UNIT-1: DC Circuits

GTU End Sem Exam Solution

Nov-Que: State the superposition theorem with suitable example.

2020 Solution:

- The superposition theorem states that in any linear bilateral network that consisting of two or more independent sources, current through (or voltage across) an element is the algebraic sum of the currents through (voltages across) that element caused by each independent source acting alone with all other sources are replaced by their internal resistances.
- Example:- Find the current through 10ohm By using superposition theorem.

Case - 1 Only Voltage source.

So the Current of the circuit $I_{L1} = 20/(20+10) = 20/30 = 2/3 = 0.66$ A which is the same current passing through 10 ohm.

Case -2 Only Current Source.

By using current divider rule current through 10 ohm resistor is $I_{L2} = (20/20+10) \times 1 = 20/30 = 0.666A$ So Total $I_L = I_{L1} + I_{L2} = 0.666 + 0.666 = 1.333A$

Jan-2020 Que: State Thevenin's and Norton's Theorem. **Solution:**

Thevenin's Theorem

- "Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load".
- In other words, it is possible to simplify any electrical circuit, no matter how complex, to an equivalent two-terminal circuit with just a single constant voltage source in series with a resistance (or impedance) connected to a load.

Norton's Theorem

- "Any linear circuit containing several energy sources and resistances can be replaced by a single Constant Current generator in parallel with a Single Resistor".
- As far as the load resistance, R_L is concerned this single resistance, R_S is the value of the resistance looking back into the network with all the current sources open circuited and I^S is the short circuit current at the output terminals.

Jan-2020 Que: Derive an expression for equivalent resistances of a star connected network to transform into a Delta connected network. Solution:

Derive the equations of capacitor voltage and circuit current in a series R-C circuit connected to a DC supply through a switch. Assume that switch is initially open and it is closed at time t=0 second. **Solution:**

7

- Consider a circuit consisting of resistance of R ohms and a capacitor of capacitance C farads connected in series with switch S and a battery of V volts.
- At the instant of closing the switch, No charge on the capacitor and Potential difference across the capacitor is zero.
- As a result, the entire voltage V acts momentarily across the resistors R and charging current is maximum say I_m .
- Initial charging current, $I_m = V/R$
- Let at any instant during charging,
- $V_c = p.d.$ across the capacitor
- \bullet i = charging current
- q_c = charge on the capacitor = CV_c
- According to KVL, Applied voltage = Voltage across capacitor + voltage across resistor $V = V_c + iR$

$$
V = V_c + R \frac{dq_c}{dt}
$$

\n
$$
V = V_c + R \frac{d(CV_c)}{dt}
$$

\n
$$
V = V_c + RC \frac{d(V_c)}{dt}
$$

\n
$$
V - V_c = RC \frac{d(V_c)}{dt}
$$

\n
$$
\therefore \frac{-dV_c}{V - V_c} = -\frac{dt}{RC}
$$

\n
$$
\therefore \frac{-dV_c}{V - V_c} = -\frac{dt}{RC}
$$

• Integrating both the side

$$
\int \frac{-dV_c}{V - V_c} = \int -\frac{dt}{RC}
$$

$$
\log_e^{(V - V_c)} = \frac{-t}{RC} + K
$$

 Where, K is a constant of integration. Its value can be determined from the initial conditions. At the instant of closing the switch S,

$$
t = 0, V_c = 0
$$

$$
\log_e^V = K
$$

• Putting the value of $K = log_e V$

$$
\log_{e}^{(V-V_{c})} = \frac{-t}{RC} + \log_{e}^{V} \qquad \log_{e}^{(V-V_{c})} - \log_{e}^{V} = \frac{-t}{RC}
$$

$$
\log_{e} \left(\frac{V-V_{c}}{V}\right) = \frac{-t}{RC} \qquad \frac{V-V_{c}}{V} = e^{\frac{-t}{RC}}
$$

$$
V_{c} = V \left[1 - e^{\frac{-t}{RC}}\right] \qquad V_{c} = V \left[1 - e^{\frac{-t}{\lambda}}\right]
$$

- Where $\lambda = CR$ is known as time constant.
- **Variation of charging current with time**

$$
V - V_c = iR
$$

\n
$$
i = \frac{V - V_c}{R}
$$

\n
$$
i = \frac{V - V \left[1 - e^{\frac{-t}{\lambda}}\right]}{R}
$$

\n
$$
i = \frac{V}{R} e^{\frac{-t}{\lambda}}
$$

\n
$$
i = I_m e^{\frac{-t}{\lambda}}
$$

Nov - A resistance of 10Ω is connected in series with two resistances each of the 15Ω arranged in parallel. What resistance must be shunted across this parallel combination so that total 2020 current taken shall be 1.5 A with 20 V applied. Solution: $\begin{array}{ccc} \begin{array}{ccc} \textcolor{blue}{\square} & \textcolor{blue}{\square} & \textcolor{blue}{\square} \end{array} \end{array}$

$$
\begin{array}{|c|c|c|c|c|c|}\n\hline\n & \text{for} & \text{from} & \text{Total Resistance of the old}\\ \hline\n & \text{from} & \text{from} & \text{the old}\\ \hline\n & \text{from}
$$

UNIT-2: AC Circuits

GTU End Sem Exam Solution

(*ii*) Power absorbed by the coil is $= I^2 R = 5^2 \times 5.5 = 137.5 W$ $P = 200 \times 5 \times 27.5/200 = 137.5$ W Also (iii) Total power = $VI\cos\phi = 250 \times 5 \times AC/AD = 250 \times 5 \times 152.5/250 = 762.5 \text{ W}$ The power may also be calculated by using $I^2 R$ formula. $= 125/5 = 25 \Omega$ Series resistance Total *circuit* resistance = $25 + 5.5 = 30.5 \Omega$ \therefore Total power = $5^2 \times 30.5 = 762.5$ W

NOV 2020 **Prove that the current in purely inductive circuit lags its voltage by 90° and average power consumption in pure inductor is zero.**

Consider a simple circuit consisting of a pure inductance of L henries, connected across a voltage given by the equation, $v = V_m$ sin ω t. The circuit is shown in the Fig. 7.4.

Pure inductance has zero ohmic resistance. Its internal resistance is zero. The coil has pure inductance of L henries (H).

When alternating current 'i' flows through inductance 'L', it sets up an alternating magnetic field around the inductance. This changing flux links the coil and due to self inductance, e.m.f. gets induced in the coil. This e.m.f. opposes the applied voltage.

The self induced e.m.f. in the coil is given by,

Self induced e.m.f.,

$$
= -L \frac{di}{dt}
$$

At all instants, applied voltage. V is equal and opposite to the self induced e.m.f., e

$$
v = -e = -\left(-L\frac{di}{dt}\right)
$$

\n
$$
v = L\frac{di}{dt} \text{ i.e. } V_m \sin \omega t = L\frac{di}{dt}
$$

\n
$$
\therefore \qquad di = \frac{V_m}{L} \sin \omega t \text{ dt}
$$

\n
$$
\therefore \qquad ii = \int di = \int \frac{V_m}{L} \sin \omega t \text{ dt} = \frac{V_m}{L} \left(\frac{-\cos \omega t}{\omega}\right)
$$

\n
$$
= -\frac{V_m}{\omega L} \sin \left(\frac{\pi}{2} - \omega t\right) \text{ as } \cos \omega t = \sin \left(\frac{\pi}{2} - \omega t\right)
$$

\n
$$
\therefore \qquad i = \frac{V_m}{\omega L} \sin \left(\omega t - \frac{\pi}{2}\right) \text{ as } \sin \left(\frac{\pi}{2} - \omega t\right) = -\sin \left(\omega t - \frac{\pi}{2}\right)
$$

\n
$$
\therefore \qquad i = I_m \sin \left(\omega t - \frac{\pi}{2}\right)
$$

\nWhere
$$
I_m = \frac{V_m}{\omega L} = \frac{V_m}{X_L}
$$

\nWhere
$$
X_L = \omega L = 2 \pi f L \Omega
$$

The expression for the instantaneous power can be obtained by taking the product of instantaneous voltage and current.

$$
P = v \times i = V_m \sin \omega t \times I_m \sin \left(\omega t - \frac{\pi}{2}\right)
$$

= $-V_m I_m \sin (\omega t) \cos (\omega t)$ as $\sin \left(\omega t - \frac{\pi}{2}\right) = -\cos \omega t$
 \therefore $P = -\frac{V_m I_m}{2} \sin (2 \omega t)$ as 2 sin $\omega t \cos \omega t = \sin 2 \omega t$

Key Point : This power curve is a sine curve of frequency double than that of applied voltage. aa4k vartijska sliperist
Coordensorgen

The average value of sine curve over a complete cycle is always zero.

$$
P_{av} = \int_{0}^{2\pi} -\frac{V_{m} I_{m}}{2} \sin (2 \omega t) d(\omega t) = 0
$$

The Fig. 7.7 shows voltage, current and power waveforms.

Fig. 7.7 Waveforms of voltage, current and power

NOV 2020/ JAN **Derive the relation between line-voltage and phase-voltage for three-phase four wire star connection network. Also, prove that the total three-phase power consumption in star connection is PT = √3 V^L I^L cos φ.** 07

2020

The voltage induced in each winding is called the *phase* voltage and current in each winding is likewise known as *phase* current. However, the voltage available between any pair of terminals (or outers) is called line voltage (V_t) and the current flowing in each *line* is called *line* current (I_t) .

As seen from Fig. 19.12 (a) , in this form of interconnection, there are two phase windings between each pair of terminals but since their similar ends have been joined together, they

are in opposition. Obviously, the *instantaneous* value of p.d. between any two terminals is the arithmetic difference of the two phase e.m.fs. concerned. However, the r.m.s. value of this p.d. is given by the vector difference of the two phase e.m.fs.

The vector diagram for phase voltages and currents in a star connection is shown in Fig. 19.12.

(a) Line Voltages and Phase Voltages

The p.d. between line 1 and 2 is $V_{RT} = E_R - E_T$

Hence, V_{RT} is found by compounding E_R and E_T reversed and its value is given by the diagonal of the parallelogram of Fig. 19.13. Obviously, the angle between E_n and E_y reversed is 60°. Hence if $E_R = E_T = E_B =$ say, E_{ph} – the phase e.m.f., then

$$
V_{RT} = 2 \times E_{ph} \times \cos(60^{\circ}/2)
$$

$$
= 2 \times E_{ph} \times \cos 30^{\circ} = 2 \times E_{ph} \times \frac{\sqrt{3}}{2} = \sqrt{3} E_{pi}
$$

Similarly, $V_{YB} = E_Y - E_B = \sqrt{3} \cdot E_{ph}$... vector difference

 $V_{BR} = E_B - E_R = \sqrt{3} \cdot E_{ph}$ and

 $V_{RY} = V_{YB} = Y_{BR}$ = line voltage, say V_L . Hence, in Now star connection $V_L = \sqrt{3} \cdot E_{ph}$

... vector difference.

It will be noted from Fig. 19.13 that

1. Line voltages are 120° apart.

2. Line voltages are 30° ahead of their respective *phase* voltages.

3. The angle between the line currents and the corresponding line voltages is $(30 + \phi)$ with current lagging.

(b) Line Currents and Phase Currents

It is seen from Fig. 19.12 (*a*) that each line is in series with its individual phase winding, hence the line current in each line is the same as the current in the phase winding to which the line is connected.

Current in line $1 = I_R$; Current in line $2 = I_T$; Current in line $3 = I_B$ $I_R = I_T = I_B = \text{say}, I_{ph} - \text{the phase current}$ Since \therefore line current $I_L = I_{ph}$

 (c) Power

The total active or true power in the circuit is the sum of the three phase powers. Hence,

 $V_{ph} = V_L / \sqrt{3}$ and $I_{ph} = I_L$

total active power = 3 \times phase power or $P = 3 \times V_{nh} I_{nh} \cos \phi$

Now

Hence, in terms of line values, the above expression becomes

$$
P = 3 \times \frac{V_L}{\sqrt{3}} \times I_L \times \cos \phi \text{ or } P = \sqrt{3} V_L I_L \cos \phi
$$

JAN 2020 **A single phase R-L-C circuit having resistance of 8Ω, inductance of 80mH and capacitance of 100μF is connected across single phase ac 150 V , 50Hz supply. Calculate the current, power factor and voltage drop across inductance and capacitance.** 07

Calculations The inductive reactance.

 $X_L = 2\pi f L$

 \Rightarrow X_L = 2 × 3.14 × 50 × 80 × 10⁻³

$$
\Rightarrow \; \mathrm{X_L} \; = \; 25 \; . \; 12 \; \Omega
$$

The capacitive reactance,

$$
X_c = \frac{1}{2\pi f C}
$$

\n
$$
\Rightarrow X_c = \frac{1}{2 \times 3.14 \times 50 \times 100 \times 10^{-6}}
$$

\n
$$
\Rightarrow X_c = 31.84 \Omega
$$

The Impedance,

$$
Z = \sqrt{R^2 + (X_c - X_L)^2}
$$

\n
$$
\Rightarrow Z = \sqrt{8^2 + (31.84 - 25.12)^2}
$$

\n
$$
\Rightarrow Z = \sqrt{8^2 + (6.72)^2}
$$

\n
$$
\Rightarrow Z = \sqrt{64 + 45.15}
$$

\nRMS current,
\n
$$
\frac{V}{Z} = \frac{150}{10.44} = 14.36 \text{ A}
$$

Power Factor,

$$
\frac{R}{Z} = \frac{8}{10.44} = 0.766
$$

Voltage across the Inductor,

$$
I X_L = 14.36 \times 25.12 = 360.72 \text{ V}
$$

Voltage across the Capacitor,

 $IX_C = 14.36 \times 31.84 = 457.22 V$

JAN **Define the following terms in connection with AC waveforms:** 2020 **1. Q-Factor 2. Power Factor 3. Form factor. 1. Q-Factor:** The *Q*-factor of an *R-L-C* series circuit can be defined in the following different ways. (i) it is given by the voltage magnification produced in the circuit at resonance. $Q_0 = \frac{\omega_0 L}{R} = \frac{2\pi f_0 L}{R} = \tan \phi$ \therefore Q -factor, **2. Power Factor:** It is the ratio of active (true) power to apparent power. It is also defined as the cosine of the angle between voltage and current signals. **3. Form Factor:** The ratio of the rms value to the average value of an alternating quantity (current or voltage) is called Form Factor. It is defined as the ratio, $K_f = \frac{\text{r.m.s. value}}{\text{average value}}$

19.18. Two Wattmeter Method-**Balanced Load**

If the load is balanced, then power factor of the load can also be found from the two wattmeter readings. The Y-connected load in Fig. 19.47 (b) will be assumed inductive. The vector diagram for such a balanced Y-connected load is shown in Fig. 19.48. We will now consider the problem in terms of r.m.s. values instead of instantaneous values.

Let V_R , V_T and V_B be the r.m.s. values of the three phase voltages and I_R , I_T and I_B the r.m.s. values of the currents. Since these voltages and currents are assumed sinusoidal, they can be represented by vectors, the currents lagging behind their respective phase voltages by ϕ .

Current through wattmeter W_1 [Fig. 19.47 (b)] is = I_R .

P.D. across voltage coil of W_1 is

$$
V_{RB} = V_R - V_B
$$
... vectorially

This V_{RR} is foundby compounding V_R and V_R reversed as shown in Fig. 19.42. It is seen that phase difference between V_{RB} and $I_R = (30^{\circ} - \phi)$.

:. Reading of $W_1 = I_R V_{RB} \cos (30^\circ - \phi)$

Similarly, as seen from Fig. 19.47 (b). Current through $W_2 = I_Y$

P.D. across $W_2 = V_{VR} = V_Y - V_R$

... vectorially

Again, $V_{\overline{1B}}$ is found by compounding $V_{\overline{1}}$ and $V_{\overline{2}}$ reversed as shown in Fig. 19.48. The angle between I_Y and V_{YB} is (30° + ϕ). Reading of $W_2 = I_Y V_{YB} \cos(30^\circ + \phi)$

Since load is balanced, $V_{RB} = V_{TB} =$ line voltage V_L ; $I_T = I_R =$ line current, I_L

 $W_1 = V_L I_L \cos(30^\circ - \Phi)$ and $W_2 = V_L I_L \cos(30^\circ + \Phi)$

: $W_1 + W_2 = V_1 I_1 \cos(30^\circ - \phi) + V_1 I_1 (\cos(30^\circ + \phi))$

= $V_L I_L$ [cos 30° cos ϕ + sin 30° sin ϕ + cos 30° cos ϕ – sin 30° sin ϕ]

= $V_L I_L$ (2cos30° cos ϕ) = $\sqrt{3} V_L I_L$ cos ϕ = total power in the 3-phase load

Hence, the sum of the two wattmeter readings gives the total power consumption in the 3-phase load.

JUNE 2019 **For series resonant circuit with brief description draw the phasor diagrams for following conditions (i) At resonant (ii) Below resonant (iii) Above resonant. (i) At Resonance:** 03

At the resonance condition $X_L = X_C$. The net impedance of the circuit is only resistance. Therefore, R-L-C circuit behaves like a purely resistive circuit. The power factor of the circuit is Unity.

(ii) Below resonance:

At the frequencies below resonant frequency, $X_L < X_C$. The net impedance is capacitive in nature. Therefore, the circuit acts like an R-C Series circuit. The power factor of the circuit is leading.

(iii) Above resonance:

At the frequencies below resonant frequency, $X_L > X_C$. The net impedance is inductive in nature. Therefore, the circuit acts like an R-L Series circuit. The power factor of the circuit is lagging.

JUNE 2019 **A series RLC circuit with L= 160 mH, C= 100 μF and R = 40 Ω is connected to a sinusoidal voltage V(t) = 40 Sinωt, with ω= 200 rad/sec. Find (i) What is the Impedance of the circuit. (ii) Let the current at any instant in the circuit be I(t) = I0 Sin(ωt-Φ). Find I0 (iii) What is the Phase Φ ?** Solution: Given Data: L=160 mH, C=100 μF, R=40 Ohm, Vm=40 V, ω= 200 rad/sec X_L = ωL = 200*160*10⁻³ = 32 Ohm Xc=1/ ωC = $1/(200*100*10⁻⁶)$ = 50 Ohm 07

$$
Z = \sqrt{40^2 + (32 - 50)^2} = 43.86 \,\Omega
$$

 $10 = Vm/Z = 0.911$ Amp Phase angle $\Phi = \cos^{-1}(R/Z) = \cos^{-1}(40/43.86) = 24.21^{\circ}$ (leading) JUNE 2019 **A balanced star connected load of (4+j3) Ω per phase is connected to a balance 3 phase 400 V supply. Find the line current, power factor, active power and reactive power.** Solution: Impedance per phase Zph = $(R_2^2+X_L^2)^{1/2}$ = (16+9)^y = 5 Ohm. In star connection Line voltage = $1.732*P$ hase Phase Voltage V_L = $1.732*V$ ph Therefore, Vph = $V_1/1.732 = 400/1.732 = 230.94$ V In star connection Line current = Phase Current = Vph/Zph = $230.94/5$ = 46.18 Amp Power factor Cos $\Phi = R/Z = 4/5 = 0.8$ (lagging) Active power = $1.732 \times V_l \times L \times CO$ = $1.732 \times 400 \times 46.18 \times 0.8$ = 25594.80 Watt Reactive Power = 1.732×10^{14} Sin Φ = $1.732 \times 400 \times 46.18 \times 0.6 = 19196.10$ VAR 07

2019

The standard form of a sinusoidal alternating current is $i = I_m \sin \omega t = I_m \sin \theta$.

The mean of the squares of the instantaneous values of current over one complete cycle is (even the value over half a cycle will do).

$$
= \int_0^{2\pi} \frac{i^2 d\theta}{(2\pi - \theta)}
$$

The square root of this value is $= \sqrt{\left(\int_0^{2\pi} \frac{i^2 d\theta}{2\pi}\right)}$

Hence, the r.m.s. value of the alternating current is

$$
I = \sqrt{\left(\int_0^{2\pi} \frac{i^2 d\theta}{2\pi}\right)} = \sqrt{\left(\frac{I_m^2}{2\pi}\int_0^{2\pi} \sin^2 \theta \, d\theta\right)} \qquad (\text{put } i = I_m \sin \theta)
$$

Now, $\cos 2\theta = 1 - 2 \sin^2 \theta$: $\sin^2 \theta = \frac{1}{2}$

A.

$$
I = \sqrt{\left(\frac{I_m^2}{4\pi} \int_0^{2\pi} (1 - \cos 2\theta) \, d\theta\right)} = \sqrt{\left(\frac{I_m^2}{4\pi} \middle| \theta - \frac{\sin 2\theta}{2} \big|_0^{2\pi}\right)}
$$

$$
= \sqrt{\frac{I_m^2}{4} \ 2} \sqrt{\frac{I_m^2}{2}} \quad \therefore \quad I = \frac{I_m}{\sqrt{2}} = 0.707 I_m
$$

Hence, we find that for a symmetrical sinusoidal current

r.m.s. value of current = $0.707 \times$ max. value of current

$$
\therefore
$$
 Equation of instantaneous current 1(x)
\n
$$
r(z) = 40 \sin(314t + 0.523)
$$
 Amp
\nN0U + D find Poubey P = Vrms × 1rms × 005p
\n
$$
\phi = P
$$
 1 cm s × 1 cm s × 1 cm s × 005p
\n
$$
\phi = P
$$
 2 cm s = 000
\n
$$
\therefore P = \frac{400}{\sqrt{2}} \times \frac{20}{\sqrt{2}} \times \cos(\text{ls}) = 3663.7 \text{ N}
$$
 and
\n
$$
\frac{100}{2019}
$$
 the same circuit with same magnitude of applied voltage with a frequency of 75 Hz produces
\naverage of 10 V at 50 Hz frequency produces a current of 750 mA. In
\n
$$
G
$$
 2019 the same circuit with same magnitude of applied voltage with a frequency of 75 Hz produces
\n
$$
G
$$
 2019
\n
$$
\therefore X_{L1} = 2H_{L1} = (314L) \Omega
$$
 215
\n
$$
\therefore X_{L2} = 2H_{L1} = \frac{10}{150 \times 10^{-3}} = 13.33 \text{ A}
$$

\n
$$
\therefore Z_{L2} \sqrt{R^2 + x_L^2} = 13.33
$$

\n
$$
\therefore R^2 + (314L)^2 = (13.33)^2
$$

\n
$$
\therefore R^2 + 98.596L^2 = 177.69
$$
 215 Hz
\n
$$
\therefore X_{L3} = 4H_{L2}L = (471L) \Omega
$$
 225 L 25 L 260 mA \hbar 225 L 260
\n
$$
Z_{L3} = \sqrt{x^2 + x_L^2} = 200 \therefore R^2 + x_L^2 = 400
$$

\n
$$
R^2 + (47L)^2 = 400
$$

UNIT-3: Transformers

GTU End Sem Exam Solution

 \triangleright When an alternating voltage V1 is applied to the primary, an alternating flux f is set up in the core. This alternating flux links both the windings and induces e.m.f.s E_1 and E_2 in them according to Faraday's laws of electromagnetic induction. The e.m.f. E_1 is termed as primary e.m.f. and e.m.f. E_2 is termed as secondary e.m.f.

$$
E_1 = -N_1 \frac{d\phi}{dt}
$$

$$
E_2 = -N_2 \frac{d\phi}{dt}
$$

$$
\frac{E_2}{E_1} = \frac{N_2}{N_1}
$$

 \triangleright magnitudes of E₂ and E₁ depend upon the number of turns on the secondary and primary respectively. If $N_2 > N_1$, then $E_2 > E_1$ (or $V_2 > V_1$) and we get a step-up transformer. On the other hand, if $N_2 < N_1$, then $E_2 < E_1$ (or $V_2 < V_1$) and we get a step-down transformer. If load is connected across the secondary winding, the secondary e.m.f. E_2 will cause a current I_2 to flow through the load. Thus, a transformer enables us to transfer a.c. power from one circuit to another with a change in voltage level.

Nov/2020 June/2019 **Explain various connections of three phase transformer with diagram. Solution:**

- 07
- \triangleright Windings of a three-phase transformer can be connected in various configurations as (i) star-star, (ii) delta-delta, (iii) star-delta, (iv) delta-star
- (i) star-star

- \triangleright Star-star connection is generally used for small, high-voltage transformers. Because of star connection, number of required turns/phase is reduced (as phase voltage in star connection is 1/√3 times of line voltage only). Thus, the amount of insulation required is also reduced.
- \triangleright The ratio of line voltages on the primary side and the secondary side is equal to the transformation ratio of the transformers.
- \triangleright Line voltages on both sides are in phase with each other.
- \triangleright This connection can be used only if the connected load is balanced.
- (ii) delta-delta

- This connection is generally used for large, low-voltage transformers. Number of required phase/turns is relatively greater than that for star-star connection.
- \triangleright The ratio of line voltages on the primary and the secondary side is equal to the transformation ratio of the transformers.
- This connection can be used even for unbalanced loading.
- \triangleright Another advantage of this type of connection is that even if one transformer is disabled, system can continue to operate in open delta connection but with reduced available capacity.
- (iii) star-delta

- \triangleright The primary winding is star star (Y) connected with grounded neutral and the secondary winding is delta connected.
- \triangleright This connection is mainly used in step down transformer at the substation end of the transmission line.
- \triangleright The ratio of secondary to primary line voltage is 1/√3 times the transformation ratio.
- \triangleright There is 30° shift between the primary and secondary line voltages.
- (iv) delta-star

- \triangleright The primary winding is connected in delta and the secondary winding is connected in star with neutral grounded. Thus, it can be used to provide 3 phase 4-wire service.
- \triangleright This type of connection is mainly used in step-up transformer at the beginning of transmission line.
- The ratio of secondary to primary line voltage is √3 times the transformation ratio.
- \triangleright There is 30° shift between the primary and secondary line voltages.

Nov/2020 **Explain magnetic hysteresis. Solution:**

 \triangleright The phenomenon of lagging behind of induction flux density (B) behind the magnetizing force (H) in magnetic material is called magnetic hysteresis.

- \triangleright Hysteresis loop is a four quadrant B H graph from where the hysteresis loss, coercive force and retentively of magnetic material are obtained.
- \triangleright To understand hysteresis loop, we suppose to take a magnetic material to use as a core around which insulated wire is wound. The coils is connected to the supply (DC) through variable resistor to vary the current I.

- \triangleright When current is increased from zero value to a certain value, magnetizing force and flux density both are set up and increased following the path o to a.
	- For a certain value of current, flux density becomes maximum (B_m) . The point indicates the magnetic saturation or maximum flux density of this core material. All element of core material get aligned perfectly.
- \triangleright When the value of current is decreased from its value of magnetic flux saturation, H is decreased along with decrement of B not following the previous path rather following the curve a to b. The point b indicates $H = 0$ for $I = 0$ with a certain value of B. This lagging of B behind H is called hysteresis.

07

Nov/2020 June/2019 **State the difference in core type and shell type transformer with neat and clean construction diagram.**

Solution:

 \triangleright Depending upon the manner in which the primary and secondary are wound on the core, transformers are of two types viz., (i) core-type transformer and (ii) shell-type transformer.

(i) Core-type transformer:

- \triangleright In a core-type transformer, half of the primary winding and half of the secondary winding are placed round each limb as shown in Fig.
- \triangleright This reduces the leakage flux. It is a usual practice to place the low-voltage winding below the high-voltage winding for mechanical considerations.

(ii) shell-type transformer:

- \triangleright Shell-type transformer. This method of construction involves the use of a double magnetic circuit. Both the windings are placed round the central limb the other two limbs acting simply as a low-reluctance flux path.
- \triangleright The choice of type (whether core or shell) will not greatly affect the efficiency of the transformer. The core type is generally more suitable for high voltage and small output while the shell-type is generally more suitable for low voltage and high output.

UNIT-4: Electrical Machines

GTU End Semester Exam Solution

A synchronous generator (alternator) is a machine which produces 3 phase AC power when it receives mechanical input. It thus converts mechanical energy to electrical energy. It consists of a stator which carries a 3 phase winding and rotor which carries the field winding as shown in the fig.

Construction:

1. Stator: It is the stationary part of the machine and is built up of sheet-steel laminations having slots on its inner periphery. A 3-phase winding is placed in these slots and serves as the armature winding of the alternator. The armature winding is always connected in star and the neutral is connected to ground.

- 2. Rotor: The rotor carries a field winding which is supplied with direct current through two slip rings by a separate d.c. source. This d.c. source (called exciter) is generally a small d.c. shunt or compound generator mounted on the shaft of the alternator. Rotor construction is of two types, namely;
- (i) Salient (or projecting) pole type
- (ii) Non-salient (or cylindrical) pole type
- (i) Salient pole type

In this type, salient or projecting poles are mounted on a large circular steel frame which is fixed to the shaft of the alternator as shown in Fig. The individual field pole windings are connected in series in such a way that when the field winding is energized by the d.c. exciter, adjacent poles have opposite polarities. Low and medium synchronous generators are driven by diesel engines or water turbines that use salient pole rotors.

(ii) Non-Salient pole type:

In this type of rotor, smooth solid steel is used to form a radial cylinder. This cylinder has a number of slots along its outer periphery. These slots carry the field windings which in turn are connected in series to the slip rings through which they are energized by the d.c. exciter. The regions which form the poles are left un-slotted. The non-salient rotor is shown in the fig. High-speed alternators (1500 or 3000 r.p.m.) are driven by steam turbines and use non-salient type rotors

Nov 2020 Que: Justify that how back e.m.f. in DC motor acts like a governor.

When the armature of a d.c. motor rotates under the influence of the driving torque, the armature conductors move through the magnetic field and hence e.m.f. is induced in them as in a generator The induced e.m.f. acts in opposite direction to the applied voltage V(Lenz's law) and in known as back or counter e.m.f. Eb.

The back e.m.f. Eb (= $P\Phi ZN/60$ A) is always less than the applied voltage V, although this difference is small when the motor is running under normal conditions. Consider a shunt wound motor shown in Fig. When d.c. voltage V is applied across the motor terminals, the field magnets are excited and armature conductors are supplied with current. Therefore, driving torque acts on the armature which begins to rotate. As the armature rotates, back e.m.f. Eb is induced which opposes the applied voltage V. The applied voltage V has to force current through the armature against the back e.m.f. Eb. The electric work done in overcoming and causing the current to flow against Eb is converted into mechanical energy developed in the armature. It follows, therefore, that energy conversion in a d.c. motor is only possible due to the production of back e.m.f. Eb.

Net voltage across armature circuit $= V - Eb$

If Ra is the armature circuit resistance, then, $I_a = (V - E_b)/R_a$

Nov 2020 Que: State the comparison of generator and motor action with respect to design and working principle. Draw the necessary diagram. 4

Solution:

Nov 2020 Jan

2020

Basic principle: A machine that converts d.c. power into mechanical power is known as a d.c. motor. Its operation is based on the principle that when a current carrying conductor is placed in a magnetic field, the conductor experiences a mechanical force. The direction of this force is given by Fleming's left hand rule and magnitude is given by;

Que: Write working principle of DC motor with neat diagram.

$F = BII$ newtons

Solution:

Basically, there is no constructional difference between a d.c. motor and a d.c. generator. The same d.c. machine can be run as a generator or motor.

Consider a part of a multipolar d.c. motor as shown in Fig. When the terminals of the motor are connected to an external source of d.c. supply:

(i) the field magnets are excited developing alternate N and S poles;

(ii) the armature conductors carry currents. All conductors under N-pole carry currents in one direction while all the conductors under S-pole carry currents in the opposite direction.

Suppose the conductors under N-pole carry currents into the plane of the paper and those under S-pole carry currents out of the plane of the paper as shown in Fig. Since each armature conductor is carrying current and is placed in the magnetic field, mechanical force acts on it. Referring to Fig. and applying Fleming's left hand rule, it is clear that force on each conductor is tending to rotate the armature in anticlockwise direction. All these forces add together to produce a driving torque which sets the armature rotating. When the conductor moves from one side of a brush to the other, the current in that conductor is reversed and at the same time it comes under the influence of next pole which is of opposite polarity. Consequently, the direction of force on the conductor remains the same.

Nov 2020 Que: A d-c generator has an e.m.f of 200 volts and provides a current of 10 amps. How much energy does it provide each minute? 3

Solution:

 $Energy = Power x Time$ Power $=$ V x I $= 200 \times 10$ $= 2000$ watts Energy $= 2000 \times 60$ $= 120,000$ Joules or 120 kJ

Jan 2020 Que: Give Merits, Demerits and Applications of Induction Motor.

Solution:

Merits:

1) The working of an induction motor is very simple. It can operate in any environmental condition. The construction of an induction motor is robust and sturdy.

4

2) It is very cheap in cost to compare the other motors.

3) It is a highly efficient motor. The efficiency of IM is varying from 85 to 95%.

4) The brushes are not used in an induction motor. So, there are no sparks in the motor and it can be used in polluted and hazards environment.

5) The maintenance of IM is very less compared to the DC motor and synchronous motor.

6) 3 phase induction motor is the self-starting motor. So, any special starting arrangement or extra starting motor is not required. However, single-phase induction motors do not have selfstarting torque, and it uses some auxiliaries to rotate.

7) In this motor, only one AC source requires to operate. It does not require DC excitation like a synchronous motor.

8) The speed variation from no-load to rated load is very less.

Demerits:

1) The power factor of the motor is very low during the light load condition.

2) The three-phase induction motor is constant speed motor. The change in speed of the motor is very low during different loading conditions. So, the speed control of IM is difficult.

3) Single-phase induction motor is not self-starting. It requires some auxiliary for stating.

4) The motor cannot use in such applications where high starting torque is necessary like

traction and lifting weight.

Applications of Induction Motor:

- 1. Lifts
- 2. Cranes
- 3. Hoists
- 4. Large capacity exhaust fans
- 5. Driving lathe machines
- 6. Crushers
- 7. Oil extracting mills
- 8. Pumps
- 9. Compressors
- 10. Small fans
- 11. Mixers
- 12. Toys
- 13. High speed vacuum cleaners
- 14. Electric shavers
- 15. Drilling machines

Jan Que: Compare poly phase Induction Motor and single phase Induction Motor.

2020

Solution:

Nov 2020 Que: Explain Generation of Rotating Magnetic Field in 3-phase Induction Motor with diagrams and equations. 7

Jan

2020 Solution:

June 2019 When a 3-phase winding is energized from a 3-phase supply, a rotating magnetic field is produced. This field is such that its poles do no remain in a fixed position on the stator but go on shifting their positions around the stator. For this reason, it is called a rotating Held. It can be shown that magnitude of this rotating field is constant and is equal to 1.5 Φm where Φm is the maximum flux due to any phase.

To see how rotating field is produced, consider a 2-pole, 3-phase winding as shown in Fig. (i). The three phases X, Y and Z are energized from a 3-phase source and currents in these phases are indicated as Ix, Iy and Iz [See Fig. (ii)]. Referring to Fig. (ii), the fluxes produced by these currents are given by:

$$
\phi_x = \phi_m \sin \omega t
$$

\n
$$
\phi_y = \phi_m \sin (\omega t - 120^\circ)
$$

\n
$$
\phi_z = \phi_m \sin (\omega t - 240^\circ)
$$

Here Φm is the maximum flux due to any phase. Fig. (1) shows the phasor diagram of the three fluxes. We shall now prove that this 3-phase supply produces a rotating field of constant magnitude equal to 1.5 Φm.

(i) At instant 1 [See Fig. (ii) and Fig. (iii)], the current in phase X is zero and currents in phases Y and Z are equal and opposite. The currents are flowing outward in the top conductors and inward in the bottom conductors. This establishes a resultant flux towards right. The magnitude of the resultant flux is constant and is equal to 1.5 Φm as proved under:

At instant 1, $\omega t = 0^\circ$. Therefore, the three fluxes are given by;

$$
\phi_x = 0; \qquad \phi_y = \phi_m \sin(-120^\circ) = -\frac{\sqrt{3}}{2} \phi_m;
$$

$$
\phi_z = \phi_m \sin(-240^\circ) = \frac{\sqrt{3}}{2} \phi_m
$$

The phasor sum of - Φy and Φz is the resultant flux Φr [from above phasor diagram]. It is clear that:

Resultant flux,
$$
\phi_r = 2 \times \frac{\sqrt{3}}{2} \phi_m \cos \frac{60^\circ}{2} = 2 \times \frac{\sqrt{3}}{2} \phi_m \times \frac{\sqrt{3}}{2} = 1.5 \phi_m
$$

(ii) At instant 2, the current is maximum (negative) in Φ y phase Y and 0.5 maximum (positive) in phases X and Z. The magnitude of resultant flux is 1.5 Φm as proved under:

At instant 2, $\omega t = 30^\circ$. Therefore, the three fluxes are given by;

$$
\phi_{\mathbf{x}} = \phi_{\mathbf{m}} \sin 30^{\circ} = \frac{\phi_{\mathbf{m}}}{2}
$$

$$
\phi_{\mathbf{y}} = \phi_{\mathbf{m}} \sin (-90^{\circ}) = -\phi_{\mathbf{m}}
$$

$$
\phi_{\mathbf{z}} = \phi_{\mathbf{m}} \sin (-210^{\circ}) = \frac{\phi_{\mathbf{m}}}{2}
$$

The phasor sum of Φ x, - Φ y and Φ z is the resultant flux Φ r

Phasor sum of
$$
\phi_x
$$
 and ϕ_z , $\phi'_r = 2 \times \frac{\phi_m}{2} \cos \frac{120^\circ}{2} = \frac{\phi_m}{2}$

Phasor sum of ϕ'_r and $-\phi_y$, $\phi_r = \frac{\phi_m}{2} + \phi_m = 1.5 \phi_m$

Note that resultant flux is displaced 30° clockwise from position 1.

(iii) At instant 3, current in phase Z is zero and the currents in phases X and Y are equal and opposite (currents in phases X and Y are $0.866 \times$ max. value).

The magnitude of resultant flux is 1.5 Φm as proved under: At instant 3, $\omega t = 60^\circ$. Therefore, the three fluxes are given by;

$$
\phi_{\mathbf{x}} = \phi_{\mathbf{m}} \sin 60^{\circ} = \frac{\sqrt{3}}{2} \phi_{\mathbf{m}};
$$

$$
\phi_{\mathbf{y}} = \phi_{\mathbf{m}} \sin(-60^{\circ}) = -\frac{\sqrt{3}}{2} \phi_{\mathbf{m}};
$$

$$
\phi_{\mathbf{z}} = \phi_{\mathbf{m}} \sin(-180^{\circ}) = 0
$$

The resultant flux Φ r is the phasor sum of Φ x and - Φ y (Φ z = 0).

$$
\phi_{\rm r} = 2 \times \frac{\sqrt{3}}{2} \phi_{\rm m} \cos \frac{60^{\circ}}{2} = 1.5 \phi_{\rm m}
$$

Note that resultant flux is displaced 60° clockwise from position 1.

(iv) At instant 4, the current in phase X is maximum (positive) and the currents in phases Y and Z are equal and negative (currents in phases Y and Z are $0.5 \times$ max. value).

This establishes a resultant flux downward as shown under:

At instant 4, $\omega t = 90^\circ$. Therefore, the three fluxes are given by;

$$
\phi_{\mathbf{x}} = \phi_{\mathbf{m}} \sin 90^\circ = \phi_{\mathbf{m}}
$$

$$
\phi_{\mathbf{y}} = \phi_{\mathbf{m}} \sin (-30^\circ) = -\frac{\phi_{\mathbf{m}}}{2}
$$

$$
\phi_{\mathbf{z}} = \phi_{\mathbf{m}} \sin (-150^\circ) = -\frac{\phi_{\mathbf{m}}}{2}
$$

The phasor sum of Φ x, - Φ y and - Φ z is the resultant flux Φ r

Phasor sum of
$$
-\phi_z
$$
 and $-\phi_y$, $\phi'_r = 2 \times \frac{\phi_m}{2} \cos \frac{120^\circ}{2} = \frac{\phi_m}{2}$

Phasor sum of
$$
\phi'_r
$$
 and ϕ_x , $\phi_r = \frac{\phi_m}{2} + \phi_m = 1.5 \phi_m$

Note that the resultant flux is downward i.e., it is displaced 90° clockwise from position 1.

June Que: Classify and compare various DC motor.

2019

Solution:

There are three types of d.c. motors characterized by the connections of field winding in relation to the armature viz.:

(i) **Shunt-wound motor** in which the field winding is connected in parallel with the armature [See Fig. 1]. The current through the shunt field winding is not the same as the armature current. Shunt field windings are designed to produce the necessary m.m.f. by means of a relatively large number of turns of wire having high resistance. Therefore, shunt field current is relatively small compared with the armature current.

(ii) **Series-wound motor** in which the field winding is connected in series with the armature [See Fig. 2]. Therefore, series field winding carries the armature current. Since the current passing through a series field winding is the same as the armature current, series field windings must be designed with much fewer turns than shunt field windings for the same m.m.f. Therefore, a series field winding has a relatively small number of turns of thick wire and, therefore, will possess a low resistance.

(iii) **Compound-wound motor** which has two field windings; one connected in parallel with the armature and the other in series with it. There are two types of compound motor connections (like generators). When the shunt field winding is directly connected across the armature terminals [See Fig. 3], it is called shortshunt connection. When the shunt winding is so connected that it shunts the series combination of armature and series field [See Fig. 4], it is called long-shunt connection.

3

June 2019 Que: Give the classification of Induction motor.

Solution:

There are mainly two types of induction motor on the basis of power supply, Single Phase Induction Motor and Three Phase Induction Motor.

- i. Single phase induction motor may be classified on the basis of their construction and starting methods. On this basis, they can be further categorized into following types:
	- 1. Split Phase Induction Motor
	- 2. Capacitor Start Induction Motor
	- 3. Capacitor Start Capacitor Run Induction Motor
- 4. Shaded Pole Induction Motor
- ii. A three phase induction motor classified on the basis of its rotor construction. On this basis, they can be further categorized into following types:

7

- 1. Squirrel Cage Induction Motor
- 2. Wound Rotor or Slip Ring Induction Motor

June Que: Explain the working of single phase induction motor with diagram.

2019

Solution:

When the stator winding (distributed one as stated earlier) carries a sinusoidal current (Being fed from a single-phase supply), a sinusoidal space distributed mmf, whose peak or maximum value pulsates (alternates) with time, is produced in the air gap. This sinusoidal varying flux (φ) is the sum of two rotating fluxes or fields, the magnitude of which is equal to half the value of the alternating flux (φ / 2), and both the fluxes rotating synchronously at the speed, in opposite directions.

The first set of figures show the resultant sum of the two rotating fluxes or fields, as the time axis (angle) is changing from $\theta = 0^{\circ}$ to $\pi^{\circ}(180)$.

The above figure shows the alternating or pulsating flux (resultant) varying with time or angle.

The flux or field rotating at synchronous speed, say, in the anticlockwise direction, i.e. the same direction, as that of the motor (rotor) taken as positive induces EMF (voltage) in the rotor conductors. The rotor is a squirrel cage one, with bars short circuited via end rings. The current flows in the rotor conductors, and the electromagnetic torque is produced in the same direction as given above, which is termed as positive (+ve). The other part of flux or field rotates at the same speed in the opposite (clockwise) direction, taken as negative. So, the torque produced by this field is negative (-ve), as it is in the clockwise direction, same as that of the direction of rotation of this field. Two torques are in the opposite direction, and the resultant (total) torque is the difference of the two torques produced.

Let the flux φ 1 rotate in anti-clockwise direction and flux φ 2 in clockwise direction. The flux φ1 will result in the production of torque T1 in the anti clockwise direction and flux φ2 will result in the production of torque T2 In the clockwise direction.

At standstill, these two torques are equal and opposite and the net torque developed is zero. Therefore, single-phase induction motor is not self-starting. Note that each rotating field tends to drive the rotor in the direction in which the field rotates.

Now assume that the rotor is started by spinning the rotor or by using auxiliary circuit, in say clockwise direction. The flux rotating in the clockwise direction is the forward rotating flux (φf) and that in the other direction is the backward rotating flux (φb). The slip w.r.t. the forward flux will be

$$
Sf = \frac{Ns - N}{Ns} = 1 - \frac{N}{Ns} \text{ or } \frac{N}{Ns} = 1 - S
$$

The rotor rotates opposite to the rotation of the backward flux. Therefore, the slip w.r.t. the backward flux will be

$$
Sb = \frac{Ns - (-N)}{Ns} = \frac{Ns + N}{Ns} = 1 + \frac{N}{Ns} = 1 + (1 - S) = 2 - S
$$

Thus for forward rotating flux, slip is s (less than unity) and for backward rotating flux, the slip is $2 - s$ (greater than unity). Since for usual rotor resistance/reactance ratios, the torques at slips of less than unity are greater than those at slips of more than unity, the resultant torque will be in the direction of the rotation of the forward flux. Thus if the motor is once started, it will develop net torque in the direction in which it has been started and will function as a motor.

June 2019 Que: State significance of the back emf in DC motor.

Solution: The presence of back e.m.f. makes the d.c. motor a self-regulating machine i.e., it makes the motor to draw as much armature current as is just sufficient to develop the torque required by the load.

Armature current, $I_a = (V - E_b)/R_a$

- (i) When the motor is running on no load, small torque is required to overcome the friction and windage losses. Therefore, the armature current Ia is small and the back e.m.f. is nearly equal to the applied voltage.
- (ii) If the motor is suddenly loaded, the first effect is to cause the armature to slow down. Therefore, the speed at which the armature conductors move through the field is reduced and hence the back e.m.f. Eb falls. The decreased back e.m.f. allows a larger current to flow through the armature and larger current means increased driving torque. Thus, the driving torque increases as the motor slows down. The motor will stop slowing down when the armature current is just sufficient to produce the increased torque required by the load.
- (iii) If the load on the motor is decreased, the driving torque is momentarily in excess of the requirement so that armature is accelerated. As the armature speed increases, the back e.m.f. Eb also increases and causes the armature current Ia to decrease. The motor will stop accelerating when the armature current is just sufficient to produce the reduced torque required by the load.

It follows, therefore, that back e.m.f. in a d.c. motor regulates the flow of armature current i.e., it automatically changes the armature current to meet the load requirement.

UNIT-5: Electrical Installations

GTU End Sem Exam Solution

2. Tough rubber sheathed (TRS) or cabtyre sheathed (CTS) cables.

These cables are available in 250/440 volt and 650/1,100 volt grades and used in CTS (or TRS) wiring. TRS cable is nothing, but a vulcanized rubber insulated conductor with an outer protective covering of tough rubber, which provides additional insulation and protection against wear and tear. These cables are waterproof, hence can be used in wet conditions. These cables are available as single core, circular twin core, circular three core, flat three core, twin or three core with an earth continuity conductor (ECC). The cores are insulated from each other and covered with a common sheathing.

3. Lead sheathed cables.

These cables are available in 240/415 volt grade. The lead sheathed cable is a vulcanized rubber insulated conductor covered with a continuous sheath of lead. The lead sheath provides very good protection against the absorption of moisture and sufficient protection against mechanical injury and so can be used without casing or conduit system. It is available as a single core, flat twin core, flat three core and flat twin or three core with an earth continuity conductor.

Lead Sheath Cables

The pipe earthing is explained below.

Pipe earthing:

Taking into consideration the factors such as initial cost, inspection, resistance measurement etc. the GI pipe earthing is the best form of ground connection. Iron is the cheapest material and remains serviceable even if put in salty mass of earth. The pipe used as earth electrode is galvanized and perforated.

According to ISI standard specifications, the galvanized pipe shall not be less than 38 mm diameter and 2 meter long for ordinary soil but if the soil is dry and rocky, the length of the

therefore, be used in lieu of fuses and can be fitted in consumer's distribution panel. An MCB is a replacement or most modern substitute for a conventional rewirable fuse. It is more accurate and efficiency system in overload and short circuit protection. An MCB will normally operate at 1.25 times its rated current i.e., a 20A MCB operates at 25A compared with 30A for cartridge fuse or 40A for rewireable fuse. Other advantages of MCB are that they can be quickly reset by hand after operations without any cost and they can be reclosed if the fault still exists. They can be manually reclosed after rectifying the

Operation of Lead Acid Battery

Discharging Operation of Cell:

When the load is connected, the sulphate ions move towards cathode and hydrogen ions moves toward anode. The following chemical action takes place.

At cathode. Pb + $SO_4 \rightarrow PbSO_4$ At anode, $PbO_2 + H_2SO_4 + 2H \rightarrow PbSO_4 + 2H_2O$ Thus during discharging : Both plates are converted to lead sulphate Specific gravity of sulphuric acid is 1.15 Terminal voltage fall from 2.0 V to 1.8 V

Chemical energy changes to electrical energy

Charging Operation of Cell:

For recharging anode is connected to positive terminal of source and cathode is connected to negative terminal. During this hydrogen ions moves towards cathode and sulphate ions towards anode.

At anode, PbSO₄+ O + H₂O \rightarrow PbO₂ + H₂SO₄ At cathode, PbSO₄ + 2H \rightarrow Pb + H₂SO₄

During recharging : Plates regain their original composition Specific gravity of acid become 1.28 Terminal voltage increases from 1.8 V to 2.0 V Electrical energy converted to chemical energy which is stored in cell.

Static Capacitor for Power Factor Improvement

1. Static capacitor.

The power factor can be improved by connecting capacitors in parallel with the equipment operating at lagging power factor. The capacitor (generally known as static condenser) draws a leading current and partly or completely neutralizes the lagging reactive component of load current. This raises the power factor of the load. For three-phase loads, the capacitors can be connected in delta or star as shown in Fig. Static capacitors are invariably used for power factor improvement in factories.

2. Synchronous condenser

A synchronous motor takes a leading current when over-excited and, therefore, behaves as a capacitor. An over-excited synchronous motor running on no load is known as synchronous condenser. When such a machine is connected in parallel with the supply, it takes a leading current which partly neutralizes the lagging reactive component of the load. Thus, the power factor is improved.

Synchronous condenser for Power Factor Improvement

Fig shows the power factor improvement by synchronous condenser method. The 3φ load takes

current I_L at low lagging power factor $\cos \varphi_L$. The synchronous condenser takes a current I_m which leads the voltage by an angle $\varphi_m^*.$ The resultant current I is the phasor sum of I_m and I_L and lags the voltage by an angle φ . It is clear that φ is less than φ_L so that cos φ is

greater than $\cos \varphi_L$. Thus, the power factor is increased from $\cos \varphi_L$ to $\cos \varphi$. Synchronous condensers are generally used at major bulk supply substations for power factor improvement.

3. Phase advancers.

Phase advancers are used to improve the power factor of induction motors. The low power factor of an induction motor is due to the fact that its stator winding draws exciting current which lags behind the supply voltage by 90o. If the exciting ampere turns can be provided from some other a.c. source, then the stator winding will be relieved of exciting current, and the power factor of the motor can be improved. This job is accomplished by the phase advancer which is simply an a.c. exciter. The phase advancer is mounted on the same shaft as the main motor and is connected in the rotor circuit of the motor. It provides exciting ampere turns to the rotor circuit at slip frequency. By providing more ampere turns than required, the induction motor can be made to operate on leading power factor like an overexcited synchronous motor.