

100
0 0
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Moment of inertia, I MK2 2000 (0.5) 2 500 kg m2

Gyroscopic couple, C I
p

500 314.16 0.083 13037.6 N m

As the rotor rotates clockwise when viewing from the stern and ship steers to the right, therefore, 
the reaction couple tends to lower the bow and raise the stern.

(ii) Torque during pitching:

Angular speed of pitching, 
 

1

2 2

50
1257 rad/s

t p

0.

Maximum angular velocity of precession, (
p
)

max 1
0.1047 0.1257 0.01316 rad/s

Maximum gyro-couple, C
max

 I  (
p
)

max
500 314.16 0.01316 2066.7 N m

Maximum angular acceleration,  max

2 3 21 47 1257 1 654 1 rad/s1
2 0 0 0 0. . .

Example 13.39

The heavy rotor of a sea vessel rotates at 2000 rpm clockwise looking from the stern, its mass being 
750 kg. The vessel pitches with an angular velocity of 1 radian/s.

Determine the gyroscopic couple transmitted to the hull, when bow is rising, if the radius of gyra-
tion for the rotor is 250 mm. Also show, in what direction the couple acts on the hull.

 Solution

Given: M 750 kg, N 2000 rpm (cw), K 0.25 m, 
p

1 rad/s

w p p

w

2

60

2 2000

60
0

8 3

100
0 0

N

v

Rp

2 9 44 rad/s

83 rad/s

.

.
.

Moment of inertia, I MK2 750 (0.25)2 46.875 kg m2

Gyroscopic couple, C I
p

46.875 209.44 1 9817.5 N m

When bow is rising the reactive gyro-couple acts in the clockwise direction as viewed from stern 
and tends to turn the vessel to the right towards star board.

Example 13.40

A four-wheel motor car of mass 2000 kg has a wheel base 2.5 m, track width 1.5 m, and the height 
of C.G. 500 mm above the ground level and lies at 1 m from the front axle. Each wheel has an effec-
tive diameter of 0.8 m and M.I. of 0.8 kg m2. The drive shaft, engine flywheel and transmission are 
rotating at 4 times the speed of load wheel, in clockwise direction when viewed from the front, and is 
equivalent to a mass of 75 kg having a radius of gyration of 100 mm. If the car is taking a right turn of 
60 m radius at 60 km/h, find the load on each wheels. 

 Solution

Given: M 2000 kg, a 1.5 m, l 2.5 m, l
1

1 m, l
2

1.5 m, h 0.5 m, d
w

0.8 m,  
I

w
0.8 kg m2, i 4, M

e
75 kg, K

e
0.1 m, R 60 m, v 60 km/h or 16.67 m/s

Refer to Fig.13.21.
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(a) Dead weights:

Total weight of motor car, W Mg 2000 9.81 19620 N

On each rear wheel, 
Wr

2

19620 1

2 5 2.
3924 N  (upwards)

On each front wheel, 
Wf

2

19620 1 5

2 5 2

.

.
5886 N (upwards)

(b) Centrifugal couple: 

C
Mv h

Rc

2 22000 16 67 0 5

60

( . ) .
.4631 5 Nm

Q C

a2 2
c

4631 5

3
1543 83

.
.  N ,  vertically upwards on outer and downwards 

on inner wheels.

(c) Gyroscopic couple:

(i) Due to wheels: 

w

v

rw

16 67

0 4

.

.
.41 675 rad/s

pw

v

R

16 67

60
0

.
.278 rad/s

Fig.13.21 Four-wheel vehicle taking a turn
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C
gw

4I
w w pw

4 0.80 41.675 0.278 37.052 N m

P C

a2 2

37 052

3
gw 12 35 N

.
. ,  downwards on inner and upwards on outer wheels.

(ii) Gyroscopic couple due to engine flywheel and transmission etc:
 

e
i

w
 rad/s

 
pe pw

I M Ke e e
2 2 275 0 1 0 75. . . kg m

 C
ge

l
e e pe

0.75 4 41.675 0.278 34.757 N m

F C

l
ge

2 2

34 757

5
6 95

.
.  N, downwards on front and upwards on rear wheels.

For motor car taking a right turn, the reactions are: 

R
W Q P F

R
W Q

f

f

1

2

2 2 2 2
5886 1543 83 12 35 6 95 4322 87

2 2

– . – . – . .  N

P F

R
W Q P Fr

2 2
5886 1543 83 12 35 6 95 7449 13

2 2 2 2
33

. . . .  N

9924 1543 83 12 35 6 95 2360 87

2 2 2 2
3924 15434

– . – . – . .  N

R
W Q P Fr .. . . .83 12 35 6 95 5487 13 N

Example 13.41

A motor cycle along with the radius has mass 310 kg and the system centre of gravity is 60 cm above 
the ground level. Each wheel of the machine has mass 10 kg, radius 30 cm and radius of gyration 
25 cm. The rotating parts of the engine have equivalent mass 15 kg and radius of gyration 8 cm 
and they rotate in the same direction as the road wheels. The gear ratio from wheel to engine is 1.8.  
Calculate the angel of banking necessary for the machine to ride normal to the banking track on a bend 
of 80 m radius at a speed of 150 km/h.

 Solution

Given: M 310 kg, h 0.6 m, M
w

10 kg, r
w

0.3 m, K
w

0.5 m, M
e

15 kg, K
e

0.08 m, 
i 1.8, R 80 m, v 150 km/h or 41.67 m/s

Moment of inertia of wheel, I M Kw w w  kg m2 2 210 0 25 0 625. .

Moment of inertia of engine, I M Ke e e
2 2 215 0 08 0 096. .  kg m

Gyro-couple, C
v

Rr
I iIg

w
w e

2

2 cos

( . )

.
. . . cos

. cos

41 67

80 0 3
2 0 625 1 8 0 096

102 939

2
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Centrifugal couple, C
Mv h

Rc

2

cos

310 41 67 0 6

80
4037 1

2( . ) .
cos . cos   N m

Balancing couple, C
b

Mgh sin 310 9.81 0.6 sin 1824.66 sin 

For equilibrium, C
b

C
g
 C

c

 1824.66 sin (102.939 4037.1) cos 

 tan 2.26894

 Angle of heel, 66.21°

Example 13.42

The engine and the propeller of an aeroplane weights 5 kN and the radius of gyration is 50 cm, The 
propeller rotates at 3000 rpm in clockwise direction looking from the rear. If the aeroplane makes 
quarter of a circle turn of radius 100 m towards left hand side while flying at 240 km/hr, what gyro-
scopic couple will act on the aeroplane frame and what will be its effect? 

 Solution

Given: W 5kN, K 0.5 m, N 3000 rpm (cw), R 100 m, v 240 km/h or 66.67 m/s

I MK

N

2 2 25000

9 81
0 5 127 421

2

60

2 3000

60

.
. .  kg m

w p p
314 16

66 67

100
0 6667

127 421 31

.

.
.

.

 rad/s

 rad/sw
ww

p

p

v

R
C I 44 16 0 6667 26688. .  N m

Effect: Raise the nose and lower the tail of the aeroplane.

Example 13.43

The mass of the turbine rotor of a ship is 15 tonnes and has a radius of gyration of 0.5 m. Its speed 
is 1800 rpm. The ship pitches 5° above and 5° below the horizontal position. A complete oscillation 
takes 30 s with SHM. Determine (a) maximum gyroscopic couple, (b) maximum angular acceleration 
of the ship during pitching, and (c) the direction in which bow will tend to turn when rising, if the 
rotation of the rotor is clockwise when looking from the aft.

 Solution

Given: M 15,000 kg, K 0.5 m, N 1800 rpm, A 5°, t
p

30 s


 2

60

2 1800

60

N
188 5 rad/s.

A


180
5 873 rad0 0.
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I MK 2 15,000 (0.5) 2 3750 kg m 2

(a) 
 

o

pt

2 2

30
0 2094.  rad/s

(
p
)

max
A

o
0.0873 0.2094 0.0183 rad/s

C
max

I (
p
)

max
3750 188.5 0.0183 12936 N m

(b) Maximum angular acceleration during pitching A o
2

 0.0873 (0.2094)2 0.00383 rad/s2

(c) When the rotation of motor is clockwise, looking from aft while bow is rising, the reactive gyro-
couple acts in clockwise direction which tends to turn the bow towards right (Star board)

Example 13.44

Find the angle of inclination with respect to the vertical of a two-wheeler negotiating a turn for the 
following data:

Combined mass of vehicle with its rider 300 kg

Moment of inertia of engine flywheel 0.35 kg m2

Moment of inertia of each road wheel 1.10 kg m2

Speed of engine flywheel 5 speed of road wheels in the same direction

Height of centre of gravity of rider with vehicle 0.6 m

Speed of two-wheeler 90 km/h

Wheel radius 0.3 m

Radius of turn 50 m

 Solution

Given: M 300 kg, I
e

0.35 kg m2, I
w

1.10 kg m2, i 5, h 0.6 m, 

v
90 10

3600

3

25 m/s, r 0.3 m, R 50 m

w
w

e w

p

v

r

i

v

R

25

0 3
83 33

5 83 33 416 67

2

.
.

. .

 rad/s

 rad/s

55

50
0 5  rad/s.

Gyro-couple, C
g

(2I
w w

 I
e e

) 
p
 cos 

 (2 × 1.10 × 83.33 0.35 × 416.67) 0.5 cos 

 164.58 cos  N m

Centrifugal force, F
Mv

Rc

2 2300 25

50
3750 N
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Centrifugal couple, C
c

F
c
h cos 

  3750 0.6 cos 2414.58 cos  N m

Balancing couple, C
b

mgh sin 300 9.81 0.6 sin 1765.8 sin  N m
For equilibrium of vehicle, C

b
C

o

 1765.8 sin 2414.58 cos 

 tan 1.3674

 53.82°

Example 13.45

A four wheeled vehicle of mass 2200 kg has a wheel base 2.5 m, track width 1.5 m and height of 
centre of gravity 0.5 m above the ground level and lies at 1 m from the front axle. Each wheel has an 
effective diameter of 0.8 m and a moment of inertia of 0.85 kg m2. The drive shaft, engine flywheel 
and transmission are rotating at 4 times the speed of road wheel, in a clockwise direction when viewed 
from the front, and is equivalent to a mass of 80 kg having a radius of gyration of 0.1 m. If the vehicle 
is taking a right turn of 60 m radius at 60 km/h, calculate the load on each wheel.

 Solution

Given: M 2200 kg, l 2.5 m, a 1.5 m, h 0.5 m, l
1

1 m, r
w

0.4 m, I
w

0.85 kg m2, i 4, 

M
e

80 kg, K
e

0.1 m, R 60 m, v
60 10

3600

3

16 67 m/s.

W Mg 2200 9.81 21582 N

Wf

21582 1 5

2 5
12949 2

.

.
.  N

W
r

21582 – 12949.2 8632.8 N

Weight on each front wheel 
Wf

2

12949 2

2
6474 6

.
.  N

Weight on each rear wheel 
Wr

2

8632 8

2
4316 4

.
.  N

 

w
w

p

v

r

v

R

16 67

0 4
41 675

16 67

60
0 278

.

.
.

.
.

 rad/s

 rad/s

Gyro-couple due to four wheels, C
w

4I
w w p

 4 0.85 41.675 0.278 39.39 N m

I M Ke e e
2 2 280 0 1 0 8. .  kg m

Gyro-couple due to engine etc., C
e

I
e e p

I
e
 ×i

w p

 0.8 4 41.675 0.278 37.07 N m
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The gyro-couple due to wheels tends to lift the inner wheels and to press the outer wheels. The 
reaction will be vertically downwards on the inner wheels and vertically upwards on the outer wheels.

Reaction at each of the inner and outer wheel, 
P C

a
w

2 2

39 39

2 1 5

.

.
.13 13 N

The gyro-couple due to engine etc. tends to lift the front wheels and to press the rear wheels. The 
reaction will be vertically downwards on the front wheels and vertically upwards on the rear wheels.

F C

l
e

2 2

37 07

2 2 5
7 41

.

.
.  N

Centrifugal force,  F
Mv

Rc

2 22200 16 67

60
10189

( . )
 N

Centrifugal couple, C
c

F
c

h 10189 0.5 5094.6 N m

The centrifugal couple tends to reduce the pressure on the inner wheels and to increase on the 
outer wheels. The reactions are vertically downwards on the inner wheels and vertically upwards on 
the outer wheels.

Q C

a
c

2 2

5094 6

2 1 5
1698 2

.

.
.  N

The forces acting on the wheels are shown in Fig.13.22.

Load on front wheel 1
2 2 2 2

W P F Qf

  6474.6 – 13.13 – 7.41 – 1698.2 4755.86 N

3

1 2

4

a

l C.G.

Front

View

Right turn

l2

l1

Wr /2

P/2

F/2

Q/2

Wr /2

P/2

F/2

Q/2

Wf /2

P/2

F/2

Q/2

Wf /2

P/2

F/2

Q/2

Rear

Fig.13.22 Four-wheel vehicle taking a turn
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Load on front wheel 2
2 2 2 2

W P F Qf

  6474.6 13.13 – 7.41 1698.2 8178.52 N

Load on rear wheel 3
2 2 2 2

W P F Qr

  4316.4 – 13.13 7.41 – 1698.2 2612.48 N

Load on rear wheel 4
2 2 2 2

W P F Qr

  4316.4 13.13 7.41 1698.2 6035.14 N

Example 13.46

An automobile is travelling along a curved track of 200 m mean radius. Each of the four road wheels 
have a mass of 80 kg with a radius of gyration of 0.4 m. The rotating parts of the engine have a mass 
moment of inertia of 10 kg m2. The crankshaft rotates in the same direction as the road wheels. The 
gear ratio of the engine to the back wheels is 5:1. The vehicle has a mass of 3000 kg and its centre 
of gravity is 0.5 m above the road level. The width of the track of the vehicle is 1.5 m. Calculate the 
limiting speed of the vehicle around the curve for all four wheels to maintain contact with the road 
surface. 

Solution 

Given: R 200 m, m 80 kg, K 0.4 m, 
e

10 kg  ·  m2, i 5:1,

 M 3000 kg, h 0.5 m, a 1.5 m, v ?

 I
w

mK2 80  (0.4)2 12.8 kg  ·  m2

 K r r K2 20 5 2 2 0 4 0 5657. , . .w w m

w
v/r

w
v/0.5657 rad/s,

p
v/R v/200 rad/s

 C 4 I
w w p

I
e
i

w p

 4  12.8  v/0.5657  v/200 10  5  v/0.5657  v/200

 0.89446 v2

 P/2 C/(2a) 0.89466 v2/3 0.29816 v2

 C
c

Mv2h/R 3000  v2  0.5/200 7.5 v2

 Q/2 C
c
/(2a) 7.5 v2/3 2.5 v2

 P
i

W/4 – P/2 – Q/2

For           P
i

 0, W  2 (P Q)

 3000  9.81 2  2  (0.29816 2.5)  v2

 v2 2629.41, v 51.28 m/s or 184.6 km/h.
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Summ ary for Quick Review

1 Gyroscope is a body which while spinning about an axis is free to move in other direction under 
the action of external forces.

2 Axis of spin is the axis about which the body revolves.

3 Gyroscopic effect: Consider a body spinning about an axis OX. If a couple represented by a vector 
OZ perpendicular to OX is applied, then the body tries to precess about an axis OY, which is per-
pendicular to both OX and OZ. This combined effect is called gyroscopic or precessional effect.

4 The plane of spin, plane of precession, and plane of gyroscopic couple are mutually perpendicular.

5 Precession: It means the rotation about the third axis OY, which is perpendicular to both the spin 
axis OX and couple axis OZ.

6 Axis of precession: The third axis OY about which a body revolves and is perpendicular to both 
the spin axis OX and couple axis OZ, is called the axis of precession.

7 Gyroscopic couple, C  =  I   
p

 where angular speed of engine, 
p

angular speed of precession v/R, v linear velocity of 
boby, R radius of curvature.

8 Bow is the fore–end of the ship; Stern is the rear–end of the ship, Starboard is the right hand side 
of the ship while looking in the direction of motion; Port is the left hand side of the ship while 
looking in the direction of motion.

9 Steering is the turning of the ship in a curve while moving forward. Pitching is the moving of the 
ship up and down the horizontal position in a vertical plane about transverse axis; Rolling is the 
sideway motion of the ship about longitudinal axis.

10 Stability of four–wheel vehicle.
 Gyroscopic couple due to four wheels, C

W
4 I

w
 

W
  

p

 Gyroscopic couple due to other rotating parts of the engine, like flywheel etc., C
e

I
e
 . 

e
 

p

 Total gyroscopic couple, C C
w
  C

e
4I

w
 

w
.

p
  I

e
 

e
 

p
4I

w
 

w
 

p
  I

e
 

e
 

p
 where 

i
e
/

w
 is the gear ratio of engine rotating parts to wheel.

 Take ve sign when the wheel and engine rotating parts rotate in the same direction.
 Magnitude of vertical reaction at each of the outer or inner wheels, P/2 C/(2a)

11 Centrifugal effect.
 Couple tending to overturn the wheels, C

c
Wv2h/(gR)

 Vertical reaction at each of outer or inner wheel, Q/2 C
c
/2a

 Total vertical reaction at each inner wheel, P
i

W/2 – P/2 – Q/2
 Total vertical reaction at each outer wheel, P

o
W/2 P/2 Q/2

 For P
i
  0 , W/2  (P Q)/2

 or W  (P Q)
 Thus, the vehicle may overturn, when

 (a) 
w
 is high, i.e., the vehicle is running at a high speed.

 (b) h is high, i.e., the C.G. of loaded vehicle is sufficiently high above the ground.
 (c) R is small, i.e., the vehicle is taking a sharp turn.
 (d) W is large, i.e., the vehicle is overloaded.

 In order to reduce the total gyroscopic couple, the engine must be provided with a heavy flywheel 
which should rotate in the opposite direction to that of the wheels.
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12 Stability of a two-wheel vehicle
 (a) Gyroscopic couple, C

g
(2I

w
 

w
  I

e
 

e
) 

p
cos v2 (2 I

w
 iI

e
) cos /(r

w
R)

 (b) Centrifugal couple, C
c

F
c
  h cos 

 Total overturning couple, C
o
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13 Effect of precession on a disc.
 Couple producing the precession, C

p
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p
 2 sin 2

 Gyroscopic couple about OA, C
A
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 Resultant gyroscopic couple acting on the disc, C C
p
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A
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 The couple exerted by a thin disc on the shaft, C
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14 Grinding mill.

 Gyroscopic couple, C I I I r rg p e p o[( ) cos ] sin  /  1
2

   F (r
o

r cos ) cot  – mg (r
o

r cos ) Pr
o

 where P total crushing force, m mass of roller, F centrifugal force
 For 90°, i.e. when the roller is circular, 

  
P mg I rp1

2 /

Multiple Choice Questions

1 When a ship travels in sea, which of the following effects is more dangerous
(a) steering (b) pitching (c) rolling (d) all of the above.

2 The gyroscopic acceleration of a disc rotating at speed w and uniform acceleration is
(a) d /dt (b)  d /dt (c) r 2 (d) r d /dt

3 The gyroscopic couple acting on a disc of moment of inertia I, rotating with speed w and speed 
of precession w

p
, is given by

(a) I 2 
p
 (b) I p 2  (c) I  

p
 (d) I p 2 2

4 The total reaction of ground on wheels of a vehicle due to gyroscopic couple and centrifugal force 
while negotiating curve is
(a) increased on inner wheels and decreased on outer wheels
(b) decreased on inner wheels and increased on outer wheels
(c) decreased on all the wheels
(d) increased on all the wheels.

5 The axes of spin, precession and gyroscopic couple are contained in
(a) one plane (b) two planes perpendicular to each other
(c) two parallel planes (d) three planes perpendicular to one another.

6 The gyroscopic couple is introduced in a ship whose spin axis is parallel to starboard, when it is
(a) rolling (b) pitching
(c) pitching or rolling (d) neither pitching nor rolling.

7 The effect of gyroscopic torque on the naval ship when it is rolling and the rotor is spinning about 
the longitudinal axis is
(a) to raise the bow and lower the stern (b) to lower the bow and raise the stern
(c) to turn the ship to one side (d) no effect.
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8 If the propeller of an aeroplane rotates clockwise when viewed from the rear and the aeroplane 
takes a right turn, the gyroscopic effect will
(a) tend to raise the tail and depress the nose
(b) tend to raise the nose and depress the tail
(c) tilt the aeroplane about spin axis
(d) have no effect.

Answers

1. (b)  2. (b)  3. (c)  4. (b)  5. (b)  6. (b)  7. (d)  8. (a)

Review Questions

1 Define gyroscope and a gyroscopic couple.

2 Define spin and precession.

3 What are gyroscopic planes?

4 How gyroscopic couple affect the motion of an aeroplane while taking a turn.

5 Explain the effect of gyroscopic couple on a naval ship.

6 How a four-wheeled vehicle is affected by gyroscopic couple?

7 Why a two-wheeler rider leans towards the inside while negotiating a turn?

8 Discuss the gyroscopic effect in a grinding mill.

Exercises

13.1 A uniform disc of diameter 250 mm and weighing 4.5 N is mounted at one end of an arm of 
length 0.5 m. The other end of the arm is free to rotate in a universal bearing. If the disc rotates 
about the arm with a speed of 240 rpm cw, looking from the front, with what speed will it 
precess about the vertical axis?

13.2 An aeroplane makes a complete half circle of 60 m radius towards the left when flying at 
180 km/h. The rotary engine and the propeller of the plane have a mass of 35 kg with radius 
of gyration of 0.25 m. The engine runs at 2400 rpm cw, when viewed from the rear. Find the 
gyroscopic couple on the plane and state its effect on it. What will be the effect if the aeroplane 
turns to its right instead of the left?

13.3 A motor cycle and its rider together have a mass of 180 kg and their combined centre of gravity 
is 0.6 m above the ground level when the motor cycle is upright. Each road wheel is of 0.60 m 
diameter and has a moment of inertia 0.16 kg m2. The engine rotates at 5.5 times the speed of 
the road wheels and in the same sense. Determine the angle of heel necessary when the motor 
cycle is rounding a curve of 30 m radius at a speed of 50 km/h.

13.4 A racing car weighs 20 kN. It has a wheel base of 2 m, track width 1 m and height of C.G. 
0.3 above the ground level and lies mid-way between the front and rear axles. The engine 
flywheel rotates at 3000 rpm cw when viewed from the front. The moment of inertia of the 
flywheel is 4 kg m2 and moment of inertia of each wheel is 3 kg m2. Find the reactions 
between the wheels and the ground when the car takes a turn on a curve of 15 m radius 
towards right at 30 km/h. The wheel radius is 0.4 m. Take consideration the gyroscopic and 
centrifugal effects.
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13.5 One of the driving axles of a locomotive with its two wheels has a moment of inertia of  
350 kg m2. The wheels are of 1.85 m diameter. The distance between the planes of the wheels 
is 1.5 m. When travelling at 100 km/h the locomotive passes over a defective rail which causes 
the right hand wheels to fall 10 mm and rise again in a total time of 0.1 s, the vertical movement 
of the wheel being S.H.M. Find the maximum gyroscopic couple.

13.6 A ship is pitching through a total angle of 15°, the oscillation may be taken as simple harmonic 
and the complete time period us 30 s. The turbine rotor mass is 500 kg, its radius of gyration is 0.4 
m and it is rotating at 2400 rpm. Calculate the maximum value of gyroscopic couple set up by the 
rotor and its effect, when the bow is descending and the rotor is rotating clockwise looking from 
aft. What is the maximum angular acceleration which the ship is subjected to while pitching?

13.7 The propeller of an aircraft weighs 500 N and has radius of gyration of 0.8 m. The propeller 
shaft rotates at 2000 rpm, cw, as viewed from tail end. The plane turns left, making a U-turn 
of 120 m radius, at a speed of 350 km/h. Determine the gyroscopic couple and its effect on the 
aircraft. Also find the extra pressure on bearings if the distance between two bearings of the 
propeller is 0.80 m.

13.8 A disc with radius of gyration 50 mm and mass of 3 kg is mounted centrally on a horizontal 
axle of 90 mm length between the bearings. It spins about the axle at 750 rpm ccw when 
viewed from the right hand side bearing. The axle precesses about a vertical axis at 60 rpm in 
the ccw direction when viewed from above. Determine the resultant reaction at each bearing 
due to mass and the gyroscopic effect.

13.9 A two wheeler of 350 mm wheel radius is negotiating a turn of radius 80 m at a speed of  
100 km/h. The combines mass of vehicle with its rider is 250 kg. The C.G. of rider is 0.6 
m above the ground level. The mass moment of inertia of engine flywheel is 0.3 kg m2 and 
moment of inertia of each road wheel is 1.0 kg  m2. If the speed of the engine is 5 times the 
speed of the wheel and in the same direction, find angle of heel of vehicle.

13.10 The turbine rotor of a ship has a mass of 2 tonnes and rotates at 1800 rpm clockwise when 
viewed from the left. The radius of gyration of the rotor is 0.3 m determine the gyroscopic 
couple and its effect when (a) the ship turns at a radius of 250 m with speed of 30 km/h, (b) the 
ship pitches with bow rising at an angular velocity of 1 rad/s, and (c) the ship rolls at an angular 
velocity of 0.1 rad/s.

13.11 Explain what you understand by gyroscopic stabilization. Illustrate with the help of a sketch 
how this is carried out in ships. Obtain a relation between the gyroscopic torque and the couple 
applied by the waves for complete stabilization if the waves be sinusoidal.

13.12 For a single cylinder engine determine the bearing forces caused by the gyroscopic action of 
the flywheel (I  =  0.32 kg m2) as the engine traverses a 305 m radius curve at 96.6 km/h in a 
turn to the right. The engine speed is 3300 rpm and it is turning clockwise when viewed from 
the front of the engine. The centre distance between the bearings is 152 mm. [Ans. 64 N]

13.13 Explain the following:
(a) Gyroscopic stabilization of sea vessels
(b) Effect of gyroscopic couple on the stability of an automobile negotiating a curve
(c)  What are the principle of a gyroscope? Discuss the factors that effect the stability of an 

automobile while negotiating a curve.
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(d)  How is the magnitude and direction of the gyroscopic couple fixed?
(e)  Describe the effect of the gyroscopic couple on pitching, rolling and steering of a ship with 

neat sketches indicating the direction of couple vector, spin vector and precession vector.
(f)  Deduce and expression for the couple that is called into play in the case of a wheel rotating 

with uniform angular velocity in order to maintain a given rate of precession.

13.14 The rolling moment on a ship at a given instant is 12    106 Nm clockwise when viewed from 
the rear. The rotor of the stabilizing gyroscope is of 12    104 kg mass and spins at 1200 rpm 
clockwise when viewed from above. If the radius of the wheels about the spin axis is 2 m, 
determine the angular velocity of the precession to maintain the ship in an upright position.  
 [Ans. 0.796 rad/s (ccw) viewed from rear]Gyroscopic and  Precessional Motion 
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GEARS

14.1 INTRODUCTION
A gear may be defined as any toothed member designed to transmit or receive motion from another 
member by successively engaging tooth. The smaller gear is called the pinion and the bigger one the 
gear wheel. They are used in metal cutting machine tools, automobiles, tractors, hoisting and trans-
porting machinery, rolling mills, etc.
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Fig.14.1 Types of gears

The gears provide many advantages over other modes of power transmission likes belts, ropes, and 
chains etc. Some of their advantages are:

1. They occupy lesser space.

2. There is no slip between the gears in mesh and provide exact speed ratio.

3. They can transmit higher power.

4. Their efficiency is higher.

However, the error in tooth meshing may cause undesirable vibration and noise during operation.
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14.2 CLASSIFICATION OF GEARS
The gears may be classified as follows:

1. Spur gears: A spur gear is a cylindrical gear whose tooth traces are straight line generators of the 
reference cylinder [Fig.14.1(i)].

2. Helical gears: This is similar to the spur gear in which the tooth traces are helices. [Fig.14.1(ii)].

3. Double helical (or herringbone) gears: It is a cylindrical gear in which a part of the face width is 
right hand and the other left hand, with or without a gap between them [Fig.14.1(iii)].

4. Spiral gears: In spiral gears, the tooth traces are curved lines other than helices.[Fig.14.1(ix).

5. Bevel gears: The reference surface is a cone in bevel gears. The bevel gears may be straight, spiral, zerol, 
and face gears. In zerol bevel gears, the teeth are curved in the lengthwise direction and are arranged in 
such a manner that the effective spiral angle is zero. In face gears, the bevel gear teeth are cut on the flat 
face of the blank. A crown gear is a bevel gear with a reference cone angle of 90° [Fig 14.1(vi)].

6. Hypoid gears: They are similar to the spiral bevel gears with the difference that the axes of the 
shafts do not intersect. [Fig.14.1(viii)].

7. Worm gears: In these gears, there are screw threads on the worm and teeth on the worm wheel. 
[Fig.14.1(vii)].

8. Planetary gears: A gear pair or a gear train one of whose axes, instead of being fixed in position in the 
mechanism of which the gear pair is a part, moves around the other is called planetary gear train.

Gears may also be classified based on the orientation of the shafts as:

 1. Parallel shafts: spur, helical, and double helical gears.

 2. Intersecting shafts: straight bevel, spiral bevel, zerol bevel, and face gears.

 3. Non-parallel and non-intersecting shafts-spiral, hypoid, and worm gears.

Gears may be of the external, internal, and rack and pinion type. In external gears, the teeth of gears 
mesh externally, whereas in internal gears the teeth of the two gears mesh internally. A rack is a gear 
of infinite radius.

14.3 GEAR TERMINOLOGY
A spur gear pair in mesh is shown in Fig.14.2. The various terms releated to gears are defined as follows:

Fig.14.2 Gear terminology
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Pitch circle: It is an imaginary circle which by pure rolling action, would give the same motion as the 
actual gear.

Pitch circle diameter (d): It is the diameter of a circle which by pure rolling action would produce the 
same motion as the toothed gear wheel.

Base circle: It is the circle from which involute form is generated.

Pitch surface: It is the surface of the disc which the toothed gear has replaced at the pitch circle.

Pitch point: It is the pitch of the tangency or the point of contact of the two pitch circles of the mating gears.

Circular pitch (p): It is the distance measured along the circumference of the pitch circle from a point 
on one tooth to a corresponding point on the adjacent tooth.

 p  d/z (14.1)
where z  number of teeth.

Base pitch (P
b
): It is the distance measured along the circumference of the base circle from a point on 

one tooth to a corresponding point on the adjacent tooth.

 Base pitch, p
b
  p  cos  (14.2)

where   pressure angle of gear tooth profile.

Diametral pitch (P): It is expressed as the number of teeth per unit pitch circle diameter.
 P  z/d (14.3)
 Pp   (14.4)

Module (m): It is expressed as the length of the pitch circle diameter per unit number of teeth.
 m  d/z  1/P (14.5)

Addendum (h
a
): The radial height of the tooth above pitch circle.

Addendum circle: A circle bounding the top of the teeth.

Dedendum (h
f
): The radial depth of a tooth below the pitch circle.

Dedendum circle: A circle passing through the roots of all the teeth.

Clearance (c): The radial height difference between addendum and dedendum of a teeth.

Working depth: It is the radial distance of tooth from addendum circle to clearance circle.

Total depth: It is the sum of addendum and dedendum or the radial distance from dedendum circle to 
addendum circle.

Face: The part of the tooth surface lying below the pitch surface.

Backlash: The minimum distance between the non driving side of a tooth and adjacent side of the 
mating tooth at the pitch circle.

Profile: The curve forming face and flank.

Tooth thickness (t): This is the arc distance measured along the pitch circle from its intercept with one 
flank to its intercept with the other flank of the same tooth.

Face width (b): The width of the gear tooth measured axially along the pitch surface.

Top land: It is the surface of the top of the tooth

Tooth fillet: The radius that connects the root circle to the profile of the tooth.

Tooth space: It is the width of the space between two teeth measured on the pitch circle.

Pressure angle (a): The angle between the common normal at the point of contact and the common 
tangent at the pitch point. The pressure angle is either 14.5° or 20°.

Path of contact: It is the locus of the point of contact of two mating teeth from the beginning of 
engagement to the end of engagement. It is a straight line.

Path of approach: It is the portion of the path of contact from the beginning of engangement to the pitch point.
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Angle of approach: The angle turned by gears during path of approach.

Path of recess: It is the portion of the path of contact from the pitch point to the end of engagement of 
the two mating teeth.

Angel of recess: The angle turned through during path of recess.

Arc of contact: It is the locus of a point on the pitch circle, from the beginning of engagement to the 
end of engagement of pair of teeth in mesh.

Involute: The involute of a circle is the curve traced by the end of a thread as it is unwound from a 
stationary cylinder.
Base circle diameter (d

b
): It is the diameter of the base circle.

 d
b
  d cos  (14.6)

Cycloid: It is the locus of a point on the circumference of a circle which rolls without slipping on a 
fixed straight line.

Centre distance (C ): It is the distance between the centres of rotation of the two gears in mesh.

C ( ) ( )/d d m z z1 2 1 22 2/  (14.7)

14.4 FUNDAMENTAL LAW OF GEARING
Let us consider two curved bodies 1 and 2 rotating about their centers O

1
 and O

2
 and contacting at 

point A, as shown in Fig.14.3. A
1
 and A

2
 are two coincident points, A

1
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2
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The condition for pure rolling is that the point of contact shall lie on the line of centres.
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Fig.14.3 Law of gearing
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Therefore, for constant angular velocity ratio of the two gears in contact the common normal at the 
point of contact must always intersect the line of centres at a fixed point (pitch point) and divide this line 
in the inverse ratio of the angular velocities of the two gears. This is the fundamental law of gearing.

Conjugate action: When the tooth profiles are so shaped so as to produce a constant angular velocity 
ratio during meshing, then the surfaces are said to be conjugate. Two conjugate surfaces in contact 
always satisfy the law of gearing.
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14.5 SLIDING VELOCITY BETWEEN GEAR TEETH
The relative velocity along the common tangent is called the sliding velocity, v

s
. Considering Fig.14.3 

again, the sliding velocity v
s
 along the common tangent,

v v v
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Hence  v APs 1 2   (14.9)

v
s
   (sum of the angular velocities)  distance of the point of contact 

from the pitch point.
Thus, we find that the velocity of sliding is proportional to the distance of the pitch point from the 

point of contact.

14.6 GEAR TOOTH FORMS
There are two types of gear tooth forms: involute and cycloidal. The involute of a circle is the curve 
traced by the end of a thread as it is unwound from a stationary cylinder. Cycloid is the locus of a 
point on the circumference of a circle which rolls without slipping on a fixed straight line. If the circle, 
instead of rolling without slipping on a straight line, rolls on the outside of another circle, the locus of 
the point on the circumference is called as epicycloids. Conversely, if the circle rolls on the inside of 
another circle, the corresponding locus of the point on the circumference of the rolling circle is called 
hypo-cycloid. We shall discuss the involute and cycloidal profiles in brief.

14.6.1 Involute Tooth Profile
Consider two pulleys connected by a crossed wire. The pulleys will rotate in opposite directions with 
constant angular velocity provided the wire does not slip. Let us assume that one side of the wire is 
removed and a piece of cardboard is attached to wheel 1, as shown in Fig.14.4(a). Place a pencil at 
a point Q on the wire and turn wheel 2 counter-clockwise. Point Q will generate an involute on the 
cardboard relative to wheel 1. If a cardboard is now attached to wheel 2, as shown in Fig.14.4(b), and 
the process is repeated, an involute is generated on the cardboard of wheel 2. If the cardboards are now 
cut along the involute, one side of tooth is formed on both the wheels.
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The circles that have been used for generating the involutes are known as base circles. The angle 
that is included by a line perpendicular to the line of action through the centre of the base circle and a 
line from O

1
 to O

2
 through Q, is known as the involute pressure angle, as shown in Fig.14.4(c).

The intersection of the line perpendicular to the base circles and the line of centres has been 
labelled as P, the pitch point. The circles passing through point P with O

1
 and O

2
 as centres are called 

the pitch circles, as shown in Fig.14.4(d). At the pitch point, there is pure rolling, and at all other points 
there is a combination of rolling and sliding.

Fig.14.4 Involute tooth profile generation
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Fig.14.5 Cycloidal tooth profile generation

14.6.2 Cycloidal Tooth Profile
A cycloidal rack tooth profile meshing with a pinion is shown if Fig.14.5(a). The curve generated by 
a point on a circle 1 by its motion to the right on the straight line, which is the pitch line, is the profile 
of the face of the cycloidal tooth similarly the curve generated below the pitch line by a point on the 
rolling circle 2 is the flank of the tooth profile.

Fig.14.5(b) shows the construction of a cycloidal teeth profile of a gear. The circle 1 rolling on the 
outside of the pitch circle, generates a epicycloid, which is the face portion of the tooth profile. The 
circle 1 rolls without slipping to the right. The circle 2 rolls without slipping to the left on the inside of 
the circle generating a hypocycloid, representing the flank profile of the cycloidal tooth.

14.6.3 Comparison between Involute and Cycloidal Tooth Profiles
The comparison of involute and cycloidal tooth profiles is given in Table 14.1. The cycloidal profile is 
not commonly used for gear tooth, due to the reasons given in Table14.1.

Table 14.1 Comparison between Involute and Cycloidal Tooth Profiles

Characteristic Involute gears Cycloidal gears

1. Pressure angle Constant throughout the engagement Varies from commencement 
to end

2. Ease of manufacture Easy to manufacture Difficult to manufacture

3. Centre distance Do not require exact centre distance Requires exact centre distance

4. Interference May occur No interference

5. Strength Less More

6. Wear More wear and tear Less wear and tear

7. Operation Smooth Less smooth
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14.7 CONSTRUCTION OF AN INVOLUTE
The construction of an involute tooth profile is shown in Fig.14.6. The following steps may be  followed 
to draw the involute:

1. Draw the base circle.

2. Divide the base circle quadrant into equal number of parts (say 6). Mark the points 0 to 6 on the 
circumference of the circle.

3. Draw tangents at points 1 to 6.

4. Cut off 1 a  01 on tangent at 1; 2b  02 on tangent at 2, and so on.

5. Join o, a, b, c, etc. by a smooth curve to obtain the involute profile.

Fig.14.6 Involute profile construction

14.8 INVOLUTE FUNCTION
Consider the involute of a circle shown in Fig.14.7(a).
Let l  length of the thread unwrapped

 AB arc
 r

b
 (    )

 r
b
 tan 

Thus     tan 

where r
b
  base radius.

Also from Fig.14.7(b), we have
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Fig.14.7 Involute function
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where  inv tan( )     (14.10)

Eq. (14.10) represents the involute function. Its values are given in standard tables.

14.9 INVOLUTOMETRY
Fig.14.8 shows an involute which has been generated from a base circle of radius r

b
. The involute con-

tains two points A and B with corresponding rodii r
A
 and r

B
 and involute pressure angles 

A
 and 

B
.

and  r r

r r
b A A

b B B

cos

cos


 

Therefore  cos cos B
A

B
A

r

r
  (14.11)

It is possible to evaluate the involute pressure angle at any point on the involute profile from Eq. (14.11).
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DOG
arc DG

OG

BG

OG
BG

OGB

 

tan



888 Theory of Machines

Fig.14.8 Involutometry
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14.10 INVOLUTE GEAR TOOTH ACTION
The gear tooth action between two gears is shown in Fig.14.9. P is the pitch point and line EF is tan-
gent to both the base circles, along which all points of contact of two teeth must lie. Line EF is called 
the line of action or the pressure line. Line XX  is perpendicular to the line of centres at the pitch point. 
The angle between XX  and EF is called the pressure angle. If one gear rotates in clockwise direction 
then the other gear would rotate in the reverse direction of counter clockwise.

Fig.14.9 Involute gear tooth action
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The teeth first come into contact at point A, where the addendum circle of the driven gear cuts the 
line of action. Contact follows the line of action through point P, and contact ceases at point B, where 
the addendum circle of the driving gear cuts the line of action. Line AB is called the path of the point 
of contact, and its length is the length of the path of contact. Point C is the intersection of the tooth 
profile on gear 2 with its pitch circle when the tooth is at the beginning of contact, and point G is the 
same point on the profile when the tooth is at the end of contact. Points D and H are the corresponding 
for gear 1. Arcs CPG and DPH are the arcs on the pitch circles through which the mating tooth profiles 
move as they pass from the initial to the final point of contact. These arcs action as the arcs of action.

Since the pitch circles roll on one another, these are equal. The angles 
1
 and 

2
 which subtend 

these arcs are called the angles of action. The angles of action are divided into two parts called 
the angle of approach (

a
) and angle of recess (

r
). The angle of approach is defined as the angle 

through which a gear rotates from the instant a pair of teeth comes into contact until the teeth 
are in contact at the pitch point. The angle of recess is the angle through which a gear rotates 
from the instant the teeth are in contact at the pitch point contact is broken. In general, the angle 
of approach is not equal to the angle of recess. Gear tooth action is smoother in recess than in 
approach.

From Fig.14.10, we have
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a r
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Fig.14.10 Calculating angles of approach and recess

14.11 CHARACTERISTICS OF INVOLUTE ACTION
The characteristics of the involute action are:

 1. arc of contact,
 2. length of path of contact, and
 3. the contact ratio.

As shown in Fig.14.11, the contact of two gear teeth begins at A and ends at B.
Addendum radius of pinion, r

a1
  r

1
  h

a1

Base circle radius of pinion, r
b1

  r
1
 cos 

Addendum radius of gear, r
b2

  r
a2

  r
2
  h

a2

Base circle radius of gear  r
b2

 cos 
where  r

1
  pitch circle radius of pinion

 r
2
  pitch circle radius of gear

 h
a1

  addendum of pinion
 h

a2
  addendum of gear

 r
b1

  base circle radius of pinion
 r

b2
  base circle radius of gear
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Length of path of recess,  L PB EB EP

r r O P

r r r

r

a b

a a

( ) sin

( ) sin

.

.

1
2

1
2 0 5

1

1
2

1
2 0 5

1

 



 

 (14.15)

Length of path of approach,  L AP AF EF

r r O P

r r r

a

a b

a b

( ) sin

( ) sin

.

.

2
2

2
2 0 5

2

2
2

2
2 0 5

2

 



 

 (14.16)

Length of path of contact, 

– – –
. .

AB L L L

r r r r r r

p r a

a b a b1
2

1
2 0

2
2

2
2 05 5

1 2 sin

  

(14.17)

Length of arc of contact, L CG

AB
c arc 

cos

 
  

(14.18)

Fig.14.11 Angles of action
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Maximum length of path of recess  r
2
 sin  (14.19)

Maximum length of path of approach  r
1
 sin (14.20)

The contact ratio is defined as the average number of pairs of teeth, which are in contact. This can be 
found by nothing how many times the base pitch fits into the length of the path of contact. The contact 
ratio (CR) can be expressed as:

CR  length of path of contact/base pitch

 L

p
p

b

  (14.21)

where p
b
  p cos a  m cos a

For a rack and a pinion,

 L r r r
a

P a b1
2

1
2 0 5

1

.
sin

sin



  (14.22)

where a  addendum.

Example 14.1

A pinion of 24 teeth drives a gear of 60 teeth at a pressure angle of 20°. The pitch radius of the pinion 
is 38 mm and the outside radius is 41 mm. The pitch radius of the gear is 95 mm and the outside radius 
is 98.5 mm. Calculate the length of action and contact ratio.

Solution 

Length of path of contact,
 

L r r r r r r

r r

p a b a b

a a

( ) ( ) ( ) sin

,

. .
1
2

1
2 0 5

2
2

2
2 0 5

1 2

1 241



 mm 998 5 38 95 20

38 20 35 7
1 2

1 1

. , , , .

cos cos .

 mm  mm  mm

 

r r

r rb


 mmm

 mmr r

L

b

p

2 2

2 2 0 5 2

95 20 811 27

41 35 7 98 5 8

cos cos .

( . ) ( ..



111 27 38 95 20

20 16 41 63 45 49

16 30

2 0 5. ) ( ) sin

. . .

.

.

 mm

Here,

 

m
L

P

P
r

z

c

p

b

b
b2

2
35 7

24
11 37

1

1




.

.  mm

Contact ratio,

  
mc

16 30

11 34
1 744

.

.
.

Example 14.2

Two equal size spur gears in mesh have 36 number of teeth, 20° pressure angle and 6 mm module. If 
the arc of contact is 1.8 times the circular pitch, find the addendum.
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Solution 

Circular pitch, p  m    6  18.85 mm
Length of arc of contact, L

a
  1.8p  33.93 mm

Length of path of contact, L
p
  L

a
 cos 

  33.93 cos 20°  31.88 mm

Pitch radii,  r r
mz

L r r r r rp a b a b

1 2

1
2

1
2 0 5

2
2

2
2 0 5

1

2
6

36

2
108 mm

( ) ( ) (. . r2 ) sin

Here r
a1

  r
a2

 and r
b1

  r
b2

  r cos   108 cos 20°  101.49 mm

  

L r

r

p a

a

2 101 49 216 20

31 88 2 101 49 73 8

2 2 0 5

2 2 0 5

( . ) sin

. ( . ) .

.

. 77

Addendum,  r

h r r
a

a a

114 44

114 44 108 6 44

.

. .

 mm

 mm

Example 14.3

Two 20° involute gears in mesh have a gear ratio of 2 and 20 teeth on the pinion. The module is 5 mm 
and the pitch line speed is 1.5 m/s. Assuming addendum to be equal to one module, find (a) angle 
turned through by pinion when one pair of teeth is in mesh, and (b) maximum velocity of sliding.

Solution 

Given: i  2, z
1
  20, m 5 mm, v 1.5 m/s, h

a1
 m h

a2

(a)  r
mz

1
1

2
5

20

2
50 mm

 r
2
  ir

1
  2r

1
 100 mm

 r
a1

  r
1
  h

a1
  50  5  55 mm

 r
a2

  r
2
  h

a2
  100  5  105 mm

 r
b1

  r
1
 cos 20°  50 cos 20°  46.98 mm

 r
b2

  r
2
 cos 20°  100 cos 20°  93.97 mm

Length of path of approach, L r r ra a b[ ] sin.
2

2
2

2 0 5
2 

  [1052 93.972]0.5 100 sin 20°

  12.65 mm

Length of path of recess,  L r r rr a b1
2

1
2 0 5

1 20
.

sin

  [552 46.982]0.5 50 sin 20°
  11.50 mm

Length of path of contact, L
p
  L

a
  L

r
  12.65  11.50  24.15 mm

Length of arc of contact,  L
L

c

p

cos

.

cos
.


24 15

20
25 7 mm
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Angle turned through by the pinion  L
rc

360

2

25 7
360

2 50
211 45

1


.

.

(b) Maximum velocity of sliding,   v

v

v

v

s aL

r

r

( )

.

.

.

.

1 2

1
1

2
2

1 5

0 05
30

1 5

0 1
15

 rad/s

 rad/s

ss ( ) . .30 15 12 65 5611 25 mm/s

Example 14.4

The pressure angle of two gears in mesh is 20° and have a module of 10 mm. The number of teeth on 
pinion are 24 and on gear 60. The addendum of pinion and gear is same and equal to one module. Deter-
mine (a) the number of pairs of teeth in contact, (b) the angle of action of pinion and gear, and (c) the 
ratio of sliding to rolling velocity at the beginning of contact, at pitch point and at the end of contact.

Solution 

Given:   20°, m  10 mm, z
1
  24, z

2
  60, h

a1
  h

a2
  1 m  10 mm

 

r
mz

r

r r ha a

1
1

2

1 1 1

2

10 24

2
120

10 60

2
300

120 10 13

 mm  mm,

00

300 10 310

120 20 112 76
2 2 2

1 1

 mm

 mm

 

r r h

r r
a a

b cos cos . mmm

 mmr rb2 2 300 20 281 91cos cos .

Length of path of recess,  L r r rr a b1
2

1
2 0 5

1

2 2 0 5
130 112 76 120 20

.

.

sin

( . ) sin



23 65.  mm

Length of path of approach,  L r r ra a b2
2

2
2 0 5

2

2 2 0 5
310 281 91 300 20

.

.

sin

( . ) cos



26 33.  mm

Length of path of contact, L
p
  L

a
  L

r
  26.33  23.65  411.98 mm
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(a) Number of pairs of teeth in contact 
L

m
p

  cos

.

cos
.

411 98

10 20
1 69

(b) Angle of action of pinion,  
a1

1

360

2
Arc of contact

r

  

L

r
p

cos

.

cos

.

 



360

2

411 98

20

360

2 120

25 4

1

Angle of action of gear,

  


a2 Arc of contact
360

2 2r

 

L

r
p

cos

.

cos

.

 



360

2

411 98

20

360

2 300

10 16

2

(c) Ratio of sliding to rolling velocity  
v

v
s

r

 

vr r1 1 1

2
1

1

120

24

60
0 4.

At the beginning of contact  1 2

La

rv

 

( . ) .

.

 


1 1

1

0 4 26 33

120

0 3072

At the pitch point,  v
v

vs
s

r

0 0. Hence 

At the end of contact  
1 2

Lr

rv
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( . ) .

.

 


1 1

1

0 4 23 65

120

0 276

Example 14.5

Two 15 mm module, 20° pressure angle spur gears have addendum equal to one module. The pinion 
has 25 teeth and the gear 50 teeth. Determine whether interference will occur or not. If it occurs, to 
what value should the pressure angle be changed to eliminate interference.

Solution 

Given:   20°, m  15 mm, z
1
  25, z

2
  50, h

a1
  h

a2
  15 and m  10 mm

Let the pinion be the driver.

 
r

mz
r1

1
22

15 25

2
187 5

15 50

2
375. , mm   mm

 r
a1

  r
1
  h

a1
  187.5  15  202.5 mm

 r
a2

  r
2
  h

a2
  375  15  390 mm

 r
b2

  r
2
 cos   375  cos 20°  352.4 mm

Maximum permissible length of path of approach,
 (L)

max
  r

1
 sin 

  187.5 sin 20°
  64.13 mm

Length of path of approach,  L r r ra a b2
2 0 5

22
2 .

sin

  [3902 (352.4)2]0.5 375 sin 20°

  38.81 mm

Since L
a
 (L

max
), hence interference will occur.

For L
a
  (L

max
), we have

 
r r r r1 2

2
2

2 0 5

2sin sin
.

 a b

 64.13  [3902 (375 cos )2]0.5 375 sin 
 (64.13  375 sin )2  3902 (375 cos )2

 4112.65  140625  48097.5 sin   152100
 sin   0.15307
   8.8°

Example 14.6

For a pair of involute spur gears, m  10 mm,   20°, z
1
  20, z

2
  40, n

1
  60 rpm. The addendum 

on each gear is such that the path of approach and the path of recess on each side is 50% of the maxi-
mum possible length. Determine the addendum for the pinion and the gear and the length of arc of 
contact.
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Solution 

r
1
  mz

1
/2  10  20/2  100 mm, r

2
  mz

2
/2  10  40/2  200 mm

Let the pinion be the driver.
Maximum possible length of approach  r

1
 sin   100 sin 20°  34.2 mm

Actual length of approach   r r r

r

a b

a

2
2 0 5

2

2
2 2 0 5

200 20 200 20

2
2 .

.

sin

( cos ) sin



ra2
2 0 5

35321 68 4 0 5 34 2 17 1
.

. . . .

or  r

r

h

a

a

a

2

2

2

2 6 5 mm

2 6 5 2 6 5 mm

2 235321 85 5

0

0 00 0

( . )

.

. .

Maximum possible length of recess r

r rb

2

1
2

1
2

200 20 68 4

sin

sin .



 mm

Actual length of recess a

0 5

1

1
2 2 0 5

1
2

100 20 100 20

88

.

.

sin

( cos ) sin

r

r

r



a

a 330 34 2 0 5 68 4 34 2
0 5.

. . . .

or

  

r

r

h

a

a

a

1
2 28830 68 4

00

( . )

.

. .
1

1

116 2 mm

116 2 1 16 2 mm

Arc of coontact
Path of contact

 

5 1 2

cos
. ( )

sin

cos

.





0 5

0 00

1 2r r

000 0tan2

54 6 mm.

Example 14.7

Two involute gear wheels having module 3 mm and pressure angle 20° mesh externally to give a veloc-
ity ratio of 3. The pinion rotates at 75 rpm and addendum is equal to one module. Determine (a) the 
number of teeth on each wheel so that interference is just avoided, (b) the length of path and arc of 
contact, (c) the number of pairs of teeth in contact, and (d) the maximum velocity of sliding between 
the teeth.

Solution 

Given: m  3 mm,   20°, i  3, n
1
  75 rpm

 r
a1

  r
1
  h

a1
  r

1
  3, r

a2
  r

2
  h

a2
  3r

1
  3 [ r

2
  3r

1
]

 r
b1

  r
1
 cos 20°  0.9397r

1
, r

b2
  3r

1
 cos 20°  2.819r

1



899 Gears 

(a) Let the pinion be the driver.

L r r r

L r

a a b

a

2
2

2
2 0 5

2

1

.
sin

sin
max 

 

To avoid interferrence, ( )

sin sin

(

max

.

L L

r r r

r r

a a

a b

a b

r 2
2

2
2 0 5

2 1

2
2

2
2 rr r

r r r

1 2
2

1

2 2

1
2

1

2 23 3 2 819 4

) sin

. sin

2

or                             0.8186

mm

mm

1

r r

r

r

z

1
2

1

1

2

18 9 0

22 48

67 44

.

.

2 2 22 48 3 14 98 15

22 5 45
1

2

r m

r z

/ . / .

.so that  mm, and 1

(b)

  

r r

r
aa

b

1 22 5 3 25 5 67 5 3 70 5

21 143

. . . .

.

mm, mm

22.5 cos 20 m
2

1 mm mm, . cos .
. .

r

L r r r r

b2

1
2

1
2 0 5

2
2

2
2 0 5

67 5 20 63 429

p a b a b ( ) sin

( . ) ( . ) ( . ) ( . )
.

r r1 2

2 2 0 5 2 225 5 21 143 70 5 63 429


0 5

22 5 67 5 20

14 247

3 11 425

.

( . . ) sin

.

.

mm

mmp m 

Length of arc of contact,  L
L

c

p

cos

.

cos
.


14 247

20
15 16 mm

(c) Number of pairs of teeth in contact  
L

p
c 15 16

11 425
1 6

.

.
.

(d) Maximum velocity of sliding   = 

 = mm/s

( ) sin

( ) . sin .

  


1 2 1

2

60
75 25 22 5 20 80 58

r

14.12  INTERFERENCE AND UNDERCUTTING IN INVOLUTE  
GEAR TEETH

An involute starts at the base circle and is generated outwards. It is therefore impossible to have 
an involute inside the base circle. The line of action is tangent to the two base circles of a pair 
of gears in mesh, and these two points represent the extreme limits of the length of action. These 
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Fig.14.12  Interference in gears

two points are called interference points. If the teeth are of such proportion that the beginning of 
contact occurs before the interference point is met, then the involute portion of the driven gear 
will mate with a non-involute portion of the driving gear, and involute interference is said to occur. 
This condition is shown in Fig.14.12; E

1
 and E

2
 show the interference points that should limit the 

length of action. A shows the beginning of contact, and B shows the end of contact. It can be seen 
that the beginning of contact occurs before the interference point E

1
 is met; therefore, interference 

is present. The tip of the driven tooth will gauge out or undercut the flank of the driving tooth as 
shown by the dotted line.

There are several ways of eliminating interference. Interference can be avoided by under-
cutting, making stub teeth, increasing the pressure angle, and cutting the gears with long and 
short addendum gear teeth. The method of undercutting is to limit addendum of the driven gear 
so that it passes through the interference point E

1
, thus giving a new beginning of contact. Inter-

ference and the resulting undercutting not only weaken the pinion tooth but may also remove and 
small portion of the involute adjacent to the base circle, which may cause a serious reduction in 
the length of action.

Fig.14.13 shows a rack and a pinion in mesh. The point of tangency of the line of action and the 
base circle of the pinion is labelled as the interference point E, which fixes the maximum addendum 
for the rack. The contact begins as A, and undercutting will occur as shown by the dotted line. If the 
addendum of the rack extends only to the line that passes through the interference point, E, then the 
interference point becomes the beginning of contact, and interference is eliminated. If the number of 
teeth on the pinion is such that it will mesh without interference, it will mesh without interference with 
any other gear having the same or a larger number of teeth.
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14.13 MINIMUM NUMBER OF TEETH

14.13.1 Gear Wheel
For a minimum number of teeth to avoid interference, the common tangent to the base circles cuts the 
addendum circles at A and B, as shown in Fig.14.14.

Let speed ratio, i  z
2
/z

1

Addendum of pinion, h
a1

  a
p
m

Addendum of gear wheel, h
a2

  a m
where a

p
 and a

w
 are the constants by which the module must be multiplied to get the addendum of 

pinion and gear wheel respectively.
From AO

2
P, we have

 

O A O P AP O P AP O PA
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2
2

2
2 2

2 2

2

2
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2
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zz
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mz mz mz

2
1

2

2

1

2

2

2
90

2 2
2

sin cos ( )

sin

 



 

22 1 2

2

2

2

2

2 2

2
1

1 2
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mz

i i

sin

sin



 sin

sin sin

2

2
2

2

2

2
1

1 2



O A
mz

i i
22

0 5


.

 
 (1)

Fig.14.13  Interference in rack and pinion
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Also

  

O A O P PC

mz
h

mz
a mw

2 2

2
2

2

2

2

a

  

(2)

From Eqs. (1) and (2), we get

or

 

mz
a m

mz

i iw
2 2

2

2 2

2 2
1

1 2
  = sin sin 

00 5

2
2

2 2

0 5

2
1

1 2
1

.

.

sin sina
z

i iw  =  

Fig.14.14 Calculating minimum number of teeth on pinion and gear wheel
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or  z
a

i i

w
2

2
2 2

0 5

2

1
1 2

1sin sin
.

 

 (14.23)

or  z
z a

a z

w

w

2  =
1
2 2 2

1
2

4

4 2

sin

sin




  (14.24)

For  a z
z

z
w 1

4

4 2
2

2
1

2

1
2

,
sin

sin




  (14.25)

For  i a a

z
a

w p

w

 = 1,  =  and

 = 2

2

1 3 12 0 5
sin

.


  

(14.26)

14.13.2 Pinion

From BO
1
P, we have

 

O B O P BP O P BP O PB

mz
O P

m

1 1
2 2

1 1

1

2

2
2

2 2

2
2

cos

( sin )
zz

O P

mz mz mz

1
2

1

2

2

2

2 1

2
90

2 2
2

sin cos ( )

sin

 


22 2

2
1 2

2 2

1

2

2 2 2

mz

mz
i i

O

sin

sin sin



 

11
1 2 2 2 0 5

2
1 2B

mz
i isin sin

.
 

  (1)

Also  O B O P PD

mz
h

mz
a m

a

p

1 1

1
1

1

2

2

 

  (2)

From Eqs. (1) and (2), we get

 

mz
a m

mz
i i1 1 2 2 2 0 5

2 2
1 2p sin sin

.
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or  a
z

i i ap
1 2 2 2 0 5

2
1 2 1sin sin

.


or

  

z
a

i i

p

1

2

1 2 12 2 2 0 5
sin sin

.
 

  

(14.27)

or z
z a

a z

p

p

1

2
2 2 2

2
2

4

4 2

sin

sin




  (14.28)

For  a z
z

z
p 1

4

4 2
1

2
2 2

2
2

,
sin

sin




  (14.29)

For   14 5

63 8

63 8 21
2
2

2

.

( )
.

.minz
z

z

  

(14.30)

For   20

34 2

34 2 21

2
2

2

( )
.

.minz
z

z

  

(14.31)

14.13.3 Rack and Pinion
A rack is a gear of infinite pitch radius. Thus its pitch circle is a straight line, called the pitch line. The 
line of action is tangent to the base circle at infinity; hence the involute profile of the rack is straight 
line and is perpendicular to the line of action. For the rack and pinion shown in Fig.14.15, let

Fig.14.15 Minimum number of teeth on rack and pinion
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Addendum of rack, h
r
  a

r
m

h
r
  AB  AP sin 

 O
1
P sin a sin 

 O
1
P sin a sin 

 r
1
 sin2 

or a m
mz

a
z

z
a

r

r

r

1 2

1 2

1 2

2

2

2

sin

sin

sin





  
(14.32)

For a
r
  1, the minimum number of teeth on the pinion are given in Table 14.2.

Table 14.2 Minimum Number of Teeth on the Pinion for a Rack

14.5° 20° 20° stub 25°

(z
1
)

min
32 18 14 12

Example 14.8

Determine the minimum number of teeth on the 20° pinion in order to avoid interference with a gear 
to give a gear ratio of 3:1. The addendum on wheel is equal to one module.

Solution 

 

z a i

z a

w

w

2
2 2 2 5

1
2

2 / 1 1 sin 2 sin 1

2 /I 1 1

[{ } ]

[{

.i

i

  0

sin 2 sin 1

2 1/3 1 1 9 sin 2 2 3 sin

2 2 5

2

 i } ]

{

.0

0 22 52 10

14 98 15

0}

.

.

Example 14.9

A pinion of 20° involute teeth and 120 mm pitch circle diameter drives a rack. The addendum of both 
pinion and rack is 6 mm. Determine the least pressure angle which can be used to avoid interference. 
With the pressure angle find the contact ratio.

Solution 

Given:   20°, d
1
  120 mm, h

a
  6 mm

h ra 1
2

2

sin

6 6  sin0
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18 435

 6 6 66 mm

cos 6  cos 18 435 5
1

1 1

.

.

r r h

r r
aa

b

1 0

0 66 92 mm.

Length of path of contact, L r ra bp  

66 56 92

33 4 mm

5

2 2 5

1
2

1
2 0

0

.

.
.

.

Base pitch,  p p d zb  cos  cos 

12 /2  cos18 435 17 88 mm
1  


( )

( ) . .
1

0 0

Minimum number of teeth in contact L pp b/

33 417 88 1 87 2. / . .

Example 14.10

Two 3 mm module, 20° pressure angle involute spur gears mesh externally to give a velocity ratio of 4.  
The addendum is 1.2 times the module. The pinion rotates at 150 rpm. Determine (a) the minimum 
number of teeth on each gear wheel to avoid interference, and (b) the number of pairs of teeth in 
contact.

Solution 

Given: m  3 mm, a
w
  1.2, h

a
  1.2  3  3.6 mm,   20°, i  4, n

1
  150 rpm

(a) z a i2
2 2 2

5

 2 1 1 sin  2 i  sin   1

2 1 2 

w  
0.

. // [{ ]

. .

.1 1 6  sin  2 2 4  sin  2 1

2 4 1 7 311 1

2 2 5

3

0 0

0

0

00 0

0

0
.

. .

.

.
5849 1

2 4 1 3237 1 /

74 13 76 so that i

5

2z ss divisible by 4

76/4 191

.

z

(b) r mz r mz

r r h
1 1 2 2

1 1 1

2 3 19 2 28 5 mm  2 3 76 2 144 mm. ,

a a 228 5 3 6 32 1 mm  114 3 6 117 6 mm

cos 2
2

1

. . . , . .r r h

r r
a a

b

2 2

1  88 5 cos 2 26 78 mm  cos 114 cos 2 1 7 12 mm2. . , .0 0 02r r

L r

b

p a



11
2

1
2 0

1
2

1
2 0 5

1 2

2 2
32 1 26 78

– sin

. .

. .
r r r r rb b

5

a 
0 5 0

0 114 0

17 4

. .

. – . – .

.

117 6 1 7 12 28 5  sin 2
2 2 5

99 mm
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Number of pairs of teeth in contact  L mp / cos

. / cos

.

  

 17 49 3 20

1 975 2

14.14 GEAR STANDARDIZATION
A set of gears is interchangeable when any two gears selected from the set will mesh with each other and 
satisfy the fundamental law of gearing. For interchangeability, all gears of the set must have the same 
circular pitch, module, diametral pitch, pressure angle, addendum, and dedendum; and tooth thickness 
must be one-half of the circular pitch. Standard tooth forms ensure readily availability of gears.

The standard pressure angles are: 14.5° and 20°. The 20° full-depth system has several advantages 
when compared with the 25° or 30° full-depth system. The lower pressure angle gives a higher contact 
ratio which results in quieter operation, reduced wear, reduced tooth load, and reduced bearing loads.

The larger pressure angle tooth forms results in broader teeth at the base and hence are stronger in 
bending. Also fewer teeth may be used on the pinion without undercutting the teeth. The proportions 
of standard tooth forms are given in Table 14.3.

Table 14.3 Standard Involute Tooth Forms

14.5° full-depth 20° full-depth 20° stub

Addendum, h
a

m m 0.800 m

Dedendum, h
f

1.157 m 1.250 m m

Clearance, c 0.157 m 0.250 m 0.200 m

Fillet radius, r 0.209 m 0.300 m 0.304 m

Tooth thickness, t 1.5708 m 1.5708 m 1.5708 m

14.15  EFFECT OF CENTRE DISTANCE VARIATION  
ON VELOCITY RATIO

Consider a pair of teeth in contact at L, as shown in Fig.14.16. The angular velocity ratio is,

1

2

2

1

O P

O P

Let the centre distance of rotation of gear 2 be shifted from O
2
 to O

2
. As a result of this change, the 

contact point will shift to L . Common normal at the point of contact L  is tangent to the base circle, 
because it is in contact between two involute curves, and they are generated from the base circle. Let 
the tangent to the base circle M N  intersect the line joining the centers of rotation O  and O

1
 at P .

Triangles O
1
PN and O

2
MP are similar. Also triangles O

1
N P  and O

2
M P  are similar. Therefore,
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Fig.14.16 Effect of centre distance variation

MO

N O

O P

O P
2

1

2

1

and

 

MO

NO

O P

O P
2

1

2

1

But NO
1
  N O and O

2
M  O

2
M

Therefore, O P

O P

O P

O P
2

1

2

1

  (14.33)

Hence, the variation in the centre distance, within limits, does not affect the angular velocity ratio, 
But the length of arc of contact is decreased, and the pressure angle is increased.
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14.16 DETERMINATION OF BACKLASH
Two standard gears in mesh are shown in Fig.14.17(a). The standard centre distance with zero 
backlash is:

c
m

z z
2 1 2( )

The cutting pitch circles are known as standard pitch circles. Fig.14.17(b) shows the condition 
where the two gears have been pulled apart a distance C to give a new centre distance C . The line 
of action now crosses the line of centres at a new pitch point P . The standard pitch radii r

1
 and r

2
 are 

now no longer tangent to each other. The pitch point P  divides the centre distance C  into segments 
which are inversely proportional to the angular velocity ratio. These segments become the radii r1  and 
r2   of new pitch circles that are tangent to each other at point P . These circles are known as operating 
pitch circles.




1

2

2

1

2

1

z

z

r

r

and  C r r1 2

to give  r
z

z z
C1

1

1 2

and  r
z

z z
C2

2

1 2

Fig.14.17 Determination of backlash
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Let  be the operating pressure angle. Now

C
r r r r Cb b1 2 1 2

cos

( ) cos

cos

cos

cos







or cos
cos


C

C
 (14.34)

Also 

C C C

C
C

C

cos

cos

cos

cos






 1

 

 (14.35)

Now from Fig.14.17(c),  (14.36)

 
t t B

r

z

r

z1 2
1

1

2

2

2 2 

  
(14.37)

where t   tooth thickness on operating pitch circle
 B  backlash
 r   radius of operating pitch circle
 z  number of teeth

Now t r
t

r

r t

r
r

1 2
1

1

1 1

1
1

2
2

2

inv inv

inv inv

( ) ( )

( ) (

 

  )

 

 (14.38)

 

t r
t

r2 2
2

2

2
2

inv inv( ) ( ) 
  

(14.39)

 

r t

r
r2 2

2
22 inv inv( ) ( ) 

  
(14.40)

Fig.14.17 Determination of backlash (Contd.)
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where t  tooth thickness on standard pitch circle

 

p m

2 2



 
 r  radius of standard pitch circle

 
mz
2

Also
 

r

r

r

r

C

C
1

1

2

2  
(14.41)

and
 

C r r1 2  
(14.42)

Substituting (14.38) to (14.42) in Eq. (14.36), we get

 
B

C

C
m t t C  1 2 2 inv inv( ) ( )

 
(14.43)

 2C inv inv( ) ( )    (14.44)

Example 14.11

A three-module, 20° pinion of 24 teeth drives a gear of 60 teeth. (a) Calculate the length of action and 
contact ratio, if the gears mesh with zero backlash. (b) If the centre distance is increased 0.5 mm, calcu-
late the radii of the operating pitch circles, the operating pressure angle and the backlash produced.

Solution  Given: m  3 mm,   20°, z
1
  24, z

2
  60 

(a)

 

r
z m

r
z m

r
b

1
1
2

2
2
2

1 1

24
3

2
36

60
3

2
90

36 20 3

mm

mm

r cos cos 33 83

90 20 84 57

3
2 2

1 2

1 1 1

.

cos cos .

mm

mm

mm

r
b

r

h h m

r r h
a a

a a 36 3 39

90 3 93

36 90 126
2 2 2

mm

mm

C = + = mm1 2

r r h

r r
a a

Length of path of contact, 

 

AB r r r r r ra b a b1
2

1
2 0 5

2
2

2
2 0 5

1 2

239 33 83

. .
( ) sin

.



22 0 5 2 2 0 5
93 84 57 126 20

14 997

. .
. sin

. mm

Contact ratio,   

Base Pitch, mm

   

m
AB

p

p

c

b

b
2

33 83

24
8 856

.
.

mmc
14 997

8 856
1 693

.

.
. 2
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(b)

 

C C C

r
z

z z
C

126 0 5 126 5

24

84
126 51

1

1 2

. .

.

mm

36 143

126 5 36 143 90 357

1
2 1

.

. . .

cos
cos

mm

mmr C r

C

C


 226 20

126 5
0 93598

20 61

cos

.
.

.

Backlash,

 

B C2

2 126 5 20 61 20

253 0

[ ( ) ( )]

. [ ( . ) ( )]

[ .

inv inv

inv inv

 

0016362 0 014904

0 3689

. ]

. mm

14.17 INTERNAL SPUR GEARS
A pinion in mesh with an internal gear is shown in Fig.14.18. Internal gears have some advantages over 
the external gears. The most important advantage is the compactness of the drive. Other advantages are : 
greater length of contact, greater tooth strength, and lower relative sliding velocity between meshing teeth.

Fig.14.18  Internal spur gears
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The tooth profile is concave in internal gears instead of convex as in external gears. Because of 
this a type of interference called fouling may occur in internal gears. Fouling occurs between inactive 
profiles as the teeth go in and out of the mesh and the there is not sufficient difference between the 
numbers of teeth on the internal gear and the pinion.

Example 14.12

Two equal spur gears of 48 teeth mesh together with pitch radii of 96 mm and addendum of 4 mm. If 
the pressure angle is 20°, calculate the length of action and the contact ratio.

Solution 

Given: z
1
  z

2
  48, r  r

1
 r

2
  96 mm, a  a

w
  a

p
  4 mm,   20°

Length of path contact,

 

L r r r r r r

r r r a

al bl a bp

b b

 sin

cos

5 5

1 2

1 2

2 2 0

2
2

2
2 0

– – –
. .



 96 cos 2 9 21 mm

96 4 1  mm

1 9

1 2

2

0 0

00

00 0

.

– .

r r r a

L

a a

p 221 1 9 21 96 96  sin 2

2 63

2 5 2 2 50 0

00 0 0

0

. .

– . –

.   mm

Base pitch,
 

p
r

zb

b2
2

90 21

48
11 81

1

1 mm
.

.

Contact ratio,

 

CR
L

p
p

b

20 63

11 81
1 747

.

.
.

Example 14.13

A pinion with a pitch radius of 40 mm drives a rack. The pressure angle is 20°. Calculate the maxi-
mum addendum possible for the rack without having involute interference on the pinion.

Solution  

Given: r
1
  40 mm,   20°

h rir max

2 2sin 4  sin 2 4 68 mm0 0 .

Example 14.14

A 0.2-module, 20° pinion of 42 teeth drives a gear of 90 teeth. Calculate the contact ratio. Addendum 
for pinion and gear is equal to one module.

Solution 

Given:

 

m z z

d mz d mz

0 0 0

0 0

. , , ,

. . , .

2 mm 2 42 9

2 42 8 4 mm  2
1 2

1 1 2 2 9 18 mm

cos 4 2 cos 2 3 95 mm cos 9 cos 1 1 2 2

0

0r r r rb b. . , 22 8 46 mm

4 2 2 4 4 mm 9 2 9 2 mm1 1 2 2

0

0 0

.

. . . , . .r r m r r ma a
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Length of path of contact,

 

Base pitch, p
r

zb

b2
2

3 95

42
0 59091

1

.
. mm

Contact ratio
 

L
p

b

p 1 0387
0 5909

1 758 2
.
.

.

Example 14.15

Determine the approximate number of teeth in a 20° involute spur gear so that the base circle diameter 
will be equal to the dedendum circle diameter.

Solution 

Given: Dedendum, h
f
   1.25 m, d

d
  d 2h

f
   mz 1.25 m

Base circle diameter, d
b
  d cos   m z cos 

For

 

d d mz mz

z z

z z

z

b d , .

cos .

.

.

cos 1 25 m

cos 2 1 25

9397 


 1 25

0

0 z

z

1 25

 21

.

Example 14.16

A 4-module, 20° pinion with 30 teeth drives a rack. Calculate the length of action and the contact 
ratio.

Solution 

Given: m  4 mm,   20°, z
1
  30

For a rack,
 

L r r r
h

a bp
a

1
2

1
2 0 5

1    – – sin
sin

.




h m d mz

r r h

r r
a

a

a

b

4 mm 4 3 12  mm

6 4 64 mm

cos

1

1 1

1 1

, 0 0

0

66  cos 2 56 38 mm

  

0 0

64 56 38 60 20
42 2 0 5

.

. sin
s

.

Lp iin
.

.
.

20

2
2

56 38

30
11 80821

1

21 461 mm

mm

C

Base pitch p
r

z
b

b

oontact ratio
L

p
p

b

21 461

11 8082
1 8174 2

.

.
.

L r r r r r ra b a bp 1
2

1
2 0

2
2

2
2 0

– – –

. – .

. .5 5

1 2

2

sin

4 4 3 95



22 5 2 2 5

9 2 8 46 4 2 9 sin 2

1 9384 3 61

0 0

0
. .

. – . – .

. . 55 4 5147 1 387 mm0 0– . .
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Example 14.17

For a 20° pressure angle, calculate the minimum number of teeth in a pinion to mesh with a rack 
 without involute interference. Also calculate the number of teeth in a pinion to mesh with a gear of 
equal size without involute interference, The addendum equals the module.

Solution 

Given:
 

z
ar

1 2

2

sin 

Here

 

a z

z
a

i i

p

r 1
2

20
17

2

1 2 1

1 2

1
2 2 2 0 5

,
sin

sin sin
.

Here

 

i a

z

p1 1

2

1 20 2 20 1

12 32 13

1

2 2 0 5

,

sin sin

.

.

 

Example 14.18

A pair of meshing spur gears has 22 and 38 teeth, a diametral pitch of 0.32, and a pinion running at 
1800 rpm. Determine the following: (a) centre distance, (b) pitch diameter, (c) pitch line velocity, and 
(d) rpm of the gear.

Solution 

Given: z
1
  22, z

2
  38, P  0.32, n

1
  1800 rpm

 
m

P

1 1

0 32
3 125

.
. mm

(a) Centre distance,
 

C
m z z( ) . ( )

.1 2

2

3 125 22 38

2
93 75 mm

(b) Pitch diameters, d
1
  m z

1
  3.125  22  68.75 mm,

 d
2
  mz

2
  3.125  38  118.75 mm

(c) Pitch line velocity, v
d n1 1

60
0 06875

1800

60
6 48. . m/s

(d)
 

n
n z

z2
1 1

2

1800
22

38
1042 1. rpm

 

Example 14.19

A pair of spur gears has 16 and 18 teeth, a module of 13 mm, addendum of 13 mm, and pressure angle 
of 14.5°. Show that the gears have interference. Determine the amount by which the addendum must 
be reduced to eliminate the interference.
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Solution 

Given:

  

z z h

r
mz

a1 2

1
1

2
13

16

2
104

16 18  m 13 mm 13mm  14 5

 mm

, , , , .

,,

. . ,

r

r r rb b

2

1 2

13
18

2
117

0 00

 mm

cos 1 4 cos 14 5 1 7 mm1  1117 cos 14 5 113 3 mm

1 4 13 117 mm 117 13 2

. .

,r r h ra a a1 1 0 mmm = 130 mm

Let pinion be the driver,

Length of approach,

 

L r r ra a b2 2

5

2

2 2 5

2 2

sin 

13 113 3 117 sin 1

– –

– . –

.

.

0

0

0



44 5

63 74 211 3 34 44 mm

 sin 1 4 sin 14 5
max 1

.

. – . .

.L ra  0 26 4 mm. .0

Since length of approach is more than the maximum length of approach, therefore  interference 
will occur. To eliminate interference, we make L

a
  (L

a
)

max

26 4  sin 

113 3 117 s

2

5

2

2 5

.

.

.

.

0 2
2

2 0

2
2

0

r r r a

r

a b

a iin 14 5

113 3 211 3

113 3 26 4

2 5

2

.

. .

[ . ] .

.

r

r

a

a

2
2

0

2
2 0 2211 3

126 9 mm

 126 9 117 11 9 mm

2

2

2 2

.

.

. .

r

h r r
a

a a

0

0 0

Decrease in addendum  h
a

h
a
  13 11.09  3.91 mm

Example 14.20

An internal spur gear having 200 teeth and 20° pressure angle meshes with a pinion having 40 teeth 
and a module of 2.5 mm. Determine (a) the velocity ratio if the pinion is the driver, (b) the centre dis-
tance, and (c) If the centre distance is increased by 3 mm, find the resulting pressure angle.

Solution 

Given: z
1
  40, z

2
  200, m  2.5 mm

(a)

 

d mz d

i
z

z

1 1 22 5 4 1  mm 2 5 2 5  mm. , .0 00 00 00

200

40
52

1

(b)
 

C
d d2 1

2

500 100

2
200 mm
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(c) C 2 3 2 3 mm00 0

cos

22 2






C

C

cos cos
.

.

200 20

203
0 9258

Example 14.21

Two spur gears of 24 teeth and 36 teeth of 8 mm module and 20° pressure angle are in mesh. Adden-
dum of each gear is 8 mm. The teeth are of involute form and the pinion rotates at 450 rpm. Determine 
the velocity of sliding when the pinion is at a radius of 102 mm.

Solution 

Given: z
1
  24, z

2
  36, m  8 mm, h

a
  8 mm,   20°, n

1
  450 rpm, r  102 mm

r
mz

r

r rb

1
1

2

1

2
8

24

2
96 8

36

2
144

96 20 90

mm,  mm

1 cos cos . 221 144 20

135 31

96 8 104 1

2

1 2

 mm, 

mm

 mm, 1

r

r r h r

b

a a a

cos

.

444 8 152 mm

Let pinion be the driver,

Length of recess at 102 mm radius,

 

L r r rr a b( ) sin

[( ) ( . ) ] sin

.

.

.

1
2

1
2 0 5

1

2 2 0 5102 90 21 96 20

47 660 32 83 14 77. .  mm

 

n
n z

z2
1 1

2

1

2

450
24

36
300

2
450

60
47 124

2
30

 rpm

 rad/s 

 

.

00

60
31 416.  rad/s

Velocity of sliding at 102 mm radius

 

( )

( . . )
.

.

 1 2  

 m/s

Lr

47 124 31 416
14 77

1000
1 16

Example 14.22

A pair of spur gears with involute teeth is to give a gear ratio of 3:1.The arc of approach is not to be 
less than the circular pitch and the pinion is the driver. The pressure angle is 20°. What is the least 
number of teeth than can be used on each gear?



918 Theory of Machines

Solution 

Given: For pinion to be the driver, the maximum length of approach  r
1
 sin 

Maximum length of arch of approach

 

r
m

mz
m

z

z

1

1

1

2

2

2

20
17 26 18

3 18

sin

cos

tan

tan
.

54

Example 14.23

A pinion with 24 involute teeth of 150 mm pitch circle diameter drives a rack. The addendum of the 
pinion is 6 mm. Find the least pressure angle which can be used if undercutting of the teeth is to be 
avoided. Using this pressure angle, find the length of the arc of contact and the minimum number of 
teeth in contact at one time.

Solution 

Given: z
1
  24, d

1
  150 mm, h  6 mm

 h
r1

  r
1
 sin2 

 6  75 sin2 

 sin2   0.08

 sin   0.28284

   16.43°

 r
b1

  r
1
 cos   75 cos 16.43°  71.94 mm

 r
a1

  r
1
  h

a1
  75  6  81 mm, r

a2
  144  8  152 mm

Length of recess,

 

L L r r rr p a b( ) sin

[( ) ( . ) ] . sin .

.

.

1
2

1
2 0 5

1

2 2 0 581 71 94 7 5 16



 443

16 mm

Number of teeth in contact
L

p
p

b

16 24

150 16 43
0 85 1p cos .
.

Example 14.24

A pair of 20° pressure angle gears in mesh has the following data:

 Speed of pinion  400 rpm

 Number of teeth on pinion  24

 Number of teeth on gear  28

 Module  10 mm

Determine the addendum of the gears if the path of approach and recess is half the maximum value. 
Determine also the arc of contact and the maximum velocity of sliding between the mating surfaces.



919 Gears 

Solution 

Given:

 

z z m h n

r
mz

a1 2 1

1
1

24 28 10 20 400

2
10

24

2
12

, , , ?, , mm  rpm

00 10
28

2
140

120 20 112 76

2

1

 mm,  mm

 mm, 1 2

r

r r rb bcos cos . 140 20 131 56

120 1401 1 1 2

cos .

,

 mm

1 2r r h h r ha a a a a

Let pinion be the driver,

Length of approach, L La a0 5. ( ) max

( ) sin . sin

[ ( . ) ] sin

.

.

r r r r

r

a b

a

2
2

2
2 0 5

2 1

2
2 2 0 5

0 5

131 56 140 2

 

00 0 5 120 20

131 56 200 20

21987

2
2 2 2 2

2
2

. sin

( . ) ( ) sin

,

r

r r

a

a = aa

ah
2

2

 mm

 mm

148 3

148 3 140 8 3

.

. .

Length of recess, L Lr r0 5. ( )max

( ) sin . sin

[ ( . ) ] sin

.

.

r r r r

r

a b

a

1
2

1
2 0 5

1 2

1
2 2 0 5

0 5

112 76 120 2

 

00 0 5 140 20

112 76 190 20

16938

1
2 2 2 2

1
2

. sin

( . ) ( ) sin

,

r

r r

a

a aa

ah
1

1

130 14

130 14 120 10 14

.

. .

 mm

 mm

Arc of contact

 

L
r rp

cos
. ( ) tan

. ( ) tan .


0 5

0 5 120 140 20 47 3

1 2

 mm

Path of recess,

 

L r r rr a b( ) sin

[( . ) ( . ) ] sin

.

.

1
2

1
2 0 5

1

2 2 0 5130 14 112 76 120 20

23 93

2
400

60
41 88

41 88
24

28
35 9

1

2

.

.

. .

 mm

 rad/s

 rad/s

Maximum velocity of sliding

 

( )

( . . )
.

.

 1 2

41 88 35 9
23 91

1000
1 86

Lr

 m/s.
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Example 14.25

Two gears in mesh have 10 teeth and 40 teeth, respectively. They are full-depth teeth and pressure 
angle is 20°. The module is 8.5 mm. Determine the (a) reduction in addendum of the gear to avoid 
interference, and (b) contact ratio.

Solution 

Given: z
1
  10, z

2
  40, m  8.5 mm,   20°

r mz r
mz

r rb

1 1 2
2

1

2 8 5
10

2
42 5

2
8 5

40

2
170/  mm,  mm

1

. . .

cos 42 5 20 311 94 170 20 1511 752 2. cos . cos cos . mm,  mm

2

r r

r
b

a r h ha a2 2 2170

Let pinion be the driver,

Length of approach, L La a( )max

( ) sin sin

[ ( . ) ] sin

.

.

r r r r

r

a b

a

2
2

2
2 0 5

2 1

2
2 2 0 51511 75 170 20

a a
42 5 20

1511 75 212 5 20

30802

2
2 2 2 2

2
2

. sin

( . ) ( . ) sin

,

r

r r

a

a a2 1175 5

175 5 170 5 5

.

. .

 mm

 mm2ha

Reduction in addendum  8.5 5.5  3 mm

(a)

 

r r

L r r

a a

p a b

1 2 mm,  mm42 5 8 5 51 170 8 5 178 5

1
2

1
2 0 5

. . . .

( ) . (( ) ( ) sin

[( ) ( . ) ] [( )

.

.

r r r r

r

a b2
2

2
2 0 5

1 2

2 2 0 5 251 1511 75 51 (( . ) )] ( . ) sin

.

.

.311 94 42 5 170 20

2 2
42 5

10

2 0 5

1

1

38 67 mm

p
r

z
26 7.  mm

 

Contact ratio 
L

p
p

cos

.

. cos
.

38 67

26 7 20
1 54 2

Example 14.26

A pinion with 24 involute teeth of 150 mm of pitch circle diameter drives a rack. The addendum of the 
pinion and rack is 6 mm. Find the least pressure angle which can be used if undercutting of the teeth 
is to be avoided. Using this pressure angle, find the length of arc of contact and the minimum number 
of teeth in contact at one time?

Solution 

Given: z
p
  24, d

p
  150 mm, h

p
  h

r
  6 mm
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h rr p sin

sin

sin .

sin .

2

2

2

6 75

6

75
0 08

0 28284









Least pressure angle,   16.43°

Addendum radius of pinion, r
ap

  r
p
  h

p
  75  6  81 mm

Base circle radius of pinion, r
bp

  r
p
 cos   75 cos 16.43°  71.937 mm

Maximum length of path of contact, L r rp ap bp( ) ( . )/2 2 1 2 2 281 71 937

 37.23 mm

Maximum length of arc of contact,
 

L
L

c
p  mm

cos

.

cos .
.


37 23

16 43
38 814

Minimum number of teeth in contact,

 

 d

z
p

p

150

24
19 635.

Number of pairs of teeth is contact
 

Lc

19 635

38 814

19 635
1 976 2

.

.

.
.

Example 14.27

A pinion of 20 involute teeth and 120 mm pitch circle diameter drives a rack. The addendum of both 
the pinion and rack is 6.00 mm. What is the least pressure angle which can be used to avoid interfer-
ence? With this pressure angle, find the length of the arc of contact and minimum number of teeth in 
contact at a time.

Solution 

Given: z
p
  20, d

p
  120 mm, h

p
  h

r
  6 mm,

h r

r r h

r p

ap p p

sin

sin .

sin .

.

2

2 6

60
0 1

0 31623

18 435

60 6








66

60 18 435 56 921

2 2

 mm

 mmr r

L r r

bp p

p ap ap

cos cos . .

( )max



666 56 921 33 4

120

20
1

2 2( . ) .

, cos cos

 mm

Base pitch p
d

zb

p

p





88 435 17 822. .  mm
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Minimum number of teeth in contact

 

L

p
p

b

33 4

17 882
1 868 2

.

.
.

Example 14.28

A pair of involute spur gears with 16° pressure angle and pitch in module 6 mm is in mesh. The 
number of teeth on pinion is 16 and its speed is 260 rpm. When the gear ratio is 1.8, find in order that 
the interference is just avoided, (i) the addenda on pinion and the gear wheel, (ii) the length of path of 
contact (iii) the maximum velocity sliding of teeth on either side of the pitch point.
 [PTU, Dec, 2007

Solution 

Given:

 

 16 6 16 260

1 8

16 1 8 28 8 29

6
2

1 1

, , ,

.

. .

m z

i

z

d mz

 mm N  rpm,

16 96 48

6 29 174 87
1

2 2 2

 mm,  mm

 mm,  mm

r

d mz r  

(i)

 

r r h h

r r

r r h

a a a

b

a a

1

2

  mm
1 1 1

1 1

2 2

48

48 16 46 14

8

cos cos .
77

87 16 83 63
2

2 2

h

r r
a

b cos cos .  mm

Length of path of approach, L r r ra a b2
2

2
2

2 sin

Length of path of recess, L r r rr a b1
2

1
2

1 sin

Maximum length of approach to avoid interference, ( ) sinmaxL ra 1 

Maximum length of recess to avoid interference, ( ) sinmaxL rr 2 

( ) ( . ) sin sin48 46 14 48 16 87 162 2ha1

( ) ( . ) [( ) sin ]

.

( ) .

48 46 14 87 48 16

1384 66

48 2513

1
2 2 2

1
2

h

h

a

a 556

48 59 27

11 27

87 83 63 87 16 48

1

1

2
2 2

h

h

h

a

a

a

.

.

( ) ( . ) sin s

 mm

iin

( ) ( . ) .

.

16

87 83 63 1384 66

4 53
2

2 2

2

h

h
a

a  mm
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(ii) Length of path of contact, L r rp ( ) sin

( ) sin .

1 2

48 87 16 37 21



 mm

(iii)

  


 




1
1

2
1

2

60

2 260

60
27 227

1 8
15 126

N
.

.
.

 rad/s

 rad/s
 

Path of recess, L
r
  r

2
 sin   87 sin 16°  23.98 mm

Path of approach, L
a
  r

1
 sin   48 sin 16°  13.23 mm

Maximum velocity of sliding during approach   (
1 2

)L
a

 

( . . ) .

.

27 227 15 126 13 23

560 33 mm/s

Maximum velocity of sliding during recess   (
1 

 
2
)L

r

 

( . . ) .

.

27 227 15 126 23 98

1015 62 mm/s

14.18 HELICAL GEARS
A helical gear has teeth in the form of a helix around the gear. The helix may be right handed on 
one gear and left handed on the other gear. The pitch surfaces are cylindrical like spur gears but the 
teeth wind around the cylinder helically like screw threads. Helical gears are used to transmit power 
between parallel shafts.

If a plane is rolled on a base cylinder, a line in the plane parallel to the axis of the cylinder 
will generate the surface of an involute spur gear tooth. If the generating line is inclined to the 
axis, the surface of a helical gear tooth will be generated. These two conditions are shown in 
Fig.14.19.

Fig.14.19  Generation of helical gears
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Helical gears are used to connect parallel shafts and non-interesecting shafts. The former are 
known as parallel helical gears and the latter as crossed helical gears, as shown in Fig.14.20.

Fig.14.20  Helical gear and rack terminology

In determining the tooth proportions of helical gear for either crossed or parallel shafts, it is neces-
sary to consider the manner in which the teeth are to be cut. If the gear is to be hobbed, all dimensions 
are figured in a plane that is normal to the tooth pitch element, and the diametral pitch and the pressure 
angle are standard values in that plane. As the cutting action of the hob occurs in the normal plane, it 
is possible to use the same hob to cut both helical and spur gears of a given pitch; in a spur gear the 
normal plane and the plane of rotation (or transverse plane) are identical.

Helical gears connecting parallel shafts have line contact, which runs diagonally across the face 
of the teeth. Parallel helical gears have smoother action and hence less noise and vibration than spur 
gears. Also the tooth contact is gradual, beginning at one end of the tooth and progressing across the 
tooth surface, whereas in spur gears, contact takes place simultaneously over the entire face width. 
However, helical gears give rise to end thrust.
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14.19 COMPARISON BETWEEN SPUR AND HELICAL GEARS
The comparison between spur and helical gears is given is Table 14.4.

Table 14.4 Comparison of Spur and Helical Gears 

Spur Gears Helical Gears

1.  Teeth are cut parallel to the axis 
of the shaft

1.  Teeth are cut in the form of a helix on the pitch cylinder 
between meshing gears.

2.  Contact between meshing teeth 
occurs along the along the entire 
face width of the tooth.

2.  Contact between meshing gears begins with a point on the 
leading edge of the tooth and gradually extends along the 
diagonal line across the tooth.

3.  Load application is sudden 
resulting into impact conditions 
and generating noise in high 
speed applications.

3.  Pick-up of load by the tooth is gradual, resulting in smooth 
engagement and quiet operation even at high speeds.

4. Used for parallel shafts only. 4. Crossed helical ears are used on shafts with crossed axes.

5.  Speed is limited to about 20 m/s. 5.  Used in automobiles, turbines and high speed applications 
upto 50 m/s.

6. Imposes radial load only. 6. Imposes radial and axial thrust loads.

7. Contact ratio is low. 7. Contact ratio is high.

The helical gears may be of single helical type or double helical type (herringbone gears.) The 
axial thrust present in single helical type is automatically cancelled in double helical type gears.

14.20 HELICAL GEAR TERMINOLOGY
Helix angle ( ): It is the angle between a line drawn through one of the teeth and the centre line of the 
shaft on which the gear is mounted. It varies from 15° to 30°.

Normal circular pitch (p
n
): The normal circular pitch is the distance between corresponding points of 

adjacent teeth as measured in a plane perpendicular (or normal) to the helix. It is the perpendicular 
distance between two adjacent teeth.

 p
n
  p

t
 cos   m cos  (14.45)

Normal diametral pitch (P
n
): The normal diametral pitch is the diametral pitch measured in the plane 

normal to the helix. It is equal to the diametral pitch of the hob.

 P
P

n
t

cos 
 (14.46)
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Fig.14.21  Definition of various pitches of helical gears 

Transverse circular pitch (p
t
): The transverse circular pitch is the distance measured in a plane 

 perpendicular to the shaft axis (or plane of rotation) between corresponding points of adjacent teeth.

 
p

d

z
mt

 
(14.47)

Transverse diametral pitch (P
t
): The transverse diametral pitch is the diametral pitch measured in the 

plane of rotation, that is, transverse to the axis of rotation.

 
P

z

d mt

1

  
(14.48)

 P p P pt t n n  (14.49)

Transverse pressure angle (
t
): It is the pressure angle measured in the transverse plane or plane of 

rotation.

Normal pressure angel (
n
): It is the pressure angle measured in the normal plane or plane perpen-

dicular to the teeth.

Axial pitch (p
x
): The axial pitch is the distance measured in a plane parallel to the shaft axis between 

corresponding points of adjacent teeth.
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 p
x
  p

t
 cot  (14.50)

Lead: The lead is the distance measured parallel to the axis to represent the distance advanced by each 
tooth per revolution.

Lead angle: The lead angle is the acute angle between the tangent to the helix and a plane perpendicu-
lar to the axis of cylinder.

Virtual (or formative or equivalent) number of teeth (z
v
): The number of teeth of the equivalent spur 

gear in the normal plane are called virtual number of teeth.

 
z

z
v cos3

  
(14.51)

Normal module (m
n
): The normal module is the module measured in a plane normal to the helix.

 Normal module, m
n
  m

t
 cos  (14.52)

Pitch diameter d
zmn

cos 
  (14.53)

14.21 ANGLE RELATIONSHIPS IN HELICAL GEARS
Consider the cross-sections of the helical gear in the axial plane x x and normal plane, y y, as shown 
in Fig.14.22.

Fig.14.22  Angle relationships for helical gears

In ABC, we have

 

AC

AB

p

p
n

t

cos

Normal circular pitch,  p
n
  p

t
 cos  (14.54)
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Transverse circular pitch,
  

P
d

zt



 
(14.55)

Transverse diametral pitch,
  

P
z

dt

Transverse module,

  

m
P

d

z

p P p P

t

t

t t n n

1



Normal diametral pitch, 
 

P
p z

dn
t

cos cos   
(14.56)

Normal module,  m mn t cos    (14.57)

From  ABD,  Axial pitch, 
 

p
p d

zx
t

tan
cotb

p b
  

(14.58)

Also

  
cos

tan

tan





 = n

t   

(14.59)

 
d

zp
zm

zmt
t

n

 cos   
(14.60)

Centre distance,
  

C d d
m

z zn1

2 21 2 1 2( )
cos

( )
   

(14.61)

Speed ratio,
  

i
z

z

n

n
2

1

1

2

14.22 VIRTUAL NUMBER OF TEETH
In helical gears, the plane x–x normal to the gear teeth intersects the pitch cylinder to form an ellipse, 
as shown in Fig.14.23. The gear tooth profile generated in this plane, using the radius of curvature of 
the ellipse, would be a spur gear having the same properties as the actual helical gear. The semi-major 

and semi-minor axes of this ellipse are:    a
d

b
d

2 2cos 
 and  respectively.

The radius of curvature r
c
 at point A is

      
r

a

b

d
c

2

22 cos 

where d  pitch circle diameter.
In the design of helical gears, an imaginary spur gear is considered in the plane x x with a pitch 

circle radius r
c
 and module m

n
. It is called a “formative” or “virtual” spur gear.

Pitch circle diameter of virtual gear, d
d

c cos2 
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Fig.14.23 Concept of virtual number of teeth on helical gears

The number of teeth of the equivalent (or virtual) spur gear in the normal plane are called the 
virtual number of teeth, z

v
.

   z
d

p

d

m

d

m

zc

n n n

v cos cos cos2 2 3

1
  (14.62)

14.23 FORCES IN HELICAL GEARS
Forces in helical gears: The forces in a helical gear are shown in Fig.14.24. 

Tangential force,  F Ft n ncos cos    (14.63)

 

103 P

vm

N

Fig.14.24  Forces on a helical gear
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where  F
n
  normal force on gear tooth

 P  power transmitted in kW
 v

m
  mean speed of gear pair

   
tant

r

t

F

F  
(plane OABH)

where  F
r
  radial force

 
tann

rF

OD
ODCplane 

 
OD

F
OADGt

cos 
plane 

Therefore, 
 

tan cos n
r

t

F

F

 tan 
n
  tan 

t
 cos   (14.64)

Axial force,  F
a
  F

t
 tan   (14.65)

The minimum number of teeth cut by a hob,

 
z

k

t

min

cos

sin

2
2


   

(14.66)

where addendum  k  m, and k is a constant. For full depth teeth, k  1.00; and for the stub system, k  0.80.
If the gear is to be cut by a gear shaping method, the dimensions are considered in the plane of rotation 

and the diametral pitch and the pressure angle are standard values in that plane. When a helical gear is cut 
by a gear shaper, the circular pitch, p

t
 of Fig.14.21 becomes equal to the circular pitch of the cutter so that 

the following relations apply:

 
p

d

z P
mt

t

 


  
(14.67)

 
P

z

dt
  

(14.68)

 
m

d

zt
  

(14.69)

14.24 PARALLEL HELICAL GEARS
For parallel helical gears to mesh properly, the following conditions must be satisfied:
1. Equal helix angles
2. Equal pitches or modules
3. Opposite hand of helices

Velocity ratio,
  







1

2

2

1

2 2

1 1

z

z

d

d

cos

cos

 

d

d
2

1   

(14.70)

Centre distance,
  

C z z
mt( )1 2 2   

(14.71)
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14.25 CROSSED HELICAL GEARS
For crossed helical gears to mesh properly, there is only one requirement that they must have common 
normal pitches or modules. Their pitches in the plane of rotation are not necessarily equal. Their helix 
angles may or may not be equal and the gears may be of the same or of opposite hand.

Velocity ratio,
  




1

2

2

1

z

z

 

d

d
2 2

1 1

cos

cos


   

(14.72)

The angle between the two shafts,

  1 2   (14.73)

The plus and minus signs apply respectively, when the gears have the same or the opposite hand. 
Fig.14.24 illustrates pairs of crossed helical gears in and out of mesh.

Centre distance,
  

C
m z zn

2
1

1

2

2cos cos    
(14.74)

Fig.14.24  Crossed helical gears in and out of mesh

Example 14.29

A pair of crossed helical gears connects two shafts at an angle of 60° with a velocity ratio of 1.5:1. 
The pinion has a normal diametral pitch of 0.25, a pitch diameter of 200 mm and a helix angle of 
35°. Determine the helix angle and the pitch diameter of the gear and the number of teeth on both the 
pinion and the gear.
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Solution 

Given: and

 1 2

Therefore,   25°.

Now
  







1

2

2

1

2 2

1 1

z

z

d

d

cos

cos

 

d

z p dn

2

1 1 1

200
1 5 35

25
271 15

0 25 200 3

. cos

cos
.

cos . cos

 mm

 55 40 95 41

41 1 5 61 6 622

.

. .z

Example 14.30

Two left handed helical gears connect two shafts inclined at 60°. The normal module is 8 mm. The 
larger gear has 72 teeth and the velocity ratio is 1:2. If centre distance is 500 mm, calculate the helix 
angles of the two gears.

Solution 

Given:

  

60 8 72 500

0

2

1 2

2 1

2

1

1

2

1

, ,m z C

i
n

n

z

z

z

n  mm,  mm

6

 
 

72

2
36

2

00
8

2

36

1

1

2

2

C
m z zn

cos cos

cos

 


5

11 1

72

60cos( )

We find the value of by hit-and-trial.

Table 14.4

1
, deg

1

1cos 
2

60 1cos ( )
1 2

601 1cos cos ( ) 

25 1.1034 2.4415 3.5449

27 1.1223 2.3847 3.5070

28 1.1325 2.3583 3.4908

29 1.1433 2.3332 3.4765

30 1.1547 2.3094 3.4641
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or

  
3 472.

cos cos( )

1 2

60 11 

We take 
1
  29°, 

2
  31°.

Example 14.31

Two standard spur gears are to be replaced by helical gears. The spur gears were cut by a three-module, 
20° hob, the velocity ratio is 1.75:1, and the centre distance is 132 mm. The helical gears are to be cut 
with the same hob and maintain the same centre distance. The helix angle is to be between 15° and 20° 
and the velocity ratio between 1.70 and 1.75. Find the number of teeth, helix angle, and velocity ratio.

Solution  Given: m
n
 = 3mm, i = 1.70 1.75, C = 132mm, = 15°–20°,

 C  m
t
 (z

1
z

2
) / 2

 132  1.5 (z
1

z
2
) / cos15°

 = z
1

z
2
  85

 Let i =1.72  z
2
/z

1

 Thus, z
v
  31, z

2
  53

 For a helical gear, let   15°, then

 z
v
  z/cos3

z z i1
3

231 cos 15 28 and 48 giving 1 71, . .

 Hence, z
1 
= 28, z

2
 = 48,  = 15°, i = 1.71.

Example 14.32

A pair of helical gears for parallel shafts are to be cut with a three-module hob. The helix angle is to 
be 20° and the centre distance between 153 and 159 mm. The angular velocity ratio is to approach 2:1  
as closely as possible. Calculate the circular pitch and the module in the plane of rotation. Determine 
the number of teeth, pitch diameters, and the centre distance to satisfy the above conditions.

Solution  Given: m
n
 = 3 mm, = 20°, C = 153 – 159 mm, i  2

 m
t
  m

n
/cos   3/cos  20°  3.19 mm

 p
t
  m

t
   3.19  10 mm

 For parallel helical gears, 
1
  

2

 z
2
 /z

1
  2

 C  0.5 m
t
 (z

1
 z

2
)  0.5 z

1
 m

t
 (1 2)  1.5 3.19 z

1
  4.875 z

1

 For z
1
  32, C  153.12 mm, so that z

2
  64

Example 14.33

Two crossed shafts are connected by helical gears. The velocity ratio is 18:1 and the shaft angle is 45°. 
If d

1
  60 mm and d

2
  95 mm, calculate the helix angles if both gears have the same hand.

Solution 

Given: i  1.8, d
1
  60 mm, d

2
  95 mm,   45°

 i  d
2
 cos 

2
/(d

1
 cos 

1
)
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 1.8  (95/60) (cos 
2
/cos 

1
)

 (cos  
2
 /cos  

1
)  1.1368

   
1
 

2
 45°

 cos (45°  
1
)  1.1368 cos 

1

 tan 
1
  0.60798

 
1
  31.3°, 

2
  13.7°

Example 14.34

A pair of helical gears having 30 and 48 teeth and a 23° helix angle transmits power between parallel 
shafts. The module in the normal plane is 3 mm, and the pressure angle in this plane in 20°. Determine 
(a) the module in the plane of rotation, (b) pitch diameters, (c) centre distance, (d) circular pitch in the 
normal plane, and (e) circular pitch in the plane of rotation.

Solution 

Given:  z
1
  30, z

2
  48, m

n
  3 mm, 

n
  20°,   23°

 (a) m
t
  m

n
 / cos   3/cos  23°  3.259 mm

 (b) d
1
  z

1
 m

n
/cos3   30 3/cos3 23°  115.4 mm

  d
2
  z

2
 m

n
 /cos3   48 3/cos323° 184.64 mm

 (c) C  0.5 m
t
(z

1
 z

2
)  0.5  3.259 (30 48)  127.1 mm

 (d) p
n
  m

n
    3  11.42 mm

 (e) p
t
  m

t
   3.259  10.238 mm

Example 14.35

A pair of crossed helical gears connects shafts making angle of 45°. The right-hand pinion has 36 
teeth and a helix angle of 20°. The right-hand gear has 48 teeth and its module in the normal plane is 
2.5 mm. Determine (a) The helix angle of the gear, (b) circular pitch in the normal plane, (c) module 
of the pinion in its plane of rotation, (d) module of the gear in its plane of rotation, and (e) centre 
distance.

Solution 

Given: z
1
  36, z

2
  48, m

n
 2.5 mm,   45°, 

1
 20°

(a)   
1
 

2
  45°, 

2
  45 20  25°

(b) p
n
   m

n
    2.5  7.854 mm

(c) m
t1
  m

n
/cos 

1
  2.5/cos  20°  2.66 mm

 m
t2
  m

n
 /cos

2
  2.5/cos 25°  2.758 mm

(d) C  0.5 m
n 
[z

1
/cos 

1
 z

2
/cos 

2
]

  0.5 2.5 [ 36/cos 20° 36/cos 25°]

  114.1 mm

14.26 HERRINGBONE GEARS
It is a gear, half of whose width is cut with a tooth helix in one direction and the other half in the oppo-
site direction. It is in effect a double helical gear cut on a blank. The advantage of herringbone gears 
is that the end thrust is automatically eliminated.
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14.27 BEVEL GEARS
Bevel gears are used to connect shafts whose axes intersect. The shaft angle is defined as the angle between 
the centre lines which contains the engaging teeth. Figure 14.25 shows the details of a pair of bevel gears.

Pitch cone: The pitch cone is the pitch surface of a bevel gear in a gear pair.

Cone centre: The cone centre is the apex of the pitch cone.

Pitch cone radius (r): The pitch cone radius is the length of the pitch cone element.

Pitch angle ( ): The pitch angle is the angle that the pitch line makes with the axis of the gear.

Reference cone angle: The reference cone angle is the angle between the gear axis and the reference 
cone generator containing the root cone generator.

Tip (or face) angle (
a
 ): The tip angle is the angle between the tip cone generator and the axis of the gear.

Root (or cutting) angle (
f
 ): The root angle is angle between the root cone generator and the axis of 

the gear.

Back cone: The back cone is an imaginary cone the elements of which are perpendicular to the ele-
ments of the pitch cone at the larger end of the tooth.

Gear diameter: The gear diameter is the diameter of the largest pitch circle.

Virtual number of teeth: The virtual number of teeth is number of teeth on an imaginary spur gear laid 
out on a pitch radius equal to the back cone radius.

 
z

z
v cos    

(14.75)

Crown gears: The crown gear is a gear pair for which pitch cone angle is 90°.

Miter gears: Mitre gears are two bevel gears of the same size having pitch cone angle 90°.

Angular bevel gears: The shaft angle is greater or less than 90°.
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Fig.14.25  Bevel gear nomenclature

Let 
a
  addendum angle

 
f
  dedendum angle

Tip angle, 
a
    

a

 
f
  

f
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Velocity ratio,
  




1

2

2

1

2

1

d

d

z

z

Module,
   

m
d

z

Angle relationships:
Let  L  length of the pitch cone

 

d d1
2

2
2 0 5

4

.

  

(14.76)

 

sin sin ( ) sin cos cos sin

sin

sin sin

cos

   




1
1

2 2 2

1

2

2

d

L



2

2sin

cos

sin

 

1 11

2 2sin

sin

sin
cos

tan


 

  

(14.77)

Also

  

sin

sin




1

2

1

2

d

d

Therefore

  

tan
sin

cos

sin

cos
2

1

2

1

2

d

d

z

z

Similarly

  

tan
sin

cos
1

2

1

d

d

 

sin

cos
z

z
2

1  

 (14.78)

Addendum angle,
  

tan sin


a a2 1

1

h
d

 
2 2

2

h
da sin


  

(14.79)

Dedendum angle,
  

tan sin


f f2 1

1

h
d

 
2 2

2

h
df sin


  
(14.80)

Outside (or tip) diameter of pinion, d d ha a1 1 12 cos    (14.81)

Outside diameter of gear,  d d ha a2 2 22 cos    (14.82)
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For right angle gears,  90 , and

 

tan

tan





1
1

2

2
2

1

z

z

z

z

For obtuse angle gears,  is greater than 90°, and

 

tan
sin ( )

cos ( )
2

1

2

180

180
d

d

 

sin ( )

cos ( )

180

1801

2

z

z  

 (14.83)

Similarly

  

tan
sin ( )

cos ( )
1

2

1

180

180
d

d

 

sin ( )

cos ( )

180

1802

1

z

z   

(14.84)

Forces on straight tooth bevel gears are:

Normal force,  F
F

n
t

ncos
  (14.85)

Radial force,  F Fr t ntan sin    (14.86)

Axial force,  F Fa t ntan cos    (14.87)

where
  

F
P

v
v

d n
t

m
m

m10

10 60

3

3
, m/s,

and d
m
  d b sin , b  face width of gear tooth.

Example 14.36

A crown bevel gears of 48 teeth and a module of 2 is driven by a 24-tooth pinion. Calculate the pitch 
angle of the pinion and the shaft angle.

Solution 

 Given: m  2 mm, z
1
  24, z

2
  48

 i  z
2
/z

1
  48/24  2

 d
1
  mz

1
  2  24  48 mm, d

2
  2  48  96 mm

 
L d d0 5 01

2
2
2 0 5 0

. [ ] . .. .
5 48 96 53 66 mm2 2 5

 sin
1
  d

1
/(2L)  48/(2 53.66)  0.4472
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1
  26.56°

 tan 
1
  sin  /(cos  i)

 tan 26.56°  sin /(cos  2)

 0.5  sin /(cos  2)

 0.5 cos  1  sin  

 Both sides are equal, if   90°.

Hence shaft angle is 90°.

Example 14.37

A 6.35 mm module, straight bevel pinion of 14 teeth drives a gear of 20 teeth. The shaft angle is 90°. 
Calculate the addendum and dedendum, circular tooth thickness for each gear, and the pitch and base 
radii of the equivalent spur gear.

Solution 

Given m  6.35 mm, z
1
  14, z

2
  20,   90°, h

a
  h

f
  ?

 i  z
2
/z

1
  20/14  1.4286

 d
1
  mz

1
  6.35  14  88.9 mm, d

2
  6.25 20  127 mm

 L d d0 0 5 88 9 127 77 511
2

2
2 0 5 2 2 0 5. [ ] . [( . ) ( ) ] .. .5   mm

 sin  
1
  d

1
/(2L)  48/(2 53.66)  0.4472

 
1
  26.56°

 tan  
1
  sin /(cos i)

  sin 90°/(cos  90°  1.4286)  0.7

 
1
  35°, 

2
  90 35  55°

 h
a
  m  6.35 mm. h

f
  1.25 m  1.25  6.35  7.94 mm

 For a bevel gear, z
v
  z/cos 

 z
v1

  z
1
/cos 

1
  14/cos 35°  17, z

v2
  20/cos  55°  35

 For the equivalent spur gear, d  mz
v
  The pitch diameters are:

 d
1
  6.35  17  108 mm, d

2
  6.35  35  222.25 mm

 Circular tooth thickness    108/17  111.96 mm

14.28 SPIRAL GEARS
Spiral gears are used to connect non-parallel and non-intersecting shafts, as shown in Fig.14.26. The 
shaft angle may be less than or greater than 90°, as shown in figure below.

 Let 
1
  spiral angle of gear 1

 
 2
  spiral angle of gear 2

   
1

 
2

Gear ratio,

  
i

z

z
2

1

p
p

p
pn n

1
1

2
2cos

,
cos 

and
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Fig.14.26 Spiral gears in mesh

Also
  

d
z p z pn

n

1
1 1 1

  cos

and

 
d

z p z pn

n

2
2 2 2

  cos

Centre distance,
 

C
d d1 2

2

 

z p in1

1 22

1

  cos cos
  

(14.88)

Let d
z p

v
n1  be the virtual pitch circle diameter of a spur gear with the same number of teeth 

and normal pitch as the spiral gear 1.

Thus 

 

C
d iv

2

1

1 2cos cos
  

(14.89)
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14.28.1 Efficiency of Spiral Gears
Two spiral gears in mesh at point P are shown in Fig.14.27. Gear 1 is the driver and 2 is the driven gear.

Fig.14.27  Two spiral gears in mesh

Let μ  tan  be the coefficient of friction between the mating surfaces.

Driving force,

  

F F1 2

cos ( )

cos ( )

 
 

1

2

Without friction,
  

F
F

10
2 1

2

cos

cos




Efficiency of the drive,
 


  
  

F

F
10

1

1 2

1 2

cos cos ( )

cos ( ) cos

 

cos cos( )

cos( ) cos( )

cos( ) cos( )

c

1 1

1 1

12

oos( ) cos( )

cos( ) cos( )

cos( ) cos(

2

2

2

1

1

11 )

 

cos ( ) cos ( )

cos ( ) cos ( )
1 2

1 2   

(14.92)

where   
1
 

2
.

For efficiency to be maximum,

  cos ( )2 11 

or  2 01 
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or
  




1 2

 
max

cos ( )

cos ( )

1

1   

(14.93)

Example 14.38

Two shafts connected by circular spiral gears are 500 mm apart. The speed ratio is 3 and the angle 
between the shafts is 60°. The normal circular pitch is 20 mm. The spiral angles for the driving and 
driven gears are equal. Find (a) number of teeth on each gear, (b) exact centre distance, and (c) effi-
ciency of the drive. Take friction angle equal to 6°.

Solution 

 Given:  C = 500 mm, i = 3,  = 60°, 
n

= 20 mm, = 6°

 
 1 2 2

60

2
30

Centre distance,

  

C
p z i

z

n 1

1 2

1

2

1

20

2

1

30

3

  



cos cos

cos cos 330

 500  14.7z
1

or  z
1
  34

 z
2
  34  3  102

Exact centre distance,
  

C
20 34

2

1

30

3

30
499 87

 cos cos
.  mm

Efficiency of the drive, 

 


  
  

cos ( ) cos

cos ( ) cos

cos ( ) cos

cos (

2 1

1 2

30 6 30

30 6 )) cos

. %

30

88 56

Example 14.39

Two spiral gears in mesh have the following data:
Angle of friction  6°
Normal circular pitch  20 mm
Shaft angle  55°
Speed ratio  3
Approximate centre distance  400 mm
Spiral angle of pinion  25°
Determine (a) the exact centre distance, (b) the number of teeth in each wheel, and (c) the efficiency 

of the drive.
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Solution 

 Given:  = 6°, p
n

= 20 mm,  = 55°, i = 3, C  400 mm, 
1

= 25°

 

C
z p i

z

n1

1 2

1

2

1

400
20

2

1

25

  



cos cos

cos

33

30

27 51 28

84
1

2

cos

.z

z

Exact centre distance,

  

C
z p in1

1 22

1

28 20

2

1

25

3

  



cos cos

cos coss

.

30

407 08 mm

Efficiency of drive,

  

cos ( ) cos

cos ( ) cos

cos ( ) cos

cos ( )

  
  

2 1

1 2

30 6 25

25 6 ccos

. %

30

81 54

Example 14.40

Two shafts inclined at an angle of 65° and with a least distance between them of 175 mm are to be 
connected by spiral gears of normal circular pitch 15 mm to give a reduction ratio 3:1. Find suitable 
diameters and number of teeth. Determine also the efficiency of the drive if the spiral angles are deter-
mined by the condition of maximum efficiency. The angle of firction is 7°.

Solution 

 Given: 65 175 15 3 7, , , ,  mm   mm   C p in 
 For maximum efficiency, 

1
  0.5 ( )  0.5 (65 7)  36°, 

2
  29°

 C  [z
1
 p

n
/(2 )][1/cos 

1
 i/cos 

2
]

 175  [z
1
  15/(2 ) [1/cos 36°  3/cos 29°]

 z1 15 7 16.

 z
2
  48

Maximum efficiency  [1 cos ( )]/[1 + cos ( )]

  (1 + cos 72°)/(1 cos 58°)  85.56%

Example 14.41

A spiral reduction gear of ratio 3:2 is to be used on a machine with the angle between the shafts 80°. 
The approximate centre distance between the shafts is 125 mm. The normal pitch of the teeth is 10 
mm and the gear diameters are equal. Find the number of teeth on each gear, pitch circle diameters and 
spiral angles. Find the efficiency of the drive if the friction angle is 5°.
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Solution 

 Given: i  1.5,   80°, C  125 mm, p
n
  10 mm, d

1
  d

2
,   5°

 cos 
1
/cos 

2
  z

1
/z

2
  2/3

 3cos 
1
  2 cos (80°

1
)

  2 (cos 80°cos 
1
 + sin 80° sin 

1
)

 1.5 cos 
1
  0.17365 cos 

1
  0.9898 sin 

1

 tan 
1
  1.34682

 
1
  53.4°, 

2
  80° 53.4°  26.6°

   [cos ( ) + cos (
1 2

)]/[cos ( ) + cos (
1 2

)]

  [cos 85°  cos 20.8°]/[cos 75° + cos 20.8°]

  85.62%

 C  [z
1
p

n
/(2 )][1/cos 

1
  i/cos 

2
]

 125  [(z
1
 10)/(2 )]  (1/cos 53.4° + 1.5/cos 26.6°]

 z1 23 41 24.

 z
2
  24  1.5  36

 d
1
  d

2
  z

1
 p

n
/(  cos 

1
)  (24 10)/(   cos 53.4°)  128.13 mm

Example 14.42

The centre distance between two meshing spiral gears is 200 mm and the angle between the shafts 
60°. The gear ratio is 2 and normal circular pitch 10 mm. The driven gear has a helix angle of 25°. 
Determine (a) the number of teeth on each wheel, (b) the exact centre distance, and (c) the efficiency 
if friction angle is 5°.

Solution 

Given: C  200 mm, i  2,   60°, p
n
  10 mm, 

2
  25°

(a) 
1
  60° 25°  35°

 C  [z
1
p

n
/(2 )]  [1/cos

1 
+ i/cos

2
]

 200  [(z
1 

10)/(2 )]  [1/cos35° + 2/cos25°]

 z1 36 66 37.

 z
2
  37  2  74

 d
1
  d

2
  z

1
 p

n
/(  cos 

1
)  (24 10)/(  cos 53.4°)  128.13 mm

(b) Exact centre distance, C  [(37 10)/(2 )]  [1/cos35° + 2/cos25°]

  201.8 mm

Example 14.43

The angle between two shafts is 90°. They are joined by two spiral gears having a normal circular pitch 
of 8 mm and gear ratio of 3. If the approximate centre distance between the shafts is 250 mm and fric-
tion angle 6°, determine for the maximum efficiency of the drive (a) the number of teeth, (b) the exact 
centre distance, (c) pitch diameters, and (d) the efficiency.
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Solution 

(a) Given:   90°, C  250 mm, p
n
  8 mm, i  3,   6°

For maximum efficiency, 
1
  0.5 ( )  0.5 (90 + 6)  48°, 

2
  42°

 C  [z
1
 p

n
/(2 )] [1/cos 

1
+  i/cos 

2
]

 250  [z
1 

8/(2 )][1/cos 48° + 3/cos 42°]

 z1 35 49 36.

 z
2
  36  3  108

(b) Exact centre distance  [36 8/(2 )][1/cos48° + 3/cos42°]

  253.54 mm

(c) d
1
  z

1
 p

n
/(  cos 

1
)  (36 8)/( cos 48°)  137 mm

 d
2
  z

2
 p

n
 /(  cos 

2
)  (36 8)/(  cos 42°)  370 mm

(d)   [1 + cos ( )]/[1 + cos (   )]

  [1 + cos96°]/[1 + cos84°]  81%

14.29 WORM GEARS
A worm and worm gear is used to provide a high angular velocity reduction between non-intersecting 
shafts, which are usually at right angles. The pinion or worm has a small number of teeth (threads), 
usually one to four. Its mating gear is called the worm wheel. There is a line contact between the worm 
threads and the worm wheel teeth. Because of this, worm gears can transmit high tooth loads. How-
ever, the high sliding velocities give rise to high heating of the worm. The geometry of a worm and 
worm gear is shown in Fig.14.28 worm and worm gear with shafts at right angles to mesh properly, 
the following conditions must be satisfied:

1. Lead angle of worm  helix angle of worm gear
2. Axial pitch of worm  circular pitch of worm gear.

Axial diametral pitch (P
x
): The axial diametral pitch is the quotient of the number  by the axial pitch.

 
P

px
x   

(14.92)

Diametral quotient (q): The diametral quotient is the ratio of the reference diameter to the axial 
module,

 
q

d

m   
(14.93)

Axial module (m
x
): The axial module is the quotient of the axial pitch by the number .

 
m

p
x

x

   
(14.94)

Axial circular pitch ( p
x
): The axial circular pitch is the distance between two consecutive correspond-

ing profiles, measured parallel to the axis of the worm.

Lead ( p
z
): Lead is the axial distance between two consecutive intersections of a helix and straight 

generator of the cylinder on which it lies.
 p

z
  p

x
z

1
  (14.95)

where z
1
  number of starts on the worm.
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Length of the worm: The length of the worm is the length of the toothed part of the worm measured 
parallel to the axis on the reference cylinder.

Gear ratio: Gear ratio is the quotient of the number of teeth on the wheel divided by the number of 
threads on the worm.

 
i

z

z
2

1   
(14.96)

Torus: Torus is the surface of revolution generated by the rotation of a circle around an axis external 
to this circle and situated in its plane.

Gorg: Gorg is part of the tip surface in the form of a portion of a torus with the same middle circle 
diameter as the reference torus.

Tooth width: Tooth width is the distance between two planes perpendicular to the axis containing the 
circles of intersection of the reference torus and the lateral faces of the teeth.

Fig.14.29  Worm gears
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Width angle: Width angle is the angle at the centre included between the points of intersection of this 
circle with the lateral faces of the teeth, in the generating circle of the reference torus.

Lead angle ( ): Lead angle is the angle between a tangent to the pitch helix and the plane of rotation 
of the worm.

 
tan 


p

d

m z

d
z x

1

1

1   
(14.97)

 




1

2

2

1

2z

z

d

pz    
(14.98)

 p pn x cos    (14.99)

 
m

m
x

n

tan    
(14.100)

Centre distance,

  

C
d d m z zn1 2 1

1

2

22 2 cos cos 

For 90° shafts,
   2   and   1 90 .

Hence
  

C
m

z z
2 1 2[ cot ]

 

p
iz

2
[cos ]

  
(14.101)

where, velocity ratio, 

  
i

z

z

d

p

n

nx

2

1

2 1

2



14.29.1 Efficiency of Worm Gears
The efficiency of the worm gears when worm is the driver,

 


  
  

cos cos ( )

cos ( ) cos
1 2

1 2

For
  
     1 2 2 190 90; ,  and 

  
we get

 


  
  

sin cos ( )

cos sin ( )

 

tan

tan ( )


    

(14.102)

When worm wheel is the driver, then

 


 


tan ( )

tan   
(14.103)

A worm and worm gear may be considered self-locking when the lead angle of the worm is less 
than 5°.
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Example 14.44

A triple-threaded worm drives a worm gear of 60 teeth, the shaft angle is 90°. The circular pitch of the 
worm gear is 30 mm and the pitch diameter of the worm is 95 mm. Determine the lead angle of the 
worm, the helix angle of the worm gear and the distance between shaft centres.

Solution  Given: z
1
 = 3, z

2
 = 60, p

x
 = 30 mm, 

1
 95 mm

Lead,

  

p p z

p

d

z x

z

1

1

30 3 90

90

95
0 30155

16 78

 mm

tan .

.


 



Helix angle of worm gear  lead angle of worm

Hence  
2
  16.78°

 
d

p zx
2

2 30 60
572 96

 
.  mm

Centre distance,

  

C
d d1 2

2
95 572 96

2
333 98

.
.  mm

Example 14.45

A two start worm rotating at 900 rpm drives a 27 tooth worm gear. The worm has a pitch diameter 
of 60 mm and a pitch of 20 mm. The coefficient of friction is 0.05. Find (a) the helix angle of worm, 
(b) the speed of gear, (c) centre distance, (d) efficiency and (e) maximum efficiency.

Solution 

Given: N
1
  900 rpm, z

2
  27, d

1
  60 mm, p

x
  20 mm, z

1
 2

  tan . . ,1
10 05 2 86 20 2 40p p zz x  mm

(a)

 

tan .

.

.


 

 
 

p

d
z

1

2

1 2

40

60
0 2122

11 98

90 78 02

(b)

 

d
p z

i
n

n

d

p

x

z

2
2

1

2

1

2

2

20 27
171 88

171 98

40
13 5

 



 

.

.
.

 mm

nn2

900

13 5
66 67

.
.  rpm

(c)
 

C
p

iz

2

40

2
11 98 13 5 115 95





(cot ) (cot . . ) .  mm
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(d)
 




 
tan

tan ( )

tan .

tan ( . . )

11 98

11 98 2 86

  0.8 or 80%

(e)
 



max

sin

sin

sin .

sin .
. %

1

1

1 2 86

1 2 86
90 49

Example 14.46

A double-threaded worm having a lead of 65 mm drives a worm gear with a velocity ratio of 20:1; the 
angle between the shafts is 90°. If the centre distance is 235 mm, determine the pitch diameter of the 
worm and worm gear.

Solution 

Given: p
z
  65 mm, i  20,   90°, C  235 mm

 C  (p
z
/2 )(cot + i)

 235  (65/2 ) (cot 0)

 cot   2.71613

  20.21°

 tan   p
z
/( d

1
), d

1
  65/(  tan 20.21°)  56.2 mm

 i  d
2
/p

z
, d

2
  20 65/   413.8 mm

 z
2
  2  20  40

Example 14.47

A worm and worm gear with shafts at 90° and a centre distance of 178 mm are to have a velocity ratio 
of 18:1. If the axial pitch of the worm is to be 26.192 mm, determine the maximum number of teeth in 
the worm and worm gear that can be used for the drive and their corresponding pitch diameters.

Solution 

Given: p
x
  26.192 mm, i  18,   90°, C  178 mm

 Let z
1
  2, p

z
  p

x
z

1
  26.192  2  52.384 mm

 i  d
2
/p

z
, d

2
  18 52.384/   300 mm

 z
2
  2 18  36

 C  ( p
z
 /2 ) (cot   i)

 178  (52.384/2 ) (cot   18)

 cot   3.35

   16.62°

 tan   p
z
/( d

1
)

 d
1
  52.384/(   tan 16.62°)  55.86 mm

Example 14.48

A double-threaded worm drives a 31-tooth worm gear with shafts at 90°. If the centre distance is  
210 mm and the lead angle of the worm 18.83°, calculate the axial pitch of the worm and the pitch 
diameters of the two gears.
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Solution 

Given: 

 z z1 22 31 90 210 18 83, , , , .C  mm 

 i  z
2
/z

1
  31/2  15.5

 C  (p
z
/2 ) (cot   i)

 210  (p
z
/2 ) (cot 18.83°  15.5)

 p
z
  71.584

 p
x
  p

z
/z

1
  71.584/2  35.792 mm

 tan   p
z
/( d

1
)

 d
1
  71.584/(   tan 18.83°)  66.82 mm

 d
2
  ip

z
/   15.5  71.584/   353.2 mm

Example 14.49

A worm and worm gear with shafts at 90° and a centre distance of 76 mm are to have a velocity ratio of 
8:1. Using a lead angle of 28.88°, determine the pitch diameters. Select number of teeth for the gears 
considering worms with 1 to 10 threads.

Solution 

Given:   90°, C  76 mm,   28.88°, i  8
 For z

1
  2, z

2
  16

 C  (p
z 
+

 2
) (cot + i)

 76  (p
z
/2 ) (cot 28.88° + 8)

 p
z
  48.66

 tan   p
z
/( d

1
)

 d
1
  48.66/(   tan 28.88°)  28.1 mm

 d
2
  i p

z
/   8  48.66/   123.9 mm

Example 14.50

A worm and worm gear have axes at 90° and give a speed reduction of 15 to 1. The triple-thread worm 
has a lead angle of 20° and an axial pitch of 10 mm. Determine the following for the worm gear : (a) 
number of teeth, (b) pitch diameter, and (c) helix angle.

Solution 

Given:  i  15, z
1
  3,   20°, p

x
 10 mm

 p
z
  p

x
z

1
  10  3  30 mm

 d
2
  ip

z
/   15  30/   143.24 mm

 z
2
  iz

1
  3  15  45

 
2
    20°

Summary for Quick Revision

1 A gear may be defined as a toothed member designed to transmit or receive motion from one shaft 
to another by successively engaging tooth.

2 Gears occupy less space, no slip, transmit higher power, and gives higher efficiency.

3 Gears may be classified as: spur, helical, double helical, spiral, bevel, worm, hypoid and 
 planetary.
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4 Pressure angle is the angle between the common normal at the point of contact and the common 
tangent at the pitch point.

5 Involute of a circle is the curve traced by the end of a thread as it is unwound from a stationary 
cylinder.

6 Cycloid is the locus of a point on the circumference of a circle which rolls without slipping on a 
fixed straight line.

7 Basic relations for a spur gear.
 Circular pitch, p  d/z
 where z  number of teeth, d  pitch circle diameter.
 Base pitch, p

b
  p  cos  

 where   pressure angle of gear tooth profile.
 Diametral pitch, P  z/d

 Relationship between circular and diametral pitch, P p  
 Module, m  d/z  1/p
 Base Circle Diameter, d

b
  d cos

 Centre distance, C  (d
1
+

 
d

2
)/2  m (z

1
+

 
z

2
)/2

8 Fundamental law of gearing:
For constant angular velocity ratio of the two gears in contact the common normal at the point of 
contact must always intersect the line of centers at a fixed point (pitch point) and divide this line 
in the inverse ratio of the angular velocities of the two gears.

9 Relative velocity between gear teeth:

v
r
  (

1 
+

 2
) AP

  (sum of the angular velocities)  distance of the point of contact from the pitch point.

10 Involute function, inv ( )  tan 

11 Characteristics of involute action.
 Addendum radius of pinion, r

a1
  r

1
 h

a1

 Base circle radius of pinion, r
b1

  r
1
cos

 Addendum radius of gear, r
a2

  r
2
 h

a2

 Base circle radius of gear, r
b2

  r
2
cos

 Where r
1
  pitch circle radius of pinion

 r
2
  pitch circle radius of gear

 h
al
  addendum of pinion

 h
a2

  addendum of gear
 r

b1
  base circle radius of pinion

 r
b2

  base circle radius of gear

 Length of path of recess, L r r rr a b( ) sin.
1
2

1
2 0 5

1 
 Length of path of approach, L r r ra a b( ) sin.

2
2

2
2 0 5

2 

 Length of path of contact, AB L L L r r r r r rp r a a b a b( ) ( ) ( ) sin. .
1
2

1
2 0 5

2
2

2
2 0 5

1 2

 Length of arc of contact, L
c
  AB/cos 

 Maximum length of path of recess  r
2
sin 

 Maximum length of path of approach  r
1
sin 
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 Contact ratio, m
c
  length of path of contact/base pitch  L

p
/p

b

 where p
b
  p cos   m cos

 For a rack and a pinion, L
p
  (r2

a1
r2

b1
)0.5 r

1
 sin   a/sin 

 where ‘a’  addendum.

12 Interference in gears is a phenomenon in which the tip of the driven gear tooth will dig into the 
flank of the driving gear tooth.

13 Interference can be avoided by undercutting, making stub tooth, increasing the pressure angle, 
and cutting the gears with long and short addendum gear teeth.

14 Minimum number of teeth on gear wheel.
Speed ratio, i  z

2
/z

1
, addendum of pinion, h

a1
  a

p
m, addendum of gear wheel, h

a2
  a

w
m where a

p
 

and a
w
 are the constants by which the module must be multiplied to get the addendum of pinion 

and gear wheel respectively.

 z
2
  2a

w
1 1 2 12 2 2 0 5

( ) sin ( ) sin
.

/ /i i

 For a
w
  1, z

2
  [z2

1
 sin2 4]/[4 2 z

1
 sin2 ]

 For i  1, and a
w
  a

p
 

 z
2
  2 a

w
/[{1 + 3 sin2 }0.5 1]

15 Minimum number of teeth on pinion.

 z
1
  2 a

p
1 2 12 2 2 0 5

i isin sin
.

 For a
p
  1, z

1
  [z2

2
sin2 4]/[4-2z

2
sin2 ]

16 Minimum number of teeth on rack pinion.
 z

1
  2a

r
/sin2

 z
min

  32 for   14.5° and 18 for   20°

17 Effect of centre distance variation on velocity ratio.
The variation in the centre distance, within limits, does not affect and angular velocity ratio. But 
the length of arc of contact is decreased, and the pressure angle is increased.

18 Helical gears have teeth in the form of a helix around the gear.

19 Helical gears have line contact which takes place gradually and smoothly, gives less noise as 
compared to spur gears. However they give rise to end thrust.

20 Basic relations for a helical gear:
 Transverse circular pitch, p

t
  d/z m

 Axial pitch, p
x
  p

t
cot  , where   helix angle

 Virtual number to teeth, z
v
  z/cos2  

 Normal module, m
n
  m

t
cos  

 Normal circular pitch, p
n
  p

t
cos  

 Transverse diametral pitch, P
t
  z/d  1/m

 Normal diametral pitch, P
n
  P

t
/cos  

 Speed ratio, i  z
2
/z

1
  n

1
/n

2

 Centre distance, C  (d
1
 d

2
)/2  (m

n
/cos  )[(z

1
 z

2
)/2]

21 Crossed helical gears:
 Velocity ratio: i  n

1
/n

2
  z

2
/z

1
  (d

2
cos  

2
)/(d

1
cos  

1
)
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  Angle between the two shafts,  1 2
 (use +ve sign for same hand and ve sign for oppo-

site hand gears)
 Centre distance, C  (m

n
/2) [z

1
/cos 

1
 z

2
/cos 

2
]

22 In herringbone gears, the end thrust is automatically eliminated.

23 Bevel gears are used for shafts whose axes intersect.

24 Crown gears is a gear pair for which pitch cone angle is 90°.

25 Miter gears are two bevel gears of the same size in mesh whose pitch cone angle is 90°.

26 Basic relations for a bevel gear:
 Length of the pitch cone, L [(d 2

1
 d 2

2
)/4]1/2

 Pitch cone angle of pinion, 
1

sin 1 [d
1
/(2L)]

 Angle between the shafts,   
1
 

2

 tan 
1
  sin /[cos  + (z

1
 z

2
)]

27 Spiral gears are used to connect non-parallel and non-intersecting shafts.

28 Basic relations for spiral gears:
 Angle between the shafts,   

1
 

2

 Circular pitch, p  p
n
/cos 

 Pitch circle diameter, d  zp
n
/ (  cos 

n
)

 Centre distance, C  [(z
1
p

n
)/(2 )][1/cos 

1
  1/cos 

2
]

 Efficiency of spiral gears  [cos ( ) + cos (
1
  

2
  )]/[cos ( )  cos (

1
 

2
  )]

 Where   tan-1μ, μ  coefficient of friction
 For maximum efficiency, 

1
  (  )/2

 Maximum efficiency,  [1 + cos ( )]/[1 cos ( )]

29 Worm gears are used to provide high angular velocity reduction between non-intersecting shafts.

30 Basic relations for worm gears:
 Lead angle of worm  Helix angle of worm gear
 Axial pitch of worm  Circular pitch of worm gear
 Axial diametral pitch, P

x
  /p

x

 Diametral quotient, q  d/m
 Axial module, m

x
  p

x
/

 Lead, p
z
  z

1
 p

x,
 where, z

1
  number of starts on the worm

 Gear ratio, i  z
2
/z

1

 Lead angle, y  tan 1[p
z
/( d

1
)]

 Axial module, m
x
  m

n
/tan y

 Centre distance, C  (m
n
/2) [z

1
/cos 

1 
 z

2
/cos 

2
]

 Efficiency of worm gears  [cos 
1
 cos (

2
 )]/[cos (

1 
) cos 

2
]

Multiple Choice Questions

1 The surface of the gear tooth below the pitch surface is called
(a) addendum portion (b) dendendum portion (c) flank (d) face.

2 The path of contact in involute gears is
(a) a straight line (b) involute path (c) curved path (d) circle.
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3 For two meshing gears, their
(a) number of teeth must be same (b) addendum must be same
(c) dedendum must be same (d) module must be same.

4 The size of a gear is usually specified by
(a) circular pitch (b) module (c) pitch circle diameter (d) base diameter.

5 The type of gears used to connect two parallel coplanar shafts are
(a) spur gears (b) bevel gears (c) spiral gears (d) worm gears.

6 The type of gears used to connect two intersecting coplanar shafts are
(a) spur gears (b) straight bevel gears (c) helical gears (d) spiral gears.

7 The type of gears used to connect two non-parallel and non-intersecting shafts are
(a) spur gears (b) bevel gears (c) worm gears (d) spiral gears.

8 The circular pitch of a spur gear is defined as
(a) d/z (b) d/z (c) z/d (d) z/ d.
where d  pitch circle diameter and z  number of teeth

9 The diametral pitch of a spur gear is defined as
(a) d/z (b) d/z (c) z/d (d) z/ d.

10 The module of a spur gear is defined as
(a) d/z (b) d/z (c) z/d (d) z/ d.

11 Choose the correct relationship
(a) p P   (b) p/P   (c) P/p   (d) p P  1/ .

12 Module of a spur gear teeth is
(a) 1/P (b) 1/p (c) P/  (d) p/ .

13 The range of pressure angle for spur gears is
(a) 10 to 14° (b) 14.5 to 20° (c) 21 to 25° (d) 26 to 30°.

14 Choose the correct statement for involute profile in regard to pressure angle
(a) minimum value when contact begins (b) maximum value when contact ends
(c) remains same for all points of contact (d) interference is zero.

15 In case of cycloidal tooth profile gears
(a) the pressure angle is always constant through the contact
(b) the path of contact is a straight line
(c) the variation in centre distance affects the angular speed ratio
(d) interference is more.

16 The involute function in terms of pressure angle  is
(a) tan   (b) tan 1  (c) tan–1 1 (d) tan .

17 The minimum number of teeth for involute rack of 20° pressure angle is
(a) 17 (b) 24 (c) 32 (d) 34.

18 Path of contact in case of cyclodial tooth profile gears is a
(a) Straight line (b) circle (c) complex curve (d) parabola.

Answers

1. (c) 2. (a) 3. (d) 4. (c) 5. (a) 6. (b) 7. (c) 8. (a) 9. (c) 10. (b)

11. (a) 12. (a) 13. (b) 15. (c) 16. (a) 17. (a) 18. (b)
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Review Questions

1 Name the gears for connecting parallel shafts.

2 What are the gears used for intersecting shafts?

3 Which gears are used for non-parallel and non-intersecting shafts?

4 Define pressure angle of a gear.

5 What is the relationship between circular pitch and diameter pitch of a spur gear?

6 State the law of gearing.

7 What is conjugate action in gears?

8 What are the causes for interference in gears?

9 How interference is gears can be minimized?

10 Explain path of recess and path of approach.

11 Compare involute and cycloidel tooth profiles.

12 Define contact ratio.

13 How many are the minimum number of teeth on the pinion for a rack of 20° pressure angle?

14 What is the law for velocity of sliding between a gear pair?

15 What is the effect of centre distance variation on speed ratio in gears?

16 What is a rack?

17 What are the advantages of standard gears?

18 What are the advantages of gear drive?

19 What is backlash in gears?

20 What are the characteristics of involute action?

21 What are herringbone gears? What is their advantages?

22 Explain virtual number of teeth on helical gears.

23 Define axial pitch, normal module and normal pressure angle of helical gears.

24 What are crown and miter bevel gears?

25 Where do we use spiral gears?

26 What are worm gears? Where they are used?

Exercises

(a) Spur gears

14.1 A pair of 20° full involute spur gears having 40 and 60 teeth of module 4 mm are in mesh. The 
smaller gear rotates at 1440 rpm. Find (a) sliding velocity at engagement and disengagement 
of the pair of teeth, and (b) contact ratio.

[Ans. 6 m/s, 10.315 m/s; 6]

14.2 Calculate the minimum number of teeth on a pinion to avoid interference to have a speed ratio 
of 2.5:1. The pressure angle is 20° and addendum of one module of gear may be used. 

[Ans. 15]
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14.3 A pinion of involute profile has 25 teeth and 150 mm pitch circle diameter. It drives a rack. 
The addendum of both pinion and rack is 6.25 mm. Calculate the least pressure angle to avoid 
interference.

[Ans. 16. 78°]

14.4 The following data refer to two meshing involute gears of 20° pressure angle: Number of teeth 
on pinion  20, speed ratio  2, speed of pinion  250 rpm, module  12 mm

The addendum of each wheel is such that the path of approach and path of recess on 
each side are half of the maximum possible length. Calculate (a) addendum for both the 
wheels, (b)the length of arc of contact, and (c) the maximum possible sliding velocity 
approach and recess.

[Ans. 19.47 mm, 7.77 mm; 65.51 mm; 0.806 m/s, 1.612 m/s]

14.5 Two spur gear wheels of 80 mm and 120 mm pitch diameters have involute teeth of standard 
addenda of 3 mm and 20° pressure angle. The module is 1 mm. Determine (a) the length of 
path of contact, (b) contact ratio, and (c) angle turned through by pinion, while any pair of teeth 
is in contact.

[Ans. 14.79 mm, 5, 22.49°]

14.6 A pair of involute profile spur gears is to give a speed ratio of 3. The arc of approach is not to 
be less than the circular pitch. The pressure angle is 20° and pinion is the driver. The module is 
4 mm. Calculate (a) minimum number of teeth on gear, and (b) addendum of gear wheel.

[Ans. 57, 5.07 mm]

14.7 A pinion having 30 teeth drives a gear of 80 teeth. The profile of gears is involute with 20° 
pressure angle, 12 mm module, and 10 mm addendum. Find (a) the length of path of contact, 
(b) arc of contact, and (c) contact ratio,

 [Ans. 52.26 mm, 55.61 mm, 1.47]

14.8 Find the minimum number of teeth on gear wheel to avoid undercutting when the addendum 
for stub teeth is 0.84 module, if (a) gear ratio is 3:1, and (b) the wheel is used to engage a 
rack.

 [Ans. 16, 18]

14.9 A pair of involute spur gears having 20 and 40 teeth are in mesh, the speed of smaller wheel 
being 2000 rpm. Calculate the sliding velocity between gear teeth faces (a) at the point of 
engagement, (b) at the pitch point, and (c) at the point of disengagement, if smaller wheel is 
the driver. Pressure angle is 20°, addendum  5 mm, and module  5 mm.
Also find the angle turned through by the pinion while any one pair of teeth is in contact. 

[Ans. 3.97 m/s, 0, 3.61 m/s; 29.43°]

14.10 The thickness of an involute gear tooth is 8 mm at a radius of 90 mm and a pressure angle of 
14.5°. Calculate the tooth thickness and radius at a point on the involute which has a pressure 
angle of 25°. Also calculate the tooth thickness at the base circle.

[Ans. 3.84 mm, 96.14 mm, 8.71 mm]

14.11 A 20° pinion having a module of 2.5 and 40 teeth meshes with a rack with no backlash. If the 
rack is pulled out 1.25 mm, calculate the backlash error.

[Ans. 1.015 mm]
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14.12 A 20° pressure angle pinion with a module of 2 and 18 teeth drives a gear of 54 teeth. If the 
centre distance at which the gear operates is 75 mm, calculate the operating pressure angle, and 
backlash produced.

 [Ans. 2.595 mm]
(b) Helical gears

14.13 The centre distance between the two shafts connected by two left-handed helical gears is 0.4 m. 
The shaft angle is 60° and normal module is 6 mm. The gear ratio is 2 and larger gear is having 
70 teeth. Find the helix angles of the two gears. 

[Ans. 16°, 44°]

14.14 Two left-handed helical gears connect two shafts 60° apart. The normal module is 6 mm. The 
larger gear has 60 teeth and the velocity ratio is 0.5. The centre distance is 0.3 m. Find the helix 
angles of the two gears. 

[Ans. 25°, 35°]

14.15 Two right-handed helical gears connect two shafts 70° apart. The larger gear has 50 teeth and 
the smaller 20. The centre distance is 167 mm. Determine the helix angle of the gears. The 
normal module is 4 mm.

 [Ans. 28°, 42°]
(c) Bevel gears

14.16 A pair of bevel gears is mounted on two intersecting shafts at an angle of 72°. The velocity 
ratio of the gears is 2. Calculate the pitch angles.

 [Ans. 22.39°, 49.61°]

14.17 A 6 mm module, straight bevel pinion of 17 teeth drives a gear of 25 teeth. The shaft angle is 
90°. Calculate the virtual number of teeth on the pinion and gear.

 [Ans. 21, 44]
(d) Spiral gears

14.18 Two spiral gears A and B have 45 and 15 teeth at spiral angles of 20° and 50° respectively. Both 
gears are of same hand. A is 150 mm in diameter. Find the centre distance between the shafts 
and the angle between the shafts. If the teeth are of 20° involute form and coefficient of friction 
is 0.08, find the efficiency if A is the driver.

 [Ans. 111.5 mm, 70°, 87.9%]

14.19 Two spiral gears of diameter ratio 1.5 are used on a machine tool. The angle between the shafts 
is 76° and approximate centre distance is 115 mm. Speed ratio is 1.5 and normal diametral 
pitch is 10 mm. Calculate the number of teeth on each gear and spiral angles.

 [Ans. 23, 35, 38°, 38°]

14.20 A pair of spiral gears is required to connect two shafts, the angle between the non-intersecting 
axes is 90°. The speed ratio is 3 and pitch circle diameters of the gears are equal. If approxi-
mate centre distance is 250 mm, estimate the helix angle of gears and number of teeth on each 
gear. Take module  3 mm.

 [Ans. 71.56°, 18.44°; 26, 78]
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14.21 A drive on a machine tool is to be made by two spiral gears of the same hand and normal pitch 
of 12.5 mm. The gears are of equal diameters and centre distance between the shafts is approxi-
mately 134 mm. The angle between the two shafts is 80° and speed ratio 1.25. Calculate
(a) spiral angle of each wheel, (b) number of teeth on each wheel
(c) efficiency of drive, and (d) maximum efficiency.
The friction angle is 6°.

 [Ans. 32.46°, 47; 54°, 30, 24, 82.98%, 83.85%]
(e) Worm gears

14.22 A three-start worm has a pitch diameter of 80 mm and a pitch of 20 mm. It rotates at 600 rpm 
and drives a 40 tooth worm gear. If coefficient of friction is 0.05, find the
(a) helix angle of worm, (b) speed of the gear,
(c) centre distance, and (d) efficiency and maximum efficiency.

[Ans. 76.56, 45 rpm, 167.3 mm, 81.7% , 90.5%]
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GEAR TRAINS

 15.1 Introduction 959
 15.2 Types of Gear Trains 959
 15.3  Determination of Speed Ratio of 

Planetary Gear Trains 962
 15.4 Sun and Planet Gears 963

 15.5 Epicyclics with Two Inputs 965
 15.6 Compound  Epicyclic Gear Train 965
 15.7 Epicyclic Bevel Gear Trains 966
 15.8 Torque in Epicyclic Gear Trains 966

  15.1 INTRODUCTION
A gear train is composed of two or more gears in mesh for the purpose of transmitting motion from 
one shaft to another. A gear train enables to have larger centre distance between the driving and driven 
shafts, provides control on the direction of rotation of the driven gear, and facilitates increased  trans-
mission ratio with gears of smaller sizes in a lesser space.

15.2 TYPES OF GEAR TRAINS
There are four types of gear trains:

1. Simple gear train

2. Compound gear train

3. Reverted gear train

4. Planetary (or epicyclic) gear train.

1.  Simple Gear Train: A simple gear  train is one in which there is only one gear on each shaft.  
A simple gear train is often used to change the direction of  rotation  of a gear without changing its 
angular velocity. This can be done by placing an idler gear between the driving and driven gears.
Consider the  simple gear train shown in Fig.15.1
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n
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Multiplying, we get

n

n

z

zm

m1

1  
(15.1)

Therefore, the velocity ratio of a simple gear train is the ratio of the angular velocity of the first 
gear in the train to the angular velocity of the last gear. We find that the intermediate gears do not 
in any way affect the velocity ratio. These gears are called idler gears. If the number of gears in the 
train are even then the direction of rotation of the last gear is reversed and if the number of gears 
in the train are odd then the direction of rotation of the last gear remains the same. Idler gears are 
used for two purposes: to connect gears where a large centre distance is required, and to control 
the directional relationship between gears.

Fig.15.1 Simple gear train

2.  Compound Gear Train: A pair of gears is compound if they have a common axis and are integral. A 
compound gear train is a gear train containing compound gears. Consider the compound gear train 
shown in Fig.15.2. Gears 2 and 3 are on the same shaft.
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The ratio given by Eq.(15.2) is called the train value.

3.  Reverted Gear Train: In a reverted gear train the first and the last gear are coaxial (same axis).  
Reverted gear trains are used in automotive transmission, lathe back gears, industrial speed reduc-
ers, and in clocks where the minute and hour hand shafts are coaxial. In the reverted gear train 
shown in Fig.15.3, we have

Centre distance, C  r
1
  r

2
  r

3
  r

4

For same module (m  d/z) of all gears, the pitch radius of gears is proportional to the number 
of teeth. Hence

z
1
  z

2
  z

3
  z

4
 (15.3)

4.  Planetary Gear Trains: These are gear trains in which the axis of one or more gears move relative 
to the frame. The gear at the centre is called the sun, and the gears whose axes move are called the 
planets.

In Fig.15.4, arm 3 drives gear 1 about gear 2, which is a fixed external gear. Gear 1 rotates about its 
centre d while this centre rotates about centre O

2
 of the fixed gear. As gear 1 rolls on the outside of gear 2,  

a point on its surface will generate an epicycloid. If gear 2 happens to be an internal gear and gear 1 
rolls on the inside of gear 2, then a point on the surface of gear 1 will generate a hypocycloid. Because 
of the curves generated, a planetary gear train is often called as an epicyclic, or cyclic, gear train.

Fig.15.2 Compound gear train
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Fig.15.4 Planetary gear train

15.3  DETERMINATION OF SPEED RATIO  
OF PLANETARY GEAR TRAINS

The speed ratio of a planetary gear train can be determined by the following methods:

1. Relative velocity method

2. Algebraic or tabular method.

1. Relative Velocity Method:
Consider the planetary gear train shown in Fig.15.4.
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Fig.15.3 Reverted gear train
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If arm is fixed, then n
a
  0. Thus
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 (15.5)

2.  Tabular Method: This method is based on the principle of superposition, which states that the re-
sultant revolutions or turns of any gear may be found by taking the number of turns it makes with 
the arm plus the number of turns it makes relative to the arm. The following steps may be followed 
for this method:

1. Assume the arm to be fixed and determine the revolutions of different gears of the train for one 
revolution of a particular convenient gear.

2. Multiply all columns in the first row by x and write in the second row.

3. To account for rotation of arm, add y to the various quantities of second row.

4. Out of the three quantities involved in the last row, two of them are given. From these the values 
of x and y can be determined. On substituting in the third, its magnitude can be determined.

Table 15.1 may be conveniently used for this purpose:

15.4 SUN AND PLANET GEARS
Fig.15.5 shows the sun and planet gears in which gear P is the planet, gear S the sun, arm A,and the 
annular (or internal) gear 1. The annular gear is fixed and the planet gear rolls over the sun and the 
annular gear. O

1
 is  the moving axis of rotation of planet gear P and O

2
 is the fixed  axis of rotation of 

sun gear 2 and arm A. The  axes O
1
 and O

2
are coupled by the arm A. Let z

p
, z

s
, and z, the number of 

teeth on the planet, sun, and annular gears respectively. To find the speed of any gear, Table 15.2 may 
be used to find speed of gears.
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Table 15.2 Tabular Method for Sun and Planet Gears

Operation
Revolutions of

Arm A Sun gear S, z
s

Planet gear P, z
p

Annular gear I, z
i

1.  Arm A fixed, 1  
revolutions to S, cw

0  1 z

z
s

p

z

z
s

i

2. Multiply by x 0  x z x

z
s

p

z x

z
s

i

3. Add y y x  y z x

z
ys

p

z x

z
ys

i

Table 15.1 Tabular method for determining speed ratio

Operation
Revolutions of

Arm A Gear 1, z
1

Gear 2, z
2

1.  Arm A fixed, 1  
revolutions to gear 1, cw

0 1 z

z
1

2

2. Multiply by x 0 x xz

z
1

2

3. Add y y x  y xz

z
y1

2

Fig.15.5 Sun and planet gears
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Let n
s
 and n

i 
be the speed of sun and annular gears respectively. Then

x  y  n
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z
x y ns

i
i

Solving for x and y, we get
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(15.6)

(b) When annular gear is fixed, then n;  0. Thus
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n

z

z

i s

i s

s

i

s

1
 

 (15.7)

15.5 EPICYCLICS WITH TWO INPUTS
A gear train of this type is shown in Fig.15.6. Let n

1
, n

2
and n

0
 represent the turns of input 1, input 

2 and the output, respectively. By superposition, the number of turns of the output equals the output 
turns due to input 1 plus the output turns due to input 2. This can be expressed as

n n
n

n
n

n

n0 1
0

1
2

0

2input 2 held fixed input 1 held  fixed   

(15.8)

15.6 COMPOUND  EPICYCLIC GEAR TRAIN
A compound epicyclic gear train consists of two or more epicyclic gear trains connected in series.  
A compound epicyclic gear train is analysed by considering each epicyclic gear train separately. That 
epicyclic gear train is analysed first where two conditions (or speeds of two elements) are known.
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15.7 EPICYCLIC BEVEL GEAR TRAINS
Bevel gears can be used to make a more compact epicyclic system and they permit a very high speed 
reduction with few gears. They find potential applications in speed reduction gears and differential 
gear of an automobile.

15.8 TORQUE IN EPICYCLIC GEAR TRAINS
Consider the rotating parts of an epicyclic gear train shown in Fig.15.7. if the rotating parts have 
no angular acceleration, then the gear train is kept in equilibrium by the following three externally 
applied torques:

1. Input torque (T
1
) on the driving member.

2. Output torque (T
2
) on the driven member.

3. Braking torque (T
3
) on the fixed member.

The net torque applied on the gear train must be zero, i.e.,

T
1 

T
2
 T

3
  0

If F
1
, F

2
, and F

3
 are the externally applied forces at radii r

1
, r

2
, and r

3
, then

F
1
r

1
  F

2
r

2
  F

3
r

3
  0

Fig.15.6 Epicyclics with two inputs
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If 
1
, 

2
, and 

3
 are the angular velocities of the driving, driven, and fixed members respectively, 

and friction is neglected, then the net kinetic energy dissipated by the gear train must be zero.

T
1 1

  T
2 2

  T
3 3

  0

For a fixed member, 
3
  0. Therefore

T
1 1

  T
2 2

  0

T T2 1




1

2

Holding torque, T
3
   (T

1
  T

2
)

 

T

T
n

n

1

1

1

1




1

2

1

2

 
(15.9)

Example 15.1

The speed ratio of a reverted gear train is to be 15. The module of gears 1 and 2 is 3 mm and that 
of gears 3 and 4 is 2.5 mm. Calculate the suitable number of teeth for the gears. The centre distance 
between gear shafts is 250 mm.

Solution 

Given: m
1 

 m
2 

 3 mm, m
3 

m
4 

mm c mm. Refer to Fig. 15.3.

n n n n1 2 3 4 15 3 873/ / .

or z
2
/z

1
  z

4
/z

3
  3.873

Now r
1
  r

2
  r

3
  r

4
  250 mm

or m
1
 (z

1
  z

2
)/2  m

2
 (z

3
  z

4
)/2  250

or 3 (z
1
  z

2
)  2.5 (z

3
  z

4
)  500

 z
1
  z

2
  500/3

Fig.15.7 Torque in epicyclic gear trains



968 Theory of Machines

or 4.873 z
1
  500/3

or z
1
  34.2  34

 z
2
  133

 z
3
  z

4
  200

or 4.873 z
3
  200

or z
3
  41

 z
4
  160

Example 15.2

In an epicyclic gear train, an arm carries two gears 1 and 2 having 40 and 50 teeth respectively. The arm 
rotates at 160 rpm ccw about the centre of gear 1, which is fixed. Determine the speed of the gear 2.

Solution 

Given: z
1 

 40, z
2 

 50, n
1 

 0, n
a 

 160 rpm
Table 15.3 can be used to find the speed of gear 2.

Table 15.3 

Operation
Revolutions of

Arm A Gear 1 Gear 2

1.   Arm A fixed, 1 revolutions to 
gear 1, cw.

0 1 z
1
/z

2

2. Multiply by x 0 x x z
1
/z

2

3. Add y y x  y x z
1
/z

2
  y

As gear 1 is fixed, therefore

 x  y  0

or x   y   160 rpm

Speed of gear 2, n
2
   x z

1
/z

2
  y

  160 (40/50)  160

  288 rpm ccw

Example 15.3

In a reverted epicyclic gear train, the arm A carries two gears 1 and 2 at centre of rotation O
1
 and a com-

pound gear 3 and 4 at centre of rotation O
2
. The gear 1 meshes with gear 4 and the gear 2 meshes with 

gear 3. The number of teeth are: z
1
  75, z

2
  30, and z

3
  90. Find the speed and direction of gear 2 when 

gear 1 is fixed and the arm A makes 120 rpm clockwise. Assume all gears to be of the same module.

Solution  Refer to Fig.15.15.

 r
1
  r

4
  r

2
  r

3

or z
1
  z

4
  z

2
  z

3

 z
4
  30  90  75  45
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Table 15.4 can be used to find the speed of the gears.

Table 15.4

Operation

Revolutions of

Arm A Compound  
gear 3, 4

Gear 1 Gear 2

1.  Arm A fixed, 1  revolutions 
to gears 3, 4, ccw

0 1 z

z
4

1

z

z
3

2

2. Multiply by x 0 x xz

z
4

1

xz

z
3

2

3. Add y y x y xz

z
y4

1

xz

z
y3

2

Since gear 1 is fixed,

or
 

xz

z
y

x y

4

1

0

45

75
0

 

or 0.6  y  0 (1)

Arm A makes 120 rpm clockwise, therefore

 y  120 (2)

From (1) and (2), we get x  200 rpm

Now for gear 2, we have

n
xz

z
y2

3

2

200
90

30
120

 480 rpm ccw

Example 15.4

An epicyclic gear train consists of three gears 1, 2 and 3 as shown in Fig.15.8. The internal gear 1 has 
72 teeth and gear 3 has 32 teeth. The gear 2 meshes with both gear 1 and gear 3 and is carried on an 
arm A which rotates about the centre O

2
 at 20 rpm. If the gear 1 is fixed, determine the speed of gears 

2 and 3.
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Solution 

Table 15.5 can be used to find the speed of the gears.

Table 15.5

Operation
Revolutions of

Arm A Gear 3 Gear 1 Gear 2

1.  Arm A fixed, 1 revolutions  
to gear 3, ccw.

0 1 z

z
3

1

z

z
3

2

2. Multiply by x 0 x xz

z
3

1

xz

z
3

2

3. Add y y x y xz

z
y3

1

xz

z
y3

2

Speed of arm, y  20 rpm

For gear 1 fixed, we have 

xz

z y

x

3

2

0

32

72
20 0

 x  45

Speed of gear 3

 n
3
  x  y

  45  20  65 rpm in the direction of arm

Speed of gear 2

d
d d

2
3 1

2 2

or 2d
2
  d

3
  d

1

or 2z
2
  z

3
  z

1

or 2z
2
  32  72

 z
2
  20

n x
z

z
y2

3

2

45
32

20
20

  52 rpm in the opposite direction of arm.
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Fig.15.8 Epicyclic gear train

Example 15.5

The pitch circle diameter of the annular gear in the epicyclic gear train shown in Fig.15.9 is 425 mm 
and the module is 5 mm. When the annular gear 3 is stationary, the spindle A makes one revolution in 
the same sense as the sun gear 1 for every 6 revolutions of the driving spindle carrying the sun gear. 
All the planet gears are of the same size. Determine the number of teeth on all the gears.

Solution 

Table 15.6 can be used to find the speed of the gears.

Table 15.6

Operation
Revolutions of

Spindle A Gear 1 Gear 2 Gear 3

1.  Arm A fixed, 1  revolutions  
to gear 1, ccw.

0 1 z

z
1

2

z

z
1

3

2. Multiply by x 0 x xz

z
1

2

xz

z
1

3

3. Add y y x y xz

z
y1

2

xz

z
y1

3

Now y  1
and x y  6
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Therefore, x  5

Gear 3 is stationary, hence 
xz

z
y1

3

0

5
1 0

1

5

1

3

1

3

z

z

z

z

Now

 

z
d

m

z

3
3

1

425

5
85

85

5
17

Also d
1

 2d
2
  d

3

or z
1

 2z
2
  z

3

 17  2z
2
  85

 z
2
  34

Example 15.6

The Ferguson’s paradox epicyclic gear train is shown in Fig.15.10. Gear 1 is fixed to the frame. The 
arm A and gears 2 and 3 are free to rotate on the shaft S. Gears 1, 2, and 3 have 100, 101 and 99 teeth 
respectively. The planet gear has 20 teeth. The pitch circle diameter of all the gears is the same so that 
the planet gear P meshes with all of them. Determine the revolutions of gears 2 and 3 for one revolu-
tion of the arm A.

Fig.15.9 Epicyclic gear train
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Solution 

Table 15.7 can be used to find the speed of the gears.

Table 15.7

Operation
Revolutions of

Spindle A Gear 1 Gear 2 Gear 3

1.  Arm A fixed, 1 revolutions of 
gear 1, ccw

0 1 z

z
1

2

z

z
1

3

2. Multiply by x 0 x xz

z
1

2

xz

z
1

3

3. Add y y x y xz

z
y1

2

xz

z
y1

3

Now
 y  1
Gear 1 is fixed, therefore x  y  0
or x  y  1
Also 

n
xz

z
y

n
xz

z
y

2
1

2

3
1

3

100

101
1

1

101

100

99
1

1

99

Example 15.7

In the gear drive shown in Fig.15.11, the driving shaft A rotates at 300 rpm in the clockwise direction, 
when seen from the left hand side. The shaft B is the driven shaft. The casing C is held stationary. The 
wheels E and H are keyed to the central vertical spindle and wheel F can rotate freely on this spindle. 

Fig.15.10 Ferguson’s paradox epicyclic gear train
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The wheels K and L are rigidly fixed to each other and rotate together freely on a pin fitted on the 
underside of F. The wheel L meshes with internal teeth on the casing C. The number of teeth on the 
different gears are indicated within brackets.

Determine the number of teeth on gear C and the speed and direction of rotation of shaft B.

Solution 

The wheels D and G are auxiliary gears and do not form a part of the epicyclic gear train.

n n
z

zE A
D

E

300
40

30
400 rpm cw

Assuming same module for all the gears,

z
C
  z

H
  z

K
  z

L
  40  20  30  90

Table 15.8 can be used to find the speed of the gears.

Table 15.8

Operation
Revolutions of

Wheel F Gears E & H Gear K & L Gear C

1.  Arm A fixed, gear E, H 
given 1 revolution, cw

0 1 z

z
H

K

z

z

z

z
H

K

L

C

 

2. Multiply by x 0 x xz

z
H

K

x
z

z

z

z
H

K

L

C

 

3. Add y y x y xz

z
yH

K

x
z

z

z

z
yH

K

L

C

 

 x y  400
or x y  400 (1)

Now wheel C is fixed, therefore

x
z

z

z

z
yH

K

L

C

0

or x y
40

20

30

90
0

or 
2

3
0

x
y  (2)
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From (1) and (2), we have

 x  240 and y  160
Thus n

F
  y  160 rpm

Speed of wheel G or shaft,  B n
z

zF
F

G

160
50

80
100 rpm ccw

Example 15.8

In a gear train, as shown in Fig.15.12, gear B is connected to the input shaft. The arm A carrying 
the compound wheels D and E, turns freely on the output shaft. If the input speed is 1200 rpm 
counter-clockwise, when seen from the right, determine the speed of the output shaft under the 
following conditions: (a) when the gear C is fixed and (b) when gear C rotates at 10 rpm counter-
clockwise.

Solution 

Table 15.9 can be used to find the speed of the gears.
(a) Gear C is fixed, therefore

x
z

z
y

x y

B

C

0

20

80
0

Fig.15.11 Gear drive
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or 0.25x    y  0 (1)
Now x   y  1200 (2)

From (1) and (2), we get

 x   960 and y   240

Table 15.9

Operation

Revolutions of

Arm A Gear B  
(input 
shaft)

Compound 
gears D, E

Gear C Gear F  
(output shaft)

1.  Arm A fixed, 1 revo-
lution to gear B, ccw.

0 1 z

z
B

D

z

z
B

C

z

z

z

z
B

D

E

F

 

2. Multiply by x 0 x xz

z
B

D

xz

z
B

C

x
z

z

z

z
B

D

E

F

 

3. Add y y x  y xz

z
yB

D

xz

z
yB

C

x
z

z

z

z
yB

D

E

F

 

n x
z

z

z

z
yF

B

D

E

F

 

 960
20

80

30

32
240

 15 rpm (counter-clockwise)

Fig.15.12 Bend epicyclic gear train
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(b) When gear C is rotating at 10 rpm clockwise, we have

x
z

z
yB

C

10

or
 

x y
20

80
10

or 0.25x y  10 (3)

From (2) and (3), we get

x  952 and y  248

n x
z

z

z

z
yF

B

D

E

F

 

 952
20

80

30

32
248

 24.875 rpm (counter-clockwise)

Example 15.9

The differential gear used in an automobile is shown in Fig.15.13. The pinion A on the propeller 
shaft has 12 teeth and the crown gear B has 60 teeth. The shafts P and Q form the rear axles to 
which the road wheels are attached. If the propeller shaft rotates at 1200 rpm and the road wheel 
attached to axle Q has a speed of 250 rpm while taking a turn, find the speed of road wheel attached 
to axle P.

Solution 

n
z

z
nB

A

B

A  rpm
12

60
1200 240

Now y  240 rpm

Also x  y  250

or x  240  250  10

speed of road wheel attached to axle P  speed of gear C

  x  y

  10 240  230 rpm
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Fig.15.13 Differential gear

Table 15.10 can be used to find the speed of the gears.

Table 15.10

Operation
Revolutions of

Gear B Gear C Gear E Gear D

1.  Gear B fixed, 1  revolution 
to gear c, ccw.

0 1 z

z
C

E

z

z

z

z

z

z

C

E

E

D

C

D

 

or

1

1

2. Multiply by x
0 x x

z

z
C

E

x

3. Add y
y x  y x

z

z
yC

E

x  y

Example 15.10

An epicyclic gear train consists of a sun wheel S, a stationary annular wheel E and three identical planet 
wheels P carried on a star-shaped carrier C, as shown in Fig.15.14. The size of different toothed wheels 
is such that the planet carrier C rotates at 1/5 th of the speed of the sun wheel S. The minimum number 
of teeth on any wheel is 18. The driving torque on the sun wheel is 120 Nm. Determine (a) the number of 
teeth on different wheels of the train, and (b) the torque necessary to keep the internal gear stationary.

Solution 

(a) n
C
  n

s
/5

Table 15.11 can be used to find the speed of the gears.
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Table 15.11

Operation

Revolutions of

Planet carrier C Sun wheel 
S

Planet 
wheel P

Annular wheel 
E

1.  Planet C fixed, 1 
revolution to seen 
wheel S, ccw

0 1
z

z
S

P

z

z

z

z

z

z

S

P

P

E

S

E

 

2. Multiply by x 0 x x
z

z
S

P

x
z

z
S

E

3. Add y y x  y x
z

z
yC

P

y
xz

z
C

E

Now  y  1

 x  y  5

or x  4
 Gear E is stationary, therefore

x
z

z
yS

E

0

or

 

4 1 0
z

z
S

E  

or

  

z

z
S

E

1

4  

Let z
s
  18

Then z
E
  72

Also  d
s 

2d
p
  d

E

Assuming same module for all gears, we have  
 z

s
 2z

p
 z

E

or 18 2z
p
  72

or z
p
  27

(b)  T
S S

  T
C C

 120
S
  T

C C

or  T
C 

 120  5  600 Nm

Torque required to keep the annular gear stationary  600  120  480 Nm
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Example 15.11

In a reverted epicyclic gear train shown in Fig.15.15, the arm F carries two wheels A and D and a 
compound wheel B, C. The wheel A meshes with wheel B and the wheel D meshes with wheel C.z

A
  80, 

z
D
  48 and z

C
  72. Find the speed and direction of wheel D when wheel A is fixed and arm F makes 

240 rpm clockwise.

Solution 

 z
A
  z

B
 z

C
 z

D

 z
B
  72 48 80  40

Table 15.12 can be used to find the speed of wheel D.

Table 15.12

Operation

Revolutions of

Arm F Wheel A 80 Compound 
Wheel B, C, 

40, 72

Wheel D 48

1.  Arm F fixed, 1 revolution 
to wheel A, ccw.

0 1 z

z
A

B

80

40

–2

z

z

z

z
A

B

C

D

80

40

72

48
3

2. Multiply by x 0 x 2x 3x

3. Add y y y  x y  2x y  3x

Fig.15.14 Epicyclic gear train
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 y   240
 x  y  0
 x  y  240 rpm
 N

D
  y  3x  249  3 × 240  480 rpm ccw

Example 15.12

An epicyclic gear train shown in Fig.15.16 is composed of a fixed annular wheel A having 150 teeth. 
z

B
  25, z

D
  40 and C is an idle gear. Gear D is concentric with gear A. Wheels B and C are carried on 

an arm E which revolves clockwise at 120 rpm about the axis of A. Find the number of teeth of gear 
C and its speed and sense of rotation.

Solution 

d
d d

d

z
z z

z

z

A
B C

D

A
B C

D

C

2 2

2 2
150

2
25

40

2

z
C
  75  25  20  30

Table 15.13 can be used to find the speed of gear C.

y  120

x  y  0; x  120

N
C
  5x  y  5  120 120  720 rpm. i.e 720 rpm cw

Fig.15.15 Reverted epicyclic gear train
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Fig.15.16 Epicyclic gear train

Table 15.13

Operation

Revolutions of

Arm E Gear A, 
150

Gear B, 
25

Gear C, 
30

Gear D, 
40

1.  Arm E fixed, 1 
revolution given  
to wheel A, ccw.

0 1 z

z
A

B

150

25
6

z

z
A

c

150

30
–5

z

z
A

D

150

40
15

4

2. Multiply by x 0  x 6x  5x  15x/4

3. Add y y y  x y 6x y 5x
y

x15

4
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Example 15.13

For the compound epicyclic gear train shown in Fig.15.17, z
A
  60, z

B
  40, and z

C
  25. Find z

D
 and 

the speed of shaft connected to arm E,if the speed of shaft connected to sun gear is 120 rpm ccw and 
gear D is fixed.

Fig.15.17 Compound epicyclic gear train

Solution 

d
D
  d

A
  d

C
  d

B

z
D
  z

A
  z

C
  z

B

 60  25  40  125

Table 15.14 can be used to find the speed of shaft connected to arm E.

y  0.768x  0
x  y  0

x  67.87 rpm
y  52.13 rpm ccw
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Table 15.14

Operation

Revolutions of

Arm E Gear A, 60 Gear B,C 40, 
25

Gear D,40

1.  Arm E fixed, 
1 revolu-

tion given to 
wheel A ccw.

0 1 z

z
A

C

60

25
– . 2 4

z

z

z

z
A

C

B

D

60

25

40

125
0– .768

2.  Multiply 
by x

0 x 2.4x 0.768x

3. Add y y y  x y  2.4x y  0.768x

Example 15.14

Fig.15.18 shows an epicyclic speed reduction gear. The driving shaft is attached to arm E. The arm 
carries a pin on which the compound gear B, C is free to revolve. The gear A is keyed to the driven 
shaft and gear D is a fixed gear, z

A
  24, z

B
  27, z

C
  30 and z

D
  21. Determine (a) speed of driven 

shaft if driving shaft is rotating at 900 rpm counter-clockwise and (b) resisting torque on driven shaft 
and holding torque on gear D, if the input torque to driving shaft is 15 Nm.

Fig.15.18 Epicyclic speed reduction gear
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Solution 

Table 15.15 can be used to find the speed of the gears.
(a)  N

D
  0,

y
x

N y

x
E

80

63
0

900

900
89

63
0

 x  708.75
 N

A
  x  y   708.75 900  191.25 rpm ccw

(b) M
1
 M

2
 M

3
  0

 M
1
 

1
  M

2
 

2
  M

3
 

3
  0

For the fixed member, M
3
  0

 M
1
 

1
  M

2
 

2
  0

Resisting torque,  
M

M
2

1 1

2

15
900

191 25
70 59


 .

.  Nm

Holding torque,  M
3
  M

1
  M

2
  15 ( 70.59)  55.59 Nm

Table 15.15

Operation
Revolutions of

Arm E Gear A, 60 Gears B, C 40, 25 Gear D, 40

1.  Arm E fixed, 
1 revolution 

given to wheel 
A ccw.

0 1 z

z
A

B

24

27
8

9

z

z

z

z
A

B

C

D

8

9

30

21

80

63

2. Multiply by x 0 x 8

9

x 80

63

x

3. Add y y Y  x
y

x8

9
y

x80

63

Example 15.15

In Fig.15.19, pinion A having 15 teeth is fixed to motor shaft. z
B
  20, z

C
  15, where B and C are a 

compound gear wheel. Wheel E is keyed to the machine shaft. Arm F rotates about the same shaft on 
which A is fixed and carries the compound wheel B, C. If the motor runs at 1200 rpm counter-clock-
wise, find (a) the speed of the machine shaft, (b) the torque exerted on the machine shaft if the motor 
develops a troque of 1200 Nm with an efficiency of 95%, and (c) ratio of the reduction gear.
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Solution 

 d
D
  2d

B
  d

A

 z
D
  2z

B
  z

A
  2  20  15  55

 d
E
  d

A
  d

B
  d

C

 z
E
  z

A
  z

B
  z

C
  15  20  15  50

Fig.15.19 Mechanism with a compound gear wheel

Table 15.16

Operation

Revolutions of

Arm F Gear A, 15 Gear B, C 
20, 15

Gear E, 50 Gear D, 55

1.  Arm F 
fixed, 1 
revolution 
given to 
wheel A 
ccw.

0 1 z

z
A

B

15

20
3

4

z

z

z

z
A

B

C

E

3

4

15

50

9

40

z

z

z

z

z

z

A

B

B

D

A

D

15

55

3

11

2.  Multiply 
by x

0 x 3

4

x 9

40

x 3

11

x

3. Add y y y  x
y

x3

4
y

x9

40
y

x3

11
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Table 15.16 can be used to find the speed of the gears.

(a) N
A
  x   y  1200

 

N y
x

x

y

N y
x

D

E

3

11
942 86

257 14

9

40
257 14 9

942 86

.

.

.
.

 rpm

 rpm

440
45 rpm

(b) 
 

M M2 1 1
2

120 1200
0 95

45
3040




.
 Nm

(c) Ratio of reduction gear

  

N

N
A

E

1200

45
26 67.

Example 15.16

An epicyclic gear train consists of sun wheel S, a fixed internal gear E and three identical planet 
wheels P carried on a star-shaped planet carrier C, as shown in Fig.15.20. The planets rotate at 1/5th 
of the speed of sun wheel. The minimum number of teeth on any wheel is 18. The driving torque on the 
sun wheel is 120 Nm. Find (a) number of teeth on different wheels of the train and (b) torque neces-
sary to keep the internal gear stationary.

Fig.15.20 Epicyclic gear train
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Solution 

Table 15.17 can be used to find the speed of the gears.

Table 15.17

Operation
Revolutions of

Planet carrier C Sun gear S Planet gear P Annular gear E

1.  Planet carrier 
fixed, 1 
revolutions to 
S, ccw

0 1 z

z
s

p

z

z
s

E

2. Multiply by x 0 x z

z
xs

p

z

z
xs

E

3. Add y y x  y z

z
x ys

p

z

z
x ys

E

(a)

 

N
N

y
x y

C
S

5

5

( )

or  x  4y

N

z

z
x y

y y
z

z

z

z

E

S

E

S

E

S

E

0

0

4 0

1

4

Let z
S
  18, then z

E
  72

d
E
  d

s
  2d

P

z
E
  z

s
  2z

P

72  18  2z
P

 z
P
  27
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(b)

 

M M M

M M M

S2 1
1

2

3 1 2

5 5 120 600

120 600 480




 Nm

 Nm

Example 15.17

Fig.15.21 shows the arrangement of wheels in a compound epicyclic gear train. The sun wheel S
2
 is 

integral with the annular wheel A
1
. The two arms are also integral with each other. z

s1
  z

s2
  24, z

A1
  

z
A2

  96.

(a) If the shaft X rotates at 2000 rpm, find the speed of shaft Y, when A
2
 is fixed.

(b)  At what speed does Y rotate when A
2
 rotates at 200 rpm, in the same direction as S

1
, which is 

rotating at 2000 rpm.

Fig.15.21 Compound epicyclic gear train

Solution 

Table 15.18 can be used to find the speed of the gears.

(a) A
2
 fixed,

 

x
y

x y

x y

y

16
0

16

2000

400

3
 rpm
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Speed of shaft
 

Y y
400

3
 rpm cw

(b) 

 

A

x
y

x y

x y

2 200

16
200

2000

1920 80

 rpm

 rpm ccw;

Example 15.18

In a reverted gear train, as shown in Fig.15.22, two shafts A and B are in the same straight line and 
are geared together through an intermediate parallel shaft C. The gears connecting the shafts A and C 
have a module of 3 mm and those connecting the shafts C and B have a module of 4.5 mm. The speed 
of shaft A is to be about but greater than 12 times the speed of shaft B. The ratio of each reduction is 
same. Find suitable number of teeth on all gears. The minimum number of teeth is 18. Also find the 
exact velocity ratio and the distance of shaft C from A and B.

Solution 

Given: m
1
  m

2
  3 mm, m

3
  m

4
  4.5 mm, z

min
  18, n

A
 > 12n

B

Now  n

n

n

n
1

2

3

4

But  n
2
  n

3

Therefore,  n n n n n n n2
2

1 4 2 1 4 412or

Table 15.18

Operation
Revolutions of

Arm S
1

P
1

A
1

S
2

P
2

A
2

1.  Fix arm 
B

1
, 1 

revolution 
to S

1
 ccw

0 1 24

1zP

24

96
1 4/

24

96
1 4/

24

96

24

6
2

2

z

z
P

P/

24

96

24

96
1

16

2.  Multiply 
by x

0  x 24

1

x

zp

x

4

x

4

6

2

x

zp

x

16

3. Add y y y x 24

1

x

z
y

p

x
y

4

x
y

4

6

2

x

z
y

p

x
y

16
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n

n
2

4

12 3 464 3 5. .

For same centre distance,

 3(z
1
  z

2
)  4.5 (z

3
  z

4
)

 (z
1
  z

2
)  1.5 (z

3
  z

4
)

 z
1
 (1  3.5)  1.5 z

3
 (1  3.5)

 z
1
  1.5 z

3

 Let z
3
  20, then z

4
  70, z

1
  30, z

2
  105

 

n

n
A

B

( . ) .3 5 12 252

Centre distance, C  3(30  105)  405 mm

Example 15.19

The speed ratio of the reverted gear train shown in Fig.15.23 is to be 12. The module of gears A and B 
is 3.125 mm and of gears C and D is 2.5 mm. Calculate the suitable number of teeth for the gears. No 
gear is to have less than 24 teeth.

Solution 

Given: m
a
  m

b
  3.125 mm, m

c
  m

d
  2.5 mm, z

min
  24

 3.125 (z
a
  z

b
)  2.5 (z

c
  z

d
) (1)

 (z
c
  z

d
)  1.25 (z

a
  z

b
)

 3.125 (z
a
  z

b
)/2  200 (2)

 z
a
  z

b
  128

Let  z
a
  24, so that z

b
  104

Eq. (1) becomes, z zc d

200

1 25
160

.
  (3)

 

n

n

z

z

z

z

z

z

z

z

a

d

d

c

b

a

d

c

d

c

12

104

24
12

2 77.

Fig.15.22 Reverted gear train
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From Eq. (3), we get

 

z z

n

n

c d

a

d

42 4 42 118

118

42

104

24
12 17 12

.

.

and

Fig.15.23 Reverted gear train

Example 15.20

Two shafts x and y are in the same line (axis in one line). They are geared together through an interme-
diate parallel shaft carrying wheels B and C which mesh with the wheels on A and D respectively, as 
shown in Fig.15.24. Wheels A and B have a module of 4 mm and the wheels C and D have a module 
of 9 mm. The number of teeth on any wheel is not to be less than 15 and the speed of D is to be about, 
but not greater than 1/12 the speed of A and the ratio of each reduction is the same. Find (a) suitable 
number of teeth for the wheels, (b) the actual reduction, and (c) the distance of the intermediate shaft 
from the axes of the shafts A and D (centre distance), (d) Indicate the configuration with a sketch, (e) 
How is addendum modification related to correction of gears and when are they used in practice? Gear 
A is on shaft A and gear D on shaft D)

Solution 

Given: m
a
  m

b
  4 mm, m

c
  m

d
  9 mm, z

min
  15, 

n

n
a

d

12

Now  
n

n

n

n
a

b

c

d

But  n
b
  n

c

Therefore,  n n n n n n n n n

n

n

n

n

b c a d b c a d d

c

d

b

d

2 2 12

12 3 464

 or 

.
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For same centre distance,

 

4 9

2 25

1 3 5 2 25 1 3 5

( ) ( )

( ) . ( )

( . ) . ( .

z z z z

z z z z

z z

a b c d

a b c d

a c ))

.z za c2 25

Let  z zc a15 33 75 34, . then 

Now  
z

z
z

z

z

n

n

d

c
a

b

b

A

B

3 5 51 96 52

34 2 25 15 52

116 75 117

3

. , .

. ( )

.

(

 

.. ) , ( )464 12 4 34 117 6042 C  mm

Example 15.21

In an epicyclic gear train, as shown in Fig.15.25, the number of teeth on wheels A, B, and C are 50, 25, 
and 52 respectively. If the arm rotates at 420 rpm cw, find (a) speed of wheel C when A is fixed, and 
(b) speed of wheel A when C is fixed.

Solution 

Given: z
A
  50, z

B
  25, z

C
  52

Table 15.19 may be used to find the speed of gears.
(a) When gear A is fixed, x  y  0
 Now y  420 rpm
 Therefore, x  420 rpm

 
n y

x
c

50

52
420 420

50

52
16 15.  rpm

(b) When C is fixed,

Fig.15.24 Reverted gear train
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n y x

z

zc
a

c

0

or  420
50

52
0

x

or x  436.8 rpm

 n
a
  x  y  436.8  420  16.8 rpm.

Example 15.22

An epicyclic, gear train, as shown in Fig.15.26 is composed of a fixed annular wheel A having 150 
teeth. The wheel A is meshing with wheel B which drives wheel D through an idle wheel C, D being 
concentric with A. The wheels B and C are carried on an arm which revolves clockwise at 100 rpm 
about the axis of A and D. If the wheels B and D have 25 teeth and 40 teeth respectively, find the 
number of teeth on C and the speed and sense of rotation of C.

Solution 

Given: z
b
  25, z

d
  40

Table 15.20 is used to find the speed of gears.
For A to be fixed, x  y  0, y  100 rpm, x  100 rpm

Table 15.19

Operation
Revolutions of

Arm Gear A, 50 Gear B, 25 Gear C, 52

1.  Arm fixed, 1 
revolutions 
given to gear 
A, ccw

0 1 z

z
a

b

50

25
2

z

z
a

c

50

52

2. Multiply by x 0  x 2x 50

52

x

3. Add y y y  x y  2x
y

x50

52

Fig.15.25 Epicyclic gear train
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Now  
d

d d
da

b c
d

2 2

For same module,

 

z
z z

z

z

z

n

a
b c

d

c

c

c

2 2
150

2
25

40

2
30

00 0
100

30
600– –1 15 rpm, ii.e., rpm cw600 .

Fig.15.26 Epicyclic gear train

Table 15.20

Operation
Revolutions of

Arm Gear A, 150 Gear B, 25 Gear C Gear D, 40

1.  Arm fixed, 1  
revolutions 
given to gear A, 
ccw

0 1 z

z
a

b

150

25
6

z

z z
a

c c

150 z

z
a

d

150

40

15

4

2.  Multiply by x 0 x 6x 150x

zc

15

4

x

3. Add y y y  x y  6x
y

x

zc

150
y

x15

4

Example 15.23

An epicyclic gear train, as shown in Fig.15.27, has a sun wheel S of 30 teeth and two planet wheels P of 
teeth 50 each. The planet wheels mesh with the teeth of internal gear A. The driving shaft carrying the sun 
wheel transmits 6 kW at 300 rpm. The driven shaft is connected to an arm which carries the planet wheels. 
Determine the speed of the driven shaft and the torque transmitted, if the overall efficiency is 95%.
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Solution 

Given: z
s
  30, z

p
  50, power transmitted  6 kW, N  300 rpm, efficiency  0.95

Table 15.21 is used to find the speed of gears.

Table 15.21

Operation
Revolutions of

Arm Sungear S, 30 Planet P, 50 Annular A

1.  Arm fixed, 1  
revolutions given 
to gear S, ccw

0 1 z

z
s

p

30

503

5

z

z
s

a

2.  Multiply by x 0  x 3

5

x
x

z

z
s

a

3. Add y y y  x
y

x3

5
y x

z

z
s

a

 n
s
  x  y  300 (1)

Now d
a
  2d

p
  d

s

For same module,  z
a
  2z

p
  z

s

 100  30  130

Fig.15.27 Epicyclic gear train

For to be fixed,  xz

z
y

x
y

s

a

0

3

13
0

  

(2)
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From (1) and (2), we get

 
x y

975

4

225

4
,

Speed of driven shaft (arm)  56.25 rpm

 

T

T T n
n

s

a s s

a

6 1 N m

=190.986 300

30
60

2 300
190 986

0 95

5

( )
.

.




66 25
967 7

.
. N m.

Example 15.24

A compound epicyclic gear train is shown in Fig.15.28. The gears A, D and E are free to rotate on the 
axis P. The compound gear B and C rotate together on the axis Q at the end of arm F. All the gears 
have equal module. The number of teeth on the gears A, B and C are 18, 45 and 21 respectively. The 
gears D and E are annular gears. The gear A rotates at 120 rpm ccw and the gear D rotates at 450 rpm 
cw. Find the speed and direction of the arm and the gear E.

Fig.15.28 Compound epicyclic gear train

Solution 

Given: z
a
  18, z

b
  45, z

c
  21, n

a
  120 rpm ccw, n

d
  450 rpm cw

z z
ze a

b2 2

z
e
  z

a
  2 z

b
  18  90  108

z
e
  z

a
  z

b
  z

c
  18  45  21  84
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Table 15.22 is used to find the speed of gears.

Table 15.22

Operation
Revolutions of

Arm Gear A, 18 Gear B, C, 45, 21 Gear D, 84 Gear E,108

1.  Arm  
fixed,  1 
revolutions 
given to gear 
A, ccw

0 1 z

z
a

b

18

45

2

5

z

z

z

z
a

b

c

c

18

45

21

84
1

10

z

z

z

z
a

b

b

e

18

45

45

108
1

6

2.  Multiply by x 0  x 2

5

x x

10

x

6

3. Add y y y  x
y

x2

5
y

x

10
y

x

6

 x  y  120

 

x
y

10
450

 x  518.2 rpm, y  398.2 rpm

 n
f
  y   398.2 rpm, i.e., cw

 
n y

x
e 6

398 2
518 2

6
484 57.

.
. rpm, i.e., cw

Example 15.25

An epicyclic gear train shown in Fig.15.29, consists of two sun wheels A and D with 28 and 24 teeth 
respectively, engaged with a compound planet wheels B and C with 22 and 26 teeth. The sun wheel 
D is keyed to the driven shaft and the sun wheel A is a fixed wheel coaxial with the driven shaft. The 
planet wheels are carried on an arm E from the driving shaft which is coaxial with the driven shaft. 
Find the velocity ratio of gear train. If 1.2 kW is transmitted and input speed is 120 rpm, determine 
the torque required to hold the sun wheel A.

Solution 

Given: z
a
  28, z

d
  24, z

b
  22, z

c
  26, power transmitted  1.2 kW, N  120 rpm

Table 15.23 is used to find the speed of gears.
y  120 rpm

 
n y

x x
d

91

66
120

91

66
0

 x   87 rpm
 n

a
  x  y   87  120  33 rpm
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Table 15.23

Operation
Revolutions of

Arm, E Gear A, 28 Gear B, C, 22, 26 Gear D, 24

1.  Arm E fixed,  1 
revolutions given 
to gear A, ccw

0 1 z

z
a

b

28

22

14

11

z

z

z

z

x

a

b

c

d

28

22

26

24

91

66

2.  Multiply by x 0  x 14

11

x 91

66

x

3. Add y y y  x
y

x14

11
y

x91

66

Fig.15.29 Epicyclic gear train

Speed of driven shaft (gear A)  33 rpm ccw

Speed ratio n

n

M

d

a

87

33
2 637

1 2 10 60

2 120
95 5

2 120

60
1

1

3

1

.

.

( )
.






Nm

22 57

2 33

60
3 456

95 5
12 7

3 456

2

2 1
1

2

.

.

.
.

.

rad/s,

rad/s





M M 3347 35. Nm

Holding torque,M
3
   M

1
  M

2
   95.5  347.35   442.85 Nm
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Example 15.26

An epicyclic gear train is shown in Fig.15.30. The main driving shaft G has a gear S
1
 integrally 

mounted and driving the internal gear A
1
 on the casing through two intermediate gears P

1
 mounted on 

either side. The gears P, are free to revolve on arms R, which are integral with gear S
2
 which in turn 

drives the internal gear A
2
 on another casing through two gears P

2
. The driven shaft H is integral with 

the casing carrying the internal gear A
1
 and arms R

2
 on which the gears P

2
 are free to rotate. The casing 

A
2
 and gear S

2
 are free to rotate on shaft G.

Calculate the speed of shaft H when G rotates at 1000 rpm anticlockwise when (a) A
2
 is stationary; 

(b) A
2
 rotates at 500 rpm clockwise.

The number of teeth on gears are: S
1
  S

2
  30, A

1
  A

2
  90.

Solution  

Table 15.24 is used to find the speed of gears.

Table 15.24

Operation
Revolutions of

Arm, R S
1
, 30 P

1
A

1
, 90 S

2
, 30 P

2
A

2
, 90

1.  Arm R
1
 

fixed,  1 
revolutions 
given to S

1
, 

ccw

0 1 30

1zp

30

90

1

3

1

3

1

3

30

10

2

2

z

z

p

p

1

3

1

3

1

9

2.  Multiply 
by x

0  x 30

1

x

zp

x

3

x

3

10

2

x

zp

x

9

3. Add y y y  x
y

x

zp

30

1

y
x

3
y

x

3
y

x

zp

10

2

y
x

9

(a)  A
2
 fixed: 

x
y

9
0

 x  y  1000

 y  125

Speed of shaft H  y  125 rpm cw

(b)  x
y

9
500

 

x
y

9
500

 x  y  1000

 x  1687.5 rpm, y  687.5 rpm

Speed of shaft H  y  687.5 rpm cw.
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Example 15.27

Fig.15.31 Shows diagrammatically a compound epicyclic gear train. Wheels A, D and E are free to 
rotate independently on spindle C, while B and C are compound and rotate together on spindle P, on 
the end of arm OP. All  the teeth on different wheels have the same module. A has 12 teeth, B has 
30 teeth and C has 14 teeth cut externally. Find the number of teeth on wheels D and E which are cut 
internally.

If the wheel A is driven clockwise at 1 rps while D is driven clockwise at 5 rps, determine the 
magnitude and direction of the angular velocities of arm OP and wheel E.

Solution 

Given: z
a
  12, z

b
  30, z

c
  14, n

a
  1, n

d
  5

 z
e
  z

a
  2z

b
  12  60  72

 z
d
  z

a
  z

b
  z

c
  12  30  14  56

Table 15.25 is used to find the speed of gears
 x  y  1

 

x
y

x y

10
5

40

11
4 636, . rpm

Angular velocity of OP  2
4 636

60
0 486

.
.  rad/s cw

Angular velocity of wheel E:

 

y
x

e

3
4 636

3 636

3
5 848

2
5 848

60
0 612

.
.

.

.
.

rpm

rad/s cw 

Fig.15.30 Epicyclic gear train
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Fig.15.31 Compound epicyclic gear train

Table 15.25

Operation

Revolutions of

Arm, 
OP

Gear A, 
12

Gear B, C,  
30, 14

Gear D,  
56

Gear E,  
72

1.  Arm fixed, 1  
revolutions 
given to gear A, 
ccw

0  1
12

30

2

5

2

30

14

56

1

10

24

30

30

72

1

3

2. Multiply by x 0  x
2

5

x x

10

x

3

3. Add y y y  x y
x2

5
y

x

10
y

x

3

Example 15.28

A mechanism for recording the distance covered by the bicycle, as shown in Fig.15.32, is as follows:
There is a fixed annular wheel A of 22 teeth and another annular wheel B of 23 teeth, which rotates 

loosely on the axis of A. An arm driven by the bicycle wheel through gearing not described, also 
revolves freely on the axis of A and carries on a pin at its extremity two wheels C and D, which are 
integral with one another. The wheel C has 19 teeth and meshes with A and the wheel D with 20 teeth 
meshes with B. The diameter of the bicycle wheel is 0.7 m. What must be the velocity ratio between 
the bicycle wheel and the arm, if B makes one revolution per 1.5 km covered?

Solution 

Given: z
a
  22, z

b
  23, z

c
  19, z

d
  20
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Fig.15.32 Bicycle distance measurment mechanism

Table 15.26

Operation
Revolutions of

Arm, E Gear A, 22 Gear C, D, 19, 20 Gear B, 23

1.  Arm E fixed, 1 
revolutions given 
to gear A, ccw

0 1 Z

Z
a

c

22

19

Z

Z

Z

Z

x

a

c

d

b

22

19

20

23
440

437

2. Multiply by x 0  x 22

19

x 440

437

x

3. Add y y y  x
y

x22

19
y

x440

437

Table 15.26 is used to find the speed of gears.

A fixed:  x  y  0

 

440

437
1

437

3
145 67

x
y

x . .revolutions for every 1 5 km

Revolutions made by bicycle wheel per 1.5 km  1000
1 5

1 5
682

.

( . )
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Velocity ratio of gearing
Total velocity ratio

Velocity ratio proviided by mechanism

682

145 67 1
4 682

.
.

Example 15.29

In an epicyclic gear train of the sun and planet type shown in Fig.15.33, the pitch circle diameter of the 
annular wheel A is to be nearly equal to 216 mm, and the module is 4 mm. When the annular wheel is 
stationary, the spider which carries three planet gears P of equal size, has to make one revolution for 
every five revolutions of the driving spindle carrying S gear. Determine the number of teeth on all the 
wheels and also the exact pitch circle diameter of A.

Solution 

d
a
  d

s
  2d

216  4(z
s
  2z

p
)

z
s
  2z

p
  54

 d mz za a a,
216

4
54   (1)

Fig.15.33 Sun and planet gear train

Table 15.27 is used to find the speed of gears.
 x  y  5

 

y
xz

z
s

p

1

Solving, we get

 

x
z

z
s

p

1 6

 

 (2)

Also  y
xz

z
s

a

0
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Table 15.27

Operation
Revolutions of

Spider S P A

1.  Spider fixed, 1 
 rev to S ccw

0 1 z

z
s

p

z

z
s

a

2. Multiply by x 0 x xz

z
s

p

xz

za
s

3. Add y y y  x
y

xz

z
s

p

y
xz

z
s

a

Thus

  

x
z

z
s

a

1 5

 
 (3)

Solving Eqs. (1), (2), and (3), we get
 l

c
  z

s
  10, z

p
  22, d

a
 216 mm.

Example 15.30

An epicyclic gear train as shown in Fig.15.34, has a sun wheel S of 30 teeth and two planet wheels  
P  P of 45 teeth. The planet wheels mesh with the internal teeth of a fixed annulus A. The driving 
shaft carrying the sun wheel transmits 4 kW at 360 rpm. The driven shaft is connected to an arm, 
which carries the planet wheels. Determine the speed of the driven shaft and the torque transmitted, if 
the overall efficiency is 95%.

Solution 

Given:
z

s
  30, z

p
  45

 d
a
  d

s
  2 d

p

 z
a
  z

s
  2z

p

 z
a
  30  90  120

Fig.15.34 Epicyclic gear train
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Table 15.28 is used to find the speed of gears.

Table 15.28

Operation
Revolutions of

Arm S P A

1.  Arm 
fixed, 1 
rev to S, 
ccw

0 1

2

3

z

z
s

p

30

45

1

4

z

z
s

a

30

120

2.  Multiply 
by x

0  x 2

3

x x

4

3. Add y
y y  x

y
x2

3
y

x

4

A fixed:
 

y
x

4
0

 y + x = 360
 x = 288 rpm, y = 72rpm
 Speed of driven shaft  72 rpm

Input torque,  T

T

1

3

1 1 2 2

2

4 10 60

2 360
106 1

0

106 1
360

72
530 5


.

. .

Nm

n T n

T NNm

Example 15.31

In the epicyclic gear train shown in Fig.15.35, the arm A, carrying the compound wheels D and E, 
turns freely on the output shaft. The input speed is 1000 rpm in counter  clockwise direction when 
seen from the right. Input power is 7.5 kW. Calculate the holding torque to keep the wheel C fixed. The 
number of teeth for different gears are as shown in the figure.

Solution 

Z
b
  20, z

d
  60, z

e
  30, z

f
  32, z

c
  80, n

b
  1000 rpm ccw, P

i
  7.5 kW

Let n
a
  rpm of arm. Considering train B, D, C, we have 

(n
b
  n

a
) /(n

c
  n

a
)   z

c
/z

b
 , n

a
  0 being fixed

(1000  n
a
)/(0  n

a
)   80/20  4

n
a
  200 rpm

Considering train B, D, E, F, we have
(n

b
  n

a
)/(n

2
  n

a
)  ( z

f
  /z

e
) × (z

d
 /z

b
)

(1000  200)/(n
2
  200)  ( 32/30) × (60/20)   3.2

n
2
  50 rpm
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2
  2  × 50/60   5.236 rad/s

T
1
  (7.5 × 103 × 60)/(2  × 1000)  71.62 N.m

T
1
 

1
  T

2
 

2
  0

T
2
  7.5 × 103/5.236  1432.4 N.m

Holding torque T
3
  T

1
  T

2
  71.62  1432.4  1504.02 N.m

Fig.15.35 Epicyclic gear train

Example 15.32

In the epicyclic gear train shown in Fig.15.36, the compound wheels E and F rotate freely on shaft A 
which carries the planet carrier G. The planets B and C are compounded gears. The number of teeth 
on each gear are: z

e
  30; z

b
  20, z

c
  18, z

d
  68.

The shafts A and K rotate in the same direction at 250 rpm and 100 rpm respectively. Determine 
the speed of shaft J.

Fig.15.36 Epicyclic gear train
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Solution 

Table 15.29 is used to find the speed of gears.
z

f
  z

c
  z

d
  z

b
  18  68  20  66

n
a
= n

g
= y = 250

n
e
= n

h
 ×15/30 = 100 ×15/30 = – 50

x  y  50
x  300
n

j
  n

d
  y  297 x/340  250  (297/340) ( 300)

 –12.06 rpm, i.e. 12.06 rpm cw

Table 15.29

Operation
Revolutions of

Arm, G Gear E/F, 30, 66 Gear B/C, 20, 18 Gear D, 68

1. Arm fixed, 
1 rev to E ccw

0 1 z
f
/z

b
  66/20  

 3.3
z

f
/z

b
 × ( z

c
/z

d
)  

(33/10)×( 18/68)  297/340

2. Multiply by x 0  x 3.3x 297x/340

3. Add y y y + x y − 3.3x y + 297x/340

Example 15.33

(a) Give a list of the common applications of planetary gear trains. Describe the working of the dif-
ferential mechanism of a motor car.
(b) In the planetary gear train shown in Fig.15.37, gear 1 has 50 teeth and gear 3 has 90 teeth. De-
termine the number of equally spaced planets that can be used without overlapping. The gears are 
standard. The formula used is to be derived, stating the assumptions made.

Solution 

z
3
  z

1
  2z

2

90  50  2z
2

 z
2
  20

Let n be the number of planets equally spaced. Then
n d

2
   (d

3
  d

2
)

For same module of all gears,
n z

2
   (z

3
  z

2
)

n   (90  20)/20  11

Fig.15.37 Planetary gear train
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Example 15.34

Fig.15.38 shows a compound epicyclic gear train in which two sun gears S
1
 and S

2
 are integral with 

the input shaft X. The arm B
2
 is integral with the output shaft Y. The planet gear P

2
 revolves on a pin 

attached to arm B
2
 and meshes with gear S

2
 and annular gear A

2
. The annular gear A

2
 is coaxial with 

the input shaft. The planet gear P
1
 meshes with the fixed annular gear A

1
 and sun gear S

1
. The gear P

1
 

revolves on a pin fixed to gear A
2
. The number of teeth on gears are: S

1
  26, S

2
  31, A

1
  88, A

2
  83. 

The input power on shaft X is 10 kW at 1000 rpm cccw. Find (a) the speed and torque at shaft Y, 
assuming efficiency of 96 %, and (b) the torque required to hold the gear A

1
 stationary.

Solution 

(a) Input shaft
For n

a1
  0 y  26x/88  0

 y  x  1000
 x  772 rpm, y  228 rpm

Speed of gear A
2
  y  228 rpm

Speed of arm B
1
  y  228 rpm

(b) Output shaft
 x  y  1000
 y  31x /83  228
x  562 rpm
Speed of arm B

2
  y  1000  562  438 rpm

Speed of output shaft  y  438 rpm
Input torque, T

1
   10 × 103 × 60/(2  × 1000)  95.5 N.m

Output torque, T
2
  95.5 × 1000 × 0.96/438  2011.3 N.m

Holding torque, T
3
  95.5  ( 2011.3)  113.8 N.m

Table 15.30

Operation
Revolutions of

Arm, B
1

S
1

P
1

A
1

1.  Arm B
1
 fixed, S

1
 given 1 

revolutions ccw
0 1 z

s1
/z

p1
   

26/z
p1

z
s1

/z
a1

  
26/88

2. Multiply by x 0  x 26x/z
p1

26x/88

3. Add y y y  x y 26x/z
p1

y 26x/88

Table 15.31

Operation
Revolutions of

Arm B
2

S
2

P
2

A
2

1.  Arm B
2
 fixed, S

2
 given 1 

revolutions ccw
0 1 z

s2 
/z

p2
z

s2
/z

a2
 

31/83

2. Multiply by x 0 x xz
s2

/z
p2

31x/83

3. Add y y y  x y xz
s2

/z
p2

y 31x/83
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Fig.15.38 Compound epicyclic gear train

Example 15.35

In a reverted epicyclic train (Fig.15.39), the arm A carries two wheels B and C and a compound wheel 
D-E. The wheel B gears with wheel E and the wheel C gears with wheel D. The number of teeth on 
wheels B, C and D are 80, 35 and 95 respectively. Find the speed and direction of wheel C wheel B is 
fixed and the arm A makes 120 rpm clockwise.

Solution 

Given: z
b
  80, z

c
  35, z

d
  95,

 n
b
  0

 n
arm

  120 rpm (cw)

 r
b
  r

e
  r

c
  r

d

or z
b
  z

e
  z

c
  z

d

 z
e
  35  95  80

  50

Fig.15.39 Reverted epicyclic gear train
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Table 15.29 is used to find the speed of gears.
Table 15.29

Operation
Revolutions of

Arm, A Gears D, E Gear B Gear C

1. Arm A fixed, 1 rev to D, E, ccw 0 1 z
e
/z

B
z

d
 /z

C

2. Multiply by x 0  x x z
e
/z

B
x z

d
 /z

C

3. Add y y x y y  xz
e
/z

B
y  x z

d
 /z

C

Since gear B is fixed,

y x
z

z

y x

y x

e

b

0

50

80
0

5

8
0

or y  0.625 x  0 (1)
Arm A makes 120 rpm (cw), therefore
 y  120 (2)
From eqs (1) and (2), we get
 120  0.625 x  0
 x  192 rpm
For gear C, we have

n y x
z

zc
d

e

120 192
95

35
401 143.  rpm (ccw)

Example 15.36

In an epicyclic gear train (Fig.15.40), an arm carries two wheels A and B having 24 and 30 teeth 
respectively. The arm rotates at 100 rpm in the clockwise direction. Find the speed of the gear B on 
its own axis, when the gear A is fixed. If instead of being fixed, the wheel A rotates at 200 rpm in the 
counter clockwise direction, what will be the speed of B?

Solution 

Given: z
a
  24, z

b
  30, n

arm
  100 rpm (cw), n

A
  0 and 200 rpm

Now y  100

(i) Gear A is fixed,

 x  y  0

 x  y  100

 n
b
  y  x z

a
/z

b
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100 100
24

30

  180 rpm (cw)
(ii) Gear A rotates at 200 rpm (ccw)
 x  y  200

 x  200  y  200  100  300

 
nb 100 300

24

30
340 rpm (cw)

Fig.15.40 Epicyclic gear train

Table 15.30 is used to find speed of gears.

Table 15.30

Operation
Revolutions of

Arm Gear, A Gear, B

1. Arm fixed, 1 rev. to A, cw 0 1 z
a
/z

b

2. Multiply by x 0  x xz
a
/z

b

3. Add y y x y y x z
a
/z

b

Example 15.37

In an epicyclic gear train (Fig.15.41) an annular wheel ‘A’ having 54 teeth meshes with a planet wheel  
‘B’ which gears with a sun wheel ‘C’, the wheels ‘A’ and ‘C’  being co-axial. The wheel B is carried 
on a pin fixed on one end of arm P which rotates about the axis of the wheels A and C. If the wheel A 
makes 20 rpm in a clockwise sense and the arm rotates at 100 rpm in the anticlockwise direction and 
wheel C has 24 teeth, determine rpm and sense of rotation of the wheel C.

Solution 

Given: z
a
  54, z

c
  24, n

a
  20 rpm (cw), n

p
  100 rpm (ccw)

Table 15.31 is used to find speed of gears.
(i) n

a
  20

 
y x

z

z
c

a

20
 

(1)

(ii) y  100 (2)
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Table 15.31

Operation
Revolutions of

Arm, P Gear, C Gear, B Gear A

1.  Arm P fixed, 1 rev. 
to c (ccw)

0 1 z
c
/z

b z

z

z

z
z zc

b

b

a

c a/

2. Multiply by x 0 x x z
c
/z

b
xz

c
 /z

a

3. Add y y x  y y  z
c
/z

b
y  x z

c
 /z

a

Fig.15.41 Epicyclic gear train
From Eqs. (1) and (2), we get

 
100

24

54
20x

 
x 120

54

24
270

 nc  x  y  270  100  370 rpm (ccw)

Example 15.38

An internal wheel B with 80 teeth is keyed to shaft F (Fig.15.42). A fixed internal wheel C with 82 
teeth is concentric with B. A compound wheel D-E gears with two internal wheels; D has 28 teeth and 
gears with C, while E gears with B. The compound wheel revolves freely on a pin which projects from 
a disc keyed to a shaft A co-axial with F. If all the wheels have the same pitch and the shaft A makes 
800 rpm, what is the speed of F?

Solution 

Given: z
b
  80,

 z
c
  82,

 z
d
  28,

n
a
  800 rpm,

n
c
  0

From the geometry of figure, we have

 d
e
  d

d
  d

b
  d

e

or z
c
  z

d
  z

b
  z

e
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82  28  80  z
e

z
e
  26

Fig.15.42 Epicyclic gear train

Table 15.32 is used to find speed of gears.

Table 15.32

Operation
Revolutions of

Arm, A Gear, C Compound gear D, E Gear B and Shaft F

1. Arm A fixed, 1 
revolutions to C, ccw 0 1 z

c 
/z

d
z

z

z

z
c

d

e

b

2. Multiply by x
0 x x z

c
 /z

d x
z

z

z

z
c

d

e

b

3. Add y
y x  y y  x z

c
 /z

d y x
z

z

z

z
c

d

e

b

c is fixed, n
c
  x  y  0

 n
a
  y  800

 x  800

n y x
z

z

z

zf
c

d

e

b

800 800
82

28

26

80
38 57.  rpm
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Example 15.39

In an epicyclic gear train, the internal wheels A and B and the compound wheels C and D rotate inde-
pendently about axis O. The wheels E and F rotate on pins fixed to the arm G. E gears with A and C 
and F gears with B and D. All wheels have the same module and the number of teeth are:

z
c
  28, z

d
  26. z

e
  z

f
  18

Find (i) The number of teeth on A and B (ii) if the arm G makes 100 rpm clockwise and A is fixed, 
find the speed of B.

Solution 

Refer to Fig.15.43.
Given: z

c
  28,

 z
d
  26,

 z
e
  z

f
  18

 n
g
  100 rpm (cw),

 n
a
  0

(i) From geometry of figure,

 d
b
  2d

f
  d

D

 d
a
  2d

e
  d

C

For the same module, z
b
  2z

f
  z

D

  2  18  26

  62

 z
a
  2z

e
  z

C

  2  18  28

  64

Fig.15.43 Epicyclic gear train



1016 Theory of Machines

Table 15.33 is used to find speed of gears.

Table 15.33

Operation
Revolutions of

Arm G Gear C, D Gear E Gear F Gear A Gear B

1. Arm G fixed, 1 rev. to D 
(ccw)

0 1 z
c
/z

e
z

d
 /z

f
z

c
/z

A
z

d
 /z

B

2. Multiply by x 0 x x z
c
/z

e
x z

d
 /z

f
x z

c
/z

A
x z

d
 /z

B

3. Add y y x y y x z
c
/z

e
y x z

d
 /z

f
y x z

c
/z

A
y x z

d
 /z

B

n
g
  y  100

n
a
  y  x z

c
/z

a
  0

or

 

100
28

64
0

100
64

28
228 57

100 228 57
26

6

x

x

n y x
z

zb
d

b

.

.
22

4 147.  rpm or  4.147 rpm (cw)

Summary for Quick Revision

1 A gear train is a combination of gears used to transmit motion from one shaft to another.

2 Gear trains may be classified as: simple, compound, reverted and planetary or epicyclic.

3 Speed ratio of simple gear train

n
1
/n

m
  angular velocity of the first gear in the train/angular velocity of the last gear

4 Speed ratio of compound gear train

Speed of driven gear/Speed of driving gear

 Product of teeth of driving gears/Product of teeth of driven gears

5 Reverted gear train : The axes of driving and driven shafts are coaxial.

Centre distance, C r
1
 r

2
  r

3
 r

4

For same module of all gears,

z
1
 z

2
  z

3
 z

4

6 Speed ratio of planetary gear trains
The speed ratio of a planetary gear train can be determined by the following methods:

 1. Relative velocity method

 2. Algebraic or tabular method.
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7 Torque on epicyclic gear trains:

 T
1
 T

2
 T

3
  0

 T
1 1

 T
2 2

 T
3 3

  0

 For a fixed member, 
3
  0

 Holding torque, T
3
  T

1
[n

1
/n

2
1]

Multiple Choice Questions

1 A reverted gear train is one in which the
(a) direction of rotation of first and last gear is the same
(b) direction of rotation of first and last gear is opposite
(c) first and last gear are on the same shaft
(d) first and last gear are essentially on separate but parallel shafts.

2 To connect hour hand to minute hand in a clock mechanism, we use
(a) epicyclic gear train (b) reverted gear train
(c) simple gear train (d) all of the above.

3 In a gear train, where the axes of gears have motions, is called
(a) simple gear train (b) compound gear train
(c) epicyclic gear train (d) reverted gear train.

4 In a simple gear train, if number of idlers is odd, then the direction of rotation of first and last gear 
shall be
(a) opposite (b) same
(c) depends on type of gears (d) depends on number of teeth on gears.

5 If the axes of first and last gear of a compound gear train are co-axial, the gear train is called
(a) simple (b) compound
(c) reverted (d) epicyclic

6 The train value of a simple gear train having m gears is

(a) 
N

Nm

1
 (b) 

N

N
m

1

 (c) N
1
  N

m
 (d) N

m
  N

1

where N  rpm

7 In a compound gear train having m gears, the ratio of speed of last gear to first gear is

(a) 
product of  teeth of driving gears X

product of  teeth of dri

( )

vven gears ( )Y  (b) y/x

(c) X  Y (d) 
x

y

2

Answers

1. (c) 2. (b) 3. (c) 4. (b) 5. (c) 6. (a) 7. (a)

Review Questions

1 What is a gear train?

2 What is the difference between a simple and compound gear train?
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3 What are the types of gear trains?

4 What is a reverted gear train? Where it is used.

5 What are epicyclic gears? What are their uses?

6 Write the formula for speed ratio of a simple gear train.

7 What is the law for the speed ratio of a compound gear train?

8 What is the fixing torque of a gear in an epicyclic gear train?

9 What is a compound epicyclic gear train?

10 What is a seen and planet gear?

Exercises

15.1 Two coaxial shafts A and B are geared together through an intermediate parallel shaft C. The 
wheels connecting A and C having a module of 2 mm and those connecting C and B have a 
module of 3.5 mm. Speed of B is less than 1/10th that of A. If the two pinions have each 20 
teeth, find suitable number of teeth for the wheels, the actual velocity ratio, and corresponding 
centre distance of shafts C and A.

[Ans. 92, 44; 10.12; 224 mm]

15.2 Two spur gears A and B of an epicyclic gear train shown in Fig.15.44 have 25 and 35 teeth 
respectively. The arm C rotates at 105 rpm in clockwise direction. Find speed of gear B on its 
own axis, when gear A is fixed. If gear A rotates at 200 rpm in the counter-clockwise direction, 
what will be the speed of B?

A Arm

B

C

Fig.15.44 Epicyclic gear train
[Ans. 180 rpm cw; 322.86 rpm, cw]

15.3 In an epicyclic gear train shown in Fig.15.45 the number of teeth on gears A, B and C are 50, 
25 and 55 respectively. The arm rotates at 450 rpm clockwise. Calculate (a) the speed of gear C  
when A is fixed, and (b) speed of gear A when C is fixed.

Arm

A

B

C

Fig.15.45 Epicyclic gear train
[Ans. 40.9 rpm cw; 45 rpm ccw]
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15.4 In an epicyclic gear train shown in Fig 15.46 the arm A is fixed to shaft S. The wheel B having 
90 teeth rotates freely on shaft S and wheel F with 135 teeth is separately driven. If arm A runs 
at 240 rpm clockwise and wheel F at 120 rpm in the same direction, find (a) number of teeth 
on wheel C, and (b) speed of wheel B.

Fig.15.46 Epicyclic gear train
[Ans. 23, 421.3 rpm]

15.5 In an epicyclic gear train shown in Fig.15.47 the internal wheels A and F and compound wheel 
C-D rotate about the axis O. The wheel B and E rotate on pins fixed to arm L. The wheels have 
the same module and number of teeth are: Z

b
  Z

e
  20, Z

c
  30, and Z

d
  28. If arm L makes  

200 rpm cw, find the speed of F, when (a) wheel A is fixed, and (b) wheel a makes 20 rpm ccw.

Fig.15.47 Epicyclic gear train
[Ans. 7.84 rpm cw, 11.37 rpm ccw]

15.6 A compound epicyclic gear train is shown in Fig.15.48 The gears A, D and E are free to rotate 
on axis P. The compound gear B and C rotate together on axis Q at the end of arm F. All the  
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gears have equal module, Z
a
  20, Z

b
  50, Z

c
  25. Gears D and E are annular gears. Gear A rotates 

at 100 rpm ccw and gear D rotates at 500 rpm cw. Find speed and direction of arm and gear E.

Fig.15.48 Compound epicyclic gear train

[Ans. 328.6 rpm cw, 400 rpm cw]

15.7 In an epicyclic gear of the sun and planet type shown in Fig.15, the annular gear A has 56 teeth 
and meshes internally. Here planet wheels of equal size mesh with annular gear A and sun 
wheel S. When gear A is stationary, the spider C which carries the planet wheels is to make one 
revolution for every 5 rotations of spindle carrying the sun wheel S. Calculate the number of 
teeth for all the wheels.

Fig.15.49 Sun and planet type gear train
[Ans. z

s
  14, z

p
  21]
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15.8 The annulus A in the gear train shown in Fig.15.50 rotates at 300 rpm about the axis of the fixed 
wheel S having 80 teeth. The three arm spider is driven at 180 rpm. Determine the number of 
teeth required on the wheel P.

Spider

P
A

S

PP

Fig.15.50 Sun and planet type gear train

[Ans. 20]

15.9 Fig.15.51 shows an epicyclic gear train arrangement wheel E is fixed and gears C and D are 
integrally cost and mounted on one pin. If the arm A makes one revolution per second counter   
clockwise, determine the speed and the direction of rotation of wheels B and F.

B, 20

D, 15

C, 35

E, 20 F, 20

Fig.15.51 Epicyclic gear train
[Ans. 0.428 rps, ccw; 0.952 rps, ccw]

15.10 In a reverted epicclic gear train, as shown in a Fig.15.52 the arm A carries two gears B and C 
and compound gear D, E. The gear B meshes with gear D. The number of teeth on gears B, C  
and D are 75, 30 and 90 respectively. Find the speed and direction of gear C when gear B is 
fixed and the arm A makes 100 rpm clockwise.
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B

C A

E

D

Fig.15.52 Reverted epicyclic gear train
[Ans. 400 rpm, ccw] 
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KINEMATIC 
SYNTHESIS OF 
PLANAR MECHANISMS

16.1 INTRODUCTION
Kinematic analysis is the process of determination of velocity and acceleration of the various links of 
an existing mechanism. This was already discussed in Chapters 2 and 3. On the other hand, kinematic 
synthesis deals with the determination of the lengths and orientation of the various lengths of the links 
so that a mechanism could be evolved to satisfy certain conditions.

Kinematic synthesis of a mechanism requires the determination of lengths of various links that 
satisfy the requirements of motion of the mechanism. The usual requirements are related to specified 
positions of the input and output links. It is easy to design a planar mechanism, when the position of 
input and output links are known at fewer positions as compared to large number of positions.

Ch
ap

te
r 

Ou
tli

ne



1024 Theory of Machines

16.2 MOVABILITY (OR MOBILITY) OR NUMBER SYNTHESIS
Movability of a mechanism means the number of degrees of freedom, which is equal to the number 
of independent coordinates required to specify its configurations in order to define its motion. This 
concept is also known as number synthesis.

The Gruebler’s (or Kutzbach) criterion for degrees of freedom of planar mechanisms is given by:

 F 3 (n  1) 2p  h (16.1)

where p n n n ini

1

2
2 3 42 3 4( )

  number of simple joints or lower pairs having one degree of freedom

 n
2

number of binary links

 n
3

number of ternary links

 n
4

number of quaternary links, and so on

 h  number of higher pairs having two degrees of freedom

 n n
2

n
3

n
4

… n
i

total number of links.

If h 0, then
 F 3 (n  1)  2p (16.2)

 F 3 [(n
2
  +  n

3
n

4
… n

i
) 1]  (2n

2
3n

3
4n

4
… in

i
)

Simplifying and re-arranging the equation, we get

 n
2

(F 3) [n
4

2n
5

3n
6

… (i  3) n
i
] (16.3)

For a fully constrained mechanism, F 1. Thus

 n
2

4 +[n
4

… (i  3)n
i
] (16.4)

From Eq. (16.4), it is quite evident that the minimum number of binary links is equal to four. 
Therefore, the four-bar kinematic chain is the simplest mechanism.

For F 1, n
2

 4
 F 2, n

2
 5

 F 3, n
2

 6

…………

 F k, n  (k 3)

For a fully constrained motion, F 1, so that

 1 3 (n 1)  2p  (16.5)

or p
n3

2
2

16.3 TRANSMISSION ANGLE
Transmission angle μ is the interior angle between the coupler and output link as shown in Fig.16.1. 
If link AB is the input link, the force applied to the output link DC is transmitted through the coupler 
BC. For a particular value of force in the coupler rod, the torque transmitted to the output link (about 
point D) is maximum when the transmission angle μ is 90°. If links BC and DC become coincident, the 
transmission angle is zero and the mechanism would lock or jam. If μ deviates significantly from 90°, the 
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torque on the output link decreases. Sometimes, it may not be sufficient to overcome the friction in 
the system and the mechanism may be locked or jammed. Hence, μ is generally kept more than 45°. 
The transmission angle is nearly 90° for the best mechanism. To find the positions where the transmis-
sion angle is maximum or minimum, apply cosine law to s ABD and BCD.

 a2 d 2  2 ad cos k2 (1)

and b2 c2  2 bc cos μ k2 (2)

From Eqs. (1) and (2), we have

 a2 d 2  2 ad cos b2 c2  2 bc cos μ

or a2 d 2  b2  c2  2 ad cos 2 bc cos μ 0

For maximum or minimum values of μ, 
d

d




0.

or
 

ad bc

ad

bc

sin sin

sin

sin

 








d

d
d

d

0

0

or ad sin 0

Since  ‘a’  and  ‘d’  are not zero, so

sin 0

or 0° or 180°

Thus, transmission angle is maximum when 180°, and minimum when 0°.

16.3.1 Transmission Angle in Slider–Crank Mechanism
The slider-crank mechanism ABC is shown in Fig.16.2 where μ is the transmission angle. To find the 
positions of maximum or minimum values of μ, we have

 BE BD  ED

  a sin   e (1)

Fig.16.1 Four-bar mechanism
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From  BEC, we have

BE

BC
sin cos90  

 BE BC cos μ b cos μ (2)

From Eqs. (1) and (2), we get

 a sin   e b cos μ  (3)

Differentiating Eq. (3) w.r.t.  and equalizing it to zero, we get

a b

a

b

cos sin

cos

sin

 









d

d
d

d
or                   0

or a cos 0

As ‘a’ is not equal to zero, so cos 0
Thus 90° or 270° gives the maximum or minimum values of transmission angle μ.

16.4  LIMIT POSITIONS AND DEAD CENTRES  
OF A FOUR-BAR MECHANISM

For the design of four-link mechanism, limit positions and dead centres are essential.

Limit position: It is the position in which the interior angle between its coupler and input link is either 
180° or 360°. In the limit position of the mechanism, the pivot points A, D and C lie on a straight line 
as shown in Fig.16.3(b). In this case, the angle between the input link AD and coupler DC is 180°.  
A four-link mechanism can have maximum two limit positions. The second limit position is shown in 
Fig.16.3(c) where, the angle between the coupler DC and input link AD is 360°.

The angle of oscillation of output-link BC is given as,

    

where   and   are the two extreme positions of output link, BC.

Fig.16.2 Slider-crank mechanism
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Fig.16.3 Limit positions of four-bar mechanism

Dead centre position: It is the position in which the interior angle between the coupler and the 
output link (of a four-link mechanism) is either 180° or 360° (refer to Fig.16.4). In dead centre 
positions, the pivot points B, C, and D lie in a straight line. There can be two (maximum) dead 
centre positions. A crank-crank four-bar link mechanism does not have either a limit position or 
dead centre positions because both the cranks rotate through 360°.

Fig.16.4 Dead centre positions of four-bar mechanism
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Solution 

Procedure:

First limit position

1. Draw points A and B, 6 cm apart representing d 6.0 cm

2. From point A draw an arc of 6 cm (a b 6.0 cm) and from point B draw an arc of 4.5 cm  
(c 4.5 cm).

3. These arcs intersect at point C.

4. Locate point D on AC such that AD a 1.5 cm.

5. AD, DC and BC represent input link, coupler and output link respectively. The angle between AD 
and DC is 180°. This is the first limit position as shown in Fig.16.5(a).

Second limit position

1. Draw points A and B, 6 cm apart as d 6.0 cm. (Fig.16.5(b)).

2. From point A draw a circle of radius AC b  a 4.5  1.5 3.0 cm.

3. From B draw a circle of radius 4.5 cm i.e., c 4.5 cm. These circles (arcs) intersect at point C.

4. Join A, C and B. Draw AD a 1.5 cm

5. Thus angle between AD, input link and AC, the coupler is 360°.

Note: For drawing the dead centre position, arc of radius (b c) is drawn at point B and another arc is 
drawn from A with radius ‘a’. Both arcs intersect at point D. This is for first dead centre position.

For the second dead centre position, an arc of radius (b  c) is drawn from point B.

16.5 DIMENSIONAL SYNTHESIS
It deals with the determination of actual dimensions of the mechanism to satisfy the specified motion 
characteristics. The actual dimensions could be the lengths of the links between adjacent hinge pairs, 
angles between the arms of a bell-crank lever, or cam contour dimensions, etc.

Synthesis of mechanisms can be carried out by graphical methods or analytical methods.

Fig.16.5 Drawing limit positions of four-bar mechanism

Example 16.1

A four-link mechanism has the dimensions as: a 1.5 cm, b 4.5 cm, c 4.5 cm and d 6.0 cm. 
Draw the limit positions.
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16.6 GRAPHICAL METHOD

16.6.1 Pole
Consider a four-bar mechanism O

2
 ABO

4
 in two positions O

2
A

1
B

1
O

2
 and O

2
A

2
B

2
O

4
 as shown in 

Fig.16.6. The coupler link AB has moved from the position A
1
B

1
 to A

2
B

2
.

Fig.16.6 Pole of a four-bar mechanism

The input link O
2
A and output link O

4
B have moved through angles 

12
 and 

12
 respectively in the 

clockwise direction. For the motion of the coupler AB from A
1
B

1
 to A

2
B

2
, P

12
 is its centre of rotation 

with respect to the fixed link. P
12

 lies at the point of intersection of the perpendicular bisectors of the 
coupler link AB in its two positions A

1
B

1
 and A

2
B

2
. Hence P

12
 is called the pole. P

12
 also lies at the point 

of intersection of the mid-normals a
12

 and b
12

 of the chords A
1
 A

2
 and B

1
 B

2
 respectively.

Properties of pole point

1. Since AB A
1
 B

1
A

2
 B

2
, the perpendicular bisectors of A

1
 A

2
 and B

1
 B

2
 pass through fixed centres 

O
2
 and O

4
.

2. Since coupler AB rotates about P
12

 from position A
1
 B

1
 to A

2
 B

2
, and therefore,

A
1
 B

1
 P

12
 A

2
 B

2
 P

12
,

 2 3 1 1 4 5

or angle subtended by A
1
 B

1
 at P

12
angle subtended by A

2
 B

2
 at P

12
.

3. Since 2 3 1 1 4 5

 2 3 4 5

Thus A
1
 A

2
 and B

1
 B

2
 subtend equal angle at P

12
.
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4. Since P
12

 lies on the perpendicular bisectors of A
1
 A

2
 and B

1
 B

2
,

 2 3 and 4 5

5. Since 2 3 4 5

and 2 3 and 4 5

2 4 and 3 5

Therefore, input and output links subtend equal angles at pole P
12

 as they move from one position 
to another.

6. Since 2 3 1 1 4 5 1 4 3 (  5 3)

i.e., angle subtended by the coupler link AB angle subtended by the fixed link O
2
 O

4
.

7. The triangle A
1
 B

1
 P

12
 moves as one link about P

12
 to the position A

2
 B

2
 P

12
. Angular displacement 

of coupler A
1
 B

1
angular displacement of P

12
 B

1
 i.e., 

12
4 5.

16.6.2 Relative Pole
The pole of a moving link is the centre of its rotation with respect to a fixed link. However, if the rota-
tion of the link is considered relative to another moving link, the pole is called as the relative pole. To 
determine the relative pole, fix the link of reference and observe the motion of the other link in the 
reverse direction.

(a) Determination of relative pole for four-bar chain
Consider the four-bar chain O

2
ABO

4
 in its two positions O

2
 AB

1
O

4
 and O

2
 AB

2
O

4
'  as shown in 

Fig.16.7 with links O
2
 A fixed. The relative pole of AB relative to O

2
 A is at A. The relative pole of O

4
B 

relative to O
2
A is at R

12
, that can be determined as follows:

Let 
12

angle of rotation of O
2
A (clockwise)

 
12

angle of rotation of O
4
B (clockwise)

Fig.16.7 Determination of relative pole of four-bar chain
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1. Assume O
2
 and A as the fixed pivots and rotate O

2
O

4
 about O

2
 through angle 

12
 in the counter-

clockwise direction (opposite to the direction of rotation of O
2
A). Let O

4
'  be the new position after 

the rotation of O
2
O

4
'.

2. Locate the point B
2
 by drawing arc with centres A and O

4
'   and radii equal to AB

1
 and O

4
B

1
 respec-

tively. Then O
2
 AB

2
O

4
'   is inversion of O

2
AB

1
O

4
'.

3. Draw mid-normals of O
2
O

4
  and B

1
 B

2
 passing through O

2
 and A respectively to intersect at R

12
, 

which is the required relative pole.

12
  

12
angle of rotation of the output link O

4
B relative to the input link.

The angle will be negative if O
4
 B > O

2
A and positive if O

4
B < O

2
A.

Angular displacement of R
12

O
4

angular displacement of O
4
B

1
.

 O
4
 R

12
 O

4
'  (

12
  

12
) (assuming O

4
B > O

2
A)

or  2 1  (
12

  
12

)

or  1
1

2 12 12 

In O
2
 R

12
 O

4
,  4 1 2

or                                
1

2

1

2
312 12 12                                

   

2 3

1

2

1

2
312 12 

                                    3
1

2 12

Procedure:

1. Join O
2
O

4
 and extend it further. Rotate O

2
O

4
 about O

2
 through an angle 

1

2 12  in a direction opposite 
to that of O

2
A.

2. Again rotate O
2
O

4
 about O

4
 through an angle 

1

2 12  in a direction opposite to that of O
4
B.

3. The point of intersection of these two positions of O
2
O

4
 after rotation about O

2
 and O

4
, is the 

required relative pole R
12

.

The angles subtended by O
4
 O

4
'  and B

1
 B

2
 at R

12
 are the same.

i.e., O
4
 R

12
 O

4
' B

1
 R

12
 B

2

or 2 O
4
 R

12
 O

2
2 B

1
 R

12
 A

or O
4
 R

12
 O

2
B

1
 R

12
A

 Angle subtended by the fixed pivots (O
2
 and O

4
) at the relative pole Angle subtended by the 

coupler AB.

(b) Determination of relative pole for slider-crank mechanism
Consider the slider-crank mechanism shown in Fig.16.8. The point B on the slider reciprocates through 
a horizontal distance x. Its centre of rotation will lie at infinity on a vertical line where the point O

4
 

can also be assumed to lie. Then O
2
 O

4
 will also be a vertical line through O

2
. Rotate O

2
 O

4
 about O

4
 

through 1/2  in the counter-clockwise direction. Rotating O
2
O

4
 about O

4
 through 1/2  would mean 

a vertical line towards left of O
2
, at a distance of x/2. The intersections of the two lines locate R

12
.
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The procedure to locate the relative pole of a slider-crank mechanism is as follows:

1. Draw two parallel lines l
1
 and l

2
 at a distance equal to the eccentricity e (if there is any eccentricity).

2. Select a line segment O C2

x

2
 on line l

1
 such that C is measured in a direction opposite to the 

motion of the slider.

3. Draw perpendicular lines O
2
P

1
 and C P

2
 to line l

1
.

4. Make 
1

2 12  at point O
2
 with the line O

2
P

1
 in a direction opposite to the rotation of the input link.

5. The intersection of this line with the line CP
2
 extended locates the relative pole R

12
.

Fig.16.8 Determination of relative pole of slider-crank mechanism

16.7 DESIGN OF MECHANISMS BY RELATIVE POLE METHOD

16.7.1 Four-Bar Mechanism
(a) Two-position synthesis

Let for a four-bar mechanism, length of the fixed link O
2
O

4
 along with the angular displacement 

12
 (between position 1 and 2) of the input link O

2
 A and angular displacement 

12
 (between positions 

1 and 2) of the output link O
4
B, are known.

To design the mechanism (Fig.16.9), first locate the relative pole R
12

 as explained in Section 
16.6.2(a).

Now, angle subtended by the coupler AB at R
12

  angle subtended by the fixed link O
2
O

4
 at R

12

1

2

1

212 12                                                Assuming  4 2O B O A

12

Procedure:

1. Construct an angle 
12

 at an arbitrary position R
12

. Join any two points on the two arms of the angle 
to obtain the coupler link AB of the mechanism. Join A with O

2
 to get the input and output links 

respectively.
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2. Locate point B arbitrarily so that BO
4
 is the output link. Construct BR

12
 Z

12
. Take any suitable 

point A or R
12

 Z. Join AB and O
2
A.

3. Instead of locating point B as above, locate point A arbitrarily so that O
2
A is the input link. Con-

struct AR
12

 Y
12

. Select any point B on R
12

 Y. Join A and B to get AB. Join B with O
4
 to get 

output link O
4
B.

Fig.16.9 Two-position method for four-bar mechanism

(b) Three position synthesis
Let three positions of input link 

1
, 

2
 and 

3
, and three positions of output link 

1
, 

2
 and 

3
 are 

known. The relative poles R
12

 and R
13

 can be determined considering,

12 2
  

1
 and 

12 2
  

1
 to locate R

12

and 
13 3

  
1
 and 

13 3
  

1
 to locate R

13

Then angle subtended at R
12

,

  12

1

2 12 12

and at R
13

, 

  12

1

2 13 13

Construct the angles 
12

 and 
13

 at the points R
12

 and R
13

 respectively at arbitrary positions such 
that the arms of the angles intersect at A and B. Join A and B to get the coupler AB. Join A with O

2
 and 

B with O
4
 to get input and output links respectively, as shown in Fig.16.10.

16.7.2 Slider–Crank Mechanism
(a) Two position synthesis

Let 
12

angular displacement of input link O
2
 A (angle between 

1
 and 

2
) in clockwise direction.

 x linear displacement of slider to the right

 e eccentricity
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Fig.16.11 Two position method for slider-crank mechanism

Locate the relative pole R
12

 as explained in Section 16.6.2(b) and shown in Fig.16.11.

Procedure:

1. Draw two parallel lines l
1
 and l

2
 at a distance equal to eccentricity, e.

2. Construct an angle equal to 
12

/2 at point R
12

, chosen arbitrarily and at a convenient position. The 
intersection of an arm N of this angle with line l

2
 gives the position of the slider at point B.

3. Select point A arbitrarily on the other arm M of the angle. Join A with O
2
 to get the input link 

(crank) O
2
A. Join A and B to get the coupler (connecting rod).

Fig.16.10 Three-position method for four-bar mechanism
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(b) Three-position synthesis
Three positions of input link 

1
, 

2
, and 

3
 are known, along with the corresponding slider positions 

x
1
, x

2
 and x

3
. Find R

12
 and R

13
 as shown in Fig.16.12.

Fig.16.12 Three position method for slider-crank mechanism

Here

12

2
angle made by the fixed link at R

12
.

13

2
angle made by the fixed link at R

13
.

Procedure:

1. Construct angle 
12

2
M R N1 12 1   at R

12
 in an arbitrary position with arm N

1
 locating point B.

2. Draw angle 
13

2 13 22
M R N  at R

13
 with an arm N

2
 along R

13
 B.

3. Intersection of the two arms M
1
 at R

12
 and M

2
 at R

13
 (not through B) of the two angles locates the 

point A. Join A with B to get the coupler AB.
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16.8 ERRORS IN KINEMATIC SYNTHESIS OF MECHANISMS
There are three types of errors present in the design of linkages for function generation. These errors are:

1. Structural,

2. Mechanical, and

3. Graphical.

In function generation, there is correlation between the motion of input and output links. If the 
motions of input link is represented as x

0
, x

1
, x

2
, …, x

n 1
 and the corresponding motions (which is 

dependent on input variables x
0
, x

1
, …, x

n 1
) of the output link is represented by y

0
, y

1
, y

2
, …, y

n 1
, these 

can be shown on the graph as indicated in Fig.16.13. We observe that at certain points (P
1
, P

2
, and so 

on) the desired function and generated function agree well. These points are called precision points. 
The number of such points (from 3 to 6 generally) is equal to the number of design parameters. Except 
these points the generated function curve and desired function curve do not agree and are deviating by 
certain amount of error which is known as structural error. Structural error is the difference between 
the generated function and the desired function for a certain value of input variable. So, the precision 
points are spaced in such a way as to minimize the structural error of the linkage.

Fig.16.13 Errors in function generation of linkages

Mechanical errors are caused because of mechanical defects such as improper machining, casting 
of components of the linkage, clearance in the components because of rubbing, overloading of link-
ages, etc.

Graphical error is caused because of inaccuracy in drawing of perpendicular or parallel lines. It 
may occur because of wrong graphical construction and wrong choice of scale. Also, there may be 
human errors in drawing work.

16.9 ANALYTICAL METHOD

16.9.1 Function Generation
In function generation, the motion of input (or driver) link is correlated to the motion of output (or 
follower) link. Let  and  be the angles of rotation of input and output links respectively. Let y f (x) 
be the function to be generated. The angle of rotation  of the input link O

2
A represents the independent 
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variable x and the angle of rotation  of the output link O
4
B represents the dependent variable y, as 

shown in Fig.16.14. The relation between x and  and that between y and  is generally assumed to be 
linear. Let 

i
 and 

i
 be the initial values of  and  representing x

i
 and y

i
 respectively.

Then
   

i

i

x

f i

f ix x
r

x x
const.

  

(16.6a)

and 
   

i

i
y

f i

f iy y
r

y y
const.   (16.6b)

where the constants r
x
 and r

y
 are called scale factors. The subscripts i and f denote the initial and 

final values.

Fig.16.14 Function generation method

16.9.2 Chebyshev’s Spacing for Precision Points
Let x

i
 and x

j
 be the initial and final values of variable x respectively. A function f (x) is desired to be 

generated in the interval x
i
  x  x

f
 . Let the generated function be F (x, R

1
, R

2
, …, R

n
), where R

1
, R

2
, …, R

n
 

are the design parameters. The difference E(x) between the desired function and generated function 
can be represented by,

E(x) f (x)  F(x, R
1
, R

2
, …, R

n
) (16.7)

At precision points, say for x x
1
, x

2
, …, x

n 
, the desired and generated functions agree and E(x) 0. 

At other points E(x) will have some value, called the structural error. It is desirable that E(x) should be 
minimum. Therefore, the spacing of precision points is very important. The precision points, accord-
ing to Chebyshev’s spacing, are given by:

x a b
m

n
mm cos , , ,

2 1

2
1 2 3



 

(16.8)

where a
x x

b
x xi f f i

2 2
, , and  

n number of precision points.
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16.9.3 Graphical Method to Locate Precision Points
The Precision points can be obtained by the graphical method from the following steps:

1. Draw a circle of radius ‘b’  and centre on the x-axis at a distance ‘a’ from point O.

2. Inscribe a regular polygon of side 2n in this circle such that the two sides are perpendicular to the 
x-axis.

3. Determine the locations of n accuracy points by projecting the vertices on x-axis as shown in 
Fig.16.15. It is sufficient to draw semi-circles only showing inscribed polygon to get the values of 
precision points.

Fig.16.15 Graphical method to determine precision points

Example 16.2

Derive Freudenstein’s equation for a four bar linkage.

Solution 

Consider a four-bar mechanism as shown in Fig.16.16 in equilibrium. The magnitudes of the links 
AB, BC, CD and DA are a, b, c and d respectively. ,  and  are the angles of AB, BC and DC 
respectively with the x-axis. AD is the fixed link. AB is the input link and DC the output link.

The displacement along x-axis is,

a b d c

b c a d

cos cos cos

cos cos cos

  
  or                 

orr           b c a d

c a d

cos cos cos

cos cos

  

 

2 2

2 2 2 2 2 22 2 2ac ad cdcos cos cos cos     (1)

The displacement along y-axis is,

a b c

b

sin sin sin

sin

  
or                                 cc a

b c a

sin sin

sin sin s

 

 or                           
2

iin

sin sin sin sin



   

2

2 2 2 2 2c a ac   (2)
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Fig.16.16 Deriving freudenstein’s equation for four-bar mechanism

Adding Eqs. (1) and (2), we get

b2 c2 a2 d 2  2ac (sin  sin cos  cos )  2ad cos 2cd cos 

or

2cd cos   2ad cos a2  b2 c2 d 2 2ac (sin  sin cos  cos )

Dividing throughout by 2ac, we get

d

a

d

c

a b c d

ac
cos cos cos cos     

2 2 2 2

2

or                      

where                  

k k k1 2 3cos cos cos   

                              and k
d

a
k

d

c
k

a b c
1 2 3

2 2 2

, ,
d

ac

2

2   

(16.9)

Eq. (16.9) is known as Freudenstein equation.

16.9.4 Freudenstein’s Equation for the Precision Points
Freudenstein’s equation helps to determine the length of links of a four-bar mechanism. The displace-
ment equation of a four-bar mechanism, shown in Fig.16.17 is given by:

2cd cos   2ad cos a2  b2 c2 d 2 2 ac (cos  cos sin  sin )

Fig.16.17 Freudenstein’s equation for the precision points
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Dividing throughout by 2ac and rearranging, we get

Let
 

d

a

d

c

a b c d

ac

k
d

a
k

cos cos cos

,

   
2 2 2 2

1 2

2

            
d

c
k

a b c d

ac
and 3

2 2 2 2

2

Then k
1
 cos k

2
 cos k

3
cos (   ) (16.10)

Eq. (16.10) is known as the Freudenstein’s equation.
Let the input and output are related by some function, such as, y f(x).
For three specified positions, let

 
1
, 

2
, 

3
three positions of input link

 
1
, 

2
, 

3
three positions of output link

Then substituting these values in Eq. (16.10), we get

 k
1
 cos 

1
k

2
 cos 

1
k

3
cos (

1
  

1
)

 k
1
 cos 

2
k

2
 cos 

2
k

3
cos (

2
  

2
)

 k
1
 cos 

3
k

2
 cos 

3
k

3
cos (

3
  

3
)

These equations can be written in the matrix form as:

cos cos

cos cos

cos cos

 
 
 

1 1

2 2

3 3

1

2

3

1

1

1

 

 

 

k

k

k

cos

cos

cos

 

 

 

1 1

2 2

3 3

These equations can be solved by any numerical technique.
Using Cramer’s rule, let

A A

cos cos

cos cos

cos cos

,

cos cos

cos

 
 
 

  1 1

2 2

3 3

1

1 1 11

1

1

1

  
  

  
 

2 2 2

3 3 3

2

1 1 1

2

1

1

1

cos

cos cos

cos cos

cos cosA 22 2

3 3 2

3

1 1 1 1

2 21

1


  

   
 

cos cos

,

cos cos cos

cos cosA ccos

cos cos cos

, ,

 
   

2 2

3 3 3 3

1
1

2
2

3
3Then k k k

A

A

A

A

A

A

Knowing k
1
, k

2
 and k

3
, the values of a, b, c, and d can be calculated. Value of either ‘a’ or ‘d’ can 

be assumed to be unity to obtain the proportionate values of other parameters.
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Example 16.3

Design a four-bar mechanism to coordinate three positions of the input and output links given by:

1
25, 

1
30°; 

2
35°, 

2
40°; 

3
50°, 

3
60°

Solution 

 cos 
1

cos 25° 0.9063, cos 
2

cos 35° 0.8191, cos 
3

cos 50° 0.6428

 cos 
1

cos 30° 0.8660, cos 
2

cos 40° 0.7660, cos 
3

cos 60° 0.5000

 cos (
1
  

1
) cos (25°  30°) 0.9962

 cos (
2
  

2
) cos (35°  40°) 0.9962

 cos (
2
  

2
) cos (50°  60°) 0.9848

A

0 8660 0 9063 1

0 7660 0 8191 1

0 5000 0 6428 1

. .

. .

. .

   0.8660 (0.8191  0.6428)  0.9063 (0.7660  0.5000) 1(0.7666 0.6428  
  0.8191 0.5000)

  5.5652 10 3

A1

0 9962 0 9063 1

0 9962 0 8191 1

0 9848 0 6428 1

. .

. .

. .

   0.9962 (0.8191  0.6428)  0.9063 (0.9962  0.9848) 1(0.9962 0.6428  
  0.8191 0.9848)

  9.9408 10 4 

A2

0 8660 9063 1

0 7660 0 9962 1

0 5000 0 9848 1

.

. .

. .

0.

   0.8660 (0.9962  0.9848)  0.9962 (0.7660  0.5000) 1(0.7660  0.9848  
  0.9962) 0.5000)

  1.14 102

A3

0 8660 9962

0 7660 0 8191

0 5000 0 6428

.

. .

. .

0. 0.9962

0.9962

0.9848

   0.8660 (0.8191 0.9848  0.9962 0.6428)  0.9063 (0.7660 0.9848  
  0.9962 0.5000)

  5.746 10 3

k
d

a1
1

4

3

9 9408 10

5 5652 10
0 1786

A

A

.

.
.
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Let d 1 unit, then a 5.598 units

k
A

A
d

c
c

k

2
2

3

3

3

1 14 10

5 5652 10
0 2048

4 88

.

.
.

, .  units

A33
3

3

2 2 2 2

2

5 764 10

5 5652 10
1 0272

2

5 598

A

.

.
.

( . )

a b c d

ac

b b
2

4 88

2 5 598 4 88
0 176

2( . )

. .
, .

The mechanism is shown in Fig.16.18.

Fig.16.18 Four-bar mechanism developed by three position precision points

Example 16.4

Design a four-bar mechanism when the motions of the input and output links are governed by a func-
tion y 2x2 and x varies 2 to 4 with an interval of 1. Assume  to vary from 40° to 120° and  from 
60° to 132°.

Solution  

The angular displacement of input link is governed by x whereas that of the output link by y,  
varies from 40° to 120° (i.e. through 80°) and  from 60° to 132° (i.e., through 72°). x 2, 3, 4.
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The corresponding values of y are: 2 22 8, 2 32 18, 2 42 32.

r
x x

x x
r

x

f i

f i

i

i

x

 

  

120 40

4 2

80

2
40

40

3 2
402

2

2, ,,

 

  

2

2 2

80

132 60

32 8

72

24
3

60

r
y y

y y
r

y

f i

f i

i

f i

y 118 8
3 902,

Precision  
point

x y , deg , deg

1 2 8 40 60

2 3 18 80 90

3 4 32 120 132

 cos 40° 0.7660, cos 60° 0.5000, cos (40°  60°) 0.9397

 cos 80° 0.1736, cos 90° 00, cos (80°  90°) 0.9848

 cos 120° 0.5, cos 132° 0.6691, cos (120°  132°) 0.9781

A A

0 5000 0 7660 1

0 0000 0 1736 1

0 6691 0 5000 1

0 0596

0 9

1

. .

. .

. .

. ,

. 3397 0 7660 1

0 9848 0 1736 1

0 9791 0 5000 1

0 03455

0 5000 0

2

.

. .

. .

.

. .

A

99397 1

0 0000 0 9848 1

0 6691 0 9781 1

0 0335

0 5000 0 7660 0

3. .

. .

. ,

. . .

A

99397

0 0000 0 1736 0 9848

0 6691 0 5000 0 9781

0 0645. . .

. . .

.

k
A

A

d

a
a

k
A

A

d

c
c

k

1
1

2
2

3

0 5763
1

0 5763
1 73

0 562 1 78

. ,
.

.

. , .

AA

A

a b c d

ac

b

3

2 2 2 2 2 2

0 0645

0 0596
1 0802

2

1 73 1 78

.

.
.

. .
2

1

2 1 73 1 78
0 7

. .
, .b
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The mechanism is shown in Fig.16.19.

Fig.16.19 Four-bar mechanisms generated by a function y 2x2

Example 16.5

Determine the lengths of all the four links of a four-bar mechanism to generate y log x in the interval 
1  x  11 for three precision points. The length of the smallest links is 10 cm the range of input angles 
is 45°    105° and output angles is 135°    225°.

Solution 

x
i

1, x
f

11, n 3

Using Chebyshev’s precision points,

a x x

b x x

x a b

i f

f i

m

1

2

1

2
1 11 6

1

2

1

2
11 1 5

  

  

 cos
22 1

2
1 2 3

2 1 1

6 61

m

n
m

x a b a b



 

, , ,

cos cos 66 5
6

10 33

2
6

5

6
6 5

5

6

2

3

  cos .

cos

cos cos





 

x a b

x a b 1 67.
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 y
1

log x
1

log 10.33 1.014

 y
2

log x
2

log 6 0.778

 y
3

log x
3

log 1.67 0.223

 y
i

log x
i

log 1 0

 y
f

log x
f

log 11 1.0414

Scale factors are:

  

r
x x

r
y y

x

f i

f i

y

f i

f i

 

 

105 45

11 1

60

10
6

225 135

1 0414. 0

90

1 0414
86 423

45

10 33 1
61

1

1

.
.

,
.

,r
x x x xx

i

i

i

i

    










1

2
2

3
3

100 98

45

6 1
6 75

45

1 67 1
6 49 02

.

, ,
.

, .

ry

   




i

i

i

iy y y y
,

.
. , .1

1

1
1

2

135

1 014 0
86 423 222 63

135

0 778 0
86 423 202 24

135

0 223 0
86 423 154 27

2

3
3

.
. , .

.
. , .






d 2 (0.221 1.908 1 1.538) b2

4.667 d 2 b2

                                   

              

d

b
0 463.

                     

         

d

a

d

b

d

c
2 126 0 463 0 724. , . , .

                           or      
d

a

d

c

d

b
a d c b

 Link a is the smallest. Thus a 10 cm, d 21.26 cm

b c
21 26

0 463
45 92

21 26

0 724
29 36

.

.
. ,

.

.
. . cm   cm

 ve sign indicates that the length C is to be drawn in the reverse direction.

Example 16.6

Design a four-bar mechanism so that 
12

70° and 
12

50°. Length of fixed link is 4 cm. Input and 
output links rotate anti-clockwise.
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Solution 

Refer to Fig.16.20.

Fig.16.20 Four-bar mechanism generation for 70° and 
12 

50°

1. Draw O
2
O

4
4 cm. Rotate O

2
O

4
 about O

2
 through 

12
/2  35° clockwise.

Precision  
point

x y , deg cos , deg cos   , 
deg

cos  
(   )

1 10.33 1.014 222.63 0.736 100.98 0.190 121.65 0.525

2 6 0.778 202.24 0.926 75 0.259 127.24 0.605

3 1.67 0.223 154.27 0.901 49.02 0.656 105.25 0.263

The Freudenstein’s equations becomes

0 736 0 190 1

0 926 0 259 1

0 901 0 656 1

1

2

3

. .

. .

. .

 

k

k

k

0 525

0 605

0 263

0 736 0 190 1

0

.

.

.

. .

.A 9926 0 259 1

0 901 0 656 1

0 087.

. .

.

A A1 2

0 525 0 190 1

0 605 0 259 1

0 263 0 656 1

0 185

0 736. .

. .

. .

. ,

.

 

0 525 1

0 926 0 605 1

0 901 0 263 1

0 063

.

. .

. .

.

       

A3

0 736 0 190 0 525

0 926 0 259 0 605

0 901 0 656 0 263

0

. . .

. . .

. . .

..103
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k
d

a
a

d

k

1
1

2
2

0 185

0 087
0 126

2 126

0 063

0 087
0

A

A

A

A

.

.
. ,

.

.

.
.. . ,

.

.

.
.

724 0 724
0 724

0 103

0 087
1 1843

3

d

c

d

c
c

d

k

 or 

A

A

aa b c d

ac

d
b

d
d

2 2 2 2

2

2
2

2

2

2 126 0 724
1 184 2

. .
.

dd d

d
b

d
d d

2 126 0 724

4 52 0 524
1 538

2

2
2

2
2 2

. .

. .
.  

2. Rotate O
2
O

4
 about O

4
 through 

12
/2 25° clockwise. The point of intersection of these two lines 

locates relative pole R
12

.

3. Construct an angle   12 12 12

1

2

1

2
70 50 10   at R

12
. Join any two points on the 

two arms of this angle to obtain the coupler link AB. Join A with O
2
 and B with O

4
 to get the input 

and output links.

4. O
2
A BO

4
 is the desired mechanism.

Example 16.7

Design a four-bar mechanism such that 
12

120°, 
13

160° and 
12

70°, 
13

100°. Input link 
rotates clockwise and output link also rotates clockwise. A length of fixed link is 5 cm.

Solution 

Refer to Fig.16.21.

   



12 12 12 12 12

13

2
120

2
60 2

70

2
35

1

2
25

2
16

/ , / , ( )

/

  

00

2
80 2

100

2

1

2
3013 13 13 12, / , ( )    

1. Draw O
2
O

4
4 cm. Rotate R

12
 and R

13
.

2. Construct angles 
13

 and 
12

 at R
12

 and R
13

 respectively such that the arms of the angles intersect at 
points A and B. Join AB to get the coupler.

3. Join O
2
A and O

4
B to get the input and output links respectively.

4. O
2
ABO

4
 is the required mechanism.

Example 16.8

Design a four-bar mechanism such that 
12

120°, 
13

160° and 
12

70°, 
12

70°, 
13

100°. 
Input link rotates clockwise and output link rotates anti-clockwise. Length of fixed link is 10 cm.

Solution 

Refer to Fig.16.22.
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Fig.16.22 Four-bar mechanism generation for Example 16.8

Fig.16.21 Four-bar mechanism generation for Example 16.7



1049 Kinematic Synthesis of Planar Mechanisms

   12 12 12 12 122 60 2 35 180
1

2
180 60 35 85/  /, , ( ) ( )

   13 13 13 13 132 80 2 50 180
1

2
180 80 50 50/  /, , ( ) ( )

1. Draw O
2
O

4
10 cm, with O

2
 as centre rotate O

2
O

4
 anti-clockwise through 60°. With O

4
 as centre 

rotate O
2
O

4
 through 35° clockwise. Intersection of these two arcs give R

12
.

2. With O
2
 as centre rotate O

2
O

4
 anti-clockwise through 80°. With O

4
 as centre rotate O

2
O

4
 through 

50° clockwise. Intersection of these two arcs give R
13

.

3. Construct angles 
12

 and 
13

 at the points R
12

 and R
13

 respectively such that the arms of the angles 
intersect at A and B. Join AB to get the coupler AB.

4. Join A with O
2
 and B with O

4
 to get the input and output links.

Example 16.9

Synthesize a slider-crank mechanism with eccentricity, e 1 cm for the two input positions of input 
link, 

12
60° and output displacement, x 1.5 cm to the right. 

Solution 

Refer to Fig.16.23

Fig.16.23 Slider-crank mechanism synthesis for two input positions

1. Draw two parallel line l
1
 and l

2
 at an eccentricity, e 1 cm.

2. Select an arbitrary point O
2
 on line l

1
. Measure CO

x
4 75

2

1 5

2
0

.
.  cm to the left. Draw CP

2
 

and O
2
P

1
 perpendiculars to lines l

1
.
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3. Make 
12

/2 30° P
1
O

2
P in the anti-clockwise direction. The intersection of P

1
O

2
 and P

2
C 

produced locates the relative pole R
12

. Join R
12

 B.

4. Make 
12

/2 30° with BR
12

 in the anti-clockwise direction.

5. Choose an arbitrary point A on the arm of the angle other than the one passing through point B. Join 
AB to get the coupler. Also join AO

2
 to get the input crank.

Example 16.10

Synthesize a slider-crank mechanism for its three positions 
12

60° and 
13

100° of the input crank 
and three positions x

12
2 cm and x

13
5 cm of the output slider block. The eccentricity is 2 cm. The 

slider is moving outwards.

Solution 

Refer to Fig.16.24.

Fig.16.24 Slider-crank mechanism synthesis for three input positions

1. Draw two parallel lines l
1
 and l

2
 at eccentricity, e 2 cm.

2. Select an arbitrary point O
2
 on l

1
. Measure O

2
 C

1
x

12
/2 1 cm and O

2
 C

2
x

13/2
2.5 cm to the left 

of O
2
. Draw O

2
P

1
, C

1
P

2
, C 

2
 P

3
 perpendiculars on line l

1
.

3. Draw P
1
 O

2
 P

4 12
/2 30° and P

1
O

2
 P

5 13
/2 50° in the anti-clockwise direction.

4. Produce O
2
 P

4
 and O

2
 P

5
 lines to meet the perpendiculars at C

1
 and C

2
 to locate the relative poles 

R
12

 and R
13

.

5. Join R
12

 B and R
13

 B.
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6. Draw B R
12

 M
1 12

/2 30° and B R
13

 M
2 13

/2 50° in the anti-clockwise direction. Produce 
the lines R

12
 M

1
 and R

13
 M

2
 backward to meet at A.

7. Join AB and AO
2
 to get the coupler and input crank respectively.

Example 16.11

For the four-bar linkage, the following data are given:

 
2

60°, 
4

90°

 
2

3 rad/s, 
4

2 rad/s

 
2

1 rad/s2, 
4

0

Determine the link-length ratios.

Solution 

The Freudenstein’s equation for the four-bar mechanism shown in Fig.16.25 is:

Fig.16.25 Systhesis of four-bar mechanism for Example 16.11

k
1
 cos

4
k

2 
cos

2
k

3
cos (

2 
 

4
) (1)

where k
d

a
k

d

c
k

a b c d

ac1 2 3

2 2 2 2

2
, ,

Taking the first time derivative of Eq. (1), we have

k
1
 

4
 sin 

4
k

2
 

2
 sin 

2
(

2
  

4
) sin (

2
  

4
) (2)

Taking the second time derivative of Eq. (2)

k k1 4
2

4 4 4 2 2
2

2 2 2

2 4 2 4

       

   

cos sin cos sin

( ) sin    2 4

2

2 4cos
 

(3)

Substituting the values of various terms in Eqs. (1) and (3), we get

k k k

k k

k k

1 2 3

2 3

2 3

90 60 60 90

3

2

2 3

cos cos cos( )

or 0.5 

or  
(4)
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k k

k k

1 2

1 2

2 90 3 60 3 2 60 90

2
3 3

2

1

2

4

sin sin ( ) sin( )

or

or kk k1 23 3 1  
(5)

or

 

k k1 24 90 0 90 9 60 1 60

1 0 60

( cos sin ) ( cos sin )

( ) sin (

 

90 3 2 60 90

9
1

2

3

2
1

1

2

2

2

) ( ) cos( )

( )k 1
3

2

4 5 0 866
1

2

3

2
0 376

2

2

k

k

( . . )

.  (6)

Solving Eqns. (4) to (6), we get

k k

k
d

a
a

k
d

c
c

1 3

2

2

0 738 0 678

1

0 738
1 355

1

0 376

. , .

,
.

.

,
.

22 659

23

2 2 2 2

.

k
a b c d

ac

 0.678 2 ( 1.355) ( 2.659) ( 1.355)2  b2 ( 2.659)2 +1

 b2 5.0207, b 2.24

Thus d 1.0, a 1.355, b 2.24, c 2.659.

16.10  FREUDENSTEIN’S EQUATION FOR SLIDER-CRANK  
MECHANISM FOR THREE PRECISION POINTS

The mechanism is shown in Fig.16.26. The displacement of the slider B has to be coordinated with the 
rotation of the crank OA. Let us assume that the displacement of the slider is proportional to the crank 
rotation expressed as:

 s
f
  s

i
c(

f
  

i
)

where c a constant of proportionality

 s distance of slider from the origin O

 angle of rotation of crank from the line of stroke

 i, f subscripts for initial and final values respectively.

The coordinates of points A and B are:

 x
A

l
2 
cos , y

A
l
2 
sin 

 x
B

s, y
B

e
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Fig.16.26 Deriving Freudenstein’s equation for slider-crank mechanism

Also                                     2AB ( ) (x x yB A A
2 yy

s l l e

s l s l l

B )

( cos ) ( sin )

cos cos sin

2

2
2

2
2

2
2
2 2

2 2
2 22

 

   

 

e l e

l s l e s l l e

2
2

3
2 2

2
2 2

2 2

2

2

sin

cos sin 

or s l l e s l l e2
3
2

2
2 2

2 22 2( ) cos sin  

Let k l k l k l l ee1 2 2 2 3 3
2

2
2 22 2, ,  and 

Then s2 k
1
 s cos k

2
 sin k

3
 (16.11)

Equation (16.11) is the Freudenstein’s equation for the slider-crank mechanism.

Now c
s s

s s c

f i

f i

i i

 

 ( )

The precision points according to Chebyshev are given by,




m a b
m

n
mcos , , ,

2 1

2
1 2 3

where a b ni f f i   
2 2

3, ,

The following steps are followed to determine lengths.

1. Obtain three accuracy points by using Chebyshev’s spacing, i.e., 
1
, 

2
, and 

3
.

2. Calculate values of s
1
, s

2
, and s

3
 from the following equations: s

m
  s

i
c (

m
 

i
), m 1, 2, 3.

3. Obtain three equations in k
1
, k

2
 and k

3
.

4. Solve for k
1
, k

2
 and k

3
 using Cramer’s rule.

5. Obtain the values of l
2
, l

3
 and e from the values of k

1
, k

2
 and k

3
.



1054 Theory of Machines

Example 16.12

Design a slider-crank mechanism so that displacement of the slider is proportional to the crank rota-
tion in the interval 30°    100°. Assume initial distance of the slider equal to 15 cm and final dis-
tance to be 10 cm.

Solution 

Given: s  s
i
  (   

i
)

where c constant of proportionality.

Now s s
f

10 cm when 
f

100°

and s s
i

15 cm when 
i

30°.

 s
f
   s

i
c (

f
 

i
)

c

s si i

10 15

100 30

5

70

1

14

1

14
( ) 

The Chebyshev’s precision spacing  is given by:




m a b
m

n
mcos , , ,

2 1

2
1 2 3

where

 

a

b

i f

f i

 

 




2

30 100

2
65

2

1

2
100 30 35

65 35
6

91

( )

cos 55 3

65 35 90 65

65 35
5

6
34 69

2

3

.

cos

cos .






Now

 

sm i m is

s s

1

14

15
1

14
98 3 30 10 3361 1

( )

( . ), .

 

  cm

 cm2

3

s s

s

15
1

14
65 30 12 50

15
1

14
34

2( ), .

( .. ), .69 30 14 6653s  cm

Now k
1
 s cos k

2
 sin k

3
s2

 k
1

10.336 cos 95.3° k
2
 sin 95.3° k

3
(10.336)2

  0.95474 k
1

0.99572 k
2

k
3

106.833 (1)
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 k
1

12.50 cos 65° k
2
 sin 65° k

3
(12.50)2

 5.28273 k
1

0.90631 k
2

k
3

156.25 (2)

 k
1

14.665 cos 34.69° k
2
 sin 34.69° k

3
(14.665)2

 12.0582 k
1

0.56914 k
2

k
3

215.062 (3)

Subtracting Eqs. (1) and (2) from Eq. (3), we get

 13.013 k
1
  0.4266 k

2
108.229 (4)

 6.775 k
1
  0.3372 k

2
58.812 (5)

 30.504 k
1
  k

2
253.70 (6)

 20.092 k
1
  k

2
174.41 (7)

Subtracting Eq. (7) from Eq. (6), we get

 10.412 k
1

79.29

 k
1

7.615

Then k
2

21.4

 k
3

135.418

Now

 

k l l

l e e

l

1 2 2

2

2
7 615

2
3 808

2
21 4

7 615
2 81

,
.

.

,
.

.
.

 cm

 cm2

3

k

k 33
2

3
2 2

3
2 2 2

3
2

3

135 418 3 808 2 81

157 815

12 562

l e

l

l

l

. ( . ) ( . )

.

.   cm

Thus l
2

3.808 cm, l
3

12.562 cm, e 2.81 cm

16.11 LEAST SQUARE TECHNIQUE
A four-link mechanism can be designed precisely up to five positions of the input and the output links, 
provided  and  are measured from some arbitrary reference. In such cases, the synthesis equations 
become non-linear and cannot be solved by the Cramer’s rule. It is also possible to design a mecha-
nism for more than five positions which gives least deviation from the specified positions and provides 
the average performance. The least-square technique is useful to synthesize such a mechanism.

Consider the Freudenstein’s equation,

k
1
 cos 

i
k

2
 cos 

i
k

3
  cos (

i
  

i
) 0

Summing up for n values of  and  and defining,

S k k ki
i

n

i i i[ cos cos cos ( )]1
1

2 3
2   

 
 (16.12)

For S to be minimum, the conditions are:
S

k

S

k

S

k1 2 3

0 0 0,   and  
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which gives, [ cos cos cos ( )] cosk k ki i i i i
i

n

1 2 3
1

0    

or k k ki i i i i i i1
2

2 3cos cos cos cos cos cos        (1)

Similarly,

k k ki i i i i i i1 2
2

3cos cos cos cos cos cos      
  (2)

and k k ki i i i1 2 3 1cos cos cos     (3)

Eqs. (1) to (3) are three simultaneous linear, non-homogeneous equations in three unknowns k
1
, 

k
2
 and k

3
. These can be solved by using the Cramer’s rule. These equations can be written in matrix 

form as:

cos cos cos cos

cos cos cos cos

cos cos

2

2

   

   


i i i i

i i i i

i 

  

 

i

i i i

i i

k

k

k1

1

2

3

cos cos

cos cos

cos



 
i

i i

Example 16.13

A 4-bar mechanism is required such that the input and out angles are coordinated as given below:

Input Crank angle 30° 50° 80°

Output follower angle  0° 30° 50°

Synthesize the four-bar mechanism.

Solution  

The Freudenstein’s equation for displacement of a four-bar mechanism is,

k
i
 cos 

i
k

2
 cos 

i
k

3
cos (

i
  

i
)

Position
i
 deg cos 

i i
, deg cos 

i i
 

i
, deg cos (

i
  

i
)

1 30 0.866 0 1.000 30 0.866

2 50 0.643 30 0.866 20 0.940

3 80 0.174 60 0.500 20 0.940

1 000 1

2

3

. 0.866 1

0.866 0.643 1

0.500 0.714 1

k

k

k

0 866

0 940

0 940

.

.

.

Solving by Cramer’s rule,

1 000 0 866 1

0 866 0 643 1

0 500 0 174 1

0 01877

. .

. .

. .

.
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1

2

0 866 0 866 1

0 940 0 643 1

0 940 0 714 1

0 0347

1

. .

. .

. .

.

.. .

. .

. .

.

.

000 0 866 1

0 866 0 940 1

0 500 0 940 1

0 02708

1 0

3

000 0 866 0 866

0 866 0 643 0 940

0 500 0 174 0 940

0 0

. .

. . .

. . .

. 005

0 0347

0 01877
1 8487

0 02708

0 01877
1

1
1

2
2

k

k

.

.
.

.

.
..

.

.
.

,
.

.

4427

0 005

0 01877
0 2664

1

1 8487
0 541

3
3

1

k

k
d

a
a uniits for  unit

  units

d

k
d

c
c

k
a b c

1

1

1 4427
0 6932

3

2 2

,
.

.

22 2

2 2 2

2

2

0 2664
0 541 0 693 1

2 0 541 0 693

1 573

d

ac

b

b

.
( . ) ( . )

. .

. 22

1 254b .  units

The lengths of various links are:

a 0.541 units, b 1.254 units, c 0.693 units, d 1 unit.

The mechanism is shown in Fig.16.27.

Fig.16.27 Synthesis of four-bar mechanism for Example 16.13
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Example 16.14

Design a slider-crank mechanism so that the displacement of the slider is proportional to the square of 
the crank rotation in the interval 45°    135°. Use three point Chebyshev spacing.

Solution 

Consider the slider-crank mechanism as shown in Fig.16.28.

Fig.16.28 Synthesis of slider-crank mechanism using three Chebyshev spacing

Let l
2

length of crank

 l
3

length of connecting rod

 s distance of slider from the crank shaft

 e eccentricity of slider from crank shaft.

Then x l y l

x s y e
A A

B B

2 2cos sin

 

 ,

,

 (1)

Now                      AB x x y y

s l

B A A B
2 2 2

2
2

( )

( cos ) ( sin )

cos cos sin sin

l e

s l s l l e l e

l

2
2

2
2
2 2

2 2
2 2 2

2

3

2 2



    
22 2

2
2 2

2 22 2s l e s l l ecos sin  

or                               

Let                  

s l l e s l l e2
3
2

2
2 2

2 22 2cos sin 

           and A l A l e A l l e1 2 2 2 3 2
2

3
2 22 2, ,  (2)

Then A
1
 s cos A

2
 sin   A

3
s2 (3)

The displacement Eq. (3) has three variables A
1
, A

2
, and A

3
.

Let s
i

10 cm and s
f

3 cm
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The precision points obtained are:

Precision point s, cm , deg

1 9.97 51.03

2 8.25 90

3 3.91 128.97

Substituting in Eq. (3), we get

 A
1

9.97 cos 51.03° A
2
 sin 51.03°  A

3
(9.97)2

or 6.27 A
1

0.78 A
2
  A

3
99.4 (4)

 A
1

8.25 cos 90° A
2
 sin 90°  A

3
(8.25)2

or A
2
  A

3
68.06 (5)

 A
1

3.91 cos 128.97° A
2
 sin 128.97°  A

3
(3.91)2

 2.459 A
1

0.78 A
2
  A

3
15.29 (6)

We have,

6 27 0 78 1

0 1 1

2 459 0 78 1

99 4

6
1

2

3

. .

. .

.A

A

A

88 06

15 29

.

.

[B] {A} C} 

B

A

1 92

99 4 0 78 1

68 06 1 1

15 29 0 78 1

1 92

18 5

1 92
91

.

. .

.

. .

.

.

.
.664

6 27 99 4 1

0 68 06 1

2 459 15 29 1

1 92

253 8

1 92
1322A

. .

.

. .

.

.

.
..

. . .

.

. . .

.

.

.

2

6 27 0 78 99 4

0 1 68 06

2 459 0 78 15 29

1 92

123 1

1 923A 664 11

2
4 82

2

132 2

2 4 82
13 72

1 2

2

3 2
2

3

.

.
.

.
.l

A
e

A

l

A l l

 cm,  cm

22 2
3

2
2

2 2
3

2 2

3

4 82 13 7 64 11 146 81

12 12

e l l e A

l

, ( . ) ( . ) . .

.  cmm
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where subscripts i and f represent the initial and final values.
Given: s

f
  s

i
c (

f
  

i
)2

or c
s sf i

f i( ) ( ) ( )  2 2 2

3 10

135 45

7

90

7

8100

where c constant of proportionality
Using Chebyshev’s equation for precision spacing, we have

x a b
m

n
mm cos

( )
, , ,

2 1

2
1 2 3



where, a
x x

b
x x

ni f f i

2 2
3, , ,   number of precision points.

Here x
i i

, the angular positions of crank.

a

b

i f

f i

 

 



2

45 135

2
90

2

135 45

2
45

90 45
2 1 1

1 cos
 




2 3
90 45

6
51 03

90 45
2 2 1

6
902

cos .

cos 45
2

90

90 45
2 3 1

6
90 45

5

6
128 973

cos

cos cos .




 

The given relationship for s and  is:

s s c

s

s

s

i i( )

( . )

.

  2

1
2

1

2

10
7

8100
51 03 45

9 97

10

 cm

7

8100
90 45

8 25

10
7

8100
128 97 4

2

2

3

( )

.

( .

s

s

 cm

55

3 91

2

3

)

.s cm

Example 16.15

Design a four-bar mechanism to coordinate the input and output angles as follows:

Input angles 15° 30° 45°

Output angles 30° 40° 55°
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Solution 

Freudenstein’s equation for a four-bar chain is (Fig.16.29):

Fig.16.29 Four-bar chain

k
1
 cos k

2
 cos k

3
cos (   )

where k
d

a
k

d

c
k

a b c d

ac1 2 3

2 2 2 2

2
,  and 

, deg cos , deg cos  , deg cos (   )

30 0.866 15 0.966 15 0.966

40 0.766 30 0.866 10 0.985

55 0.573 45 0.707 10 0.985

0 866 0 966 1

0 766 0 866 1

0 573 0 703 1

1

2

3

. .

. .

. .

k

k

k

0 966

0 985

0 985

.

.

.

[ ]A k B

A

A

0 866 0 966 1

0 766 0 866 1

0 573 0 703 1

3 10

0 966 0 966 1

0

3

1

. .

. .

. .

. .

.. .

. .

.

. .

. .

985 0 866 1

0 985 0 703 1

3 097 10

0 866 0 966 1

0 766 0 985

3

2A 11

0 573 0 985 1

3 667 10

0 866 0 966 0 966

0 766 0 866 0 985

0

3

3

. .

.

. . .

. . .A

.. . .

.

573 0 703 0 985

3 758 10 3



1062 Theory of Machines

k
A

A
k k1

1 3 097

3
1 032

3 667

3
1 222

3 758

3
1 2

.
. ,

.
. ,

.
.  2 3 553

1
1

1 032
0 9691

1

2

k
d

a
d a

d

k

k
d

c
c

,
.

.

,

 Let  unit,  unit

 
dd

k

k
a b c d

ac

2

3

2 2 2 2

1

1 222
0 818

2
0 969 0

.
.

, .

 unit

 1.253 2 .. ( . ) ( . )

. , .

818 0 969 0 818 1

2 0 6217 0 788

2 2 2b

b b  unit

The mechanism is shown in Fig.16.30.

Fig.16.30 Synthesis of four-bar mechanism for Example 16.15

Example 16.16

Synthesize a four-bar function generator to solve the equation: y 2x2 1, 1  x   2. Use three preci-
sion points of Chebyshev spacing. Take 60°, 90°, 

o
30° and 

o
60°, where ,  are 

ranges of input and output link rotations and 
o
, 

o
 are initial angular positions of input and output 

links respectively.

Solution  

Chebyshev’s precision points are given by,

 

x a b
m

n
m

n x x

a
x x

m

i f

i f

 

 

cos
( )

, , ,

, ,

2 1

2
1 2 3

3 1 2

2

1



22

2
1 5

2

2 1

2
0 5

1 5 0 5
2 1

6

. , .

. . cos
( )

 b
x x

x
m

f i

i
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x

x

x

1

2

3

1 5 0 5
6

1 933

1 5 0 5
2

1 5

1 5 0 5
5

2
1

. . cos .

. . cos .

. . cos






..067

Now y 2x2  1

 y
1

2 (1.933)2 1 6.473

 y
2

2 (1.5)2 1 3.5

 y
3

2 (1.067)2 1 1.277

Scale factors are:

r
x x

r
y y

x
f i

x
f i





60

2 1
60

Now

 

 

 

y

y

r

r
x x

i

f

y

x
m i

m i

i

2 1 1 1

2 2 1 7

90

7 1

90

6
15

2

2

0

 
 , 30 1

30

1 933 1
60 85 98

30

1 5 1
60 60

1
1

2
2

,

.
, .

.
,

 

 

xi










 
 

3
3

0

30

1 067 1
60 34 02

60 34 02

.
, .

, , .r
y y

yy
m i

m i

i i









1

2
2

3

60

6 473 1
15 142 1

60

3 5 1
15 97 5

60

1 277

.
, .

.
, .

.

1

1
15 64 1553, .
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Precision  
point

x y , deg cos  deg cos (  ) 
deg

cos (  )

1 1.933 6.473 142.1 0.789 85.98 0.070 56.12 0.557

2 1.5 3.5 97.5 0.130 60 0.5 37.5 0.793

3 1.067 1.277 64.155 0.436 34.02 0.829 30.135 0.865

The Freudenstein’s equations become:

0 789 0 070 1

0 130 0 5 1

0 436 0 829 1

1

2

3

. .

. .

. .

    

     

k

k

k

0 557

0 793

0 865

0 02657

.

.

.

.

A k B

A

A k
A

A

A

1 1
1

2

0 557 0 070 1

0 793 0 5 1

0 865 0 829 1

0 04668 1 757

. .

. .

. .

. , .

0 789 0 557 1

0 130 0 793 1

0 436 0 865 1

0 57183 212
2

. .

. .

. .

. , .

  

k
A

A
5522

0 789 0 070 0 557

0 130 0 5 0 793

0 436 0 865 1

0 54373A

. . .

. . .

. .

.

  

77 20 465

1

1 757
0 569

3
3

1
1

2
2

, .

,
.

.

,

 k
A

A

k
d

a
a

d

k

k
d

c
c

d

k

11

21 522
0 046

2
20 465 2 0 569 0 0463

2 2 2 2

.
.

, . ( . ) ( .k
a b c d

ac
)) ( . ) ( . )

. , .

. , .

2 2 2 2

2

0 569 0 046 1

0 25457 0 504

0 569 0

b

b b

a b 5504 0 046 1, . ,c d

The sign indicates the reversed direction of length.

Example 16.17

Synthesize graphically, a four-bar mechanism for three positions of input and output cranks with 

12
35°, 

23
30°, 

12
40°, and 

23
60°, where 

ij
 and 

ij
 are angular distances between position 

i and j of input and output links respectively.
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Solution 

Given:     
 

12 23 12 23

13 13

35 30 40 60

35 30 65 100

, ; ,

 and 

  

  

12 12 12

13 13 13

1

2

1

2
35 40 2 5

1

2

1

2
65 100

( ) ( ) .

( ) ( ) 17 5.

Angle subtended by the coupler at the relative pole angle subtended by the fixed link at the rela-
tive pole.

The four-bar mechanism with three positions may be synthesized as explained below (Fig.16.31):

Fig.16.31 Graphical synthesis of four-bar mechanism by three position method

1. Select relative poles R
12

 and R
13

 at positions arbitrarily chosen. Draw 
12

2.5° at R
12

 and  
13

17.5° at R
13

.

2. Let x
2
 and y

2
 lines intersect at A and x

1
 and y

1
 lines at B. Join AB to get the coupler.

3. Select the fixed point O
2
 of the fixed link O

2
O

4
 at an arbitrary position. Join O

2
 R

12
 and O

2
 R

13
.

4. Draw O
2
R

12
Z

1 12
2.5° and O

2
R

13
Z

2 13
17.5°. Let R

12
Z

1
 and R

13
Z

2
 lines intersect  

at O
4
.

5. Join O
2
A, O

2
O

4
 and O

4
B. Then O

2
ABO

4
 is the required four-bar mechanism shown in Fig.16.31.

b x x

x
m

x

f i

m

1

2

1

2
90 0 45

45 45
2 1

6

45 451

( ) ( )

cos

c



oos . , .

6

83 97 0 9941y



1066 Theory of Machines

x y

x y

2 2

3 3

45 45
2

45 0 707

45 45
5

6
6 03 0 105

cos , .

cos . , .





Given 120°, 60°

Scale factors are: 

r
x x

y y

r
y y

x

f i

i f

y

f





120

90 0

120

90

4

3

0 0 90 1sin , sin

ii

60

1 0
60

 Now

 

r
x xx

m i

m i

 








1

1

2
2

105

83 97 0

4

3
216 96

105

45 0

4

3
16

.
.

, 55

105

6 03 0

4

3
113 04

60

0 994 0
60

3
3

1




 



.
, .

.
,

r
y yy

m i

m i






1 119 64

60

0 707 0
60 102 422

2

.

.
, .

Example 16.18

Synthesize a four-bar mechanism to generate a function y sin x for 0  x  90°. The range of the 
output crank may be chosen as 60° while that of input crank be 120°. Assume three precision point 
obtained form Chebyshev spacing. Assume fixed link to be 50 mm long and 

1
105° and 

1
60°. 

Where 
d
 and 

d
 are the angles made by input link at j th position.

Solution 

Refer to Fig.16.32.

y sin x for 0  x  90°

x
i

0°, x
f

90°
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Cheybyshev’s precision points are given by:

x a b
m

n

a x x

m

i f

cos

( ) ( )

.

2 1

2

1

2

1

2
0 90 45

60

0 105
3




0

60 6 633, .

Precision 
point

x deg y  deg cos  deg cos  deg cos( )

1 83.97 0.994 119.64 0.494 216.96 0.8 197.32 0.955

2 45 0.707 102.42 0.215 165 0.966 62.58 0.460

3 6.03 0.105 6.63 0.993 113.04 0.391 106.41 0.282

The Freudenstein’s equation is

 
where

 

     

 

k k k

k
d

a
k

d

c
k

a b c

1 2 3

1 2 3

2 2 2

cos cos cos ( )

,

   

and
dd

ac

2

2

Given d
1

50 mm

Substituting the values, we have

0 494 0 8 1

0 215 0 966 1

0 993 0 391 1

1

2

3

. .

. .

. .

k

k

k

0 955

0 460

0 282

0 36095 1

.

.

.

[ ]

. ,

  

A k B

A A

0 955 0 8 1

0 460 0 966 1

0 282 0 391 1

0 69045

. .

. .

. .

.

Fig.16.32 Four-bar mechanism configuration
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A2

0 494 0 955 1

0 215 0 460 1

0 993 0 282 1

1 9163

. .

. .

. .

. 44

0 494 0 8 0 955

0 215 0 966 0 460

0 993 0 391 0 282
3A

. . .

. . .

. . .

1 5367

1 913 5 309 4 2571
1

2
2

3
3

.

. , . , .k
A

A
k

A

A
k

A

A
  44

50

1 913
26 137

50

5 309
9 4

1
1

2
2

k
d

a
a

d

k

k
d

c
c

d

k

,
.

.

,
.

.

 mm

118

2

2 2 2 2

 mm

3k
a b c d

ac

 4.2574 2 26.137    9.418 (26.137)2  b2  (9.418)2  502

 b2 5367.82, b 73.265 mm

Hence a 26.137 mm, b 73.265 mm, c 9.418 mm, and d 50 mm

Example 16.19

Synthesize a slider-crank mechanism with an eccentricity of 9 mm for the two input positions of input 
link: 

12
60° and output displacement of slider is 16 mm.

Solution 

Given: e 9 mm, 
12

60°, x
12

16 mm.

Fig.16.33 Graphical synthesis of slider-crank mechanism for Example 16.19

1. Draw two parallel lines l
1
 and l

2
 at an eccentricity, e 9 mm (Fig.16.33).

2. Local point O
2
 at a convenient position on line l

1
. Draw PO P1 2 12 3

1

2
0 opposite to the 

direction of crank rotation, i.e. ccw.
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3. Cut off O C x2 8
1

2 12  mm on line l
1
 opposite to the direction of displacement of slider. Erect 

perpendicular P
2
C at point C.

4. Extend lines PO
2
 and P

2
C to intersect at point R

12
, to give the relative pole.

5. Construct an angle equal to 
1

2
012 3  at R

12
. One arm of this angle intersect line l

2
 at B to locate 

the slider B.

6. Select point A arbitrarily and conveniently on the other arm of the above angle.

7. Join AB and AO
2
 to give the connecting rod and crank respectively.

Example 16.20

For the four-bar linkage, the following data are given (Fig.16.34):

2
60°; 

4
90°

2
3 rad/sec; 

4
2 rad/sec

2
 1 rad/sec2; 

4
0

Determine the length of various links.

Fig.16.34 Four-bar mechanism configuration

Solution 

The Freudenstein’s equation for the displacement of a four-bar linkage is given by:

k
1
 cos 

4
k

2
 cos 

2
k

3
cos (

2
  

4
)  (1) 

where k
d

a
k

d

c
k

a b c d

ac1 2 3

2 2 2

2
, ,

Taking first time derivative of Eq. (1), we have

k
1
 

4
 sin 

4
k

2
 

2
 sin 

2
(

2
  

4
) sin (

2
  

4
) (2)

Taking the second time derivative of Eq. (2), we have

k k1 4
2

4 4 4 2 2
2

2 2 2

2 4 2 4

( cos sin ) ( cos sin )

( ) sin (

       

    )) ( ) cos ( )   2 4
2

2 4  (3)
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Substiuting the values of various terms in Eqs. (1) to (3), we get

k k k

k k

k k

1 2 3

2 3

2 3

90 60 60 90

0 5
3

2
2

cos cos cos ( )

.or   

or  11 732.  (4)

k k

k k

1 2

1 2

2 90 3 60 3 1 60 90

2
3 3

2

1

2

sin sin ( ) sin ( )

or

or 44k k1 25 196 1.  (5)

k k1 24 90 0 90 9 60 1 60

1 0 60 9

( cos sin ) ( cos sin )

( ) sin ( 00 3 2 60 90

9
1

2
1

3

2

1

2
1

3

2

3 634

2

2

2

) ( ) cos ( )

.

k

k 11 366

0 3762

.

.k
 (6)

Substituting the value of k
2 
in Eqs. (5) and (4) gives,

k
1

0.738, k
3

0.678

Now k
d

a
a

d

k

k
d

c
c

d

k

ac

1
1

2
2

1

0 738
1 355

1

0 376
2 659

2

,
.

.

,
.

.

 kk a b c d

b

3
2 2 2 2

2 22 1 355 2 659 0 678 1 355 2( . ) ( . ) . ( . ) ( .6659 12)

b2 5.0207, b 2.24

Thus a 1.355, b 2.24, c 2.659, d 1.0

Example 16.21

Design graphically a four-bar mechanism such that 
12

120°, 
13

160° and 
12

70°, 
13

 110° 
Input moves anti-clockwise and output moves in clockwise direction.

Solution 

Given: 
12

 120°, 
12

70°; 
13

160°, 
13

110°

Refer to Fig.16.35.

  

  

12 12 12

13 13 13

1

2

1

2
120 70 25

1

2

1

2
160 11

( ) ( )

( ) ( 00 25)
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Fig.16.35 Graphical synthesis of four-bar mechanism for Example 16.21

1. Select relative poles R
12

 and R
13

 at arbitrarily chosen positions. Draw 
12

x
1
R

12
x

2
25° at R

12
 

and 
13

y
1
R

13  
y

2
25° at R

13
.

2. Let x
2

and y
2
 lines intersect at point A and x

1
 and y

1
 lines at point B. Join AB. Then AB is the  

coupler.

3. Select fixed point O
2
 of fixed link O

2
O

4
 arbitrarily at a convenient place. Join R

12
 with O

2
.

4. Draw O
2
R

12
Z

1 12
25°.

5. Join R
13

 with O
2
 and draw O

2
R

13
Z

2 13
25°. Let z

1
 and z

2
 lines intersect at O

4
. Join O

2
 with 

O
4
. Then O

2
O

4
 is the fixed link.

6. Join O
2
with A and O

4
 with B. Then O

2
ABO

4
 is the desired four-bar linkage.

Summary for Quick Revision

1 Gruebler’s criterion for degrees of freedom of planar mechanisms

F 3 (n  1)  2p  h

where p number of simple joints or lower pairs having only one degree of freedom

  (1/2) (2n
2

3n
3

... in
i 
)
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 n
2
, n

3
, ... and so on are binary, ternary and so on links.

 h number of higher pairs having two degrees of freedom

 n total number of links.

  n
2

n
3

...

For h 0 and F 1

 n
2

4 [n
4

… (i  3) n
i
]

2 Grashof’s law states that for a  four-bar mechanism, the sum of the lengths of the largest and 
shortest links should be less than equal to the sum of the lengths of the other two links.

3 Number synthesis implies to determine the number of degrees of freedom of a mechanism. It 
involves the determination of number of links together with number of type of joints required for 
a specified motion.

4 Number of degrees of freedom is equal to the number of independent coordinates required to 
specify its configuration in order to define its motion.

5 Dimensional synthesis deals with the determination of the significant dimensions of the mecha-
nism to satisfy the specified motion characteristics. The significant dimensions could be link 
lengths, angles between the links, cam contour, etc.

6 Type synthesis refers to kind of mechanism selected such as gear combination, a belt-pulley  
combination or a cam mechanism.

7 Transmission angle is the interior angle between the coupler and output link. It is maximum when 
input angle is 180° and minimum when input angle is zero.

8 The pole of the coupler link of a four-bar mechanism is its centre of rotation with respect to the 
fixed link.

9 The relative pole of the coupler link of a four-bar mechanism is its center of rotation relative to 
other moving links.

10 Synthesis of  four-bar mechanism:
(a) Two-position synthesis: 

12
 and 

12
 are known.

Angle subtended by coupler at R
12

,
 12

(1/2)(
12

  
12

)
(b) Three-position synthesis: 

1
, 

2
, 

3
 and 

1
, 

2
, 

3
 are known.

12 2
  

1
; 

13 3
  

1
 and 

12 2
  

1
, 

13 3
  

1

Then 
12

(1/2) (
12

  
12

), 
13

(1/2) (
13

  
13

)

11 Synthesis of  slider-crank mechanism:
(a) Two-position synthesis

12
 and x

12
 are known.

(b) Three-position synthesis

12
, 

13
 and x

12
, x

13
 are known.

12 In function generation, the motion of input link is correlated to the motion of output link.

13 In path generation, a point on the coupler link is constrained to describe a path with reference to 
a fixed frame.
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14 Scale factors are:
r

x
(   

i
)/(x  x

i
) (

f
  

i
)/(x

f
  x

i
)

r
y

(   
i
)/(y  y

i
) (

f
  

i
)/(y

f
  y

i
)

15 Chebyshev’s spacing for precision points:
x

m
a b cos [(2m  1) /(2n)], m 1, 2, 3

where a (x
i

x
f
)/2, b (x

f 
 x

i
) /2 and n number of precision points.

16 Freudenstein’s equation for four-bar mechanism having three precision points:
k

1
cos k

2
cos k

3
 cos(   )

where k
1

d/a, k
2

d/c, k
3

(a2  b2 c2 d2)/(2ac)

17 Freudenstein’s equation for single-slider crank mechanism having three precision points:
s2  k

1
s cos k

2 
sin k

3

where k
1
  2

2
, k

2
 2

2
e, k

3
  

3
2  

2
2  e2

Multiple Choice Questions

1 Transmission angle is the angle between the
(a) Coupler and driven link (b) Coupler and driving link
(c) Driving link and fixed link (d) Driven link and fixed link.

2 Transmission angle is maximum when input angle is
(a) 0° (b) 90° (c) 180° (d) 45°

3 Transmission angle is minimum when input angle is
(a) 0° (b) 45° (c) 90° (d) 180°

4 The minimum number of links in a kinematic chain are
(a) 3 (b) 4 (c) 5 (d) 6

5 Relative pole of a moving link is its centre of rotation relative to a 
(a) Fixed link (b) moving link (c) any link

6 Pole of a moving link is its centre of rotation relative to a
(a) Fixed link (b) moving link (c) any link

7 In function generation, a mechanism is designed to correlate the motion of:
(a) Input and output links (b) Input link and coupler
(c) Output link and coupler (d) Coupler to fixed link.

8 Freudenstein’s equation for a four-bar linkage is:
(a) k

1
 cos k

2
 cos k

3 
 cos (   ) 0

(b) k
1
 cos k

2
 cos k

3
cos (   ) 0

(c) k
1
 cos k

2
 cos k

3 
 cos (   ) 1

(d) k
1
 cos k

2
 cos k

3
cos (   ) 1

Answers

1. (a) 2. (c) 3. (a) 4. (b) 5. (b) 6. (a) 7. (a) 8. (a)

Review Questions

1 Differentiate between a pole and a relative pole of a coupler link of four-bar mechanism.

2 Define kinematic synthesis.
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3 What do you understand by movability of a mechanism?

4 State Grashof’s law.

5 When do we get double crank and crank-rocker mechanism?

6 What is a class-II double-rocker mechanism?

7 What are the properties of pole points?

8 What do you mean by function generation?

9 What are Chebyshev’s spacing for precision points?

10 Write the Freudenstein’s equation of three precision points of a four-bar chain.

Exercises

16.1 Determine the mobility of the linkages shown in Fig.16.36(a) to (c).

Fig.16.36 Diagram for Exercise 16.1

[Ans. 3, 1, 2]

16.2 Determine the degrees of freedom of the linkage shown in Fig.16.37 (a)
[Ans. 3, 1, 1]

16.3 Fig.16.38 shows a plane mechanism with link lengths given in some unit. If slider A is the 
driver, will link CG revolve or oscillate? Justify your answer.

[Ans. revolve]
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Fig.16.37 Diagram for Exercise 16.2

Fig.16.38 Diagram for Exercise 16.3

16.4 Synthesize a four-bar mechanism so that 
12

45° and 
12

55°. Both input and output cranks 
should move in the ccw direction.

16.5 Synthesis a four-bar linkage that will, in one of its positions, satisfy the following values for the 
angular velocities and accelerations:

y x1.2  for  1  x  5
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 using Chebyshev’s spacing for three precision points. Take 
o

30°, 
o

60° and 90° 
and a 10 cm.

[Ans. a 10 cm, b 18.85 cm, c 9.85 cm, d  2.69 cm]

16.6 synthesize a four-bar mechanism to generate a function y sin x for 0°  x  90°. The range 
of the output crank may be chosen as 60° while that of input crank be 120°. Assume three 
precision points which are to be from Chebyshev’s spacing. Length of fixed link 52.5 mm, 

1
105° and 

1
66°.

16.7 Synthesize a four-bar linkage to generate y log
10

 x in the interval 1  x  10. The input crank 
length is to be 5 cm. The input crank is to rotate from 45° to 105° while the output crank moves 
from 135° to 225°. Use three accuracy points with Chebyshev’s spacing.

[Ans. a 5.9 cm, b 22.11 cm, c 5 cm, d 10.05 cm]

16.8 A four-bar mechanism is required such that the input and output angles are coordinated as given 
in the following table:

Input crank angle 30° 50° 80°

Output crank angle     0° 30° 60°

Synthesize the four-bar mechanism.
[Ans. a 1, b 2.3039, c 1.2817, d 1.8321]

16.9 Synthesize a four-bar mechanism using Freudenstein’s equation to generate the function y x1.5 
for the interval 1  x  4. The input crank is to start from 

2
30° and is to have a range of 90°. 

The output crank angle is to vary from 90°. Take three accuracy points.
[Ans. a 11.16, b 7.76, c 7.82, d 1.0]

16.10 Design a four-bar mechanism such that

12
120°, 

13
170° and 

12
70°, 

13
100°

Input moves anti-clockwise and output also moves anti-clockwise.

16.11 Synthesize a  slider-crank mechanism with eccentricity, e 0.9 cm for the two input positions 
of input link 

12
56° and output displacement of slider x

12
1.6 cm.

16.12 Synthesize a  slider-crank mechanism with eccentricity, e 0.9 cm for the three input positions 

12
40°, 

13
80° and output displacement of slider x

12
1.8 cm and x

13
4.8 cm.

16.13 Synthesize a four-bar linkage using Freudenstein’s equation to satisfy the following specifica-
tions.

2
60°, 

4
90°

2
5 rad/s, 

4
3 rad/s

2
2 rad/s2, 

4
7 rad/s2

16.14 Synthesize a four-bar mechanism such that 
12

50°, 
23

40° and 
12

80°, 
23

50°.
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 17.4  Basic Elements of Vibrating 

System 1079
 17.5 Degrees of Freedom 1080
 17.6 Simple Harmonic Motion 1080
 17.7 Free Longitudinal Vibrations 1080
 17.7.1 Solution Methods 1080
 17.7.2  Single Degree of Freedom 

System 1083
 17.7.3 Effect of the Spring Mass 1084
 17.7.4  Equivalent Stiffness of 

Springs 1086
 17.7.5 Damped Free Vibrations 1092
 17.7.6 Logarithmic Decrement 1096
 17.7.7  Undamped Forced 

Vibrations 1101
 17.7.8  Damped Forced 

Vibrations 1102
 17.7.9 Rotating Unbalance 1104
 17.7.10 Reciprocating Unbalance 1106
 17.7.11 Vibration Isolation 1106

 17.7.12 Support Motion 1108
 17.8 Transverse Vibrations 1111
 17.8.1  Beam Carrying Single 

Concentrated Load 1111
 17.8.2  Beam Carrying Uniformly 

Distributed Load 1112
 17.8.3  Shaft Carrying Several 

Loads 1112
 17.9 Critical Speed 1114

 17.9.1  Shaft Having a Single 
Disc 1114

 17.10 Torsional Vibrations 1119
 17.10.1 Undamped Free Vibration 1119
 17.10.2 Damped Free Vibration 1120
 17.10.3 Damped Forced Vibration 1121
 17.10.4 Stepped Shaft 1121
 17.10.5 Fixed Shaft with a Rotor 1122
 17.10.6  Two-Degree of Freedom 

System 1122
 17.10.7 Two Rotor System 1124
 17.10.8 Three Rotor System 1124

 17.11 Geared System 1125

17.1 INTRODUCTION
When a body is displaced from its equilibrium position by the application of an external force and then 
released, it commences to perform to-and-fro motion. This to-and-fro motion is called vibration.

The mechanism of vibration may be explained as follows:

Ch
ap

te
r 

Ou
tli

ne
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Work is done by the external forces in producing the initial displacement against the internal 
elastic forces which resist deformation. This work is stored up as elastic or strain energy in the 
body. When the external force is removed, the internal elastic forces tend to restore the body to 
its equilibrium position. Neglecting all resistances offered to the motion of the vibrating body, the 
whole of elastic or strain energy is converted into kinetic energy at its original equilibrium posi-
tion. As a result, the motion of the body continues until the whole of the kinetic energy is absorbed 
in doing work against the internal elastic forces and the energy in the system is once more strain 
energy. Again the body begins to return to the equilibrium position and the vibration is repeated 
indefinitely.

17.2 DEFINITIONS
Free (or natural) vibrations: A vibration in which after the initial displacement, no external 
forces act and the motion is maintained by the internal elastic forces, is termed as free or natural 
vibration.

Damped vibrations: In practice the energy possessed by a system is gradually dissipated in overcom-
ing internal and external resistances to the motion, and the body finally comes to rest in its original 
equilibrium position. Such a vibration is said to be damped.

Forced vibration: These type of vibrations are caused when a periodic disturbing force is continuously 
applied to the body. The vibrations then has the same frequency as the applied force.

Periodic motion: It is a motion which repeats itself after equal intervals of time.

Time period: It is the time taken to complete one cycle.

Frequency: Number of cycles per unit time.

Amplitude: The maximum displacement of a vibrating body from the equilibrium position.

Natural frequency: It is the frequency of free vibrations of a body vibrating of its own without the help 
of an external agency.

Fundamental (or Principal) modes of vibration: It is the mode of vibration having the lowest natural 
frequency.

Degrees of freedom: The minimum number of independent coordinates required to specify the motion 
of a system.

Damping: It is the resistance to the motion of a vibrating body.

Phase difference: It is the angle by which one vibrating system is ahead or behind the other vibrating 
system.

Resonance: When the frequency of external excitation is equal to the natural frequency of a vibrating 
body.

Mechanical system: A system consisting of a mass, spring and a damper.

Discrete (or lumped) system: A system with finite number of degrees of freedom.

17.3 TYPES OF FREE VIBRATIONS
Consider the system shown in Fig.17.1, in which a rod, assumed to be weightless and fixed at one 
end, carries a heavy disc at the free end. This system may be made to vibrate in one of the three 
ways:
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1. Longitudinal vibrations
 If the rod is stretched and compressed so that all particles of the disc vibrate along straight paths 

parallel to the axis of the rod, then it is termed longitudinal vibrations, as shown in Fig.17.1(a).

2. Transverse vibrations
 If all particles of the disc vibrate nearly along straight paths perpendicular to the axis of the rod so 

that the rod is bent and subjected alternately to tensile and compressive stresses, then it is termed 
transverse vibrations as shown in Fig.17.1(b).

3. Torsional vibrations
 When the rod is twisted and untwisted alternately so that torsional shear stresses are induced, the 

vibrations are termed as torsional. All particles of the disc vibrate along circular arcs whose centres 
lie on the axis of the rod, as shown in Fig.17.1(c).

Rod

Disc

(a) Longitudinal
vibrations

(b) Transverse
vibrations

(c) Torsional
vibrations

Fig.17.1 Types of free vibrations

17.4 BASIC ELEMENTS OF VIBRATING SYSTEM
The basic elements of an idealized mathematical model for vibrating system are:

1. Inertial elements: These are represented by lumped masses (m) for rectilinear motion and lumped 
moment of inertia (I or J) for angular motion.

2. Restoring elements: These elements are represented by massless linear (k) or torsional (k
t
) springs 

for rectilinear and torsional motions respectively.

3. Damping elements: These are represented by massless dampers for energy dissipation. The vibration elem-
ents are shown in Fig.17.2. They are represented by c for rectilinear motion and c

t
 for torsional motion.

k c

m

(a) Rectilinear elements
x

kt

ct

I or J

(b) Torsional elements

Fig.17.2 Elements of a vibrating system
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17.5 DEGREES OF FREEDOM
The number of independent coordinates required to describe the motion of a vibratory system is known as its 
degrees of freedom. A spring-mass system (Fig.17.3(a)) or a simple pendulum oscillating in a plane (Fig.17.3(b)) 
are the examples of single degree of freedom systems. A two springs-two mass system (Fig.17.3(c)) and a 
double pendulum (Fig.17.3(d)) represent two degree of freedom  systems. A continuous system in the form of 
a vibrating beam held between two supports (Fig.17.3(e)) represent an infinite number of degrees.

(a) (c)

m
1

1

2 m2

(d) (e)

(b)

m

k

m

x

k1

k2
x1

x2

m1

m2

Fig.17.3 Degrees of freedom

17.6 SIMPLE HARMONIC MOTION
When the acceleration of a body is directly proportional to the displacement from the mean position 
and is always directed towards the mean position, then the motion is said to be simple harmonic. A 
simple harmonic motion, which is periodic in nature, may be represented by:

x  A sin t

Velocity,
  

v x
x

t
A tor

d

d
cos

Acceleration,
  

a
x

t
x A t x

d

d
or

2

2

2 2  sin

 a   x  const. ( x)

where const  2

17.7 FREE LONGITUDINAL VIBRATIONS

17.7.1 Solution Methods
The solution of longitudinal vibrations may be obtained by the following methods:

1. Equilibrium method

2. D’Alembect’s principle
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3. Energy method

4. Rayleigh’s method.

We shall illustrate these methods by the spring-mass system shown in Fig.17.4.

k

x

m

(a) Vibrating system (b) Forces acting on
     mass m

kx

m x

m

Fig.17.4 Spring-mass system

1. Equilibrium method
This method is based on the Newton’s second law of motion, according to which inertia force is equal 
to the product of mass of the vibrating body and its acceleration in the direction of motion.

Consider the spring-mass system shown in Fig.17.4(a). The forces acting on the mass m are shown 
in Fig.17.4(b). For the equilibrium of the mass m, we have

 Inertia (or disturbing) force on the mass  Restoring force due to the spring
 Disturbing force  mass  acceleration

 m x

 Restoring force   k x

ve sign indicates that the restoring force is opposite to the disturbing force.

 mx k x

or  mx k x 0  (17.1)

or
 

 

 

x
k

m
x

x
k

m
x

0

 

Here the const.  k

m n
2

 
n

k

m
 rad/s

 
 (17.2)

Where w
n
 = natural frequency of shaping–mass system.

Eq. (17.1) is called the equation of motion.
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2. D’Alembert’s principle
This principle states that a dynamic system may be converted into an equivalent static system by 
 adding the inertia force, taken in the reverse direction to the restoring force. To apply the D’Alembert’s 
principle to the spring-mass system shown in Fig.17.4(a), the direction of the inertia force mx on mass 
m in Fig.17.4(b) has to be reversed from downwards to upwards. Then, we have

Reversed inertia force  restoring force  0

or mx k x 0  

Thus, we obtain the same equation of motion.

3. Energy method
The energy method makes use of the principle of conservation of energy. According to this principle, 
the sum of kinetic energy T and potential energy U remains constant throughout the motion of a vibrat-
ing system.

Thus T  U  const

or
 

d

d
  

t
T U( ) 0

 
(17.3)

For the spring-mass system, we have

T mx

U kx

t
mx k x

mxx kxx

mx k

1

2
1

2
1

2

1

2
0

0

2

2

2 2d

d

( xx x

x

mx kx

)

,

0

0

0

therefore

or

or

 

As

which gives the same equation of motion.

4. Rayleigh’s method
The Rayleigh’s method makes use of the fact that the maximum kinetic energy in a vibrating  system is 
equal to the maximum potential energy. For the spring-mass system, the maximum kinetic energy occurs 
at the mean position and maximum potential energy occurs at the outermost position of  oscillations.

 T
max

  U
max

 (17.4)

For

 

x A t

x A t

x A

n

n n

n

 sin

cos

( )max  

and x
max

  A
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Now

 

T m x m A

U kx kA

mA kA

n

n

n

max max

max

( )
1

2

1

2
1

2

1

2
1

2

1

2

2 2 2

2 2

2 2 2





 kk m/or

which gives the same frequency as obtained in Eq. (17.2).

17.7.2 Single Degree of Freedom System
Consider the single degree of freedom system in the form of a spring-mass shown in Fig.17.5. Before 
the mass is hung on the spring, the spring in its unstretched position is shown in Fig.17.5(a). When the 
mass m is hung on the spring, the spring is stretched by an amount 

st
  static deflection, from position 

A-A to B-B, as shown in Fig.17.5(b). For the static equilibrium of the system, we have,

 k  
st
  mg

k

B

x

C C

A
st

A

B m

k

m

(b) (c)(a)

k

Fig.17.5 Stages in the extension of a spring

Now the mass m is displaced downwards by an amount x from position B-B to C-C, as shown in 
Fig.17.5(c).

Now the forces acting on the system are, applying D’Alembert’s principle, we have

Upward force   k (x  
st
)

Downward force  mx mg

For the equilibrium of the system,
 

mx mg k x

mx kx
st( )

0  (17.5)

Therefore, to write the equation of motion, the forces acting on the vibrating system during static 
equilibrium position may be ignored.
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The solution of Eq. (17.5) is,

 









n

st

n

k

m

g

T
m

k

 rad/s  (17.6)

Time period,  = s (17.7)
2

2

NNatural frequency,   Hz (Cycles/s) (17.8)f
k

mn

1

2

The solution of Eq. (17.5) is, x t A t B t

x t A

n n

n

( ) sin cos

( ) cos n n

o o

o

o n

t B t

x x x v

x B

v A

A

sin

( ) ( )Let and

Then

and

or  = 

0 0

vvo

n  

x t
v

t x t

X t

x

o

n
n o n

n

( ) sin cos ( . )

sin ( ) ( . )

17 9

17 10=

 
vv

x

v

x

o

n
o

o

o n

2

2

1

17 11

17 12

( . )

tan ( . )

where

and

Velocity,

  

x t t

t

n n

n n

( ) cos ( )

sin ( )

x

x
2

Acceleration,  x t t

t

n n

n n

( ) sin( )

sin ( )

x

x

2

2

We observe that the velocity vector leads the displacement vector by  2  and the acceleration vector 
leads the displacement vector by .

17.7.3 Effect of the Spring Mass
Consider an element dy of the spring of length l, mass per unit length  and stiffness k, as shown 
in Fig.17.6. We shall use Rayleigh’s method to determine the effect of spring-mass on the natural  
frequency of spring-mass system.
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k

y

dyl

x

m

Fig.17.6 Finding effect of spring mass

Maximum kinetic energy of the system,

 

T m x
x
l

y y

mx
x

max max
max

max
ma

( )1
2

1
2

1
2

1
2 3

2
2

2

0

2

d

xx

max

l
l

m l x

2 3

21
2

1
3  

Maximum potential energy,

U k x

x A t

x A t

x A

x

n

n n

n

max max

max

max

sin

cos

1

2
2

Let

then

and


 


AA

T m l

U k A

nmax ( )
1

2

1

3
1

2

2 A2

max
2

 

Applying Rayleigh’s method, we have

 T
max

  U
max

 

1

2

1

3

1

2

1

3

2 2 2( )m l A k A

k

m l

n

n
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Let mass of spring, m ls 

 

n

s

k

m m
1

3

rad/s

 

(17.13)

Therefore, the mass of the spring can be accounted for by adding one-third of its mass to the main 
mass to calculate the natural frequency.

17.7.4 Equivalent Stiffness of Springs

1. Springs in series
Consider two springs in series, as shown in Fig.17.7 of stiffness k

1
 and k

2
. Let x

1
 and x

2
 be the exten-

sions of the springs under the force F. Both springs are subjected to the same force, Thus

 F  k
1
x

1
  k

2
x

2

k1

k2

x
F

m

Fig.17.7 Springs in series

Total extension,

 

x x x

F
k k

1 2

1 2

1 1

Equivalent stiffness,

 

k
F

x

k k

k k

k k

e

1
1 1

1 2

1 2

1 2

or
 

1 1 1

1 2k k ke  
(17.14)

In general for n springs in series, we have

 1 1

1k ke ii

n
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2. Springs in parallel
Consider two springs of stiffness k

1
 and k

2
 in parallel, as shown in Fig.17.8. The deflection of both the 

springs is same under the force F, but they experience different forces.

k1

x

F

m

k2

Fig.17.8 Springs in parallel

Let F k x F k x1 1 2 2and  

Then  F  F
1
  F

2

  (k
1
  k

2
) x

Equivalent stiffness,  k
F

x
k ke 1 2  (17.15)

In general,  k ke i
i

n

1

Example 17.1

Calculate the natural frequency of the systems shown in Fig.17.9(a) and (b).

Solution 

(a) Force in each spring  2W
Deflection of weight W, 

st
  2 (deflection of spring 1  deflection of spring 2)

 

 2

4

2 2

1 2

1 2

1 2

W

k

W

k

W
k k

k k

 Natural frequency,   n

st

g gk k

W k k

k k

m k k

1 2

1 2

1 2

1 2

4

4

( )

( )
 rad/s
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(b) Force in spring 1  W

Force in spring 2  
W

2

Deflection of W, 
st
  Deflection of spring 1  Deflection of spring 2

 

W

k

W

k

W
k k

W
k k

k k

1 2

1 2

1 2

1 2

1

2 2

1

1 1

4

4

4

 


n

st

g k k

m k k

4

4
1 2

1 2( )
  rad/s

k1 k2

k1k2

W/2
W/2

WW
W

W

W

W

Fig.17.9 Diagram for Example 17.1

Example 17.2

Determine the natural frequency of free vibrations of the system shown in Fig.17.10.

Solution 

Force in spring 1,  F
Wb

a b1

Force in spring 2,  F
Wa

a b2

Deflection of spring 1, x
F

k

Wb

k a b1
1

1 1( )
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Deflection of spring 2,  x
F

k

Wa

k a b2
2

2 2 ( )

Deflection of point c,   x
a

a b
x x1 2 1( )

 

Wb

k a b

a

a b

Wa

k a b

Wb

k a b

Wb

k a b

W

1 2 1

1

( ) ( ) ( )

( )

aa

a b

a

k

b

k

W

a b

b a b

k

a

k

ab

k

W

a

( )

( )

( )

(

2
2 1

2
1

2

2 1

bb

b a b ab k a k

k k

W

a b

b

k

a

k

)

( )

( )

2

2
2

1

1 2

2

2

1

2

2

nn

g a b k k

m a k b k
 rad/s

( )

( )

2
1 2

2
1

2
2

k1

W

k2

BC

a b

A

A

A

C B

B
C

Fig.17.10 Diagram for Example 17.2
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Example 17.3

A U-tube manometer, as shown in Fig.17.11, contains a fluid of density . Calculate the frequency of 
free oscillations of the fluid.

Solution 

Let l  length of U-tube containing the fluid
A  area of cross-section of the tube

 Fluid mass, m Al

 x  displacement of fluid column

 Weight of fluid responsible for restoring the original fluid level,

 W Agx2

 The equation of motion becomes,

mx W

Al x Ag x

x
g

l
x

g

ln

0

2 0

2
0

2

 

 rad/s

x

Fluid

U- tube

x

,A

Fig.17.11 U-tube manometer

Example 17.4

A mass of 10 kg is fixed in the middle of a spring of stiffness 5 N/mm, as shown in Fig.17.12. Calcu-
late the natural frequency of the system.

Solution 

Deflection of a helical spring under axial load is:

 


8 3

4

WD n

Gd
m



1091 Mechanical Vibrations

 

Stiffness,  k
W Gd

D n

k
n

m

4

38

1
or

when the mass m  10 kg is fixed in the middle of the spring, the number of turns in each portion 
becomes n 2. Thus stiffness of each portion becomes 2k. Since the two portions of the spring are in 
parallel, therefore total stiffness becomes 4k.

Natural frequency,

 




 

n

n
n

k

m

f

4

4 5 10

10

44 72

2

44 72

2
7 12

3

.

.
.

 rad/s

 Hzor

2k

2k

m

Fig.17.12 Diagram for Example 17.4

Example 17.5

Calculate the natural frequency of the system shown in Fig.17.13.

Solution 

Force in spring 1, F
1
  mg

Force in spring 2, F
mgb

a2



1092 Theory of Machines

Deflection of mass m,

 

 st

F

k

F

k

b

a

mg

k

mgb

k a

b

a

mg
k

b

a k

1

1

2

2

1 2

1

2

2

1 1
mg

k b k a

k k a
1

2
2

2

1 2
2

Natural frequency,

 


n

st

g

k k a

m k b k a
1 2

2

1
2

2
2( )

rad/s

k1

k2

b

a

m

Fig.17.13 Diagram for Example 17.5

17.7.5 Damped Free Vibrations
In damped free vibrations of single degree of freedom systems, a damper is placed in parallel with the 
spring to decrease the amplitude of vibrations. We shall discuss only viscous type of damper in which 
the damping force is directly proportional to the velocity.

Consider the spring-mass-damper system as shown in Fig.17.14(a). The forces acting on the mass 
are shown in Fig.17.14(b). The equation of motion may be written as:

 mx cx k x 0  (1)

where c  damping coefficient, N·s/m
Eq. (1) may be written as:

or
 

x
c

m
x

k

m
x

D
c

m
D

k

m
x

0

02

  
(2)
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Fig.17.14 Damped free vibrations

where D
t

D
t

d

d
and

d

d
2

2

2

The characteristic equation is,

 
D

c

m
D

k

m
2 0

  
(3)

Its roots are,  D
c

m

c

m

k

m1 2

2 1 2

2 2,

/

 (4)

The general solution of Eq. (3) is,
x(t)  A exp ( D

1
t)  B exp ( D

2
t)

where A and B are constants.
For critical damping, the term under the radical sign in Eq. (4) is zero, and the damping coefficient 

is called the critical damping coefficient, c
c
. Thus

or

 

c

m

k

m

c

m

k

m

c m km

c

c
n

c n

2
0

2

2 2

2

1 2

1 2

/

/( )



   (17.16)or

We define damping ratio,  
c

cc

damping coefficient

critical damping coefficient

Now

 

c

m

c

c

c

mc

c
n2 2
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Thus D n1 2
2 1 21,

/[ ( ) ]     (17.17)

The equation of motion becomes,

 x x xn n2 02 

(a) Underdamped system (  < 1)
For the underdamped system, Eq. (17.17) becomes,

 
D in1 2

2 1 21,
/[ ( ) ]  

Fig.17.15 Underdamped oscillatory motion (   1).

Both of these roots are imaginary, Let

  d n ( ) /1 2 1 2

  damped natural frequency

The general solution can be written as,

x t t A t B t

X t t
n d d

n d

( ) exp ( )[ cos sin ]

exp ( ) sin ( )   

(17.18)

Where  x A B B A2 2 1and ( / )tan  

If

 

x x x v

x t t vn
d

( ) ,

( ) exp ( ) ( (

0

1

o o

o

 and  (0) =  then

n d dx t x to o) sin cos
 

(17.19)

The motion represented by Eq. (17.19) is oscillatory, and is shown in Fig.17.15.

(b) Overdamped system (  > 1)

For the overdamped system, both the roots of Eq. (17.17) are real and negative. The general solution 
can be written as:

x t t A t B tn n n( ) exp ( ) exp | ( ) | exp | ( ) |/ /    2 1 2 2 1 21 1  (17.20)
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Fig.17.16 Overdamped system (  > 1)

if x x x v

A
v x n

n

( ) ( ) ,

( )

( )

/

/

0 0

1

2 1

2 1 2

2 1 2

o o

o o

and  then

 
B

v x n

n

o o ( )

( )

/

/

2 1 2

2 1 2

1

2 1

The motion represented by Eq. (17.20) is an exponentially decreasing function as shown in 
Fig.17.16.

(c) Criticality damped system (  = 1)

For the critically damped system, both the roots are equal and real, i.e. D
1
  D

2
  

n
. The general 

solution can be written as:

Fig.17.17 Critically damped system (   1)
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 x(t)  (A Bt) exp (
n
t) (17.21)

With initial conditions x x x vo( ) ( ) ,0 0o and  we have

 x t t x v x tn n( ) ( ) [ ( ) ] exp  o o o   
(17.22)

Eq. (17.22) represents a decreasing function, and the motion is non-oscillatory, as shown in Fig.17.17.

17.7.6 Logarithmic Decrement
Logarithmic decrement represents the rate of decay of a free damped vibration and is defined as the 
natural logarithm of the ratio of any two successive amplitudes.

The general solution of a free damped vibration system is:

x t X t tn d( ) exp ( ) sin ( )  

It is shown graphically in Fig.17.18.

Logarithmic decrement,

  

ln

ln

x

x

t t

t T
n d

n d

1

2

1 1

1

exp ( ) sin ( )

exp ( ( )) sin {{ ( ) }d dt T1

Fig.17.18 Decay of free underdamped vibrations

Since the value of the sines are equal when the time is increased by the damped period T
d
, the 

above relation reduces to,
 

ln
exp ( )

exp { ( )}
n

n d

t

t T
1

1
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Now

 

ln exp ( )

( ) /








 

n d

n d

d

d n

T

T

T
2 2

1 2 1 2

 





 



 

   2

  

2

1 2 1 2

1

1

2

( ) /

ln ln ln
x

x

x

x

xo nn

nx
1

 

(17.23)

When   1, then (17.24)

Now

Also

  

x

x

x

x

x

x

x

x

n
ln

x

x

o

n

o n

n

o

n

1

1

2

1

1
  

 

(17.25)

Example 17.6

A mass of 5 kg hangs from a spring and makes damped oscillations. If the time of 50 complete oscil-
lations is found to be 20 s, and the ratio of the first downward displacement to the sixth is found to be 
22.5, find the stiffness of the spring and the damping coefficient.

Solution 

Given:  m f
x

xd5
50

20
2 5 22 51

6

kg,  Hz, . .

Logarithmic decrement,

 


1 1

5

1

5
1

6n

x

x

x

x
lno

n

   2ln ln 22.5 0.6227

  

 


 


 




2

1

0 6227
2

1

1 101 8

2 1 2

2 1 2

2

( )

.
( )

.

/

/



  





2

 rad/s

0 0986

2 2 2 5 15 708

1

15 70
2 1 2

.

. .

( )

.
/

d d

n
d

f

88

1 0 0986
15 785

2 1 2[ ( . ) ]
.

/
 rad/s
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Stiffness of spring, k m n
2 25 15 785 1245 83( . ) . N/m

Critical damping coefficient, c mc n2 2 5 15 785 157 85 . .  N s/m

Damping coefficient, c cc 0 0986 157 85 15 564. . . N s/m

Example 17.7

Determine the undamped and damped natural frequencies of the system shown in Fig.17.19.  
k

1
  2 kN/m, k

2
  3 kN/m, c

1
  100 N.s/m, c

2
  200 N.s/m, and m  15 kg.

Solution 

Equivalent stiffness,  k
k k

k ke
1 2

1 2

2 3

2 3
1 2.  kN/m

 for springs in series.

Equivalent damping coefficient,  c
c c

c ce
1 2

1 2

100 200

100 200

200

3

for dampers in series.

N s/m

Undamped natural frequency,

Critic

n
ek

m

1 2 10

15
8 94

3.
.  rad/s

aal damping coefficient, c mc n2 2 15 8 94 268 328. . N s/m

Dampiing ratio,  
c

c
e

c

200

3 268 328
0 24845

.
.

Fig.17.19 Diagram for Example 17.7



1099 Mechanical Vibrations

Damped natural frequency,

  

  d n 1

8 94 1 0 24845

8 66

2

2. ( . )

.  rad/s

Example 17.8

A spring-mass system consists of a spring of stiffness 350 N/m. The mass is 0.35 kg. The mass is  
displaced 20 mm beyond the equilibrium position and released. The damping coefficient is 14 N.s/m. 
Determine (a) critical damping coefficient, (b) damped natural frequency, and (c) logarithmic decrement.

Solution 

Given : k = 350 N/M, m = 0.35 kg, c = 14 N.s/m

Undamped natural frequency, n

k

m

350

0 35
31 62

.
. rad/s

(a) Critical damping factor, c
c
  2 m 

n

 2  0.35  31.62  22.136 N.s/m

(b) Damping factor,  
c

cc

14

22 136
0 632

.
.

Damped natural frequency,

  

  d n 1

31 62 1 0 632

24 5

2

2. ( . )

.  rad/s

(c)

 

Logarithmic decrement,

  


 




2

1

2 0 632

1 0 632

5 124

2

2

.

( . )

.

Example 17.9

A 25 kg mass is resting on a spring of 5 kN/m stiffness and a dashpot of 150 N.s/m damping coef-
ficient in parallel. If a velocity of 0.1 m/s is applied to the mass at the rest position, what will be its 
displacement from the equilibrium position at the end of first second?

Solution 

Given : m = 25 kg, k = 5 kN/M, c = 150 N.s/m, x
.
(o) = 0.1 m/s

Undamped natural frequency,  n

k

m

5000

25
14 14.  rad/s



1100 Theory of Machines

Critical damping coefficient,     c
c
  2 m 

n

 2  25  14.14  707 N.s/m

Damping factor,  
c

cc

150

707
0 212.

Damped natural frequency,    



d n

t
dx t e A t Bn

1

14 14 1 0 212

13 82

2

2. ( . )

.

( ) [ sin

 rad/s

ccos ]dt

Now x(0)  0. Hence B  0
x t e A t e A t

A

A

n nt
d d n

t
d

d

( ) [ cos ] sin

.

.

.

    
0 1

0 1

13 82
00 007236

0 007236 13 82

1 0 34

0 212 14 14

.

( ) . sin .

( ) .

. .

 m

x t e t

x

t

33 mm

Example 17.10

A vibrating system consists of a mass of 30 kg, a spring of stiffness 20 kN/m and a damper of damping 
factor 0.25. Calculate:

(a) the critical damping coefficient

(b) the natural frequency of damped vibrations

(c) the logarithmic decrement, and

(d) the ratio of two successive amplitudes.

Solution 

Given: m k30 20kg,  kN/m,  = 0.25

 

(a)  N s/m

(b)

c km

k

m

c

d n

n

2 2 20 10 30 1549 2

1

20 10

3

3

2

3

.

  


00

25 82

25 82 1 0 25 25

2

1

2 0

2

2

.

. ( . )

.

 rad/s

 rad/s

(c)









d

225

1 0 25
1 622

5 06

2

1

1 622

( . )
.

..(d)
X

X
e en

n
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17.7.7 Undamped Forced Vibrations
When a system is subjected to forced harmonic excitation, its vibration response takes place at the 
same frequency as that of the excitation. Common sources of harmonic excitation are: unbalance in 
rotating machines, forces produced by reciprocating machines, or the motion of the machine itself.

Consider the spring-mass system shown in Fig.17.20 subjected to harmonic force excitation  
F  F

o
 sin t. The equation of motion for this system can be written as:

 mx kx F to sin   (1)

Fig.17.20 Forced underdamped system

The steady state solution of Eq. (1) is,

 

x t
F t

mD k
F t

m k

o

o

( )
sin

sin






2

2

 

x tst sin
1 2

 

(17.26)

where x
F

k

k

m

st
o

n

n

 static deflection

 frequency ratio




1 2/

Amplitude of oscillation, X
xst

1 2
 (17.27)

At resonance,   1 and the amplitude tends to infinity.
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17.7.8 Damped Forced Vibrations
Consider the damped forced vibration system shown in Fig.17.21 subjected to harmonic excitation. 

Fig.17.21 Damped forced system

The equation of motion for this system can be written as:

 mx cx kx F to sin
 

(1)

The auxiliary solution of Eq. (1) for oscillatory motion (  1) is:

 x t t A t B ta n d d( ) exp( ) [ cos sin ]  

where
 

    n

c

d n

k

m

c

c

1 2

2 1 21
/

/, ( )and

The auxiliary solution shall die out in due course of time.
The steady state solution of Eq. (1) can be obtained as:

 

x t
F t

mD cD k

F t

m cD k

k m cD F

s
o

o

o

( )
sin

sin

( ) sin








2

2

2 



  



t

k m c D

F k m t eco t

k m c

o

( )

( ) sin cos

( )

2 2 2 2

2

2 2 22 2

Now

 

c

k

c

c
m

k

x t
x t t

c
n

s

st

2 2

1 2

1

2

2
( )

( ) sin cos

( )22 2

2 2 2 1 2

2

1 2

( )

( )
sin( )

[( ) ( ) ] /
x t

x t
s

st

 
(17.28)
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where
 

x
F

kst
o

The steady state solution shall persist.

Amplitude, X
xst

( ) ( )
/

1 22 2 2 1 2
 

 (17.29)

Phase angle, 



tan 1

2

2

1
 (17.30)

Magnification factor, M
X

xf

st

1

1 22 2 2 1 2[( ) ( ) ] / 

 

(17.31)

For 1,
 

M f

1

2  
(17.32)

For M
f
 to be maximum, 

d

d

M f


0 , which gives

  ( ) /1 2 2 1 2  (17.33)

 
( )

[ ( ) ]max /
M f

1

2 1 2 1 2   
(17.34)

Eqs. (17.29) and (17.30) indicate that X and  are functions of  and  only. The magnification 
factor and phase angle are plotted in Figs.17.22 and 17.23 respectively for various values of .

Fig.17.22 Magnification factor X/Xst as a function of frequency ratio
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Fig.17.23 Phase angle of direct excitation as a function of frequency

17.7.9 Rotating Unbalance
If the mass centre of a rotor does not coincide with the axis of rotation then there shall be unbalance. 
This unbalance is a source of vibration excitation. Consider a spring-mass-dashpot system constrained 
to move in the vertical direction and excited by a rotating unbalances shown in Fig.17.24. Let m be the 
unbalanced mass of the rotating machine and e its eccentricity rotating at angular speed . Let x be the 
displacement of the non-rotating mass m

o
 from the static equilibrium position, then

Total mass of machine, M  m  m
o

Let m  μM, where μ is a fraction.

The equation of motion of M can be written as:

 Mx cx kx me t 2 sin  (1)

Fig.17.24 Rotating unbalance
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Where ‘me’ is called the unbalance.
The steady state solution of Eq. (1) is:

 

x
e t   

 

2

2 2 2 1 2
1 2

sin ( )

( ) ( )
/

 

(17.35)

 





tan 1

2

2

1  
(17.36)

Eq. (17.35) is represented graphically in Fig.17.25.

Magnification factor, M
X

e

X

me Mf  ( )/
 (17.37)

 



 

2

2 2 2 1 2
1 2( ) ( )

/

 

(17.38)

For (17.39a)

For (17.39b)

For  i.e.






 

1
1

2

1

1 90

,

,

, ,

M

M

f

f

   is out of phase with . (17.39c)

When  >> 1, 180 (17.

m mo

  339d)

Fig.17.25 Magnification factor X /(me/M ) as a function of frequency ratio
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17.7.10 Reciprocating Unbalance
A reciprocating system is shown in Fig.17.26. The reciprocating mass m consists of the mass of the 
piston, the gudgeon pin, and the part of the mass of connecting rod considered reciprocating with the 
piston. The mass of the rest of the machine is taken as m

o
. The exciting force is equal to the inertia 

force of the reciprocating mass, given by,

Fig.17.26 Reciprocating unbalance

F me t
e

l
t  2 2sin sin

Where e  radius of crank, and l  length of connecting rod

Neglecting second term when e

l
 ratio is small, we have

F  me  2 sin t
Let M  m  m

o
 and m  μM, then

F  μMe  2 sin t

The equation of motion for the mass M will be the same as for rotating unbalance. The solution 
will be the same as discussed in Section 17.7.9.

17.7.11 Vibration Isolation
Machines are often mounted on springs and dampers to minimize the transmission of unbalanced 
forces between the machine and the foundation. The equation of motion for the mass m, shown in 
Fig.17.27, can be written as:

mx cx k x F to sin
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Fig.17.27 Vibration isolation

Maximum amplitude, X
xst

[( ) ( ) ] /1 22 2 2 1 2 
 (17.40)

Where x
F

kst
o   static deflection

Force transmitted to the foundation,

F kX c X

X k c

F

tr

o

[( ) ( ) ]

[ ( ) ]

[ ( ) ]

[(

/

/

/

2 2 1 2

2 2 1 2

2 1 2

2

1 2

1






 )) ( ) ] /2 2 1 22

 

 (17.41)

Force transmissibility, TR
F

F
tr

o

1 2

1 2

2 1 2

2 2 2 1 2

( )

[( ) ( ) ]

/

/



 
  (17.42)

The variation of TR v’s  is shown in Fig.17.28. It may be seen that TR < 1 when  2 .

Fig.17.28 Force transmissibility as a function of frequency ratio
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 (i) For TR  1, we have

1  (2 )2  (1 – 2)2 (2 )2

1 1

2

2

   (17.43a)

  (ii) For TR 1 2,    (17.43b)

(iii)  For TR 1 2,    (17.43c)

Phase difference between the transmitted force and the excitation force is given by,

tan tan ( )1
2

12

1
2   (17.44)

17.7.12 Support Motion
(a) Absolute amplitude
Consider the dynamical system excited by the motion of the support, as shown in Fig.17.29. Let y   y

o
 

sin t be the harmonic displacement of the support and x the absolute displacement of mass m from 
an inertial reference. The equation of motion for the mass can be written as:

Fig.17.29 Support motion

or

 

mx c x y k x y

mx cx kx cy ky

y y t

m
o

( ) ( )

cos

0

  

 

 xx cx kx c y t ky t

y k c t

o o

o

cos sin

[ ( ) ] sin( )/2 2 1 2

  
(1)

Now

where
 




tan tan ( )1 1 2
c

k

The solution of Eq. (1) can be written as:

where
 

x X t

X yo

sin ( )

[ ( ) ]

[( ) ( ) ]

/

/

  


 
1 2

1 2

2 1 2

2 2 2 1 2

 

 (17.45)
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tan

tan tan ( )

1

2

1

2

1

2

1

2

1
2

Displacement Transmissibility, TR: It is defined as the ratio of the amplitude of the system to the 
amplitude of the support.

TR
X

yo

1 2

1 2

2 1 2

2 2 2 1 2

( )

( ) ( )

/

/



 
  

(17.46)

For   1,  TR
1 4

2

2 1 2




/

  (17.47)

(b) Relative amplitude
Let z  x  y. The equation of motion becomes,

mz cz kz m y to 2 sin   (2)

The solution of Eq. (2) can be written as:

z  Z sin ( t – )

where
 

Z
yo

2

2 2 2 1 21 2[ ) ( ) ] /

 
 (17.48)

tan 1
2

2

1  

 (17.49)

Example 17.11

An industrial machine of mass 450 kg is supported on springs with a statistical deflection of 5 mm. If 
the machine has a rotating unbalance of 0.25 kg  m, determine (a) the force transmitted to the floor at 
1200 rpm, and (b) the dynamical amplitude at this speed.

Solution 

Given: m  450 kg, 
st
  5 mm, me  0.25 kg  m, N  1200 rpm

Angular speed, 
 2

60

2 1200

60
125 664

N
.  rad/s

Natural frequency, 
n

st

g
1 2 1 2

9 81

0 005
44 29

/ /
.

.
.  rad/s

(a) For

 






n

oF me

125 664

44 29
2 837

0 25 125 664 3947 842 2

.

.
.

( ) . ( . ) . N




0
1

3947 84

2 837 1
560 1

2 2
,

.

.
.F

F
tr

o N
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(b) 

 mm

MX

me

X

2

2

2

2

1

0 25
2 837

450 2 837 1
0 6344.

( . )

( . )
.

Example 17.12

A weight attached to a spring of stiffness 252 N/m has a viscous damping device. When the weight is dis-
placed and released, the period of vibration is found to be 1.8 s, and the ratio of consecutive amplitudes 
is 4.2 to 1.0. Determine the amplitude and phase when the force F  2 cos 3t N acts on the system.

Solution 

Given: N/m, s  N.  = 3 rad/sk T
x

x
Fd

n

n

o525 1 8 4 2 2
1

. , . , 

Logarithmic decrement, 



l
x

x
ln

n

n n
1

2 1 2

2

1
 4.2 1.435

( ) /

1 19 1715

0 2226

2 2 


.

.

Time period, Td

d

d

n
d

2
1 8

2

1 8
3 49

1

3 49

1 0 2222 1 2











.

.
.

( )

.

[ ( ./

 rad/s

66
3 58

3

3 58
0 838

2 1 2) ]
.

.
.

/
 rad/s



n

Static deflection,

 

x
F

k

X
x

st
o

st

2

525
3 81

1 2

3 81

1 0 838

2 2 2 1 2

.

( ) ( )

.

( .

/

mm

)) ( . . )

.

/
2 2 2

1 2

2 0 2226 0 838

7 982 mm

Phase difference,

  





tan

tan
. .

( . )

1

2

1

2

2

1

2 0 226 0 838

1 0 838

51..41
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Example 17.13

A centrifugal fan of mass 5 kg has a rotating unbalance of 0.25 kg  m. When dampers having  
damping factor 0.2 are used, specify the springs for mounting such that only 10% of the unbalance 
force is transmitted to the floor and the force transmitted. The fan is running at a constant speed of 
1000 rpm.

Solution 

Given: m  5 kg, me  0.25 kg  m,   0.2, TR  0.1, N  1000 rpm


 





2

60

2 1000

60
104 72

1 2

1 2

2 1 2

2 2

N

TR

.

/

 rad/s







 

2
1 2

2
2

2 2 2
0 1

1 2 0 2

1 2 0 2

/

.
.

.

 4 – 17.84 2 – 99  0

 2  9.92  [(9.92)2  99]1/2  22.28

   4.72







n

nk m

104 72

4 72
22 186

5 22 186 2461 22 2

.

.
.

. .

 rad/s

 N/m

FF me

F TR F

o

tr o

 2 2
0 25 104 72 2741 57

0 1 2741 57 2

. . .

. .

 N

774 157.  N

17.8 TRANSVERSE VIBRATIONS

17.8.1 Beam Carrying Single Concentrated Load
Consider a beam carrying a concentrated load at the midspan and vibrating transversally.

Let l  span of beam

 I  moment of inertia of beam cross-section

 E  Young’s modulus of elasticity

 W  Central load.

Then 
n

st

g

where 
st
  static deflection
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Wl

EI

EIg

Wl

W

n

st

3

3

48

48

 for a simply supported beam

 rad/s


ll

EI

EIg

Wln

3

3

192

192

 for a beam fixed at both ends.

  rad/s
 

(17.50)

and
 

(17.51)

If the concentrated load is off-midspan, then

 

 st

Wa b

EIl

Wa b

EIl

2 2

3 3

3

3

3

 for a simply supported beam

 for a  beam fixed at both ends
 

(17.52) 

 (17.53)

For a cantilever carrying end load W,

 
 st

Wl

EI

3

3  
(17.54)

17.8.2 Beam Carrying Uniformly Distributed Load
Let  w  intensity of load per unit length

Then

 

  for a simply supported beamst

n
st

wl

EI

g EIg

w

5

384

384

5

4

ll 4
 rad/s

 

(17.55)

and

 

  for a beam fixed at both ends

 ra

st

n

wl

EI

EIg

wl

4

4

384

384
dd/s

 for a cantilever beam

 rad/s

st

n

wl

EI

EIg

wl

4

4

8

8
 

(17.56) 

 
(17.57)

17.8.3 Shaft Carrying Several Loads
(a) Dunkerley’s method

Dunkerley’s method suggests the following equation for lower bound on the fundamental  
frequency:

1 1 1 1 1
2

1
2

2
2 2 2    n m s  

(17.58)
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where  
n
  fundamental natural frequency of the system

i
   natural frequency of the shaft with each lumped mass acting alone at its point 

of application in the absence of other masses. i  l to m
 

s
  natural frequency of the shaft alone due to its uniformly distributed mass.

(b) Rayleigh’s method
Let W

1
, W

2
, W

3
, …  loads on the shaft

  y
1
, y

2
, y

3
, …  total deflections under the loads.

Then

For

T
g

W y

U W y

T U

g W

n
i i

i

m

i i
i

m

n

max

max

max max





2
2

1

1

2

1

2

ii i

i i

y

W y2

 

(17.59)

Example 17.14

A shaft of span 1 m and diameter 25 m is simply supported at the ends. It carries a 1.5 kN concentrated 
load at midspan. If E  200 Gpa, calculate its fundamental frequency.

Solution 

Given: l  1m, d  25 mm, N  1.5 kN, E  200 Gpa

I
d

Wl

EIst

 



4 3 4

12 4

3 3

64

25 10

64
19174 76 10

48

1 5 10

.

.

m

11

48 200 10 19174 76 10

0

9 81

8 1487

9 12.

.

.

.

8 1487 1 m3


n

st

g

10
34 697

2
5 52

3
.

.

 rad/s

 Hzfn
n


Example 17.15

A shaft 30 mm diameter and 2 m long has a uniformly distributed load of 120 N/m length. It is simply 
supported at the ends and carries three loads of 1 kN, 1.5 kN and 0.5 kN at 0.6 m, 1m and 1.5 m respec-
tively from the left end support. Calculate the natural frequency of transverse vibrations. E  200 Gpa.

Solution 

Given: d  30 mm, l  2 m

I
d 4 3 4

12 4

64

30 10

64
39760 8 10. m
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st

m

Wa b

EIl

EIl

2 2

9 12

3

3

3 3 200 10 39760 8 10 2

47712 94

.

.  Nm

g

st

Table 17.1

Load W, kN a, m b, m Wa2b2, N m4
st
, m

m
, rad/s

1.0 0.6 1.4 705.6 0.0148 25.76

1.5 1.0 1.0 1500 0.0314 17.66

0.5 1.5 0.5 281.25 0.0059 40.79


s

EIg

l

384

5

384 200 10 39760 8 10 9 81

5 120 24

9 12

4

. .

 55.86 rad/s

Applying Dunkerley’s method,

1 1 1 1 1

1

25 76

1

17 66

1

40 79

1

55

2
1
2

2
2

3
2 2

2 2 2

    n s

. . . ..

.

.

.

86

177 46

13 32

2
2 12

2

2





n

n

n
nf

 rad/s

 Hz

17.9 CRITICAL SPEED
The critical speed of a rotating shaft is the speed at which the shaft starts to vibrate violently in the transverse 
direction. Critical speed is also called ‘whipping ’or ‘whirling’ speed. The main reason for the whirling speed 
is the mass unbalance of the shaft when the mass centre does not coincide with the geometric centre.

17.9.1 Shaft Having a Single Disc
(a) Without damping
Consider a light vertical shaft with a disc of mass m at the midspan and rotating with angular speed 

, as shown deflected in Fig.17.30. Let S be the geometric centre of the disc through which the centre 
line of the shaft passes. Point G is the centre of gravity of the disc where its mass m is assumed to be 
concentrated. SG  e is the eccentricity due to manufacturing defects to variation in material density 
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of the disc. Point O is the intersection of the bearing centre line with the disc r is the deflection of  
S from the undefeated position O. Let k be the stiffness of the shaft in the lateral direction. Considering 
the equilibrium of forces acting on the disc and shaft, we have

Fig.17.30 Rotating shaft with a disc having eccentric mass

Centrifugal force due to mass m  Restoring force due to lateral stiffness of shaft

m(r  e) 2  k r

or                                     r
me

k m

e

2

2

2

21

wwhere                             
m

n

k

m
,

1

2

 

 (17.60)

From Eq. (17.60), we find that the deflection of the shaft tends to infinity when   1. Thus, the criti-
cal speed of the shaft is equal to the natural frequency of lateral vibrations of the shaft. It may be seen 
that r is position for  < 1. i.e. the disc rotates with heavy side outwards, as shown in Fig.17.31(a). For 

 > 1, r is negative, i.e. the disc rotates with light side outwards, as shown in Fig.17.31(b). Also  < 1 
corresponds to zero degree phase difference and  > 1 corresponds to 180° phase difference.

When  >> 1, r  – e, i.e. the point G approaches O and the disc rotates about its centre of gravity. 
Therefore, it is always advisable to operate the machine much above its natural frequency.

(b) With damping
Consider a shaft with a disc rotating at angular speed  as shown in Fig.17.32. Let OG  a, OS  r, 
SG  e, k  stiffness of shaft material, c  damping coefficient of shaft material, GOS  , GSA  . 
The forces acting on the disc are shown in Fig.17.33.
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1. Centrifugal force  ma 2 acting at G along OG produced.

2. Restoring force  k r at S along SO, and

3. Damping force  c r acting at S perpendicular to OS.

Fig.17.31 Phase relationship without damping

Fig.17.32 Rotating shaft with damping

From the geometry of Fig.17.32, we have

a sin   e sin 

a cos   r  e cos 

Fig.17.33 Forces acting on the disc
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Considering the equilibrium of forces acting on the system along x- and y-directions, we have

ma 2 cos  – k r  0

 ma  2 sin  – c r  0

or m 2e sin  – c r  0

or me 2 cos   r (k – m 2)

 me 2 sin   c r

Squaring and adding, we get

 (me 2)2  r 2 [(k – m 2)2  (c ) 2]

or                                      
r

e
k m c



 

2

2 2 22
1 2

2

2 2 2
1 2

1 2

/

/



 
 

(17.61)

Where 




n

c

mk
,

/
2

1 2

Phase difference, 



tan 1

2

2

1
  (17.62)

The following observations may be made from Eq. (17.62):

1.   0 when  << 1, and heavy side of the disc will be out.

2. 0 <  < 90° when  < 1, and heavy side of the disc will be out.

3.   90° when   1.

4. 90° <  < 180° when  > 1, and light side of the disc will be out.

5.   180° and r  –e when  >> 1, and light side of the disc will be out with the disc rotating about  
its centre of gravity.

The phase relationships with damping are shown in Fig.17.34.

Example 17.16

A 60 kg compressor rotor is mounted on a shaft of stiffness 15 MN/m. Determine the critical speed of 
the rotor assuming the bearings to be rigid. If the rotor has an eccentricity of 2 mm and its operating 
speed is 6500 rpm, determine the unbalance response. The damping factor in the system can be taken 
as 0.06. If the compressor is started from rest, what will be the maximum whirl amplitude of the rotor 
before it reaches its full operational speed?

Solution 

Given: m  60 kg, k  15 MN/m, e  2 mm, N  6500 rpm,   0.06
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n

k

m

N

1

2

6
1

215 10

60
500

2

60
2 6500

60

 rad/s

6680 678

680 678

500
1 36

.

.
.

 rad/s



n

Whirl amplitude,  r
e

 

2

2 2 2
1 2

1 2
/

2 1 36

1 36 2 0 06 1 36

4 276

2

2 2 2
1 2

.

. ) . .

.
/

 mm

Maximum whirl amplitude, r
e

max .
.

2

2

2 0 06
16 67


 mm

(b) = 1

Disc

Shaft S

G

O

Disc

(a) < 1

Shaft
S

G

O

(c) > 1

Disc

Shaft
SG

O

(d) >> 1

Disc

Shaft

S
G

O

Fig.17.34 Phase relationship with damping
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Example 17.17

The rotor of a turbine of mass 15 kg is supported at the midspan of a shaft of span 0.4 m. The rotor 
has an unbalance of 0.003 kg m. Determine the force exerted on the bearings at a speed of 6000 rpm. 
The diameter of steel shaft is 25 mm and E  200 Gpa.

Solution 


 

 

2

60

2 6000

60
628 32

64

25 10

64
19174

4 3 4

N

I
d

.

.

 rad/s

776 10

48 48 200 10 19174 76 10

0 4
287621

12 4

3

9 12

3

m

k
EI

l

.

.
44

2876214

15
437 89

628 32

437 89
1 434

 N/m

 rad/s





n

n

k

m
.

.

.
. 99

1

0 003 628 32

2876214 1 4389 1

2

2

2

2
r

me k


/ . .

.

– .0 389 mm

Total force  kr  2876214 0.389  10–3  1118.5 N

Force on each bearing 
1118 5

2
559 25

.
.  N

17.10 TORSIONAL VIBRATIONS

17.10.1 Undamped Free Vibration
Consider a circular disc of moment of inertia J about the axis of the shaft, attached to a circular shaft 
of diameter d and length l, whose other end is fixed, as shown in Fig.17.35.

Fig.17.35 Torsional undamped free vibration
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Torsional stiffness of shaft,

k
t
  d 4 G/(32l)

where G  modulus of rigidity of the shaft.
For small torsional oscillations of the disc, the equation of motion is,

J ¨   k
t
   0 (1)

Its solution is,

 (t)  A sin 
n
t  B cos 

n
t (2)

where n tk J/   (17.63)

and A and B are the constants.
If  (0)  

0
 and  (0)  

0
, then, we get, A  

0
/

n
 and B  

0
. Eq. (2) becomes,

(t)  (
0
/

n
) sin 

n
t  

0
 cos 

n
t  (17.64a)

or     0

2

0
2

0 5

/ n t
.

sin   (17.64b)

where 

 

tan 1 0

0n

17.10.2 Damped Free Vibration
Consider the torsional vibration of a viscously damped disc at one end of a circular shaft whose other 
end is fixed to a rigid support, as shown in Fig.17.36. The equation of motion is,

J c kt t   0   (1)

For undamped vibration, the solution of Eq. (1) is,

   t t A t B tn d dexp sin cos                                              

where                    /

( )
.

2
0n tk J

55
                                                                              

/                      

( . )17 65

 c ct tc                                                                 

                           

( . )
.

17 66

2 2
0 5

c J k Jtc n t                                        ( . )17 67

1 2 0
  d n

..5
                                                                        ( . )17 68

Fig.17.36 Damped free torsional vibration
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17.10.3 Damped Forced Vibration
Consider the damped forced vibration of the disc shown in Fig.17.37. The equation of motion is,

J c k T tt t   0 sin   

The complete solution for under-damped vibration is,

   

 

 

t t t

T t

n d

o

exp sin

sin

1 22 2 2

where                    

/

tan

, , ,









 

2

1

2

2

n

n t
t

tc

tck J
c

c
c Jn tk J2  

(17.69) 

 

(17.70)

Fig.17.37 Damped forced torsional vibration

17.10.4 Stepped Shaft
Consider a stepped shaft, as shown in Fig.17.38. If a torque is applied to one end of the shaft and the 
other end is rigidly fixed, then

Fig.17.38 Stepped shaft under torsion

    





1 2 3 4
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1
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d
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The equivalent length l
e
 of the shaft of diameter d

1
 is,

l l d d l d d l d d l

Tl

Gd

k
T

e

e

t

1 1 2

4

2 1 3

4

3 1 4

4

4

1
4

32

/ / /

 





GGd

l

k

J

e

n
t

1
4

32


 

(17.71)

17.10.5 Fixed Shaft with a Rotor
Consider a fixed stepped shaft carrying a rotor, as shown in Fig.17.39.

J d q GJ l

J d q GJ l

1 1
4

1 1 1

2 2
4

2 2 2

32

32





/ /

/ /

,

,

The two lengths of the shaft are in parallel, therefore

 q
e
  q

1
  q

2

  G (J
1
/l

1
  J

2
/l

2
)

Now I  mK2

Natural frequency, 
n
  [q

e
/I]0.5. (17.72)

Fig.17.39 Single rotor on a shaft

17.10.6 Two-Degree of Freedom System
Consider the two-degree of freedom rotational system, as shown in Fig.17.40. The equations of motion are,

J k

J k

t

t

1 1 1 2

1 2

  

  

( )

( )

0

02 2
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Let 
1
  A

1
 sin 

n
t

 
2
  A

2
 sin 

n
t

Substituting in equations of motion, we get

k J A k A

k A k J A

t n t

t t n

1
2

1 2

1 2
2

2

0

0





For non-trivial solution,

k J kt

k k J

t n

t t n

1
2

2
2

0




  

     

The characteristic equation becomes,

n tJ J J J k2
1 2 1 2 0/

The natural frequencies are,

 
n1

  0

 
n2

  [k
t
 (J

1
  J

2
)/(J

1
 J

2
)]0.5 (17.73)

The mode shapes are given by,

A A k k Jt t n1 2 1
2/ /  

  1 for 
n1

  0

  – J
2
/J

1
 for 

 
n

2
 (17.74)

To locate the node point, we have

 l
1
/l

2
  A

1
/A

2
  J

2
/J

1

or l
2
  J

1
 l

1
/J

2

and l
1
  J

2
 l/(J

1
  J

2
) (17.75)

Fig.17.40 Rotational system of two rotor system
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17.10.7 Two Rotor System
Consider a shaft carrying two rotors, as shown in Fig.17.41. The equations of motion are,

Fig.17.41 Two rotor system

or

 

J q q

J q q

J q q

1 1 1 1 2 1 2

2 2 2 1 2 3 2

1 1 1

0

0

   

   



( )

( )

( 22 1 2 2

2 1 2 2 2 3 2

0

0

)

( )

 

  

q

q J q q

Let 
1
  A

1
sin 

n
t

 
2
  A

2
sin 

n
t

Substituting in equations of motion, for non-trivial solution, we get

q q J q

q q q J

n

n

1 2 1
2

2

2 2 3 2
2





          

                    
0

The characteristic equation becomes,

 



n n

n

q q

J
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J
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1

q q

J
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J J

A

A

q
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2
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2
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(17.76) 

 
(17.77)

17.10.8 Three Rotor System
Consider the three rotor system shown in Fig.17.42. The equations of motion are,

Let 

J q

J q q

J q

1 1 1 1 2

2 2 2 2 3 1 1 2

3 3 2 2

0

0

  

    

 

( )

( ) ( )

( 
 

3

1

0

1

)

sin ,1  to 3A t in
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Then 

                        

         

q J q

q q q

n1 1
2

1

1 1 2

0

J q

q q J

n

n

2
2

2

2 2 3
20





    

                              

A

A

A

1

2

3

0

0

0

The characteristic equation becomes,

  n n nJ J J J J J J q J J J J q q q J J2
1 2 3

4
1 2 1 3 2 2 3 2 3 1

2
1 2 1 2[ ( ) ( ) ( JJ3 0)

The roots are n
2 0  and

n n

q

J

q q

J

q

J

q

J

q q

J

q

J

1
2

2
2 1

1

1 2

2

2

3

1

1

1 2

2

2

3

1

2

1

2

,

2

1 2
1 2 3

1 2 3

4q q
J J J

J J J
 

(17.78)
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A

q

q J

A

A

q

q J

n

n

1

2

1

1 1
2

3

2

2

2 3
2




 

(17.79)

17.11 GEARED SYSTEM
Consider the geared system shown in Fig.17.43. Neglecting the inertia of the gears, let

Gear reduction ratio, i  n
2
/n

1

Kinetic energy, T J J
1

2

1

21 1
2

2 2
2 

Potential energy, U q q
1

2

1

21 1
2

2 2
2 

Now  
2
  

1

Therefore, T J J i

J i J

1

2

1

2
1

2

1

2
1

2

1 1
2

2 1
2

1 1
2 2

2 1
2

 

 

( )

( )

JJ J1 1
2

2 1
21

2
 

Fig.17.42 Three rotor system
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where

 

J i J

U q i q

q q

2
2

2

1 1
2 2

2 1
2

1 1
2

2 1
2

1

2

1

2
1

2

1

2

  

 

( )

where  q i q2
2

2

Equivalent stiffness, q
i q q

q i qe

2
1 2

1
2

2

 (17.80)

Natural frequency,   n
eq J J

J J

( )1 2

1 2

 (17.81)

The equivalent length of the geared system shown in Fig.17.44 is,

l
e
  l

1
  l

2
(d

1
/d

2
)4 (a

2
/a

1
)2 (17.82)

Fig.17.44 Equivalent geared system

Fig.17.43 Geared system
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The equivalent system for gear system, considering the inertia of the gears, is shown in Fig.17.45. 
The natural frequency can be determined as explained in Section 17.10.8.

Fig.17.45 Equivalent geared system system considering inertia of gears

Example 17.18

A disc of a torsional pendulum has a moment of inertia of 75  10 3 kg  m2, and is immersed in a 
viscous fluid. The brass shaft (G  42 GPa) attached to it is of 10 mm diameter and 0.4 m long. When 
the pendulum is vibrating, the observed amplitudes on the same side of the rest position for successive 
cycles are 5°, 3°, and 1.8°. Determine (a) logarithmic decrement, (b) the damping torque at unit speed, 
and (c) the periodic time of the vibration.

 Solution

J  d 4/32    10 4/32  981.75 mm4

q  GJ/l  42  109  981.75  10 12/0.4  103.1 N.m.s/rad

(a) Logarithmic decrement,   ln (5/3)  0.51

 2

or  

(b) / /  rad/s






0 51

2
0 081

103 1 75 10 37 08

2

3

.
.

. .n

tc

q I

c II

c c
n

t tc




2 75 10 37 08 5 56

0 081 5 56 0 45

3 . .

. . .

N.m.s/rad

N..m.s/rad

(c)  

 rad/s

  d n ( )

. ( . ) .

.1

37 08 1 0 081 36 96

2 0 5

2

Periodic time  2
d
  2 /36.96  0.17 s

Example 17.19

A periodic torque T  0.6 sin 5t N.m is impressed upon a flywheel suspended from a wire. The fly-
wheel has a moment of inertia of 0.15 kg  m2 and the wire has a stiffness of 2 N.m/rad. The damping 
coefficient of viscous damper is 0.4 N.m.s/rad. Find (a) the maximum angular displacement from rest 
position, (b) the maximum couple applied to dashpot, and (c) the angle by which the angular displace-
ment lags the torque.
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 Solution

(a) 


 





st

st
o

n

T

q

q

J

( ) ( )

.
.

.
.

1 2

0 6

2
0 3

2

0 15
3 65

2 2 2

 rad

 radd/s

 = 






n

t

tc

t

n

c

c

c

J

5

3 65
1 3693

2

0 4

2 0 15 3 65
0 35

.
.

.

. .
. 663

0 3

1 1 3693 2 0 3653 1 3693

0 3

1 329
0 2257

2 2 2


.

[ ( . ) ] ( . . )

.

.
.  rrad

(b) Maximum damping couple  

 N.m

(c

c

0 4 5 0 2257

0 4514

. .

.

))    tan 1 2

1

2 0 3653 1 3693

1 1 3693

2

1
2

tan
. .

( . )
48 82.  or 131.18

Example 17.20

A torsional pendulum has a natural frequency of 200 cycles/min, when vibrating in vacuum. The mass 
moment of inertia of the disc is 0.025 kg  m2. It is then immersed in oil and it is observed that its natu-
ral frequency is 180 cycles/min. Determine the damping torque per radian. If the disc is displaced 
3° when in oil, find its displacement at the end of the first complete cycle.

 Solution

f f

c I If

d n

tc n n

1

180 200 1

0 436

2 4

4 0 025
200

60

2

2






 



.

.

 

11 048

1 048 0 436 0 457

.

. . .

 N.m.s/rad

N.m.s/radc ct tc
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( ) exp ( )( sin cos )

( )

t t A t B tn d d

0 3
3

180 60
 rad, givees

B

t t A t B t

t A
d n d d

n n



    
  

60
( ) exp ( )[ cos sin ]

exp ( )[ ssin cos ]
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A Bn
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0 436 200

180 60
0 02536

.
.
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t T

t

d

d

d

2 2 60

2 180

1

3

2

0 436 2 200

60 3







 




s

exp
.

0 02536 2
60

2

0 04765
60

0 002495

. sin cos

. .







 rad or 0.1143 deg

Example 17.21

Calculate the natural frequency of the torsional vibrations of the system shown in Fig.17.46.  
G  105 GPa.

 Solution

Torsional stiffness, q  GJ/l

 q
1
  105  109   (25 10–3)4/(32  0.5)  8053.4 N.m/rad

 q
2
  105  109   (50  10–3)4/(32  1.5)  92951.5 N.m/rad

 q
3
  105  109   (20  10–3)4/(32  0.3)  5497.8 N.m/rad

The stepped shafts are in series. Therefore, the equivalent stiffness q
e
 is,

 1/q
e
  1/q

1
1/q

2
  1/q

3

 1/8053.4 1/92951.5  1/5497.8

 q
e
  3036.4 N.m/rad.

Natural frequency, n eq J/

/  rad/s3036 4 20 12 32. .
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Example 17.22

The flywheel of an engine dynamo weighs 150 N and has a radius of gyration of 0.25 m. The shaft at 
the flywheel end has an effective length of 0.20 m and is 50 mm in diameter. The armature weighs 80 N  
and has a radius of gyration of 0.20 m. The dynamo shaft has a diameter of 40 mm and an effective 
length of 0.15 m. Neglecting the inertia of the shaft and the coupling, calculate the frequency of tor-
sional vibrations and the position of node.

 Solution

I
W

g
K

I
W

g
K

1
1

1
2 2

2
2

2
2

1

2

1

2

150

9 81
0 25 0 4778

1

2

1

2

.
( . ) .  kg m2

880

9 81
0 20 0 163

84 10 50 10

0

2

1 1 1

9 4 12

.
( . ) .

( )

 kg m

/

2

q GJ l

..

.

( )

.

20 32
257708 8

84 10 40 10

0 152 2 2

4 12

 N.m/rad

/q GJ l


332
140743 4.  N.m/rad

n

q q I I

q q I I
1 2 1 2

1 2 1 2

257708 8 140743 4 0 4778 0 163

( )

( )

. . ( . . )

(2257708 8 140743 4 0 4778 0 163

865 43

. . ) . .

.  rad/s

Position of node from dynamo 
I I q q

q I I
1 2 1 2

1 1 2

0 4778 0 163 257708 8 140743 4

25770

( )

( )

. . ( . . )

88 8 0 4778 0 163

0 1579

. ( . . )

.  m

Fig.17.46 Diagram for Example 17.22
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Example 17.23

An engine shaft of diameter 50 mm drives a pump shaft of diameter 40 mm through a pair of spur 
gears, as shown in Fig.17.47, G  84 GPa. Calculate the natural frequencies of the geared system.

 Solution

 q
1
  84  109   (50  10–3)4/(32  1)  51542 N.m/rad

 q
2
  84  109   (40  10–3)4/(32  0.3)  70372 N.m/rad

 i  4

 q
2
  i2q

2
  16  70372  1125946

 q
e
  (51542  1125946)/(51542  1125946)  49286 N.m/rad

 J
g1

  i2J
g2

  40  16  5  120 kg  m2

 i 2J
2
  16  20  320 kg m2

 l
e
  1  0.3 (50/40)4 (4)2  12.72 m

 

n
2

2

0 5 51542 800 1177488 120 1125946 320

0 5 13395 4

. [ ]

. [( . )

/ / /

(( ) ( )] .4 51542 1125946 1240 800 120 320 0 5/

 177.2, 13217.7

or  rad/s or 2.12 Hz and  rad/s or 18.3 Hz n n1 213 3 114 96. .

Fig.17.47 Diagram for Example 17.23

Example 17.24

Calculate the natural frequency of the geared system shown in Fig.17.48. The shafts are made of steel 
for which G  84 GPa.
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 Solution

Stiffness of shafts:

q
GJ

l

q
GJ

1
1

1

9 3 4

3

2

84 10 50 10

32 1 25

41 233 10

 ( )

.

.  N.m/rad

22

2

9 3 4
384 10 60 10

32 1 0
106 877 10

l

 ( )

.
.  N.m/rad

Speed ratio, i

I i I

q i q

100

200
0 5

0 5 2 5 0 625

0 5

2
2

2
2

2
2

2
2

.

( . ) . .

( . )

kg.m2

1106 877 10 26 719 103 3. .  N.m/rad

Equivalent stiffness, q
q q

q qe
1 2

1 2

6

3

41 233 26 719 10

41 233 26 719 10
16 213

. .

( . . )
. 103  N.m/rad

Natural frequency, n
eq I I

I I

( )

. ( . . )

. .

.

1 2

1 2

316 213 10 1 5 0 625

1 5 0 625

191 7 radd/s

30.51 Hz

Example 17.25

The mechanism of power output from an I.C. engine is shown in Fig.17.49. The inertia of flywheel is 
relatively large and can be assumed to be grounded. The pinion is directly coupled to the engine. The 
mass moment of inertia of the engine is 0.85 kg  m2 and that of the pinion and gear, 0.0015 kg  m2 

Fig.17.48 Diagram for Example 17.24
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and 0.115 kg  m2 respectively. The inertia of the rotating machinery is 15 kg  m2. The speed reduc-
tion from engine to the rotating machinery is 3:1. Determine the natural frequencies and amplitude 
ratio by reducing the system to a two degree of freedom system. Modulus of rigidity for steel shaft is  
84 GPa.

 Solution

The shaft joining the pinion to engine is negligibly small, therefore pinion inertia can be directly 
added to the engine inertia. As referred to engine speed,

I

I

k

1 2

2 2

1

0 85 0 0015
0 115

3
0 8643

15

3
1 6667

. .
.

.

.

 kg .m

 kg m

2

2

884 10 25 10

0 5 32
6442 72

84 10 25

9 3 4

2

9





( )

.
.

(

 N.m/rad

k
110

32 0 8 3
447 41

2 2 2

3 4

2

2 1 2

1

2

2

1 2

1

)

.
.  N.m/rad

n

k k

I

k

I

k k

I

k

I

k k

I I
2

2

2

1 2

1 22

6442 72 447 41

2 0 8643

447 41

2 1 6

. .

.

.

. 6667

Fig.17.49 Diagram for Example 17.25
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6442 72 447 41

2 0 8643

447 41

2 1 6667

6442 7 447 4
2

. .

.

.

.

. . 11

0 8643 1 6667

3985 96 134 22 3985 96 134 22 2001027

4

2

. .

. . ( . . )

1120 18 3869 73

7989 91 250 45

15 82

89 38
1

2

. .

. , .

.

.

 

 rad/s

 ra




n

n dd/s


 

2

1 1

2

2 2
2
1

447 41

447 41 1 6667 250 45
14

k

k I n

.

. . .
.992

447 41

447 41 1 6667 7989 91
02

1 2

2

2 2
2

2


 

k

k I n

.

. . .
.003476

Example 17.26

An I.C. engine is operating at 1800 rpm. The mass moment of inertia of the engine cylinders is 
0.5 kg  m2. The flywheel is relatively of large moment of inertia and can be assumed to be grounded 
(Fig.17.50). The system is found to be in resonance with the fifth engine order excitation torque of 
1.25 kN.m amplitude. Design a dynamic torsional vibration absorber so that the resulting two natural 
frequencies of the system are at least 25% away from the excitation frequency. Also determine the 
amplitude of the absorber mass. Take d

2
  50 mm, and G  84 GPa.

Fig.17.50 Diagram for Example 17.26

 Solution

For a tuned absorber,
q

q

I

I

q I

2

1

2

1

1
2

1
2

5 2 1800

60
942 5

942 5 0 5 4








.

( . ) .

 rad/s

444132 N.m/rad

To find the two natural frequencies, we have






22

4

22

2

2 1 0( )
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1 25 2 1 25 1 0

2 441 1 5625 2 1 0

2 441 3 125 1

4 2. ( ) ( . )

. . ( )

. .




or ..

( ) ( . )

. (

5625 1 0

2 0 75 1 0

0 3164

2






or  0.20224

and (0.75)4

22 0 5625 1 0

0 5625 1 0

0 3403






) .

.

.

or 0.3164 1.125

We choose μ  0.3403 to ensure that both the natural frequencies are at least 25% away from 
excitation frequency.

 I
2
  μ I

1
  0.3403  0.5  0.1701 kg  m2

 q
2
  μ q

1
  0.3403  444132  151138 N.m/rad

Excitation torque,  T
o
  1.25 kN.m

Amplitude to absorber mass,


2

2

3

2
2

2

2

9

1 25 10

151138

180
0 47387

84 10

T

q

q
GJ

l

l

o .
.

Now  

 ( )
.

50 10

32 151138
0 341

3 4

m

Example 17.27

A stiff rod of mass m with linear and torsional springs is shown in Fig.17.51. Find its natural  
frequency.

 Solution

The equation of motion for the system is,

ml
k k lt

2
2

3
2 0  



 

or                          
33 2

0

3 2

2

2

2

2

1 2

k kl

ml

k k l

ml

t

n

t





/

rad/s
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Fig.17.51 Diagram for Example 17.27

Example 17.28

Find the natural frequency of the system shown in Fig.17.52.

Fig.17.52 Diagram for Example 17.28

 Solution

The equation of motion is,

I ka mxR

x R x R I
MR

MR

o

o

 

 



2

2

2

0

2

2

Now   , ,

kka mR

m
M

R ka

a

R

k

m
Mn

2 2

2 2

0

2
0

2

 

 



1 2/

rad/s
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Example 17.29

Determine the damped natural frequency of the system shown in Fig.17.53.

Fig.17.53 Diagram for Example 17.29

 Solution

The equation of motion is:

ml cb mgl k a

cb

ml

mgl ka

ml

2 2 2

2

2

2

2

0   

   0

Comparing with the standard equation of motion for the spring dashpot system, we have

     2 02
n n

Natural frequency, n

mgl ka

ml

2

2
rad/s

2
2

2
 n

cb

ml

Damping factor, 
cb

ml mgl ka

2

2 22

1
.

Damped natural frequency,   d n 1 2

 

d

mgl ka

ml

c b

ml mgl ka

mgl ka

ml

ml mgl ka

2

2

2 4

2 2

2

2

2 2

1
4

1

4 c b

ml mgl ka

ml
ml mgl ka c b

mgl ka

ml

c

2 4

2 2

2

2 2 2 4

2

2

4

1

2
4

22 4

2 44

b

m l
rad/s
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Example 17.30

For the system shown in Fig.17.54, determine the natural frequency of damped vibrations and critical 
damping coefficient.

k

a b

c

m

Fig.17.54 Diagram for Example 17.30

 Solution

The equation of motion is:

m a b ca ka( )2 2 2 0  

Comparing with the standard equation of motion, we have

 I  m (a  b)2

 c
te
  c a2

 q
e
  ka2

Undamped natural frequency, n
eq

I

ka

m a b

a

a b

k

m

2

2( )

 rad/s

Critical damping coefficient,  c
tc
  2 I 

n

2

2

2m a b
a

a b

k

m

a a b km

( )

( ) 

Damping factor, 
c

c

ca

a a b km

ca

a b km

te

tc
2

2

2

( )

( )
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Damped natural frequency,   d n

a

a b

k

m

c a

a b km

a

a b m
a b km c

1

1
4

2
4

2

2 2

2

2

2

( )

( )
( ) 22 2a

Example 17.31

An integral pulley of mass moment of inertia J about its axis, shown in Fig.17.55, is restrained in its 
movement about its own axis by a torsional spring of stiffness k

t
 and a smaller pulley by means of an 

inextensible string. Determine the natural frequency.

Fig.17.55 Diagram for Example 17.31

 Solution

The equation of motion is,

or
 

J mxr k yR k

x r y R

J mr k R k

t

t

 
 

  

0

2 2

Where and

( ) 0

02 2

2

2

1 2

 (

 rad/s

J mr k R k

kR k

J mr

t

n
t

) ( )
/

 



Example 17.32

The static deflection of an automobile on its springs is 80 mm. Find the critical speed when the 
automobile is travelling on a road which can be approximated by a sine wave of amplitude 60 mm 
and a wave length 12 m (Fig.17.56). Assume the damping to be 0.05. Also calculate the amplitude of 
vibration at 60 km/h.
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 Solution

Fig.17.56 Diagram for Example 17.32

n
st

g 9.81

80 10
11.07 rad/s

3

For dynamic magnification to be maximum,

1 2

1 2

2

2(0.05) 0.9975

Excitation frequency, 
n

 0.9975  11.07 rad/s

Critical velocity of vehicle, v f
2

11 04 12

2

.
21.09 m/s

75.92 km/h

Excitation frequency, at 60 km/h,

2 60 10

3600 12

3

8.827 rad/s

8.827

11.07
0.7883

n

Amplitude of vehicle, X
y 1 2

1 2

1 2 0 05 0 7883

1 0 07883

2

2 2 2

2

2

( )

( ) ( )

( . . )

( . )

60
2 22 0 05 0 7883( . . )

0.7883

155.65 mm
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Summary for Quick Revision

1 Vibration is an oscillation where in the quantity is a parameter that defines the motion of a 
mechanical system.

2 Time period is the time taken to complete one cycle. Frequency is the number of cycles per unit 
time. Amplitude is the maximum displacement of a vibrating body from the equilibrium posi-
tion. Natural frequency is the frequency of free vibrations of a body vibrating of its own without 
the help of an external agency. Fundamental mode of vibration is the mode of vibration having 
the lowest natural frequency. Degrees of freedom is the minimum number of independent coor-
dinates required to specify the motion of a system. Damping is the resistance to the motion of a 
vibrating body. Phase difference is the angle by which one vibrating system is ahead or behind the 
other vibrating system. Resonance is the phenomenon when the frequency of external excitation 
is equal to the natural frequency of a vibrating body.

3 There are three types of vibrations: longitudinal, transverse, and torsional.

4 There are three elements of a vibrating system: inertial, restoring, and damping.

5 Solution methods for solving vibration problems are: equilibrium method, D’Alembert’s princi-
ple, energy method, and Rayleigh’s method. Equilibrium method is based on the Newton’s second 
law of motion; D’Alembert’s method converts the dynamic problem into an equivalent static 
problem by taking the inertia force in the reverse direction; energy method uses the principle of 
conservation of energy, and Rayleigh’s method equates the maximum kinetic energy to the maxi-
mum potential energy.

6 Simple harmonic motion may be defined as a motion in which the acceleration is proportional to 
the displacement from the mean position and is always directed towards the mean position.

7 Undamped free vibrations are those in which the system vibrates without the help of any external 
agency. For the spring-mass system,

Natural frequency, 
n
  [k/m]1/2 rad/s

Time period, T  2 /
n
  2 (k/m)1/2 s

Natural frequency, f
n
  [1/(2 )] (k/m)1/2 Hz

8 In damped free vibrations of single degree of freedom systems, a damper is placed in parallel 
with the spring to decrease the amplitude of vibrations. For a spring-mass-damper system,

c
c 

2m
n
  2 (k/m)1/2,   c/c

c
  damping coefficient/critical damping coefficient

(a) Underdamped system ( <1) leads to oscillatory motion.

d
  

n
(1– 2)1/2  damped natural frequency

The general solution can be written as,

x(t)  X exp(–
n
t) sin(

d
t  )

(b) Overdamped system (  > 1) leads to exponentially decreasing function.

(c) Critically damped system (   1) leads to non-oscillatory motion.

9 Logarithmic decrement is defined as the natural logarithm of the ratio of any two successive 
amplitudes of vibration.
Logarithmic decrement,
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10 When a system is subjected to forced harmonic excitation, its vibration response takes place at 
the same frequency as that of the excitation.

 x(t)  x
st
 sin t/(1– 2)

 where x
st
  F

o
/k  static deflection,   /

n
  frequency ratio, 

n
  (k/m)1/2

 Amplitude of oscillation, X  x
st
 /(1 2)

 At resonance,   1 and the amplitude tends to infinity.

11 Damped forced vibrations.

The steady state solution is given by,

 x
s
(t)  x

st
sin( t  )/[(1 2)2  (2 )2]1/2

where x
st
  F

o
/k

Amplitude, X  x
st
/[1  2)2 (2 )2]1/2

Phase angle,   tan 1[2 /(1 2)]

Magnification factor, M
f
  X/x

st
  1/[(1 2)2 (2 )2]1/2

For   1, M
f
 1/(2 )

For M
f
 to be maximum,   (1 2 2)1/2

 (M
f
)

max
  1/[2 (1 2)1/2]

12 Rotating Unbalance

The steady state solution is:

 x  μ
e

2sin( t  )/[1 2)2 (2 )2]1/2

   tan-1[2 /(1  2)]

 μ  m/M

 Magnification factor, Mf  X/(μ
e
)  X/(me/M)  2/[1 2)2 (2 )2]1/2

For   1, M
f
  1/(2 )

For , M
f
  1

For   1,   90°, i.e. m
o
 is out of phase with m.

When  >> 1,   180°.

13 Reciprocating unbalance

 F  μMe 2 sin t

The equation of motion for the mass M will be the same as for rotating unbalance.

14 Vibration isolation.

 Maximum amplitude, X x
st
/[1  2)2 (2 )2]1/2

 Where x
st
  F

o
/k  static deflection

 Force transmitted to the foundation, F
tr
  F

o
[1 (2 )2]1/2/[(1 2)2 (2 )2]1/2
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 Force transmissibility, TR  F
tr
/F

o
  [1 (2 )2]1/2/[(1 2)2 (2 )2]1/2

 TR TR TR TR1 2 1 2 1 2 1 2 when   for      for    , , ,for

 Phase difference between the transmitted force and the excitation force,

     tan 1[2 /(1 2)  tan 1(2 )

15 The critical speed of a rotating shaft is the speed at which the shaft starts to vibrate violently in the 
transverse direction. Critical speed is also called ‘whipping’ or ‘whirling’ speed. The main reason 
for the whirling speed is the mass unbalance of the shaft when the mass centre does not coincide 
with the geometric centre.
(a) Single disc without damping

 r  e 2/(1– 2)

 where   /
n
, 

n
  (k /m)1/2

The deflection of the shaft tends to infinity when   1. Thus, the critical speed of the shaft is 
equal to the natural frequency of lateral vibrations of the shaft. For  < 1, r is positive, i.e. the disc 
rotates with heavy side outwards, For  > 1, r is negative, i.e. the disc rotates with light side outwards, 
also  < 1 corresponds to zero degree phase difference and  > 1 corresponds to 180° phase differ-
ence. When  >>1, r e, i.e. the point G approaches O and the disc rotates about its centre of gravity. 
Therefore, it is always advisable to operate the machine much above its natural frequency.

(b) Single disc with damping

 r/e  2/[1 2]2 (2 )2]1/2

 Where   /
n
,   c/[2(mk)1/2]

 Phase difference,   tan 1[2 /(1 2)]

   (i)   0 when  << 1, and heavy side of the disc will be out.

 (ii) 0 <  < 90° when  < 1, and heavy side of the disc will be out.

(iii)   90° when   1.

 (iv) 90° <  < 180° when  > 1, and light side of the disc will be out.

   (v)    180° and r  e when  >>1, and light side of the disc will be out with the disc rotating 
about its centre of gravity.

16 Transverse vibrations of a bean:

 
n
  [g/

st
]1/2 rad/s

Where 
st
  WL3/(48EI), for a single concentrated load at midspan on a simply supported beam

  WL3/(192EI), for a single concentrated load at midspan on a beam fixed at both ends

  5wL4/(384EI) , for a simply supported beam carrying udl on whole span

  Wa2b2/(3EIL), for a simply supported beam carrying off centre concentrated load

  wL4/(384EI), for a beam carrying udl and fixed at both ends

  WL3/3EI, for a cantilever carrying end load

17 Dunkerley’s method:

1/
n
2  1/

1
2 1/

2
2 … 1/

m
2 1

s
2

Where 
i
 , i  1 to m are the natural frequencies of the shaft with each lumped mass acting alone,

 
s
  natural frequency of the shaft due to its own udl.

 
n
  fundamental natural frequency of the system
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Dunkerley’s method gives the lower bound on natural frequency of the system.

18 Rayleigh’s method:

n
  [g W

i
 y

i
/ W

i
 y 2

i
]1/2

Rayleigh’s method gives the upper bound on the natural frequency of the system.

19 The solution of torsional vibrations is similar to the solution of longitudinal vibrations. The equiv-
alence between these vibrations is:

I  m, q or k
t
  k, c

t
  c, T

o
  F

o

20 Equivalent length of a stepped shaft:

l
e
 l

1
 (d

1
/d

2
)4 l

2
 (d

1
/d

3
)4 l

3
 ….

21 For a shaft carrying a single rotor, natural frequency of torsional vibrations,

n
  [q/I ]1/2 rad/s

22 At the node location, the amplitude of vibration of the shaft is zero.

23 For a shaft carrying two rotors

 
n
  [k

t
(J

1
 J

2
)/(J

1
J

2
)]1/2

 Position of nodes: l
1
  J

2
 /(J

1
 J

2
)

 Ratio of amplitudes: A
1
/A

2
  J

2
/J

1
  l

1
/l

2

24 For geared shafts with i  n
1
/n

2
  z

1
/z

2
,

Equivalent torsional stiffness of driven shaft, q
2
  i 2q

2

Equivalent moment of inertia of rotor on the driven shaft  J
2
  i 2J 

2

Equivalent torsional stiffness of the geared shafts, q
e
  i2q

1
q

2
/(q

1
 i2q

2
)

Natural frequency, 
n
  [q

e
(J

1
 i 2J

2
)/(i 2J

1
J

2
)]1/2 rad/s

25 For a shaft carrying n rotors, the number of nodes are (n 1).

Multiple Choice Questions

1 The effect of the spring mass can be accounted for to calculate the natural frequency of a spring-
mass system by adding n times the mass of spring to the main mass, where

(a) n
1

2
 (b) n

1

3
 (c) n

1

4
 (d) n

3

4
.

2 The equivalent stiffness of two springs of equal stiffness in series becomes

(a) 
1

4
 (b) 

1

2
 (c) 

1

3
 (d) 2 times.

3 The equivalent stiffness of two springs of equal stiffness in parallel becomes

(a) Twice (b) One-half (c) One-third (d) One-fourth.

4 Damping ratio ( ) is defined as:

(a) 
c

c
c  (b) 

c

cc

 (c) c cc  (d) 
c

cc

2

.

5 For an underdamped system

(a)  1  (b)  1 (c)  1 (d)  0.
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6 For a critically damped system, damping ratio is

(a) 1.0 (b) 0.5 (c) 2 (d) 3.

7 For an underdamped system, motion is
(a) Exponentially decreasing (b) Oscillatory
(c) Non-oscillatory (d) Aperiodic.

8 For a critically damped system, motion is
(a) Non-oscillatory (b) Exponentially decreasing
(c) Oscillatory (d) Aperiodic.

9 Logarithmic decrement ( ) is defined as:

(a)  ln
x

x
n

n

1  (b)  ln
x

x
n

n 1

(c)  2
1

ln
x

x
n

n

 (d) 
1

2 1

ln
x

x
n

n

.

10 The relationship between natural frequency and damped natural frequency is:

(a)   d n  (b)   d n 1 2
 (c)   d n 1 2

 (d)   d n ( )1 2
.

11 Magnification factor for   1 is

(a) 
1


 (b) 

1

2
 (c) 

1
2

 (d) 
1
1 2 / .

12 Force transmissibility is unity, when

(a)  1  (b)  2  (c)  2  (d)  2 .

13 Which of the following methods gives lower bound on the natural frequency?
(a) Dunkerley’s method (b) Energy method
(c) Rayleigh’s method (d) Equilibrium method.

14 Equivelent length l
e
 of a stepped shaft is

(a) l l
d

d
l

d

d
le 1

1

2

4

2
1

3

4

3
...    (b) l l

d

d
l

d

d
le 1

1

2

3

2
1

3

3

3
...

(c) l l
d

d
l

d

d
le 1

1

2

2

2
1

3

2

3
...    (d) l l

d

d
l

d

d
le 1

1

2
2

1

3
3

...

15 A torsional system having m rotors on a vibrating shaft has
(a) m nodes (b) (m – 1) nodes
(c) (m – 2) nodes (d) 2m nodes.



1146 Theory of Machines

Answers

1. (b) 2. (b) 3. (a) 4. (b) 5. (a) 6. (a) 7. (b) 8. (a) 9. (b) 10. (c) 11. (b) 12. (b)  
13. (a) 14. (a) 15. (b)

Review Questions

1 Define vibrations. How they are caused?

2 What are free and damped vibrations?

3 What are forced vibrations?

4 What are the elements of a vibrating system?

5 Define logarithmic decrement. What is its significance?

6 What is the type of motion for underdamped, critically damped, and overdamped system?

7 Define damping coefficient and critical damping coefficient.

8 What is magnification factor?

9 Define the terms vibration isolation and transmissibility.

10 What do you understand by whirling of a shaft?

Exercises

17.1 Determine the frequency of free vibrations of a fluid column of length L in a U-tube if the den-
sity of the fluid is  and area of cross-section of tube is A.

17.2 A spring-mass system of stiffness k
1
 and mass m is suspended at the end of a cantilever of 

length l
1
. The cantilever is supported at a distance l

2
 by another spring of stiffness k

2
. Assuming  

the cantilever to be of negligible mass, determine the frequency of natural vibrations of the 
system.

17.3 A vibrating system consists of a mass of 40 kg and a spring of stiffness 25 N/mm and damper. 
The damping provided is only 15% of the critical value. Determine (a) the damping factor, 
(b) critical damping coefficient, (c) damped natural frequency, (d) logarithmic decrement, and 
(e) ratio of two successive amplitudes.

17.4 In a single-degree damped vibrating system, a suspended mass of 10 kg makes 25 oscillations in 
15 s. The amplitude decreases to 1/4 th of the initial value after 5 oscillations. Determine (a) stiff-
ness of the spring, (b) logarithmic decrement, (c) damping factor, and (d) damping coefficient.

17.5 A machine part having a mass of 2 kg vibrates in a viscous medium. A harmonic exciting force 
of 25 N acts on the part and causes a resonant amplitude of 12 mm with a period of 0.2 s. Find 
the damping coefficient.

 If the frequency of the exciting force is changed to 3 Hz, determine the increase in the ampli-
tude of the forced vibrations upon the removal of the damper.

17.6 A single-cylinder vertical diesel engine has a mass of 350 kg and is mounted on a steel frame. 
The static deflection due to the weight of the frame is 2 mm. The reciprocating masses of the 
engine amounts to 15 kg and the stroke of the engine is 150 mm. A dashpot with a damping 
coefficient of 2 N/mm/s is also used to dampen the vibrations. In the steady state of the vibra-
tions, determine (a) amplitude of the vibrations if the driving shaft rotates at 450 rpm, and 
(b) the speed of the driving at resonance.
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17.7 A refrigerator unit having a mass of 40 kg is to be supported on four springs, each having a 
spring stiffness k. The unit operates at 460 rpm. Find the value of stiffness k if only 10% of the 
shaking force is allowed to be transmitted to the supporting structure.

17.8 A rotor has a mass of 10 kg and is mounted midway on a 20 mm diameter horizontal shaft sup-
ported at the ends by two bearings 1.2 m apart. The shaft rotates at 2000 rpm. If the centre of 
rotor of the rotor is 0.10 mm away from the geometric centre of the rotor due to certain manu-
facturing defect, determine (a) the amplitude of the steady-state vibration, and (b) the dynamic 
force transmitted to the bearing. For shaft material, E  200 GPa.

17.9 An electric motor running at 450 rpm is supported on a spring and a dashpot. The spring stiffness 
is 6000 N/m and the dashpot offers resistance of 500 N at 5 m/s. The unbalanced mass 0.5 kg 
 rotates at 6 cm radius and the total mass of vibratory system is 20 kg. Determine (a) damping 
factor, (b) amplitude of vibration and phase angle, (c) resonant speed and resonant amplitude, 
and (d) force exerted by the spring and dashpot on the motor.

17.10 A shaft 15 mm diameter and 1 m long is held in long bearings. The weight of the disc at the 
centre of the shaft is 15 N. The eccentricity of the centre of gravity of the disc from centre of 
rotor is 0.3 mm. The permissible stress in the shaft material is 65 MPa and its modulus of elas-
ticity is 200 GPa. Determine (a) the critical speed of the shaft, and (b) the range of speed over 
which it is unsafe to run the shaft.

17.11 For the semi-definite system shown in Fig.17.56, if J
1
  1.2 kg m2, J

2
  J

3
  2J

1
, k

11
  25  103 

N m/rad, and k
12

  2 k
11

, find the natural frequencies and relative amplitude of the principal 
modes.

Fig.17.56 Semi-definite system

17.12 Neglecting the inertia effect of the pinion and gear in Fig.17.57, let J
1
  0.2 kg  m2, J

2
  4J

1
;  

k
11

  60  103 N m/rad, k
12

  7 k
11

, and the gear ratio 3:1. Find the natural frequencies of the 
system: (a) referring to shaft 1, and (b) referring to shaft 2.

Fig.17.57 Geared system
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17.13 A motor shaft of diameter 50 mm drives a pump shaft of diameter 100 mm through a spur 
gear pair, as shown in Fig.17.58. The motor rotor has a moment of inertia of 500 kg m2 and 
the pump rotor has 1500 kg m2. The speed ratio is 3:1. G  84 GPa. Calculate the natural 
frequency of the gear system.

Fig.17.58 Geared system

17.14 Determine the natural frequency and position of the node for the free torsional vibrations of 
the stepped shaft shown in Fig.17.59. G  80 GPa.

Fig.17.59 Stepped shaft

17.15 Calculate the natural frequency of a shaft of diameter 100 mm and length 3 m carrying two 
discs of diameters 1.25 m and 2 m at its ends and weighing 500 N and 900 N respectively. For 
the shaft, G  84 GPa.
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18.1 INTRODUCTION
Mechanisms are required to be adjusted or controlled so that they perform their specified function. 
This can be done either manually or automatically. Automatic control is desired in order to save the 
human operator from monotony of work and to bring about efficiency in the system.

Automatic control of mechanisms has been widely used in various devices and machines process, 
industry, manufacturing systems, and machine tools, etc.

18.2 DEFINITIONS
Automatic controller: It is a mechanism which measures the value of a variable quantity or condition 
and operates to correct or limit the deviation of the measured value from some selected reference.

Process controller: It is a device which controls a process, for example, a change in pressure, tempera-
ture, voltage or speed.

Regulator: It is a device which keeps a quantity at a constant value.

Kinetic control: Which controls the position or velocity or acceleration of a member.

Remote Position control: Which controls only the position of a member.

Servomechanism: when a control system includes a power amplifier also.

Open-loop control: in which the control is achieved essentially by previous design, calibration, and 
perhaps trial and error.

Closed-loop control: in which the results are continuously monitored and allows correcting action.

Process: includes all functions performed in and by the equipment in which a variable is to be controlled.

Resistance: is opposition to flow. It is measured as potential change required to produce a unit change in flow.

Set-point: is the position in which the control point setting mechanism is set.

Cycling: is a periodic change of the controlled variable from one value to another.

Dead time: is any definite decay /period between two related actions.

Proportional control: in which the controller output is proportional to the input.

Integral control: in which the output of the controller is proportional to the time integral of the activat-
ing signal.

Derivative control: in which the output of the controller is proportional to the rate of change of input.

On-off action: in which a final control element is moved from one of two fixed positions to the other.

On-off control: in which the controller operates at either of two levels.

Stable system: is one in which the transient response decays as time increases.

Unstable system: is one in which the transient response increases as time increases.

Overshoot: is defined as the maximum deviation of the response above the steady state value.

Response time: is the time required for the system to reach steady state.

Settling time: is defined as the time required for the output to achieve within 2% of its final value when 
the system is subjected to a step input.

Delay time: is defined as the time required for the output to reach 50% of its final value in first attempt.

Rise time: is the time required for the output to rise from 10% to 90% of the final value for overdamped 
system, and zero to 100% of the final value for underdamped system.

Peak time: is the time required for the output to reach the peak of time response or the peak overshoot.

Transducer: is a device, which converts a phenomenon to be measured into a more conveni ently meas-
urable quantity, which is directly proportional or analogous to the phenomenon to be measured.
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Command: is the result of act of adjustment of a device or mechanism or link.

Response: is the behaviour of the system.

Block diagram: is a pictorial method of portraying the interrelationships among components of a 
physical system or process.

Transfer function: is the ratio of the Laplace transformation of output to Laplace transformation of input.

18.3 TRANSDUCERS AND SENSORS
Transducers are the basic elements that convert or transform one form of signal to another form 
which is more convenient to use and measure. A transducer is an essential element of a sensor. A sensor 
is merely a sophisticated transducer which contains some signal conditioning circuits capable of amplifying  
and refining the weak and raw signal that is available at the output of the transducer. Some of the 
commonly used signal conditioning circuits are: amplifiers, filters, Analog to Digital Converter 
(ADC), etc. Fig.18.1 gives an illustration of a sensor.

Electronic
circuit for
signal
conditioning

Input
signal

Transducer
Transducer

output
Sensor
output

Fig.18.1 Illustration of a sensor

18.3.1 Transducer Types
Transducers are classified based on whether they produce passive or active equivalence.  Passive 
equivalence are: resistance, inductance, and capacitance. On the other hand, active transducers are 
those, which directly provide electrical signals like voltage, current either in the form of D.C. or 
A.C. Active and passive type transducers are referred to as the primary and secondary transducers 
respectively.

Specially designed mechanical structures are also used for the measurement of various physical 
phenomenon such as movement, proximity, displacement, force, pressure, strain, flow etc.

18.4 ACTUATORS
Actuation is the process of conversion of energy to mechanical form. A device that accomplishes this 
conversion is termed actuator. Actuators play a very important role while implementing control. The 
microcontroller provides command signal to the actuator for actuation.

There are many types of actuators, in which energy transformation takes place through multiple 
forms. The actuators are broadly categorized into following groups:

1. Electromechanical actuators

2. Fluid power actuators

3. Active material based actuators.

Electromechanical actuators are used to efficiently convert electrical energy into mechanical energy. 
Megnetism is the basis of their principles of operation. Electromechanical actuators are DC, AC, servo, 
and stepper motors.
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Fluid power actuators are of the hydraulic and pneumatic types. Active material based actuators 
under some sort of transformation through physical interaction such as piezo electric materials, 
magnetostrictive materials, and electrorheological fluids etc.

18.5 BLOCK DIAGRAMS
A block diagram is a symbolic outline of a system in which various components or operations are 
represented by rectangles in an ordered sequence. The rectangles are connected by arrows showing the 
flow of the working medium or of information. The block diagram of an ordinary carburettor depicted 
in Fig.18.2(a) is shown in Fig.18.2(b).

Fig.18.2 Carburettor system block diagram

A mechanical system of the mass-spring-damper system is shown in Fig.18.3(a), whose equivalent 
block diagram is shown in Fig.18.3(b).

F(t)

F(t) 1

mD2+cD+k

x(t)
(a) Mass-spring-damper

system
(b) Block diagram

x(t)ck

m

Fig.18.3 Mass-spring-damper system

18.6 SYSTEM MODELING
System modeling is about solving practical problems by creating mathematical models, called model 
equations. These equations can be manipulated and optimized during the process of system design. 
The analysis and design procedure can be summarized as follows:
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Identification or description of physical system in terms of basic modeling elements.

Formulation of a mathematical model.

Analysis of the model.

Interpretation, confirmation, and verification.

Practical behaviour study.

All systems are categorized under four main basic or elemental systems, namely:

Mechanical system

Electrical system

Fluid system

Thermal system

1. Mechanical system
The three basic modeling elements for mechanical systems are: spring, damper, and mass / inertia. 
The spring element stores potential energy. Spring stiffness is the applied force per unit deflection. The 
reciprocal of the stiffness is called mechanical capacitance or compliance. The spring can be of the 
translational or rotational type. The potential energy stored by a spring element is given by:

U k x
F

k

1

2

1

2
2

2

or

 

1

2

1

2
2

2

k
T

kt
t



where k
t
  rotational stiffness.

A damper element consumes energy which cannot be recovered. Other name of the damper is 
dashpot or mechanical resistance. Dampers are of two types: translational and rotational dampers. The 
loss of energy in a damper is related to the velocity.

Damper resistance, F  cv
where  c  damping constant

 v  velocity

Power loss, P  Fv  cv 2

For the rotational damper element,

Torque, T c
t 

where c
t
  rotational damping constant

   angular velocity

Power dissipated, P  T  c
t

 2 

Mass element refers to translational movement where as inertia element corresponds to rotational 
movement.

Force,
  

F ma m
t

d

d

v

Kinetic energy stored,
 

E mk

1

2
2v

For the rotational system,
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T J J
t

E Jk






d

d
1

2
2

where J  moment of inertia

2. Electrical system
The three basic elements of an electrical system are: Inductor, resistor, and capacitor. They are analo-
gous to spring, damper, and mass/inertia.

Stored magnetic energy,

 
E Li

1

2
2

Loss dissipated, P  i2R
Stored electrical energy,

 
E Ck

1

2
2v

3. Fluid system
The three basic modeling elements in fluid system are: Inertance, fluid resistance, and fluid capaci-
tance.

Inertance,    Q
where   pressure momentum
    fluid inertance
 Q  flow rate
The element possessing inertance is known as inertor.

Energy stored in inertor,  
 
E Q

1

2
2

An ideal inertor characterizes frictionless, incompressible flow in a uniform passage. For such 
fluids,

 

L

A

where   density of the fluid
 L  length of inertor
 A  area of passage
A fluid resistor dissipates energy.

Fluid flow rate,

 

Q G P
R

Pf
f

1

where P  pressure drop
 G

f
  fluid conductance (m3/N.s)

 R
f
  fluid resistance (N.s/m3)

Power dissipated,

 

P PQ R Q
R

Pf f
f

2 21
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A fluid capacitor is defined as an element in which the stored energy is a function of fluid pressure. 
For a fluid capacitor,

Volume, V  C
f
 P (m3)

where C
f
  fluid capacitance (m3 /N)

 P  fluid pressure

 

d

d

d

d

v

t
C

P

t
Qf

For an ideal fluid capacitor,

  
C

A

gf 

where A  area of flow.

4. Thermal system
The basic modeling elements of thermal system are: Thermal capacitance and thermal resistance. The 
thermal capacity of a thermal system is the amount of heat energy it can store.

Heat, H  C
t
 T (Joules)

where C
t
  thermal capacitance (J/K)

 T  temperature (k)
Rate of energy storage,

or
 

q
H

t
C

T

t
q

t

t

d

d

d

d

 C


where   rate of temperature
   

d

d

T

t

t  time

Thermal resistance,
 
R

T T

q
K Wt

2 1 ( / )

Conductance

 

1

Rt  

(W/K)

18.7 SYSTEM RESPONSE
System response deals with studying the behaviour of the system in which changes occur and in which 
predictions are desirable. Input-output models form the basis of most classical control systems. There 
are three main types of behaviour which may be seen at the output. They are:

Instantaneous response

Lagging response, and 

Delayed response

Suppose an input u, which is a step signal [Fig.18.4(a)] is given to a system. The typical response 
shown in Fig.18.4(b) is called the instantaneous response. In this case y responds in a step, but of dif-
ferent amplitude compared to that of u. In the mathematical relationship,

 y(t)  au (t)  a
0   
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where a  gain

In any system, usually, there is a lag or delay in response due to some inherent causes. In lagging 
case, as shown in Fig.18.4(c), y starts to change but full/extent of response lags behind the input. After 
a while, however, y tries to attend the value of the input. In the mathematical relationship,

 

d

d

y t

t
au t a y t

( )
[ ( ) ( )]

1
0

  time constant of the system, which determines speed
In the third case, shown in Fig.18.4(d), it is observed that no immediate change in y occurs when u 

changes. However, after certain time T, y responds to the change in u as in the instantaneous response 
case. The time T is referred to as a time delay of the system.

Fig.18.4 Typical behaviour of the system

18.7.1 Transient-Response Specification
If at time t  0, the command signal or control signal is given at the input of a system we expect that the 
output should respond immediately at the same time. However, in practice the system takes time to pro-
duce the output response. This delay and lagging characteristics is due to the presence of energy storing 
elements within the systems. In effect the system exhibits transient properties. The output starts from 
initial value (the initial value could be zero) and reaches at the steady-state value after certain time. How 
the output reaches at the steady-state value solely depends on the type of the system in hand. (e.g.  first 
order, second order, linear, nonlinear etc.) and the nature of input signal provided. This property of this 
phenomenon can be specified through transient-response specification. This section describes the basics 
of transient-response specifications. The transient response specifications involves the following  terms.

Peak-time

Settling-time

Steady-state value

Maximum overshoot

The above terminology is based on a step input to the system. Fig.18.5 illustrates the transient 
response corresponding to a step input signal.
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Fig.18.5 Transient-response specifications

Rise-time is the time required to the output to reach 90% from 10% of the input value. Peak-time 
is the time required to reach the peak overshoot value. Settling-time is the time at which the response 
attends within 98% of the final value. An error limiting 2% is called tolerance. The output response, 
settles within this tolerance band only after the settling time is reached and the level of output is 
referred to as initial steady-state value. Initial steady-state value starts at t  t

s
. The final steady state 

value refers to the response value at time t . The maximum overshoot is the difference between the 
maximum peak and the input value. It is usually expressed in percentage.

18.8 TEST SIGNALS
In order to know the output response of a system, usually some test signals are given at the input and 
then the outputs are observed. Commonly used test signals are: step, ramp, and sinusoidal signal, as 
shown in Fig.18.6.

(a) Step

Amplitude Amplitude
Amplitude

(b) Ramp (c) Sinusoidal

Time

u0

Time

u0t
u0

Time

Fig.18.6 Types of test signals
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Mathematically, the test signals are expressed as follows:
1. Step:

 

v( )t t

u t

step for

for

0 0

00

2. Ramp:

 

v( )t t

u t t

ramp for

for

0 0

00

3. (a)  Sinusoidal (sine):

 

v( )

sin ( )
sint t

u t t
e 0 0

00 0

for

forw
 (b) Sinusoidal (cosine):

 

v( )

( )
cost t

u t t
i ne 0 0

00 0

for

cos forw

18.9 OUTPUT RESPONSE OF FIRST ORDER SYSTEMS

18.9.1 Linear Systems
(a) Free response (zero excitation)
Consider the massless spring of stiffness k and viscous damper of damping coefficient c as shown in 
Fig.18.7. The equation of motion is:

or
 

cy ky

y
k

c
y

0

0 

k

c

y

Spring

Damper

Fig.18.7 First order linear system
Its solutions is,

 
y A

k

c
texp
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Let at  

        

         

Let

t y

y A

y y
k

c
t

0 0

0

0

,

exp

y


cc

k

y y
t

,

exp

then

          0   
(18.1)

 is known as the time constant for the system, which determines the speed of the system.

 

y

y

t

0

exp


It is an exponentially decreasing function. At t  or when t  is very large, the output is approxi-

mately zero. Fig.18.8 illustrates the normalized output response 
y

y0

 of the system.

Time

y

1.0

y0

t( )

Fig.18.8 Normalized output response of first-order linear system

(b) Linear system with excitation
Consider a first order linear system consisting of a massless spring and viscous damper shown in 
Fig.18.9. A constant input in represented by x and y represents the output of the system.

k

y

c

x

Spring

Damper

Fig.18.9 Linear system with excitation
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The equation of motions is: 

 

cy k x y

cy k kx

y
k

c
y

k

c
x

or       

or       

y

This is a first order differential equation.
Complementary function is the solutions of the equation,

 
y

k

c
y 0

The solution is:

 y Ae
k

c
t

where A is a constant.
The particular integral is:

 

PI

k

c
x

k

c

k

c
x

k

c

x
0

The complete solutions becomes, 

 

         

when 

     

or     

y x A
k

c
t

t y

x A

A

exp

,0 0

0

x

y x
k

c
t

x
t

    

         

1

1

exp

exp


Where 
c

k
,  is known as time constant for the system

Also 
y

x

t
1 exp



Fig.18.10 shows graphical representation of  
y

x
s

t
v ’ .  (18.2)

As t increases, y tends to reach x.  When 
t y

x
1 1 0 368 0 632, . .
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1.0

0.632

y
x

t

Fig.18.10 
x

y
 v's t  for linear system with excitation 

Exp
t


 is known as the dynamic error, which reduces with increase in t and vanishes when t 

becomes infinitely large. However, one need not wait for an infinitely long time. Instead an accepted 
value of error is specified and the settling time is obtained when the steady state response enters in a 
band around the final steady stage value. The usual value of band is taken between 2 to 5 percent.

18.9.2 Step Input

Time

F0

(a) Step input

Time t( )
0

1.0

y(t)

u0

(c)
y

v’s t/
u0

(b) First order system

k

c

y

Spring

Damper

Fig.18.11 Step input applied to first order system

The step input is shown in Fig.18.11(a) and the first order system in Fig.18.11(b). The input-output 
model equation is:

or
 

cy ky F

c

k
y y

F

k

0

0  

Let 
c

k
,  time constant
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and u
F

k0
0 , static deflection.

Then, we have
 y + y  u

0

The homogeneous (or complementary) solutions is obtained from the homogeneous equation,





y y

y t A
t

c

0

exp

The particular solution is,

 
 

y t
u

D

u
up

0 0
01 0 1

Total solution,

 

y t y t y t

A
t

u

c p

exp
 0

For, y (0)  y
0

 y
0
  A + u

0

or A  y
0
  u

0

 

y t y u
t

u

y
t

u
t

0 0 0

0 0 1

exp

exp exp



 

The transient solution vanishes as t .

 
y t u

t
0 1 exp

  
(18.3a)

For a unit step input, the response is

 
y t

t
1 exp

  
(18.3b)

The normalized output response is shown in Fig.18.11(c).

18.9.3 Ramp Input
The response equation for the first order system in response to ramp excitation can directly be 
written as:

 

y t y
t

u t
t

0 0 1exp exp





where y (0)  y
0
  and u

0
 is the slope of ramp input signal.

If y (0)  0, then

 

y t u t
t

0 1


exp

 

(18.4a)
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If the input function is a unit ramp, then

 
y t t

t



1 exp

 
(18.4b)

18.9.4 Sinusoidal Excitation
Let the input signal be a cosine function with the frequency . Then the governing input-output model 
equation can be written as:

 y. + y  u
0
 cos t

Its complementary solution is,

 
y t A

t
c exp



Particular solutions,

 

y t
u t

D

D u t

D

u t u t

p
0

0

cos

cos

sin cos

1

1

12 2

0 0
22 2

0

2 2

0
2 2

2 2

0

1

1

1

1

1

u t t

u t

u

sin cos

sin

2 2

1

cos

tan

exp

t

y t y t y t

A
t

c p

uu
t0 cos

where  1 2 2 

For  y (0)  y
0

 

y A
u

A y
u

y t y
t

u t

0
0
2

0
0
2

0 0 2

1 1
exp cos exp


 

t

  
(18.5a)
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If y (0)  0, then

 
y t t

t1 1
cos exp 

  
(18.5b)

O

+1

-1

Input
Response

Output

t

Fig.18.12 Sinusoidal input and normalized output

Fig.18.12 illustrates the input sinusoidal signal as well as corresponding output normalized response. 
The output lags the input by an amount .

18.9.5 Torsional System

0
i

Torsional
massless spring Viscous

damper
ct

q

Fig.18.13 Torsional damped system

Fig.18.13 shows a system consisting of a mass less torsional spring of stiffness q and a damper of damp-
ing coefficient c

t
. First the input signal 

i
 is compared with the output signal 

0
. Then the difference e  

i
  

0
 is passed on to the motor which produces an output torque T proportional to e or  qe.

The equation of motion is 

 

c qe q

c q q

q

c

q

c

t i

t i

t

0 0

0 0

0 0

or      

or     
tt

i

It is a first order differential equation.
Complementary function is a solution of the equation

 
0 0 0

q

ct
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The Solution is,

 
0 A

q

c
t

t

exp

Particular integral is,

 

PI

q
c

q
c

t
i

t

i

D 1

The complete solution becomes,

For

 

0

0

0

0 0

0

1

( ) exp

exp

t A
q

c
t

A

A

t

t
i

i

i

i

or 

t

 
(18.6)

 

Where c qt /  time constant of the system.

Example 18.1

The time constant of a thermometer is 10 s. Suddenly it is inserted in a bath at temperature 75°C.  
Calculate the temperature recorded by the thermometer after 5 s.

Solution 

 

y x
t

1

75 1
5

10

29 5

exp

exp

. C

Example 18.2

A scale is fixed to the end of a shaft of torsional stiffness 2.5 N.m / rad. A viscous damping torque of 
magnitude 1.5 N.m resists the motion of the pointer on a scale at an angular velocity of 2 rad / s. The 
shaft to which pointer is attached gets the motion from the input shaft through a reduction gear box 
which has a gear ratio of 8:1. If the input shaft is suddenly rotated through one complete rotation, 
determine the time taken by the pointer to reach the position within 1% of the final value. Neglect 
inertia of the rotating system.

Solution 

The torsional system is shown in Fig.18.14.

 
 

0 1i

t
exp
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Input

Gears

Z1

Z1

ct=0.75 N m s/rad

Viscous
damper

Scale
q=2.5 N.m/rad

Z2
Z2

i
0

= 8

Fig.18.14 Torsional damped system

Rotation of the shaft with pointer, 
 

i
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8 4
rad
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18.10 OUTPUT RESPONSE OF SECOND ORDER LINEAR SYSTEMS
The governing equation for the second order system is of the form:

y a y a y bu t1 2

Where the coefficients a
1
, a

2
, and b are the constants, u[t] is the input and y(t) is the output. ÿ and  

y· are the second and first derivatives of y(t)  u(t) could be an arbitrary function or a test signal such as 
a step function, ramp function, a sinusoidal function and so on. In order to get the output response of 
the second order system the governing equation has to be solved.



1167 Automatic Control 

18.10.1 Free Response
The output response is called free response if the forcing function or excitation signal is zero, i.e.  
u(t)  0. Thus

 y a y a y1 2 0

This equation is analogous to the equation of motion for free vibrations of a mass-spring-dashpot 

system, where a
c

m1  and a
k

m2 .

The standard normalized form of this equation is,

 y y yn n2 02 

Where 
c

cc

and n

k

m

The solution of above equation has been discussed in chapter 17.

(a) Underdamped system (  < 1)
The solutions of the equation is,

 
y t e A t B tnt

d dcos sin

Where   d n 1 2

For y (0)  y
0
 and y y0 0 , we have

y
0
  A

y t e A t B t

e A t B t

n

n

t
d d d

n
t

d d

sin cos

cos sin

y B A

B y

B y y

y t e y

d n

d n

d
n

tn

0

0

0 0

0

1

cos d
d

n d

t
d d

t y y t

e y t tn

1

1

0 0

0 2

sin

cos sin
y

t
d

d
0 sin

 

(18.7a)

If y (0)  y
0
 and y 0 0 , then

y t e y t tnt
d d0 21

cos sin

 

(18.7b)
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(b) Critically damped System (   1)
The solution of the equation is,

 

y t A Bt e

y y A

y t e B e A Bt

y

n

n n

t

t
n

t

0 0

.

    00

0 0

0 0 0

B A

B y y

y t e y y y t

n

n

t
n

n

 
(18.8a)

If y (0)  1 and y 0 0, then

 
y t e tnt

n
 1

 
(18.8b)

(c) Over damped system (  > 1)

 

y t Ae Be

y y A B

y t A

n nt t

n

     

  

2 21 1

00

22 1 2 1

0

1 1

0

2 2

e B e

y y A
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2
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2
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A y A

A

n

n n

nn n

n

n

y
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2
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2
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(18.9)

For y (0)  1 and y 0 0

 

A

B

n

n

1

2 1
1

1

2 1
1

1
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18.10.2 Step Input
The governing equation in standard normalized form for step signal input is:

 y y y un n2 2
0 

Where u(t)  u
0
 is a step function.

Let the initial conditions be y (0)  y
0
 and y y0 0 .  The characteristic equation for the comple-

mentary solution is:

 y y yn n2 02 

or
  

D D y

D D

n n

n n

2 2

2 2

2 0

2 0

The two roots of the characteristic equation are:

s n1
2 1  

 
and

 
s n2

2 1  

 (i) When the roots are real and distinct (  > 1)

   y t Ae Bes t s t1 2

 (ii) When roots are equal (   1)

  y(t)  (A + Bt) est

 (iii) When roots are imaginary (  < 1)

 
y t e A t B w tnt

d d
 cos sin

where     n 1 2

(a) Over damped system (  > 1)
The particular solution is a constant, since the output at steady state would become close to the 

input, which is nothing but a constant. Thus

PI of y (t)  c

Since y (t) is a constant, y 0 and y 0 .

 n c u2
0

or

   

c
u

y t Ae Be
u

n

s t s t

n

0
2

0
2

1 2





Applying the initial conditions, we have

 

y y A B
u

y y s A s B

n

0

0

0
0
2
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Solving for A and B, we have

 

A
y s u s y

s s

B
y s u s y

s

n n

n

n n

n

0
2

2 0 2 0
2

2
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0
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2
1 ss2

Complete solution becomes,
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(18.10)

If y (0)  y
0
  0 and y y0 00 , for unit step, we have

 

A
s

s s
B

s

s s

y t s e s e

n n

n

x
s t

y
s t

2
2

1 2

1
2

1 2

2

1
1 1 2

 



,

where
  

s
s

s s
s

s

s sx y
2

1 2

1

2 1

,

The output response for   1 is shown in Fig.18.15.

Fig.18.15 Output response of second order system (overdamped situation: (   1))
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(b) Critically damped system. (   1)
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(18.11)

(c) Underdamped system (  < 1)
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For ( ) = ( ) = 0 and we haveoy y u0 0 1
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The output response is shown in Fig.18.16.

Fig.18.16 Output response of second order system (underdamped situation: (  < 1))

18.10.3 Sinusoidal Input
The normalized equation for sinusoidal input to second order system is:

y y y u tn n o2 2  cos

with initial conditions: y o y y o yo o( ) ( ) and 

If the roots of the characteristic equation are distinct and real, then its complete solution is,
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The complete solution becomes,
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18.11 SECOND ORDER TORSIONAL SYSTEMS
Consider a second order torsional system whose block diagram is shown in Fig.18.17. First the input 
signed 

i
 is compared with the output signal 

0
. Then the difference e  

i
  

0
 is passed on to the motor 

which produces an output torque T proportional to e (or  qe). The system has a viscous resistance 
with damping coefficient c.

E  error detector, M  motor, T  transducer, L  load, D  damper

E M

(q)

0
i

D

(c)

(I)

T L

Fig.18.17 Block diagram for second order torsional system

Let I  combined moment of inertia of motor and load
The equation of motion is:

 

I c q q
i

c

I

q

I

q

I

n

i

n

0 0 0

0 0 0

0 02

 

or

or 22
0

2

2

n
c

c
c I

i

c
nwhere ,
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The response of the system shall be considered for the following type of input:

(a) Step displacement

(b) Ramp displacement

(c) Harmonic signal

18.11.1 Step Displacement Input
For step input,

  0 for t  0

  
i
 for t > 0

The complementary equation is,

     0 0
2

02 0n n

(a) Under damped system (  < 1)
The complementary solution is

 
  

0 t X e t
c

t
d

n sin

Particular solution is,

 
PI

D D
n i

n n

2

2 22

As 
i
 is constant, 

i
  0

In the steady state,  o i 0

Also i 0.  Hence

 
PI n i

n
i

 



2

2

The complete solution becomes

 
   

0 t X e ti
t

d
n sin

Now 
0 
(0)  0

0  
i
 + X sin 

X

t X e t

i

i d
t

d

n

n

sin

cos

Also

Now

0

0

0 0

XX e t

X X

nt
d

d n

d

n

sin

cos sin

tan

0 0
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sin d

d n

d

n n

d

n

i n

d

i
i

X

t

2 2 2

2 2 2 2

0

1

n

d

t
d

d

n

i
t

e t

e

n

n

sin tan 1

2
1

1

1
ssin tann t1

12 1
2

 

(18.14a)

For unit step function input, 
i
  1




 





0 2

2 1
2

1
1

1
1

1
t e tnt

nsin tan

 

(18.14b)

The responses for   1 and  > 1 can be obtained in the similar way as explained in previous articles.
The plots of 

0
 v’s t have been shown in Fig.18.18 for various values of . The salient observations are:

1. If  is increased, the frequency of oscillation is reduced.

2. The quickest response with no over shoot is at   1.

3. For   0.6, the response is even faster with very little over shoot.

4. There is no steady state lag (or error).

5. The steady state is reached quickly if 
n
 is large, i.e. q is more and I is less.

6. The dynamic error between the response and the input gradually reduces. However, an acceptable 
error band or a tolerable zone, as shown in Fig.18.19 is prescribed for the system.

Fig.18.18 Output v’s time for second order torsional system with step displacement input
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Fig.18.19 Transient response of a torsionel second-order system with step input

Rise Time (T
r
)

It is the time taken by the output to be equal to the input for the first time. It corresponds to point P
r
 in 

Fig.18.19. For output to be equal to input,

 

1 1
1

1
1

1

1

1

2

2 1
2

2

e T

e

n rT
n rsin tan

or nnTr
n rTsin tan1

1
02 1

2

This is possible if the term inside the bracket is either zero or . It cannot be zero because in that 
case T

r
  0, which is not possible.

Hence

 

or

 

1
1

1

1

2 1
2

1
2

2

 










 

n r

r

n

T

T

tan

tan

 
 

(18.15)

Peak Error (Overshoot)
It is the deviation of amplitude of the output from the input. The first peak overshoot occurs at 

point P
p
, as shown in Fig.18.19. The time taken to reach the peek point is given by,

Peak time, Tp
d n






 1 2
 (18.16)

and the peak error, e e Tn pT

n p

1

1
1

2

2


  

sin
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1

1

1

1
1

2

2

2

1

1 2


 








 



 

e

e

e

e

n p

n p

n

n

T

T

sin

 2

Percentage error 
e 1 2

100
 (18.17)

Settling Time (T
s
):

It is the time taken for the output to reach and remain within a zone of specified percent around the 
final steady state value. The usual value is within 2.5 percent. If the specified value of error is  e then 
after a time T

s
 the amplitude is to be  e corresponding to point P

s
.

or

 

    

      

      

1

1

1

1

1

2

2

2

e e

e e

e

n s

n s

n s

T

T

T

.

.. e

T l
e

T

n s

s

           

                

n
1

1

1

2

n

l
e

n
1

1 2

 (18.18)

or

Example 18.3

A measurement system consists of an effective mass of 50 g and a spring constant 2 kN/m. Find (a) 
the natural frequency of oscillations of the system, (b) the damping constant for critical damping, and 
(c) the damping constant for 25% overshoot and corresponding period of oscillation.

Solution 

(a) n

k

m

2 10

50 10
200

3

3
 rad/s

(b) cc 2 2 2 10 50 10 203 3km N s/m

(c) For 25 % overshoot,

 

0 25
1 2

. exp
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or

 

exp

.

1
4

1 2
4 1 3863

2

n

 2 2  1.922 (1  2)

 11.7914 2  1.922

   0.404

 c  c
c
   20  0.404  8.08 N.s/m

Period of oscillation,

 

Ts

n

2

1 2



 

 

2

200 1 0 404

0 034

2



.

. s

Example 18.4

A second order measurement system has an effective mass of 1.5 kg, the spring stiffness 50 kN/m and 
damping factor 0.45. Assuming a unit step input, find (a) the rise time, and (b) the settling time for a 
tolerance band of 2%.

Solution 

 
n

k

m

50 10

1 5
182 57

3

.
.  rad/s

(a) Rise time,

  
Tr

n

tan 1
2

2

1

1

 

tan
.

.

. .

.

.

1

2

2

1 0 45

0 45

182 57 1 0 45

1 104

163 04
0 0125.  s

(b) Settling time,

  

T
e

s
n

1 1

1 2
ln

 

1

0 45 182 57

1

0 02 1 0 45

0 049

2. . . .

.

ln

 s
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18.11.2 Ramp Displacement Input
Now  

i
  

i
t

or 
i
  

i

The equation of motion becomes:

      0 0
2

0
22 n n n i t

The transient solution is the same as for the step displacement input. The particular solution is

q w w
zw wp
n i

n n

t
t

D D

2

2 22

In the steady state,   o i i

and 0 0

q w w
zw w
w
z
w
z
w w

z
w

p
n i

n n

i

n

n
i

n

t
t

D

t

D

D t

2

2

1

2

1
2

1
2

1
2

DD D t

t

n
i

i
n

i

i
n

1 2

2

2

2

2

2

2z
w w

w z
w w

q z
w w ii

Thus, the steedy state speeds are equal or there is no error in velocity. But the output 
0
 lags the input 

by 2


i

n

.

i
i

n c

i i ic

c q

I

c

Iq
q

I

c

q0

2 2 2

2

For unit ramp input,
 

 i

c

q0

 

As 

Time lag

p
n

n

t
2

2

 
(18.19)
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For unit ramp input, i.e. 
i
  1

 



p

n

t
2

 

(18.20)

The plot of 
0
 v’s t is shown in Fig.18.20.

Uniform slope

0

Steady state lag (error)

t
O

cwi

q
=i=

it

Fig.18.20 0 v’st for ramp displacement input

Example 18.5

A second order measurement system has an effective mass of 1.5 kg and spring stiffness 50 kN/m. 
Assuming a unit ramp input, find the steady state error and time lag for (a) a critically damped system, 
and (b) a damping system with   0.45.

Solution 

n

k

m

50 10

1 5
182 57

3

.
.  rad/s

(a) For a unit ramp input and critical damping,

Steady state error 
2 2 1

182 57
0 010955


n .

.

 Now 
i
  1

 Time lag  0.010955 s

(b) For   0.45

Steady state error 
2 2 0 45

182 57
0 00493


n

.

.
.

 Time lag  0.00493 s

Example 18.6

A servomechanism consists of a system with inertia of 20 kg.m2 and damping coefficient 150 N.m.s/
rad. The torsional stiffness of the controller is 1850 N.m/rad. Determine the damped frequency of 
oscillation, the peak output and the percentage peak overshoot if the system is suddenly displaced 
through an angle of 45°.
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What will be the steady state position error if the input shaft is rotated at a constant speed of 
25 rpm?

Solution 

n

c n

q

I

c I

1850

20
9 617

2 2 20 9 617 384 7

.

. .

rad/s

N.m.s/rad

cc

cc

d n

150

384 7
0 39

1 9 617 1 0 39 8 8562 2

.
.

. . . rad/s

Peak over shoot exp


1 2

exp
.

.
. . %

 0 39

1 0 39
0 2643 26 43

2
or

Peak output  Input + peak overshoot
 45° + 45  0.2643  56.89°

For N
i
  25 rpm,




i

2 25

60
2 618. rad/s

Steady state position error 
c

q
i

150 2 618

1850
0 2123

0 2123 180
12 16

.
.

.
.

rad



18.11.3 Harmonic Input
For a harmonic (or sinusoidal) input, the equation of motion becomes

       0 0
2

0
22 n n n i itcos

Its steady state solution is

 


  

0

2 2 2
1 2

1

1 2i
/

 

(18.21)
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Dynamic error, 
 





i

i i

0 01  (18.22)

Phase lag, 



2

1 2
 (18.23)

where i

n c

c

c
,

Example 18.7

For a second order measurement system with a damping factor 0.42, the natural frequency of  oscillation 
is 25 Hz. Determine the dynamic error and time lag at frequency input of 10 Hz. Also find these values 
at resonance.

Solution 

Here

 

 




  

0 42
10

25
0 4

1

1 2

1

1 0 4

0

2 2 2
1 2

. , .

.

/

i

n

i

2 2 2
1 2

2 0 42 0 4

1 105

. .

.

/

Dynamic error
 

1 1 1 105 0 1050
i

. .

Time lag
 





tan

tan
. .

.
tan

1

2

1

2

1

2

1

2 0 42 0 4

1 0 4
00 4 21 8

2

21 8

180

1

2 10
0 006056

. .

.
.





i

 s

At resonance,   1


 

0 1

2

1

2 0 42
1 190

i .
.

Dynamic error  1  1.190   0.190

  tan 1 ,   90°
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Time lag 



/
.

2

2 25
0 01 s

18.11.4  Step Velocity Input with Error Rate Damping  
(Derivative Control)

If the controller provides a proportional plus derivative action of the error, then equation of motion 
becomes

or 

I c qe q e

q q

I c q q

i

i i i

i

0 0

0 0

0 0 0 q q

c q

I

q

I

q

I

q

I

i i i

i
i

i
i0 0 0or

Comparing with standard normalized equation,

      0 0
2

0
22 n n n i t

we have

 

n

n
i

i

n

i i i

c

q

I

c q

I
c q

I

c q

I
q

I

c q

q I

c q

c

2

2
2

2
or

For the steady state,    i i0 0 0and

 
  


i i

i i iq

I

c q q

I

C

I0

Steady state error,  


i
ic

q0
 (18.24)

The following observations are made:

1. There is no change in the steady state error by using a derivative control.

2. Damping ratio increases from c

cc

 to c q

c
i

c

.

This improves the transient response (overshoot) without the use of excessive damping torque on 
load.
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18.11.5 Step Velocity Input with Integral Control
The equation of motion is:

I c qe q e t

q q t t

i

t

i i i

t t

0 0

0

0

0

0

0

d

d d

Differentiating, we have

I c q q q qi i i i     0 0 0 0

For the steady state,     i i0 0 0 0and

q 
i
 + q

i
 

0
  q 

i
 + q

i
 

i

or 
0
  

i

Thus steady state error is zero.

18.12 TRANSFER FUNCTION METHOD
The transfer function is a mathematical model defining the input-output relation of the system. It is a 
complex function that must have arguments to define itself. The argument is simply frequency. If the 
system has a single input and a single output, it can be represented by a block diagram, as shown in 
Fig.18.21. The system response x (t) is caused by an excitation F(t). The transfer function is defined as 
the ratio of output over the input with all initial conditions equal to zero.

System
(Transfer function)

Input F(t)
(Excitation)

Output x(t)
(Response)

Fig.18.21 Block diagram of transfer function

Thus output [x(t)]  [Transfer function] Input [F(t)]

or Output

Input

x t

F t

( )

( )
 Transfer function

The equation of motion with a single degree freedom system with excitation is,

mx cx kx F t( )

Its transfer function is,

x

F
j

k m jc t
G j

 


1
2

where j 1  and G ( j )  transfer function of the system.
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From the engineering point of view it is preferred to define the transfer function as a ratio of 
Laplace transform of the output to the Laplace transform of the input, assuming initial conditions are 
zero. Mathematically, it is written as:

 
G s

F s

U s
( )

( )

( )  
(18.25)

 Where G(s)  transfer function
 F(s)  Laplace transform of output
 U(s)  Laplace transform of input

One important point to be noted is that the transfer function does not depend upon the initial 
 conditions.

18.12.1 Transfer Function of First Order Systems
The first order system is defined by,

a y a y b u t1 0 0 ( )

Where the coefficients a
1
, a

0
, and b

0
 are constants.

u(t) and y (t) are input and output respectively. y  is the first derivative of y (t). Let the Laplace 
transform of output y (t) is Y (s) and that of the input u (t) is U (s). Taking the Laplace transform of 
both sides, we have

L a y a y L b u t

a s Y s a Y s b U s

a s a Y s b U

1 0 0

1 0 0

1 0 0

( )

( ) ( ) ( )

( ) (( )

( )
( )

( )

( )

s

G s
Y s

U s

b

a s a

b

a

a

a
s

G

s

y t L
G

s
U

0

1 0

0

0

1

0

1

1
1

1
(( )s

G
b

a

a

a
0

0

1

0

andwhere 

(18.26)

The block diagram of first order system showing transfer function is shown in Fig.18.22.

G
s+1

( )

First order system
Input Output

Fig.18.22 Block diagram of first order transfer function
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18.12.2 Transfer Function of Second Order Systems
The equation of motion for a second order system is,

a y a y a y b u t2 1 0 0

.. .
( )

In the standard normalized form, the equation is

y y y G u tn n

.. .
( )2 2  

Taking Laplace transform of both sides,

or

 

L y y y L G u t

s Y s sY s Y s G U

n n

n n

.. .
( )

( ) ( ) ( )

2

2

2

2 2

  

   (( )

( ) ( )

( )
( )

( )

s

s s Y s G U s

G s
Y s

U s

G

s s

n n

n n

2 2

2 2

2

2

  

    
(18.27)

G
s2+2 ns+ n

2( )

Second order system

Input Output

Fig.18.23 Block diagram of second order transfer function

18.12.3 Step Input to First Order System
If a step input u

0
 is given to the first order system, the Laplace transform of output is:

Now
 

Y s
Gu

s s
U

s s

U
s s

( )
( )

0

1

1
1

1

1 1
1



 

L
u

s
U G u0

0

Taking the inverse Laplace transform, we have

 

y t L Y s L U
s s

U e
t

( ) ( )

(

1 1 1 1
1

1 )  (18.28)



1188 Theory of Machines

18.12.4 Ramp Input to First Order System
If a ramp input u

0
 is given to the first order system, the output can be written as,

Now 

F s G s U s

Y s
Gu

s s
U

s s s

L
u

( ) ( ) ( )

( )
( )

0
2 2

0

1

1
1

 



ss
U G u

2 0

Taking the inverse Laplace transform, we have

 

y t L Y s L U
s s s

U t

( ) ( )

(

1 1
2

1
1

e
t

)  (18.29)

Example 18.8

The transfer function of a first order system is given by:

G s
s

( )
10

2

Determine the output response by using Laplace transform method if the following signals are 
applied at the input:

(a) A step signal of 5 units.

(b) A ramp signal with slope 5.

Solution 

(a)
 

L
s

( )5
5

Output response, 
y t L G s U s( ) ( ) ( )1

L
s s

L
s s

e t

1 1

2

10

2

5 25 25

2

25 25

(b) Laplace transform of ramp input with slope 5 is 5
2s

.
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y t L G s U s L
s s

L
s s

L

( ) ( ) ( )
( )

1 1

2

1

2

10

2

5 50

2

1

2

2

25 12 5 12 5

2

25 12 5 12 5

s s s

t e t

. .

. .

18.12.5 Step Input to Second Order System

Now

 

Y s G s U s
G

s s

u

s

Gu
s s s

n n

n n

( ) ( ) ( )

( )

2 2
0

0 2 2

2

1

2

  

  

By partial fraction,

Where

 

1

2

1
2 2

1 2 1 2

1
2

s s s s s x s x

A

s

B

s x

C

s x

x

n n

n n

( ) ( )( )  

    11

12
2x n n   

A, B and C are calculated as follows:

1  A (s + x
1
) (s + x

2
) + B s (s + x

2
) + C s (s + x

1
) s  0 s  x

1 
 s  x

2 

This gives, A
x x

B
x x x

1 1

1 2 1 1 2

,
( )

and c
x x x

Y s G u
x x s x x x s x x x x s x

1

1 1 1

2 2 1

0
1 2 1 1 2 1 2 2 1

( )

( )
( )( ) ( )( 22

0

1 2

2

2 1 1

1

1 2 2

1 1 1

)

( ) ( ) ( ) ( )

Gu

x x s

x

x x s x

x

x x s x

Taking the inverse Laplace transform, we have

 

y t L Y s
Gu

x x

x

x x
e

x

x x
e

x t x t
( ) ( )

( ) ( )
1 0

1 2

2

2 1

1

1 2

1 1 2

 

(18.30)
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18.12.6 Ramp Input to Second Order System
If a ramp input u

0
 t is given to the second order system, the output response is given by,

Y s G s U s
G

s s

u

sn n

( ) ( ) ( )
2 2

0
22  

By following the steps of Section 18.12.5, the output response can be derived as:

 

y t L Y s Gu t
x

x x x
e

x

x x x
e

x xx t x t( ) ( )
( ) ( )

1
0

2

1 2 1

1

2 1 2

11 2 22

1 2x x
 

(18.31)

18.13 FREQUENCY RESPONSE OF THE SYSTEM
Frequency response is defined as the ratio of steady state phasor output to the phasor input, where 
the output and input may either be a voltage or a current signal. Mathematically, the general form of 
frequency response is written as:

H j
v

v
( )w out

in

H ( j ) is referred to as the frequency response of the system and it is a complex function. It can 
be written as:

where 

H j HC j e

H jw H j H j

j

R I

( ) )

( ) ( ) ( )

( ) (

2 2

 
  magnitude of frequency response

 H
R
 ( j )  real part

 H
I
 ( j )  imaginary part

 

Phase angle ( ) = tanf w w
wj 1 H j

H j
R

I

( )

( )
 

(18.32)

The relationship between frequency response and transfer function is,

 
H j G s

s j
Y j

U j
   ( )

( )

( )
 


  

(18.33)

18.13.1 Frequency Response of First Order Systems
Consider a first order linear, time-invariant system represented by the transfer function as,

G s
G

s
( )

 1
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Frequency response, H j
G

j
 ( )

( )


  1

 

H jw G

G

j

( )

( ) tan (

1

1 1

1

2 2

2

2 2

2

2 2

1

 

 

 
   ) tan ( )1

 

(18.34)

Since the angle is ve, the output lags behind the input with an angle tan ( )1  .

18.13.2 Frequency Response of Second Order Systems

Let
 

G s
G

s sn n

( )
2 22 

For simplicity, assume G n
2.

Then H j

j j
n n

( )



 


1

2 1

2

1

1 2

1

2

2

2

n n

n

j

H j

j j

( )

n

n n

nj

1

1

1 2

2

1

2 2

1( ) tan

n

2

 

(18.35)
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Example 18.9

A second-order system has effective mass 20 kg, spring constant 8 kN/m, damping coefficient 130 N.s/m. 
It is subjected to harmonic input of 24 sin 15 t. Calculate the steady-state response of the system using 
transfer function approach.

Solution 

The transfer function is

G j
k m jc

j

j

( )
( )

( ) ( )

1

1

8000 20 225 130 15

1

3500 1

2

9950

1

4006 56 29 12

2 5 10 29 12

2 5 10

4

. .

. .

( ) .Hence
x

F
j 44

4

29 12

24 2 5 10 0 006 6

.

. .X m or mm

( ) = ( ) = 6 sin (15 29.x t x t t 112 ) mm

18.14 CONTROL SYSTEMS
The automatic control systems are of the following two types:

1. Open-loop (or unmonitored) system
When the input to a system is independent of the output from the system, then the system is 
called an open loop or unmonitored system. It is also called as a calibrated system. Most measur-
ing instruments are open-loop control systems, where for the same input signal, the readings will 
depend upon  ambient temperature and pressure, etc. Some of the examples of open-loop control 
systems are:

 (i) A simple Bourdon tube pressure gauge commonly used for measuring pressure.

 (ii)  A simple carburettor in which the air-fuel ratio adjusted through venturi remains same 
 irrespective of load conditions.

 (iii)  In traffic lights system at road crossings, the timing of lights is preset irrespective of traffic 
 density.

 (iv)  Switching off the street lights of a town at a preset time by a time switch irrespective of the 
setting and rising time of the sun.

2. Closed-loop (or monitored) system
A closed loop control system uses input as well as some portion of the output to regulate the 
output. Closed-loop systems are also called feed back control systems. In feedback control the 
variable required to be controlled is measured. This measurement is compared with a given 



1193 Automatic Control 

setpoint. If the error results, the controller takes this error and decides what action should be 
taken to compensate to remove the error. Errors occur when an operator changes the setpoint 
intentionally or when a process load changes the process variable accidentally. The error could 
be positive or negative.

Some examples of closed-loop control system are:

 (i)  In a traffic control system, if the flow of traffic is measured either by counting the number of 
vehicles manually or by counting the impulses due to the vehicles passing over a pressure pad 
and then setting the time of signal lights.

 (ii)  In a thermostatically controlled water heater, whenever the temperature of water heater rises 
above the required point, the thermostat senses it and switches the wafer heater off so as to 
bring the wafer temperature down to the required point. Similarly, when the temperature falls 
below the required point, the thermostat switches on the water heater to raise the temperature 
of water to the required point.

18.15  TRANSFER FUNCTION FOR A SYSTEM WITH VISCOUS 
DAMPED OUTPUT

Consider a shaft which is used to position a load in the form of a pulley or gear as shown in Fig.18.24. 
The movement of the load is resisted by a viscous damping torque.

Load
Viscous
damper

Shaft

0

i

Fig.18.24 Second-order torsional system

Let 
i
  input signal to the shaft

 
0
  output signal of the shaft

 q  torsional stiffness of shaft, N.m / rad

 I  moment of inertia of the load, kg.m2

 c
t
  viscous torsional damping coefficient of the damper, N.m.s / rad

After a time t,

 Twist in the shaft  
i
  

o

 Torque transmitted to shaft  q (
i
  

o
)

Damping torque  c c
tt o t
od

d
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The equation of motion of the system is,

Now

or 

I q c

I c q q

c

I

q

I

q

I

i t

t i

t

0 0 0

0 0 0

0 0 0

( )

i

n n
t t

c

n n i

q

I

c

I

c
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qI

I

D

2

0 0 2
2

0
2

2

2
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2
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2
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0
2

2 2

2 2

2

1

2 1

i

n

n
D

nD

D D  

(18.36)

where
 



1

n

time constant

18.16 TRANSFER FUNCTION OF TORSIONAL SYSTEM
For a second order torsional system, the differential equation in symbolic form is:

D Dn n n
2 2

0
22

Transfer function, 0
2

2 22i

n

n nD D

1

2 12 2D D

where 

1

n

 is the time constant.
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For the first order system,

or

 

c q q

c

q

c

q

c

q
D

D

t i

t
i

t
i

i t

0 0

0 0

0 0

0 1

1

1

1

 

(18.37)

where 
c

q
t  is the time constant

18.17 EQUIVALENCE OF TRANSFER FUNCTIONS
1. Open-loop transfer functions

If a system with transfer function G
1
(s) is connected with another system with transfer function  

G
2
 (s), then the overall transfer function of the system is the product of individual transfer functions, 

as shown in Fig.18.25.

G1(s) i

i

1

2

2G2(s)

G(s) = G1(s)·G2(s)

Fig.18.25 Equivalence of open loop transfer functions

In general, in open -loop configuration, the overall transfer function of the composite system is 
given by the following formula:
 G(s)  G

1
(s) · G

2
(s) · G

3
(s) … G

n
(s) (18.38)

2. Closed-loop transfer functions

The closed loop transfer function is defined as the overall transfer function of the entire control sys-
tem. Consider a closed-loop transfer function consisting of several elements as shown in Fig.18.26.


 

0

i o

KG s( )

G1(s)i i 0 1 2
0

0

G2(s)

Error
detector

G3(s)

Fig.18.26 Closed-loop transfer functions
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0
  K G (s) 

i
  K G (s) 

0

or [1 + K G (s)]
0
  K G (s) 

i

where K  constant representing the overall amplification or gain.

Transfer function, TF
KG s

KG s
o

i




( )

( )1

 

open loop

open loop

TF

TF1  
(18.39)

The equivalence of closed-loop transfer function is shown in Fig.18.27.

KG(s)
0i

1+KG(s)

Fig.18.27 Equivalence of closed-loop transfer functions

Now consider the block diagram representing closed-loop control system for a plant as shown in 
Fig.18.28.

Control system
e(t)Setpoint u

Error
amplifier

yc(t)
y(t)

Controlled system

Plant

Load

+
–

Fig.18.28 Block diagram for closed-loop control for a plant

Fig.18.28 has been represented in another way in terms of block diagram containing the transfer 
functions of the plant and feedback loop in Fig.18.29(a). Let G

f
 (s) be the transfer function of the  

feedback control system and G
p
(s) that of the plant.

U(s)
Y(s) U(s)

(b) Overall transfer
function of closed-

loop system.

(a) Closed-loop control system

Y(s)

Gf(s)
Feedback loop

Gp(s)

1+Gp(s)Gf(s)
Gp(s)
Plant

Fig.18.29 Block diagram containing transfer functions of plant and feedback loop

The overall transfer function of feedback control system shown in Fig.18.29(b), can be written as

 

G s
y s

U s

G s

G s G s
p

p f

( )
( )

( )

( )

( ) ( )1
 

(18.40)
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18.18 THE CONTROLLERS
The controllers can be of the following types:

1. On-off controller

2. Proportional controller

3. Integral controller

4. Derivative controller

5. Proportional-plus-derivative (PD) controller

6. Proportional-plus-integral (PI) controller

7. Proportional-plus-integral-plus-derivative (PID) controller.

The selection of the right controller for an application depends on the following factors:

1. The degree of control required by the application.

2. The individual characteristics of the plant.

3. The desirable performance level including required response, steady state deviation and stability.

1. On-off controller
This is the simplest form of control action. The action is simply a switch. The output of the controller 
has two levels, ON and OFF, i.e. the output is either 100% on or 100% off. These two levels are gener-
ated based on error signal. If the error signal is greater than zero the ON level is generated and if the 
error signal is less than zero then the OFF level is generated or vice-versa. Mathematically it can be 
written as y

c
  c

ON
 for e(t) > 0 and y

c
  c

OFF
 for e(t) < 0 or vice-versa. Where, y

c
 is the controller output, 

e(t) is the error signal, C
ON

 and C
OFF

 are the two control levels for e(t) > 0 and e(t) < 0, respectively. 
Fig.18.30 shows the block diagram of the on-off controller.

Fig.18.30 Block diagram of the on-off controller

Mostly, thermostat-based heating system uses an ON-OFF type controller. When the output is 
lower than the setpoint the controller is turned on (i.e. provides an ON output), and once the output 
is more than the setpoint the controller provides OFF output. The turn-ON and turn-OFF in many 
situation are deliberately made to differ by a small amount, known as the hysteresis or dead-band, 
(Fig.18.31) to prevent noise from switching the controller unnecessarily when the output is nearly 
the setpoint. The hysteresis is designed into the control action between the points at which the control 
output switches from OFF to ON. This designed in hysteresis prevents the output from switching from 
OFF to ON too rapidly. If the hysteresis is set too narrow, rapid switching will occur Therefore, the 
hysteresis should be set so that there is sufficient time delay between the ON and OFF modes of the 
outputs. The sensitivity of the ON-OFF controller depends on the hysteresis.
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2. Proportional controller
Proportional Control means that the plant input is changed in direct proportion to the error, e(t). This 
controls the output so that the manipulated variable and the error has a proportional relation. The 
controller sets the manipulated variable in proportion to the difference between the setpoint and the 
measured variable (The variable to be controlled, e.g. speed of a motor). The bigger is the difference, 
the greater is the change in the manipulated variable. The coefficient of deviation is called propor-
tional gain, K

p
 and is mathematically written as,

 
K G s

C s

E sp c

y( )
( )

( )  
(18.41)

where, G
c
 (s), is the transfer function of the proportional controller, C

y
(s) is the Laplace transform of 

the output of the controller, c
y
(t) and E(s) is the Laplace transform of the error signal, e(t). A typical 

proportional controller controlling a plant (e.g. speed of a typical electrical motor) using the feedback 
hoop is shown in Fig.18.32.

Fig.18.32 Schematic block diagram of a proportional controller

The advantage of proportional controller is that it is relatively easy to implement. However, the 
disadvantage is that there always involves an offset in the output response causing difference between 
the set-point and the actual output. Other disadvantage of proportional controller is the overshoot 
problem that arises when a proportional controller is used at high gain.

3. Integral controller
The block diagram of the integral controller is shown in the Fig.18.33. The controller controls the 
output by integrating the error signal. That is,

 

c t
T

ey

i

r

( ) ( )
1

0

d

 

(18.42)

Fig.18.31 On-off controller with hysteresis or dead-band
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Where, C
y
(t) is the output of the controller. e(t) is error signal and T

i
 is called the integral time. The 

integral correction of output is performed by accumulating the deviation in accordance with time 
elapsed. Eq. (18.41) can also be written in transfer function form as given below.

 
G s

C s

E s

K

sIC

y i( )
( )

( )  

(18.43)

Where, G
IC

(s) is the transfer function of the integral controller, which is the ratio of the Laplace trans-
form of the output to the Laplace transform of the input (the error signal) of the integral controller.  
K

i
  1/T

i
, is called the integral gain which is the reciprocal of the integral time. The offset in the output, 

and hence the steady-state (Refer Fig.18.33) performance of the system can be improved by employing 
integral control action. But the integral action may lead to oscillatory output resulting in poor stability.

Fig.18.33 Block diagram of an integral controller
4. Derivative controller
Derivative controller controls the plant by providing the control signal which is the derivative of the 
error signal. The transfer function of the controller can be written as,

 
G s

C s

E s
K sD

y
d( )

( )

( )  
(18.44)

K
d
 is the constant of proportionality, usually referred to as derivative time, or simply derivative gain. 

The derivative action improves the transient performance of the plant. However, derivative control has 
poor steady-state performance.

5. Proportional-plus-integral controller
In short, the proportional-plus-integral controller is referred to as PI controller. The PI controller con-
trols the plant by providing the control signal which is the combination of proportional and integral 
action over the error signal. As stated earlier, the integral control improves the steady-state perform-
ance. On the other hand, the integral action may lead to oscillatory output and hence has poor stability 
which is not really desirable. Combining proportional and integral action the two constants such as K

p
 

and K
i
 can be adjusted in order to optimize the system performance or the output response according 

to the requirement. The transfer function of the PI controller is,

 

G s
C s

E s
K

K

s
K

T sPI
y

P
i

P
i

( )
( )

( )
1 1

1

 
(18.45)
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6. Proportional-plus-derivative controller
Proportional-plus-derivative controller is commonly abbreviated to PD controller. The stability and 
hence the performance of the system can be improved by employing derivative action along with pro-
portional action into the control system.

Adding a term proportional to the time-derivative of the error signal can take the edge off the 
overshoot problems that arise when a proportional controller is used at high gain. The transfer function 
of the PD controller is,

 
G s

C s

E s
K K sPD

y
p d( )

( )

( )
( )1

 
(18.46)

7. Proportional-plus-integral-plus-derivative controller
Proportional-plus-integral-plus-derivative controller is popularly known as PID controller. This is a 
method, where the reachability can be addressed effectively and efficiently. The transfer function of 
the PID controller is,

 
G s

C s

E s
K

K

s
K sPID

y
p

i
d( )

( )

( )  
(18.47)

where, K
p
, K

i
, and K

d
 are called proportional, integral and derivative gains of the controller 

 respectively. These gains are also called PID parameters. Fig.18.34 illustrates the block diagram of a 
PID  controller.

+ +

+

+

Desired speed
(set-point) Error

Feedback signal

Controller
output

Kp

Ki

Kds

s–

Fig.18.34 Block diagram of a PID controller

Summary for Quick Revision

1 Automatic control is desired to relieve the human operators from monotony of work and bring 
about efficiency in the system.

2 Set point is the position in which the control point setting mechanism is set.

3 Overshoot is defined as the maximum deviation of the response above the steady state value.

4 Response time is the time required for the system to reach steady state.

5 Settling time is defined as the time required for the output to achieve within 2% of its final value 
when the system is subjected to a step input.
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6 Delay time is defined as the time required for the output to reach 50% of its final value in first 
attempt.

7 Rise time is the time required to for the output to rise from 10% to 90% of the final value for 
overdamped system, and zero to 100 % of the final value for underdamped system.

8 Peak time is the time required for the output to reach the peak of time response or the peak over-
shoot.

9 A transducer is a basic element that converts or transforms one form of signal to another form 
which is more convenient to use and measure.

10 A sensor is merely a sophisticatedtransducer which contains some signal conditioning circuit 
capable of amplifying and refining the weak and raw signal.

11 An actuator is a device that converts energy to mechanical form.

12 A block diagram is a symbolic outline of a systemin which various components or operations are 
represented by rectangles in an ordered sequence. The rectangles are connected by arrows show-
ing the flow of the working medium or of information.

13 System response deals with studying the behavior of the system in which changes occur and in 
which predictions are desirable.

14 Output response of first order linear system without excitation: y/y
0
  exp ( t/  ), where   time 

constant. Output response with excitation, y/x  1  exp ( t / ).

15 Transfer function is the ratio of Laplace transform of output response to Laplace transform of 
input signal.

Multiple Choice Questions

1 A block diagram is represented by
(a) circles (b) triangles (c) rectangles (d) parallelograms

2 The output response of a first order system with excitation is:
(a) y  x (1  e t/ ) (b) y  x e t/  (c) y  x (1 + e t/ ) (d) y  x (1  et/ )

3 A simple Bourdon tube pressure gauge is a 
(a) closed-loop control system (b) open-loop control system
(c) manually operated system (d) feed back control system.

4 The overall transfer function of two blocks G
1
(s) and G

1
(s) connected in series is

(a) G
1
(s) + G

2
(s) (b) G

1
(s)  G

2
(s) (c) G

1
(s)  G

2
(s) (d) G

1
(s)/G

2
(s)

5 The equivalent transfer function for a closed-loop control system is

(a) KG s

KG s

( )

( )1
 (b) KG s

KG s

( )

( )1
 (c) 1 KG s

KG S

( )

( )
 (d) 1 KG s

KG s

( )

( )

6 Transfer function is the operational relationship between output and
(a) input (b) error (c) response (d) command

7 Given Fig.18.35 shown a flexible shaft of negligible mass of torsional stiffness K coupled to a 
viscous damper having a coefficient of viscous damping c. If at any instant the left and right ends 
of this shaft have angular displacement 

1
 and 

2
 respectively, then the transfer function, 

2
/

1
 of 

the  system is
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Fig.18.35 

(a) 
K

K c
 (b) 

1

1
C

K
s

 (c) 
1

1
K

c
s

 (d) 1
K

c
s

8 Consider the following statement in respect of introduction of feedback in a control system:

1. It enhances its gain.
2. It attenuates the unwanted noise.
3. It helps in improving the accuracy of the system
Which of these statements are correct?
(a) 2 and 3 (b) 1, 2 and 3 (c) 1 and 3 (d) 1 and 2

9 Match List-I with List-II and select the correct answer using the codes given below the lists:
 List-I List-II
A. Open loop system 1. Frequency domain analysis
B. Closed loop system 2. More stable
C. Step input 3. Less stable
D. Sinusoidal input 4. Time domain analysis
Codes:
 A B C D
(a) 2 3 4 1
(b) 4 1 2 3
(c) 2 1 4 3
(d) 4 3 2 1

10 Which of the following is a closed-loop control system?
(a)  Traffic control on the roads by lights where the timing mechanism is present irrespective of 

the intensity of traffic
(b)  Switching off the street lights of a tower at a predetermined time by a time-switch irrespec-

tive of the fact that the sun rises at a different time each day
(c)  Switching off an electric heater by a time-switch irrespective of whether the dish has been 

prepared or not
(d) Human body

11 Match List-I with List-II and select the correct answer using the codes given below the Lists:

List-I (Property) List-II (System)
A. Resonance 1. Closed-loop control system
B. On-off control 2. Free vibrations
C. Natural frequency 3.  Excessively large 

 amplitude
D. Feedback signal 4. Mechanical brake
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Codes:
 A B C D

(a) 1 2 4 3
(b) 3 4 2 1
(c) 1 4 2 3
(d) 3 2 4 1

12 A physical system is translated into functional block diagram of the type shown in the Fig.18.36. 
The command input r(t) and controlled output c(t) of this system are given by

Fig.18.36 

(a) C s

R s

G s
G s

H s

( )

( )

( )
( )

( )
1

 (b) C s

R s

G s

G s H s

( )

( )

( )

( ) ( )1

(c) C s

R s

G s

G s H s

( )

( )

( )

( ) ( )1
 (d) C s

R s

G s

G s H s

( )

( )

( )

( ) ( )1

13 In which one of the following types of control system is the output of the control element propor-
tional to the time rate of change of the input?
(a) Proportional (b) Integral
(c) Proportional and derivative (d) Derivative

14 Traffic control on the roads by lights where the timing mechanism operates irrespective of the 
intensity of traffic is an example of
(a) Closed loop control (b) Under-damped control
(c) Open loop control (d) Over-damped control

15 What is the value of K for which the relative damping of the closed loop system shown above is 
equal to 0.5?

Fig.18.37

(a) 2 (b) 3 (c) 4 (d) 5
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16 The block diagram of an automatic control system is shown in the following Fig.18.38.

Fig.18.38 
Its simplified form will be as in

R
(a) C

G1G2

1 + G1H

R
(b) C

G2 – G1

1 + G1H

R
(c) C

G1 – G2

1 + G2H

R
(d) C

G1 + G2

1 + G2H

Fig.18.39 

17 Given that G  forward path gain and H  feed back path gain, if G and H are functions of fre-
quency, then the feedback would affect gain G of a non-feedback system by a value to
(a) 1 + GH (b) 1  GH (c) GH (d) 1/GH

18 The Fig.18.40 given below shows the locations of the roots of the characteristic function of a 
second order, linear, closedloop control system. What is the natural frequency of the system?

Fig.18.40 
(a) 10 rad/s (b) 36 rad/s (c) 48 rad/s (d) 64 rad/s
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Answers

1. (c) 2. (a) 3. (b) 4. (b) 5. (a) 6. (a) 7. (b) 8. (c) 9. (a) 10. (d) 11. (b) 12. (d) 13. (c) 14. (c) 
15. (b) 16. (a) 17. (a) 18. (a)

Review Questions

1 What is automatic control?

2 Differentiate between an automatic controller and process controller.

3 What is a regulator?

4 Define open-loop control and closed-loop control.

5 What is resistance?

6 What is set point and dead time?

7 Define output response.

8 Differentiate between stable and unstable system.

9 What is overshoot?

10 Explain response time, settling time and delay time.

11 What is a transducer?

12 Define command.

13 What is a transfer function?

14 What are the effects of feed back control.

15 What is a sensor?

16 Differentiate between first-order and second-order systems.

17 Define frequency response of a system.

18 Write the transfer function of first and second order systems.

Exercises

18.1 What is a transducer? Explain the principle of operation of a transducer.

18.2 What is an actuator? List various types of actuators.

18.3 What are the basic modeling elements for a mechanical system? Explain the function of each 
element.

18.4 Define the following:
(a) Instantaneous response (b) Lagging response
(c) Delayed response. 

18.5 What do you mean by rise-time, peak-time and settling time in connection with transient 
response specification?

18.6 Derive the expression representing the output response of a first order system with input as 
given below:
(a) Free response (b) Step input
(c) Ramp input 



1206 Theory of Machines

18.7 Derive the expression representing the output response of a second order system with input as 
given below:
(a) Zero input (b) Step input
(c) Ramp input

18.8 With neat block diagram, explain open-loop and closed-loop control systems.

18.9 State and explain open-loop and closed-loop transfer function.

18.10 The open-loop transfer function of a unity feedback control system is given by:

G s
K

s s
( )

( )1 

(a) By what factor the gain be multiplied so that damping ratio is increased from 0.2 to 0.8?
(b)  By what factor the constant  should be multiplied so that the damping ratio is reduced 

from 0.6 to 0.3?

18.11 A unit step input is applied to a second-order measurement system with effective mass of 40 g 
and spring constant 2 kN/m. Find the damping constant for 40% overshoot and the correspond-
ing period of oscillation.

[Ans. 5 N.s/m, 0.0293 s]

18.12 A second order measurement system has effective mass of 25 g, spring constant 2500 N/m and 
damping factor 0.6. Determine the rise time and settling time for a ±2.5% tolerance band.

[Ans. 0.00875s, 0.02062 s]

18.13 A second order measurement system has an effective mass of 60 g and the spring constant  
2.25 kN/m. Calculate the steady state error and the time lag for damping factor 0.48 when a 
unit ramp input is applied.

[Ans. 0.004957, 0.004957 s]

18.14 In a second-order measurement system with a damping ratio of 0.65, the natural frequency is 
30 Hz. Calculate the dynamic error and the time lag at frequency input of 10 Hz.

[Ans. 0.0112, 0.00722 s]

18.15 Determine the steady state response of the second  order system shown in Fig.18.41. By using 
transfer function method.

50 g

3 kN/m

150 N.s/m

x(t)
20 sin 20 t

Fig.18.41



A-1
MACHINE THEORY  
LABORATORY PRACTICE

Experiment 1 To draw the displacement, velocity and acceleration  curves for a slider-crank 
mechanism.

Apparatus Slider-crank apparatus, graph sheet.

Theory The displacement of a slider-crank mechanism, when the crank has rotated by   from inner 
dead centre is:

x r n n1 2 2 0 5
cos sin

.
 

Velocity, v r
n

sin
sin 2

2

Acceleration, f r
n

 
2 2

cos
cos

The slider-crank apparatus shown in Fig.1, consists of the frame F in which the slider S moves in 
a slot. The graduated wheel W replaces the crank  OC. The wheel and the slider are connected by the 
connecting rod C. When the crank OC is rotated the slider moves to and fro in a linear motion. The 
motion of the slider can be read on a scale attached to the frame on the side of the slot.

Fig.1 Slider-crank mechanism



1208 Appendix 

Sl. 
No.

Crank 
rotation, 

Time 
t

Displacement, x  
mm

Velocity,   
mm/s

Acceleration, f  
mm/s2

deg rad s measured theoretical measured theoretical measured theoretical

Procedure

1. Bring the wheel and the slider to the respective reference marks.

2. For a given angle of rotation of the crank, note down the displacement of the slide.

3. Plot a graph between slider displacement and the crank rotation.

4. Assume that the crank is rotating with a uniform angular speed of 1 rad/s.

5. Convert the crank rotation angle into time and plot the slider displacement v’s time.

6. By graphical differentiation, determine the velocity time graph.

7. By differentiation twice, determine the acceleration time graph.

8. Calculate the results with the theoretical values.

Observations
 Crank radius, r  mm
 Length of connection rod,   mm

Calculations  n
r

x

v f

1

30
2

rad/s

           mm

mm/s:         mm/s

;

Sources of error

1. Clearance in the joints of the mechanism.

2. Inaccurate graduations.

Graphical differentiation Draw the mechanism for a number of different crank positions by taking 
30° crank intervals. With the extreme right-hand position of the slider chosen as the starting point, 
lay off the displacement of the slider. Draw tangents at the middle of the crank angle interval on 
the displacement  diagram. Choose a convenient point as the pole below the displacement diagram. 
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From this point, draw lines parallel to the tangents to intersect the vertical axis. Draw horizontal 
lines from these points. Also project the lines from the points chosen on the displacement diagram to 
intersect the respective horizontal lines. Join the points of intersection by a smooth curve to get the 
velocity diagram. Now draw tangents on the velocity diagram and repeat the above procedure to get 
the acceleration diagram.

Experiment 2 To determine the ratio of times for the crank and slotted lever quick-return 
mechanism. 

Apparatus Crank and slotted lever mechanism, graph sheet.

Theory The crank and slotted lever mechanism is shown in Fig.2. It consists of a graduated disc A 
on which the crank rotation can be measured. The slotted lever B is hinged at O, and carries a slider 
C. The slotted lever is hinged to an oscillating link D, which slides horizontally in link E and its other 
end is attached to the ram F on which the cutting tool is mounted.

Time of cutting

Time of return


360

where  is the angle of cutting.

Let OA d OB r OD

r

d

; ;

sin2 90 1

Maximum velocity duuring return

Maximum velocity during cutting

d r

d r

Procedure

 1. Bring the crank and the ram to zero positions.

 2. For the given crank angle of rotation, note down the displacement of the ram.

 3. Plot the crank rotation v’s displacement of the ram.

 4. Assume the crank to be rotating at an angular speed of 1 rad/s.

 5. Plot the displacement-time graph.

 6. By graphical differentiation, determine the velocity-time graph.

 7. From the velocity-time graph, determine the maximum velocities during cutting and return.

 8. Determine the angle of cutting and angle of return.

 9. Determine the ratio of time of cutting and time of return, and the ratio of maximum velocities 
during return and cutting.

10. Draw the theoretical velocity diagram and calculate the theoretical ratio of velocities. Observations

 Length of crank, r  mm

 Length of link OA, d  mm

 Length of slotted lever OD,   mm

 Angle of forward stroke,  
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Sl. No.
Crank rotation, Time Ram displacement 

mm
Ram velocity 

mm/sdeg rad s

Fig.2 Crank and slotted lever apparatus
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Calculations

 From graph,

 From graph,

 

Time of cutting

Time of return

Maximum ret

t

t

t

t

c

r

c

r

360

uurn velocity

Maximum cutting velocity

v

v

d r

d r

v

v

v

v

r

c

r

c

r

c

 Theoretical ratio,

Precautions

1. The slider and slotted lever should be lubricated to decrease friction.

2. Displacement and crank rotation should be measured accurately.

Sources of error

1. Effect of clearances in the joints.

2. Errors during graphical differentiation.

Experiment 3 To determine the ratio of times and tool velocities of Whitworth type quick-
return mechanism.

Apparatus Whitworth quick-return mechanism, graph sheets.

Theory The Whitworth quick-return mechanism shown in Fig.3 consists of a graduated disc on 
which rotation of crank can be measured. The displacement of the tool can be read the scale attached 
to the ram.

 

Time of cutting

Time of return


360

where a is the angle of cutting.

Procedure

1. Bring the crank and ram to zero positions.

2. For the given crank angle of rotation, note down the displacement of the ram.

3. Plot the crank rotation v’s displacement of ram.

4. Assuming the crank to be rotating at 1 rad/s, plot the displacement-time graph.

5. By graphical differentiation, determine the velocity-time graph.

6. Determine the angles of cutting and return strokes.

7. Calculate the ratio of cutting angle and angle of return strokes.

8. Draw the theoretical velocity diagram and calculate the ratio of velocities.
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Observations

Length of crank OA,  r  mm
 AB  mm
 PB  mm

Sl. No.
Crank rotation, Time Ram displacement 

mm
Ram velocity 

mm/sdeg rad s

Calculations

 Cutting angle, 




Angle of cutting

Angle of return

t

t

t

t

c

r

c

r

360

 From graph, 

 Theoretical velocity of ram  mm/s

Fig.3  Witworth quick return mechanism apparatus
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Precautions

1. The slider and slotted lever should be lubricated to decrease friction.

2. Displacement and crank rotation should be measured accurately.

Sources of error

1. Effect of clearances in the joints.

2. Errors during graphical differentiation.1

Experiment 4 To determine the ratio of angular speed of shafts of a Hooke’s universal joint.

Apparatus Hooke’s joint.

Theory The Hooke joint is shown in Fig.4. It has the provision for measuring the angle of rotation 
of the driving and the driven shafts. The angle between the driving and driven shafts can also be varied 
and measured.
Let   angle between the axes of the two shafts

   angle turned through by the driving shaft
   angle turned through by the driven shaft
 

1
  angular velocity of the driving shaft

 
2
  angular velocity of the driven shaft

Then 



 


1

2

2 21 cos sin

cos

Fig.4 Hooke’s joint apparatus

Angular acceleration    

 
1
2 2

2 2 2

2

1

cos sin sin

cos sin

Procedure

1. Adjust the angle between the shafts to be 15°.

2. Set the angles of driving and driven shafts to be equal to zero degree.

3. Rotate the driving shaft through equal intervals of 30° and note down the corresponding angles of 
the driven shaft.
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4. Change the angle between the shafts to 30°, 45°, 60°, and 90°, etc., and repeat the experiment.

5. Calculate the ratio of incremental angles turned through by the driving and the driven shafts.

6. Calculate the theoretical values and compare.

Observations

Sl. No.

  15°   30°

1
/

2 1
/

2

Exp. Theor. Exp. Theor.

Calculations

 




 


1

2

2 21 cos sin

cos

 Also

 







1

2

Precautions

1. Lubricate all moving parts to minimize friction.

2. Errors in graduations.

Sources of error

1. Clearance in the joints.

2. Errors in graduations.

Experiment 5 To determine the coefficient of friction between a flat belt and a pulley.

Apparatus Flat belt and pulley, weights.

Theory The flat belt and pulley system consists of a flat belt and a pulley mounted on bearings. The 
angle of contact is 180° (Fig.5).

The coefficient of friction is given by,

    



1 1

2

ln
T

T

Where     angle of arc of contact in radians
 T

1
  tension on the tight side of the belt

 T
2
  tension on the slack side of the belt
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Procedure

1. Note the angle of contact of the belt.

2. Hang some weight on one side of the belt.

3. Put some weight on the other side of the belt. Increase the weight till the belt just starts slipping on 
tapping the pulley slightly.

4. Note down the values of tight and slack side tensions.

5. Vary the tension on the tight side and repeat the experiment.

6. Calculate the coefficient of friction between the belt and the pulley.

Observations
 Material of belt 
 Material of pulley 

Sl. No.
T

1
T

2
Angle of contact

Coefficient of friction
kg kg deg rad

Calculations

Coefficient of friction, 

1 1

2

ln
T

T

Fig.5 Belt and pulley system
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Precautions

1. Tapping of the pulley should be done mildly with a pencil.

2. Weights should be increased in small steps.

3. Weights should be added slowly without jerks.

Sources of error

1. Worn out old belt.

2. Rusted pulley surface.

3. Friction in pulley bearings.

4. Inaccurate weights.

Experiment 6 To determine the moment of inertia of a plane disc by using a gyroscope.

Apparatus Gyroscope, plane disc, stop watch, graph sheet and weights.

Theory The gyroscope (Fig.6) consists of an electric motor supported within a ring mounted on ball 
bearings which is carried on a cradle attached to a vertical shaft with ball bearings. A disc is mounted 
coaxially to the armature. A loading arm carrying a counterpoise and hanger is attached to the ring. 
The heavy base is of mild steel and has a vertical shaft. It has four levelling screws and a spirit level 
mounted to the base for levelling. A brass angular scale is fitted to the cradle which enables the angle 
of the tilt of loading arm to be found when the precession is arrested by stopping the rotation of cradle. 
Knowing the time for one revolution, the angular velocity of precession can be determined.

Fig.6 Gyroscope apparatus
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  The torque, T  I
p
 

p

  where

 







2

60
2

n

tp

p

rad/s

t
p
  time for one revolution in the horizontal plane

Procedure

 1. Set the instrument perfectly horizontal by four levelling screws and the spirit level.

 2. Switch on the motor and obtain the desired speed by changing the variable resistance.

 3. Determine the motor speed by a tachometer or a strobometer.

 4. Move the counterpoise to keep the loading arm horizontal so as to show zero on angular brass 
scale.

 5. Put the hanger with known weight at the end of the loading arm.

 6. Note the time for one revolution.

 7. Keeping the speed constant, increase the load, thus the torque, to find out corresponding angular 
speed of precession.

 8. Change the motor speed and repeat the experiment.

 9. Plot the graph between torque and speed of precession.

10. Calculate the value of moment of inertia of the disc.

Observations

 Lever arm  mm

Sl. No.

Motor speed, n
1
, rpm Motor speed, n

2
, rpm

Weight, 
W

Torque, 
T

Time 
for one 

revolution T
0

p
,

2 /t
p

Weight, 
W

Torque 
T

Time
for one  

revolution T
0

p
,

2 /t
p

N N mm s rad/s N N mm S rad/s

Calculations

  Torque, T  N mm

  Angular speed, 
2

60

n
rad/s

  Speed of precession, 


p
pt

2

  Moment of inertia, I
T

p
p
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Precautions

1. The motor speed should be kept constant by a voltage stabilizer.

2. The gyroscope should be leveled properly.

3. The time should be measured accurately.

Sources of error

1. Fluctuations in motor speed.

2. Inaccuracies in measuring time.

3. Personal errors.

Experiment 7 To determine the forces on the spring and stiffness of a Hartnell governor.

Apparatus Hartnell governor, weighing balance, scale and graph sheet.

Theory The Hartnell governor (Fig.7) consists of two bell crank levers hinged in the frame at A. The 
levers carry balls at B on the vertical arm and a roller C in a fork at the other end. These rollers press 
against the sleeve D which compresses the spring E from the bottom. The compression varies with 
different positions of the sleeve. The initial force in the spring is controlled by the nut F. The speed of 
rotation can be varied by the electric motor and the voltage regulator.

Fig.7 Hartnell governor
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The spring stiffness is given by,

 

k
a

b

F F

r r
2

2

2
1 2

1 2

where a, b  vertical and horizontal arms of the bell crank lever, respectively.
r

1
, r

2
  radii of the balls at the maximum and minimum speeds, respectively.

 

F mr

F mr

1 1 1
2

2 2 2
2

 

 





m  mass of the ball

 


2

60

n
rad/s

 n  speed in rpm.

The compression of the spring, 
r r

a
1 2

The radii r
1
 and r

2
  can be determined by ploting a graph between the displacement of the sleeve 

from the mean position and the radii of the balls. The motor speed may be measured by a tachometer 
of a strobometer.

Procedure

1. Plot a graph between the displacement of the sleeve from the mean position and the radii of the balls.

2. Determine the mass of the balls and the length of the arms of the bell crank lever.

3. Start the motor and adjust the speed so that the balls run at the innermost position. Note the sleeve 
position and from the graph determine the ball radius r

2
.

4. Increase the speed and adjust its speed so that the balls run at the outermost position. Again note 
down the sleeve position and determine the ball radius r

1
.

5. Calculate the forces F
1
 and F

2
.

6. Calculate the spring stiffness k.

Observations

Sleeve position

Radius of ball, mm

Mass of ball, m  kg
Lever arm length:

a  mm
b  mm

Sl. No.
Motor speed, n 

rpm
Ball radius, r 

mm
F  mr 2 

N
Spring stiffness 

k, N/mm
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Calculations
Spring force, F 
Spring stiffness, k 

Precautions

1. Change the speed of the motor slowly.

2. Measure the speed of the motor accurately.

3. Use a constant voltage transformer to keep the speed constant.

Sources of error

1. Friction between the sleeve and the shaft.

2. Friction between the lever roller and the sleeve.

3. Friction at the lever fulcrum.

Experiment 8 To study the motion of the follower for the given cam and to determine the dis-
placement, velocity and acceleration at every point.

Apparatus Cam and follower, graph sheets.

Theory The cam and follower apparatus (Fig.8) consists of a cam with roller follower (or as may be 
available). The angle of rotation of the cam and follower displacement can be read from the gradua-
tions marked on the cam and follower scale.

The cam may be moving with SHM, uniform acceleration and deceleration, or any other type 
of motion. The various formulae for the displacement, velocity and acceleration may be seen from 
Chapter 8.

Fig.8 Cam apparatus
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Procedure

1. Bring the cam and follower to zero positions.

2. Rotate the cam slowly and note down the angle of rotation of the cam at regular intervals and the 
corresponding displacement of the follower.

3. Plot a graph between displacement of follower and the angle of rotation of the cam.

4. Plot the velocity and acceleration diagrams by graphical differentiation.

5. Determine the maximum velocity and acceleration during ascent and descent.

Observations
Diameter of roller follower   mm

Base circle diameter of cam   mm
Maximum lift   mm

Sl. No. Angle of rotation of cam, deg Displacement of follower, mm

 Maximum velocity  mm/s
 Maximum acceleration  mm/s2

Precautions

1. Cam should be rotated slowly and gradually.

2. Cam and roller bearings should be lubricated to reduce friction.

Sources of error

1. Lateral shift in the roller follower and the cam.

2. Effect of clearances in the roller and cam spindles.

3. Effect of elasticity of the links.

Experiment 9 To study the working of Oldham’s coupling.

Apparatus Oldham’s coupling, graph sheet.

Theory Oldham’s coupling apparatus (Fig.9) consists of two shafts having flanges at their ends. The 
flanges have rectangular slots cut in their middle. An intermediate piece having tongues on both sides 
perpendicular to each other is used to connect the two flanges. The shafts carrying flanges are mounted 
on sliding blocks, which enables to change the centre distance between the shafts as desired. The angle 
of rotation of the flanges and the displacement of the tongue can be measured from the graduated 
scales. Assuming the speed of rotation of the shafts to be rad/s, we can plot the displacement-time 
graph. From this graph, we can find the velocity by graphical differentiation.

Maximum sliding speed of each tongue along its slot
 Peripheral velocity of centre of disc along its circular path
 Distance between the axes of the shafts  Angular velocity of each shaft.

Procedure

1. Fix some centre distance between the two shafts.

2. Bring the graduated flange to zero position and note the position of the tongue.
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3. Given some known angular rotation to the flange and note the displacement of the tongue.

4. Increase the angular rotation of the flange at regular intervals and note the corresponding displace-
ment of the tongue.

5. Change the centre distance between the shafts and repeat the experiment.

6. Plot displacement of tongue v’s angle of rotation of the flange.

7. Assuming angular velocity to be 1 rad/s, plot the displacement-time graph.

8. Determine the velocity-time graph by graphical differentiation.

9. Calculate the theoretical velocity of sliding of the tongue and compare with experimental results.

Observations

Sl. No.

Center distance between shafts, c  mm

Angle of rotation 
of flange, , deg

Time  /180 
s

Displacement of 
tongue, x, mm

Sliding speed of 
tongue, v, mm/s

Calculations
Centre distance between shafts, c     mm

Angular speed of shafts  1 rad/s
Maximum sliding speed of tongue, v  c mm/s

From graph, v     mm/s

Precautions

1. Lubricate the tongue to reduce friction.

2. Fix the shaft bearing firmly after changing the center distance.

3. Measure the angle of flange rotation accurately.

Fig.9 Oldham’s coupling
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Sources of error

1. Error in the measurement of centre distance.

2. Error in graphical differentiation.

Experiment 10 To determine the speed ratio of a gear train.

Apparatus Spur gear train, string, weights, metre rod, stop watch.

Theory The simple spur gear train in shown in Fig.10. Pulley D is mounted on the shaft for gear A 
and pulley E on the shaft for gear C.

For a simple gear train, the speed ratio is given by, 

 
i

n

n

z

z
i

o

o

i

where suffixes i and o represent input and output, respectively.

Fig.10 Simple gear train

If the diameters of pulleys D and E are same, then the speed ratio can be determined by measuring 
the distances moved by the strings in a given time.

Procedure

1. Put some weights on the string attached to pulley E.

2. Add weights on the hanger attached to string passing over pulley D.

3. Increase the weight till it starts moving.

4. For the given distance moved by the weight on pulley E, determine the distance moved down by the 
weight on pulley D in the same time.

5. Calculate the speed ratio by dividing the distance moved by the weight on pulley D to the distance 
moved by weight on pulley E.

6. Calculate the theoretical speed ratio and campare.
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Observations
Diameter of pulley D  mm
Diameter of pulley E  mm
Number of teeth, z

i
  

Number of teeth, z
o
  

Sl. No.
Distance moved by weight 

on pulley D, x
1
, mm

Distance moved by weight 
on pulley E, x

0
, mm

Speed ratio 
x

o
/x

1

Calculations
Theoretical speed ratio 

z

z
o

i

Precautions

1. Lubricate the gears and their bearings to reduce friction.

2. Measure the distances accurately.

3. The pulley strings should be of same diameter.

Sources of error

1. Friction in the gear teeth and their bearings.

2. Error in distance measurements.

Experiment 11 To verify the two fundamental laws of balancing by using rotating masses, 
when 

(a) all the masses are rotating in the same plane, and

(b) all the masses are rotating in different planes.

Apparatus Dynamic balancing apparatus for rotating masses.

Theory (a) When all the masses are rotating in the same plane, the following equation results for 
the equilibrium of the system:

 
W r j W r ji

i

n

i b b
1

1 0exp ( ) exp ( ) 
 

(1)

where W
i
  weight of the rotating mass

 r
i
  radius of ith mass from the centre of rotation

   angular displacement of the ith mass from the reference axis
 W

b
  weight of the balancing mass

 r
b
  radius of the balancing mass from the centre of rotation

   angular displacement of the balancing mass from the reference axis.
For a single mass, we have

 W r j W r ji i b bexp ( ) exp ( ) 1  (2)

From (2), we get
cos

1
  –cos
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sin
1
  –sin

or  + 
1
 (3)

This implies that weight W
b
 must be added opposite to the weight W

1
. After determining the angle 

, we must determine the product W
b
r

b
 from the following:

 W
1
r

1
  W

b
r

b
 (4)

So, there are two alternatives that we may choose. One of them is to choose the value of r
b
 and 

calculate the weight W
b
 of the balancing mass. The other one is to choose the weight W

b
 and calculate 

the distance r
b
. The first alternative is preferred because the distances on the disc are fixed. For many 

rotating masses in the same plane, their resultant has to be determined.
(b). When the masses rotate in different planes, then taking moments about the centre of rotation of 
balancing mass W

b2
, we have

 
W r j W r ji i i bi bi

ii

n

exp( ) exp( ) 1
1

2

1

0  (5)

and W rl j W r l ji i i i b b
i

n

exp( ) exp( ) 1 1 1
1

0  (6)

where l
i
  axial distance of rotating mass W

i
 from the balancing mass W

b2

l  axial distance of balancing mass W
b1

 from W
b2

  angle of rotation from first rotating mass
i  angle of rotating mass W

i
 from W

1

Equations (5) and (6) can be solved simultaneously to determine the unknowns.

Experimental setup The dynamic balancing apparatus for rotating masses is shown in 
Fig.11. It is intended from primary balancing. It consists of a rectangular steel frame suspended 
by four springs from a strong steel stand. On rectangular frame, two blocks with ball bearings are 
mounted which support a steel shaft carrying four balanced discs equally spaced. One of the discs is 
grooved and this is connected to a balanced 220 volts, A.C. electric motor by V-belt so that the whole 
system can be rotated. In all the four discs, circumferential slots are provided at four different radii. 
A number of steel pieces to act as balancing masses are included and these pieces can be attached in 
the slots of the discs by means of screwed rods and nuts. The discs are marked with radial lines and 
numbered to read the angular positions of the balancing masses. By attaching the balancing weights 
to the circumferential slots of the discs at different positions, various combinations of out of balance 
conditions can be obtained either in one plane or two planes. By switching on the motor and making 
the system rotate, the out of balance state can be clearly observed due to vibrations and oscillations 
set up in the system. Now the distance between discs, positions of balancing weights, their magnitude, 
etc. can be noted and a solution can be obtained analytically or graphically to have balance condition. 
According to this solution, balancing weights can be attached to the discs at suitable places and the 
motor can be started. Now the system can be observed, free from oscillations and vibrations and this 
illustrating the theory of balancing.

Procedure

1. Start the motor and check that the apparatus is completely balanced, i.e. the platform should not 
oscillate. As the motor is started the platform starts vibrating due to transient vibrations, which die 
out after some time.
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2. Fix a known weight in the circumferential slot of any disc, preferably the middle one, at the known 
distance. Balance the platform by fixing the four different balancing masses at different distances 
from the centre of rotation of discs.

3. Verify the law Wr = W
b
r

b
 and   + 

1
 by noting the distances and the weight of all the masses.

4. Fix three known weights in the circumferential slots of the same disc at three different or same dis-
tance from centre of rotation and balance the platform by fixing the balancing weight. Note down 
the weight and distances of all the masses. Change to a different balancing weight placed at differ-
ent distance to balance the platform. Take four different readings. Verify the first law of balancing. 
Draw the force polygon for any one of the readings.

5. Fix a known weight in the circumferential slot of the same disc at a known distance from the centre 
of rotation of the disc. Select the two balancing weights and fix them in the slots of two different 
discs and balance the platform. Note down the axial and radial distances of the weights and value of 
weight fixed in the slot. Take four different readings for different balancing weights with different 
axial and radial distances. Verify the second law of balancing.

6. Fix two known weights in the circumferential slots of any of the two different discs at a known axial 
and radial distances with some angular displacement. Now fix the balancing weights in the remain-
ing two discs. Put the balancing weights in the circumferential slots at a suitable radial distance so 
that the platform is balanced. Note down the value of weights and the axial and radial distances. 
Take four readings for different balancing weights at different radial distances. Verify the second 
law of balancing. Draw the vector diagram.

Precautions

1. Weights should be securely tightened to the discs.

Fig.11 Rotating masses apparatus
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2. Take readings after the system has stabilized.

3. Initial check on the apparatus being completely balanced should be made.

Observations

Sl. No.

Unbalance Balancing weights

Weight Axial Distance
Radial 

Distance
Weight

Axial 
Distance

Radial 
Distance

W
1

W
b1

W
2

W
b2

W
3

W
b3

Sources of error

1. Error in fixing the weights at an angular position.

2. Error in the value of weights.

3. Error in judging the balanced platform.





GLOSSARY  
OF TERMS

A-2

Mechanisms
Machine It is a contrivance which transforms energy available in one form or another to do the 
desired work.

Element It is a part of machine which has been manufactured without the operation of assembling.

Link It is a resistant body or assembly of resistant bodies, which constitute part or parts of a machine, 
connecting other parts which have motion relative to it.

Rigid link A link is called rigid, when it does not undergo any deformation while transmitting 
motion, for example a connecting rod, a crank etc.

Flexible link It is a link which while transmitting motion is partly deformed in a manner not to 
affect transmission of motion, for example, belts and springs.

Floating link It is not connected to the frame.

Fluid link It is formed by having fluid in a receptacle.

Binary link A link having connections at two points.

Ternary link A link having connections at three or more points.

Kinematic pair It is a movable joint of two links which are in contact so that the relative motion 
between the two links is constrained.

Lower pair It is formed by two links having surface contact while in motion. The relative motion is 
purely turning or sliding, for example, a universal joint, an automobile steering gear, a shaft revolving 
in a bearing, a straight line motion mechanism, etc.

Higher pair It is formed by two links having point or line contact while in motion. The relative 
motion being the combination of sliding and turning, for example a belt, a rope, a chain, gears, cams, 
ball and roller bearings.

Sliding pair When two links are so connected that one is constrained to have sliding motion relative 
to another, they form a sliding pair, for example, cross-head and guides.

Turning pair When two links are so connected that one is constrained to turn or revolve about a 
fixed axis of another link, they form a turning pair, for example a crankshaft turning in a bearing.
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Rolling pair When tow links are so connected that one is constrained to work in another link which 
is fixed, they form a rolling pair, for example ball and roller bearings.

Screw (or helical) pair When one element turns about the other element by means of threads, they 
form a screw pair. The relative motion is a combination of sliding and turning, for example, a bolt and 
nut, the lead screw of a lathe.

Spherical pair When one element in the form of a sphere turns about the fixed element, they form 
a spherical pair, for example a ball and socket joint.

Closed pair When two elements are held together mechanically, forms a closed pair lower pair is a 
closed pair. Screw pair and spherical pair are closed pairs.

Open (or unclosed) pair When two elements are not held together mechanically, they form an open 
pair. A cam and follower is an open pair.

Kinematic chain When kinematics pairs are so connected that the last link is joined to the first 
link to transmit a definite constrained motion, they form a kinematic chain. For a kinematics chain, 
L  2P  4  2(J  2)/3, where L  number of links, P  number of pairs and J  number of joints.

Mechanism It is an assemblage of a number of rigid links so formed and connected that they move 
upon each other with a definite relative motion. A mechanism is formed by fixing one of links of a 
kinematics chain.

Simple mechanism It is one which has upto four links, for example cams, gears, the beam engine 
and the elliptical trammel.

Compound mechanism It is one which has more than four links.

Degrees of freedom Degrees of freedom of a mechanism are the number of inputs a mechanism 
must have in order to fulfill a useful engineering purpose. It may be defined as the number of inde-
pendent relative motions, a pair can have. F  6  number of restraints.

Gruebler criterion This criteria states the degrees of freedom of a mechanism, as follows:  
F  3(L  1) 2g  h, where F  degrees of freedom, L  number of links, g  number of lower pairs, 
h  number of higher pairs.

Structure A mechanism is called a structure if F  0.

Constrained mechanism It is one for which F  1.

Grashof criteria This criteria states that for a mechanism (l  s) < (a  b), where l, s  length of the 
longest and shortest link respectively and a, b  length of other links.

Plane mechanism It is a mechanism having all the links in the same plane.

Spatial mechanism It is a mechanism having links in different planes.

Complex mechanism It is formed by the inclusion of ternary or higher order floating link to a sim-
ple mechanism.

Kinematics of machines It deals with the study of relative motion of parts of which the machines 
are constituted, neglecting consideration of forces producing it.

Dynamics of machines It deals with the study of motion of a machine under the forces acting on 
different parts of the machine.

Resistant body It is one which does not suffer appreciable distortion or change in physical form by 
the forces acting on it. Resistant bodies need not be rigid, such as springs, belts, fluids, etc.

Completely constrained motion It is one in which the motion takes place in a definite direction, 
for example a rectangular bar moving in a rectangular hole, a shaft with collars at each end rotating 
in a round hole.
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Partially constrained motion It is one in which the constrained motion is not completed by itself 
but by some other means, for example, a foot step bearing and the rotor of a vertical turbine.

Incomplete constrained motion It is one in which the links are so connected that motion can take 
place in more than one direction, for example a circular bar moving in a round hole.

Inversion of a mechanism Different mechanisms formed by fixing different links of the same kin-
ematic chain are known as inversions of each other. The inversions of four bar chain are the beam 
engine, the engine indicator and the coupled wheels of locomotives. The inversions of slider-crank 
chain are the pendulum pump, the oscillating cylinder engine, the crank and slotted lever type quick-
return motion, the Whitworth mechanism and the Gnome engine. Inversions of double slider crank 
chain are the donkey pump, Oldham’s coupling and the elliptical trammel.

Instantaneous centre A link or rigid body as a whole may be considered to be rotating about an 
imaginary centre or a given centre at a given instant which has zero velocity. Then the link is at rest at 
this point which is known as the instantaneous centre or centre of rotation. Number of instantaneous 
centres, N  n(n  1)/2, where n  number of  links.

Kennedy’s theorem of three centres This theorem states that if three bodies have relative motion 
with respect to each other, their relative instantaneous centres lie on a straight line.

Primary instantaneous centre It is one which is either fixed or permanent.

Secondary instantaneous centre It is one which is neither fixed nor permanent.

Angular velocity ratio theorem This theorem states that the ratio of the angular velocities of any 
two bodies moving in a constrained system is inversely proportional to the ratio of the distances of 
their common instantaneous centre from their centre of rotation.

Total acceleration of a point in a rigid link The total acceleration of end B with respect of end A 
of a rigid link AB is the vector sum of the radial (centripetal) and normal (tangential) accelerations, 
that is, 

f w AB ABba
2 

Acceleration centre The acceleration centre of a link is one which has zero acceleration.

Klein’s construction It is a graphical procedure of drawing the acceleration diagram for a recipro-
cating engine, that is a slider-crank mechanism.

Coriolis acceleration If the distance between the two points does not remain fixed and the second 
point slides, the total acceleration will contain an additional component of acceleration, known as 
coriolis acceleration. Coriolis component of acceleration is equal to 2 , where  is the sliding 
velocity and  the angular speed. The direction of Coriolis acceleration is such as to rotate the slider 
velocity vector in the same sense as the angular velocity of the link.

Motion of Slider-crank Mechanism
Displacement, 

x r l
n

cos
sin

/




1
2 1 2

where n  l/r,
l  length of connecting rod,
r  radius of crank,
  crank angle,
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Velocity of piston, 

v r

n
n

p sin
sin

sin
/

2

2 1
2 1 2

r
n

sin
sin 2

2

Acceleration, 

f r
np  
2 2

cos
cos

Lower Pairs
Pantagraph It is a mechanism in which a point describes a path similar to another point. It is used 
for tracing a curve on a magnified or reduced scale.

Straight line motion mechanisms Peaucellier, Hart and Scott-Russel are for accurate straight line 
and Grasshopper, Watt and Tchebicheff are for approximate straight line motion.

Engine pressure indicators Simplex, Crosby, Richard, Thompson and Dobbie-McInnes are engine 
pressure indicators.
Automobile steering gear mechanisms The two steering gears for automobiles are Davis 
and Ackermann. The later is most commonly used. For correct steering cot   cot   b/l, where  

  outer turning angle and   inner turning angle.
The steering mechanism automatically adjusts the values of the inner and outer turning angles. For 

Davis gear, tan   b/l  0.4 to 0.5 and for Ackermann gear, tan   (sin   sin )/(cos   cos   2) 
and b/l is nearly 0.455. b  distance between the pivots of front axle and l  wheel base.

Hooke’s coupling It is used in the propeller shaft of an automobile. The ratio of the angular speeds 
of the driven to the driving shafts is cos /(1  sin2 cos2 ), where  is the angle between the axes of 
the two shafts and  is the angle turned through by the driving shaft. If  is the angle turned through 
by the driven shaft, then tan   cos  tan . The maximum ratio of angular speeds is 1/cos  at  

  0° and 180°. The minimum ratio is cos  at  90° and 270°.

Angular acceleration of driven shaft      a
2 2 2 2 22 1cos sin sin ( sin cos ) ./

For acceleration to be maximum or minimum, cos sin / ( sin ).2 2 22 2  a

Belts Belts are used for power transmission. The two types of belts are flat and V-belts. The velocity 
ratio is inversely proportional to the pulley diameters. The length of cross-belt is more than the open 
belt length. The slip between the belt and pulley decreases the speed ratio. The ratio of tight side to 
slack side tensions is equal to exp (μ ), where μ is the coefficient of friction between the belt and pul-
ley and  is the angle of arc of contact. For the v-belt, the virtual coefficient of friction is μ/sin , where 

 is the pulley semi-groove angle. Initial tension is half of the sum of the tight and slack side tensions. 
The centrifugal tension in the belt decreases the power transmission capacity of the belt.

Speed ratio, 
N

N

D t

D t
2

1

1

2

 and percentage slip, s  s
1
  s

2
  0.01s

1
s

2
.
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Length of open belt, L
D D

D D Co


 1 2

2 12
2 cos ,  where sin .

D D

C
2 1

2

Length of cross belt, L
D D

Cc   2
2

21 2 cos , where sin .
D D

C
2 1

2

Centrifugal tension, T
w

gc

v2

,  where w  weight of belt per unit length.

For maximum power to be transmitted, T
T T T

c
c1 1

2 3
or .

Power transmitted, P
T T v1 2

1000
kW

Pitch surface It is an imaginary surface around the pulley to which the neutral section of the belt is 
tangential. The radius of this surface is the effective radius of the pulley.

Fast pulley It is one which transmit power.

Loose pulley It is one which does not transmit power.

Idler pulley It is free to rotate on its axis and is used to increase the tension in the belt, taking up 
stretch in the belt and increasing the angle of contact of the two pulleys.

Crowning of pulleys The convex shape given to the rim of the pulley is called crowning. It prevents 
the belt from running off the pulley by making the belt run in the centre of the pulley width.

Slip It is the relative motion between the belt and the pulley due to insufficient friction.

Creep It is due to the unequal stretching of the belt on the tight and slack sides. It leads to partial 
slip and reduced peripheral speed of driven pulley than the driving pulley.

Creep of belt
 

T T

bt E
1 2

Brakes They are used to decrease the speed of a moving body or to stop it when desired. The brakes 
are of the following types: block and shoe brake, band brake, band and block brake and internal 
expanding shoe brake. Railway bogies use block and shoe brake whereas automobiles use internal 
expanding shoe brake. To stop a moving body, both the translational and rotational kinetic energies 
have to be absorbed.

Dynamometers It is a device to measure the power being transmitted by a prime mover. Dynamom-
eters are of the following types: Prony (rope) brake, belt transmission and torsion dynamometers.

Governors The function of a governor is to keep the speed of a prime mover constant by adjusting 
the input. It regulates the speed over a number of cycles of the prime mover. Governors may be clas-
sified as follows:

1. Centrifugal governors (a) simple Watt (pendulum type) (b) loaded (i) dead weight type—Porter, 
Proell (ii) spring controlled type—Hartnell, Wilson-Hartnell, Gravity and spring control, Hartung 
and Pickering.

2. Intertia governor.

 For simple Watt governor, height of governor, h  (g/ 2) [(W  W
1
/2)/(w  W

1
/3)] where W  weight 

of ball, W
1
  total weight of arm,   angular speed.
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 For Porter governor, h  (g/ 2) [(W  w
0
) / w

0
], where W  dead weight, and w

0
  weight of ball.

Controlling force A single force replacing all the forces which tries to pull the ball in a radially 
inward direction is known as the controlling force.

Quality of a governor It is ascertained by the sensitiveness, staility, effort and power.

Sensitiveness It is defined as the ratio of the range of speed to mean speed.

Stability A governor is said to be stable when for each speed within the working range, there is only 
one radius of rotation of the governor balls at which the governor is in equilibrium.

Isochronism A governor is termed as isochronous when the equilibrium speed is constant for all 
radii of rotation of the balls within the working range.

Hunting It is a condition in which the speed of the engine controlled by the governor fluctuates 
continuously above and below the mean speed.

Effort of governor It is the average force that acts on the sleeve for a given percentage change of 
speed (generally 1%).

Power of a governor It is defined as the work done on the sleeve for a given percentage change of 
speed. Thus power is the product of the effort and the displacement of the sleeve.

Cam A cam may be defined as a rotating or a reciprocating element of a mechanism which imparts 
a rotating. Reciprocating or oscillating motion to another element termed as follower.

Basic circle It is the circle with the least radius of the cam such that the lift of the follower is zero 
over this circle.

Lift It is the difference between the maximum distance of the lowest point of the follower from the 
axis of rotation of the cam and the least radius.

Angle of ascent It is the angle moved by the cam, from the instant the follower begins to rise, till it 
reaches the highest position.

Angle of dwell It is the angle through which the cam rotates during the period in which the follower 
remains in the highest position.

Angle of descent It is the angle during which the follower returns to its initial position.

Angle of action It is the total angle moved by the cam from the beginning of ascent to the termina-
tion of descent.

Pressure angle It is the angle between the line of motion of the follower and a line normal to the 
cam profile at the point of contact.

The trace point It is a reference point on the follower for the purpose of tracing the cam profile. 
In the case of a roller follower, it is the centre of the roller and in the case of knife edge follower, the 
knife edge.

Pitch curve It is the path of the trace point.

The prime circle It is the smallest circle drawn to the pitch curve from the centre of rotation of the 
cam.

The cam angle It is the angle of rotation of the cam for a definite displacement of the follower.

The pitch point It is the point on the cam pitch curve having the maximum pressure angle.

The pitch circle It is the circle with centre as the centre of the cam axis and radius such that it passes 
through the pitch point.

The cam profile It is the actual working contour or curve of the cam.
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Motion of the follower The motion of the follower may be simple harmonic type, uniform accelera-
tion and deceleration and cycloidal type.

Undercutting It is the condition of the constructed cam profile that has an inadequate curvature to 
produce correct follower movement. To avoid undercutting in a convex curve, the radius of curvature 
of pitch curve should be greater than the radius of the roller follower.

Follower motion

1. Simple harmonic motion: y  0.5s (1  cos ), s  lift,   angle turned through.

 v s v s f s f s0 5 2 0 5 22 2. sin , ; . cos , .max max/ /

2. Uniform acceleration and deceleration: v ft y ft v s f s, . , ; .max0 5 2 42 2/ /

 Cycloidal motion:

 

y s

v s v

( ) [ / . sin( )]

( ) [ cos ( )], ma

/ /

/ /  
1 1

1 1

0 5 2

1 2 xx

( ) [sin ( )]

2

2 2

1

2
1
2

1

s

f s

/

/ /

Maximum pressure angle  25 to 35°.

Gears
Spur gear It is a cylindrical gear with tooth traces that are straight lines parallel to the gear axis. 
They are used for connecting shafts whose axes are parallel.

Rack It is a spur gear of infinite diameter.

Helical gear It is a cylindrical gear with teeth that are inclined at an angle to the gear axis.

Herringbone gear It is a gear with half of its width cut with tooth helix in one direction and the 
other half in the opposite direction.

Straight bevel gear It is a gear with tooth traces that are straight line generators of the cone. They 
are used for connecting shafts with axes intersecting generally at 90°.

Spiral bevel gears These are gears with tooth traces that are curved and oblique lines.

Hypoid gears They are similar to spiral bevel gears. They are used for connecting shafts whose axes 
are non-intersecting and non-parallel.

Worm gears They are used for connecting shafts with axes that are perpendicular and non-intersecting. 
They are used for high speed reductions, of the order of 100:1.

Terminology of Gears
Pitch circle diameter It is the diameter of a circle which would produce the same motion as the 
toothed gear wheel by pure rolling action.

Base circle It is the circle from which involute form is generated.

Pitch surface It is the surface of the disc which the toothed gear has replaced at the pitch circle.

Pitch point It is the pitch of the tangency or the point of contact of the two pitch circles of the mating  
gears.

Circular pitch It is the distance measured along the circumference of the pitch circle from a point 
on one tooth to a corresponding point on the adjacent tooth.
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Base pitch It is equal to circular pitch x cos , where   pressure angle of the gear tooth profile.

Diametral pitch It is expressed as the number of teeth per unit pitch circle diameter.

Circular pitch  Diametral pitch  

Module It is expressed as the length of the pitch circle diameter per unit number of teeth.

Addendum It is the radial height of the tooth above pitch circle.

Addendum circle It is a circle bounding the top of the teeth.

Dedendum It is the radial depth of a tooth below the pitch circle.

Dedendum circle It is a circle passing through the roots of all the teeth.

Clearance It is the radial height difference between addendum and dedendum of teeth.

Face It is the part of the tooth surface lying below the pitch surface.

Backlash It is the minimum distance between the non-driving side of a tooth and adjacent side of 
the mating tooth at the pitch circle.

Profile It is the curve forming face and flank.

Tooth thickness It is the arc distance measured along the pitch circle from its intercept with one 
flank to its intercept with the other flank of the same tooth.

Face width It is the width of the gear tooth measured axially along the pitch surface.

Top land It is the surface of the top of the tooth.

Tooth fillet It is the radius that connects the root circle to the profile of the tooth.

Tooth space It is the width of the space between two teeth measured on the pitch circle.

Pressure angle It is the angle between the common normal at the point of contact and the common 
tangent at the pitch point. The pressure angle is either 14.5° or 20°.

Path of contact It is the locus of the point of contact of two mating teeth from the beginning of 
engagement to the end of engagement. It is a straight line.

Path of approach It is the portion of the path of contact from the beginning of engagement to the 
pitch point.

Angle of approach It is the angle turned by gears during the path of approach.

Path of recess It is the portion of the path of contact from the pitch point to the end of engagement 
of the two mating teeth.

Angle of recess It is the angle turned through during path of recess.

Arc of contact It is the locus of a point on the pitch circle, from the beginning of engagement to the 
end of engagement of pair of teeth in mesh.

Minimum number of teeth to avoid interference, z z2 172/  For 20 , sin .

Law of gearing This law states that the common normal at the point of contact always passes through 
a fixed point (pitch point) on the line joining the centres of rotation.

For constant angular velocity ratio of gearing, the common normal at the point of contact divides 
the line joining the centres of rotation in the inverse ratio of the angular velocities.

Velocity of sliding It is equal to the sum of the angular speeds of the driving and driven gears mul-
tiplied by the distance of the point of contact from the pitch point.
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Involute The involute of a circle is the curve traced by the end of a thread as it is unwound from a 
stationary cylinder. inv ( )  tan   .

Base circle diameter It is equal to pitch circle diameter x cos .

Cycloid It is the locus of a point on the circumference of a circle which rolls without slipping on a 
fixed straight line.

Interference It is the portion of a gear tooth below the base circle that cut as a radial line and not 
an involute curve. Therefore, if contact should occur below the base circle, non-conjugate action 
would result, leading to interference. Interference can be avoided by undercutting, making stub teeth, 
increasing the pressure angle and cutting the gears with long and short addendum gear teeth.

Helical Gears
Helix angle It is the angle between a line drawn through one of the teeth and the centre line of the 
shaft on which the gear is mounted.

Normal circular pitch (p
n
) It is the distance between corresponding points of adjacent teeth as 

measured in a plane perpendicular to the helix. It is the perpendicular distance between two adjacent 
teeth. p

n
  p

t
 cos , P

n
  P

t
/cos .

Comparison between involute and cycloidal gears

Characteristic Involute gears Cycloidal gears

1. Pressure angle Constant throughout the 
engagement

Varies from commencement to 
end

2.  Easie of manufacture Easy to manufacture Difficult to manufacture

3. Centre distance Do not require exact centre distance Requires exact centre distance

4. Interference May occur No interference

5. Strength Less More

6. Wear More Less

7. Running Smooth Less smooth

Transverse circular pitch (P
t
) It is the distance measured in a plane perpendicular to the shaft axis 

between the corresponding points of adjacent teeth. p
t
  d/z, P

t
  z/d.

Axial pitch (p
x
) It is the distance measured in a plane parallel to the shaft axis between correspond-

ing points of adjacent teeth. p
x
  p

t
 cot .

Lead It is the distance measured parallel to the axis to represent the distance advanced by each tooth 
per revolution.

Lead angle It is the acute angle between the tangent to the helix and a plane perpendicular to the 
axis of cylinder.

Virtual (or formative or equivalent) number of teeth (z
v
) The number of teeth of the equivalent 

spur gear in the normal plane is called the virtual number of teeth.
z zv /cos ,3   helix angle; normal module, m m P p Pn t n t t t ncos , tan tan cos ,   
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Bevel Gears
Pitch cone It is the pitch surface of a bevel gear in a gear pair.

Cone centre It is the apex of the pitch cone.

Pitch cone radius It is the length of the pitch cone element.

Pitch angle (d) It is the angle that the pitch line makes with the axis of the gear.

Reference cone angle It is the angle between the axis and the reference cone generator containing 
the root cone generator.

Tip (or face) angle It is the angle between the tip cone generator and the axis of the gear.

Root (or cutting) angle It is the angle between the root cone generator and the axis of the gear.

Back cone It is an imaginary cone the elements of which are perpendicular to the elements of the 
pitch cone at the larger end of the tooth.

Gear diameter It is the diameter of the largest pitch circle.

Virtual number of teeth It is the number of teeth on an imaginary spur gear laid out on a pitch 
radius equal to the back cone radius. z zv /cos .

Crown gears It is a gear pair for which pitch cone angle is 90°.

Miter gears There are two bevel gears of the same size having a pitch cone angle of 90°.

Worm Gears
Axial diametral pitch It is the quotient of the number  by the axial pitch.

Diametral quotient (q) It is the ratio of the reference diameter to the axial module, q  d/m.

Axial Module (m
x
) It is the quotient of the axial pitch by the number .

Axial circular pitch ( p 
x
 ) It is the distance, measured parallel to the axis of the worm, between two 

consecutive corresponding profiles.

Lead (p
z
) It is the distance between two consecutive intersections of a helix and a straight generator 

of the cylinder on which it lies.

Length of the worm It is the length of the toothed part of the worm measured parallel to the axis 
on the reference cylinder.

Gear ratio It is the quotient of the number of teeth on the wheel divided by the number of threads 
on the worm.

Torus It is the surface of revolution generated by the rotation of a circle around an axis external to 
this circle and situated in its plane.

Gorg It is part of the tip surface in the form of a portion of a torus with the same middle circle 
diameter as the reference torus.

Tooth width It is the distance between two planes perpendicular to the axis containing the circles of 
intersection of the reference torus and the lateral faces of the teeth.

Width angle In the generating circle of the reference torus, the angle at the centre included between 
the points of intersection of this circle with the lateral faces of the teeth is called width angle.

Lead angle It is the angle between a tangent to the pitch helix and the plane of rotation of the 
worm.
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tan ; ; cos ;
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p
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v

v
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Efficiency,
 


  
  

(cos tan )

(cos cot )
n

n

Gear Trains
Simple gear train A simple gear is one in which each shaft carries only one gear. N

1
/N

n 1
  z

n 1
/z

1
.

Compound gear train A compound gear train is one in which all the intermediate shafts carry two 
gears and the first and last shaft carry only one gear.

N

N

z

z

z

z
1

4

2

1

4

3

Reverted gear train A reverted gear train is one in which the first and the last gears are on the same 
shaft.

d d d d
N

N

z

z

z

z1 2 3 4
1

4

2

1

4

3

;

Epicyclic gear train The axis of rotation of one or more of the gears is carried on an arm which 
is free to revolve about the axis of rotation of one of the other gears in the train. The speed ratio of 
these gears trains can be found either by the relative velocity method or by the tabular (or algebraic) 
method.

Inertia Force in Mechanisms
Dynamical equivalent system Two systems are said to be dynamically equivalent to one another, if 
by application of equal forces, equal linear and angular accelerations are produced in the two systems. 
For two masses m

1
 and m

2
 having accelerations a

1
 and a

2
 respectively, the conditions for dynamically 

equivalent system are:

m m m m a m a mK m a m aG1 2 1 1 2 2
2

1 1
2

2 2
2; ; and

where K
G
  radius of gyration about the centre of graving and K a aG

2
1 2 .

Dynamics of reciprocating parts Let R  weight of reciprocating parts, then accelerating force for 
reciprocating parts  (R/g) fp; sin   sin /n.

Thrust in connecting rod, Q  P/cos , P  piston effort.

Reaction of guide bar, S  P tan ; Crank pin effort, T  Q sin (   )

Force in crank, W  Q cos (   )

Crank effort  Tr  Pr [sin  sin 2 /{2(n2 sin2 )1/2}]
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Flywheel The function of a flywheel is to decrease the variation of speed during one cycle by  
storing up energy during the working stroke of the engine and releasing it during the idle stroke.  
Fluctuation of energy  5.589 10 4 WK2 (N

1
  N

2
)(N

1
 N

2
), where W  weight of flywheel and K its 

radius of gyration.

Gyroscopic and Precessional Motion
Precessional motion It is the motion in which the plane of rotation varies from instant to instant.
Axis of spin It is the axis about which the body revolves.
Gyroscopic effect It is the combined effect of the plane of spin, the plane of precession and the 
plane of gyroscopic couple. The axis of spin, couple and precession are mutually perpendicular. 
Axis of precession It is the third axis about which a body revolves and is perpendicular to both the 
axis of spin and that of the couple.
Gyroscope It is a body which while spinning about an axis is free to move in other directions under 
the action of external forces.

Gyroscopic Couple of a plane Disc  Iww
p
, where I  moment of inertia of the disc, w  spinning 

angular velocity, and w
p
  angular speed of precession.

Balancing
1. Balancing of a single rotating mass shall require a single mass to balance it rotating in the same 

plane. Bb  Mr

2. Balancing of a single rotating mass by a balanced mass rotating in a different plane parallel to the 
plane of the unbalanced mass shall require two balancing masses, which can either be arranged in 
two different planes on the side of the plane of rotation of the unbalanced mass or on the opposite 
side of the plane of rotation of the unbalanced mass.

B b
Mra

d
B b

Mra

d1 1
2

2 2
1or

where d  distance between the planes.

3. For the balancing of several masses rotating in the same plane, the force polygon must close. If the 
force polygon does not close then the closing side of the polygon taken in the reverse order gives 
the resultant in magnitude and direction. The balancing mass must be placed at a convenient radius 
opposite to the resultant force.  Mr  0.

4. For the balancing of number of masses rotating in different planes, the force polygon and the cou-
ple polygon must close.

 Mr  0 and M ra  0

a  distance from the reference plane.

5. For the balancing of reciprocating parts, the primary and secondary forces must be balanced. The 
frequency of the secondary forces is double the frequency of the primary forces. The primary 
forces are generally balanced partially. For resultant unbalanced primary force to be minimum, the 
balancing should be 50% but generally 2/3rd of the primary forces are balanced. This gives rise to 
swaying couple and hammer blow.
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F R r F R
r

l
t c

Bb

Rrp s   2 2
2

2
4

2cos , ( ) cos ,

6. For the balancing of connecting rod of an engine, 2/3rd of its mass is considered to be rotating at 
the crank pin and 1/3rd reciprocating along with the gudgeon pin.

Swaying couple It is the couple produced due to unbalanced parts of the primary disturbing forces 
acting at a distance between the line of stroke of the cylinders.

C c R ra( )1 22  at 45° and 1350

Hammer blow It is the maximum value of the unbalanced vertical force or the balance weights. It is 
counterbalanced by the self weight of the engine and acts on the rails. Hammer blow  Bb 2 at 90° and 
270°, where B  balance mass of reciprocating parts alone. To avoid lifting of wheels from the rails,  

  [Mg/Bb]1/2, where Mg  dead load on each wheel. Net pressure on rails  Mg  Bb 2.

Balancing of In-line Engines
(a) Two-cylinder engines Primary forces are automatically balanced. Primary couples, secondary 
forces and couples have to be balanced. Equivalent radius of crank for secondary forces is r2/4l and 
equivalent frequency is 2 .

(b) Four-cylinder engine Primary forces and couples are automatically balanced. Secondary force 
is to be balanced and secondary couple is zero.

Balancing of V-Engines Both the resultant primary and secondary forces are to be balanced.

Friction
Flat pivot Frictional moment, M  (2/3) μ WR for uniform pressure and 0.5 μ WR for uniform rate 
of wear. Intensity of pressure  W/ ( R2).

Conical pivot M  (2/3) (μ/sin ) W R for uniform pressure and (1/2) (μ / sin ) W R for uniform rate 
of wear,   semi-cone angle.

Flat collar

M W
r r

r r

2

3

1
3

2
3

1
2

2
2



 

for uniform pressure

W
r r( )1 2

2  
for uniform rate of wear

Intensity of pressure,

 
p

W

r r ( )1
2

2
2

Conical collar

M W r r r r( ) ( sin ) ( ) ( )2 3 1
3

2
3

1
2

2
2/  /  /   for uniform pressure

( ) ( sin ) ( )1 2 1 2/  /    W r r  for uniform rate of wear

p W r r/   ( )1
2

2
2





MULTIPLE 
CHOICE 
QUESTIONS WITH 
EXPLANATORY NOTES

A-3

1. Scotch yoke mechanism is used to generate

 (a) sine functions (b) square roots (c) logarithms (d) inversions.

2. The danger of breakage and vibration is maximum

 (a) below critical speed  (b) near critical speed

 (c) above critical speed (d) none of the above.

3. In full depth 14
1

2
 degree involute system, the smallest number of teeth in a pinion which meshes 

with rack with out interference is

 (a) 12 (b) 16 (c) 25 (d) 32.

4. Inversion of a mechanism is

 (a) changing of a higher pair to lower pair

 (b) obtained by fixing different links in a kinematic chain

 (c) turning it upside down

 (d) obtained by reversing the input and output motion.

5. The sense of Coriolis component 2 Vw is the same as that of the relative velocity vector V  
rotated.

 (a) 45° in the direction of rotation of the link containing the path

 (b) 45° in the direction opposite to the rotation of the link containing the path

 (c) 90° in the direction of rotation of the link containing the path

 (d) 180° in the direction opposite to the rotation of the link containing the path.

6. Under logarithmic decrement, the amplitude of successive vibrations are

 (a) constant (b) in arithmetic progression

 (c) in geometric progression (d) in logarithmic progression.
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 7. Match the following 14 
1

2
 deg composite system of gears

List I List II

A. Dedendum 1. 2/P

B. Clearance 2. 0.157/P

C. Working depth 3. 1.157/P

D. Addendum 4. 1/P

 Codes: 

  A B C D

 (a) 1 2 3 4

 (b) 4 3 2 1

 (c) 3 2 1 4

 (d) 3 1 2 4

 8. A certain machine requires a torque of (500 + 50 sin 2 ) kN  m to drive it, where  is the angle 
of rotation of shaft measured from certain datum. The machine is directly coupled to an engine 
which produces a torque (500 + 50 sin ) kN  m in a cycle. How many times the value of torque 
of machine and engine will be identical?

 (a) 1 (b) 2 (c) 4 (d) 8.

 9. The curve traced by a point on the circumference of a circle which rolls along the inside of a fixed 
circle, is known as

 (a) epicycloid (b) hypocycloid (c) cardiod (d) involute.

10. In Oldham’s coupling the condition for maximum speed ratio is

 (a) 1 cos  (b) 1 sin  (c) 1 1

cos
 (d) 1 1

sin
.

11. Match the following:

List I (Dynamometer) List II (Characteristics)

A. Torsion dynamometer 1. High speeds and low power

B. Tesla fluid friction dynamometer 2. Power absorbed independent of size of flywheel.

C. Prony brake 3. Power absorbed available for useful applications

D. Swinging field dynamometer 4. Large powers

 Codes:

  A B C D

 (a) 4 2 1 3

 (b) 2 4 1 3

 (c) 3 1 2 4

 (d) 4 1 2 3
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12. Mitre gears

 (a) spur-gears with gear ratio 1:1

 (b) Skew gears connecting non-parallel and non-intersecting shafts

 (c)  Bevel gears transmitting power at more than or less than 90°

 (d)  Bevel gears in which the angle between the axis is 90° and the speed ratio of the gears  
is 1:1.

13. In which of the following case, the turning moment diagram will have least variations:

 (a) Double acting steam engine (b) Four stroke single cylinder petrol engine

 (c) 8 cylinder, 4 stroke diesel engine (d) Pelton wheel.

14. Which of the following statement is correct:

 1. If a rotor is statically balanced it is always dynamically balanced also

 2. If a rotor is dynamically balanced, it must be statically balanced

 3. If a rotor is dynamically balanced, it may or may not be statically balanced

 4. If a rotor is statically balanced, it may or may not be dynamically balanced

 (a) 1 and 2 only (b) 2 ans 4 only (c) 2 and 3 only (d) 1 and 4 only.

15. Which of the following are inversions of a double slider crank chain?

 1. Whitworth return motion 2. Scotch Yoke

 3. Oldham’s Coupling 4. Rotary engine

 Select correct answer using the codes given below:

 Codes:

 (a) 1 and 2 (b) 1, 3, and 4 (c) 2 and 3 (d) 2, 3, and 4.

16. Match List I with List II and select the correct answer using the codes given below the lists:

List I List II

A. Governor 1. Pantograph device

B.   Automobile differential 2. Feed-back control

C. Dynamic Absorber 3. Epicylic train

D. Engine Indicator 4. Two-mass oscillator

 Codes: 

  A B C D

 (a) 1 2 3 4

 (b) 4 1 2 3

 (c) 2 3 4 1

 (d) 4 3 2 1



1246 Appendix 

17. Consider the following statements:

 Coriolis component of acceleration depends on

 1. velocity of slider 2. angular velocity of the link

 3. acceleration of slider 4. angular acceleration of link

 Of these statements

 (a) 1 and 2 are correct (b) 1 and 3 are correct

 (c) 2 and 4 are correct (d) 1 and 4 are correct.

18. ABCD is a four-bar mechanism in which AB  30 cm and CD  45 cm. AB and CD are both per-
pendicular to fixed link AD, as shown in the Fig.1. If velocity of B at this conditions is V, then 
velocity of C is

 (a) V (b) 3/2 V (c) 9/4 V (d) 2/3 V

Fig.1

19. Match List I with List II and select the correct answer using the codes given below the lists:

List I (Forces) List II (Mathematical expressions)

A. Inertia force 1.
 
c

y

t

d

d

B. Spring force 2.
 

M
y

t

d

d

2

2

C. Damping force 3. M 2R

D. Centrifugal force 4.   ky

 Codes:
  A B C D

 (a) 1 3 2 4

 (b) 2 4 1 3

 (c) 2 1 4 3

 (d) 1 2 3 4
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20. In gears, interference takes place when

 (a) the tip of a tooth of mating gear digs into the portion between base and root circle

 (b) gear do not move smoothly in the absence of lubrication

 (c) pitch of the gear is not same

 (d) gear teeth are undercut.

21. Match List I with List II an select the correct answer using the codes given below the lists:

List I List II

A. Quadric cycle chain 1. Elliptic trammel

B. Single slider crank chain 2. Rapsons slide

C. Double slider crank chain 3. Ackerman steering

D. Crossed slider crank chain 4. Eccentric mechanism

5. Pendulum pump

 Codes:

  A B C D

 (a) 5 4 2 1

 (b) 3 1 5 4

 (c) 5 3 4 2

 (d) 3 5 1 2

22. In a flat collar pivot bearing, the moment due to friction is proportional to (r
1
 and r

2
 are the outer 

and inner radii respectively)

 (a) 
r r

r r
1
2

2
2

1 2

 (b) 
r r

r r
1
2

2
2

1 2

 (c) 
r r

r r
1
3

2
3

1
2

2
2  (d) 

r r

r r
1
3

2
3

1 2

.

23. A friction circle is drawn when a journal rotates in bearing. Its radius depends on the coefficient 
of friction and the

 (a) magnitudes of the forces on the journal (b) angular velocity of the journal

 (c) clearance between the journal and the bearing (d) radius of the journal.

24. If the rotating mass of a rim type fly wheel is distributed on another rim type flywheel whose 
mean radius is half mean radius of the former, then energy stored in the latter at the same speed 
will be

 (a) four times the first one  (b) same as the first one

 (c) one-fourth of the first one  (d) one and a half times the first one.

25. A flywheel is fitted to the crankshaft of an engine having ‘E’ amount of indicated work per 
revolution and permissible limits of co-efficients of fluctuation of energy and speed as K

e
 and K

s
 

respectively. The kinetic energy of the flywheel is then given by

 (a) 
2K E

K
e

s

 (b) 
K E

K
e

s2
 (c) 

K E

K
e

s

 (d) 
K E

K
e

s2
.
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26. A Hartnell governor has its controlling force F given by F  p qr, Where r is the radius of the 
balls and p and q are constants.

The governor becomes isochronous when

 (a) p  0 and q is positive (b) p is positive and q  0

 (c) p is negative and q is positive (d) p is positive and q is also positive.

27. The plots of controlling force versus radii of rotation of the balls of spring controlled governors 
are shown in the given Fig.2. A stable governor is characterised by the curve labelled.

Fig.2

 (a) I (b) II (c) III (d) IV.

28. A system in dynamic balance implies that

 (a) the system is critically damped (b) there is on critical speed in the system

 (c) the system is also statically balanced (d)  there will be absolutely no wear of bearings.

29. For a twin cylinder V-engine, the crank positions for Primary reverse cranks and Secondary direct 
cranks are given in the following Fig.3:

Fig.3

The engine is a

 (a) 60° V-engine (b) 120° V-engine (c) 30° V-engine (d) 150° V-engine.
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30. Which one of the following can completely balance several masses revolving in different planes 
on a shaft?

 (a) A single mass in one of the planes of the revolving masses

 (b) A single mass in a different plane

 (c) Two masses in any two planes

 (d) Two equal masses in any two planes.

31. With symbols having the usual meanings, the single degree of freedom system,  
mx cx kx F tsin represents

 (a) free vibration with damping (b) free vibration without damping

 (c) forced vibration with damping (d) forced vibration without damping.

32. In the two-rotor system shown in the given Fig.4, (I
1
  I

2
), a node of vibration is situated

Fig.4

 (a) between I
1
 and I

2
 but nearer to I

1
 (b) between I

1
 and I

2
 but nearer to I

2

 (c) exactly in the middle of the shaft (d) nearer to I
1
 but outside.

33. A simple spring mass vibrating system has a natural frequency of N. If the spring stiffness is 
halfed and the mass is doubled, then the natural frequency will become

 (a) N/2 (b) 2N (c) 4N (d) 8N

34. For the single degree of freedom system shown in the Fig.5, the mass M rolls along an incline of .  
The natural frequency of the system will

 (a) increases as  increases

 (b) decreases as  increases

 (c) be independent of 

 (d) increase initially as  increases and then decrease with further increase in .

Fig.5
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35. For the system shown in the given Fig.6 the moment of inertia of the weight W and the ball about 
the pivot point is I

o
. The natural frequency of the system is given by 

f
Ka Wb

In
o

1

2

2



Fig.6

 The system will vibrate when

 (a) b
Ka

W

2

 (b) b
Ka

W

2

 (c) b
Ka

W

2

 (d)  a  0.

36. Rotating shafts tend to vibrate violently at whirling speeds because

 (a) the shafts are rotating at very high speeds

 (b) bearing centre line coincides with the shaft axis

 (c) the system in unbalanced

 (d) resonance is caused due to the heavy weight of the rotor.

37. Critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in

 (a) transverse vibrations (b) torsional vibrations

 (c) longitudinal vibrations (d) longitudinal vibrations provided the shaft is vertical.

38. In a automobile service station, an automobile is in a lifted up position by means of a hydraulic 
jack. A person working in the service station gave a tap to one rear wheel and made it rotate by 
one revolution. The rotation of another rear wheel is 

 (a) zero (b) also one revolution in the same direction

 (c) also one revolution but in the opposite direction  (d) unpredictable.

39. Match List I with List II and select the correct answer using the codes given below the lists:

List I (Standard tooth forms) List II (Advantage or disadvantages)

A. 20° and 50° system 1. Results in lower loads on bearing

B. 14
1

2
 stub-tooth system 2. Broadest at the base and strongest in bending

C. 25° Full depth system 3. Obsolete

D. 20° Full depth system 4. Standards for new applications
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 Codes:
  A B C D
 (a) 4 3 2 1
 (b) 3 1 2 4
 (c) 3 2 1 4
 (d) 4 2 3 1

40. In involute gears the pressure angle is

 (a) dependent on the size of teeth (b) dependent on the size of gears

 (c) always constant  (d) always variable.

41. A thin circular disc is rolling with a uniform linear speed, along a straight path on a plane surface. 
Consider the following statements in this regard:

 1. All points of the disc have the same velocity

 2. The centre of the disc has zero acceleration

 3. The centre of the disc has centrifugal acceleration

 4. The point on the disc making contact with the plane surface has zero acceleration.

 Of these statements

 (a) 1 and 4 are correct  (b) 3 and 4 are correct

 (c) 3 alone is correct  (d) 2 alone is correct.

42. An elliptic trammel is shown in the given Fig.7. Associated with the motion of the mechanism 
are fixed and moving centrodes. It can be established analytically on graphically that the moving 
centrode is a circle with radius and centre respectively of

O

1

A

D
3

4 C

B

A B=1

BD =D A

2

Fig.7

 (a) 1 and O (b) 1/2 and B (c) 1/2 and C (d) 1/2 and D.
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43. In a circular are cam with roller follower, the acceleration in any position of the lift would depend 
only upon

 (a) total lift, total angle of lift, minimum radius of cam and cam speed

 (b) radius of circular arc cam, speed, location of centre of circular arc and roller diameter

 (c) weight of cam follower linkage, spring stiffness and cam speed

 (d) total lift, centre of gravity of the cam and cam speed.

44. The Klein’s method of constuction for reciprocating engine mechanism

 (a) is a simplified version of instantaneous centre method

 (b) utilises a quadrilateral similar to the diagram of mechanism for reciprocating engine

 (c) enables determination of Corioli’s component

 (d) is based on the acceleration diagram.

45. With reference to the mechanism shown in the Fig.8, the relation between F and P is

Fig.8

 (a) F P
1

2
tan  (b) F  P  tan  (c) P  2F  tan  (d) F  2P  tan .

46. In the given Fig.9, ABCD is a four-bar mechanism, At the instant shown AB and CD are vertical 
and BC is horizontal. AB is shorter than CD by 30 cm, AB is rotating at 5 rad/s and CD is rotating 
at 2 rad/s. The length of AB is

Fig.9

 (a) 10 cm (b) 20 cm (c) 30 cm (d) 50 cm.

47. The two-link system, shown in the given Fig.10, is constrained to move with planar motion.  
It possesses

 (a) 2 – degrees of freedom (b) 3 – degrees of freedom

 (c) 4 – degrees of freedom (d) 6 – degrees of freedom.
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Fig.10

48. Two co-axial rotors having moments of inertia I
1
, I

2
 and angular speeds  

1
 and 

2
 respectively are 

engaged together. The loss of energy during engagment is equal to

 (a) 
I I

I I
1 2 1 2

2

1 22

( )

( )

 
 (b) 

I I

I I
1 2 1

2
2
2 2

1 22

( )

( )

 
 (c) 

2 1 2 1 2
2

1 2

I I

I I

( )

( )

 
 (d) 

I I

I I
1 1

2
2 2

2

1 2

 
( )

.

49. A spring controlled governor is found unstable. It can be made stable by

 (a) increasing the spring stiffness (b) decreasing the spring stiffness

 (c) increasing the ball weight (d) decreasing the ball weight.

50. If a number of forces act on a rigid body, each force may be replaced by an equal and parallel force 
acting through a fixed point, together with a couple. For the rigid body to be in equilibrium,

 (a) the resultant force at the fixed point must be zero

 (b) the resultant couple on the body must be zero

 (c) both resultant force and couple must be zero

 (d) none of the above need be zero.

51. A rotor which is balanced statically but not dynamically is supported on two bearings L apart and 
at high speed of the rotor, reaction of the left bearing is R. The right side of the bearing is shifted 
to a new position 2L apart from the left bearing. At the same rotor speed, dynamic reaction on the 
left bearing in the new arrangement will

 (a) remain same as before (b) become equal to 2 R

 (c) become equal to 
1

2
R  (d) become equal to 

1

4
R .

52. Consider the following statements regarding a high speed in-line engine with identical reciprocat-
ing parts with cranks spaced to give equal firing intervals:

 1.  All harmonic forces, except those which are multiples of half the number of cylinders, are balanced

 2.  Couples are balanced if the engine is symmetrical about a plane normal to the axis of the cranks shaft

 3.  In a four cylinder in-line engine, second and fourth harmonic forces are unbalanced whereas in a six 
cylinder in a six cylinder in-line engine, second, fourth and sixth harmonic forces are unbalanced

 Of these statements

 (a) 1, 2 and 3 are correct (b) 1 and 3 are correct

 (c) 1 and 3 are correct (d) 2 and 3 are correct.

53. In the statement “an eccentric mass rotating at 3000 rpm will create X times more unbalanced 
force than 50% of the same mass rotating at 300 rpm,” ‘X’ stands for

 (a) 10 (b) 50 (c) 100 (d) 200.
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54. A machine of 100 kg mass has a 20 kg rotor with 0.5 mm eccentricity. The mounting springs have 
stiffness 85 kN/m and damping is negligible. If the operating speed is 20  rad/s and the unit is 
constrained to move vertically, the dynamic amplitude of the machine will be 

 (a) 0.470  10 4 m (b) 1.000  10 4 m (c) 1.270  10 4 m (d) 2.540  10 4 m.

55. Match List I (force transmissibility) with List II (frequency ratio) and select the correct answer 
using the codes given below the Lists:

List I List II

A. 1 1. 

n

2

B. Less than 1 2. 

n

2

C. Greater than 1 3. 

n

2

D. Tending to zero 4. 

n

2

 Codes: 

  A B C D

 (a) 1 2 3 4

 (b) 2 1 4 3

 (c) 2 1 3 4

 (d) 1 2 4 3

56. A mass of 1 kg is attached to the end of a spring with a stiffness 0.7 N/mm. The critical damping 
coefficient of this system is

 (a) 1.40 Ns/m (b) 52.22 Ns/m (c) 52.92 Ns/m (d) 529.20 Ns/m.

57. A system is shown in the following Fig.11. The bar AB is assumed to be rigid and weightless.

Fig.11
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The natural frequency of vibration of the system is given by

 (a)

 

 f

k k
a

m k
a

k

n

1

2

1 2

2

2

2

1

 

(b)
 

 f
k k

m k kn

1

2
1 2

1 2( )

 
(c)

 
f

k

mkn

1

2
1

2  
(d)

 
f

k k

mk kn

1

2
1 2

1 2

.

58. Two heavy rotating masses are connected by shafts of lengths l
1
, l

2
 and l

3
 and the corresponding 

diameters are d
1
, d

2
, and d

3
. This system is reduced to a torsionally equivalent system having uni-

form diameter “d
1
” of the shaft. The equivalent length of the shaft is

 
(a)

 

l l l1 2 3

3  
(b) l l

d

d
l

d

d1 2
2

2

3

3
1

3

3

 (c) l l
d

d
l

d

d1 2
1

2

4

3
1

3

4

 (d) l
1
  l

2
  l

3
.

59. A shaft has two heavy rotors mound on it The transverse natural frequencies, considering each of 
the rotor separately, are 100 cycles/sec and 200 cycles/sec respectively. The lowest critical speed is

 (a) 5367 rpm (b) 6000 rpm (c) 9360 rpm (d) 12000 rpm.

60. A shaft has an attached disc at the centre of its length. The disc has its centre of gravity located at 
a distance of 2 mm from the axis of the shaft. When the shaft is allowed to vibrate in its natural 
bow-shaped mode, its has a frequency of vibration of 10 radians/second. When the shaft is rotated 
a 300 revolutions per minute, it will whirl with a radius of

 (a) 2 mm (b) 2.25 mm (c) 2.50 mm (d) 3.00 mm.

61. Let S and G be positions of centre of mass and geometric centre is a disc attached to a rotating 
disc with axis at O as shown Fig.12. Let the system be resisted by viscous damping. Then at the 
critical speed, the relative positions of G and S are given by 

 

Fig.12
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62. Consider the following statements regarding the differential of an automobile

 1.  The speed of the crown wheel will always be the mean of the speeds of the two road wheels

 2.  The road wheel speeds are independent of the number of teeth on the planets

 3.  The difference between the speed of the road wheels depends on the number of teeth on the 
planets

 4.  The ratio of speeds of the road wheels depends upon the number of teeth on the gear wheels 
attached to them and on the crown wheel

 Of these statements

 (a) 1 and 2 are correct (b) 3 and 4 are correct

 (c) 1 and 3 are correct (d) 2 and 4 are correct.

63. A single epicyclic gear train is shown in the given Fig.13. Wheel A is stationary. If the number of 
teeth on A and B are 120 and 45 respectively, then when B rotates about its own axis at 100 rpm, 
the speed of C would be

Fig.13

 (a) 20 rpm (b) 27
3

11
rpm  (c) 19  rpm

7

11
 (d) 100 rpm.

64. A round bar A passes through the cylindrical hole in B as shown in the given Fig.14. Which one 
of the following statements is correct in this regard?

Fig.14

 (a) The two links shown from a kinematic pair (b) The pair is completely constrained

 (c) The pair has incomplete constraint (d) The pair is successfully constrained.

65. The instantaneous centre of rotation of a rigid thin disc rolling on a plane rigid surface is located at

 (a) the centre of the disc

 (b) an infinite distance on the plane surface

 (c) the point of contact

 (d) the point on the circumference situated vertically opposite to the contact point.
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66. The directions of Coriolis component of acceleration, 2 V, of the slider A with respect to the 
coincident point B is shown in Fig.15. (1 to 4). Directions shown by figures

V

2 V 2 V 2 V 2 V
B
A

1
O

2

V

B
A

O
3

V

B
A

O
4

V

B
A

O

Fig.15

 (a) 2 and 4 are wrong (b) 1 and 2 are wrong

 (c) 1 and 3 are wrong (d) 2 and 3 are wrong.

67. Klein’s construction for determining the acceleration of piston P is shown in the given Fig.16. 
When N coincides with O,

Fig.16

 (a) acceleration of piston is zero and its velocity is zero
 (b) acceleration is maximum and velocity is maximum
 (c) acceleration is maximum and velocity is zero
 (d) acceleration is zero and velocity is maximum.

68. A torsional system with discs of moment of inertia I
1
 and I

2
, shown in the given Fig.17, is gear 

driven such that the ratio of the speed of shaft B to shaft A is ‘n’. Neglecting the inertia of gears, 
the equivalent inertia of disc 2 at the speed of shaft A is equal to 

Fig.17

 (a) nI
2
 (b) n2I

2
 (c) I

2
/n2 (d) I

2
/n
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69. Which one of the following pairs is not correctly matched?

 (a) Positive drive … Belt drive

 (b) High velocity ratio … Worm gearing

 (c) To connect non-parallel and non-intersecting shafts … Spiral gearing

 (d) Diminished noise and smooth operation … Helical gears.

70. Consider the following expressions for a spur gear:

 1. Addendum  1/p
d

 2. Clearance  p
c
/20

 3. Centre distance for internal gears  (T
1
 T

2
)/2P

d

 4. Dendendum  1.157 7 p
c
/

 Of these expressions

 (a) 1, 2, 3, and 4 are correct (b) 1 and 2 are correct

 (c) 1, 2, and 3 are correct (d) 1, 2, and 4 are correct.

71. Babbit lining is used on brass/bronze bearing to 

 (a) increases bearing resistance (b) increase compressive strength

 (c) provide antifriction properties (d) increase wear resistance.

72. In an oil-lubricated journal bearing, coefficient of friction between the journal and the bearing.

 (a) remains constant at all speeds

 (b) is minimum at zero speed and increases monotonically with increases in speed

 (c) is maximum at zero speed and decreases monotonically with increase in speed

 (d) becomes minimum at an optimum speed and then increases with further increase in speed.

73. The given Fig.18 shows the output torque plotted against crank positions for a single cylinder 
four-stroke-cycle engine. The areas lying above the zero-torque line represent positive work and 
the areas below represent negative work. The engine drives a machine which offers a resisting 
torque equal to the average torque. The relative magnitudes of the hatched areas given by the 
numbers (in the areas) as shown:

Fig.18

 During the cycle, the minimum speed occurs in the engine at

 (a) B (b) D (c) H (d) F
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74. For a spring controlled governor to be stable, the controlling force (F) is related to the radius (r) 
by the equation.

 (a) F  ar – b (b) F  ar  b (c) F  ar (d) F  a/r  b

75. A rotor supported at A and B, carries two masses as shown in the given Fig.19. The rotor is

Fig.19

 (a) dynamically balanced (b) statically balanced

 (c) statically and dynamically balanced (d) not balanced.

76. The equation of free vibrations f a system is X X36 02 .  Its natural frequency is

 (a) 46 Hz (b) 3  Hz (c) 3 Hz (d) 6  Hz.

77. Which of the following methods can be used to determine the damping of machine element?

 1. Logarithmic method 2. Band-width method 3. Rayleigh method 4. Holzer method.

 Select the correct answer using the codes given below:

 Codes:

 (a) 1 and 3 (b) 1 and 2 (c) 3 and 4 (d) 1, 3, and 4.

78. If  / n 2 , where  is the frequency of excitation and 
n
 is the natural frequency of vibra-

tions, then the transmissibility of vibrations will be

 (a) 0.5 (b) 1.0 (c) 1.5 (d) 2.0

79. A slender shaft supported on two bearing at its ends carries a disc with an eccentricity e from the 
axis of rotation. The critical speed of the shaft is N. If the disc is replaced by a second one of same 
weight but mounted with an eccentricity 2e, critical speed of the shaft in the second case is

 (a) 1/2 N (b) 1/  2 N  (c) N (d) 2 N

80. For the spring-mass system shown in the Fig.20(a), the frequency of vibration is N. What will be 
the frequency when one more similar spring is added in series, as shown in Fig.20(b)?

Fig.20

 (a) N/2 (b) N / 2  (c) 2 /N  (d) 2N.
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81. Which one of the following is true for involute gears?

 (a) Interference is inherently absent

 (b) Variation in centre distance of shafts increases radial force

 (c) A convex flank is always in contact with concave flank

 (d) Pressure angle is constant throughout the teeth engagement.

82. The gear train usually employed in clocks is a

 (a) reverted gear train (b) simple gear train (c) sun and planet gear (d) differential gear.

83. Which one of following is an Open Pair?

 (a) Ball and socket joint (b) Journal bearing (c) Lead screw and nut (d) Cam and follower.

84. In the mechanism ABCD shown in the given Fig.21, the fixed link is denoted as (1), Crank AB as 
(2), rocker BD (3), Swivel trunnion at C as (4) The instantaneous centre I

4
 is at

Fig.21

 (a) the centre of swivel trunnion

 (b) the intersection of line AB and a perpendicular to BD

 (c) infinity along AC

 (d) infinity perpendicular to BD.

85. The instantaneous centre of motion of rigid-thin disc-wheel rolling on plane rigid surface shown 
in the Fig.22, is located at the point.

Fig.22

 (a) A (b) B (c) C (d) D.
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86. In a cam drive with uniform velocity follower, the slope of the displacement must be as shown in 
Fig.23(a). But in actual practice it is as shown in Fig.23(b) (i.e. rounded at the corners).

 This is because of

 (a) the difficulty in manufacturing cam profile

 (b) loose contact of follower with cam surface

 (c)  The acceleration in the beginning and retardation at the end of stroke would require to be 
infinitely high

 (d) uniform velocity motion is a partial parabolic motion.

  

Fig.23

87. In a 4-stroke I.C engine, the turning moment during the compression stroke is

 (a) positive throughout  (b) negative throughout

 (c) positive during major portion of the stroke (d) negative during major portion of the stroke.

88. With reference to the engine mechanism shown in the given Fig.24, match List I with List II and 
select the correct answer

Fig.24

List I List II

A. F
Q

1. Inertia force of reciprocating mass

B. F
R

2. Inertia force of connecting rod

C. F
W

3. Crank effort

D. F
C

4. Piston side thrust.

 Codes: 

  A B C D

 (a) 1 2 4 3

 (b) 1 2 3 4

 (c) 4 1 2 3

 (d) 4 1 3 2



1262 Appendix 

89. A compound train consisting of spur, bevel and spiral gears is shown in the given Fig.25 along 
with the teeth numbers marked against the wheels. Over-all speed ratio of the train is

35

20

40

25

70

50

Fig.25

 (a) 8 (b) 2 (c) 
1

2
 (d) 

1

8
.

90. Which of the following statements hold good for a multi-collar thrust bearing carrying an axial 
thrust of W units?

 1. Friction moment is independent of the number of collars

 2. The intensity of pressure is affected by the number of collars

 3. Co-efficient of friction of the bearing surface is affected by the number of collars

 (a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2, and 3.

91. The centre of gravity of the coupler link in a 4-bar mechanism would experience

 (a) no acceleration (b) only linear acceleration

 (c) only angular acceleration (d) both linear and angular accelerations.

92. Which of the following statements regarding laws governing the friction between dry surfaces are correct?

 1. The friction force is dependent on the velocity of sliding

 2. The friction force is directly proportional to the normal force

 3. The friction force is dependent on the materials of the contact surfaces

 4. The Friction force is dependent on the area if contact surfaces

 (a) 2, 3, and 4 (b) 1 and 3 (c) 2 and 4 (d) 1, 2, 3, and 4.

93. Which of the following statements are correct?

 1.  For constant velocity ratio transmission between two gears, the common normal at the point 
of contact must always pass through a fixed point on the line joining the centres of rotation of 
the gears

 2.  For involute gears the pressure angle changes with change in centre distance between gears

 3.  The velocity ratio of compound gear train depends upon the number of teeth of the input and 
output gears only

 4. Epicyclic gear trains involve rotation of at least one gear axis about some other gear axis

 (a) 1, 2, and 3 (b) 1 and 3 (c) 1, 2, and 4 (d) 2, 3, and 4.
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94. Which one of the following equations is valid with reference to the given Fig.26.

B

w
w

F

A

C

Fig.26

 
(a)

 
 2 W

w

g

h  
(b)

  
 2 W w

w

g

h

1 2/

 
(c)

 
 2

1 2
w

W w

h

g

/

 
(d)

 
 2 W w

w

g

h
.

95. Match list I with List II and select the correct answer

List I List II

A. Hunting 1. One radius of rotation for each speed

B. Isochronism 2. Too sensitive

C. Stability 3. Mean force exerted at the sleeve during change of speed

D. Effort 4. Constant equilibrium speed for all radii of rotation

 Codes: 
  A B C D

 (a) 2 4 1 3

 (b) 3 1 4 3

 (c) 2 1 4 3

 (d) 1 2 3 4

96. A system of masses rotating in different parallel planes is in dynamic balance if the resultant.

 (a) force is equal to zero

 (b) couple is equal to zero

 (c) force and the resultant couple are both equal to zero

 (d)  force is numerically equal to the resultant couple, but neither of them need necessarily be zero.

97. When shaking force is transmitted through the spring, damping becomes detrimental when the 
ratio of its frequency to the natural frequency its greater than

 (a) 0.25 (b) 0.50 (c) 1.00 (d) sqrt 2.
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 98. When the mass of a critically damped single degree of freedom system is deflected from its 
equilibrium position and released, it will

 (a) return to equilibrium position without oscillation

 (b) oscillate with increasing time period

 (c) oscillate with decreasing amplitude

 (d) oscillate with constant amplitude.

 99. The equation of motion for a single degree of freedom system with viscous damping is 
4 9 16 0x x x . The damping ratio of the system is

 (a) 
9

128
 (b) 

9

16
 (c) 

9

8 2  (d) 
9

8
.

100. For the spring-mass system shown in the given Fig.27, the frequency of oscillations of the block 
along the axis of the spring is

k1 k2
m

Fig.27

 
(a)

 

1

2
1 2


k k

m  
(b)

 

1

2
1 2

1 2
1 2

k k

k k m[( ) ] /

 
(c)

 

1

2
1 2


k k

m  
(d)

 

1

2 1 2
m

k k
.

101. The critical speed of a rotating shaft depends upon

 (a) mass (b) stiffness

 (c) mass and stiffness (d) mass, stiffness and eccentricity.

102. A fixed gear having 200 teeth is in mesh with another gear having 50 teeth. The two gears are 
connected by an arm. The number of turns made by the smaller gear for one revolution of arm 
about the centre of the bigger gear is

 (a) 
2

4
 (b) 3 (c) 4 (d) 5.

103.  An involute pinion and gear are in mesh. If both have the same size of addendum, then there will 
be an interference between the

 (a) tip of the gear tooth and flank of pinion

 (b) tip of the pinion and flank of gear

 (c) flanks of both gear and pinion

 (d) tips of both gear and opinion.
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104. Match List I with List II and select the answer using the codes given below the Lists.

List I List II

A. Helical gears 1. Non-interchangeable

B. Herringbone gears 2. Zero axial thrust

C. Worm gears 3. Quiet motion

D. Hypoid Gears 4. Extreme speed reduction

 Codes: 
  A B C D

 (a) 1 2 3 4

 (b) 3 2 1 4

 (c) 3 1 4 2

 (d) 3 2 4 1

105. Given   angle through which the axis of the outer forward wheel turns

   angle through which the axis of the inner forward wheel turns
 a  distance between the pivots of front axle, and
 b  wheel base.

 For correct steering, centre lines of the axes of four wheels of an automobile should meet at a 
common point. This condition will be satisfied if

 (a) cos   cos   a/b (b) cot   cot   a/b

 (c) cos   cos   a/b (d) tan   tan   b/a.

106. If air resistance is neglected, while it is executing small oscillations the acceleration of the bob 
of a simple pendulum at the mid-point of its swing will be

 (a) zero

 (b) a minimum but not equal to zero

 (c) a maximum

 (d) not determinable unless the length of the pendulum and the mass of the bob are known.

107. In the Fig.28 shown crank AB is 15 cm long and is rotating at 10 rad/s. C is vertically above A. 
CA equals 24 cm. C is swivel trunnion through which BD (40 cm) slides. If ABCD becomes a 
vertical line during its motion, the angular velocity of the swivel trunnion at that instant will be

D

C

A

B

Fig.28

 (a) zero (b) (100/25) rad/s (c) (100/15) rad/s (d) (100/10) rad/s.
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108. In order to draw the acceleration diagram, it is necessary to determine the Coriolis component 
of acceleration in the case of

 (a) crank and slotted lever quick return mechanism

 (b) slider-crank mechanism

 (c) four bar mechanism

 (d) pantograph.

109. What is the correct sequence of the following steps in engine analysis?

 1. Vibration analysis 2. Inertia force analysis

 3. Balancing analysis 4. Velocity and Acceleration analysis

 Select the correct answer using the codes given below:

 (a) 2, 4, 1, 3 (b) 2, 4, 3, 1 (c) 4, 2, 1, 3 (d) 4, 2, 3, 1

110. If μ is the actual coefficient of friction in a belt moving in grooved pulley, the groove angle being 
2 , the virtual coefficient of friction will be

 (a) μ/sin  (b) μ/cos  (c) μ sin  (d) μ cos 

111. Match List I (Positioning of two shafts) with List II (Possible connection) and select the correct 
answer using the codes given below the Lists:

List I List II

A. Parallel shaft with slight offset 1. Hookes joint

B. Parallel shafts at a reasonable distance 2. Worm and wheel

C. Perpendicular shafts 3. Oldham coupling

D. Intersecting shafts 4. Belt and pulley

 Codes: 
  A B C D

 (a) 4 3 2 1

 (b) 4 3 1 2

 (c) 3 4 1 2

 (d) 3 4 2 1

112. Match List I with List II and select the correct answer using the codes given below the Lists:

List I List II

A. Quadric cycle chain 1. Rapson’s slide

B. Single slider crank chain 2. Oscillating cylinder engine mechanism

C. Double slider crank chain 3. Ackermann steering mechanism

D. Crossed slider crank chain 4. Oldham coupling

 Codes: 
  A B C D

 (a) 1 2 4 3

 (b) 4 3 2 1

 (c) 3 4 1 2

 (d) 3 2 4 1
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113. Match List I with List II and select the correct answer using the codes given below the Lists:

List I (Bearing) List II (Purpose)

A. Ball bearing 1. Heavy loads with oscillatory motion

B. Tapered Roller bearings 2. Light loads

C. Spherical Roller bearings 3. Carrying both radial and thrust loads

D. Needle roller bearings 4. Self-aligning property

 Codes: 

  A B C D
 (a) 4 1 3 2
 (b) 2 1 4 3
 (c) 2 3 1 4
 (d) 2 3 4 1

114. In a journal bearings, the radius of the friction circle increases with the increase in

 (a) load (b) radius of the journal

 (c) speed of the journal (d) viscosity of the lubricant.

115. Match List I with List II and select the correct answer using the codes given below the Lists:

List I List II

A. Flywheel 1. Dunkerley Method

B. Governor 2. Turning Moment

C. Critical speed 3. D’ Alembert’s Principle

D. Inertia force 4. Speed control on par with load

 Codes: 

  A B C D
 (a) 4 2 3 1
 (b) 4 2 1 3
 (c) 2 4 3 1
 (d) 2 4 1 3

116. The sensitivity of an isochronous governor is

 (a) zero (b) one (c) two (d) infinity.

117. When the primary direct crank of a reciprocating engine is positioned at 30° clockwise, the 
secondary reverse crank for balancing will be at

 (a) 30° anti-clockwise (b) 60° anti-clockwise

 (c) 30° clockwise (d) 60° clockwise.

118. A statically-balanced system is shown in the given Fig.29. Two equal weights W, each with 
an eccentricity, ‘e’ are placed on opposite sides of the axis in the same axial plane. The axial 
distance between them is ‘a’. The total dynamic reactions at the supports will be

 (a) zero (b) 
W

g
e

a

L
 2   (c) 

W

g
e

a

L
 2   (d) 

W

g
e

L

a
 2  .
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Fig.29

119. A damped free vibration is expressed by the general equation x Xe tnt
n

   sin 1 2  
which is shown in Fig.30:

Fig.30

 The envelope A has the equation:

 (a) Xe 1 (b) X tn sin 1 2   (c) e nt  (d) Xe nt .

120. What is the equivalent stiffness (i.e. spring constant) of the system shown in the given Fig.31.

10 Coils
K1 = 8N/mm

5 CoilsK2

Fig.31

 (a) 24 N/mm (b) 16 N/mm (c) 4 N/mm (d) 5.3 N/mm.

121. The given Fig.32 depicts a vector diagram of forces and displacements in the case of Forced Damped 
Vibration. If vector A represents the forcing function P  P

o
 sin t, vector B the displacement y  Y 

sin t, and  the phase angle between them, then the vectors C and D represent respectively.

A B

C

D

O

Fig.32
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 (a) the force of inertia and the force of damping

 (b) the elastic force and the damping force

 (c) the damping force and the inertia force

 (d) the damping force and the elastic force.

122. Two heavy rotating masses are connected by shafts of length l
1
, l

2
, and l

3
 and the corresponding 

diameters and d
1
, d

2
, and d

3
.
 
This system is reduced to a torsionally equivalent system having 

uniform diameter d
1
 of the shaft. The equivalent length of the shaft is equal to

 (a) l
1
  l

2
  l

3
 (b) 

l l l1 2 3

3

 

(c)

 

l l
d

d
l

d

d1 2 3
1

2

3

1

3

3

 

(d)

 

l l
d

d
l

d

d1 2 3
1

2

4

1

3

4

.

123. An axial flow fan balanced at one speed often exhibits substantial vibrational effects when oper-
ated at other speeds, mainly due to

 (a) primary critical speed effect (b) secondary critical speed effect

 (c) unbalanced parts of the fan (d) aerodynamic unbalance.

124. A reverted gear train is one in which the output shaft and input shaft?

 (a) rotate in opposite directions (b) are co-axial

 (c) are at right angles to each other (d) are at an angle to each other.

125. In the case of an involute toothed gear, involute starts from

 (a) addendum circle (b) dedundum circle

 (c) pitch circle (d) base circle.

126. In the epicyclic gear train shown in the given Fig.33, A is fixed. A has 100 teeth and B has 20 
teeth. If the arm C makes three revolutions, the number of revolutions made by B will be

B

C

A

Fig.33

 (a) 12 (b) 15 (c) 18 (d) 24.

127. Given that G  forward path given and H  feed back path gain, if G and H are functions of 
frequency, then the feedback would affect gain G of a non-feedback system by a value to

 (a) 1 GH (b) 1 GH (c) GH (d) 1/GH.

128. Two geared shafts A and B having moments of inertia I
a
 and I

b
 and angular acceleration 

a
 and 

b
 

respectively are meshed together. B rotates at G times the speed of A. If the gearing efficiency of 
the two shafts in , then in order to accelerate B, the torque which must be applied to A will be

 (a) I
a a

  G2 I
b

/  (b) G2 I
a
 

a
/  (c) G2 I

a
 

a
/  (d) G2 I

b
 

b
/ .
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129. Which of the following pair (s) is/are correctly matched?

 I. Four bar chain  Oscillating-oscillating converter

 II. Inertia governor  Rate of change of engine speed

 III. Hammer blow  Reciprocating unbalance.

 Select the correct answer using the codes given below:

 (a) I alone (b) I, II, and III (c) II and III (d) I and III.

130. Which of the following are examples of kinematic chain?

 

1.

2.

3.

4.

Fig.34

 Select the correct answer using the codes given below:

 (a) 1, 3, and 4 (b) 2 and 4 (c) 1, 2, and 3 (d) 1, 2, 3, and 4.

131. Which of the following pairs are correctly matched? Select the correct answer using the codes 
given below the pairs.

Mechanism Chain from which derived

1. Whitworth quick return motion Single slider crank chain

2. Oldham’s coupling Four bar chain

3. Scotch Yoke Double slider crank chain

 Codes:

 (a) 1 and 2 (b) 1, 2, and 3 (c) 1 and 3 (d) 2 and 3.

132. In S.H.M. with respect to the displacement vector, the positions of Velocity vector and Accelera-
tion vectors will be respectively

 (a) 180° and 90° (b) 90° and 180° (c) 0° and 90° (d) 90° and 0°.

133. When a slider moves with a velocity ‘V’ on a link rotating at an angular speed of , the Corioli’s 
component of acceleration is given by

 (a)  2V  (b) V  (c) 
V

2
 (d)  2 V .
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134. The total number of instantaneous centres for a mechanism consisting of ‘n’ links is

 (a) n/2 (b) n (c) 
n 1

2
 (d) 

n n( )1

2
.

135. Two links OA and OB are connected by a pin joint at ‘O’. The link OA turns with angular velocity 

1
 rad/s in the clockwise direction and the link OB turns with angular velocity 

2
 rad/s in the 

anticlockwise direction. If the radius of the pin at ‘O’ is ‘r’, then the rubbing velocity at the pin 
joint ‘O’ will be 

 (a)  
1
 

2
 r (b) (

1
 – 

2
) r (c) (

1
  

2
) r (d) (

1
  

2
) 2r.

136. In a cam drive, it is essential to off-set the axis of a follower to

 (a) Decrease the side thrust between the follower and guide

 (b) Decrease the wear between follower and cam surface

 (c) Take care of space limitation

 (d) Reduce the cost.

137. The working surface above the pitch surface of the gear tooth is termed as

 (a) Addendum (b) Dedendum (c) Flank (d) Face.

138. In the case of a flywheel, the maximum fluctuation of energy is the

 (a) Sum of maximum and minimum energies

 (b) Difference between the maximum and minimum energies

 (c) Ratio of the maximum, and minimum energy

 (d) Ratio of the minimum and maximum energy.

139. Which one of the following figures respresenting Hooke’s jointed inclined shaft system will 
result in a velocity ratio of unity?

 

Fig.35

140. Given that: 

 m  mass of the ball of the governor,

   angular velocity of the governor, and 

 g  accelerate due to gravity,

 The height of Watt’s governor is given by

 (a)  
g

2 2
 (b)  

g

 2  (c)  
2

2

g

  (d)  
2

2

g


.
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141. Match List I with List II and select the correct answer using the codes given below the lists:

List I List II

A. End thrust 1. Plain bearing

B. No cage 2. Ball bearing

C. More accurate centering 3. Needle bearing

D. Can be overloaded 4. Tapered roller bearing

 Codes:
  A B C D
 (a) 3 4 2 1
 (b) 4 3 1 2
 (c) 3 4 1 2
 (d) 4 3 2 1

142. For a given fractional change of speed, if the displacement of the sleeve is high, then the gover-
nor is said to be

 (a) Hunting (b) Isochronous (c) Sensitive (d) Stable.

143. A four-cylinder symmetrical in-line engine is shown in the given Fig.36. Reciprocating weights 
per cylinder are R

1
 and R

2
 and the corresponding angular disposition of the crank are  and 

Which one of the following equations should be satisfied for its primary force balance?

Fig.36

 (a) a
1
 tan   a

2
 tan  (b) cos 

1

2
sec

 (c) R
1
a

1
 sin 2   R

2
 a

2
 sin 2  (d) R

1
 cos   R

2
 cos .

144. In a multicylinder in-line internal combustion engine, even number of cylinders is chosen so 
that

 (a) Uniform firing order is obtained (b) The couples are balanced

 (c) Primary forces are balanced (d) Secondary forces are balanced.

145. The amplitude versus time curve of a damped-free vibration is shown in the below Fig.37. Curve 
labelled ‘A’ is

 (a) A logarithmic decrement curve (b) An exponentially decreasing curve

 (c) A hyperbolic curve  (d) A linear curve.
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Amplitude

Curve A

Time

X1

X2
X3

tp lp

X4

Fig.37

146. If a mass ‘m’ oscillates on a spring having a mass m
s
 and stiffness ‘k’, then the natural frequency 

of the system is given by

 (a) 

k

m
ms

3
 (b) 

k
m

m
3  (c) 

3k

m ms  (d) 

k

m ms

147. Match List I with List II and select the correct answer using the codes given below the lists:

List I List II

A. Node and mode 1. Geared vibration

B. Equivalent inertia 2. Damped-free vibration

C. Log decrement 3. Forced vibration

D. Resonance 4. Multi-rotor vibration

 Codes:
  A B C D
 (a) 1 4 3 2
 (b) 4 1 2 3
 (c) 1 4 2 3
 (d) 4 1 3 2

148. Two shafts are shown in the below Fig.38. These two shafts will be torsionally equivalent to each 
other if their

l1 l2 l3

l
d1 d2 d3 d1

Fig.38

 (a) Polar moment of inertias are the same (b) Total angle of twists are the same

 (c) Length are the same (d) Strain energies are the same.
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149. The critical speed of a uniform shaft with a rotor at the centre of the span can be reduced by

 (a) Reducing the shaft length (b) Reducing the rotor mass

 (c) Increasing the rotor mass (d) Increasing the shaft diameter.

150. Consider the following characteristics:

 1. Small interference 2. Strong tooth

 3. Low production cost 4. Gear with small number of teeth

 Those characteristics which are applicable to Stub 20° involute system would include

 (a) 1 alone (b) 2, 3, and 4 (c) 1, 2, and 3 (d) 1, 2, 3, and 4.

151. A physical system is translated into functional block diagram of the type shown in the Fig.39. 
The command input r(t) and controlled output c(t) of this system are given by 

R(s) +

–

E(s)

B(s)

H(s)

G(s)
C(s)

Fig.39
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( )
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1

152. If a compression coil spring is cut into two equal parts and the parts are then used in parallel, the 
ratio of the spring rate to its initial value will be

 (a) 1 (b) 2

 (c) 4 (d) Indeterminable for want of sufficient data.

153. Match List I with List II and select the correct answer using the codes given below the Lists:

List I List II

A. 4 links, 4 turning pairs 1. Complete constraint

B. 3 links, 3 turning pairs 2. Successful constraint

C. 5 links, 5 turning pairs 3. Rigid Frame

D. Footstep bearing 4. Incomplete constraint

 Codes:
  A B C D
 (a) 3 1 4 2
 (b) 1 3 2 4
 (c) 3 1 2 4
 (d) 1 3 4 2
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154. The relative acceleration of two points which are at variable distance apart on a moving link can 
be determined by using the

 (a) Three centres in line theorem (b) Instantaneous centre of rotation method

 (c) Coriolis component of acceleration method (d) Klein’s construction.

155. Consider a four-bar mechanism shown in Fig.40.

Fig.40

 The driving link DA is rotating uniformly at a speed of 100 rpm. Clockwise.

 The velocity of A will be

 (a)  300 cm/s (b) 314 cm/s (c) 325 cm/s (d) 400 cm/s.

156. Which one of the following pairs is correctly matched?

 (a) Governors … Interference (b) Gears … Hunting

 (c) Klein’s construction … Acceleration of piston (d) Cam … Pinion.

157. The primary disturbing force due to inertia of reciprocating parts of mass m at radius r moving 
with an angular velocity  is given by

 (a) m  2rsin  (b) m  2rcos

 (c) m r
n


2 2

sin  (d) m r
n


2 2

cos .

158. A link AB is subjected to a force F( ) at a point P perpendicular to the link at a distance ‘a’ 
from the CG as shown in Fig.41.

F

a

A

B

P

CG FF

Fig.41

 This will result in

 (a) An inertia force F ( ) through the CG and no inertia torque

 (b) An inertia torque F a  ( ) and no inertia force

 (c) Both inertia force F ( ) through the CG and inertia torque F a ( )

 (d) Both inertia force F ( ) through the CG and inertia torque F a ( ).
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159. Consider the following statements:

 A pinion of 14
1

2
 pressure angle and 48 involute teeth has a pitch circle diameter of 28.8 cm. It 

has

 1. Module of 6 mm 2. Circular pitch of 18 mm

 3. Addendum of 6 mm 4. Diametral pitch of 
11

113
 Which of these statements are correct?

 (a) 2 and 3 (b) 1 and 3 (c) 1 and 4 (d) 2 and 4.

160. For a given lift of the followers in a given angular motion of the cam, the acceleration/retardation 
of the follower will be the least when the profile of the cam during the rise portion is

 (a) Such that the follower motion is simple harmonic

 (b) Such that the follower motion has a constant velocity from start to end

 (c) A straight line, it being a tangent cam

 (d)  Such that the follower velocity increases linearly for half the rise portion and then decrease 
linearly for the remaining half of the rise portion.

161. Consider the following statements regarding the choice of conjugate teeth for the profile of mat-
ing gears:

 1. They will transmit the desired motion 2. They are difficult to manufacture

 3. Standardisation is not possible 4. The cost of production is low

 Which of these statements are correct?

 (a) 1, 2, and 3 (b) 1, 2, and 4 (c) 2, 3, and 4 (d) 1, 3, and 4.

162. The motion transmitted between the teeth of two spur gears in mesh is generally

 (a) Sliding (b) Rolling

 (c) Rotary (d) Partly sliding and partly rolling.

163. In a single slide four-bar linkage, when the slider is fixed, it forms a mechanism of

 (a) Hand pump (b) Rolling?

 (c) Quick return (d) Oscillating cylinder.

164. Consider the following parameters:

 1. Limit of peripheral speed 2. Limit of centrifugal stress

 3. Coefficient of fluctuation of speed 4. Weight of the rim

 Which of these parameters are used in the calculation of the diameter of flywheel rim?

 (a) 1, 3, and 4 (b) 2, 3, and 4 (c) 1, 2, and 3 (d) 1, 2, and 4.

165. Consider the following speed governors:

 1. Porter governor 2. Hartnell governor

 3. Watt governor 4. Proell governor

 The correct sequence of development of these governor is

 (a) 1, 3, 2, 4 (b) 3, 1, 4, 2 (c) 3, 1, 2, 4 (d) 1, 3, 4, 2.
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166. If a two-mass system is dynamically equivalent to a rigid body, then the system will not satisfy 
the condition that the

 (a) Sum of the two masses must be equal to that of the rigid body

 (b) Polar moment of inertia of the system should be equal to that of the rigid body

 (c) Centre of gravity (c.g.) of the system should coincide with that of the rigid body

 (d) Total moment of inertia about the axis through c.g. must be equal to that of the rigid body.

167. A rigid shaft when laid on horizontal parallel ways will not roll if the

 (a) Centre of gravity falls parallel (b) Centre of gravity lies on the shaft axis

 (c) Horizontal moments are large (d) Vertical moments are large.

168. If the ratio of the length of connecting rod to the crank radius increases, then

 (a) Primary unbalanced forces will increase

 (b) Primary unbalanced forces will decrease

 (c) Secondary unbalanced forces will increase

 (d) Secondary unbalanced forces will decrease.

169. If a spring-mass-dashpot system is subjected to excitation by a constant harmonic force, then at 
resonance, its amplitude of vibration will be 

 (a) Infinity (b) Inversely proportional to damping

 (c) Directly proportional to damping (d) Decreasing exponentially with time.

170. In a forced vibration with viscous damping, maximum amplitude occurs when forced frequency is 

 (a) Equal to natural frequency

 (b) Slightly less than natural frequency

 (c) Slightly greater than natural frequency

 (d) Zero.

171. The value of the natural frequency obtained by Rayleigh’s method

 (a) Is always greater than the actual fundamental frequency

 (b) Is always less than the actual fundamental frequency

 (c)  Depends upon the initial deflection curve chosen and may be greater than or less than the 
actual fundamental frequency

 (d) Is independent of the initial deflection curve chosen.

172. In a multi-rotor system of torsional vibration maximum number of nodes that can occur is 

 (a) Two (b) Equal to the number of rotor plus one

 (c) Equal to the number of rotors (d) Equal to the number of rotors minus one.

173. A rotating shaft carries a flywheel which overhangs on the bearing as a cantilever. If this fly-
wheel weight is reduced to half of its original weight, the whirling speed will

 (a) Be double (b) Increase by 2  times  

 (c) Decrease by 2  times (d) Be half.
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174. Consider the gear train shown in the given Fig.42 and table of gears and their number of teeth.

Fig.42

Gear:  A B C D E F
No. of  teeth: 20 50 25 75 26 65

 Gears BC and DE are moulded on parallel shaft rotating together.

 If the speed of A is 975 rpm, the speed of F will be

 (a) 39 rpm (b) 52 rpm (c) 75 rpm (d) 80 rpm.

175. Consider the following statements in respect of introduction of feedback in a control system:

 1. It enhances its gain

 2. It attenuates the unwanted noise

 3. It helps in improving the accuracy of the system

 Which of these statements are correct?

 (a) 2 and 3 (b) 1, 2, and 3 (c) 1 and 3 (d) 1 and 2.

176. The kinematic chain shown in the given Fig.43 is a

Fig.43
 (a) structure

 (b) mechanism with one degree of freedom

 (c) mechanism with two degrees of freedom

 (d) mechanism with more than two degrees of freedom.

177. A point on a link connecting a double slider crank chain will trace a 

 (a) straight line (b) circle (c) parabola (d) ellipse.

178. A wheel is rolling on a straight level track with a uniform velocity ‘v’. The instantaneous veloc-
ity of a point on the wheel lying at the mid-point of a radius.

 (a). varies between 3
2

v
 and 

v

2
 (b) varies between 

v

2
 and 

v

2

 (c) varies between 3
2

v
 and 

v

2
 (d) does not vary and is equal to v.
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179. A four-bar chain has 

 (a) all turning pairs 

 (b) one turning pair and the others are sliding pairs

 (c) one sliding pair and the others are turning pairs

 (d) all sliding pairs.

180 Sensitiveness of a governor is defined as 

 (a) 
Range of speed

2 Mean speed  (b) 
2 Mean speed

Range of speed

 (c) Mean speed  Range of speed  (d) 
Range of speed

Mean speed
.

181. Masses B
1
, B

2
 and 9 kg are attached to a shaft in parallel planes as shown in the given Fig.44. If 

the shaft is rotating at 100 rpm, the mass B
2
 is

B1 B2

shaft

9 kg

50 cm 100 cm
50 cm50 cm

50 cm

Fig.44

 (a) 3 kg (b) 6 kg (c) 9 kg (d) 27 kg.

182. The equation of motion for a damped viscous vibration is 

 3ẍ  9x·  27x  0

 The damping factor is 

 (a) 0.25 (b) 0.50 (c) 0.75 (d) 1.00.

183. A mass is suspended at the bottom of two springs in series having stiffness 10 N/mm and  
5 N/mm. The equivalent spring stiffness of the two springs is nearly.

 (a) 0.3 N/mm (b) 3.3 N/mm (c) 5 N/mm (d) 15 N/mm.

184. The velocity ratio in the case of compound train of wheels is equal to

 (a) 
No. of teeth on first driver

No. of teeth on last follower
 (b) 

No. of teeth on last follower

No. of teeth on first driver

 (c) 
Product of teeth on the drivers

Product of teeth on the folllowers
 (d) 

Product of teeth on the followers

Product of teeth on the drrivers
.

185. Consider the following pairs of parts:

 1. Pair of gear in mesh  2. Belt and pulley

 3. Cylinder and piston  4. Cam and follower
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 Among these, the higher pairs are
 (a) 1 and 4 (b) 2 and 4 (c) 1, 2, and 3 (d) 1, 2, and 4.

186. Which one of the following sets of accelerations is involved in the motion of the piston inside 
the cylinder of a uniformly rotating cylinder mechanism?

 (a) Coriolis and radial acceleration  (b) Radial and tangential acceleration 

 (c) Coriolis and gyroscopic acceleration (d) Gyroscopic and tangential acceleration.

187. Consider the following statements:

 1. Round bar in a round hole forms a turning pair

 2. A square bar in a square hole forms a sliding pair

 3. A vertical shaft in a foot-step bearing forms a successful constraint

 Which of these statements are correct?

 (a) 1 and 3 (b) 1 and 2 (c) 2 and 3 (d) 1, 2, and 3.

188. Consider the following pairs of types of bearings and applications:

 1. Partial Journal bearing  … Rail wagon axles 

 2. Full Journal bearing  … Diesel engine crankshaft 

 3. Radial bearing  … Combined radial and axial loads 

 Which of these pairs is/are correctly matched?

 (a) 1 alone (b) 1 and 2 (c) 2 and 3 (d) 1, 2, and 3.

189. Consider the following statements regarding the turning moment diagram of a reciprocating 
engine shown in the Fig.45:

T

0.5 cm2

1 cm2

0 90 180 360 540 630 720

2 cm2

25 cm2

0.5 cm2

0.8 cm2

Fig.45

(Scale 1 cm2  100 Nm)

 1. It is a four stroke IC engine

 2. The compression stroke is 0° to 180°

 3. Mean turning moment Tm

580


Nm

 4. It is a multi-cylinder engine

 Which of these statements are correct?

 (a) 1, 2, and 3 (b) 1, 2, and 4 (c) 2, 3, and 4 (d) 1, 3, and 4.

190. The pitching of a ship in the ocean is an oscillatory periodic motion. A ship is pitching 6° above 
and 6° below with a period of 20s from its horizontal plane. Consider the following statements 
in this regard:

 1. The motion has a frequency of oscillation (i.e. pitching) of 3 cycles/minute

 2. The motion has an angular frequency of 3.14 rad/s
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 3. The angular velocity of prescission of ship’s rotor is 
 2

300
rad/s

 4. The amplitude of pitching is 

30

 rad

 Which of these statements are correct?

 (a) 1 and 2 (b) 1, 2, and 4 (c) 2, 3, and 4 (d) 1, 3, and 4.

191. The critical speed of a shaft is affected by the 

 (a) diameter and the eccentricity of the shaft

 (b) span and the eccentricity of the shaft

 (c) diameter and the span of the shaft

 (d) span of the shaft.

192. Match List I with List II and select the correct answer using the codes given below the lists:

List I List II

A. Compound train 1. Hart mechanism

B. Quick return Mechanism 2. Coriolis force

C. Exact straight line motion 3. Transmission of motion around bends and 
corners

D. Approximate straight line motion 4. Watt mechanism

 Codes:

 A B C D

 (a) 1 2 3 4

 (b) 3 2 1 4

 (c) 3 4 1 2

 (d) 1 4 3 2

193. Match List I (Kinematic inversions) with List II (Applications) and select the correct answer 
using the codes given below the lists:

 

A. 1. Hand pump

2. Compressor

3. Whitworth quick
    return mechanism

4. Oscillating Cylinder
    Engine

List I List II

B.

C.

D.
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 Codes:
  A B C D
 (a) 1 3 4 2
 (b) 2 4 3 1
 (c) 2 3 4 1
 (d) 1 4 3 2

194. Match List I (Applications) with List II (Features of vibration) and select the correct answer 
using the codes given below the lists:

List I List II

A. Vibration damper 1. Frequency of free vibration

B. Shock absorber 2. Forced vibration 

C. Frahm Tachometer 3. Damping of vibration

D. Oscillator 4. Transverse vibration

5. Absorption of vibration

 Codes:
  A B C D
 (a) 5 3 2 1
 (b) 3 1 4 2
 (c) 5 3 4 1
 (d) 3 4 2 5

195. When the intensity of pressure is uniform in a flat pivot bearing of radius r, the friction force is 
assumed to act at

 (a) r (b) 
r

2
 (c) 

2

3

r
 (d) 

r

3
.

196. Consider a harmonic motion x  1.25 sin (5t  /6) cm. Match List I with List II and select the 
correct answer using the codes given below the Lists:

List I List II

A. Amplitude (cm) 1.
 

5

2

B. Frequency (cycle/s) 2. 1.25 

C. Phase angle (rad) 3. 
1

5

D. Time period (s) 4.
 

6

 Codes:
  A B C D
 (a) 4 1 2 3
 (b) 2 3 4 1
 (c) 4 3 2 1
 (d) 2 1 4 3
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197. Which of the flowing pairs of devices and their functions are correctly matched?

 1. Flywheel  … For storing kinetic energy

 2. Governors …    For controlling speeds

 3. Lead screw in lathe …    For providing feed to the slides

 4. Fixtures …  For locating workpiece and guiding tools

 Select the correct answer using the codes given below:

 Codes:
 (a) 1, 3, and 4 (b) 2 and 3 (c) 1 and 2 (d) 2 and 4.

198. Match list I with list II and select the correct answer using the codes given below the lists. (Nota-
tions have their usual meanings):

 List I     List II

 A. Law of correct steering  1. f  3(n  1)  2j

 B. Displacement relation of Hooke’s joint 2. x R
n

( cos )
sin

1
2

2




 C. Relation between kinematic pairs and links 3. cot cot
a

b
 D. Displacement equation of reciprocating engine piston 4. tan tan cos

 Codes:

  A B C D

 (a) 1 4 3 2

 (b) 1 2 3 4

 (c) 3 4 1 2

 (d) 3 2 1 4

199. Force required to accelerate a cylindrical body which rolls without slipping on a horizontal plane 
(mass of cylindrical body is m, radius of the cylindrical surface in contact with plane is r, radius 
of gyration of body is k and acceleration of the body is a) is 

 (a) m(k2/r2  1)  a (b) (mk2/r2)  a (c) mk2  a (d) (mk2/r  1)  a.

200. Consider the following statements regarding motions in machines:

 1.  Tangential acceleration is a function of angular velocity and the radial acceleration is a func-
tion of angular acceleration.

 2.  The resultant acceleration of a point A with respect to a point B on a rotating link is perpen-
dicular to AB.

 3.  The direction of the relative velocity of a point A with respect to a point B on a rotating link 
is perpendicular to AB.

 Which of these statements is/are correct?

 (a) 1 alone (b) 2 and 3 (c) 1 and 2 (d) 3 alone.

201. Consider the following statements:

 In petrol engine mechanism, the piston is at its dead centre position when piston

 1. acceleration is zero  2. acceleration is maximum

 3. velocity is zero  4. velocity is infinity.
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 Which of these statements are correct?
 (a) 1 and 4 (b) 1 and 3 (c) 2 and 3 (d) 2 and 4.

202. The speed of driving shaft of a Hooke’s joint of angle 19.5° (given sin 19.5°  .33, cos 19.5°  .94) is 
500 rpm. The maximum speed of the driven shaft is nearly

 (a) 168 rpm (b) 444 rpm (c) 471 rpm (d) 531 rpm.

203. The given Fig.46 shows the Klein’s construction for acceleration of the slider-crank mechanism. 
Which one of the following quadrilaterals represents the required acceleration diagram?

 

Fig.46

 (a) ORST (b) OPST (c) ORWT (d) ORPT

204. A servomotor is connected through a gear ratio of 10 (i.e., motor speed: load side speed 
10:1) to a load having moment of inertia J. The equivalent parameter referred to motor 
shaft side is

 (a) J
eq

  0.01 J (b) J
eq

  10 J (c) J
eq

  0.1 J (d) J
eq

  100 J

205. Match List I with List II and select the correct answer using the codes given below the Lists:

 List I    List II

 A. Cam and follower 1. Grubler’s rule

 B. Screw pair 2. Grashof’s linkage

 C. 4-bar mechanism 3. Pressure angle

 D. Degree of freedom of planar mechanism 4. Single degree of freedom

 Codes:
  A B C D
 (a) 3 4 2 1
 (b) 1 2 4 3
 (c) 1 4 2 3
 (d) 3 2 4 1

206. Consider the following statements:

 When two gears are meshing, the clearance is given by the

 1. difference between dedendum of one gear and addendum of the mating gear

 2. difference between total and the working depth of a gear tooth

 3. distance between the bottom land of one gear and the top land of the mating gear

 4. difference between the radii of the base circle and the dedendum circle

 Which of these statements are correct?
 (a) 1, 2, and 3 (b) 2, 3, and 4 (c) 1, 3, and 4 (d) 1, 2, and 4.



1285 Appendix A–3 

207. A body of mass m and radius of gyration k is to be replaced by two masses m
1
 and m

2
 located  

at distances h
1
 and h

2
 from the CG of the original body. An equivalent dynamic system will 

result, if

 (a) h h k1 2  (b) h h k1
2

2
2 2  (c) h h k1 2

2  (d) h h k1 2
2 .

208. Match List I and List II and select the correct answer using the code given below the Lists:

 List I    List II

 A. Undercutting 1. Beam strength

 B. Addendum 2. Interference

 C. Lewis equation 3. Large speed reduction

 D. Worm and wheel  4. Intersecting axes

  5. Module
 Codes: 
  A B C D
 (a) 2 5 1 3
 (b) 1 5 4 3
 (c) 1 3 4 5
 (d) 2 3 1 5

209. The natural frequency of transverse vibration of a massless beam of length L having a mass m 
attached at its midspan is given by (EI is the flexural rigidity of the beam)

 (a) 
mL

EI

3
1

2

48
rad/s  (b) 

48 3
1

2mL

EI
rad/s  (c) 

48
3

1

2EI

mL
rad/s  (d) 

3
3

1

2EI

mL
rad/s.

210. Match List I with List II and select the correct answer using the codes given below the Lists:

 List I  List II

 A. 6 d.o.f. system  1. Vibrating beam

 B. 1 d.o.f. system   2. Vibrating absorber

 C. 2 d.o.f. system   3. A rigid body in space

 D. Multi d.o.f. system  4. Pure rolling of a cylinder
 Codes:
  A B C D
 (a) 1 2 4 3
 (b) 1 4 2 3
 (c) 3 2 4 1
 (d) 3 4 2 1

211. A shaft carries a weigh W at the centre. The CG of the weight is displaced by an amount e from 
the axis of the rotation. If y is the additional displacement of the CG from the axis of rotation 
due to the centrifugal force, then the ratio of y to e (where 

c
 is the critical speed of shaft and  

is the angular speed of shaft) is given by

 

(a) 
1

1
2


c  

(b)

 

1

1
2


c  

(c)
 




c

2

1
 

(d)

 






c

2

1

.



1286 Appendix 

212. In a simple gear train, if the number of idler gears is odd, then the direction of motion of driven 
gear will

 (a) be same as that of the driving gear

 (b) be opposite to that of the driving gear

 (c) depend upon the number of teeth on the driving gear

 (d) depend upon the total number of teeth on all gears of the train.

213. When a vehicle travels on a rough road whose undulations can be assumed to be sinusoidal, the 
resonant conditions of the base-excited vibrations, are determined by the

 (a)  mass of the vehicle, stiffness of the suspension spring, speed of the vehicle, wavelength of 
the roughness curve

 (b) speed of the vehicle only

 (c) speed of the vehicle and the stiffness of the suspension spring

 (d) amplitude of the undulations.

214. During torsional vibration of a shaft, the node is characterized by the

 (a) maximum angular velocity

 (b) maximum angular displacement

 (c) maximum angular acceleration

 (d) zero angular displacement.

215. In a slider-crank mechanism, the maximum acceleration of slider is obtained when the crank is

 (a) at the inner dead centre position

 (b) at the outer dead centre position

 (c) exactly midway position between the two dead centres

 (d) slightly in advance of the midway position between the two dead centres.

216. Consider the following statements for completely balancing a single rotating mass:

 1.  Another rotating mass placed diametrically opposite in the same plane balances the unbalanced 
mass.

 2.  Another rotating mass placed diametrically opposite in a parallel plane balances the unbal-
anced mass.

 3.  Two masses placed in two different parallel planes balance the unbalanced mass.

 Which of the above statements is/are correct?

 (a) 1 only (b) 1 and 2 (c) 2 and 3 (d) 1 and 3.

217. Consider the following statements in case of reverted gear train:

 1. The direction of rotation of the first and the last gear is the same

 2. The direction of rotation of the first and the last gear is opposite

 3. The first and the last gears are on the same shaft

 4. The first and the last gears are on separate but co-axial shafts.

 Which of these statements is/are correct?

 (a) 1 and 3 (b) 2 and 3 (c) 2 and 4 (d) 4 alone.
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218. The instantaneous centre of rotation of a rigid thin disc rolling without slip on a plane rigid  
surface is located at

 (a) the centre of the disc

 (b) an infinite distance perpendicular to the plane surface

 (c) the point of contact

 (d) the point on the circumference situated vertically opposite to the contact point.

219. Match List I (Kinematic pairs) with List II (Practical example) and select the correct answer 
using the codes given below the lists:

 List I (Kinematic pairs)     List II (Practical example)

 A. Sliding pair  1. A road roller rolling over the ground

 B. Revolute pair  2. Crank shaft in a journal bearing in an engine

 C. Rolling pair  3. Ball and socket joint

 D. Spherical pair  4. Piston and cylinder

   5. Nut and screw
 Codes:
  A B C D
 (a) 5 2 4 3
 (b) 4 3 1 2
 (c) 5 3 4 2
 (d) 4 2 1 3

220. The choice of displacement diagram during rise or return of a follower of a cam-follower mecha-
nism is based on dynamic considerations. For high speed cam follower mechanism, the most 
suitable displacement for the follower is

 (a) cycloidal motion

 (b) simple harmonic motion

 (c) parabolic or uniform acceleration motion

 (d) uniform motion or constant velocity motion.

221. A linkage is shown below in the Fig.47 in which links ABC and DEF are ternary links whereas 
AF, BE and CD binary links.

 

F

A C

D

E

B

Fig.47

 The degrees of freedom of the linkage when link ABC is fixed are

 (a) 0 (b) 1 (c) 2 (d) 3.
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222. Match List I (Mechanism) with List II (Motion) and select the correct answer using the codes 
given below the lists:

 List I (Mechanism)  List II (Motion)

 A. Hart mechanism   1. Quick return motion

 B. Pantograph  2. Copying mechanism

 C. Whitworth mechanism 3. Exact straight line motion

 D. Scotch yoke  4. Simple harmonic motion

   5. Approximate straight line motion
 Codes:
  A B C D
 (a) 5 1 2 3
 (b) 3 2 1 4
 (c) 5 2 1 3
 (d) 3 1 2 4

223. Match  List (Connecting shafts) with List II (Couplings) and select the correct answer using the 
codes given below the lists:

 List I (Connecting shaft) List II (Couplings)

 A. In perfect alignment 1. Oldham coupling

 B. With angular misalignment of 10° 2. Rigid coupling

 C. Shafts with parallel misalignment 3. Universal joint

 D.  Where one of the shafts may undergo  4. Pin type flexible coupling 
more deflection with respect to the other

 Codes:
  A B C D
 (a) 2 1 3 4
 (b) 4 3 1 2
 (c) 2 3 1 4
 (d) 4 1 3 2

224. The crank and slotted lever quick-return motion mechanism is shown in Fig.48. The length of 
links O

1
O

2
, O

1
C and O

2
A are 10 cm, 20 cm and 5 cm respectively.

 

Fig.48

 The quick return ratio of the mechanism is

 (a) 3.0 (b) 2.75 (c) 2.0 (d) 0.
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225. If the rotating mass of a rim type flywheel is distributed on another rim type fly wheel whose 
mean radius is half the mean radius of the former, then energy stored in the latter at the same 
speed will be 

 (a) four times the first one (b) same as the first one

 (c) one-fourth of the first one (d) two times the first one

226. The nature of the governors is shown by the graph between radius (r) of rotation and controlling 
force (F). Which of the following is an isochronous governor?

 

F

(a)

r

(c)

F

r

(b)

F

r

(d)

F

r

Fig.49

227. The radius of the friction circle in a journal bearing is dependent on coefficient of friction and the 

 (a) angular velocity of the journal

 (b) radius of the journal

 (c) magnitudes of the forces on the journal

 (d) journal and bearing clearance.

228. In a collar thrust bearing, the number of collars have been doubled while maintaining coefficient 
of friction and axial thrust same. It will result in

 (a) same friction torque and same bearing pressure

 (b) double friction torque and half bearing pressure

 (c) double friction torque and same bearing pressure

 (d) same friction torque and half bearing pressure.
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229. In a Hartnell governor, the mass of each ball is 2.5 kg. Maximum and minimum speeds of 
rotation are 10 rad/s and 8 rad/s respectively. Maximum and minimum radii of rotation are  
20 cm and 14 cm respectively. The lengths of horizontal and vertical arms of bell crank levers 
are 10 cm and 20 cm respectively. Neglecting obliquity and gravitational effects, the lift of 
the sleeve is

 (a) 1.5 cm (b) 3.0 cm (c) 6.0 cm (d) 12.0 cm.

230. A rod of uniform diameter is suspended from one of its ends in vertical plane. The mass of the 
rod is ‘m’ and length ‘l’, the natural frequency of this rod in Hz for small amplitude is

 (a) 1

2
g

l
 (b) 1

2 3
g

l
 (c) 1

2

2

3
g

l
 (d) 1

2

3

3
g

l
.

231. The mass moment of inertia of the two rotors in a two rotor system are 100 kg m2 and 10kg m2.  
The length of the shaft of uniform diameter between the rotors is 110 cm. The distance of node 
from the rotor of lower moment of inertia is 

 (a) 80 cm (b) 90 cm (c) 100 cm (d) 110 cm.

232. A shaft of 50 mm diameter and 1 m length carries a disc which has mass eccentricity equal to 190 
microns. The displacement of the shaft at a speed which is 90% of critical speed in microns is

 (a) 810 (b) 900  (c) 800 (d) 820.

233. Fig.50 shows a rigid body of mass m having radius of gyration k about its centre of gravity. It is 
to be replaced by an equivalent dynamical system of two masses placed at A and B. The mass at 
A should be

G

A
a b

l

B

Fig.50

 (a) a m

a b
 (b) b m

a b
 (c) m a

b3
 (d) m b

a2
.

234. f = 3 (n – 1) – 2j. In the Grubler’s equation for planar mechanisms given, j is the

 (a) Number of mobile links (b) Number of links

 (c) Number of lower pairs (d) Length of the longest link.

235. Which of the following are examples of forced closed kinematic pairs?

 1. Cam and roller mechanism 2. Door closing mechanism

 3. Slider-crank mechanism 4. Automotive clutch operating mechanism
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 Select the correct answer using the codes given below:

 Codes:

 (a) 1, 2, and 4 (b) 1 and 3 (c) 2, 3, and 4 (d) 1, 2, 3, and 4.

236. Which of the mechanisms shown in Fig.51 do/does not have single degree of freedom?

 

Fig.51

 (a) 3 and 4 (b) 2 and 3 (c) 3 only (d) 4 only.

237. Two points, A and B located along the radius of a wheel, as shown in the Fig.52, have velocities 
of 80 and 140 m/s, respectively. The distance between points A and B is 300 mm. The radius of 
wheel is 

 

Fig.52

 (a) 400 mm (b) 500 mm (c) 600 mm (d) 700 mm.

238. In a slider-crank mechanism, the velocity of piston becomes maximum when 

 (a) Crank and connecting rod are in line with each other

 (b) Crank is perpendicular to the line of stroke of the piston

 (c) Crank and connecting rod are mutually perpendicular

 (d) Crank is 120° with the line of stroke.
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239. Three positions of the quick-return mechanism are shown in Fig.53. In which of the cases does 
the Coriolis component of acceleration exist?

 

Fig.53

 Select the correct answer using the codes given below:

 Codes: 

 (a) 1 only (b) 1 and 2 (c) 1, 2, and 3 (d) 2 and 3.

240. The below Fig.54 shows a circular disc of 1 kg mass and 0.2 m radius undergoing unconstrained 
planar motion under the action of two forces as shown. The magnitude of angular acceleration   

of the disc is

 

Fig.54

 (a) 50 rad/s2 (b) 100 rad/s2 (c) 25 rad/s2 (d) 20 rad/s2.

241. For a slider-crank mechanism with radius of crank r, length of connecting rod l, obliquity ratio n, 
crank rotating at an angular velocity ; for any angle  of the crank match, List I (Kinematic Vari-
able) with List II (Equation) and select the correct answer using the codes given below the Lists:

 List I (Kinematic Variable)   List II (Equation)

 A. Velocity of piston 1. 



n

cos

 B. Acceleration of piston 2.  
2 2

r
n

cos
cos

 C. Angular velocity of connecting rod 3. 



2

n
sin

 D. Angular acceleration of connecting rod 4.  


r
n

sin
sin 2

2
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 Codes:
  A B C D
 (a) 4 2 3 1
 (b) 2 4 3 1
 (c) 4 2 1 3
 (d) 2 4 1 3

242. Fig.55 shows Klien’s construction for slider-crank mechanism OCP drawn to full scale. What 
velocity does CD represent?

 

Fig.55

 (a) Velocity of the crank pin

 (b) Velocity of the piston

 (c) Velocity of the piston with respect to crank pin

 (d) Angular velocity of the connecting rod.

243. The maximum fluctuation of energy E
f
, during a cycle for a flywheel is 

 (a) I ( 2
max

  2
min

) (b) 
1

2
I av  ( )max min

 (c) 
1

2
2I Kes av  (d) I av es 2 K

 

(where Mass moment of inertia of the flywheel

Average 

I

av rrotational speed

Coefficient of fluctuation of speedKes )

244. For minimizing speed fluctuations of an engine as a prime mover, it must have 

 (a) Only a flywheel fitted to the crankshaft

 (b) A governor provided in the system

 (c) Both a flywheel and a governor provided in the system

 (d) Neither a flywheel nor a governor.

245. Effect of friction, at the sleeve of a centrifugal governor is to make it

 (a) More sensitive

 (b) More stable

 (c) Insensitive over a small range of speed

 (d) Unstable.
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246. A circular disc having a mass of 30 kg is moved asymmetrically between two bearings A and B as 
shown in the Fig.56. It is used as an eccentric cam with an eccentricity of 0.01 m. If the shaking 
force on each of the bearings is not to exceed 1500 N, the speed of rotation of the cam should 
not exceed

 

Fig.56

 (a) 10 rad/s (b) 100 rad/s (c) 70.7 rad/s (d) 140 rad/s

247. The below Fig.57 shows the schematic diagram of an IC engine producing a torque T  41Nm at 
the given instant. The Coulomb friction coefficient between the cylinder and the piston is 0.08. If 
the mass of the piston is 0.5 kg and the crank radius is 0.1 m, the Coulomb friction force occur-
ring at the piston cylinder interface is 

 

Fig.57

 (a) 16 N (b) 0.4 N (c) 4 N (d) 16.4 N.

248. Consider the following, modifications regarding avoiding the interference between gears:

 1. The centre distance between meshing gears be increased

 2. Addendum of the gear be modified

 3. Teeth should be undercut slightly at the root

 4. Pressure angle should be increased

 5. Circular pitch be increased

 Which of these are effective in avoiding interference?

 (a) 1, 2, and 3 (b) 2, 3, 4, and 5 (c) 1, 4, and 5 (d) 3, 4, and 5.

249. In a reverted gear train, two gears P and Q are meshing, Q–R is a compound gear, and R and S 
are meshing. The modules of P and R are 4 mm and 5 mm respectively. The number of teeth in 
P, Q and R are 20, 40 and 25 respectively. The number of teeth in S is

 (a) 23 (b) 35 (c) 50  (d) 53.
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250. When two spur gears having involute profiles on their teeth engage, the line of action is tangen-
tial to the

 (a) Pitch circles (b) Dedendum circles (c) Addendum circles  (d) Base circles.

251. If the annular wheel of an epicyclic gear train has 100 teeth and the planet wheel has 20 teeth, 
the number of teeth on the sun wheel is

 (a) 80 (b) 60 (c) 40  (d) 20.

252. The double slider-crank chain is shown below in the Fig.58 in its three possible inversions. The 
link shown hatched is the fixed link:

 

Fig.58

 Which one of the following statements is correct?

 (a) Inversion (1) is for ellipse trammel and inversion (2) is for Oldham coupling 

 (b) Inversion (1) is for ellipse trammel and inversion (3) is for Oldham coupling

 (c) Inversion (2) is for ellipse trammel and inversion (3) is for Oldham coupling

 (d) Inversion (3) is for ellipse trammel and inversion (2) is for Oldham coupling.
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253. ABCD is a four bar mechanism, in which AD is the fixed link, and link BC, is in the form of  
a circular disc with centre P. In which one of the following cases P will be the instantaneous 
centre of the disc?

 

Fig.59

 (a) If it lies on the perpendicular bisector of line BC

 (b) If it lies on the intersection of the perpendicular bisectors of BC and AD

 (c) If it lies on the intersection of the perpendicular bisectors of AB and CD

 (d) If it lies on the intersection of the extensions of AB and CD.

254. In the Fig.60 given below, the magnitude of absolute angular velocity of link 2 is 10 radians per 
second while that of link 3 is 6 radians per second. What is the angular velocity of link 3 relative 
to 2?

 

Fig.60

 (a) 6 radians per second (b) 16 radians per second

 (c) 4 radians per second (d) 14 radians per second.

255. ABCD is a mechanism with link lengths AB  200, BC  300, CD  400 and DA  350. Which 
one of the following links should be fixed for the resulting mechanism to be a double crank 
mechanism? (All lengths are in mm)

 (a) AB  (b) BC (c) CD (d) DA.
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256. The crank of the mechanism shown below in the Fig.61 rotates at a uniform angular velocity .

Fig.61

 Which one of the following diagrams shows the velocity of slider x with respect to the crank angle?

257. In the plate cam mechanism with reciprocating roller follower, in which one of the following 
cases the follower has constant acceleration?

 (a) Cycloidal motion (b) Simple harmonic motion

 (c) Parabolic motion (d) 3-4-5 polynimial motion.

258. Which one of the following statements is correct?

 In a petrol engine mechanism the velocity of the piston is maximum when the crank is
 (a) at the dead centres (b) at right angles to the line of stroke

 (c) slightly less than 90° to line of stroke (d) slightly above 90° to line of stroke.

259. In a differential mechanism, two equal sized bevel wheels A and B are keyed to the two halves 
of the rear axle of a motor car. The car follows a curved path. Which one of the following state-
ments is correct?

 The wheels A and B will resolve at different speeds and the casing will revolve at a speed which 
is equal to the 

 (a) difference of speeds of A and B

 (b) arithmetic mean of the speeds A and B

 (c) geometric mean of the speeds of A and B

 (d) harmonic mean of the speeds A and B
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260. Which one of the following conversions is used by a lawn-sprinkler which is a four bar 
mechanisms?

 (a) Reciprocating motion to rotary motion

 (b) Reciprocating motion to oscillatory motion

 (c) Rotary motion to oscillatory motion

 (d) Oscillatory motion to rotary motion.

261. In the mechanism shown below in Fig.62, link 3 has

Fig.62

 (a) curvilinear translation and all points in it trace out identical cycloids

 (b) curvilinear translation and all points in it trace out identical involutes

 (c) linear translation and all points in it trace out identical helices

 (d) linear translation and all points in it trace out identical ellipses.

262. Consider the following methods:

 (1) Trifilar suspension  (2) Torsional oscillation

 (3) Fluctuation of energy of engine

 (4) Weight measurement and measurement of radius of flywheel 

 Which of the above methods are used to determine the polar mass moment of inertia of an 
engine flywheel with arms?

 (a) 1 and 4 (b) 2 and 3 (c) 1, 2, and 3 (d) 1, 2, and 4.

263. A connecting rod has a mass of 0.5 kg. The radius of gyration through its centre of gravity is  
5 cm and its acceleration is 2  104 rad/s2.  The equivalent two-mass system for the connecting 
rod has a radius of gyration 6 cm. What is the correction couple of the equivalent system?

 (a) 11 Nm  (b) 9 Nm (c) 6 Nm (d) 2 Nm.

264. Which one of the following statements is correct?

 A governor will be stable if the radius of rotation of the balls

 (a) increases as the equilibrium speed decreases

 (b) decreases as the equilibrium speed increases

 (c) increases as the equilibrium speed increases

 (d) remains unaltered with the change in equilibrium speed.

265. Which one of the following statements in the context of balancing in engines is correct?

 (a) Magnitude of the primary unbalancing force is less than the secondary unbalancing force

 (b)  The primary unbalancing force attains its maximum value twice in one revolution of the 
crank
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 (c)  The hammer blow in the locomotive engines occurs due to unbalanced force along the line 
of stroke of the piston

 (d) The unbalanced force due to reciprocating masses varies in magnitude and direction.

266. A four-cylinder in-line reciprocating engine is shown in the Fig.63 given below. The cylinders 
are numbered 1 to 4 and the firing order is 1-4-2-3:

Fig.63

 Which one of the following statements is correct?

 (a) Both primary and secondary forces are balanced

 (b) Only primary force is balanced

 (c) Only secondary force is balanced

 (d) Both primary and secondary forces are unbalanced.

267. Match List I with List II and select the correct answer using the codes given below the lists:

 List I      List II

 A. Open loop system 1. Frequency domain analysis

 B. Closed loop system 2. More stable

 C. Step input 3. Less stable

 D. Sinusoidal input 4. Time domain analysis

 Codes:
  A B C D
 (a) 2 3 4 1
 (b) 4 1 2 3
 (c) 2 1 4 3
 (d) 4 3 2 1

268. An epicyclic gear train has 3 shafts A, B and C. A is an input shaft running at 100 rpm clockwise. 
B is an output shaft running at 250 rpm clockwise. Torque on A is 50 kNm (clockwise). C is a 
fixed shaft. The torque to fix C

 (a) is 20 kNm anticlockwise (b) is 30 kNm anticlockwise

 (c) is 30 kNm clockwise (d) cannot be determined as the data is insufficient.

269. Which of the following is a closed-loop control system?

 (a)  Traffic control on the roads by lights where the timing mechanism is present irrespective of 
the intensity of traffic

 (b)  Switching off the street lights of a tower at a predetermined time by a time-switch irrespec-
tive of the fact that the sun rises at a different time each day 
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 (c)  Switching off an electric heater by a time-switch irrespective of whether the dish has been 
prepared or not 

 (d) Human body.

270. The power transmitted by a belt is dependent on the centrifugal effect in the belt. The maximum 
power can be transmitted when the centrifugal tension is

 (a) 
1

3
of tension ( ) on the tight side1T

 (b) 
1

3
of total tension ( ) on the tight sideTt

 (c) 
1

3 2of the tension ( ) on the slack sideT  

 (d) 
1

3

1

3
of sum of tensions  and  .  + 1 2 1 2T T i e T T. ( ).

271. The length of the belt in the case of a cross-belt drive is given in terms of centre distance between 
pulleys (C), diameters of the pulleys D and d as

 (a) 2
2 4

2

C D
D

C


( )

( )
d

d
 (b) 2

2 4

2

C D
D

C


( )

( )
d

d

 (c) 2
2 4

2

C D
D

C


( )

( )
d

d
 (d) 2

2 4

2

C D
D

C


( )

( )
d

d

272. Consider the following statements:

 1.  Coriolis acceleration component in a slotted bar mechanism is always perpendicular to the 
direction of the slotted bar

 2.  In a 4-link mechanism, the instantaneous centre of rotation of the input link and output link 
always lies on a straight line along the coupler

 Which of the statements given above is/are correct?

 (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2.

273. Which one of the following is the correct value of the natural frequency (
n
) of the system given above?

Fig.64

 (a) 1

1 1

1 2 3

1 2

k k k
m

/

 (b) 3
1 2

k

m

/

 (c) k

m3

1 2/

 (d) 

k
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1 2

1 2

1
1 1

/



1301 Appendix A–3 

274. Consider the following statements concerning centrifugal governors:

 1.  The slope of the controlling force curve should be less than that of the straight line representing 
the centripetal force at the speed considered for the stability of a centrifugal governor

 2.  Isochronism for a centrifugal governor can be achieved only at the expense of stability

 3.  When sleeve of a centrifugal governor reaches its topmost position, the engine should develop 
maximum power

 Which of the statements given above is/are correct?

 (a) 1 and 2 (b) 2 and 3 (c) 2 only (d) 3 only.

275. Consider the following statements for a 4-cylinder in-line engine whose cranks are arranged at 
regular intervals of 90°.

 1. There are 8 possible firing orders for the engine

 2. Primary force will remain unbalanced for some firing orders

 Which of the statements given above is/are correct?

 (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2.

276. Spiral gears are used to connect

 (a) two parallel shafts.

 (b) two intersecting shafts.

 (c) two non-parallel and non-intersecting shafts.

 (d) None of the above.

277. In the below Fig.65 shown, if the speed of the input shaft of the spur gear train is 2400 rpm and 
the speed of the output shaft is 100 rpm, what is the module of the gear 4?

OUTPUT
SHAFT

35 mm
m = 1 mm

INPUT
SHAFT

T4

T2

T3 = 10

T1 = 60

Fig.65

 (a) 1.2 (b) 1.4 (c) 2 (d) 2.5.

278. The crank of slider-crank punching press has a mass moment of inertia of 1 kgm2. The below 
Fig.66 shows the torque demand per revolution for a punching operation. If the speed of the 
crank is found to drop from 30 rad/s to 20 rad/s during punching, what is the maximum torque 
demand during the punching operation?
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Fig.66

 (a) 95.4 Nm  (b) 104.7 Nm (c) 477.2 Nm (d) 523.8 Nm.

279. A single cylinder, four-stroke I.C. engine rotating at 900 rpm has a crank length of 50 mm and 
a connecting rod length of 200 mm. If the effective reciprocating mass of the engine is 1.2 kg, 
what is the approximate magnitude of the maximum ‘shaking force’ created by the engine?

 (a) 533 N (b) 666 N (c) 133 N (d) None of the above.

280. In a kinematic chain, a quaternary joint is equivalent to

 (a) one binary joint  (b) two binary joints (c) three binary joints (d) four binary joints.

281. Consider the following statements:

 1.  The effect of gyroscopic couple on a car while negotiating a curve is that its outer wheels tend 
to get lifted from the ground

 2.  If spin vector is rotated about the precession vector axis in a direction opposite to that of preces-
sion through 90°, the new position of the spin vector indicates the direction of the torque vector

 Which of the statements given above is/are correct?

 (a) 1 only  (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2.

282. Consider the following statements:

 1. The degree of freedom for lower kinematic pairs is always equal to one

 2. A ball-and-socket joint has 3 degrees of freedom and is a higher kinematic pair

 3. Oldham’s coupling mechanism has two prismatic pairs and two revolute pairs

 Which of the statements given above is/are correct?

 (a) 1, 2 and 3  (b) 1 only (c) 2 and 3 (d) 3 only.

283. A Hooke’s joint is used to connect two 

 (a) coplanar and non-parallel shafts  (b) non-coplanar and non-parallel shafts

 (c) coplanar and parallel shafts (d) non-coplanar and parallel shafts.

284. Which one of the following governors is used to drive a gramophone?

 (a) Watt governor  (b) Porter governor

 (c) Pickering governor (d) Hartnell governor.

285. In the Fig.67 given below, the link 2 rotates at an angular velocity of 2 rad/s. What is the magni-
tude of Coriolis acceleration experienced by the link 4?

 (a) 0 (b) 0.8 m/s2 (c) 0.24 m/s2 (d) 0.32 m/s2.
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Fig.67

286. The below Fig.67 shows a cam with a circular profile, rotating with a uniform angular velocity 
of  rad/s. What is the nature of displacement of the follower?

Fig.68

 (a) Uniform (b) Parabolic (c) Simple harmonic (d) Cycloidal.

287. Which one of the following can completely balance several masses revolving in different planes 
on a shaft?

 (a) A single mass in one of the planes of the revolving mass 

 (b) A single mass in any one plane

 (c) Two masses in any two planes

 (d) Two equal masses in any two planes.

288. Which one of the following expresses the sensitiveness of a governor?

 (a) N N

N N
1 2

1 22
 (b) N N

N N
1 2

1 22
 (c) 2 1 2

1 2

( )N N

N N
 (d) 2 1 2

1 2

( )N N

N N

 N
1
  Maximum equilibrium speed

 N
2
  Minimum equilibrium speed.

289. What is the number of nodes in a shaft carrying three rotors?

 (a) Zero (b) 2 (c) 3 (d) 4.
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290. Match List I with List II and select the correct answer using the codes given below the Lists:

 List I (Property) List II (System)

 A. Resonsnce 1. Closed-loop control system

 B. On-off control 2. Free vibrations

 C. Natural frequency 3. Excessively large amplitude

 D. Feedback signal 4. Mechanical brake

 Codes:

  A B C D

 (a) 1 2 4 3

 (b) 3 4 2 1

 (c) 1 4 2 3

 (d) 3 2 4 1

291. In case of partial balancing of single-cylinder reciprocating engine, what is the primary disturb-
ing force along the line of stroke?

 (a) cmr 2 cos  (b) (1  c2) mr 2 cos 

 (c) (1  c) m 2r cos 2  (d) (1  c) m 2r cos 2

 where, c  Fraction of reciprocating mass to be balanced;   Angular velocity of crankshaft;  
  Crank angle.

292. Consider the following statements:

 1.  The condition of stability of a governor requires that the slope of the controlling force curve 
should be less than that of the line representing the centripetal force at the equilibrium speed 
under consideration

 2.  For a centrifugal governor when the load on the prime mover drops suddenly, the sleeve 
should at once reach the lower-most position

 Which of the statements given above is/are correct?

 (a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2.

293. What is the number of instantaneous centres of rotation for a 6-link mechanism?

 (a) 4 (b) 6 (c) 12 (d) 15.

294. In which one of the following is a flywheel generally employed?

 (a) Lathe (b) Electric motor (c) Punching machine (d) Gearbox.

295. What is the value of pressure angle generally used for involute gears?

 (a) 35° (b) 30° (c) 25° (d) 20°.

296. Consider the following statements:

 1. A stub tooth has a working depth larger than that of a full-depth tooth.

 2. The path of contact for involute gears in an arc of a circle.

 Which of the statements given above is/are correct?

 (a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2.
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297. Consider the following statements:

 Cam followers are generally classified according to 

 1. the nature of its motion

 2. the nature of its surface in contact with the cam 

 3. the speed of the cam

 Which of the statements given above are correct?

 (a) 1, 2, and 3 (b) Only 1 and 2 (c) Only 2 and 3 (d) Only 1 and 3.

298. Consider the following statements:

 Radius of friction circle for a journal bearing depends upon

 1. coefficient of friction

 2. radius of the journal

 3. angular speed of rotation of the shaft

 Which of the statements given above are correct?

 (a) 1, 2 and 3 (b) Only 1 and 2 (c) Only 2 and 3 (d) Only 1 and 3.

299. What is the maximum acceleration of a cam follower undergoing simple harmonic motion?

 (a) h

2

2



 (b) 4
2

2
h




 (c) 4
2

h



 (d) 2 2

2

h


 where, h  Stroke of the follower;

   Angular velocity of the cam;

   Cam rotation angle for the maximum follower displacement.

300. Consider the following statements:

 1. Lower pairs are more resistant than the higher pairs in a plane mechanism.

 2.  In a 4-bar mechanism (with 4 turning pairs), when the link opposite to the shortest link is 
fixed a double rocker mechanism results.

 Which of the statements given above is/are correct?

 (a) Only 1 (b) Only 2 (c) Both 1 and 2 (d) Neither 1 nor 2.

301. Consider the following follower motions in respect of a given lift, speed of rotation and angle of 
stroke of a cam:

 1. Cycloidal motion

 2. Simple harmonic motion 

 3. Uniform velocity motion

 Which one of the following is the correct sequence of the above in the descending order of maxi-
mum velocity?

 (a) 3 – 2 – 1 (b) 1 – 2 – 3 (c) 2 – 3 – 1 (d) 3 – 1 – 2.

302. If   helix angle, and p
c
  circular pitch; then which one of the following correctly expresses 

the axial pitch of a helical gear?

 (a) p
c
 cos  (b) pc

cos
 (c) pc

tan
 (d) p

c
 sin 
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303. In a slider-bar mechanism, when does the connecting rod have zero angular velocity?

 (a) When crank angle  0° (b) When crank angle  90°

 (c) When crank angle  45° (d) Never.

304. The turning moment diagram for a single cylinder double acting steam engine consists of ve 
and –ve loops above and below the average torque line. For the ve loop, the ratio of the speeds 
of the flywheel at the beginning and the end is which one of the following?

 (a) Less than unity (b) Equal to unity  (c) Greater than unity (d) Zero.

305. Which one of the following is the correct statement?

 In meshing gears with involute gear teeth, the contact begins at the intersection of the 

 (a) line of action and the addendum circle of the driven gear

 (b) line of action and the pitch circle of the driven gear

 (c) dedendum circle of the driver gear and the addendum circle of the driven gear

 (d) addendum circle of the driver gear and the pitch circle of the driven gear.

306. Interference between the teeth of two meshing involute gears can be reduced or eliminated by

 1.  Increasing the addendum of the gear teeth and correspondingly reducing the addendum of the 
pinion

 2. Reducing the pressure angle of the teeth of the meshing gears

 3. Increasing the centre distance

 Which of the statements given above is/are correct?

 (a) 1 and 2 (b) 2 and 3 (c) 1 only (d) 3 only.

307. What is the direction of the Coriolis components of acceleration in a slotted lever-crank mecha-
nism?

 (a) Along the sliding velocity vector

 (b) Along the direction of the crank

 (c)  Along a line rotated 90° from the sliding velocity vector in a direction opposite to the angu-
lar velocity of the slotted lever

 (d)  Along a line rotated 90° from the sliding velocity vector in a direction same as that of the 
angular velocity of the slotted lever.

308. The controlling force curves for a spring-controlled governor are shown in the below Fig.69. 
Which curve represents a stable governor?

1
2

3
4

Radius rotation

C
on

tr
ol

lin
g 

fo
rc

e

Fig.69

 (a) 1 (b) 2 (c) 3 (d) 4.
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309. For a governor running at constant speed, what is the value of the force acting on the sleeve?

 (a) Zero (b) Variable depending upon the load

 (c) Maximum (d) Minimum.

310. What is the condition for dynamic balancing of a shaft-rotor system?

 (a)  M  0 and F  0 (b)  M  0 (c)  F  0 (d) M  F  0.

311. (W  Weight of reciprocating parts per cylinder).

 For a three-cylinder radial engine, the primary and direct reverse cranks are as shown in the 
below Fig.70.

Fig.70

 Which one of the following pairs is not correctly matched in this regard?

 (a) Primary direct force … 
3

2
2W

g
r  (b) Primary reverse force … Zero

 (c) Primary direct crank speed …  (d) Primary reverse crank speed … 2

312. A uniform bar, fixed at one end carries a heavy concentrated mass at the other end. The system 
is executing longitudinal vibrations. The inertia of the bar may be taken into account by which 
one of the following portions of the mass of the bar at the free end?

 (a) 5

384
 (b) 1

48
 (c) 33

140
 (d) 1

3
.

313. A motion is aperiodic at what value of the damping factor?

 (a) 1.0 or above (b) 0.5 (c) 0.3 (d) 0.866.

314. A rolling disc of radius ‘r’ and mass ‘m’ is connected to one end of a linear spring of stiffness 
‘k’, as shown in the below Fig.71. The natural frequency of oscillation is given by which one of 
the following?

 (a) 
2

3

k

m
 (b) 

k

m
 (c) 

k

m2
 (d) 

2k

m
.
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m

r

k

Fig.71

315. In a 6  20 wire rope, number 6 indicates the 

 (a) diameter of the wire rope in mm (b) number of strands in the wire rope

 (c) number of wires  (d) gauge number of the wire.

316. Which one of the following statements relating to belt drives is correct?

 (a) The rotational speeds of the pulleys are directly proportional to their diameters

 (b)  The length of the crossed belt increases as the sum of the diameters of the pulleys 
increases

 (c) The crowing of the pulleys is done to make the drive sturdy

 (d) The slip increases the velocity ratio.

317. A force ‘F’ is to be transmitted through a square threaded power screw into a nut. If ‘t’ is the 
height of the nut and ‘d’ is the minor diameter, then which one of the following is the average 
shear stress over the screw thread?

 (a) 2F

t d
 (b) F

t d
 (c) F

t2 d
 (d) 4F

t d
.

318. In the compound gear train shown in the below Fig.72, gears A and C have equal numbers of 
teeth and gears B and D have equal numbers of teeth. When A rotates at 800 rpm, D rotates at  
200 rpm. The rotational speed of compound gears BC would then be

B

A

D

C

Fig.72

 (a) 300 rpm (b) 400 rpm (c) 500 rpm (d) 600 rpm.

319. Under service conditions involving jurking, vibration and pulsation of the working load, the bolt 
of choice would be a

 (a) short bolt with high rigidity (b) long bolt with increased elasticity

 (c) bolt with a dished washer (d) bolt with castle nut.
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320. Gearing contact is which one of the following?

 (a) Sliding contact (b) Sliding contact, only rolling at pitch point

 (c) Rolling contact (d) Rolling and sliding at each point of contact.

321. Maximum angular velocity of the connecting rod with a crank to connecting rod ratio 1:5 for 
crank speed of 3000 rpm is around:

 (a) 300 rad/s (b) 60 rad/s (c) 30 rad/s (d) 3000 rad/s.

322. Consider the following statements:

 1. One way of improving vibration isolation is to decrease the mass of the vibrating object

 2.  For effective isolation, the natural frequency of the system should be far less than the exciting 
frequency

 Which of the statements given above is/are correct?

 (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2.

323. Common contact ratio of a pair of spur pinion and gear is

 (a) less than 1.0 (b) equal to 1 (c) between 2 and 3 (d) greater than 3.

324. In case of a multiple disc clutch, if n
1
  is the number of discs on the driving shaft and n

2
 is the 

number of discs on the driven shaft, then what is the number of pairs of contact surfaces?

 (a) n
1
  n

2
  (b) n

1
  n

2  
– 1 (c) n

1 
 n

2
  1 (d) n

1
  2 n

2
.

325. For roller chain drive with sprocket having 10 teeth, the velocity of the driven shaft with respect 
to that of drive will be approximately

 (a) same  (b) 5% above

 (c) 5% below  (d) 5% above to 5% below.

326. Which of the following in-line engines working on four-stroke cycle is completely balanced 
inherently?

 (a) 2 cylinder engine  (b) 3 cylinder engine

 (c) 4 cylinder engine  (d) 6 cylinder engine.

327. Match List I with List II and select the correct answer using the code given below the lists:

List I (Principle/method) List II (Corresponding Application)

A. Klein’s construction 1. Instantaneous centres in linkages

B. Kennedy’s theorem 2. Relative acceleration of linkages

C. D’Alembert’s principle 3. Mobility of linkages

D. Grubler’s rule 4. Dynamic forces in linkages

 Codes:
  A B C D
 (a) 4 1 2 3
 (b) 2 3 4 1
 (c) 4 3 2 1
 (d) 2 1 4 3
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328. Which mechanism produces intermittent rotary motion from continuous rotary motion?

 (a) Whitworth mechanism (b) Scotch Yoke mechanism

 (c) Geneva mechanism  (d) Elliptical trammel.

329. The Fig.73 below shows the schematic of an automobile having a mass of 900 kg and the suspen-
sion spring constant of 81  404 N/m. If it travels at a speed of 72 km/hr on a rough road with 
periodic waviness as shown, what is the forcing frequency of the road on the wheel?

Fig.73

 (a) 10 HZ (b) 4 HZ (c) 1.5 Hz (d) 20 HZ.

330. Which one of the following mechanisms represents an inversion of the single slider crank chain?

 (a) Elliptical trammel  (b) Oldham’s coupling

 (c) Whitworth quick return mechanism (d) Pantograph mechanism.

331. At a given instant, a disc is spinning with angular velocity  in a plane at right angles to the 
paper (see the Fig.74) and after a short interval of time t, it is spinning with angular velocity  

 and the axis of spin has changed direction by the amount .

 In this situation what is the component of acceleration parallel to OA?

Fig.74

 (a) d /dt (b)  (d /dt) (c) d /dt (d) d /d

332. The given Fig.75 shows a slider crank mechanism in which link 1 is fixed. The number of instan-
taneous centres would be

4
3 2

11

Fig.75

 (a) 4 (b) 5 (c) 6 (d) 12.
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333. Consider the following statements:

 The Klein’s construction for slider crank mechanism with crank rotating at constant angular 
velocity provides values of

 1. piston velocity  2. piston acceleration

 3. normal acceleration of crank pin 4. angular acceleration of the connecting rod

 Of these statements

 (a) 1 and 2 are correct  (b)  1, 2, 3, and 4 are correct

 (c) 1, 2, and 4 are correct (d) 3 and 4 are correct.

334. If two parallel shafts are to be connected and the distance between the axes of shafts is small and 
variable, then one would need to use

 (a) a clutch (b) a universal joint (c) an Oldham’s coupling (d) a knuckle joint

335. Consider the following statements relating to the curve for the inertia torque v/s crank angle for 
a horizontal, single cylinder petrol engine shown in the given Fig.76:

0

In
er

tia
To

rq
ue

T2

T1 Area A1

Area A2 Crank
angle

2

1

Fig.76

 1. 
1
  

2
  180° 2. T

1
  T

2
 3. 

1
  

2
 4. A

1
  A

2

Of these statements

 (a) 1 and 3 are correct  (b) 2 and 3 are correct

 (c) 1, 2 and 4 are correct (d) 1, 3 and 4 are correct.

336. The height h of Porter governor with equal arms pivoted at equal distance from axis of rota-
tion is expressed as (where m  mass of balls of the governor, M  mass of sleeve of the 
governor and N  rpm)

 (a) h
m M

m

g

N
91 2

2
.  (b) h

mg Mg

mg

g

N
91 2

2
.

 (c) h
m

mM

g

N
91 2

2
.  (d) h

M

m

g

N
91 2

2
.

337. Match List I (Type of Governor) with List II (Characteristics) and select the correct answer using 
the codes given below the lists:

 List I List II

 A. Isochronous governor 1. Continuously fluctuates above and below mean speed 

 B. Sensitive governor 2. For each given speed there is only one radius of rotation

 C. Hunting governor 3. Higher displacement of sleeve for fractional change of speed

 D. Stable governor 4. Equilibrium speed is constant for all radii of rotation
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 Codes:
  A B C D
 (a) 4 3 2 1
 (b) 2 4 1 3
 (c) 2 4 3 1
 (d) 4 3 1 2

338. Consider the following statements:

 An in-line four-cylinder four-stroke engine is completely balanced for

 1. primary forces  2. secondary forces

 3. primary couples  4. secondary couples

 Of these statements

 (a) 1, 3, and 4 are correct (b) 1, 2, and 4 are correct

 (c) 1 and 3 are correct  (d)  2 and 4 are correct.

339. A uniform cantilever beam undergoes transverse vibrations. The number of natural frequencies 
associated with the beam is

 (a) 1 (b) 10 (c) 100 (d) infinite.

340. Two vibratory systems are shown in the given Fig.77 (1 and 2). The ratio of the natural frequency 
of longitudinal vibration of the second system to that of the first is

k

m

(1) (2)

m

4k

Fig.77
 (a) 4 (b) 2 (c) 0.5 (d) 0.25.

341. A shaft, supported on two bearings at its ends, carries two flywheels ‘L’ apart. Mass moment of 
inertia of the two flywheels are I

a 
and I

b
, I being the polar moment of inertia of cross-sectional 

area of the shaft. Distance l
a
 of the mode of torsional vibration of the shaft from the flywheel I

a
 is 

given by

 (a) l
LI

I Ia
b

a b

 (b) l
LI

I Ia
a

a b

 (c) l
LI

I I Ia
b

a b

 (d) l
LI

I I Ia
a

a b

342. A rack is a gear of

 (a) infinite diameter (b) infinite module (c) zero pressure angle (d) large pitch.

343. The maximum efficiency for spiral gears in mesh is given by 

 (where   shaft angle and   friction angle)

 (a) 1

1

cos( )

cos( )

 
 

  (b) 1

1

cos( )

cos( )

 
 

 (c) 1

1

cos( )

cos( )

 
 

  (d) 1

1

cos( )

cos( )

 
 

.



1313 Appendix A–3 

344. The block diagram of an automatic control system is shown in the following Fig.78.

R +
a

b
C–

H

G2

G1

Fig.78 
 Its simplified form will be as in

 (a) R
C

1+G1H

G1G2  (b) R
C

1+G2H

G2–G1

 (c) R
C

1+G2H

G1–G2  (d) R
C

1+G2H

G1+G2

345. Consider the following statements in respect of a body executing simple harmonic motion:

 1. Periodic time is the time for one complete revolution

 2. The acceleration is directed towards the centre of suspension

 3. The acceleration is proportional to distance from mean position

 4. The velocity will be maximum when it passes through mean position

 Of these statements

 (a) 1, 2, and 3 are correct (b) 2, 3, and 4 are correct

 (c) 1, 3, and 4 are correct (d) 1, 2, and 4 are correct.

346. A four-bar mechanism ABCD is shown in the given Fig.79. If the linear velocity ‘V
B
’ of the point 

‘B’ is 0.5 m/s, then the linear velocity ‘V
c
’ of point ‘C’ will be

0.1 m0.25 m

VC

VB

E

C

D

B

 = 30°A

Fig.79
 (a) 1.25 m/s (b) 0.5 m/s (c) 0.4 m/s (d) 0.2 ms.

347. If reduction ratio of about 50 is required in a gear drive, then the most appropriate gearing would be

 (a) spur gears (b) bevel gears (c) double helical gears (d) worm and worm wheel.

348. A spring of stiffness ‘k’ extended from a displacement x
1
 to a displacement x

2
.
 
The work done by 

the spring is

 (a) 1

2

1

2
2
1 2

2kx kx  (b) 1

2 1 2
2k x x( )  (c) 1

2 1 2
2k x x( )  (d) k

x x1 2

2

2
.
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349. In a reciprocating engine mechanism, the crank and connecting rod of same length r metres are at 
right angles to each-other at a given instant, when the crank makes an angle of 45° with IDC. If the  
crank rotates with a uniform velocity of  rad/s, the angular acceleration of the connecting rod will be

 (a) 2 2r (b) 2r (c) 
2

r
 (d) zero.

350. A simplified turning moment diagram of a four-stroke engine is shown in the given Fig.80. If 
the mean torque ‘T

m
’ is 10 Nm, the estimated peak torque ‘T

p
’ will be (assuming negative torque 

demand is negligible)

0
Crank angle,   rad.

To
rq

ue
, N

m

Tp

Tm

2 3 4

Fig.80

 (a) 80 Nm (b) 120 Nm (c) 60 Nm (d) 40 Nm.

351. The height of a simple Watt governor running at a speed ‘N’ is proportional to 

 (a) N (b) 1

N
 (c) N2 (d) 1

2N
.

352. The controlling force curve of spring-loaded governor is given by the equation F  ar – c, (where 
r is the radius of rotation of the governor balls and a, c are constants). The governor is

 (a) stable  (b) unstable (c) isochronous (d) insensitive.

353. Two rotors are mounted on a shaft. If the unbalanced force due to one rotor is equal in magnitude 
to the unbalanced force due to the other rotor, but positioned exactly 180° apart, then the system 
will be balanced

 (a) statically  (b) dynamically

 (c) statically as well as dynamically (d) neither statically nor dynamically.

354. The primary direct crank of a reciprocating engine is located at an angle  clockwise. The secondary 
direct crank will be located at an angle

 (a) 2  clockwise (b) 2  anti-clockwise (c)  clock-wise (d)  anticlockwise.

355. The given Fig.81 shows vibrations of a mass ‘M’ isolated by means of springs and a damper. If 
an external force ‘F’ (  A sin t) acts on the mass and the damper is not used, then

M

F = A sin t

c
2 2

Fig.81
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 (a) 
k

M
 (b) 

1

2

k

M
 (c)  2

k

M
 (d) 

k

M2

356. The transmitted force through a mass-spring damper system will be greater than that transmitted 

through rigid supports for all values of damping factors, if the frequency ratio 
n

 is

 (a) more than 2  (b) less than 2  (c) equal to one (d) less than one.

357. In a forced vibrations with viscous damping, maximum amplitude occurs when the forced frequency is 

 (a) equal to natural frequency (b) slightly less than natural frequency

 (c) slightly greater than natural frequency  (d) zero.

358. The rotor of a turbine is generally rotated at

 (a) the critical speed  (b) a speed much below the critical speed

 (c) a speed much above  the critical speed (d) a speed having no relation to critical speed.

359. The characteristic equation of a closed-loop automatic control system in time domain is given by

D5  2D4  4D2  D  1  0
 Consider the following statements in this regard:

 1. The system is linear  2. The system is non-linear

 3. The system is stable  4. The system is unstable

 Of these statements 

 (a) 1 and 3 are correct   (b) 2 and 3 are correct 
(c) 1 and 4 are correct  (d) 2 and 4 are correct.

360. The given Fig.82 shows a/an

Fig.82
 (a)  locked chain  (b)  constrained kinematic chain

 (c)  unconstrained kinematic chain (d)  mechanism.

361. In a four-link kinematic chain, the relation between the number of links (L) and number of 
pairs (J) is 

 (a)  L  2J  4 (b)  L  2J – 4 (C)  L  4J  2 (d)  L  4J – 2.

362. An imaginary circle which by pure rolling action, gives the same motion as the actual gear, is called

 (a)  addendum circle (b)  pitch circle (c)  dedendum circle (d)  base circle.

363. The pressure angle of a spur gear normally varies from

 (a)  14° to 20° (b)  20° to 25° (c)  30° to 36° (d)  40° to 50°.
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364. If the number of teeth on the wheel rotating at 300 rpm is 90, then the number of teeth on the 
mating pinion rotating at 1500 rpm is 

 (a) 15 (b) 18 (c) 20 (d) 60.

365. Which one the following is the lubrication regime during normal operation of a rolling element 
bearing?

 (a)  Hydrodynamic lubrication (b)  Hydrostatic lubrication

 (c)  Elastohydrodynamic lubrication (d)  Boundary lubrication.

366. To carry a large axial load in a flat collar bearing, a number of collars is provided to 

 (a)  reduce frictional torque (b)  increase frictional torque

 (c)  decrease intensity of pressure  (d)  increase intensity of pressure.

367. The amount of energy absorbed by a flywheel is determined from the 

 (a)  torque-crank angle diagram (b)  acceleration-crank angle diagram

 (c)  speed-space diagram (d)  speed-energy diagram.

368. Sensitiveness of a governor is defined as the ratio of the 

 (a) maximum equilibrium speed to the minimum equilibrium speed 

 (b)  difference between maximum and minimum equilibrium speeds to the mean equilibrium speed

 (c)  difference between maximum and minimum equilibrium speeds to the maximum equilibrium speed

 (d) maximum difference in speeds to the minimum equilibrium speed.

369. A rigid rotor consists of a system of two masses located as shown in the given Fig.83.
m2 = 2.5 kg

m1 = 10 kg

10 cm
20 cm

10 cm10 cm

5 cm

Fig.83

 The system is 

 (a) statically balanced  (b) dynamically balanced

 (c) statically unbalanced (d) both statically and dynamically unbalanced.

370. A viscous damping system with free vibrations will be critically damped if the damping factor is

 (a) zero (b) less than one (c) equal to one (d) greater than one.

371. In a simple spring mass vibrating system, the natural frequency 
n
 of the system is (k is spring 

stiffness, m is mass and m
s
 is spring mass)
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 (a) 
k

m
ms

3

 (b) 
k

m
ms

3

 (c) 
k

m ms3
 (d) 

k

m ms3
.

372. In which one of the following types of control system is the output of the control element pro-
portional to the time rate of change of the input?

 (a) Proportional  (b) Integral

 (c) Proportional and derivative (d) Derivative.

373. A pulley and belt in a belt drive form a

 (a) cylindrical pair (b) turning pair (c) rolling pair (d) sliding pair

374. Match List I (Terms) with List II (Definitions) and select the correct answer using the codes 
given below the Lists:

      List I List II

 A. Module 1.  Radial distance of a tooth from the pitch circle to the top of the tooth

 B. Addendum 2.  Radial distance of a tooth from the pitch circle to the bottom of the tooth

 C. Circular pitch 3.  Distance on the circumference of the pitch circle from a point of one tooth 
to the corresponding point on the next tooth

  4. Ratio of pitch circle diameter in mm to the number of teeth
 Codes:
  A B C

 (a) 4 1 3
 (b) 4 2 3
 (c) 3 1 2
 (d) 3 2 4

375. The stiffness of spring k used in the Hartnell governor as shown in the given Fig.84 (F
1
 and F

2
 

are centrifugal forces at maximum and minimum radii of rotation r
1
 and r

2 
respectively) is

a a
K

bb

Fig.84

 (a) 2
2

1 2

1 2

b

a

F F

r r
  (b) 2

2

1 2

1 2

a

b

F F

r r

 (c) 2
2

1 2

1 2

b

a

F F

r r
  (d) 2

2

1 2

1 2

a

b

F F

r r
.
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376. The balancing weights are introduced in planes parallel to the plane of rotation of the disturbing 
mass. To obtain complete dynamic balance, the minimum number of balancing weights to be 
introduced in different planes is

 (a) 1 (b) 2 (c) 3 (d) 4.

377. Consider the following statements: 

 The unbalanced force in a single-cylinder reciprocating engine is 

 1. equal to inertia force of the reciprocating masses

 2. equal to gas force

 3. always fully balanced

 Which of the statements(s) is/are correct?

 (a) 1 alone (b) 2 alone (c) 1 and 3 (d) 2 and 3.

378. The equivalent spring stiffness for the system shown in the given Fig.85 (S is the spring stiffness 
of each of the three springs) is

S S

S

W

Rigid
bar

Fig.85

 (a) 
S

2
 (b) 

S

3
 (c) 

2

2

S
 (d) S.

379. Consider the following methods:

 1. Energy method 
 2. Equilibrium method
 3. Rayleigh’s method

 Which of these methods can be used for determining the natural frequency of the free vibrations?

 (a) 1 and 2 (b) 1, 2, and 3 (c) 1 and 3 (d) 2 and 3.

380. Consider the following statements:

 1. In forced vibrations, the body vibrates under the influence of an applied force

 2. In damped vibrations, amplitude reduces over every cycle of vibration

 3. In torsional vibrations, the disc moves parallel to the axis of shaft

 4.  In transvers vibrations, the particles of the shaft moves approximately perpendicular to the 
axis of the shaft

 Which of these statements are correct?

 (a) 1, 2, and 3 (b) 1, 3, and 4 (c) 2, 3, and 4 (d) 1, 2, and 4.
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381. Consider the following specifications of gears A. B. C and D:

Gears A B C D

Numbers of teeth 20 60 20 60

Pressure angle 14 ½ 14 ½ 20° 14 ½

Module 1 3 3 1

Material Steel Brass Brass Steel

 Which of these gears form the pair of spur gears to achieve a gear ratio of 3?

 (a) A and B (b) A and D (c) B and C (d) C and D.

382. Minimum number of teeth for involute rack and pinion arrangement for pressure angle of 20° is

 (a) 18 (b) 20 (c) 30 (d) 34.

383. Rope brake dynamometer uses

 (a) water as lubricant (b) oil as lubricant (c) grease as lubricant (d) no lubricant.

384. Consider the following statements:

 If the fluctuation of speed during a cycle is 5% of mean speed of a flywheel, the coefficient of 
fluctuation of speed will

 1. increase with increase of mean speed of prime mover

 2. decrease with increase of mean speed of prime mover

 3. remain same with increase of mean speed of prime mover

 Which of the statements(s) is/are correct? 

 (a) 1 and 3 (b) 1 and 2 (c)  3 alone (d) 2 alone.

385. Which one of the following “Kinematic pairs” has 3 degrees of freedom between the pairing 
elements?

 

(a)

(c)

1
1

2

1

2

1

2

(b)

(d)

2
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386. The below Fig.86 shows a four bar mechanism. If the radial acceleration of the point C is 5cm/s2, 
the length of the link CD is 

Fig.86

 (a) 2 cm (b) 10 cm (c) 20 cm (d) 100 cm.

387. A slider sliding at 10 cm/s on a link which is rotating at 60 rpm. is subjected to Corioli’s accel-
eration of magnitude

 (a) 40 2 cm/s2 (b) 0.4 2 cm/s2 (c) 40  cm/s2 (d) 40  cm/s2.

388. Consider the following necessary and sufficient conditions for replacing a rigid body by a 
dynamical equivalent system of two masses:

 1. Total mass must be equal to that of the rigid body

 2.  Sum of the squares of radii of gyration of two masses about the c.g. of the rigid body must be 
equal to square of its radius of gyration about the same point

 3. The c.g. of two masses must coincide with that of the rigid body

 4.  The total moment of inertia of two masses about an axis through the c.g. must be equal to that 
of the rigid body

 Which of the above conditions are correct?

 (a) 1, 2, and 3 (b) 1, 3, and 4 (c) 2, 3, and 4 (d) 1, 2, and 4.

389. Match List I (Mechanism) with List II (Name) and select the correct answer using the codes 
given below the lists:

List I (Mechanism) List II (Name)

A.  Mechanism used to reproduce a diagram to an 
enlarged or reduced scale

1. Hart’s mechanism

B.  A straight line mechanism made up of turning pairs 2. Pantograph

C.  Approximate straight line motion consisting of one 
sliding pair

3. Grasshopper mechanism

D. Exact straight line motion mechanism 4. Peaucellier’s mechanism

 Codes:
  A B C D

 (a) 3 1 2 4

 (b) 2 1 3 4

 (c) 3 4 2 1

 (d) 2 4 3 1
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390. Consider the following mechanisms:

 1. Oscillating cylinder engine mechanism 2. Toggle mechanism

 3. Radial cylinder engine mechanism 4. Quick Return Mechanism

 Which of the above are inversions of slider-crank mechanism?

 (a) 1, 2, and 4 (b)  2, 3, and 4 (c) 1, 2, and 3 (d) 1, 3, and 4.

391. The frictional torque transmitted in a flat pivot bearing, assuming uniform wear, is

 (a)  WR (b) 
3

4
  WR  (c) 

2

3
  WR  (d) 

1

2
  WR .

 (where   Coefficient of friction
  W  Load over the bearing
  R  Radius of bearing)

392. With usual notations for different parameters involved, the maximum fluctuation of energy for a 
flywheel is given by

 (a) 2 EC
s
 (b) 

ECs

2
 (c) 2 EC2

s
 (d) 2 E2C

s
.

393. Hammer blow

 (a)  is the maximum horizontal unbalanced force caused by the mass provided to balance the 
reciprocating masses

 (b)  is the maximum vertical unbalanced force caused by the mass added to balance the recipro-
cating masses

 (c) varies as the square root of the speed

 (d) varies inversely with the square of the speed.

394. Whirling speed of shaft is the speed at which

 (a) shaft tends to vibrate in longitudinal direction

 (b) torsional vibrations occur

 (c) shaft tends to vibrate vigorously in transverse direction

 (d) combination of tranverse and longitudinal vibration occurs.

395 The velocity of sliding of meshing gear teeth is

 (a) (
1
  

2
) x (b) 




1

2
x  (c)  (

1
  

2
) x (d)  (

1
  

2
) x

 (where 
1
 and 

2
  angular velocities of meshing gears

  x  distance between point of contact and the pitch point).

396. A speed reducer unit consists of a double-threaded worm of pitch  11 mm and a worm wheel 
of pitch diameter  84 mm. The ratio of the output torque to the input torque is

 (a) 7.6 (b) 12 (c) 24 (d) 42.

397. When the system is given a constant angular velocity rather than an angular displacement, it is 
known as

 (a) step function input (b) harmonic input

 (c) unit step displacement (d) variable input.
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398. Consider the following statements:

 1.  When frequency ratio is  2, the force transmitted to the foundations is more than the exicting 
force

 2.  When frequency ratio is > 2, the force transmitted to the foundations increases as the damp-
ing is decreased

 3. The analysis of base-excited vibrations is similar to that of forced vibrations

 Which of these statements are correct?
 (a) 1 and 2 (b) 2 and 3 (c)  1 and 3 (d) 1, 2, and 3.

399. Consider the following statements:

 1.  Critical or whirling speed of the shaft is the speed at which it tends to vibrate violently in the 
transverse direction

 2.  To find the natural frequency of a shaft carrying several loads, the energy method gives 
approximate results

 3.  Dunkerley’s method gives accurate results of the natural frequency of a shaft carrying several 
loads 

 Which of these statements is/are correct?

 (a) 1 only (b) 2 and 3 (c) 1 and 3 (d) 1, 2, and 3.

400. Consider the following statements:

 Coriolis acceleration component appears in the acceleration analysis of the following planar 
mechanisms:

 1. Whitworth quick-return mechanism

 2. Slider-crank mechanism

 3. Scotch-Yoke mechanism

 Which of these statements is/are correct?

 (a) 1, 2, and 3 (b) 1 and 2 (c) 2 and 3 (d) 1 only.

401. Which one of the following is an exact straight line mechanism using lower pairs?

 (a) Watt’s mechanism (b) Grasshopper mechanism

 (c) Robert’s mechanism (d) Peaucellier’s mechanism.

402. Consider the following statements in respect of four-bar mechanisms:

 1.  It is possible to have the length of one link greater than the sum of lengths of the other three links

 2.  If the sum of the lengths of the shortest and the longest links is less than that the sum of 
lengths of the other two, it is known as Grashoff’s linkage

 3.  It is possible to have the sum of the lengths of the shortest and the longest links greater than 
that of the remaining two links

 Which of these statements is/are correct?
 (a) 1, 2 and 3 (b) 2 and 3 (c) 2 only (d) 3 only.

403. The height of Watt’s governor is

 (a) directly proportional to the speed (b) directly proportional to the (speed)2

 (c) inversely proportional to the speed (d) inversely proportional to the (speed)2.
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404. The Fig.87 shows a critically damped spring-mass system undergoing single degree of freedom 
vibrations. If m  5 kg and k  20 N/m, the value of viscous damping coefficient is

 

Fig.87
 (a) 10 Ns/m (b) 20 Ns/m (c) 4 Ns/m (d) 8 Ns/m.

405. In a system subjected to damped forced vibrations, the ratio of maximum displacement to the 
static deflection is known as

 (a) Critical damping ratio (b) Damping factor

 (c) Logarithmic decrement (d) Magnification factor.

406. In the epicyclic gear train shown in the Fig.88, T
A
  40, T

B
  20. For three revolutions of the 

arm, the gear B will rotate through

Fig.88

 (a) 6 revolutions (b) 2.5 revolutions (c) 3 revolutions (d) 9 revolutions.

407. Which one of the following statements in respect of involute profiles for gear teeth is not correct?

 (a) Interference occurs in involute profiles

 (b) Involute tooth form is sensitive to change in centre distance between the base circles

 (c) Basic rack for involute profile has straight line form

 (d)  Pitch circle diameters of two mating involute gears are directly proportional to the base 
circle diameters.

408. Traffic control on the roads by lights where the timing mechanism operates irrespective of the 
intensity of traffic is an example of

 (a) Closed loop control  (b) Under-damped control

 (c) Open loop control  (d) Over-damped control.

409. In the given configuration of the mechanism as shown in the Fig.89, V
A
  40 m/s and V

B
  30 m/s. 

The magnitude of velocity of slider B relative to the slider A is

A
B

VB
VA

90

Fig.89
 (a) 30 m/s (b) 40 m/s (c) 50 m/s (d) 30.5 m/s
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410. Oldham’s coupling is an inversion of the kinematic chain used in

 (a) Whitworth quick-return mechanism (b) Elliptical trammel

 (c) Rotary engine  (d) Universal joint.

411. In balancing of 4-stroke in-line engines, firing order helps to control the magnitude of

 (a) Primary forces only  (b) Secondary forces only

 (c) Primary forces and primary couples only (d) Primary and secondary couples only.

412. The method of direct and reverse cranks is used in engines for

 (a) the control of speed fluctuations (b) balancing of forces and couples

 (c) kinematic analysis  (d) vibration analysis.

413. The Fig.90 shows a rigid body oscillating about the pivot A. If J is mass moment of inertia of the 
body about the axis of rotation, its natural frequency for small oscillations is proportional to

Fig.90

 (a) J (b) J 2 (c) 1

J
 (d) 

1

J
.

414. Consider the following statements:

 Two rotors mounted on a single shaft can be considered to be equivalent to a geared-shaft system 
having two rotors provided

 1. the kinetic energy of the equivalent system is equal to that of the original system

 2. the strain energy of the equivalent system is equal to that of the original system

 3. the shaft diameters of the two systems are equal

 Which of these statements are correct?

 (a) 1, 2, and 3 (b) 1 and 2 (c) 2 and 3 (d) 1 and 3.

415. What  is the value of K for which the relative damping of the closed loop system as shown in 
Fig.91 below is equal to 0.5?

K
+

–

3
s2 + 3s

Fig.91
 (a) 2 (b) 3 (c) 4 (d) 5.

416. What is the number of instantaneous centres for an eight link mechanism?

 (a) 15 (b) 28 (c) 30 (d) 8.
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417. For the rotor system as shown in Fig.92, the mass required for its complete balancing is

Fig.92

 (a) 1.5 kg at 2 m radius and at 225° from reference

 (b) 3 kg at 1 m radius and at 45° from reference

 (c) 8 kg at 1 m radius and at 225° from reference

 (d) 4 kg at 2 m radius and at 45° from reference.

418. The Fig.93 given below show different schemes suggested to transmit continuous rotary motion 
from axis A to axis B. Which of these schemes are not dynamically balanced?

Fig.93

 (a) 1 and 3 (b) 2 and 3 (c) 1 and 2 (d) 1, 2, and 3.

419. A spring-mass suspension has a natural frequency of 40 rad/s. What is the damping ratio required 
if it is desired to reduce this frequency to 20 rad/s by adding a damper to it?

 (a)
 

3

2  
(b)

 

1

2  
(c)

 

1

2  
(d)

 

1

4
.
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420. The four bar mechanism shown in the Fig.94 (Given: OA  3 cm, AB  5 cm, BC  6 cm, OC  
7 cm) is a

Fig.94

 (a) Double crank mechanism (b) Double rocker mechanism

 (c) Crank rocker mechanism (d) Single slider mechanism.

421. Speed reduction in a gear box is achieved using a worm and worm wheel. The worm wheel has 
30 teeth and a pitch diameter of 210 mm. If the pressure angle of the worm is 20°, what is the 
axial pitch of the worm?

 (a) 7 mm (b) 22 mm (c) 14 mm (d) 63 mm.

422. In the Fig.95 shown, the sun wheel has 48 teeth and the planet has 24 teeth. If the sun wheel is 
fixed, what is the angular velocity ratio between the internal wheel and arm?

Fig.95

 (a) 3.0 (b) 1.5 (c) 2.0 (d) 4.0.

423. 100 kW power is supplied to the machine through a gear box which uses an epicyclic gear train. 
The power is supplied at 100 rad/s. The speed of the output shaft of the gear box is 10 rad/s in a 
sense opposite to the input speed. What is the holding torque on the fixed gear of the train?

 (a) 8 kNm (b) 9 kNm (c) 10 kNm (d) 11 kNm.

424. Transmissibility is unity at two points.

Which one of the following is true for these two points?

 (a) /
n
 is zero and 3  for all values of damping

 (b) /
n 
 is zero and 2  for all values of damping

 (c)  /
n
  is unity and 2 for all values of damping

 (d) /
n
 is unity and 3  for all values of damping.
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425. Examine the Fig.96 shown below wherein the numbers indicate the links:

Fig.96
 Which of the statements given below are correct?

 1. I
34

 is at , perpendicular to QS 2. I
45

 is at , perpendicular to QS 
3. I

71
 is at T  4. I

45
 is at R.

 Select the correct answer from the code given below :

 (a) 1 and 2 (b) 1 and 4 (c) 2 and 3 (d) 1, 3, and 4.

426. Match List I (Gear Train) with List II (Application) and select the correct answer using the code 
given below the lists:

List I (Gear Train) List II (Application)

A. Compound gear train 1. Automobile gear box

B. Eipcyclic spur gear train with brake bands 2. Automatic transmission of automobile

C. Worm and worm-wheel gear train 3. Speed reducers for lifts

D. Epicyclic bevel gear train 4. Automobile differential

 Code:
  A B C D

 (a) 1 2 3 4
 (b) 3 4 1 2
 (c) 1 4 3 2
 (d) 3 2 1 4

427. Cycloidal tooth profile of a cycloidal gear tooth is a combination of

 (a) Hypocycloid and involute of a circle

 (b) Hypocycloid and epicycloid

 (c) Epicycloid and involute of a circle

 (d) Straight line and epicycloid.

428. Which one of the following statements is not correct?

 (a) Response of an inertia governor is faster than that of a centrifugal governor

 (b) An I.C. engine prime-mover always requires both governor and the flywheel

 (c) Spring loaded centrifugal governors are effective over a wide range of operating speeds

 (d) Flywheel is not necessary in case of electric motor driven punch press.

429. The problem of hunting of a centrifugal governor becomes very acute when the governor becomes

 (a) Less sensitive (b) Highly sensitive (c) Highly stable (d) Less stable.
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430. What should be the angle between the cylinder axes if the primary forces of a 2-cylinder  
V-engine are to be completely balanced?

 (a) 45° (b) 60° (c) 90° (d) 120°.

431. Systems A and B (Fig.97) having identical mass and springs are set in simple harmonic motion. 
Which one of the following statement is correct?

k

k

B

k

A

k

Fig.97
 (a) For systems A and B, the period of vibration is same
 (b) System B has a period of vibration twice that of System A
 (c) System B has a period of vibration half that of system A
 (d) System B has a period of vibration 2  times that of system A.

432. What is the polar for the function 
1

1 j
,  where  stands for the frequency (angular),  the 

time constant and j 1 ?

 (a) Semi circle (b) Parabola (c) Ellipse (d) Circle.

433. Suppose two rotors with inertias I
1
 and I

2
 on shafts of lengths l

1
 and l

2
 respectively, are connected 

by gears such that the speed of the I
2
 rotor is always G times that of the I

1
 rotor. This system may, 

for vibration analysis, be treated as being on one shaft (integral with l
1
) if

 (a) I
1
 is changed to G2 I

1
 (b) I

2
 is changed to G2 I

2

 (c) I
1
 is changed to I

1
/G2 (d) I

2
 is changed to I

2
/G2.

434. Two rotors A and B are connected to the two ends of a shaft of uniform diameter. The mass moment 
of inertia of rotor A about the axis of the shaft is four times that of B. If the length of the shafts is 
1 m and C is the position of node for torsional vibrations, then what is the length of AC?

 (a) 1/5 m (b) 4/5 m (c) 1/25 m (d) 16/25 m.

435. If the frequency of fluctuations in engine speed coincides with the natural frequency of oscilla-
tions of the governor, then, due to resonance, the amplitude of oscillations becomes very high. 
Consequently the governor tends to intensify the speed variations. What is such a situation?

 (a) Sensitiveness (b) Stability (c) Isochronism (d) Hunting.

436. What is the minimum number of arbitrarily chosen parallel planes in which the balancing mass/
masses may be placed for complete dynamic balance of a system of unbalanced revolving masses 
in different transverse planes of a rotating shaft?

 (a) 1 (b) 2 (c) 3 (d) 4.

437. Which one of the following is realized by hydraulic dash-pot shock absorbers?

 (a) Viscous damping  (b) Structural damping

 (c) Coulomb damping  (d) Spring damping.
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438. Which one of the following is the correct statement?

 Transmissibility is defined as the ratio of the

 (a) force applied to the machine to the force transmitted to the foundation

 (b) force transmitted to the foundation to the force applied to the machine

 (c) force applied to the machine to the vector sum of spring forces

 (d) damping forces to the spring forces.

439. The criterion of constraint of a chain connecting the number of binary joints (J), number of 
higher pairs (H) and the number of links (L) is:

J
H L

2

3

2
2.

 When is the chain locked?

 (a) L.H.S.  R.H.S. (b) L.H.S. > R.H.S.

 (c) L.H.S.  R.H.S. (d) The chain will never get locked.

440. Which one of the following statements is correct?

 Transmission angle is the angle between

 (a) the output link and the frame (b) the output link and the coupler

 (c) the input link and the coupler (d) the input link and the frame.

441. In typical power transmission with reduction from an induction motor of speed 1450 rpm to a 
speed as low as 1 rpm, which one of the following order of reduction is desirable?

 (a) Worm drive-spur drive-belt drive (b) Belt drive-spur drive-worm drive

 (c) Worm drive-belt drive-spur drive (d) Spur drive-worm drive-belt drive.

442. Which one of the following is the correct statement?

 The relative velocity of sliding in the teeth of gears in mesh is zero at

 (a) the point of engagement

 (b) the point of disengagement

 (c) the pitch point

 (d) the point between point of engagement and pitch point.

443. Which one of the following is the correct statement?

 The consequence of a slight increase in the centre distance between two mating involute gears is 
that

 (a) The law of gearing is not satisfied perfectly

 (b) interference occurs

 (c) pressure angle increases

 (d) pressure angle decreases.

444. Which one of the following is correct for a shaft carrying two rotors at its ends?

 (a) It has no node (b) It has one node

 (c) It has two nodes (d) It has three nodes.
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445. The Fig.98 given below shows the locations of the roots of the characteristic function of a second 
order, linear, closedloop control system. What is the natural frequency of the system?

Fig.98
 (a) 10 rad/s (b) 36 rad/s (c) 48 rad/s (d) 64 rad/s.

446. A type-2 system has its transfer function for open loop represented by

G s
s

s s
s( )

.
H( ) in the - plane.s

4 1

1 0 12

 Nyquist plot shows that there are no poles within the path of values of s. It further shows that 
there is no encirclement of –1  j.0. Then what is the number of zeros of the said plot?

 (a) 1 (b) 0 (c) 2 (d) 3.

447. For a spring-loaded roller-follower driven with a disc cam,

 (a)  the pressure angle should be larger during rise than that during return for ease of transmit-
ting motion

 (b)  the pressure angle should be smaller during rise than that during return for ease of transmit-
ting motion

 (c)  the pressure angle should be large during rise as well as during return for ease of transmit-
ting motion

 (d) the pressure angle does not affect the ease of transmitting motion.

448. For the planar mechanism shown Fig.99, select the most appropriate choice for the motion of 
link 2 when link 4 is moved upwards.

Fig.99
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 (a) Link 2 rotates clockwise

 (b) Link 2 rotates counter-clockwise

 (c) Link 2 does not move

 (d) Link 2 motion cannot be determined.

449. Which of the following statement is correct?

 (a)  Flywheel reduces speed fluctuations during a cycle for a constant load, but flywheel does not 
control the mean speed of the engine if the load changes

 (b)  Flywheel does not reduce speed fluctuations during a cycle for a constant load, but flywheel 
does control the mean speed of the engine if the load changes

 (c)  Governor controls speed fluctuations during a cycle for a constant load, but governor does 
not control the mean speed of the engine if the load changes

 (d)  Governor controls speed fluctuations during a cycle for a constant load, and governor also 
controls the mean speed of the engine if the load changes.

450. In spur gears, the circle on which the involute is generated is called the

 (a) pitch circle (b) clearance circle (c) base circle (d) addendum circle.

451. The ratio of tension on the tight side to that on the slack side in a flat belt drive is

 (a) proportional to the product of coefficient of friction and lap angle

 (b) an exponential function of the product of coefficient of friction and lap angle

 (c) proportional to the lap angle

 (d) proportional to the coefficient of friction.

452. To make a worm drive reversible, it is necessary to increase

 (a) centre distance (b) worm diameter factor

 (c) number of starts (d) reduction ratio.

453. Instantaneous centre of a body rolling with sliding on a stationary curved surface lies

 (a) at the point of contact

 (b) on the common normal at the point of contact

 (c) on the common tangent at the point of contact

 (d) at the centre of curvature of the stationary surface.

454. The number of degrees of freedom of a five link plane mechanism with five revolute pairs as 
shown in the Fig.100 is

Fig.100

 (a) 3 (b) 4 (c) 2 (d) 1.
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455. In a plate cam mechanism with reciprocating roller follower, the follower has a constant accel-
eration in the case of

 (a) cycloidial motion (b) simple harmonic motion

 (c) parabolic motion (d) polynomial motion.

456. The sun gear in the Fig.101 is driven clockwise at 100 rpm. The ring gear is held stationary. For 
the number of teeth shown on the gears, the arm rotates at

Fig.101

 (a) 0 rpm (b) 20 rpm (c) 33.33 rpm (d) 66.67 rpm.

457. For the audio cassette mechanism shown Fig.102 below, where is the instantaneous centre of 
rotation (point) of the two spools?

Fig.102

 (a) Point P lies to the left of both the spools but at infinity along the line joining A and H

 (b) Point P lies in between the two spools on the line joining A and H, such that PH AP2

 (c) Point P lies to the right of both the spools on the line joining A and H, such that AH HP
 (d) Point P lies at the intersection of the line joining B and C and the line joining G and F.

458. With regard to belt drives with given pulley diameters, centre distance and coefficient of friction 
between the pulley and the belt materials, which of the statements below are FALSE?

 (a)  A crossed flat belt configuration can transmit more power than an open flat belt configuration
 (b) A “V ” belt has greater power transmission capacity than an open flat belt
 (c)  Power transmission is greater when belt tension is higher due to centrifugal effects than the 

same belt drive when centrifugal affects are absent
 (d) Power transmission is the greatest just before the point of slipping is reached.

459. The cross head velocity in the slider crank mechanism, for the position shown in Fig.103 below is:

Fig.103
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 (a) vC cos cos90  (b) vC cos sec90

 (c) vC cos cos90  (d) vC cos sec90 .

 Where v
C
 is the linear velocity of the crank pin.

460. An automobile of weight W is shown in Fig.104. A pull ‘P’ is applied as shown. The reaction at 
the front wheels (location A) is

Fig.104

 (a) W/2 – Pb/2a (b) W/2  Pb/2a (c) W/2 – Pa/2b (d) W/2.

461. The percentage improvement in power capacity of a flat belt drive, when the wrap angle at the 
driving pulley is increased from 150° to 210° by an idler arrangement for a friction coefficient 
of 0.3, is

 (a) 22.61 (b) 33.92 (c) 40.17 (d) 67.85.

462. In an experiment to find the velocity and acceleration of a particular cam rotating at 10 rad/s, the 
values of displacements and velocities are recorded. The slope of displacement curve at an angle 
of ‘ ’ is 1.5 m/s and the slope of velocity curve at the same angle is –0.05 m/s2. The velocity and 
acceleration of the cam at the instant are respectively

 (a) 15 m/s and –5 m/s2 (b) 15 m/s and 5 m/s2

 (c) 1.2 m/s and 0.5 m/s2 (d) 1.2 m/s and –0.5 m/s2.

463. Consider the triangle formed by the connecting rod and the crank of an IC engine as the two 
sides of the triangle. If the maximum area of this triangle occurs when the crank angle is 75° the 
ratio of connecting rod length to crank radius is

 (a) 5 (b) 4 (c) 3.73 (d) 3.

464. The difference  between tensions on the tight and slack sides of a belt drive is 3000 N. If the belt 
speed is 15 m/s, the transmitted power in kW is

 (a) 45 (b) 22.5 (c) 90 (d) 100.

465. The profile of a cam in a particular zone is given by x 3  cos  and y  sin . The normal to 

the cam profile at 

4

 is at an angle (with respect to x axis)

 
(a)

 


4  

(b)
 


2  

(c)
 


3  

(d) 0.

466. A flywheel of moment of inertia 9.8 kg.m2 fluctuates by 30 rpm for a fluctuation in energy of 
1936 Joules. The mean speed of the flywheel is (in rpm)

 (a) 600 (b) 900 (c) 968 (d) 2940.
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467. Math List I with List II

List I List II

(A) Collision of bodies 1. Kinetics

(B) Minimum potential energy 2. Reciprocating unbalance

(C) Degree of freedom 3. Dynamics

(D) Prony brake 4. Coefficient of restitution

(E) Hammer blow 5. Stability

(F) Ellipse trammel 6. Gravity idler

468. Math List I with List II

List I (Gear types) List II (Applications)

(a) Worm gears 1. Parallel shafts

(b) Cross helical gears 2. Non-parallel, intersecting shafts

(c) Bevel gears 3. Non-parallel, non-intersecting shafts

(d) Spur gears 4. Large speed ratios

469. Fig.105 shows a quick return mechanism. The crank OA rotates clockwise uniformly.

 OA  2 cm, OO'  4 cm. The ratio of time for forward motion to that for return motion is

Fig.105

 (a) 0.5 (b) 2.0 (c) 12  (d) 1.

470. The arm OA of an epicyclic gear train shown in Fig.106 below revolves counter-clockwise about 
O with an angular velocity of 4 rad/s. Both gears are of same size. The angular velocity of gear 
C, if the sun gear B is fixed, is

B

O A

C

Fig.106
 (a) 4 rad/s (b) 8 rad/s (c) 10 rad/s (d) 12 rad/s.

471. The mechanism used in a shaping machine is

 (a) a closed 4-bar chain having 4 revolute pairs

 (b) a closed 6-bar chain having 6 revolute pairs

 (c) a closed 4-bar chain having 4 revolute and 2 sliding pairs

 (d) an inversion of the single slider-crank chain.
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472. The lengths of the links of a 4-bar linkage with revolute pairs only are p, q, r and s units. Given 
that p  q  r  s. Which of these links should be the fixed one, for obtaining a “double crank” 
mechanism?

 (a) link of length p (b) link of length q (c) link of length r (d) link of length s.

473. For a certain engine having an average speed of 1200 rpm, a flywheel approximated as a solid 
disc, is required for keeping the fluctuation of speed within 2% above the average speed. The 
fluctuation of kinetic energy per cycle is found to be 2 kg.m. What is the least possible mass of 
the flywheel if its diameter is not to exceed 1 m?

 (a) 40 kg (b) 51 kg (c) 62 kg (d) 73 kg

474. In a band brake the ratio of tight side band tension to the tension on the slack side is 3. If the 
angle of overlap of band on the drum is 180°, the coefficient of friction required between drum 
and the band is

 (a) 0.20 (b) 0.25 (c) 0.30 (d) 0.35.

475. Two mating spur gears have 40 and 120 teeth respectively. The pinion rotates at 1200 rpm and 
transmits a torque of 20 N m. The torque transmitted by the gear is

 (a) 6.6 Nm (b) 20 Nm (c) 40 Nm (d) 60 Nm.

476. For a mechanism shown in Fig.107 below, the mechanical advantage for the given configuration is

Fig.107

 (a) 0 (b) 0.5 (c) 1.0 (d) 

477. In the Fig.108 shown, the relative velocity of link 1 with respect to link 2 is 12 m/sec. Link 2 
rotates at a constant speed of 120 rpm. The magnitude of Coriolis component of acceleration of 
link 1 is

2

1

2

Fig.108

 (a) 302 m/s2 (b) 604 m/s2 (c) 906 m/s2 (d) 1208 m/s2

478. The Fig.109 below shows a planar mechanism with single degree of freedom. The instant aneous 
centre 24 for the given configuration is located at a position
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2
1

3

90 4 M

I

NL

Fig.109

 (a) L (b) M (c) N (d) .

479. Match the following:

Type of gears Arrangement of shafts

   P. Bevel gears 1. Non-parallel off-set shafts

Q. Worm gears 2. Non-parallel intersecting shafts

 R. Herringbone gears 3. Non-parallel, non-intersecting shafts

   S. Hypoid gears 4. Parallel shafts

 (a) P-4 Q-2 R-1 S-3

 (b) P-2 Q-3 R-4 S-1

 (c) P-3 Q-2 R-1 S-4

 (d) P-1 Q-3 R-4 S-2

480. Match the following with respect to spatial mechanisms.

Type of Joint Degrees of constraint

P-Revolute 1. Three

Q-Cylindrical 2. Five

R-Spherical 3. Four

4. Two

5. Zero

 (a) P-1 Q-3 R-3

 (b) P-5 Q-4 R-3

 (c) P-2 Q-3 R-1

 (d) P-4 Q-5 R-3

Common Data for Questions 481 to 483
An instantaneous configuration of a four-bar mechanism, whose plane is horizontal, is shown in the 
Fig.110 below. At this instant, the angular velocity and angular acceleration of link O

2 
A are   8 rad/s 

and   0, respectively, and the driving torque (T) is zero. The link O
2 
A is balanced so that its centre 

of mass falls at O
2
.
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A

60 mm

240 mm

160 mm

B

O4O2

90 90

Fig.110

481. Which kind of 4-bar mechanism is O
2
ABO

4
?

 (a) Double-crank mechanism (b) Crank-rocker mechanism

 (c) Double-rocker mechanism (d) Parallelogram mechanism.

482. At the instant considered, what is the magnitude of the angular velocity of O
4
B?

 (a) 1 rad/s (b) 3 rad/s (c) 8 rad/s (d) 
64

3
 rad/s

483. At the same instant, if the component of the force at joint A along AB is 30 N, then the magnitude 
of the joint raction at O

2

 (a) is zero (b) is 30 N

 (c) is 78 N (d) cannot be determined from the given data

 Statement for Linked Answer Questions 484 and 485

A band brake consists of a lever attached to one end of the band. The other end of the band is 
fixed to the ground. The wheel has a radius of 200 mm and the wrap angle of the band is 270º. 
The braking force applied to the lever is limited to 100 N, and the coefficient of friction between 
the band and the wheel is 0.5. No other information is given Fig.111.

Fig.111

484. The maximum tension that can be generated in the band during braking is

 (a) 1200 N (b) 2110 N (c) 3224 N (d) 4420 N.

485. The maximum wheel torque that can be completely braked is

 (a) 200 Nm (b) 382 Nm (c) 604 Nm (d) 844 Nm.
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486. A disk clutch is required to transmit 5 kW at 2000 rpm. The disk has a friction lining with coeffient 
of friction equal to 0.25. Bore radius of friction lining is equal to 25 mm. Assume uniform 
contact pressure of 1 MPa. The value of outside of the friction lining is

 (a) 39.4 mm (b) 49.5 mm (c) 97.9 mm (d) 142.9 mm.

487. Twenty degree full depth involute profiled 19-tooth pinion and 37-tooth gear are in mesh. If the 
module is 5 mm, the center distance between the gear pair will be

 (a) 140 mm (b) 150 mm (c) 280 mm (d) 300 mm.

488. Match the items in columns I and II

Column I Column II

   P. Higher kinematic pair 1. Grubler’s equation

Q. Lower kinematic pair 2. Line contact

R. Quick return mechanism 3. Euler’s equation

   S. Mobility of a linkage 4. Planer

5. Shaper

6. Surface contact

 (a) P–2, Q–6, R–4, S–3 (b) P–6, Q–2, R–4, S–1

 (c) P–6, Q–2, R–5, S–3 (d) P–2, Q–6, R–5, S–1

 Common Data for Questions 489 and 490 

 A planetary gear train has four gears and one carrier. Angular velocities of the gears and 
1
, 

2
, 

3
 and 

4
, respectively. The carrier rotates with angular velocity 

5
.

Fig.112
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489. What is the relation between the angular velocites of Gear 1 and Gear 4?

 
(a)

 

 
 

2 5

4 5

6  
 

(b)
 

 
 

4 5

1 5

  6

 

(c)

 

 
 

1 2

4 3 3

2

 
(d) 

 
 

2 5

4 5

8

9
  

490. For 
1
  60 rpm clockwise (cw) when looked from the left, what is the angular velocity of the 

carrier and its direction so that Gear 4 rotates in counterclockwise (ccw) direction at twice the 
angular velocity of Gear 1 when looked from the left?

 (a) 130 rpm, cw (b) 223 rpm, ccw (c) 256 rpm, cw (d) 156 rpm, ccw
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Answers

1.(a) 2.(b) 3.(d) 4.(b) 5.(c) 6.(d) 7.(c) 8.(c) 9.(b) 10.(c)

11.(d) 12.(d) 13.(d) 14.(b) 15.(c) 16.(c) 17.(a) 18.(b) 19.(b) 20.(a)

21.(d) 22.(c) 23.(d) 24.(c) 25.(b) 26.(a) 27.(d) 28.(c) 29.(a) 30.(c)

31.(c) 32.(b) 33.(a) 34.(c) 35.(a) 36.(d) 37.(a) 38.(c) 39.(d) 40.(c)

41.(d) 42.(d) 43.(b) 44.(b) 45.(d) 46.(b) 47.(c) 48.(a) 49.(b) 50.(c)

51.(a) 52.(a) 53.(d) 54.(c) 55.(b) 56.(c) 57.(a) 58.(c) 59.(a) 60.(b)

61.(b) 62.(d) 63.(b) 64.(c) 65.(c) 66.(a) 67.(d) 68.(b) 69.(a) 70.(d)

71.(c) 72.(d) 73.(d) 74.(a) 75.(b) 76.(c) 77.(b) 78.(b) 79.(c) 80.(b)

81.(d) 82.(a) 83.(d) 84.(d) 85.(a) 86.(c) 87.(b) 88.(c) 89.(d) 90.(a)

91.(d) 92.(a) 93.(a) 94.(d) 95.(a) 96.(c) 97.(d) 98.(a) 99.(b) 100.(c)

101.(c) 102.(d) 103.(a) 104.(d) 105.(b) 106.(a) 107.(a) 108.(a) 109.(c) 110.(a)

111.(d) 112.(d) 113.(d) 114.(b) 115.(d) 116.(d) 117.(d) 118.(c) 119.(d) 120.(a)

121.(c) 122.(c) 123.(d) 124.(b) 125.(d) 126.(c) 127.(a) 128.(a) 129.(c) 130.(d)

131.(c) 132.(b) 133.(d) 134.(d) 135.(c) 136.(b) 137.(c) 138.(b) 139.(a) 140.(b)

141.(d) 142.(c) 143.(d) 144.(a) 145.(b) 146.(a) 147.(b) 148.(b) 149.(c) 150.(d)

151.(d) 152.(c) 153.(d) 154.(c) 155.(b) 156.(c) 157.(b) 158.(c) 159.(b) 160.(b)

161.(a) 162.(d) 163.(a) 164.(a) 165.(b) 166.(d) 167.(b) 168.(d) 169.(a) 170.(a)

171.(a) 172.(d) 173.(b) 174.(b) 175.(c) 176.(c) 177.(d) 178.(b) 179.(a) 180.(d)

181.(a) 182.(b) 183.(b) 184.(c) 185.(d) 186.(a) 187.(d) 188.(b) 189.(a) 190.(d)

191.(c) 192.(b) 193.(c) 194.(c) 195.(c) 196.(d) 197.(b) 198.(c) 199.(a) 200.(d)

201.(c) 202.(d) 203.(c) 204.(a) 205.(d) 206.(a) 207.(c) 208.(a) 209.(c) 210.(a)

211.(b) 212.(a) 213.(a) 214.(d) 215.(b) 216.(a) 217.(d) 218.(c) 219.(d) 220.(a)

221.(a) 222.(b) 223.(c) 224.(c) 225.(c) 226.(c) 227.(b) 228.(b) 229.(b) 230.(d)

231.(c) 232.(a) 233.(b) 234.(c) 235.(a) 236.(c) 237.(d) 238.(b) 239.(c) 240.(a)

241.(c) 242.(c) 243.(d) 244.(c) 245.(c) 246.(b) 247.(a) 248.(b) 249.(a) 250.(d)

251.(b) 252.(a) 253.(d) 254.(c) 255.(a) 256.(d) 257.(c) 258.(b) 259.(b) 260.(a)

261.(a) 262.(c) 263.(a) 264.(c) 265.(b) 266.(a) 267.(a) 268.(b) 269.(d) 270.(b)

271.(a) 272.(a) 273.(a) 274.(b) 275.(a) 276.(c) 277.(a) 278.(c) 279.(b) 280.(c)

281.(c) 282.(a) 283.(c) 284.(c) 285.(a) 286.(b) 287.(c) 288.(d) 289.(b) 290.(b)

291.(c) 292.(c) 293.(d) 294.(c) 295.(d) 296.(d) 297.(b) 298.(b) 299.(a) 300.(c)

301.(b) 302.(c) 303.(b) 304.(c) 305.(a) 306.(c) 307.(d) 308.(c) 309.(a) 310.(a)

311.(d) 312.(d) 313.(a) 314.(a) 315.(b) 316.(b) 317.(a) 318.(b) 319.(d) 320.(d)

321.(b) 322.(a) 323.(c) 324.(b) 325.(c) 326.(d) 327.(d) 328.(c) 329.(b) 330.(c)

331.(b) 332.(c) 333.(b) 334.(c) 335.(a) 336.(a) 337.(d) 338.(a) 339.(d) 340.(b)
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341.(a) 342.(a) 343.(b) 344.(d) 345.(c) 346.(d) 347.(d) 348.(b) 349.(d) 350.(a)

351.(d) 352.(a) 353.(a) 354.(a) 355.(a) 356.(b) 357.(a) 358.(c) 359.(b) 360.(c)

361.(b) 362.(b) 363.(a) 364.(b) 365.(d) 366.(c) 367.(a) 368.(b) 369.(d) 370.(c)

371.(b) 372.(d) 373.(c) 374.(b) 375.(b) 376.(b) 377.(a) 378.(c) 379.(b) 380.(d)

381.(b) 382.(a) 383.(a) 384.(d) 385.(d) 386.(c) 387.(c) 388.(b) 389.(b) 390.(a)

391.(d) 392.(a) 393.(b) 394.(c) 395.(d) 396.(b) 397.(b) 398.(c) 399.(c) 400.(d)

401.(d) 402.(b) 403.(d) 404.(b) 405.(d) 406.(d) 407.(c) 408.(a) 409.(c) 410.(b)

411.(c) 412.(b) 413.(d) 414.(d) 415.(b) 416.(b) 417.(a) 418.(c) 419.(a) 420.(c)

421.(b) 422.(b) 423.(d) 424.(b) 425.(a) 426.(a) 427.(a) 428.(d) 429.(b) 430.(a)

431.(b) 432.(b) 433.(b) 434.(a) 435.(d) 436.(b) 437.(a) 438.(b) 439.(b) 440.(b)

441.(a) 442.(c) 443.(c) 444.(b) 445.(a) 446. 447.(c) 448.(b) 449.(b) 450.(c)

451.(b) 452.(c) 453.(d) 454.(c) 455.(c) 456.(b) 457.(d) 458.(c) 459.(a) 460.(b)

461.(a) 462.(a) 463.(c) 464.(a) 465.(c) 466.(a) 467.(x)* 468.(y)* 469.(b) 470.(b)

471.(c) 472.(a) 473.(b) 474.(d) 475.(d) 476.(a) 477.(a) 478.(c) 479.(b) 480.(c)

481.(b) 482.(b) 483.(b) 484.(b) 485.(b) 486.(a) 487.(a) 488.(d) 489.(a) 490.(d)

 x*  467: A– 4, B-5, E–2, F–3

 y*  468: A– 4, B-3, C–2, D–1
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 1. (a)  Scotch yoke is used to generate sine 
functions.

 2. (b)  The danger of breakage and vibration is 
maximum near critical speed.

 3. (d) zmin sin .

2

14 5
32

2

 4. (d)  Inversion of a mechanism is obtained by 
fixing different links in a kinematic chain.

 5. (c)

 6. (d) Logarithmic decrement,  ln
x

x
n

n 1

 
x

x
en

n 1



 7. (c) A–3, B–2, C–1, D–4

 8. (c) 500  50 sin 2   500  50 sin 

 sin 2  − sin   0

 2 sin  cos  − sin   0

 sin  (2 cos  − 1)  0

 Either sin   0, giving   0°, 180°, 360°

 or cos
1

2
, giving   60°, 300°

   0°, 60°, 180°, 300°, i.e. 4 times.

 9. (b)

10. (c)

11. (d) A–4, B–1, C–2, D–3

12. (d)

13. (d)

14. (b)

15. (c)

16. (c) A–2, B–3, C–4, D–1

17. (a) f cr  2v

18. (b) V
CD

AB
V V VC B

45

30

3

2

19. (b) A–2, B–4, C–1, D–2

20. (a)

21. (d) A–3, B–5, C–1, D–2

22. (c)

23. (d)

24. (c) Energy stored, E  I and I  R2

E

E

R

R
2

1

2

1

2 2
1

2

1

4

25. (b) K.E. of flywheel 
K E

K
e

s2

26. (a) For an isochronous governor, F  qr.

27. (d) For a stable governor, the controlling 
force must increase as the radius of rotation 
increases. Therefore, the controlling force line 
when produced must intersect the controlling 
force axis below the origin, i.e. line IV.

28. (c)

29. (a)

30. (c)

31. (c)

32. (b) 
l

l

I

I
1

2

2

1

As I
1
  I

2
, therefore l

1
 > l

2

 
1

2

Node

l1

l2

33. (a) 




n

n

n

k

m

k m

k m
2

1

2

2 2 1

4

1

2

2

( / )/( )

( / )

/N N

34. (c)

35. (a) For the system to vibrate,

 (ka2   wb) > 0

 or ka2   wb

 or b
ka

w

2

36. (d)

37. (a)

38. (c)

39. (d) A–4, B–2, C–3, D–1

Explanatory Notes
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40. (c)

41. (d)

42. (d)

43. (b)

44. (b)

45. (d) F  2P tan 

46. (b) 
1 

 AB  
2
  CD  

2
 (AB  30)

  5  AB  2 (AB  30)

  3AB  60

  AB  20 cm

47. (c) n  2, p  1, h  0

No link is fixed in the two-link system.

F  3n  − 2p  3  2 − 2  1  4

For momentum balance,

I I I I1 1 2 2 1 2 + 
2

   1

 
 

 


1 2
1 1 2 2

1 2

1 1
2

2 2
2

1 2
1 11

2

1

2

  I I

I I

I I I I
I I

kE ( ) ( ) 22 2

1 2

2

1 2
2

1
2

2 2
2

1 2 1 1 2

1

2

1

21



  

I I

I I I I I I I I( ) ( ) ( )( 

   

2
2

1 2
2

1
3

1
2

1
2

2 2
2

1 2
2

1
2

2
3

2
2

1

1

2
2

)
( )

(

I I

I I I I I I II I I I

I I I I I I

1
2

2 1
2

1 2
2

2
2

1
3

1
2

1 2
2

2
2

1
2

2 1
2

2 

  

)

(
        

22
3

2
2

1
2

2 1 2 1 2
2

1 2

1 2
2

1 2
2 1

2
2

2 2
1

1

2

  



I I I I
I I

I I
I I

)
( )

( ) 22
2

1 2
2

1
2

1
2

2 1
2

1 2
2

2
2

1 2
2

1 2 1
2

2 1 22 2I I I I I I I I I I

I

    

11 2

1 2
2 1 2

2
2 1

2
1 1

2
2 2

2
2 1 2 1 1 22

2 2
I

I I
I I I I I I

I

( )
     

11 2

1 2
2 1

2
1 2 2

2
1 2 1 2 1 2

1 2

2
2

2

I

I I
I I I I I I

I I

( )
( ) ( ) ( )

(

  

II I1 2

1 2
2

)
( ) 

48. (a) Loss of energy, 

 
kE 

1

2 1 1
2

2 1
2( )I I 

 

1

2 1 1
2

2 2
2( )I I 

49. (b) For a stable governor, F
c
  ar − b

 For an unstable governor, F
c
  ar  b

 b can be changed to −b by decreasing 
the spring stiffness.

50. (c)

51. (a) R
W

1 2
 or W  2R

1

 R
2
  2L  W  L  2R

1 
 L

 R
2
  R

1

52. (a)

53. (d) m N m N1 1
2

2 2
2( ) X

m1
2 23000 0 5 300. m X

 X  2  100  200
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54. (c) 

n

n

X

k

M

me

M

85 10

100
29 155

20

29 155
2 155

3

.

.
.

 rad/s

2

2

2 3

21

20 0 5

100

2 155 10

2 155 1

1 270 1

( )

. ( . )

( . )

. 00 4  m

55. (b) A–2, B–1, C–4, D–3

56. (c) 

cC  2  N s/mmk 2 1 0 7 10 52 923. .

57. (a) Force in spring 2  mg

 Force in spring 1
mgl

a

 Deflection of mass m, 
st
  deflection of 

spring 2  deflection of spring 1
l

a

mg

k

mgl

a

l

a k

mg
k

l

k a

2 1

2

2

1
2

1

1

 Natural frequency, f
g

n

st

1

2 

 

1

2

1

1 1

1

2

1

2

2

2

2
1

1 2
2

2
1 2

2

1 2

1







m
k

l

a k

k k a

m a k k l

k k

m k

( )

(
l

a
k

2

2

1 2/

 

or

 

f
k k

a

l

m k
a

l
k

Hzn

1

2

1 2

2

2

2

1



58. (c)

59. (a) Applying Dunkerly’s method,

1 1 1

1

100

1

200
1 25 10

89 44

2
1
2

2
2

2 2

4

f f f

f

n

n

.

. Hz or 5367 rpm

60. (b) 
 
















2

60

2 300

60
10

10

10

22

2 1

2

2 1

N

r
e

n

 rads/s

2 25.  mm

61. (b) When  1 90,
62. (d)

63. (b)

Operation Revolutions of

Arm, 
C

Gear A 
za 120

Gear B 
zb 45

1.  Arm C is 
fixed, 1 
revolu-
tions 
given to 
gear A, 
ccw

0 1 z

z
a

b

120

45

8

3

2.  Multiply 
by x

0 x 8

3

x

3. Add y y x  y 8

3

x
y
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x y

x
y

x
x x

y

0

8

3
100

8

3
100

300

11
27

3

11

27
3

11

or  

or  

,

rpm

64. (c)

65. (c)

66. (a)  The direction of the coriolis acceleration 
is such as to rotate the sliding velocity 
vector in the same sense as the angular 
velocity of the link.

67. (d)  Acceleration of piston P  2 ON
When N coincides with O, acceleration of 
piston is zero and velocity is maximum.

68. (b)

69. (a)

70. (d)

71. (c)

72. (d)

73. (d)
T T T

T T

A B C

D E

100 100 75 25

25 49 74

74 77 3 3 43 40

, ,

,

, ,

 

TT TF G40 73 33 33 36 3,

 Minimum torque occurs at F.

74. (a) For a stable governor, F ar – b

75. (b)  The rotor is statically balanced not  
dynamically balanced.

76. (c) fn

1

2
36

6

2
32







HZ

77. (b)

78. (b) For as


2 1
1

12
, TR TR

79. (c)  critical speed does not depend on eccen-
tricity.

80. (b)  



n n

n

k

m
ke

k k

m

N

1 2

2

2 2

2

, ,

81. (d)

82. (a)

83. (d)

84. (d)

85. (a)

86. (c)

87. (b)

88. (c) A– 4, B–1, C–2, D–3

89. (d) Overall speed ratio =
20

40

35

70

25

50

1

8

90. (a)

91. (d)

92. (a)

93. (a)

94. (d)

95. (a) A–2, B–4, C–1, D–3

96. (c)

97. (d) At resonance,  2 1 1 2  =or

98. (a)  For critical damping,   1 and ampli-
tude, x(t)  (A  Bt) exp (–

n
t) Thus, 

there are no oscillations.

99. (b) m kg c

c mk

c

c

c

c

4 9 16

2 2 4 16 16

9

16

, . / , /

. /

  N s m N m

N s m

k

100. (c)  The springs are in parallel, equivalent 
stiffness, k

e
  k

1
  k

2

f
k

m

k k

mn
e1

2

1

2
1 2

101. (c)



1346 Appendix 

103. (a)

104. (d) A–3, B–2, C–4, D–1

105. (b) For correct steering, 

cot cot 
a

b

106. (a) For a simple pendulum,

x l

x l
t

l

x l x

x x

sin

cos . cos

sin

,








  

d

d

At



2 2

0     0  

l

x

107. (a)

108. (a)

109. (c)

110. (a)

111. (d) A–3, B–4, C–2, D–1

112. (d) A–3, B–2, C–4, D–1

113. (d) A–2, B–3, C–4, D–1

114. (b)

115. (d) A–2, B–4, C–1, D–3

116. (d) Sensitivity of a governor 

N N

N N
1 2

1 22

 For an isochronous governor, N
1
  N

2

 Sensitivity  infinity.

117. (d) 
sr
  2

pd
 in the same direction

 2 30°  60° cw

118. (c) 

Dynamic force 

Couple 

Reaction at the bearings

W

g
e

W

g
e a





2

2

  = 
W

g
e

a

L
 2

119. (d) The equation of envelope is: Xe nt

120. (a) k n n

k
n

k

k k

1 1 2

2

1 2

8 10 5

1
16

N mm

N mm

and

/ , ,

, /

  

   are in paralllel.

ke 8 16 24 N mm/

121. (c) 
y Y t

y Y t Y t

F cy c

sin

cos sin
2

Damping force, YY t

F my mY t

mY

i

sin

sin

sin

2
2

2

Inertia force, 

(( )

:

:

t

C

D

damping force

inertia force

122. (c)

102. (d)

Operation Revolutions of

Arm, C Gear A, z
A
  200 Gear B, z

B
  50

1.  Arm C fixed, 1 revolu-
tion given to gear A, ccw

0 1 z

z
A

B

200

50

4

2. Multiply by x 0 x  –4x
3. Add y y x  y –4x  y

  x  y  0, as gear A is fixed

 For y  1, x  −1

  N
B
  −4x  y  −4x(–1)  1  5
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123. (d)

124. (b)

125. (d)

126. (c)

Operation Revolutions of

Arm 
C

Gear A  
z

A
  100

Gear B 
z

B
  20

1.  Arm C fixed, 
1 revolu-

tions given to 
gear A, ccw

0 1 z

z
A

B

100

20

5

2.  Multiply 
by x

0 x 5x

3. Add y y x  y 5x  y

 x  y  0 or x  y

 For y  3, x  3

 N
B
  5 ( 3)  3  18 rpm

127. (a)

128. (a) T I
G I

A a a
b b




2

129. (c)

130. (d)

131. (c)

132. (b)

133. (d)

134. (d)

135. (c)

136. (b)

137. (c)

138. (b)

139. (a)  The velocity ratio will be unity when 
the driving and driven shafts make equal 
angles with the intermediate shaft and 
forks of intermediate shaft should be in 
the same plane. This happens in case (a).

140. (b) Height of Watt’s governor 
g

 2

141. (d) A–4, B–3, C–2, D–1

142. (c)

143. (d)
144. (a)
145. (b)
146. (a)
147. (b) A–4, B–1, C–2, D–3
148. (b)

149. (c)  



c n

c

EIg

W l

EI

ml

48 48
3 3

 reduces if m increases

150. (d)
151. (d)
152. (c) Let k  initial spring rate.

Now k
n


1

When the spring is cut into two parts, 
then stiffness of each part becomes 2k. 
When these two parts are put in parallel, 
k

e
  4k.

153. (d) A–1, B–3, C–4, D–2
154. (c)
155. (b) 

v DAA

2 100

60
30 314 cm s/

156. (c)
157. (b)
158. (c)
159. (b) 

14 5 48 28 8

28 8 10

48
6

. , , .

.

z d

m
d

z

cm

Module, mm

Circular pittch, mm

Addendum, mm

Diametral pitch, 

p
d

z
m

h m

P

a

18 84

6

.

1 1

6m

160. (b)
161. (a)
162. (d)
163. (a)
164. (a)

165. (b)
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166. (d)

167. (b)

168. (d) Secondary force, F
n

r

ls 
1

 If n increases, F
s
 decreases.

169. (a)

170. (a)

171. (a)

172. (d)  Number of nodes  Number of rotors–1

173. (b) Stiffness of cantilever with end load,

k
EI

L

kg

w wn

n

n

3 1

2

3

2

1

,

174. (b)

 

N

N

z z z

z z z

N

F

A

A C E

B D F

F

20 25 26

50 75 65

4

75

975
4

75
52 rpm

175. (c)
176. (c) n  10, p  12, h  1
 F  3(n − 1) – 2p – h 
   3 (10 − 1) – 2  12 – 1
   27 – 24 – 1  2
177. (d)

178. (b) v r v
v

v
v

A B, ,
2 2

179. (a)
180. (d)
181. (a) B

2 
 50  150  9  50  50

  B
2
  3 kg

182. (b) 
m c k

c mk

c

c

c

c

3 9 27

2 2 3 27 18

9

18
0

kg N s m N m

N s m

, . / , /

. /

.

    

55

183. (b) 

k
k k

k ke
1 2

1 2

10 5

10 5

50

15
3 3. /N mm

184. (c)

185. (d)

186. (a)

187. (d)

188. (b)

189. (a) 

Tm 0 5 1 2 25 0 8 0 5
100

4
580

. . .

.




N m

190. (d) 

Frequency of oscillations  

Angular velocity of p

60

20
3 cpm

rrecession

Amplitude of pitching

2

20 30

300
6

180

2

 





rad s/


30

rad

191. (c)

192. (b) A–3, B–2, C–1, D–4

193. (c) A–2, B–3, C–4, D–1

194. (c) A–5, B–3, C–2, D–1

195. (c)

196. (d) 

 
X f T1 25 5

5

2

1

5 6
. ; , ; ,

197. (b)

198. (c) A–3, B–4, C–1, D–4

199. (a)

200. (d)

201. (c)

202. (d) For maximum speed, 

 

b

a

1

cos

b

500

19 5
531

cos . 
 rpm

203. (c)
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204. (a) J
J J

Jeq i2 210
0 01.  

205. (d) A–3, B–2, C–4, D–1

206. (a)

207. (c)

208. (a) A–2, B–5, C–1, D–3

209. (c) 


st n

st

mgL

EI

g EI

mL

3

348

48
,  rad/s

210. (a) A–1, B–2, C–4, D–3

211. (b)

212. (a)

213. (a)

214. (d)

215. (b)

216. (a)

217. (d)

218. (c)

219. (d) A–4, B–2, C–1, D–3

220. (a)

221. (a)

 

F n p h

n n

p

n h

F

3 1 2

3 2

1

2
3 2 2 3 6

5 0

3 5 1 2 6

2 3

( )

,

( )

,

( )

 

00

222. (b) A–3, B–2, C–1, D–4.

223. (c) A–2, B–3, C–1, D–4.

224. (c) O
1
O

2
  10 cm, O

1
C  20 cm, O

2
A  5 cm

cos

2

5

10

1

2
2

1 2

O A

O O




2

60

120  

O2

C

A

O1

/2

Quick return ratio  

360 360 120

120

240

120
2




225. (c) Energy stored in a flywheel rim  K 2  r2

 where K  radius of gyration.

 

E

E

r

r
2

1

2

2

2 1

4

( / )

226. (c)  For an isochronous governor, F  ar, i.e 
F v’s r curve passes through the origin.

227. (b) Radius of the friction circle  μr

 where r  journal radius

228. (b) In a collar bearing, 

 
p

n
T nf  and    

1

 where n  number of collars.

 Therefore, pressure will be halved and 
friction torque doubled.

229. (b) Lift of sleeve, h
b

a
r r( )1 2

 

10

20
20 14 3( )  cm

230. (d) Equation of motion is:

l

mg

 

ml mgl2

3 2
0 

 or  
3

2
0

g

l

  





n

n

g

l

f
g

l

3

2

1

2

3

2
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231. (c) J
1
l
1
  J

2
l
2

l
J l

J

J l

J J2
1 1

2

1

1 2

100 110

100 10
100 cm

232. (a) 

r
e


2

2

2

21

190 0 9

1 0 9
810

( . )

( . )
 microns.

233. (b) m
mb

a bA

234. (c)

235. (a)

236. (c)

237. (d) 
v

v

r

r
A

B

A

B

80

140

4

7

  

r r

r r

r

r

r

B A

A A

A

A

B

300

7 4 300

3 1200

400

700

( )

 mm

 mm

238. (b) v r
np sin

sin 2

2

 For v
p
 to be maximum, neglecting sec-

ond term,

d

d

v
rp cos

cos

0

0

90

or

239. (c)

240. (a) T  I

I kg.m
1

2

1

2
1 0 2 0 022 2 2mr . .

 T  (F
1
 – F

2
) r  (10 – 5)  0.2  1 N.m


T

I

1

0 02
50 2

.
rad/s

241. (c) A–4, B–2, C–1, D–3

242. (c)

243. (d)

 

E I

I

I

f

1

2
1

2

2 2

2

max min

max min max min

max
mean

min

mean

mean sKI 2

244. (c)

245. (c)

246. (b) R
A
  R

B
  1500 N

 Fc  mr 2

  30  0.01   2

  0.3  2

 R
A
  R

B
  F

c
  300

 0.3  2  300

   100 rad/s

RA

A B

RB

Fc = mr 2

r

247. (a) Torque, 

T F r

F F
T

r

p

n p

sin

cos

tan
sin

sin

sin

. sin

 





 

40 30

0 1 60 30
200 N

 Coulomb friction force  F
n
  0.08   

200  16 N

C

O

Fn

Fp

P

= 60˚ = 30˚

248. (b)
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249. (a)

 

C m z z m z z

z

z

p p q r r s

s

s

1

2

1

2

4 20 40 5 25

4 60

5
25 23

250. (d)

251. (b)

 

2

2 2
2

2

2 20 100

60

d d d

d d d

z z z

z

z

p s A

p s A

P s A

s

s

or

252. (a)

253. (d)

254. (c) 
32

  
2
 – 

3
  10 – 6  4 rad/s

255. (a)

 CD  l  400 mm

 AB  s  200 mm

 l  s  400  200  600 mm

 p  q  300  350  650 mm

 
l s p q 

B C

D
A 350

200

300

400

 Grashof’s criteria is satisfied,

 To obtain double crank mechanism, the 
shortest link AB is to be fixed.

256. (d) x  r (1 – cos )  r (1 – cos t)
x r t sin

 It is a sine curve as depicted by (d)

257. (c)

258. (b)

259. (b)

260. (a)

261. (a)

262. (c)

263. (a) m  0.5 kg, K
G
  5 cm, K

e
  6 cm,

  2  104 rad/s2

 Correction couple, T
c

m e GK K2 2 

 0.5 (36 – 25)  10–4  2  104

 11 Nm

264. (c)

265. (b)  Primary unbalance force, F
p
  cos , and 

it is maximum when   0° and 180°.

266. (a)

267. (a) A–2, B–3, C–4, D–1

268. (b) N
A
  100 rpm, cw ; NB  250 rpm, c ;

 T
A
  50 kN.m, cw ; T

C
  0

 T
A
N

A
  T

B
 N

B
  T

C
 N

C
  0

 50  100  T
B
  250  0

TB –
50 100

250
20 kN.B

T
C
  – T

A
 – T

B
  – 50 – (–20)  –30 kN.m

 l.e 30 kN.m ccw

269. (d)

270. (b)

271. (a)

272. (a)

273. (a) 

 

1 1 1

1

1

1 1

1 2 3

1 2 3

k k k k

k

m m

k

m
k k k

e

n
e

e



11 2/

rad/s

274. (b)

275. (a)

276. (c)
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277. (a) 

 

C
m

z z

z

z

z

z

2

35
1

2
60

10

2400 2400 10

60
400

1 2

2

2

1
2

1

N rpm

Z44 =

mm

N z

N

m
z z

m

m

3 3

4

3 4

400 10

100
40

35
2 2

10 40

70

50
1 2.

278. (c) 

1

2

1

2

1 30 20
180

60

500 1

2 2

2 2

I T

T

T

  



max min max

max

max

880

60
477 46


. Nm

279. (b) 

n
l

r
N

f r
np

200

50
4

2

60

2 900

60
94 28

22

. /

cos
cos

rad s

94 28 50 10 1
1

4
0

555 16

2 3

2

.

.

for

m/s

Shaking force  Rf
p
  1.2  555.16  

 666 N

280. (c)

281. (c)

282. (a)

283. (c)

284. (c)

285. (a)  For the configuration shown, linear 
velocity of slotted lever  0. Hence, 
angular velocity is also zero.

 Coriolis acceleration, f cr  2v   0

286. (b)

287. (c)

288. (d)

289. (b)

290. (b) A–3, B–4, C–2, D–1

291. (c)

292. (c)

293. (d) N
n n( )1

2

6 5

2
15

294. (c)

295. (d)

296. (d)

297. (b)

298. (b)

299. (a)

300. (c)

301. (b)

302. (c)
 

p
p

x
t

tan

303. (b)

 









c n
cos

cos0

90or

304. (c)  The speed of flywheel increases due 
to surplus energy in the positive loop. 
Thus, speed ratio will be greater than 
unity.

305. (a)

306. (c)

307. (d)

308. (c)

309. (a)

310. (a)

311. (d)

312. (d) Let w  weight of bar per unit length.
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x

dx
l

 v  velocity of free end of bar

 l  length of bar

 Velocity of the element dx 
vx

l

 

K.E. of element d

d

x
wdx

g

vx

l

wv

gl
x x

1

2

2

2

2
2

 Total K.E. of bar 

 

wv

gl
x dx

wl v

go

e2

2
2

2

2 3 2

313. (a)

314. (a)

 

J r

x r

x r

0
21

2
m



  

x
r

m

O

k

 Equation of motion:

 

or

 

J mx r k x r

mr mr kr

mr k r

m

0

2 2 2

2 2

0

1

2
0

3

2
0

3

2



  

 

 



k

k
n

0

2

3m
rad/s

315. (b)

316. (b)

317. (a) Thread thickness, t
p

0 2

 Number of threads, n

t

p

Length of nut

pitch

 Shearing area, As dt n
dt

 =


0 2

 Average shear stress 
F

A

F

dts

2



318. (b) z
A
  z

C
, z

B
  z

D
, N

A
  800 rpm, 

N
D
  200 rpm

 

N

N

N

N

N
N

N

A

B

C

D

B
A

D

800

200
2

2

800

2
400

2 2 200 400

rpm

rpmNC

319. (d)

320. (d)

321. (b) Angular velocity of connecting rod,


 









c

c

n

n

n

cos

sin

, .

/

max

2 2 1 2

5
2 3000

60
314 16 rad/s

314 16

5
62 83

60

.
. rad/s

rad/s

322. (a)

323. (c)

324. (b)

325. (c)

326. (d)

327. (d) A–2, B–1, C–4, D–3

328. (c)

329. (b) y
0
  3 cm,   5 m, m  900 kg,

 k  81  104 N/m, v
72 10

3600
20

3

m/s

 Excitation frequency of road on wheel,

 
f

v 20

5
4 Hz
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330. (c)

331. (b)

332. (c) n N
n n

4
1

2

4 3

2
6,

333. (b)

334. (c)

335. (a) 
1
  

2
  180°, 

1
  

2

336. (a)

337. (d) A–4, B–3, C–1, D–2

338. (a)

339. (d)

340. (b)

 

 




n n

n

n

k

m

k

m1 2

2

1

4

4 2

,

341. (a)

 

I l I l

l

l

I

I

l

l l

I

I I

l
I L

I I

a a b b

a

b

b

a

a

a b

b

a b

a
b

a b

node

a

L

Aa

Ia

Ab

Ib

b

342. (a)

343. (b)

344.

345. (c)

346. (d) 
v

v

EC

EB

v

c

b

c 0 5
0 1

0 25
0 2.

.

.
. m/s

347. (d)

348. (b)

349. (d)  Angular acceleration of connecting 
rod,


 





c

c

n

n

n
l

r

2 2

2 2 3 2

1

1 0 0

sin

sin

. ,

/

For 

350. (a) 
1

2
4

8 8 10 80

T T

T T

p m

p m

 

Nm

351. (d) h
g

N


2 2

1

352. (a)

353. (a)

354. (a)

355. (a)

356. (b)TR > 1 if 2  

357. (a)

358. (c)

359. (b)

360. (c) L  5, J  5

J
3

2
2

L

LHS  5

 
RHS

3 5

2
2 5 5.

LHS  RHS

 The chain is unconstrained

361. (b)

362. (b)

363. (a)

364. (b)

 

z

z

N

N

z

1

2

2

1

2

90 300

1500
18

365. (d)

366. (c)

367. (a)

368. (b)
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369. (d) m
1
 r

1
  10  5  50 kg.cm

m
2
 r

2
  2.5  20  50 kg.cm

 Therefore, the rotor system is dynami-
cally balanced.

370. (c)  For a critically damped system, the 
damping factor is equal to one.

371. (b)

372. (d)

373. (c)

374. (b) A–4, B–2, C–3

375. (b)

376. (b)

377. (a)

378. (c)

 

1 1

2

1

2

3

2

3

2

S S S

S
S

S
S

e

e

379. (b)

380. (d)

381. (b)
 

z

z
D

A

60

20
3

 Gears C and D and B and C cannot mesh 
as they have different pressure angles. Only 
gears A and D can mesh as 

A
  

D
 and  

m
A
  m

D
.

382. (a) zmin sin

2

20
18

2

383. (a)

384. (d) N
max

 – N
min

  0.1 Nm

K
N N

Ns
m

max min

 As N
m
 increases, K

S
 decreases.

385. (d) 

386. (c)

 

f
v

CD

CD
v

f

cd
n cd

cd

cd
n

2

2 210

5
20 cm

387. (c) 

f vcr 2 2 10
2 60

60
40 2 cm/s

388. (b)

389. (b) A–2, B–1, C–3, D–4

390. (a)

391. (d)

392. (a)

393. (b)

394. (c)

395. (d)

396. (b) Lead, p
z
  2  pitch  2  11  22 mm

 d
g
  84 mm

1

2

84

22
12

dg

pz

397. (b)

398. (c)

399. (c)

400. (d)

401. (d)

402. (b)

403. (d)

404. (b) c mkc 2 2 5 20 20 N.s/m

405. (d)

406. (d)

Operation Revolutions of

Arm 
C

Gear A 
z

A
  40

Gear B 
 z

B
  20

1.  Arm C fixed, 
1 revolutions 

to geal A, ccw

0 1 40

20
2

2. Multiply by x 0 x –2x

3. Add y y x  y –2x  y

 x  y  0

 x  –y

 y  3, x  –3

 N
B
  –2x  y  –2 (–3)  3  9 revolutions

407. (c)

408. (a)
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409. (c) 

v v vba a b
2 2 2 240 30 50 m/s

410. (b)

411. (c)

412. (b)

413. (d)  n J

1

414. (d)

415. (b)

416. (b)
 

N
n n( )1

2

8 7

2
28

417. (a)

M 
kg

r 
m

Mr 
kg.m

 
deg

H  Mr 
cos  

Kg.m

V  Mr 
sin  

kg.m

5 2 10 0 10 0

10 1 10 180° –10 0

3 1 3 45° 2.12 2.12

 H  2.12 kg.m, v  2.12 kg.m

R 2 12 2 12 3
2 2

. .  kg.m

 Let B   mass required for balancing at 2 m 
radius.

 Then 2B  3

 B  1.5 kg

 
tan

.

.
, 

2 12

2 12
1 45

 Angle of balance mass from 5 kg mass

  180  45  225°

418. (c)

419. (a)

 

  









d n 1

20 40 1

1 0 25

0 75

3

2

2

2

2

2

.

.

420. (c) l  7cm, s  3, p  s, q  6

 L  s  7  3  10

 P  q  5  6  11

 (l  s)  (p q)

 Grashof’s criteria is satisfied.

 The adjacent link OC to the short-
est link OA is fixed. Therefore, it is a 
crank–rocker mechanism.

421. (b) Z
g
  30, d

g
  210 mm,

 Axiel pitch of worm  circular pitch of 
worm gear

 

 dg

Zg

210

30
22 mm

422. (b)

Operation Revolutions of

Arm A Sungear S z
s
  48 Planet P z

p
  24 Angular gear I

1.  Arm fixed, 1 
revolution to s, 
ccw

0 1 z

z
s

p

z

z
s

I

2. Multiply by x 0 x x

z
s

p

z x

z
s

I

z

3. Add y y x y x

z
ys

p

z –xz
s
/z

I
 y
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 Sun gear is fixed, x  y  0, x  –y

 2z
p 

 z
s
  z

I

 z 
I
  2  24  48  96

     

N x
z

z
y y

z

z

y
y

N

N

I
s

I

s

I

I

A

1

48

96
1

3

2

3

2
1..5

423. (d) T
1
 

1
  T

2
 

2
  0

 P  100 kW, 
1
  100 rad/s

 

P
T

T

T

1 1
3 1

3

2
1 1

2

10

100 10

100
1000

10

1000

, Nm

 rad/s

T

2

100

10
104 Nm

 Holding torque, T
3
  – (T

1
  T

2
) 

  – (1000  104)

  –11 kNm

424. (b) TR 1 0 2at  and  
425. (a)

426. (a) A–1, B–2, C–3, D–4

427. (a)

428. (d)

429. (b)

430. (a)

431. (b)

 

System 

System 

A

B

: ,

:

k k
k

m

k

m

T
m

k k

k
k k

k

e n
e

A
n

e

2
2

2
2

2

1

2

1 2

11 2

2

2 2

2

2 1

2
2

k

k

k

k

T
k

T

T k k

B

B

A

432. (b)

433. (b) I
2
  G 2 I

2

l1

N1

N2 = GN1

l2

I2

I1

434. (a) I I

AC
I AB

I I

I

I

A B

B

A B

B

B

4

1

5
0 2. m

A
IA IB

C
B

1 m

A

B

node

435. (d)

436. (b)

437. (a)

438. (b)

439. (b)

440. (b)

441. (a)

442. (c)

443. (c)

444. (b)

445. (a) n 8 6 102 2  rad/s

446. (c)

447. (c)

448. (b)

449. (b)

450. (c)
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451. (b)

452. (c)

453. (d)

454. (c) n  5, p  5

  F  3 (n – 1) – 2p

   3  4 –2  5  2

455. (c)

456. (b)

Operation Revolutions of

Arm A Sun gear S, 20 Planet P, 30 Internal gear I, 80

1.  Arm fixed, 1 revo-
lution to S, ccw

0 1 20

30

2

3

20

80

1

4

2. Multiply by x 0 x 2

3
x

1

4
x

3. Add y y x y 2

3
x y

1

4
x y

457. (d)

458. (c) and (d)

459. (a)
 v  v

c
 cos [90° – (   )]

 v
p
  v cos 

  v
c
 cos [90° – (   )] cos 

P

C

O

v p

v c
v[90 – ( + )]

( + )

460.  M
B
  0 gives

 (b) R
A
  2a  W  a  Pb

R
W Pb

aA 2 2

461. (a) P  (T
1
 – T

2
) v

 1. 
T

T
e e1

2

0 3
180

150
2 193


.

.

  T
2
  0.456 T

1

  P  T
1
 (1 – 0.456) v  0.544 T

1
 v

 
2. 

T

T
e1

2

0 3
180

210
3 003

.
.



  T
2
  0.333 T

1

 Internal gear is held stationary.

 

1

4
0x y

 or – x  4y  0 (1)

  x  y  –100 (2)

 Adding Eqs. (1) and (2),

  5y  –100

  y  –20

 or N
A
  20 rpm cw
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 P  T
1
 (1 – 0.333) v  0.667 T

1 
v

 Improvement in power capacity of belt

462. (a) 

 
0 667 0 544

0 544
100 22 6

. .

.
. %

   10 rad/s

 Velocity    slope of displacement curve

 

d

d
 m/s

s
10 1 5 15.

 Acceleration  2  slope of velocity curve

   100  (–0.05)  – 5 m/s

463. (c)  Maximum area of AOB will occur 
when

B

l

A

r

O

75
=15

 OAB  90°.

 

tan

cot .


r

l
l

r
or 15 3 732

464. (a) T
1
 – T

2
  3000 N, v  15 m/s

 Power transmitted 
( )T T v1 2

310

 

3000 15

10
45

3
kW

465. (c) x 3 cos
 y  sin 

 sin2   cos2   1

 

y
x

x y

2
2

2 2

3
1

3 3or

 

At

d

d

d

d





4

3
1

2

3

2

4

1

2

3 2 6 02 2

,

sin

x

y

x
x y x y

y

x

Slope of tangent,

d

d

y

x

x

y

x

y

2

6 3

3

2

2

3

1

3

Slope of normal
  

d

d

x

y
3

 



3

466. (a) E If

1

2

1936
1

2
9 8

2
30

60
3 1

1
2

2
2

1 2 1 2

1 2

 ( )

.

.

 

   

   44 rad/s

 
1
  

2
  2 

m

 1936  9.8  3.14  co
m

 
m
  62.914 rad/s

 

2

60
62 914

Nm .

 N
m
  600 rpm

467. A–4, B–5, E–2, F–3

468. A–4, B–3, C–2, D–1

469. (b) At extreme positions,

O

B

A

O

/2

 

cos
OA

OO2

2

4

1

2

2
60

   120°

   360° – 120°  240°

 
Ratio

240

120
2
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470. (b) z
B
  z

C
 

Operation Angular speed of

Arm A Gear B Gear C

1.  Arm A fixed, 
1 revolution 

to gear B, ccw

0 1 –1

2. Multiply by x 0 x –x

3. Add y y x  y –x  y

 x  y  0, x  –y, y  4 rad/s, x  –4 rad/s

 
c
  –(–4)  4  8 rad/s

471. (c)

472. (a)  Longest link should be fixed to obtain 
double crank mechanism.

473. (b) 

E I

MK

MK ks N

f

m m

1

2
1

2

2

60

1
2

2
2

2
1 2 1 2

2 2

2

22 2

2 2

2

2

3

2
2

1

2

1

2

1

2

1

8

2 10
2

60
1200

mk ks

K r m

M
1

8
0 02.

 M  50.66 51 kg

474. (d) 
T

T
e1

2



 3  e μ

 μ  ln 3  1.0986

 μ  0.35

475. (d)

 

N

T N T N

T

g

g g p p

g

1200
40

120
400

20 1200

400
60

 rpm

    

   N m

476. (a)

477. (a) 

f vcr 2 2 12
2 120

60
302 2 m/s

478. (c)

479. (b) P–2, Q–3, R–4, S–1

480. (c) P–2, Q–3, R–1

481. (b) l AB 240 100 2602 2  mm
 s  O

2
A  60 mm, p  240 mm, q  160 mm

 l  s  260  60  320 mm

 p  q  240  160  400 mm

 (l  s)  (p  q)

 Hence Grashof’s criteria is satisfied. The 
link O

2
O

4
 adjacent to the shortest link 

O
2
A is fixed, therefore, it is a crank–rocker 

mechanism.

482. (b) v
a
  v

b

  8  60  
b
  160

  
b
  3 rad/s

483. (b) tan .
100

240
0 4167

    22.62°

  F
AB

  30 N

  F
1
  F

AB
 cos 

   30 cos 22.62°  27.7 N

  F
2
  F

AB
 sin 

   30 sin 22.62°  11.54 N

  
R F F1

2
2
2 30 N

 

A
240 mm

100 mmF2

F1

FAB

B

F2

F1

O2
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484. (b)
 

T

T
e e1

2

0 5
3

2


.

  10.55

 M
o
 gives:

 100  2 – T
2
  1  0

 T
2
  200 N

 T
1
  10.55  200  2110 N

 

T1

T2

0.
2

m

100 N

O A
B

1 m 1 m

485. (b) Torque  (T
1
 – T

2
) r

   (2110 – 200)  0.2

   382 Nm

486. (a) P  5 kw, N  2000 rpm, μ  0.25

 r
1
  25mm, p  2 MPa

P
NT

T

p
F

r r

F r

2

60 10

5 60 10

2 2000
23 873

1

3

3

2
2

1
2

. N.m

22
2 2

2
2

2
3

1
3

2
2

1
2

3

25 625

2

3

23 873 10

r N

T F
r r

r r

.
22

3
0 25 625

25

625

45594 25

6

2
2 2

3 3

2
2

2
3 3

2
3

. r
r

r

r

r

 

11219

39 42r . mm

487. (a)   20°, z
1
  19, z

2
  37, m  5 mm,

  d
1
  mz

1
  5  19  95 mm

 d
2
  mz

2
  5  37  185 mm

   
C d d

1

2

1

2
95 185 1401 2  mm

488. (d) P–2, Q–6, R–5, S–1





LAPLACE  
TRANSFORMS

A-4

The Laplace transform F(s) of a function f(t) is defined as follows:

L f t f t e dtst[ ( )] ( )
0

where ‘s’ is a complex variable called the Laplace operator and is equal to j s j . e st is 
called the kernel of the Laplace transformation.
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5. Sinusoidal input
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6. Derivatives
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7. Inverse Laplace Transform
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INDEX
A
Acceleration, 145

absolute, 149
angular, 146 
centre, 149 
coriolis, 162 
diagrams, 150
image, 148
normal, 147
tangential, 146
total, 147

Acceleration diagrams, 150
crank and slotted lever 
mechanism, 165
four-bar mechanism, 150
four-bar with ternary link, 151
link sliding in a swiveling pin,168
shaper mechanism, 177
slider–crank mechanism, 155
Whitworth mechanism, 192

Accurate straight line mechanisms, 211
Hart mechanism, 212
Peaucellier mechanism, 211
Scott–Russel mechanism, 214

Analytical methods for cam, 447
circular arc cam with flat-faced follower, 453
circular arc cam with roller follower, 458
tangent cam with roller follower, 447

Anti-friction bearings, 277
Approximate straight line mechanism, 215

Grasshopper mechanism, 215
Robert’s mechanism, 219
Tchebicheff mechanism, 217
Watt mechanism, 215

Arnold–Kennedy’s theorem, 113
Automatic control, 1149

block diagrams, 1151
controllers, 1197
definitions, 1149
equivalence of transfer functions, 1195
first order systems, 1158, 1186, 1187
frequency response, 1190
second order systems, 1166, 1187, 1189, 1190
system modeling, 1153
system response, 1155
test signals, 1157
torsional system, 1164, 1174, 1193
transducers, 1150
transfer function method, 1185, 1193
transient response, 1156

Automobile steering gears, 236
Ackermann, 232
Davis, 230
fundamental equation, 228–229

Axis of precession, 821
Axis of spin, 821

B
Balancing, 694–721

analytical method, 703–706
balancing machines, 804
coupled locomotives, 722–726
direct and reverse cranks, 739–740
field balancing, 808–810
four cylinder in-line engine, 735–736
hammer blow, 714
locomotives of, 714–715
many masses in different planes, 698–700
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many masses in same plane, 696–698
multi-cylinder in-line engines, 730–732
partial primary balance, 711–712
radial engines, 739–740
reciprocating masses, 709–710
rotors of, 802–803
single rotating mass, 694–696
swaying couple, 715
tractive effort, 714
two cylinder in-line engine, 734–735
uncoupled-locomotives, 712–714
V-engines, 742–745

Beam engine, 31
Belt drive, 297–298

angle of arc of contact, 301
belt creep, 306
centrifugal tension, 303
compound belt drive, 307–308
cone pulleys, 306
crowning of pulley, 306
effect of slip, 298–299
flat belt drive, 297–307
Initial belt tension, 304–305
law of belting, 299
length of cross belt, 300
length of open belt, 299
maximum power transmitted, 304
power transmitted, 303
ratio of belt tensions, 301–303
V-belt drive, 312–314

Bevel gears, 935
Brakes, 343–361

band and block brake, 344
band brake, 347
double shoe brake, 346–347
internal expanding shoe brake, 349–351
pivoted shoe brake, 345
self-energizing, 345
self-locking, 345
shoe brake, 344–347

Braking of a vehicle, 351–353

C
Cams, 395–399

analytical methods for, 447
base circle, 400
cam angle, 401
classification of, 396–399
follower motions, 402–414
followers for, 399–400
nomenclature, 400–402
pressure angle, 466–468
size of, 471
undercutting, 464

Cam profile, 414
flat-faced follower, 400
offset knife-edge follower, 417–418
offset roller follower, 420–423
radial knife-edge follower, 414–417
radial roller follower, 418–420
swinging flat-faced follower, 434–444
swinging roller follower, 433–434
translations flat-faced follower, 427

Centrodes, 111
Chain drive, 314

chain length, 315
chain pitch, 314–315

Clutches, 361–365
cone clutch, 363–365
multi-plate clutch, 362–363
single-plate clutch, 361–362

Coefficient of fluctuation 
of energy, 575
of speed, 575

Complex mechanisms, 134–135
high degree complexity, 135
low degree complexity, 134

Compound belt drive,307–308
Compound pendulum, 602–603
Cone pulley, 306
Conical pivot bearing, 272–274
Constrained motion, 5

completely, 5
incompletely, 5
partially, 5

Coriolis acceleration, 162–163
Coupled locomotive, 722–730
Coupled wheels, 31
Crank effort, 565–567
Crank and slotted lever, 33–34
Crowning of pulley, 306

D
Degrees of freedom, 13–16
Direct and reverse cranks. 739
Donkey pump, 37
Double Hooke’s joint, 241–244
Double slider–crank chain, 36–39

donkey pump, 37
elliptical trammel, 38
inversions of, 37–39
Oldham’s coupling, 37–38
Scotch yoke, 39

Drag mechanism, 43
Dynamic force analysis, 661–677

D’Alembert’s principle, 661–662
equivalent offset inertia force, 662–663
four-bar mechanism for, 663–663–666
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shaper mechanism, 677–679
slider–crank mechanism, 667–668

Dynamometers, 367
absorption type, 367
epicyclic train, 369
flash light, 371
prony brake, 367–368
rope brake, 368–369
torsion, 370–371
transmission type, 369–372

E
Elliptical trammel, 38
Engine pressure indicators, 221–226

Crosby indicator, 222
Dobbie–Mclnnes indicator, 225–226
Richard indicator, 224
simplex indicator, 222
Thomson indicator, 224

Epicyclic gears, 961
Equivalent dynamical system, 599
Equivalent mechanism, 11

F
Film friction, 278
Flat belt, 297

cross belt length, 300–301
open belt length, 299–300

Flat collar bearing, 275–276
Flat pivot bearing, 270–272
Fluctuation of energy, 574–575

coefficient of, 575
Flywheel, 576–580

for punching press, 578–580
weight of, 577

Follower motions, 402–414
cycloidal motion, 411–414
parabolic motion, 408–411
simple harmonic, 402–405
uniform acceleration and deceleration, 405–407
uniform velocity, 407–408

Force analysis of a sliding body, 262–264
body resting on horizontal plane, 262–263
body resting on inclined plane, 264–265

Forces in mechanisms, 62
Four-bar chain, 16

inversions of, 30–32
Friction, 259–262

angle of, 261–262
coefficient of, 261
cone of, 262
laws of, 260
types of, 260

Friction in bearings, 270–276
conical pivot, 272–273
flat collar, 275–276
flat pivot, 270–272
truncated conical pivot, 274–275

Friction circle, 277

G
Gears, 877

arc of contact, 881
backlash, 880
centre distance variation, 907–908
classification, 879
conjugate action, 882
fundamental law, 881–882
interference and undercutting, 899–900
internal, 912–913
involute, 883
involute function, 886–887
involutometry, 887–888
minimum number of teeth, 901–903
module, 880
path of contact, 880
pressure angle, 880
sliding velocity, 883
standardization, 907
terminology, 879–881
tooth action, 889–891
tooth forms, 883–885
velocity ratio, 882

Gear trains, 959
bevel epicyclics, 966–967
compound, 960
compound epicyclics, 965
holding torque, 966
planetary, 961
reverted, 961
simple, 959–960
speed ratio, 962–960
sun and planet, 963–965
two inputs, 965
types of, 959–962

Geneva wheel, 219
Gnome engine, 33
Governors, 475

centrifugal, 476
controlling force of, 493–495
effort of, 491–493
gravity and spring controlled, 485
gravity loaded, 479
Hartnell, 482–484
Hartung, 488
hunting of, 491
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inertia, 489–490
insensitiveness of, 495–497
isochronism of, 491
Pickering, 488
Porter, 479–480
power of, 491
Proell, 481
quality of, 493
sensitiveness of, 490
stability of, 490
terminology, 476
types of, 475
Watt governor, 476
Wilson–Hartnell, 485–487

Grashofs law, 25–27
Grasshopper mechanism, 215
Gruebler’s criterion, 16
Gyroscope, 821
Gyroscopic couple, 822–824
Gyroscopic motion

couple, 822–824
effect on aeroplane, 827–828
effect on bearings, 825–826
effect on naval ship, 829
four-wheeler taking a turn, 837–840
fundamentals, 821–822
grinding mill, 858–859
inclined disc on shaft, 855–856
precessional motion, 819–821
ship stabilization, 831
thumb rule, 822
two-wheeler taking a turn, 850–852

H
Hammer blow, 714
Hart mechanism, 212
Helical gears, 923–931

angle relationships, 927–928
crossed gears, 931
force analysis, 929–930
parallel gears, 930
terminology, 925–927
virtual number of teeth, 928–929

Hooke’s joint, 236
double, 241–242

Hydraulic riveter, 77

I
Imaginary crank, 731
Inclined plane, 264
Inertia force analysis, 558

graphical method, 561–562

of mechanisms, 661
of reciprocating engine, 558–560

Instantaneous centre method, 111
angular velocity determination, 115
circle diagram, 115–117
location of centres, 113
method of locating centres, 114–115
number of centres, 112
sewing machine needle mechanism, 126
toggle mechanism, 129
types of centres, 112
Whitworth mechanism, 127
wrapping mechanism, 125

Intermittent motion mechanisms, 219
Geneva wheel, 219
ratchet mechanism, 219

Inversions of four-bar chain, 30–32
beam engine, 31
coupled wheel, 31
Watt’s indicator, 31
single slider–crank, 32

Inversions of single slider–crank chain, 32–36
pendulum pump, 32
oscillating cylinder engine, 33
Gnome engine, 33
crank and slotted lever, 33
Whitworth mechanism, 34
Toggle mechanism, 35–36

Inversions of double slider–crank, 37–39
donkey pump, 37
Oldham’s coupling, 37–38
elliptical trammel, 38
Scotch yoke, 39

Involute gears,
comparison with cycloid, 885
construction of, 886
effect of centre distance variation, 907–908
interference, 899–900
minimum number of teeth, 901–905
profile, 883–884
rack, 904–905
undercutting, 899–901

K
Kennedy’s theorem, 113–114
Kinematic chain, 6

constrained, 6
statically indeterminate, 15
locked, 6
unconstrained, 6

Kinematic joint, 2
binary, 2
quaternary, 2
ternary, 2
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Kinematic pairs
closed, 5
higher, 5
lower, 4
rolling, 3
screw, 4
sliding, 3
spherical, 4
turning, 3–4
unclosed, 5

Kinematic synthesis, 1023
Chebyshev’s precision points, 1037
dead centres, 1026–1027
dimensional synthesis, 1028
errors, 1036
Freudenstein’s equation, 1039–1040, 1052–1053
least square technique, 1055–1056
limit positions, 1026–1027
movability, 1024
pole, 1029–1030
relative pole method, 1032–1035
relative pole, 1030–1032
transmission angle, 1024–1025

Klein’s construction, 183
Kloomok and Muffley method, 465–466
Kutzbach criterion, 13–14

L
Link, 2–3

binary, 3
flexible, 3
floating, 3
fluid, 3
quaternary, 3
rigid, 3
ternary, 3

Lower pairs, 209

M
Machine, 13

compound, 13
simple, 13

Mechanical advantage, 62
Mechanical vibrations, 1077–1127

basic elements, 1079
critical speed, 1114–1117
damped forced vibrations, 1102–1104
damped free vibrations, 1092–1096
definitions, 1078
degrees of freedom, 1080
equivalent stiffness, 1086–1087
free longitudinal vibrations, 1080–1083

free vibrations, 1078
geared system, 1125–1137
logarithmic decrement, 1096–1097
reciprocating unbalance, 1106
rotating unbalance, 1104–1105
SHM, 1080
stepped shaft, 1121–1122
support motion, 1108–1109
torsional vibrations, 1119–1125
transverse vibrations, 1111–1113
two degree freedom system, 1122–1123
two rotor system, 1124
undamped forced vibrations,1101
vibration isolation, 1106–1108

Mechanisms, 11
complex, 11
compound, 11
crank-rocker, 25–26
double-rocker, 26–27
double crank, 25–26
equivalent, 11
inversion of, 30–36
mobility of, 13
planar, 11
simple, 11
spatial, 11

Mobility of mechanisms, 13
Motion mechanisms, 211–219

accurate, 211–215
approximate, 215–219

Multi-cylinder in-line engine, 730–736
four-cylinder, 735–736
two-cylinder, 734–735

O
Oldham’s coupling, 37
Oscillating cylinder engine, 33

P
Pantograph, 209–210
Parallel linkages, 219

lazy tongs, 221
parallel rules, 219
universal drafting machine, 219–221

Peaucellier mechanism, 211–212
Pendulum pump, 32
Piston effort, 562–565
Pitching, 830
Primary balancing, 711–712
Precessional motion, 819–821
Prismatic joint, 15
Proell governor, 482
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Q
Quick return mechanisms, 33

crank and slotted lever, 33
Whitworth, 34

R
Rack and pinion, 904–905
Radial engine, 739–742
Ratchet mechanism, 219
Reciprocating mechanism, 554–556

graphical method, 561–562
inertia force, 558–562
motion analysis, 554–556

Relative angular velocity, 61
Relative velocity method, 59

crank and slotted lever mechanism, 65–66
drag mechanism, 66–67
four-bar mechanism, 63–64
hydraulic riveter, 77
reciprocating pump mechanism, 79
slider–crank mechanism, 64–65
stone crusher mechanism, 68
toggle mechanism, 70
Whitworth mechanism, 67–68

Revolute joint, 15
Robert mechanism, 219
Rolling friction, 276–277
Rope drive, 316

ratio of tensions, 316

S
Scotch yoke, 39
Scott–Russel mechanism, 214
Screw jack, 267–269

efficiency, 268
over-hauling, 269
self-locking, 269

Screw threads, 266
square, 266
V-type, 267

Sewing machine needle mechanism, 126
Ship stabilization, 831
Simple harmonic motion, 402–405,1080
Single-slider crank chain, 32–36, 185

crank and slotted lever, 33–34
Gnome engine, 33
inversions of, 32
oscillating cylinder engine, 33
pendulum pump, 32
toggle mechanism, 35–36
Whitworth mechanism, 34

Slider–crank chain, 32–36, 562–565
crank effort, 565–567

piston effort, 562–564
double, 36–41
single, 32

Spiral gears, 939–942
efficiency of, 941

Stability of vehicles, 837
four-wheeler, 837–841
two-wheeler, 850–852

Static force analysis, 643
four-bar chain for, 643–645
shaper mechanism, 660–661
slider–crank mechanism, 646–647

Straight line motion mechanisms, 210–219
accurate, 211–215
approximate, 215–219

Steering gears
Ackermann, 232
Davis, 230–231

Stone crusher mechanism, 68
Sun and planet gears, 963–965

Tabular method, 964
Swaying couple, 715
Swivelling pin joint, 89, 168

T
Tchebicheff mechanism, 217
Toggle mechanism, 70
Tractive effort, 714
Truncated conical pivot bearing, 274–275
Turning moment, 568

diagrams, 568

U
Uncoupled locomotive, 712–714
Undercutting, 464
Universal drafting machine, 219

V
Velocity in mechanisms, 57

diagrams, 58–59
relative angular velocity, 61–62
relative velocity method, 59

W
Watt mechanism, 215
Watt indicator, 31
Whitworth mechanism, 34
Worm gear, 945

efficiency, 947
Wrapping mechanism, 125
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