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Preface to Sixth Edition
 

The general response to the Fifth Edition of the book was very encouraging. Authors feel that 
their work has been amply rewarded and wish to express their deep sense of gratitude to the large 
number of readers who have used it and in particular to those of them who have sent helpful sugges-
tions from time to time for the improvement of the book.

The popularity of the book is judged from the fact that authors frequently receive feedback from 
many quarters including teachers, students and serving engineers. This feedback helps the authors 
to make the book up-to-date. In the present edition, many new topics/numericals/illustrations have 
been added to make the book more useful.

Authors lay no claim to the original research in preparing the book. Liberal use of materials 
available in the works of eminent authors has been made. What they may claim, in all modesty, is 
that they have tried to fashion the vast amount of material available from primary and secondary 
sources into coherent body of description and analysis.

The authors wish to thank their colleagues and friends who have contributed many valuable 
suggestions regarding the scope and content sequence of the book. Authors are also indebted to  
S. Chand & Company Ltd., New Delhi for bringing out this revised edition in a short time and pricing 
the book moderately inspite of heavy cost of paper and printing.

Errors might have crept in despite utmost care to avoid them. Authors shall be grateful if these 
are pointed out along with other suggestions for the improvement of the book.

V.K. MEHTA

ROHIT MEHTA

Disclaimer : While the authors of this book have made every effort to avoid any mistake or omission and 
have used their skill, expertise and knowledge to the best of their capacity to provide accurate and updated 
information. The authors and S. Chand does not give any representation or warranty with respect to the 
accuracy or completeness of the contents of this publication and are selling this publication on the condition and 
understanding that they shall not be made liable in any manner whatsoever. S.Chand and the author expressly 
disclaim all and any liability/responsibility to any person, whether a purchaser or reader of this publication or 
not, in respect of anything and everything forming part of the contents of this publication. S. Chand shall not 
be responsible for any errors, omissions or damages arising out of the use of the information contained in this 
publication.
Further, the appearance of the personal name, location, place and incidence, if any; in the illustrations used 
herein is purely coincidental and work of imagination. Thus the same should in no manner be termed as 
defamatory to any individual.
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1
Basic  Concepts

Introduction
 Everybody is familiar with the functions that electricity can perform. It can be used for lighting, 
heating, traction and countless other purposes. The question always arises, “What is electricity” ?  
Several theories about electricity were developed through experiments and by observation of its 
behaviour. The only theory that has survived over the years to explain the nature of electricity is the 
Modern Electron theory of matter. This theory has been the result of research work conducted by 
scientists like Sir William Crooks, J.J. Thomson, Robert A. Millikan, Sir Earnest Rutherford and 
Neils Bohr.  In this chapter, we shall deal with some basic concepts concerning electricity.

1.1.  Nature of Electricity
 We know that matter is electrical in nature i.e. it contains particles of electricity viz. protons and 
electrons. The positive charge on a proton is equal to the negative charge on an electron. Whether 
a given body exhibits electricity (i.e. charge) or not depends upon the relative number of these par-
ticles of electricity.
 (i)  If the number of protons is equal to the number of electrons in a body, the resultant charge 
is zero and the body will be electrically neutral.  Thus, the paper of this book is electrically neutral 
(i.e. paper exhibits no charge) because it has the same number of protons and electrons.
 (ii) 	If	from	a	neutral	body,	some	*electrons	are	removed,	there	occurs	a	deficit	of	electrons	in	
the body.  Consequently, the body attains a positive charge.
 (iii)  If a neutral body is supplied with electrons, there occurs an excess of electrons. Conse-
quently, the body attains a negative charge.

1.2. Unit of Charge
 The charge on an electron is so small that it is not convenient to select it as the unit of charge. In 
practice, coulomb is used as the unit of charge i.e. SI unit of charge is coulomb abbreviated as C. One 
coulomb of charge is equal to the charge on 625 × 1016 electrons, i.e.
   1 coulomb = Charge on 625 × 1016 electrons
Thus when we say that a body has a positive charge of one coulomb (i.e. +1 C), it means that the body 
has	a	deficit	of	625	×	1016 electrons from normal due share. The charge on one electron is given by ;

   Charge on electron = 
16

1

625 10
−

×
 = – 1.6 × 10–19 C

1.3. The Electron
 Since electrical engineering generally deals with tiny particles called electrons, these small 
particles require detailed study. We know that an electron is a negatively charged particle having 
negligible mass. Some of the important properties of an electron are :
 (i) Charge on an electron, e = 1.602 × 10–19 coulomb
 (ii) Mass of an electron, m = 9.0 × 10–31 kg
 (iii) Radius of an electron, r = 1.9 × 10–15 metre
* Electrons have very small mass and, therefore, are much more mobile than protons. On the other hand, 

protons are powerfully held in the nucleus and cannot be removed or detached.
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 The ratio e/m of an electron is 1.77 × 1011 coulombs/kg. This means that mass of an electron is 
very small as compared to its charge.  It is due to this property of an electron that it is very mobile 
and	is	greatly	influenced	by	electric	or	magnetic	fields.

1.4. Energy of an Electron
 An electron moving around the nucleus possesses two types of energies viz. kinetic energy due 
to its motion and potential energy due to the charge on the nucleus.  The total energy of the electron 
is the sum of these two energies.  The energy of an electron increases as its distance from the nucleus 
increases.	Thus,	an	electron	in	the	second	orbit	possesses	more	energy	than	the	electron	in	the	first	
orbit ; electron in the third orbit has higher energy than in the second orbit.  It is clear that electrons 
in the last orbit possess very high energy as compared to the electrons in the inner orbits.  These last 
orbit electrons play an important role in determining the physical, chemical and electrical properties 
of a material.

1.5. Valence  Electrons
 The electrons in the outermost orbit of an atom are known as valence electrons.
 The outermost orbit can have a maximum of 8 electrons i.e. the maximum number of valence 
electrons can be 8. The valence electrons determine the physical and chemical properties of a mate-
rial.  These electrons determine whether or not the material is chemically active; metal or non-metal 
or, a gas or solid. These electrons also determine the electrical properties of a material.
	 On	the	basis	of	electrical	conductivity,	materials	are	generally	classified	into	conductors, insu-
lators and semi-conductors.  As a rough rule, one can determine the electrical behaviour of a mate-
rial from the number of valence electrons as under :
 (i)  When the number of valence electrons of an atom is less than 4 (i.e. half of the maximum 
eight electrons), the material is usually a metal and a conductor.  Examples are sodium, magnesium 
and aluminium which have 1, 2 and 3 valence electrons respectively. 
 (ii)  When the number of valence electrons of an atom is more than 4, the material is usually a 
non-metal and an insulator.  Examples are nitrogen, sulphur and neon which have 5, 6 and 8 valence 
electrons respectively.
 (iii)  When the number of valence electrons of an atom is 4 (i.e. exactly one-half of the maximum 
8 electrons), the material has both metal and non-metal properties and is usually a semi-conductor. 
Examples are carbon, silicon and germanium.

1.6. Free  Electrons
 We know that electrons move around the nucleus of an atom in different orbits.  The electrons 
in the inner orbits (i.e., orbits close to the nucleus) are tightly bound to the nucleus.  As we move 
away from the nucleus, this binding goes on decreasing so that electrons in the last orbit (called 
valence electrons) are quite loosely bound to the nucleus.  In certain substances, especially metals 
(e.g. copper, aluminium etc.), the valence electrons are so weakly attached to their nuclei that they 
can be easily removed or detached.  Such electrons are called free electrons.
 Those valence electrons which are very loosely attached to the nucleus of an atom are called 
free electrons.
 The free electrons move at random from one atom to another in the material.  Infact, they are so 
loosely attached that they do not know the atom to which they belong.  It may be noted here that all 
valence electrons in a metal are not free electrons.  It has been found that one atom of a metal can 
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provide at the most one free electron.  Since a small piece of metal has billions of atoms, one can 
expect    a very large number of free electrons in metals.  For instance, one cubic centimetre of copper 
has about 8.5 × 1022 free electrons at room temperature.
 (i) A substance which has a large number of free electrons at room temperature is called a 
conductor of electricity e.g. all metals.  If a voltage source (e.g. a cell) is applied across the wire of 
a	conductor	material,	free	electrons	readily	flow	through	the	wire,	thus	constituting	electric	current.		
The best conductors are silver, copper and gold in that order.  Since copper is the least expensive out 
of these materials, it is widely used in electrical and electronic industries.
 (ii) A substance which has very few free electrons is called an insulator of electricity.  If a 
voltage	source	is	applied	across	the	wire	of	insulator	material,	practically	no	current	flows	through	
the wire.  Most substances including plastics, ceramics, rubber, paper and most liquids and gases 
fall in this category.  Of course, there are many practical uses for insulators in the electrical and 
electronic industries including wire coatings, safety enclosures and power-line insulators.
 (iii) There is a third class of substances, called semi-conductors. As their name implies, they 
are neither conductors nor insulators. These substances have crystalline structure and contain very 
few free electrons at room temperature.  Therefore, at room temperature, a semiconductor practically 
behaves as an insulator.  However, if suitable controlled impurity is imparted to a semi-conductor, 
it is possible to provide controlled conductivity.  Most common semi-conductors are silicon, germa-
nium, carbon etc. However, silicon is the principal material and is widely used in the manufacture 
of electronic devices (e.g. crystal diodes, transistors etc.) and integrated circuits.

1.7. Electric  C  urrent
 The directed flow of free electrons (or charge) is called electric current.	The	flow	of	electric	
current can be beautifully explained by referring to Fig. 1.1.  The copper strip has a large number 
of free electrons. When electric pressure or voltage is applied, then free electrons, being negatively 
charged, will start moving towards the positive terminal around the circuit as shown in Fig. 1.1.  This 
directed	flow	of	electrons	is	called	electric	current.

Fig. 1.1
 The reader may note the following points :
 (i) Current	is	flow	of	electrons	and	electrons	are	the	constituents	of	matter.		Therefore,	electric	
current is matter (i.e. free electrons) in motion.
 (ii) The actual direction of current (i.e.	 flow	of	 electrons)	 is	 from	negative	 terminal	 to	 the	
positive terminal through that part of the circuit external to the cell.  However, prior to Electron 
theory,	it	was	assumed	that	current	flowed	from	positive	terminal	to	the	negative	terminal	of	the	cell	
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via	the	circuit.		This	convention	is	so	firmly	established	that	it	is	still	in	use.	This	assumed	direction	
of current is now called conventional current.
 Unit of Current. The strength of electric current I	is	the	rate	of	flow	of	electrons	i.e. charge 
flowing	per	second.
  \ Current, I = 

Q
t

 The charge Q is measured in coulombs and time t in seconds.  Therefore, the unit of electric 
current will be coulombs/sec or ampere.  If Q = 1 coulomb, t = 1 sec, then I = 1/1 = 1 ampere.
 One ampere of current is said to flow through a wire if at any cross-section one coulomb of 
charge flows in one second.
	 Thus,	if	5	amperes	current	is	flowing	through	a	wire,	it	means	that	5	coulombs	per	second	flow	
past any cross-section of the wire.
 Note.  1 C = charge on 625 × 1016 electrons.  Thus when we say that current through a wire is 1 A, it means 
that 625 × 1016	electrons	per	second	flow	past	any	cross-section	of	the	wire.

 \  I = 
Q ne
t t

=  where e = – 1.6 × 10–19 C ;  n = number of electrons

1.8. Electric Current is a Scalar Quantity

 (i) Electric current, I = 
Q
t

 As both charge and time are scalars, electric current is a 
scalar quantity.
 (ii) We show electric current in a wire by an arrow to 
indicate	 the	 direction	 of	 flow	of	 positive	 charge.	 	But	 such	
arrows are not vectors because they do not obey the laws of 
vector algebra. This point can be explained by referring to 
Fig. 1.2. The wires OA and OB carry currents of 3 A and 4 A 
respectively. The total current in the wire CO is 3 + 4 = 7 A ir-
respective of the angle between the wires OA and OB.  This is 
not surprising because the charge is conserved so that the magnitudes of currents in wires OA and 
OB must add to give the magnitude of current in the wire CO.

1.9. Types of Electric C    urrent
 The	electric	current	may	be	classified	 into	 three	main	classes:	 (i) steady current (ii) varying 
current and (iii) alternating current.
   (i) Steady current. When the magnitude of current does not change with time, it is called 
a steady current. Fig. 1.3 (i) shows the graph between steady current and time. Note that value of 
current remains the same as the time changes. The current provided by a battery is almost a steady 
current (d.c.).

Fig. 1.3

Fig. 1.2
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  (ii) Varying current. When the magnitude of current changes with time, it is called a varying 
current. Fig. 1.3 (ii) shows the graph between varying current and time. Note that value of current 
varies with time.
 (iii) Alternating current. An alternating current is one whose magnitude changes contin-
uously with time and direction changes periodically. Due to technical and economical reasons, we 
produce alternating currents that have sine waveform (or cosine waveform) as shown in Fig. 1.3 (iii). 
It is called alternating current because	current	flows	in	alternate	directions	in	the	circuit,	i.e., from 
0 to T/2 second (T is the time period of the wave) in one direction and from T/2 to T second in the 
opposite direction. The current provided by an a.c. generator is alternating current that has sine (or 
cosine) waveform.

1.10. Mechanism of Current Conduction in Metals
 Every metal has a large number of free electrons which wander randomly within the body of the 
conductor	somewhat	like	the	molecules	in	a	gas.	The	average	speed	of	free	electrons	is	sufficiently	
high ( 105 ms–1) at room temperature. During random motion, the free electrons collide with posi-
tive ions (positive atoms of metal) again and again and after each collision, their direction of motion 
changes. When we consider all the free electrons, their random motions average to zero. In other 
words,	there	is	no	net	flow	of	charge	(electrons)	in	any	particular	direction.	Consequently,	no	current	
is established in the conductor.
 When potential difference is applied across the 
ends of a conductor (say copper wire) as shown in 
Fig.	1.4,	electric	field	is	applied	at	every	point	of	the	
copper	wire.		The	electric	field	exerts	force	on	the	free	
electrons which start accelerating towards the positive 
terminal (i.e.,	opposite	to	the	direction	of	the	field).	As	
the free electrons move, they *collide again and again 
with positive ions of the metal.  Each collision destroys 
the extra velocity gained by the free electrons.
 The average time that an electron spends between two collisions is called the relaxation 
time (t).  Its value is of the order of 10–14 second.
	 Although	the	free	electrons	are	continuously	accelerated	by	the	electric	field,	collisions	prevent	
their	velocity	from	becoming	large.	The	result	is	that	electric	field	provides	a	small	constant	velocity	
towards positive terminal which is superimposed on the random motion of the electrons. This con-
stant velocity is called the drift velocity.
 The average velocity with which free electrons get drifted in a metallic conductor under the 
influence of electric field is called drift velocity ( )dv

→
. The     drift velocity of free electrons is of the 

order of 10–5 ms–1.
	 Thus	when	a	metallic	conductor	is	subjected	to	electric	field	(or	potential	difference),	free	elec-
trons move towards the positive terminal of the source with drift velocity dv→ . Small though it is, the 
drift velocity is entirely responsible for electric current in the metal.
 Note. The reader may wonder that if electrons drift so slowly, how room light turns on quickly when 
switch	is	closed	?		The	answer	is	that	propagation	of	electric	field	takes	place	with	the	speed	of	light.	When	
we	apply	electric	field	(i.e., potential difference) to a wire, the free electrons everywhere in the wire begin 
drifting almost at once.

Fig. 1.4

* What happens to an electron after collision with an ion ?  It moves off in some new and quite random 
direction.	 	However,	 it	still	experiences	the	applied	electric	field,	so	it	continues	to	accelerate	again,	gaining	
a velocity in the direction of the positive terminal. It again encounters an ion and loses its directed motion.  
This situation is repeated again and again for every free electron in a metal.
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1.11. Relation Between Current and Drift Velocity
 Consider a portion of a copper wire through which current I	is	flowing	as	shown	in	Fig.	1.5.		
Clearly,	copper	wire	is	under	the	influence	of	electric	field.
 Let  A = area of X-section of the wire
   n = electron density, i.e., number of  
     free electrons per unit volume
   e = charge on each electron
   vd = drift velocity of free electrons
 In one second, all those free electrons within a 
distance vd to the right of cross-section at P (i.e., in a 
volume Avd)	will	flow	through	the	cross-section	at	P as shown in Fig. 1.5. This volume contains n 
Avd electrons and, hence, a charge (nAvd)e.  Therefore, a charge of neAvd per second passes the cross-
section at P.
 \  I = n e A vd

 Since A, n and e are constant,  I ∝ vd.
 Hence, current flowing through a conductor is directly proportional to the drift velocity of free 
electrons.
 (i) The drift velocity of free electrons is very small.  Since the number of free electrons in a 

metallic conductor is very large, even small drift velocity of free electrons gives rise to 
sufficient	current.

 (ii) The current density J	is	defined	as	current	per	unit	area	and	is	given	by	;

  Current density,  J = 
I
A

 = d
d

n e Av
ne v

A
=

  The SI unit of current density is amperes/m2.
 Note. Current  density is a vector quantity and is denoted by the symbol 

→
J . Therefore, in vector notation, 

the relation between I and 
→
J is I = .

→ →
J A

   where   
→
A  = Area vector

 Example 1.1. A 60 W light bulb has a current of 0.5 A flowing through it. Calculate (i) the 
number of electrons passing through a cross-section of the filament (ii)  the number of electrons that 
pass the cross-section in one hour.
 Solution.  (i) I = 

Q ne
t t

=

  \ n = —19

0.5 1

1.6 1  0

I t
e

×=
×

 = 3.1 × 1018 electrons/s

 (ii) Charge passing the cross-section in one hour is
   Q = I t = (0.5) × (60 × 60) = 1800 C

  Now, Q = n e

  \ n = —19

1800

1.6 10

Q
e

=
×

 = 1.1 × 1022 electrons/hour

 Example 1.2. A copper wire of area of X-section 4 mm2 is 4 m long and carries a current of 10 A.  
The number density of free electrons is 8 × 1028 m–3. How much time is required by an electron to 
travel the length of wire ?
 Solution. I = n A e vd

Fig. 1.5
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 Here I = 10 A ; A = 4 mm2 = 4 × 10–6 m2 ; e = 1.6 × 10–19 C ; n = 8 × 1028 m–3

 \  Drift velocity, vd = —4 —1

28 —6 —19

10
1.95 10 ms

8 10 (4 10 ) 1.6 10

I
n A e

= = ×
× × × × ×

 \ Time taken by the electron to travel the length of the wire is

   t = 4
—4

4
2.05 10 s

1.95 10d

l
v

= = ×
×

 = 5.7 hours

 Example 1.3. The area of X-section of copper wire is 3 × 10–6 m2.  It carries a current of 4.2 A.  
Calculate (i) current density in the wire and (ii) the drift velocity of electrons. The number density 
of conduction electrons is 8.4 × 1028 m–3.
 Solution. (i) Current density, J = —6

4.2

3 10

I
A

=
×

 = 1.4 × 106 A/m2

 (ii)  I = n e A vd

 \	 												Drift velocity, vd = 28 —19 —6

4.2

(8.4 10 ) (1.6 10 ) 3 10

I
n A e

=
× × × × ×

 = 1.04 × 10–4 ms–1

Tutorial Problems

 1.	 How	much	current	is	flowing	in	a	circuit	where	1.27	×	1015 electrons move past a given point in 
100 ms ?    [2.03 A]

 2. The current in a certain conductor is 40 mA.
 (i)  Find the total charge in coulombs that passes through the conductor in 1.5 s.
 (ii) Find the total number of electrons that pass through the conductor in that time.
      [( i) 60 mC (ii) 3.745 × 1017 electrons]
 3. The density of conduction electrons in a wire is 1022 m–3.  If the radius of the wire is 0.6 mm and it is 

carrying a current of 2 A, what will be the average drift velocity ? [1.1 × 10–3 ms–1]
 4.	 Find	the	velocity	of	charge	leading	to	1	A	current	which	flows	in	a	copper	conductor	of	cross-section	

1 cm2 and length 10 km. Free electron density of copper = 8.5 × 1028 per m3. How long will it take the 
electric charge to travel from one end of the conductor to the other ? [0.735 mm/s; 431 years]

1.12. Electric  Potential
 When a body is charged, work is done in charging it. This work done is stored in the body 
in the form of potential energy. The charged body has the capacity to do work by moving other 
charges either by attraction or repulsion. The ability of the charged body to do work is called electric 
potential.
 The capacity of a charged body to do work is called its electric potential.
 The greater the capacity of a charged body to do work, the greater is its electric potential.  
Obviously, the work done to charge a body to 1 coulomb will be a measure of its electric potential 
i.e.
              Electric potential, V = 

Work done

Charge

W
Q

=

 The work done is measured in joules and charge in coulombs.  Therefore, the unit of electric 
potential will be joules/coulomb or volt.  If W = 1 joule, Q = 1 coulomb, then V = 1/1 = 1 volt.
 Hence a body is said to have an electric potential of 1 volt if 1 joule of work is done to 
give it a charge of 1 coulomb.
 Thus, when we say that a body has an electric potential of 5 volts, it means that 5 joules of work 
has been done to charge the body to 1 coulomb.  In other words, every coulomb of charge possesses 
an energy of 5 joules. The greater the joules/coulomb on a charged body, the greater is its electric 
potential.
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1.13. Potential Difference
 The difference in the potentials of two charged bodies is called potential difference.
 If two bodies have different electric potentials, a potential difference exists between the bodies.  
Consider two bodies A and B having potentials of 5 volts and 3 volts respectively as shown in 
Fig. 1.6 (i).  Each coulomb of charge on body A has an energy of 5 joules while each coulomb of 
charge on body B has an energy of 3 joules. Clearly, body A is at higher potential than the body B.

Fig. 1.6
 If the two bodies are joined through a conductor [See Fig. 1.6 (ii)],	then	electrons	will	*flow	
from body B to body A.	When	the	two	bodies	attain	the	same	potential,	the	flow	of	current	stops.		
Therefore,	we	arrive	at	a	very	important	conclusion	that	current	will	flow	in	a	circuit	if	potential	
difference	exists.		No	potential	difference,	no	current	flow.		It	may	be	noted	that	potential	difference	
is sometimes called voltage.
 Unit. Since the unit of electric potential is volt, one can expect that unit of potential difference 
will also be volt.	It	is	defined	as	under	:
 The potential difference between two points is 1 volt if one joule of work is **done or  
released in transferring 1 coulomb of charge from one point to the other.

1.14. Maintaining  Potential  Difference
 A device that maintains potential difference between two points is said to develop electromotive 
force (e.m.f.). A simple example is that of a cell. Fig. 1.7 shows the familiar voltaic cell.  It consists 
of a copper plate (called anode) and a zinc rod (called cathode) immersed in dilute H2SO4.
 The chemical action taking place in the cell removes electrons from copper plate and 
transfers them to the zinc rod. This transference of electrons takes place through the agency of dil. 
H2SO4 (called electrolyte). Consequently, 
the copper plate attains a positive charge of 
+Q coulombs and zinc rod a charge of –Q 
coulombs. The chemical action of the cell 
has done a certain amount of work (say 
W joules) to do so. Clearly, the potential 
difference between the two plates will be W/Q 
volts.  If the two plates are joined through a 
wire, some electrons from zinc rod will be 
attracted through the wire to copper plate. 
The chemical action of the cell now transfers 
an equal amount of electrons from copper 
plate to zinc rod internally through the cell 
to maintain original potential difference (i.e. 
W/Q). This process continues so long as the 
*	 The	 conventional	 current	flow	will	 be	 in	 the	opposite	 direction	 i.e. from body A to body B.
** 1 joule of work will be done in the case if 1 coulomb is transferred from point of lower potential to that of 

higher potential. However, 1 joule of work will be released (as heat) if 1 coulomb of charge moves from a 
point of higher potential to a point of lower potential.

Fig. 1.7
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circuit	is	complete	or	so	long	as	there	is	chemical	energy.		The	flow	of	electrons	through	the	
external wire from zinc rod to copper plate is the electric current.
	 Thus	potential	difference	causes	current	to	flow	while	an	e.m.f. maintains the potential differ-
ence.  Although both e.m.f. and p.d. are measured in volts, they do not mean exactly the same thing.

1.15. Concept of E.M.F. and Potential Difference
 There is a distinct difference between e.m.f. and potential difference.  The e.m.f. of a device, say 
a battery, is a measure of the energy the battery gives to each coulomb of charge.  Thus if a battery 
supplies 4 joules of energy per coulomb, we say that it has an e.m.f. of 4 volts.  The energy given to 
each coulomb in a battery is due to the chemical action.
 The potential difference between two points, say A and B, is a measure of the energy used by 
one coulomb in moving from A to B. Thus if potential difference between points A and B is 2 volts, 
it means that each coulomb will give up an energy of 2 joules in moving from A to B.
 Illustration. The difference between e.m.f. and 
p.d. can be made more illustrative by referring to Fig. 
1.8. Here battery has an e.m.f. of 4 volts.  It means 
battery supplies 4 joules of energy to each coulomb 
continuously. As each coulomb travels from the 
positive terminal of the battery, it gives up its most of 
energy to resistances (2 W and 2 W in this case) and 
remaining to connecting wires.  When it returns to the 
negative terminal, it has lost all its energy originally 
supplied by the battery.  The battery now supplies 
fresh energy to each coulomb (4 joules in the present 
case) to start the journey once again.
 The p.d. between any two points in the circuit is the energy used by one coulomb in moving 
from one point to another.  Thus in Fig. 1.8, p.d. between A and B is 2 volts.  It means that 1 coulomb 
will give up an energy of 2 joules in moving from A to B.  This energy will be released as heat from 
the part AB of the circuit.
 The following points may be noted carefully :
 (i)	 The	name	e.m.f.	at	first	sight	implies	that	it	is	a	force	that	causes	current	to	flow.		This	is	not	
correct because it is not a force but energy supplied to charge by some active device such as a battery.
 (ii) Electromotive force (e.m.f.) maintains potential difference while p.d. causes current to flow.

1.16. Potential Rise and Potential Drop
 Fig. 1.9 shows a circuit with a cell and a resistor.  The cell provides a potential difference of 
1.5 V.  Since it is an energy source, there is a rise in potential associated with a cell. The cell’s 
potential difference represents an e.m.f. so that symbol 
E could be used. The resistor is also associated with a 
potential difference. Since it is a consumer (converter) 
of energy, there is a drop in potential across the resistor. 
We can combine the idea of potential rise or drop with 
the popular term “voltage”. It is customary to refer to 
the potential difference across the cell as a voltage rise 
and to the potential difference across the resistor as a 
voltage drop.

Fig. 1.8

+

–

1.5 V
( )DROP

E = 1.5 V
( )RISE

Fig. 1.9
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 Note. The term voltage refers to a potential difference across two points. There is no such thing as a 
voltage	at	one	point.	In	cases	where	a	single	point	is	specified,	some	reference	must	be	used	as	the	other	
point. Unless stated otherwise, the ground or common point in any circuit is the reference when specifying 
a voltage at some other point.
 Example 1.4. A charge of 4 coulombs is flowing between points A and B of a circuit.  If the 
potential difference between A and B is 2 volts, how many joules will be released by part AB of the 
circuit ?
 Solution. The p.d. of 2 volts between points A and B means that each coulomb of charge will 
give up an energy of 2 joules in moving from A to B.	As	the	charge	flowing	is	4	coulombs,	therefore,	
total energy released by part AB of the circuit is = 4 × 2 = 8 joules.
 Example 1.5. How much work will be done by an electric energy source with a potential differ-
ence of 3 kV that delivers a current of 1 A for 1 minute ?
 Solution. We know that 1 A of current represents a charge transfer rate of 1 C/s.  Therefore, the 
total charge for a period of 1 minute is Q = It = 1 × 60 = 60 C.
         Total work done, W = Q × V = 60 × (3 × 103) = 180 × 103 J = 180 kJ

Tutorial Problems

 1. Calculate the potential difference of an energy source that provides 6.8 J for every milli-coulomb of 
charge that it delivers.    [6.8 kV]

 2. The potential difference across a battery is 9 V.  How much charge must it deliver to do 50 J of work ?  
    [5.56 C]

 3. A 300 V energy source delivers 500 mA for 1 hour.  How much energy does this represent ? [540 kJ]

1.17. Resistance
 The opposition offered by a substance to the flow of electric current is called  its resistance.
	 Since	current	is	the	flow	of	free	electrons,	resistance	is	the	opposition	offered	by	the	substance	
to	the	flow	of	free	electrons.	This	opposition	occurs	because	atoms	and	molecules	of	the	substance	
obstruct	the	flow	of	these	electrons.	Certain	substances	(e.g. metals such as silver, copper, aluminium 
etc.)	offer	very	little	opposition	to	the	flow	of	electric	current	and	are	called	conductors.		On	the	other	
hand,	those	substances	which	offer	high	opposition	to	the	flow	of	electric	current	(i.e.	flow	of	free	
electrons) are called insulators e.g. glass, rubber, mica, dry wood etc.
 It may be noted here that resistance is the electric friction offered by the substance and causes 
production	of	heat	with	the	flow	of	electric	current.		The	moving	electrons	collide	with	atoms	or	
molecules of the substance ; each collision resulting in the liberation of minute quantity of heat.
 Unit of resistance. The practical unit of resistance is ohm and is represented by the symbol W.  
It	is	defined	as	under	:
 A wire is said to have a resistance of 1 ohm if 
a p.d. of 1 volt across its ends causes 1 ampere to flow 
through it (See Fig. 1.10).
	 There	is	another	way	of	defining	ohm.
 A wire is said to have a resistance of 1 ohm if it 
releases 1 joule (or develops 0.24 calorie of heat) when a current of 1 A flows through it for 1 second.
 A little reflection shows that second definition leads to the first definition.  Thus 1 A current 
flowing for 1 second means that total charge flowing is Q = I × t = 1 × 1 = 1 coulomb.  Now the charge 
flowing between A and B (See Fig. 1.10) is 1 coulomb and energy released is 1 joule (or 0.24 calorie).  
Obviously, by definition, p.d. between A and B should be 1 volt.

Fig. 1.10
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1.18. Factors Upon Which Resistance Depends
 The resistance R of a conductor
 (i) is directly proportional to its length i.e.
   R ∝ l
 (ii) is inversely proportional to its area of X-section i.e.

   R ∝ 
1

a
 

 (iii) depends upon the nature of material.
 (iv) depends upon temperature.
	 From	the	first	three	points	(leaving	temperature	for	the	time	being),	we	have,

   R ∝ 
l
a

 or R  = 
l
a

ρ

where	ρ	(Greek	letter	‘Rho’)	is	a	constant	and	is	known	as	resistivity or specific resistance of the 
material.  Its value depends upon the nature of the material.

1.19. Specific Resistance or Resistivity

 We have seen above that R = 
l
a

ρ

   If l = 1 m,  a = 1 m2, then,   R = ρ
 Hence specific resistance of a material is the resistance offered by 1 m length of wire of  
material having an area of cross-section of 1 m2 [See Fig. 1.11 (i)].

Current

1 m

1 m

1 
m

1 m
2

1 m

( )i ( )ii
Fig. 1.11

	 Specific		resistance		can		also		be		defined		in		another		way.		Take		a		cube		of		the		material		having		each	
side  1  m.   Considering  any  two  opposite  faces,  the  area  of  cross-section  is  1  m2  and  length  is 1  m  
[See Fig. 1.11 (ii)] i.e. l = 1 m, a = 1 m2.
 Hence specific resistance of a material may be defined as the resistance between the opposite 
faces of a metre cube of the material.
 Unit of resistivity. We know  R = 

l
a
ρ

 or		 ρ	=	
R a
l

Hence the unit of resistivity will depend upon the units of area of cross-section (a) and length (l).
 (i) If the length is measured in metres and area of cross-section in m2, then unit of resistivity 
will	be	ohm-metre	(Ω	m).

	 	 	 ρ	 =	
2ohm × m

ohm-m
m

=
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 (ii) If length is measured in cm and area of cross-section in cm2, then unit of resistivity will be 
ohm-cm	(Ω	cm).
   ρ	=	

2ohm cm

cm

×
 = ohm-cm

 The resistivity of substances varies over a wide range.  To give an idea to the reader, the follow-
ing table may be referred :

S.No. Material Nature Resistivity (W-m) at 
room temperature

1 Copper metal 1.7 ×10–8

2 Iron metal 9.68 × 10–8

3 Manganin alloy 48 × 10–8

4 Nichrome alloy 100 × 10–8

5 Pure silicon semiconductor 2.5 ×103

6 Pure germanium semiconductor 0.6
7 Glass insulator 1010 to 1014

8 Mica insulator 1011 to 1015

 The reader may note that resistivity of metals and alloys is very small.  Therefore, these materials 
are good conductors of electric current. On the other hand, resistivity of insulators is extremely 
large.  As a result, these materials hardly conduct any current.  There is also an intermediate class of 
semiconductors.  The resistivity of these substances lies between conductors and insulators.

1.20. Conductance
 The reciprocal of resistance of a conductor is called its conductance (G).  If a conductor has 
resistance R, then its conductance G is given by ;
   G = 1/R
	 Whereas	 resistance	 of	 a	 conductor	 is	 the	 opposition	 to	 current	 flow,	 the	 conductance	 of	 a	
conductor	is	the	inducement	to	current	flow.	
 The SI unit of conductance is mho (i.e., ohm spelt backward).  These days, it is a usual practice 
to use siemen as the unit of conductance.  It is denoted by the symbol S.
 Conductivity. The reciprocal of resistivity of a conductor is called its conductivity.  It is 
denoted	by	the	symbol	σ.		If	a	conductor	has	resistivity	ρ,	then	its	conductivity	is	given	by	;

   Conductivity, σ = 
1

ρ
 We know that G = 

1 .a a
R l l

= = σ
ρ

 Clearly, the SI unit of conductivity is Siemen metre−1 (S m−1).

 Example 1.6. A coil consists of 2000 turns of copper wire having a cross-sectional area of 
0.8 mm2. The mean length per turn is 80 cm and the resistivity of copper is 0.02 mW m. Find the 
resistance of the coil and power absorbed by the coil when connected across 110 V d.c. supply. 
 Solution. Length of coil, l = 0.8 × 2000 = 1600 m; cross-sectional area of coil, a = 0.8 mm2 
= 0.8 × 10–6m2; Resistivity of copper, ρ = 0.02 × 10–6 Wm

 \       Resistance of coil, R = 
l
a

ρ  = 0.02 × 10–6 —6

1600

0.8 10×
 = 40 W

           Power absorbed, P = 
2V

R
 = 

2(110)

40
 = 302.5 W
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 Example 1.7. Find the resistance of 1000 metres of a copper wire 25 sq. mm in cross-section.  
The resistance of copper is 1/58 ohm per metre length and 1 sq. mm cross-section.  What will be 
the resistance of another wire of the same material, three times as long and one-half area of cross-
section ?
 Solution.	For	the	first	case,		R1 = ? ; a1 = 25 mm2 ; l1 = 1000 m
            For the second case,  R2 = 1/58 W ; a2 = 1 mm2 ; l2 = 1 m
     R1	 =	 ρ	(l1/a1) ; R2	=	ρ	(l2/a2)

 \  1

2

R
R

 = 1 2

2 1

000 1
40

1 25

l a
l a

1   × = × =      

 or  R1 = 40 R2 = 40 × 
1

58
= 

20
29

W

              For the third case, R3 = ? ; a3 = a1/2 ; l3 = 3l1

 \  3

1

R
R

 = 3 1

1 3

l a
l a

  
×  

   
 = (3) × (2)  = 6

 or  R3 = 6R1 = 6 × 
20

29
 = 

120
29

W

	 Example 1.8. A copper wire of diameter 1 cm had a resistance of 0.15 Ω.  It was drawn under 
pressure so that its diameter was reduced to 50%.  What is the new resistance of the wire ?

 Solution.  Area of wire before drawing, a1 = 
4

π
 (1)2 = 0.785 cm2

 Area of wire after drawing,  a2  =  
4

π
 (0.5)2 = 0.196 cm2

 As the volume of wire remains the same before and after drawing,
 \  a1l1 = a2l2
 or  l2/l1 = a1/a2 = 0.785/0.196 = 4
	 For	the	first	case,	 R1	 =	 0.15	Ω	;	a1 = 0.785 cm2 ; l1 = l
 For the second case, R2 = ? ; a2 = 0.196 cm2 ; l2 = 4l

 Now R1 = 1

1

;
l
a

ρ   R2 = 2

2

l
a

ρ

 \   2

1

R
R

 = 2 1

1 2

l a
l a

   
×   

   
= (4) × (4) = 16

 or  R2 = 16R1 = 16 × 0.15 = 2.4 Ω
 Example 1.9. Two wires of aluminium and copper have the same resistance and same length.  
Which of the two is lighter? Density of copper is 8.9 × 103 kg/m3 and that of aluminium is 2.7 × 103 
kg/m3.  The resistivity of copper is 1.72 × 10−8 Ω m and that of aluminium is 2.6 × 10−8 Ω m.
 Solution.	That	wire	will	be	lighter	which	has	less	mass.	Let	suffix	1	represent	aluminium	and	
suffix	2	represent	copper.
   R1 = R2 or 1 2

1 2
1 2

l l
A A

ρ = ρ

 or  1

1A
ρ

 = 2

2A
ρ

        ( l1 = l2)

 or  1

2

A
A

 = 
—8

1
—8

2

.6 10
1.5

1.72 10

ρ 2 ×= =
ρ ×
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 Now 1

2

m
m

 = 1 1 1 1 1

2 2 2 2 2

( )

( )

A l d A d
A l d A d

=  ( l1 = l2)

 or  1

2

m
m

 =
3

1 1
3

2 2

2.7 10
1.5

8.9 10

A d
A d

    ×× = ×   
×   

 = 0.46

 or  m1/m2 = 0.46
 It is clear that for the same length and same resistance, aluminium wire is lighter than copper 
wire.  For this reason, aluminium wires are used for overhead power transmission lines.
 Example 1.10. A rectangular metal strip has the dimensions x = 10 cm, y = 0.5 cm and  
z = 0.2 cm. Determine the ratio of the resistances Rx, Ry and Rz between the respective pairs of 
opposite faces.
 Solution. Rx : Ry : Rz = : :

ρ ρ ρx y z
yz zx xy

 = 
10 0.5 0.2

: :
0.5 0.2 0.2 10 10 0.5× × ×

 

    = 
10 1

: : 0.04
0.1 4

 = 2500 : 6.25 : 1

 Example 1.11. Calculate the resistance of a copper tube 0.5 cm thick and 2 m long. The external 
diameter is 10 cm. Given that resistance of copper wire 1 m long and 1 mm2 in cross-section is  
1/58 Ω.
 Solution. External diameter,  D = 10 cm
   Internal diameter, d = 10 – 2 × 0.5 = 9 cm

  Area of cross-section, a = 2 2 2 2 2( ) (10) (9) cm
4 4

D dπ π  − = − 

    = 2 2 2(10) (9) 100 mm
4

π  − × 

 \ Resistance of copper tube = 2

1 length in metres

58 area of X-section in mm

l
a
ρ = ×

    = 
2 2

1 2

58 (10) (9) 100
4

×
π  − × 

 = 23.14 × 10–6	Ω	=	23.14 µΩ

 Example 1.12.  A copper wire is stretched so that its length is increased by 0.1%.  What is the 
percentage change in its resistance ?

 Solution. R = 
l
a

ρ ; R′	=	
l
a
′ρ
′

 Now l′	 =	
0.1

100
l l+ × = 1.001 l

 As the volume remains the same, al = a′l′.

 \  a′	 =	
1.001

l aa
l

=
′

 \  
R
R

′
 = 

l a
l a
′   ×      ′

 = (1.001) × (1.001) = 1.002

 or  
R R

R
′ −

 = 0.002

 \  Percentage increase = 100
R R

R
′ − ×  = 0.002 × 100 = 0.2%
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 Example 1.13.  A lead wire and an iron wire are connected in parallel. Their respective specific 
resistances are in the ratio 49 : 24. The former carries 80% more current than the latter and the 
latter 47% longer than the former.  Determine the ratio of their cross-sectional areas.
 Solution.		Let	us	represent	lead	and	iron	by	suffixes	1	and	2	respectively.		Then	as	per	the	condi-
tions of the problem, we have,

   1

2

ρ
ρ

 = 
49

24
 ;  I1 = 1.8 I2 ; l2 = 1.47 l1

 Now R1 = 1
1

1

ρ
l
a

 ; R2 = 2
2

2

l
a

ρ

   I1 = 
1

V
R

 and I2 = 
2

V
R

 \  2

1

I
I

 = 1 1 1 2 1 1 2

2 1 2 2 2 2 1

R l a l a
R a l l a

     ρ ρ
= × = × ×     ρ ρ     

 or  
1

1.8
 = 2

1

49 1

24 1.47

a
a

× ×

 \  2

1

a
a

 = 
1 24

1.47
1.8 49

× × = 0.4

 Example 1.14. An aluminium wire 7.5 m long is connected in parallel with a copper wire 6 m 
long. When a current of 5 A is passed through the combination, it is found that the current in the 
aluminium wire is 3 A.  The diameter of the aluminium wire is 1 mm.  Determine the diameter of the 
copper wire.  Resistivity of copper is 0.017 µΩm ; that of the aluminium is 0.028 µΩ m.
 Solution.  Let us assign subscripts a and c to aluminium and copper respectively.
 Current through Al wire, Ia =  3 A
 \ Current through Cu wire, Ic = 5 – 3 = 2 A
 Since Ra and Rc are in parallel, the voltage across them is the same [See Fig. 1.12] i.e.

   Ia Ra = Ic Rc or 
2

3
a c

c a

R I
R I

= =

 Now Ra = a a

a

l
a

ρ
 ; Rc = c c

c

l
a

ρ

 \  c

a

R
R

 = c c a

a a c

l a
l a

ρ
× ×

ρ

 Here   c

a

R
R

 = 
0.017 6

; ; ;
2 0.028 7.5

3 ρ
= =

ρ
c c

a a

l
l

   aa = 
2

2 2(1)
mm

4 4 4

π π× π= =d

 \  
3

2
 = 

0.017 6 / 4

0.028 7.5 ca
π× ×

 or  ac = 
2 0.017 6

3 0.028 7.5 4

π× × ×  = 0.2544 mm2

 or  2

4 cdπ
 = 0.2544  \ dc = 0.569 mm

Fig. 1.12
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 Example 1.15.  A transmission line cable consists of 19 strands of identi-
cal copper conductors, each 1.5 mm in diameter. The length of the cable is 2 
km but because of the twist of the strands, the actual length of each conductor 
is increased by 5 percent.  What is resistance of the cable ?  Take the resistivity 
of the copper to be 1.78 × 10–8 Ω m.
 Solution.  Fig. 1.13 shows the general shape of a stranded conductor.  
Allowing for twist, the length of the strands is
   l = 2000 m + 5% of 2000 m = 2100 m

 Area of X-section of 19 strands, a = —3 2 —6 2(19) (1.5 10 ) 33.576 10 m
4

π × × = ×  
 

 \  Resistance of line, R = —8
—6

2100
1.72 10

33.576 10

l
a

ρ = × ×
×

 = 1.076 Ω

 Example 1.16. The resistance of the wire used for telephone is 35 Ω per kilometre when the 
weight of the wire is 5 kg per kilometre.  If the specific resistance of the material is 1.95 × 10–8 Ω m, 
what is the cross-sectional area of the wire ? What will be the resistance of a loop to a subscriber 8 
km from the exchange if wire of the same material but weighing 20 kg per kilometre is used?
 Solution.	For	the	first	case,	R	 =	 35	Ω	 ;	 l	=	1000	m	 ;	 ρ	=	1.95	×	10–8	Ω	m

 Now R = 
l
a

ρ    \ a = 
—81.95 10 1000

35

l
R
ρ × ×=  = 55.7 × 10–8 m2

 Since weight of conductor is directly proportional to the area of cross-section, for the second 
case, we have,

  a = 
20

5
 × 55.7 × 10–8 = 222.8 × 10–8 m2 ; l = 2 × 8 = 16 km = 16000 m

 \   R = 
l
a

ρ  = 1.95 × 10–8 × —8

16000

222.8 10×
 = 140.1 Ω

 Example 1.17. Find the resistance of a cubic centimetre of copper (i) when it is drawn into a 
wire of diameter 0.32 mm and (ii) when it is hammered into a flat sheet of 1.2 mm thickness, the 
current flowing through the sheet from one face to another, specific resistance of copper is 1.6 × 10–8 
W-m.
 Solution. Volume of copper wire, v = 1 cm3 = 1 × 10–6 m3

 (i) Resistance when drawn into wire.

  Area of X-section, a = 2 —3 2(0.32 10 )
4 4

dπ π= ×  = 0.804 × 10–7 m2

  Length of wire, l = 
—6

—7

1 10
12.43m

0.804 10

v
a

×= =
×

  \ Resistance of wire, R = 
l
a

ρ  = 1.6 × 10–8 —7

12.43

0.804 10×
 = 2.473 W 

 (ii) Resistance when hammered into flat sheet.

  Length of f lat sheet, l = 1.2 × 10–3	m	;		Area	of	cross-section	of	flat	sheet	is

   a = 
v
l

 =
—6 —3

2

—3

1 10 10
m

1.21.2 10

× =
×

  \ Resistance of copper flat sheet is    R = 
—3

—8

—3

1.2 10
1.6 10

10 /1.2

l
a

×ρ = ×  = 2.3 × 10–8 W

Fig. 1.13
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Tutorial Problems

 1. Calculate the resistance of 915 metres length of a wire having a uniform cross-sectional area of 0.77 cm2 
if the wire is made of copper having a resistivity of 1.7 × 10–6	Ω	cm.	 [0.08 Ω]

 2.	 A	wire	of	length	1	m	has	a	resistance	of	2	ohms.	What	is	the	resistance	of	second	wire,	whose	specific	
resistance	is	double	the	first,	if	the	length	of	wire	is	3	metres	and	the	diameter	is	double	of	the	first?	[3 Ω]

 3. A rectangular copper strip is 20 cm long, 0.1 cm wide and 0.4 cm thick.  Determine the resistance 
between (i) opposite ends (ii) opposite sides.  The resistivity of copper is 1.7 × 10–6	Ω	cm.	

[(i) 0.85 × 10–4 Ω (ii) 0.212 × 10–6 Ω]
 4.	 A	cube	of	a	material	of	side	1	cm	has	a	resistance	of	0.001	Ω	between	its	opposite	faces.		If	the	same	

material has a length of 9 cm and a uniform cross-sectional area 1 cm2, what will be the resistance of 
this length ?    [0.009 Ω]

 5. An aluminium wire 10 metres long and 2 mm in diameter is connected in parallel with a copper wire 6 
metres long.  A total current of 2 A is passed through the combination and it is found that current through 
the	aluminium	wire	is	1.25	A.		Calculate	the	diameter	of	copper	wire.		Specific	resistance	of	copper	is				
1.6 × 10–6	Ω	cm	and	that	of	aluminium	is	2.6	×	10–6	Ω	cm.	 [0.94 mm]

 6. A copper wire is stretched so that its length is increased by 0.1%.  What is the percentage change in its 
resistance ?    [0.2%]

1.21. Types  of  Resistors
 A component whose function in a circuit is to provide a specified value of resistance is called  
a resistor. The principal applications of resistors are to limit current, divide voltage and in certain 
cases, generate heat.  Although there are a variety of different types of resistors, the following are the 
commonly used resistors in electrical and electronic circuits :
 (i) Carbon composition types (ii) Film resistors
 (iii) Wire-wound resistors (iv) Cermet resistors
 (i) Carbon composition type. This	type	of	resistor	is	made	with	a	mixture	of	finely	ground	
carbon,	 insulating	filler	and	a	 resin	binder.	 	The	 ratio	of	carbon	and	 insulating	filler	decides	 the	
resistance value [See Fig. 1.14]. The mixture is formed into a rod and lead connections are made.  
The entire resistor is then enclosed in a plastic case to prevent the entry of moisture and other 
harmful elements from outside.

Fig. 1.14

 Carbon resistors are relatively inexpensive to build.  However, they are highly sensitive to 
temperature variations. The carbon resistors are available in power ratings ranging from 1/8 to 2 W.
 (ii) Film resistors. In	a	film	resistor,	a	resistive	material	is	deposited	uniformly	onto	a	high-
grade	ceramic	 rod.	 	The	 resistive	film	may	be	carbon	 (carbon	film	 resistor)	or	nickel-chromium	
(metal	film	resistor).	In	these	types	of	resistors,	the	desired	resistance	value	is	obtained	by	removing	
a part of the resistive material in a helical pattern along the rod as shown in Fig. 1.15.
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	 Metal	 film	 resistors	 have	 better	
characteristics	as	compared	 to	carbon	film	
resistors.
 (iii) Wire-wound resistors. A wire-
wound resistor is constructed by winding 
a resistive wire of some alloy around 
an insulating rod.  It is then enclosed in 
an	 insulating	 cover.	 	 Generally,	 nickle-
chromium alloy is used because of its very 
small	temperature	coefficient	of	resistance.		
Wire-wound resistors can safely operate 
at higher temperatures than carbon types. 
These resistors have high power ratings ranging from 12 to 225 W.
 (iv) Cermet resistors. A	cermet	 resistor	 is	made	by	depositing	a	 thin	film	of	metal	 such	as	
nichrome or chromium cobalt on a ceramic substrate.  They are cermet which is a contraction for 
ceramic and metal.  These resistors have very accurate values.

1.22. Effect of Temperature on Resistance
 In general, the resistance of a material changes with the change in temperature. The effect of 
temperature upon resistance varies according to the type of material as discussed below :
 (i) The resistance of pure metals 
(e.g. copper, aluminium) increases with 
the increase of temperature. The change 
in resistance is fairly regular for normal 
range of temperatures so that temperature/
resistance graph is a straight line as 
shown in Fig. 1.16 (for copper). Since 
the resistance of metals increases with 
the rise in temperature, they have positive 
temperature co-efficient of resistance.
 (ii) The resistance of electrolytes, 
insulators (e.g. glass, mica, rubber etc.) 
and semiconductors (e.g. germanium, 
silicon etc.) decreases with the increase 
in temperature.  Hence these materials have negative temperature co-efficient of resistance.
 (iii) The resistance of alloys increases with the rise in temperature but this increase is very small 
and irregular.  For some high resistance alloys (e.g. Eureka, manganin, constantan etc.),  the change 
in resistance is practically negligible over a wide range of temperatures.
 Fig. 1.16 shows temperature/resistance graph for copper which is a straight line.  If this line is 
extended	backward,	it	would	cut	the	temperature	axis	at	−234.5°C.  It means that theoretically, the 
resistance	of	copper	wire	is	zero	at	−234.5°C.  However, in actual practice, the curve departs (point 
A) from the straight line path at very low temperatures.

1.23. Temperature Co-efficient of Resistance
 Consider a conductor having resistance R0 at 0°C and Rt at t °C.  It has been found that in the 
normal range of temperatures, the increase in resistance (i.e. Rt	−	R0)
 (i) is directly proportional to the initial resistance i.e.
   Rt	−	R0 ∝ R0

Fig. 1.15

Fig. 1.16



Basic Concepts 19 

 (ii) is directly proportional to the rise in temperature i.e.
   Rt −	R0 ∝ t
 (iii) depends upon the nature of material.
	 	 Combining	the	first	two,	we	get,
   Rt	−	R0 ∝ R0 t
 or  Rt	−	R0 = *a0 R0 t ...(i)
where	 α0	 is	 a	 constant	 and	 is	 called	 temperature	 co-efficient	 of	 resistance	 at	 0°C. Its value 
depends upon the nature of material and temperature.
 Rearranging eq. (i), we get,
   Rt = R0	(1	+	α0 t) ...(ii)
 Definition of a0.  From eq. (i), we get,

   a0 = 0

0

tR R
R t

−
×

    = Increase in resistance/ohm original resistance/°C rise in tem-  
     perature
 Hence temperature co-efficient of resistance of a conductor is the increase in resistance per  
ohm original resistance per °C rise in temperature.
 A little reflection shows that unit of a will be ohm/ohm°C i.e./°C. Thus, copper has a  
temperature co-efficient of resistance of 0.00426/°C. It means that if a copper wire has a resistance 
of 1 W at 0°C, then it will increase by 0.00426 W for 1°C rise in temperature i.e. it will become  
1.00426 W at 1°C. Similarly, if temperature is raised to 10°C, then resistance will become 1 + 10 × 
0.00426 = 1.0426 ohms. 
 The following points may be noted carefully :
 (i) Those substances (e.g. pure metals) whose resistance increases with rise in temperature 
are said to have positive	temperature	co-efficient	of	resistance.		On	the	other	hand,	those	substances	
whose resistance decreases with increase in temperature are said to have negative temperature co-
efficient	of	resistance.
 (ii) If a conductor has a resistance R0, R1 and R2 at 0oC, t1

oC and t2
oC respectively, then,

   R1 = R0 (1 + a0 t1)

   R2 = R0 (1 + a0 t2)

 \  2

1

R
R

 = 0 2

0 11

t
t

1+ α
+ α

 ...(iii)

 This relation is often utilised in determining the rise of temperature of the winding of an  
electrical machine. The resistance of the winding is measured both before and after the test run.  Let 
R1 and t1 be the resistance and temperature before the commencement of the test.  After the operation 
of the machine for a given period, let these values be R2 and t2. Since R1 and R2 can be measured 
and t1 (ambient temperature) and a0 are known, the value of t2 can be calculated from eq. (iii). The 
average rise in temperature of the winding will be (t2	−	t1)°C.
 Note. The life expectancy of electrical apparatus is limited by the temperature of its insulation; the higher 
the temperature, the shorter the life.  The useful life of electrical apparatus reduces approximately by half every 
time the temperature increases by 10°C.  This means that if a motor has a normal life expectancy of eight years 

* It will be shown in Art. 1.25 that value of a depends upon temperature. Therefore, it is referred to the 
original temperature i.e. 0°C in this case. Hence the symbol a0.
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at a temperature of 100°C, it will have a life expectancy 
of only four years at a temperature of 110°C, of two years 
at a temperature of 120°C and of only one year at 130°C.

1.24. Graphical Determination of a
	 The	 value	 of	 temperature	 co-efficient	 of	
resistance can also be determined graphically 
from temperature/resistance graph of the material.  
Fig. 1.17 shows the temperature/resistance graph 
for a conductor. The graph is a straight line AX as is 
the case with all conductors.  The resistance of the 
conductor is R0 (represented by OA) at 0°C and it 
becomes Rt at t°C.		By	definition,

   a0 = 0

0

tR R
R t

−
×

 But  Rt	−	R0 = BC
 and  t = rise in temperature = AB

 \  a0 = 
0

BC
R AB×

 But BC/AB is the slope of temperature/resistance graph.

 \	 	 α0 = Slope of temp./resistance graph

Original resistance
 ...(i)

 Hence, temperature co-efficient of resistance of a conductor at 0°C is the slope of temp./
resistance graph divided by resistance at 0°C (i.e. R0).
 The following points may be particularly noted :
 (i) The	value	of	α	depends	upon	temperature.		At	any	temperature,	a can be calculated by using 

eq. (i).
	 	 	 	 	 Thus,	 α0 = 

0

Slope* of temperature/resistance graph

R

	 	 	 	 	 and	 αt = 
Slope of temperature/resistance graph

tR

 (ii)	 The	 value	 of	 α0 is maximum and it decreases as the temperature is increased.  This is  
clear from the fact that the slope of temperature/resistance graph is constant and R0 has the 
minimum value.

1.25. Temperature Co-efficient at Various Temperatures
 Consider a conductor having resistances R0 and R1 at temperatures 0°C and t1°C respectively.  
Let a0 and a1	 be	 the	 temperature	 co-efficients	 of	 resistance	 of	 the	 conductor	 at	 0°C and t1°C 
respectively.  It is desired to establish the relationship between a1 and a0. Fig. 1.18 shows the 
temperature/resistance graph of the conductor.  As proved in Art. 1.24,

  a0 = 
0

Slope of graph

R
\   Slope of graph = a0 R0

Fig. 1.17

* The slope of temp./resistance graph of a conductor is always constant (being a straight line).
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 Similarly, a1 = 
1

Slope of graph

R
or       Slope of graph = a1 R1

 Since the slope of temperature/resistance graph is 
constant,
 \    a0 R0  =  a1 R1

or    a1 = 0 0

1

R
R

α
 = 0 0

0 0 1(1 )

R
R t

α
+ α

 

                             [ R1 = R0	(1	+	α0 t1)]

 \   a1 = 
0 11 t

0α
+ α

        ...(i)

 Similarly,* a2 = 0

0 21 t
α

+ α
 ...(ii)

 Subtracting the reciprocal of eq. (i) from the 
reciprocal of eq. (ii),
   

2 1

1 1−
α α

 = 0 10 2

0 0

11 tt + α+ α −
α α  = t2	−	t1

 \  a2 = 
2 1

1

1
1 ( )t t+ −

α

 ...(iii)

 Eq. (i)	gives	the	relation	between	α1	and	α0 while Eq. (iii)	gives	the	relation	between	α2	and	α1.

1.26. Summary of Temperature Co-efficient Relations

 (i) If R0	and	α0	are	the	resistance	and	temperature	co-efficient	of	resistance	of	a	conductor	at	
0oC, then its resistance Rt at t°C is given by ;

   Rt = R0(1	+	α0 t)
 (ii) If a0, a1 and a2	 are	 the	 temperature	 co-efficients	 of	 resistance	 at	 0°C, t1°C and t2°C 

respectively, then,

 	 α1 = 0

0 11 t
α

+ α
	;			α2 =  0

0 21 t
α

+ α
	;			α2 = 

2 1
1

1
1 ( )+ −

α
t t

 (iii) Suppose R1 and R2 are the resistances of a conductor at t1°C and t2°C	respectively.		If	α1 is 
the	temperature	co-efficient	of	resistance	at	t1

oC, then,
   R2** = R1[1	+	α1(t2	−	t1)]

1.27. Variation of Resistivity With Temperature
	 Not	only	 resistance	 but	 resistivity	 or	 specific	 resistance	 of	 a	material	 also	 changes	with	
temperature. The change in resistivity per °C change in temperature is called temperature 

Fig. 1.18

*   a0R0 = a2R2 where R2 is the resistance at t2°C

 or  a2 = 0 0 0 0 0

2 0 0 2 0 2(1 ) 1

R R

R R t t

α α α
= =

+ α + α
**   Slope of graph, tan q = R0 a0 = R1 a1 = R2 a2

 Increase in resistance as temperature is raised from t1°C to t2°C
    = tan q(t2 – t1) = R1a1(t2 – t1)
 \  Resistance at t2°C, R2 = R1 + R1a1(t2 – t1) = R1[1 + a1(t2 – t1)]
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coefficient of resistivity. In case of metals, the resistivity increases with increase in temperature 
and vice-versa. It is found that resistivity of a metallic conductor increases linearly over a wide 
range of temperatures and is given by ;
   ρt = ρ0(1 + a0t)
 where ρ0 = resistivity of metallic conductor at 0°C
   ρt = resistivity of metallic conductor at temperature t°C
	 Note	that	temperature	coefficient	of	resistivity	is	equal	to	temperature	coefficient	of	resis-
tance a0.
 Example 1.18. A coil has a resistance of 18 W when its mean temperature is 20°C and of 20 W 
when its mean temperature is 50°C. Find its mean temperature rise when its resistance is 21W and 
the surrounding temperature is 15°C.
 Solution. Let R0 be the resistance of the coil at 0°C and a0	be	its	temperature	coefficient	of	
resistance at 0°C. Then, 
   18 = R0 (1 + a0 × 20) and 20 = R0 (1 + a0 × 50)

 \  
20

18
 = 0

0

1 50

1 20

+ α
+ α

 or a0 = 
1

0.004/
250

C= °

 If t°C is the temperature of the coil when its resistance is 21W, then,
   21 = R0 (1 + 0.004 t)

 \  
21

18
 = 0

0

(1 0.004 )

(1 0.004 20)

R t
R

+
+ ×

 or t = 65°C

 \  Temperature rise = t – 15 = 65° – 15° = 50°C
 Example 1.19. The resistance of the field coils of a dynamo is 173 Ω at 16oC.  After working for 
6 hours on full-load, the resistance of the coils increases to 212 Ω.  Calculate (i) the temperature of 
the coils (ii) mean rise of temperature of the coils.  Assume temperature co-efficient of resistance of 
copper is 0.00426/oC at 0oC.
 Solution.  (i)  Let toC	be	the	final	temperature.

   16

t

R
R

 = 0 0

0 0

(1 16)

(1 )

R
R t

+ α ×
+ α ×

  or 
173

212
 = 

1 0.00426 16

1 0.00426 t
+ ×
+ ×

  or 0.816 = 
1.068

1 0.00426 t+
  \ t = 72.5°C

 (ii) Rise in temperature = t	−	16	=	72.5	−	16	=	56.5°C
 Example 1.20. The resistance of a transformer winding is 460 Ω at room temperature of 25oC.  
When the transformer is running and the final temperature is reached, the resistance of the winding 
increases to 520 Ω.  Find the average temperature rise of winding, assuming that α20 = 1/250 per oC.

 Solution. a25 = 
20

1 1 1
/

1/ (25 — 20) 250 5 255
C= = °

α + +

 Let toC	be	the	final	temperature	of	the	winding.		Then,	the	rise	in	temperature	is	t	−	25.
 Now, R25	 =	 460	Ω	;	Rt	=	520	Ω
   Rt = R25[1	+	α25(t	−	25)]

or   t	−	25	 =	
25 25

1
1tR

R
 

− α  
	=	255(520/460	−	1)	=	33.26°C

 \ Temperature rise = t	−	25	=	32.26°C
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 Example 1.21. The filament of a 60 watt, 230 V lamp has a normal working temperature of 
2000oC.  Find the current flowing in the filament at the instant of switching, when the lamp is cold.  
Assume the temperature of cold lamp to be 15°C and α15 = 0.005/oC.
 Solution.  Resistance of lamp at 2000oC is
   R2000 = V2/P = (230)2/60	=	881.67	Ω
   R2000 = R15[1	+	α15(2000	−	15)]

 \  R15 = 2000 881.67
80.7

1 0.005(1985) 10.925

R
= = Ω

+
 \ Current taken by cold lamp (i.e. at the time of switching) is
   I = V/R15 = 230/80.7 = 2.85 A
 Example 1.22. Two coils connected in series have resistances of 600 W and 300 W and temperature 
coefficients of 0.1% and 0.4% per °C at 20°C respectively. Find the resistance of combination at a 
temperature of 50°C. What is the effective temperature coefficient of the combination at 50°C ?
 Solution.  Resistance of 600 W coil at 50°C
    = 600 [1 + 0.001(50 – 20)] = 618 W
 Resistance of 300 W coil at 50°C
    = 300 [1 + 0.004 (50 – 20)] = 336 W
 Resistance of series combination at 50°C is
   R50 = 618 + 336 = 954 W
	 Resistance of series combination at 20°C is
   R20 = 600 + 300 = 900 W
 Now R50 = R20 [1 + a20 (t2 – t1)]

 \  a20 = 

50

20

2 1

9541 1
900 0.002
50 — 20

R
R
t t

− −
= =

−

 Now a50 = 
20 2 1

1

1/ ( )t tα + −
 = 

1

1/ 0.002 (50 20)+ −
 = 

1 / °C
530

  

 Example 1.23.  The coil of a relay takes a current of 0.12 A when it is at the room temperature 
of 15°C and connected across a 60 V supply.  If the minimum operating current of the relay is 0.1 
A, calculate the temperature above which the relay will fail to operate when connected to the same 
supply.  Resistance temperature coefficient of the coil material is 0.0043 per °C at 0°C.
 Solution.  Resistance of relay coil at 15°C, R15	=	60/0.12	=	500	Ω
 If the temperature increases, the resistance of relay coil increases and current in relay coil de-
creases.  Let t°C be the temperature at which the current in relay coil becomes 0.1 A (= the minimum 
relay coil current for its operation).  Clearly, Rt	=	60/0.1	=	600	Ω.
 Now, R15 = R0	(1	+	15	α0) = R0 (1 + 15 × 0.0043)
   Rt = R0	(1	+	α0t) = R0 (1 + 0.0043 t)

 \  
15

tR
R

 = 
1 0.0043

1.0645

t+

 or  
600

500
 = 

1 0.0043

1.0645

t+

   On solving, t = 64.5°C
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 If the temperature of relay coil increases above 64.5°C, the resistance of relay coil will increase 
and the relay coil current will be less than 0.1 A.  As a result, the relay will fail to operate.
 Example 1.24. Two materials, A and B, have resistance temperature coefficients of 0.004 and 
0.0004 respectively at a given temperature.  In what proportion must A and B be joined in series to 
produce a circuit having a temperature coefficient of 0.001 ?
 Solution.  Let the resistance of A	be	1	Ω	and	that	of	B be x	Ω	i.e. RA	=	1	Ω	and	RB = x	Ω.
 Resistance of series combination = RA + RB = (1 + x)	Ω
 Suppose the temperature rises by t°C.
 Resistance of series combination at the raised temperature  = (1 + x) (1 + 0.001 t) ...(i)
 Resistance of A at the raised temperature = 1 (1 + 0.004 t) ...(ii)
 Resistance of B at the raised temperature = x (1 + 0.0004 t) ...(iii)
 As per the conditions of the problem, we have, (ii) + (iii) = (i)
 or  1 (1 + 0.004 t) + x (1 + 0.0004 t) = (1 + x) (1 + 0.001 t)
 or  0.004 t + 0.0004 t x = (1 + x) × 0.001 t
 Dividing by t and multiplying throughout by 104, we have,
   40 + 4x = 10 (1 + x)    \ x = 5
 \  RA : RB = 1 : 5 i.e. RB should be 5 times RA.
 Example 1.25. A resistor of 80 Ω resistance, having a temperature 
coefficient of 0.0021/°C is to be constructed.  Wires of two materials of 
suitable cross-sectional areas are available. For material A, the resis-
tance is 80 Ω per 100 m and the temperature coefficient is 0.003/°C.  For 
material B, the corresponding figures are 60 Ω per 100 m and 0.0015/°C.  
Calculate suitable lengths of wires of materials A and B to be connected 
in series to construct the required resistor.  All data are referred to the 
same temperature.
 Solution.  Let RA and RB be the required resistances of materials A and B respectively which 
when	joined	in	series	have	a	combined	temperature	coefficient	of	0.0021	[See	Fig.	1.19].
 Resistance of series combination = RA + RB

 Resistance of series combination at raised temperature = (RA + RB) (1 + 0.0021 t) ...(i)
 Resistance of A at raised temperature = RA (1 + 0.003 t) ...(ii)
 Resistance of B at raised temperature = RB (1 + 0.0015 t) ...(iii)
 As per conditions of the problem, (ii) + (iii) = (i).
 \ RA (1 + 0.003 t) + RB (1 + 0.0015 t) = (RA + RB) (1 + 0.0021 t)

 On solving, B

A

R
R

 = 
3

2
 ...(iv)

 Now, RA + RB = 80 ...(v)
 From eqs. (iv) and (v), RA	 =	 32	Ω	and	RB	=	48	Ω
 \  Length of wire A, LA = (100/80) × 32 = 40 m
   Length of wire B, LB = (100/60) × 48 = 80 m
 Example 1.26. Two wires A and B are connected in series at 0°C and resistance of B is 3.5 times 
that of A. The resistance temperature coefficient of A is 0.4% and that of combination is 0.1%. Find 
the resistance temperature coefficient of B.

R
A

R
B

I

V

Fig. 1.19
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 Solution.	Let	the	temperature	coefficient	of	resistance	of	wire	B be aB. If R is the resistance of 
wire A, then,    
   RA = R  ;  RB = 3.5 R
 Total resistance of two wires at 0°C = RA + RB = R + 3.5 R = 4.5 R
 Increase in resistance of wire A per °C rise = aA R = 0.004 R
 Increase in resistance of wire B per °C rise = aB × 3.5 R = 3.5 R aB

 Total increase in the resistance of combination per °C rise = 0.004 R + 3.5 R aB ... (i)
 Also, total increase in the resistance of combination per °C rise = aC × Total resistance of com-
bination =  0.001 × 4.5 R = 0.0045 R  ... (ii)
 From eqs. (i) and (ii), 0.004 R + 3.5 RaB = 0.0045 R

 \  aB = 0.0045 0.004

3.5

R R
R

−  = 0.000143/°C or 0.0143%

 Example 1.27.  Two conductors, one of copper and the other of iron, are connected in parallel 
and carry equal currents at 25°C. What proportion of current will pass through each if the tem-
perature is raised to 100°C? The temperature co-efficients of resistance at 0°C are 0.0043/°C and 
0.0063/°C for copper and iron respectively.
 Solution. Since copper and iron conductors carry equal currents at 25°C, their resistances are 
the same at this temperature. Let their resistance be R ohms at 25°C.  If R1 and R2 are the resistances 
of copper and iron conductors respectively at 100°C, then,
   R1 = R [1 + 0.0043 (100 – 25)] = 1.3225 R
   R2 = R [1 + 0.0063 (100 – 25)] = 1.4725 R
 If I is the total current at 100°C, then,

 Current in copper conductor = 2

1 2

1.4725
0.5268

1.3225 1.4725

R RI I I
R R R R

× = × =
+ +

 

 Current in iron conductor = 1

1 2

1.3225
0.4732

1.3225 1.4725

R RI I I
R R R R

× = × =
+ +

 

 Therefore, at 100°C, the copper conductor will carry 52.68% of total current and the remaining 
47.32% will be carried by iron conductor.
 Example 1.28. A semi-circular ring of copper has an inner radius 6 cm, radial thickness 3 cm 
and an axial thickness 4 cm. Find the resistance of the ring at 
50°C between its two end-faces. Assume specific resistance of 
copper at 20°C = 1.724 × 10–6 W-cm and resistance tempera-
ture coefficient of copper at 0°C = 0.0043/°C.
 Solution. Fig. 1.20 shows the semi-circular ring.
 Mean radius of the ring, rm = (6 + 9)/2 = 7.5 cm
 Mean length between end faces is
   lm = prm = p × 7.5 = 23.56 cm
 Cross-sectional area of the ring is
   a = 3 × 4 = 12 cm2

 Now a20 = 0

0

0.0043

1 1 0.0043 20t
α

=
+ α + ×

    = 0.00396/°C
Fig. 1.20
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 Also ρ50 = ρ20 [1 + a20 (t – 20)]

    = 1.724 × 10–6 [1 + 0.00396 × (50 – 20)]
    = 1.93 × 10–6 W cm

 \  R50 = 
—6

50 1.93 10 23.56

12
ml

a
ρ × ×=  = 3.79 × 10–6 W

 This example shows that resistivity of a conductor increases with the increase in temperature 
and vice-versa.
 Example 1.29. A copper conductor has its specific resistance of 1.6 ×10–6 W cm at 0°C and a 
resistance temperature coefficient of 1/254.5 per °C at 20°C. Find  (i) specific resistance and (ii) the 
resistance temperature coefficient at 60°C.

 Solution.  a20 = 0

01 20

α
+ α ×

 or 0

0

1

254.5 1 20

α
=

+ α ×
 0

1
/ C

234.5
∴ α = °

  (i)  ρ60 = ρ0 (1 + a0 × 60) = 1.6 × 10–6 (1 + 60/234.5) = 2.01 × 10–6 W cm

 (ii)   a60 = 
2 1

20

1 1
1 254.5 (60 20)( )t t

= =
+ −+ −

α

1 / °C
294.5

 Example 1.30. The filament of a 240 V metal-filament lamp is to be constructed from a wire 
having a diameter of 0.02 mm and a resistivity at 20° C of 4.3 mW cm. If a20 = 0.005/°C, what length 
of filament is necessary if the lamp is to dissipate 60 W at a filament temperature of 2420°C ? 

 Solution. Power to be dissipated by the lamp at 2420°C is 

    
2

2420

V
R

 = 60 \ R2420 = 
2 2(240)

960
60 60

V = = Ω

 Now R2420 = R20 [1 + a20 (2420 – 20)]

 or   960 = R20 [1 + 0.005 (2420 – 20)]

 \   R20 = 960/13 W

 Now ρ20 = 4.3 × 10–6 W cm ; a = 2 —1 2 2(0.02 10 ) cm
4 4

dπ π= ×

 \    Length of filament is l = 
—1 2

20
—6

20

(0.02 10 ) 960

4 4.3 10 13

a R× π × ×= ×
ρ × ×

 = 54 cm

Tutorial Problems

 1.	 The	shunt	winding	of	a	motor	has	a	resistance	of	35.1	Ω	at	20°C.		Find	its	resistance	at	32.6°C.	The	
temperature	co-efficient	of	copper	is	0.00427/°C	at	0°C.	 [39.6 Ω]

 2.	 The	resistance	of	a	coil	of	wire	increases	from	40	Ω	at	10°C	to	48.25	Ω	at	60°C.	Find	the	temperature	
coefficient	at	0°C	of	the	conductor	material.	 [0.0043/°C]

 3.	 The	coil	of	an	electromagnet,	made	of	copper	wire,	has	resistance	of	4	Ω	at	a	 temperature	of	22°C.		
After operating for 2 days, the coil current is 42 A at a terminal voltage of 210 V. Calculate the average 
temperature of the coil at that time.  [86.1°C]

 4.	 The	filament	of	a	60	watt	incandescent	lamp	possesses	a	cold	resistance	of	17.6	Ω	at	20°C.		The	lamp	
draws	a	current	of	0.25	A	when	connected	to	a	240	V	source.		Calculate	the	temperature	of	hot	filament.		
Take	temperature	co-efficient	at	0°C	as	0.0055/°C.	 [2571oC]
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 5. A nichrome heater is operated at 1500°C.  What is the percentage increase in its resistance over that at 
room	temperature	(20°C)	?		Temperature	co-efficient	of	nichrome	is	0.00016/°C	at	0°C.	 [23.6%]

 6. Two wires A and B are connected in series at 0°C and resistance of B is 3.5 times that of A.  The resistance 
temperature	coefficient	of	A is 0.4% and that of the combination is 0.1%.  Find the resistance temperature 
coefficient	of	B.    [0.0143%]

 7.	 A	d.c.	shunt	motor	after	running	for	several	hours	on	constant	voltage	mains	of	400	V	takes	a	field	current	
of 1.6 A.  If the temperature rise is known to be 40°C, what value of extra circuit resistance is required to 
adjust	the	field	current	to	1.6	A	when	starting	from	cold	at	20°C	?		Temperature	coefficient	=	0.0043/°C	
at 20°C.    [36.69 Ω]

 8.	 A	potential	difference	of	250	V	is	applied	to	a	copper	field	coil	at	a	temperature	of	15°C	and	the	current	
is 5 A.  What will be the mean temperature of the coil when the current has fallen to 3.91 A, the applied 
voltage being the same as before ?  [85°C]

 9. An insulating material has an insulation resistance of 100% at 0°C.  For each rise in temperature of 5°C 
its resistance is reduced by 10%.  At what temperature is the insulation resistance halved ? [33°C]

 10.	 A	 carbon	 electrode	 has	 a	 resistance	 of	 0.125	Ω	 at	 20°C.	 	The	 temperature	 coefficient	 of	 carbon	 is	 
–0.0005 at 20°C.  What will the resistance of the electrode be at 85°C ? [0.121 Ω]

1.28. Ohm’s  Law
 The relationship between voltage (V), the current (I) and resistance (R)	in	a	d.c.	circuit	was	first	
discovered	by	German	scientist	George	Simon	*Ohm.		This	relationship	is	called	Ohm’s	law	and	
may be stated as under :
 The ratio of potential difference (V) between the ends of a conductor to the current (I) 
flowing between them is constant, provided the physical conditions (e.g. temperature etc.) do 
not change i.e.
   

V
I

  = Constant = R

where R is the resistance of the conductor between the two points considered.
 For example, if in Fig. 1.21 (i), the voltage between points A and B is V volts	and	current	flow-
ing is I amperes, then V/I will be constant and equal to R, the resistance between points A and B.  If 
the voltage is doubled up, the current will also be doubled up so that the ratio V/I remains constant.  
If we draw a graph between V and I, it will be a straight line passing through the origin as shown in 
Fig. 1.21 (ii).  The resistance R between points A and B is given by slope of the graph i.e.
   R	 =	 tan	θ	=	V/I = Constant
 Ohm’s law can be expressed in three forms viz.
   I = V/R ;  V = IR ;  R = V/I
 These formulae can be applied to any part of a d.c. circuit or to a complete circuit.  It may be 
noted that if voltage is measured in volts and current in amperes, then resistance will be in ohms.

Fig. 1.21

* The unit of resistance (i.e. ohm) was named in his honour.
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1.29. Non-ohmic  Conductors
 Those conductors which do not obey Ohm’s law (1 ∝ V) are called non-ohmic conductors e.g., 
vacuum tubes, transistors, electrolytes, etc. A non-ohmic conductor may have one or more of the 
following properties :
 (i) The V-I graph is non-linear i.e. V/I is variable.
 (ii) The V-I graph may not pass through the origin as in case of an ohmic conductor.
 (iii) A non-ohmic conductor may conduct poorly or not at all when the p.d. is reversed.
 The non-linear circuit problems are generally solved by graphical methods.

 
 Fig. 1.22
 Fig. 1.22 illustrates the graphs of non-ohmic conductors. Note that V-I graphs for these non-
ohmic conductors are not a straight line.
 Example 1.31. What is the value of the unknown resistor R in Fig. 1.23 (i) if the voltage drop 
across the 500 W resistor is 2.5 volts ? All resistances are in ohm.

Fig. 1.23

 Solution.  Fig. 1.23 (ii) shows the various currents in the circuit.

   I2 = 
Voltage drop across 500 2.5

500 500

Ω =
Ω

 = 0.005 A

 Voltage across CMD or CD is given by ;
   VCMD = VCD = I2 (50 + 500) = 0.005 × 550 = 2.75 V

 Now I = 
12 12 2.75

0.0168 A
550 550

CDV− −= =

 \  I1 = I – I2 = 0.0168 – 0.005 = 0.0118 A 

 Now VCD = I1 R \ R = 
1

2.75

0.0118
CDV
I

=  = 233 W

 Example 1.32.  A metal filament lamp takes 0.3 A at 230 V.  If the voltage is reduced to 115 V, 
will the current be halved ? Explain your answer.
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 Solution.  No.  It is because Ohm’s law is applicable only if the resistance of the circuit does not 
change.  In the present case, when voltage is reduced from 230 V to 115 V, the temperature of the 
lamp will decrease too much, resulting in an enormous decrease of lamp resistance.  Consequently, 
Ohm’s law (I = V/R) cannot be applied.  To give an idea to the reader, the hot resistance (i.e. at normal 
operating temperature) of an incandescent lamp is more than 10 times its cold resistance.
 Example 1.33. A coil of copper wire has resistance of 90 W at 20°C and is connected to a 230 V 
supply. By how much must the voltage be increased in order to maintain the current constant if the 
temperature of the coil rises to 60°C? Take a0 for copper = 0.00428/°C.  
 Solution.   R20 = R0(1 + a0 × 20) ; R60 = R0 (1 + a0 × 60)

 \  60

20

1 0.00428 60 1.2568

1 0.00428 20 1.0856

R
R

+ ×= =
+ ×

 or   R60 = R20 × 
1.2568 1.2568

90 104.2
1.0856 1.0856

= × = Ω

   Now, current at 20°C = 
230 23

A
90 9

=

 The wire resistance has become 104.2 W at 60°C. Therefore, in order to keep the current constant 
at the previous value, the new voltage required = (23/9) × 104.2 = 266.3 V.
 \ Required voltage increase = 266.3 – 230 = 36.3 V

Tutorial Problems
 1. A battery has an e.m.f. of 12.8 V and supplies a current of 3.2 A.  What is the resistance of the circuit ?  

How many coulombs leave the battery in 5 minutes ? [4 Ω ; 960 C]
 2. In a discharge tube, the number of hydrogen ions (i.e. protons) drifting across a cross-section per second 

is 1.2 × 1018 while the number of electrons drifting in the opposite direction is 2.8 × 1018 per second.  If 
the supply voltage is 220 V, what is the effective resistance of the tube ? [344 Ω]

 3.	 An	 electromagnet	 of	 resistance	 12.4	Ω	 requires	 a	 current	 of	 1.5	A	 to	 operate	 it.	 	 Find	 the	 required	
voltage.    [18.6 V]

 4.	 The	cold	resistance	of	a	certain	gas-filled	tungsten	lamp	is	18.2	Ω	and	its	hot	resistance	at	the	operating	
voltage	of	220	V	is	202	Ω.		Find	the	current	(i) at the instant of switching (ii) under normal operating 
conditions.    [(i) 12.08 A (ii) 1.09 A]

1.30. Electric  Power
 The rate at which work is done in an electric circuit is called its electric power i.e.

   Electric power = 
Work done in electric circuit

Time
 When voltage is applied to a circuit, it causes current (i.e.	electrons)	to	flow	through	it.		Clearly,	
work is being done in moving the electrons in the circuit.  This work done in moving the electrons in 
a unit time is called the electric power.  Thus referring to the part AB of the circuit (See Fig. 1.24),
   V = P.D. across AB in volts
   I = Current in amperes
   R = Resistance of AB	in	Ω
   t = Time in sec. for which         
	 	 	 	 	 current	flows
The	total	charge	that	flows	in	t seconds is Q = I × t	coulombs	and	by	definition	(See	Art.	1.12),

   V = 
Work

Q

Fig. 1.24
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or   Work = VQ = VIt ( Q = It)

 \  Electric power, P = 
Work

t
= 

VIt
t

 = VI  joules/sec or watts

 \  P = VI = I2R = 
2V

R
 [ V = IR and I = V/R]

 The above three formulae are equally valid for calculation of electric power in a d.c. circuit.  
Which one is to be used depends simply on which quantities are known or most easily determined.
 Unit of electric power.  The basic unit of electric power is joules/sec or watt.  The power 
consumed	in	a	circuit	is	1	watt	if	a	p.d.	of	1	V	causes	1	A	current	to	flow	through	the	circuit.
   Power in watts = Voltage in volts × Current in amperes
 The bigger units of electric power are kilowatts (kW) and megawatts (MW).
   1 kW = 1000 watts ; 1 MW = 106 watts or 103 kW

1.31. Electrical  Energy
 The total work done in an electric circuit is called electrical energy i.e.
   Electrical energy = Electrical power × Time

    = V I t = I2R t = 
2V t

R
 The reader may note that formulae for electrical energy can be readily derived by multiplying 
the	electric	power	by	‘t’,	the	time	for	which	the	current	flows.		The	unit	of	electrical	energy	will	
depend upon the units of electric power and time.
 (i) If power is taken in watts and time in seconds, then the unit of electrical energy will be 

watt-sec. i.e.
   Energy in watt-sec. = Power in watts × Time in sec.
 (ii) If power is expressed in watts and time in hours, then unit of electrical energy will be  

watt-hour i.e.
   Energy in watt-hours = Power in watts × Time in hours
 (iii) If power is expressed in kilowatts and time in hours, then unit of electrical energy will be 

kilowatt-hour (kWh) i.e.
   Energy in kWh = Power in kW × Time in hours
 It may be pointed out here that in practice, electrical energy is measured in kilowatt-hours 
(kWh).		Therefore,	it	is	profitable	to	define	it.
 One kilowatt-hour (kWh) of electrical energy is expended in a circuit if 1 kW (1000 watts) of 
power is supplied for 1 hour.
 The electricity bills are made on the basis of total electrical energy consumed by the consumer.  
The unit for charge of electricity is 1 kWh.  One kWh is also called Board of Trade (B.O.T.) unit or 
simply unit.  Thus when we say that a consumer has consumed 100 units of electricity, it means that 
electrical energy consumption is 100 kWh.

1.32. Use of Power and Energy Formulas
 It has already been discussed that electric power as well as electrical energy consumed can be 
expressed by three formulas.  While using these formulas, the following points may be kept in mind:

 (i)  Electric power, P = I2 R = 
2V

R
 watts

   Electrical energy consumed, W = I2 Rt = 
2V t

R
 joules
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  The above formulas apply only to resistors and to devices (e.g. electric bulb, heater, electric 
kettle etc) where all electrical energy consumed is converted into heat.

 (ii)  Electric power, P = VI watts
   Electrical energy consumed, W = VIt joules
  These formulas apply to any type of load including the one mentioned in point (i).
 Example 1.34. A 100 V lamp has a hot resistance of 250 Ω. Find the current taken by the lamp 
and its power rating in watts. Calculate also the energy it will consume in 24 hours.
 Solution.  Current taken by lamp, I = V/R = 100/250 = 0.4 A
   Power rating of lamp, P = VI = 100 × 0.4 = 40 W
 Energy consumption in 24 hrs.  = Power × time = 40 × 24 = 960 watt-hours
 Example 1.35. A heating element supplies 300 kilojoules in 50 minutes. Find the p.d. across the 
element when current is 2 amperes.
 Solution.   Total charge, Q = I × t = 2 × 50 × 60 = 6000 C

   P.D., V = 
3Work 300 10

Charge 6000

×=  = 50 V

 Example 1.36. A 10 watt resistor has a value of 120 Ω.  What is the rated current through the 
resistor ?
 Solution.   Rated power, P = I2R

 \  Rated current, I = 
10

120

P
R

=  = 0.2887 A

 If current through the resistor exceeds this value, the resistor will be burnt due to excessive heat.
 Note.  Every electrical equipment has power and current ratings marked on its body.  While the equipment 
is in operation, care should be taken that neither of these limits is exceeded, otherwise the equipment may be 
damaged/burnt due to excessive heat.
 Example 1.37. The following are the details of load on a circuit connected through a supply 
metre :
 (i) Six lamps of 40 watts each working for 4 hours per day
 (ii) Two flourescent tubes 125 watts each working for 2 hours per day
 (iii) One 1000 watt heater working for 3 hours per day
 If each unit of energy costs 70 P, what will be the electricity bill for the month of June ?
 Solution.  Total wattage of lamps = 40 × 6 = 240 watts
   Total wattage of tubes = 125 × 2 = 250 watts
   Wattage of heater = 1000 watts
 Energy consumed by the appliances per day
    = (240 × 4) + (250 × 2) + (1000 × 3)
    = 4460 watt-hours = 4.46 kWh
 Total energy consumed in the month of June (i.e. in 30 days)
    = 4.46 × 30 = 133.8 kWh
 Bill for the month of June = Rs. 0.7 × 133.8 = Rs. 93.66

Tutorial Problems
 1.	 A	resistor	of	50	Ω	has	a	p.d.	of	100	volts	d.c.	across	it	for	1	hour.		Calculate	(i) power and (ii) energy. 
      [(i) 200 watts (ii) 7.2 × 105 J]
 2.	 A	current	of	10	A	flows	through	a	resistor	for	10	minutes	and	the	power	dissipated	by	the	resistor	is	100	

watts.  Find the p.d. across the resistor and the energy supplied to the circuit. [10 V ; 6 × 104 J]
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 3.	 A	factory	is	supplied	with	power	at	210	volts	through	a	pair	of	feeders	of	total	resistance	0.0225	Ω.		The	
load consists of 354, 250 V, 60 watt lamps and 4 motors each taking 40 amperes.  Find :

 (i) total current required
 (ii) voltage at the station end of feeders
 (iii) power wasted in feeders.      [(i) 231.4 A  (ii) 215.78 V  (iii) 1.4 kW]
 4. How many kilowatts will be required to light a factory in which 250 lamps each taking 1.3 A at 230 V 

are used ?    [74.75 kW]

1.33. Power Rating of a Resistor
 The ability of a resistor to dissipate power as heat without destructive temperature build-up 
is called power rating of the resistor.
 Power rating of resistor = I2R or V2/R [See Fig. 1.25]
 Suppose the power rating of a resistor is 2 W.  It means that 
I2R or V2/R should not exceed 2 W.  Suppose the quantity I2R (or 
V2/R) for this resistor becomes 4 W.  The resistor is able to dissi-
pate 2 W as heat and the remaining 2 W will start building up the 
temperature.  In a matter of seconds, the resistor will burn out.
 The physical size of a resistor is not necessarily related to its resistance value but rather to its 
power rating.  A large resistor is able to dissipate (throw off) more heat because of its large physical 
size.  In general, the greater the physical size of a resistor, the greater is its power rating and vice-
versa.
 Example 1.38.  A 0.1 Ω resistor has a power rating of 5 W.  Is this resistor safe when conducting 
a current of 10 A ?
 Solution.  Power developed in the resistor is
   P = I2R = (10)2 × 0.1 = 10 W
 The resistor is not safe since the power developed in the resistor exceeds its dissipation rating.
 Example 1.39. What is the maximum safe current flow in a 47 Ω, 2 W resistor ?
 Solution.   Power rating = I2R

 or  2 = I2 × 47 \ Maximum safe current, I = 
2

47
 = 0.21 A

 Example 1.40.  What is the maximum voltage that can be applied across a 100 Ω, 10 W resistor 
in order to keep within the resistor’s power rating ?
 Solution.   Power rating = V2/R

 or  10 = V2/100 \ Max. safe voltage, V = 10 100×  = 31.6 volts

Tutorial Problems
 1.	 A	200	Ω	resistor	has	a	2	W	power	rating.		What	is	the	maximum	current	that	can	flow	in	the	resistor	

without exceeding the power rating ? [100 mA]
 2.	 A	6.8	kΩ,	0.25	W	resistor	shows	a	potential	difference	of	40	V.		Is	the	resistor	safe	?	 [Yes]
 3.	 A	1.5	kΩ	resistor	has	1	W	power	rating.	 	What	maximum	voltage	can	be	applied	across	 the	resistor	

without exceeding the power rating ? [38.73 V]

1.34. Nonlinear  Resistors
 A device or circuit element whose V/I characteristic is not a straight line is said to exhibit 
nonlinear resistance.
	 The	examples	of	nonlinear	resistors	are	thermistors,	varistors,	diodes,	filaments	of	incandescent	
lamps etc.

Fig. 1.25
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 1. Thermistors. A thermistor is a heat sensitive device usually made of a semiconductor  
material whose resistance changes very rapidly with change of temperature.  A thermistor has the 
following important properties :
 (i) The resistance of a thermistor changes very rapidly with change of temperature.
 (ii)	 The	temperature	coefficient	of	a	thermistor	is	very	high.
 (iii)	 The	temperature	co-efficient	of	a	thermistor	can	be	both	positive	and	negative.

 
  

Fig. 1.26

 Fig. 1.27

 Construction. Thermistors are made from semiconductor oxides of iron, nickel and cobalt.  
They are generally in the form of beads, discs or rods (See Fig. 1.26).  A pair of platinum leads are 
attached at the two ends for electrical connections.  The arrangement is enclosed in a very small  
glass bulb and sealed.
 Fig. 1.27 shows the resistance/temperature characteristic of a typical thermistor with negative 
temperature	coefficient.		The	resistance	decreases	progressively	from	4000	Ω	to	3	Ω	as	its	tempera-
ture varies from – 50°C to +150°C.
Applications
 (a)	 A	thermistor	with	negative	temperature	coefficient	

of resistance may be used to safeguard against 
current surges in a circuit where this could be 
harmful e.g. in a circuit where the heaters of the 
radio valves are in series (See Fig. 1.28).

  A thermistor T is included in the circuit.  When the 
supply voltage is switched on, the thermistor has 
a	high	resistance	at	first	because	it	is	cold.		It	thus	limits	the	current	to	a	moderate	value.		 
As it warms up, the thermistor resistance drops appreciably and an increased current then 
flows	through	the	heaters.

 (b) A thermistor with a negative temperature coefficient can be used to issue an alarm 
for excessive temperature of winding of motors, transformers and generators [See 
Fig. 1.29].

Fig. 1.28
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Fig. 1.29
 When the temperature of windings is low, the thermistor is cool and its resistance is high.  
Therefore,	only	a	small	current	flows	through	the	thermistor	and	the	relay	coil.		When	the	tempera-
ture of the windings is high, the thermistor is hot and its resistance is low.  Therefore, a large current 
flows	in	the	relay	coil	to	close	the	contacts.		This	completes	the	circuit	for	the	signal	lamp	or	buzzer.
 2. Varistor (Thyrite). A varistor is a nonlinear resistor whose resistance decreases as the 
voltage increases.  Therefore, a varistor is a voltage-dependent resistor. It is made of silicon-carbide 
powder and is built in the shape of a disc. The V-I 
characteristic of a typical varistor is shown in Fig. 
1.30. The curve shows that the current increases 
dramatically with increasing voltage.  Thus when the 
voltage increases from 1.5 kV to 10 kV, the current 
rises from 1 mA to 100 A.  Varistors are placed in 
parallel with critical components which might be 
damaged by high transient voltages.  Under normal 
conditions, the varistor remains in high-resistance 
state and draws very little current.  On the application 
of surge, the varistor is driven to its low-resistance 
state.  The varistor then conducts a relatively large 
amount of current and dissipates much of the surge as 
heat.  Thus the component is saved from damage. Fig. 1.30

OBJECTIVE QUESTIONS
 1. The resistance of a wire is R ohms. It is stretched 

to double its length. The new resistance of the 
wire in ohms is

 (i) R/2 (ii) 2R
 (iii) 4R (iv) R/4
 2. The example of non-ohmic resistance is
 (i) copper wire 
 (ii) carbon resistance
 (iii) tungsten wire
 (iv) diode
 3. In which of the following substances, the resis-

tance decreases with the increase of tempera-
ture

 (i) carbon (ii) constantan
 (iii) copper (iv) silver

 4. The resistance of a wire of uniform diameter d 
and length l is R.  The resistance of another wire 
of the same material but diameter 2d and length 
4l will be

 (i) 2R (ii) R
 (iii) R/2 (iv) R/4
 5.	 The	 temperature	 coefficient	of	 resistance	of	 a	

wire is 0.00125 ºC–1.  At 300 K, its resistance is 
one ohms.  The resistance of the wire will be 2 
ohms at

  (i) 1154 K (ii) 1100 K
 (iii) 1400 K (iv) 1127 K
 6. The resistance of 20 cm long wire is 5 ohms.  

The wire is stretched to a uniform wire of 40 cm 
length.  The resistance now will be (in ohms)

 (i) 5 (ii) 10
 (iii) 20 (iv) 200
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 7.	 A	 current	 of	 4.8	A	 is	 flowing	 in	 a	 conductor.		
The	 number	 of	 electrons	 flowing	 per	 second	
through the X-section of conductor will be

 (i) 3 × 1019 electrons   
 (ii) 76.8 × 1020 electrons
 (iii) 7.68 × 1020 electrons  
 (iv) 3 × 1020 electrons 
 8. A carbon resistor has coloured strips as brown, 

green, orange and silver respectively.  The re-
sistance is

 (i)	 15	k	Ω	±	10%	 (ii)	 10	k	Ω	±	10%
 (iii)	 15	k	Ω	±	5%	 (iv)	 10	k	Ω	±	5%
 9.	 A	wire	has	a	resistance	of	10	Ω.		It	is	stretched	

by one-tenth of its original length.  Then its re-
sistance will be

 (i)	 10	Ω	 (ii)	 12.1	Ω
 (iii)	 9	Ω	 (iv)	 11	Ω
 10.	 A	 10	m	 long	wire	 of	 resistance	 20	Ω	 is	 con-

nected in series with a battery of e.m.f. 3 V 
(negligible internal resistance) and a resistance 
of	10	Ω.		The	potential	gradient	along	the	wire	
in volt per metre is

 (i) 0.02 (ii) 0.1
 (iii) 0.2 (iv) 1.2
 11. The diameter of an atom is about
 (i) 10–10 m (ii) 10–8 m
 (iii) 10–2 m (iv) 10–15 m
 12. 1 cm3 of copper at room temperature has about
 (i) 200 free electrons
 (ii) 20 × 1010 free electrons
 (iii) 8.5 × 1022 free electrons
 (iv) 3 × 105 free electrons
 13.	 The	electric	current	is	due	to	the	flow	of
 (i) positive charges only
 (ii) negative charges only
 (iii) both positive and negative charges

 (iv) neutral particles only
 14. The quantity of charge that will be transferred 

by	a	current	flow	of	10	A	over	1	hour	period	is
 (i) 10 C (ii) 3.6 × 104 C
 (iii) 2.4 × 103 C (iv) 1.6 × 102 C
 15. The drift velocity of electrons is of the order of
 (i) 1 ms–1 (ii) 10–3 ms–1

 (iii) 106 ms–1 (iv) 3 × 108 ms–1

 16.	 Insulators	have	.................	temperature	co-effi-
cient of resistance.

 (i) zero (ii) positive
 (iii) negative (iv) none of the above
 17.	 Eureka	has	 ................	 temperature	co-efficient	

of resistance.
 (i) almost zero (ii) negative
 (iii) positive (iv) none of the above
 18. Constantan wire is used for making standard 

resistances because it has .................
 (i)	 low	specific	resistance
 (ii)	 high	specific	resistance
 (iii)	 negligibly	small	temperature	co-efficient	

of resistance
 (iv) high melting point
 19. Two resistors A and B have resistances RA and 

RB respectively with RA < RB.  The resistivities 
of	their	materials	are	ρA	and	ρB.  Then,

 (i)	 ρA	>	ρB (ii)	 ρA	=	ρB

 (iii)	 ρA	<	ρB

 (iv)	 Information	insufficient
 20. In case of liquids, Ohm’s law is ..............
 (i) fully obeyed
 (ii) partially obeyed
 (iii) there is no relation between current and 

p.d.
 (iv) none of the above.

ANSWERS

 1. (iii) 2. (ii) and (iii) 3. (i) 4. (ii) 5. (ii) 
 6. (iii) 7. (i) 8. (i) 9. (ii) 10. (iii) 
 11. (i) 12. (iii) 13. (iii) 14. (ii) 15. (ii) 
 16. (iii) 17. (i) 18. (iii) 19. (iv) 20. (i)
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Introduction
	 It	is	well	known	that	electric	current	flows	in	a	closed	path.	The	closed	path	followed	by	electric	
current	is	called	an	electric	circuit.	The	essential	parts	of	an	electric	circuit	are	(i)		the	source	of	
power	(e.g.	battery,	generator	etc.),	(ii)	the	conductors	used	to	carry	current	and	(iii)		the	load*	(e.g. 
lamp,	heater,	motor	etc.).	The	source	supplies	electrical	energy	to	the	load	which	converts	it	into	
heat	or	other	forms	of	energy.	Thus,	conversion	of	electrical	energy	into	other	forms	of	energy	is	
possible	only	with	suitable	circuits.	For	instance,	conversion	of	electrical	energy	into	mechanical	
energy	is	achieved	by	devising	a	suitable	motor	circuit.	In	fact,	the	innumerable	uses	of	electricity	
have	been	possible	only	due	to	the	proper	use	and	application	of	electric	circuits.	In	this	chapter,	we	
shall	confine	our	discussion		to	d.c.	circuits	only	i.e.	circuits	carrying	direct	current.

2.1. D.C.  Circuit
 The closed path followed by direct current (d.c.) is called a d.c. circuit.
 A	d.c.	circuit	essentially	consists	of	a	source	of	d.c.	power	
(e.g.	battery,	d.c.	generator	etc.),	 the	conductors	used	to	carry	
current	and	the	load.	Fig.	2.1 shows	a	torch	bulb	connected	to	
a	battery	through	conducting	wires.	The	direct	current	**starts	
from	 the	 positive	 terminal	 of	 the	 battery	 and	 comes	 back	 to	
the	 starting	point	via	 the	 load.	The	direct	 current	 follows	 the	
path	ABCDA	and	ABCDA	 is	a	d.c.	circuit.	The	load	for	a	d.c.	
circuit	 is	usually	a	***	resistance.	 In	a	d.c.	circuit,	 loads	 (i.e. 
resistances)	may	 be	 connected	 in	 series	 or	 parallel	 or	 series-
parallel.	Accordingly,	d.c.	circuits	can	be	classified	as	:
 (i) Series circuits
 (ii) Parallel circuits
 (iii)	 Series-parallel	circuits.

2.2. D.C.  Series  Circuit
 The d.c. circuit in which resistances are connected end to end so that there is only one path 
for current to flow is called a d.c. series circuit.
 Consider	three	resistances	R1,	R2	and	R3 ohms	connected	in	series	across	a	battery	of	V	volts	
as		shown	in	Fig.	2.2	(i).	Obviously,	there	is	only	one	path	for	current	I i.e.	current	is	same	throughout	
the	circuit.	By	Ohm’s	law,	voltage	across	the	various	resistances	is	
                    V1 = I R1 ; V2 = I R2 ; V3 = I R3

 Now V  = V1 +  V2+ V3

   = I R1 + I R2 + IR 3

*	 	 The	 device	 which	 utilises	 electrical	 energy	 is	 called	 load.	 For	 instance,	 heater	 converts	 electrical	 energy	
supplied	 to	 it	 into	 heat.	Therefore,	 heater	 is	 the	 load.

**	 	 This	 is	 the	direction	of	 conventional	 current.	However,	 the	 electron	flow	will	 be	 in	 the	opposite	 direction.
***	 Other	 passive	 elements	viz.	 inductance	 and	 capacitance	 are	 relevant	 only	 in	 a.c.	 circuits.

Fig. 2.1

2
D.C.  Circuits
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     = I	(R1 + R2 + R3)

or  V
I  = R1 + R2 + R3 

Fig. 2.2

	 But	V/I is the total resistance RS	between	points A	and	B.  Note that RS	is	called	the	*total	or	
equivalent	resistance	of	the	three	resistances.
 \ RS = R1	+ R2	+ R3     
 Hence when a number of resistances are connected in series, the total resistance is equal to 
the sum of the individual resistances.
	 The	total	conductance	GS	of	the	circuit	is	given	by	;

  GS = 
1 2 3

1 1

SR R R R
=

+ +

 Also 1

SG  = 
1 2 3

1 1 1
G G G

+ +

	 The	main	characteristics	of	a	series	circuit	are	:
 (i)	 The	current	in	each	resistor	is	the	same.
 (ii)	 The	total	resistance	in	the	circuit	is	equal	to	the	sum	of	individual	resistances.
 (iii)	 The	 total	 power	 dissipated	 in	 the	 circuit	 is	 equal	 to	 the	 sum	 of	 powers	 dissipated	 in	

individual	resistances.	Thus	referring	to	Fig.	2.2	(i),
  RS = R1 + R2 + R3

 or I2RS = I2R1 + I2R2 + I2R3

 or PS = P1 + P2 + P3

 Thus total power dissipated in a series circuit is equal to the sum of powers dissipated in 
individual resistances.	As	we	shall	see,	this	is	also	true	for	parallel	and	series-parallel	d.c.	circuits.
 Note. A	series	resistor	circuit	[See	Fig.	2.2	(i)]	can	be	considered	to	be	a	voltage divider circuit because	the	
potential	difference	across	any	one	resistor	is	a	fraction	of	the	total	voltage	applied	across	the	series	combination;	
the	fraction	being	determined	by	the	values	of	the	resistances.

 Example 2.1. Two filament lamps A and B take 0.8 A and 0.9 A respectively when connected 
across 110 V supply. Calculate the value of current when they are connected in series across a 220-
V supply, assuming the filament resistances to remain unaltered. Also find the voltage across each 
lamp.
*	 Total	 or	 equivalent	 resistance	 is	 the	 single	 resistance,	which	 if	 substituted	 for	 the	 series	 resistances,	would	

provide	 the	 same	 current	 in	 the	 circuit.
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 Solution. For	lamp	A, RA	 =	 110/0.8	=	137.5	Ω
	 	 For	lamp	B,  RB	 =	 110/0.9	=	122.2	Ω
	 When	the	lamps	are	connected	in	series,	total	resistance	is
  RS	 =	 137.5	+	122.2	=	259.7	Ω
 \	 Circuit	current, I = V/RS	=	220/259.7	= 0.847 A
	 	 Voltage	across	lamp	A = I RA =	0.847	×	137.5	=	116.5 V 

	 	 Voltage	across	lamp B = I RB	=	0.847	×	122.2	=	103.5 V

 Example 2.2. A 100 watt, 250 V lamp is connected in series with a 100 watt, 200 V lamp across 
250 V supply.  Calculate (i) circuit current and (ii) voltage across each lamp. Assume the lamp 
resistances to remain unaltered.
 Solution.  (i)		Resistance,	 R = 

2V
P

	 Resistance	of	100	watt,	250	V	lamp,	R1	=	(	250	)
2/100		=		625	Ω

	 Resistance	of	100	watt,	200	V	lamp, R2	=	(	200	)
2/100	=	400	Ω

	 When	the	lamps	are	connected	in	series,	total	resistance	is
  RS =	 625	+	400	=	1025	Ω
 \	 Circuit	current,	 I = V/RS	=	250/1025	=	0.244 A

 (ii) 	Voltage	across	100	W,	250	V	lamp	= I R1	=		0.244	×	625	=	152.5 V

	 	Voltage	across	100	W,	200	V	lamp	=	I R2	=	0.244	×	400	=		97.6 V  

 Example 2.3. The element of 500 watt electric iron is designed for use on a 200 V supply. What 
value of resistance is needed to be connected in series in order that the iron can be operated from 
240 V supply?
 Solution.		Current	rating	of	iron,  I = 

Wattage 500
Voltage 200

=  =	2.5	A

	 If	R	ohms	is	the	required	value	of	resistance	to	be	connected	in	series,	then	voltage	to	be	dropped	
across	this	resistance	=	240	−	200	=	40	V.
 \ R	 =	 40	/	2.5	=	16 Ω
 Example 2.4. Determine the resistance and the power 
dissipation of a resistor that must be placed in series with a 
75 - ohm resistor across 120 V source in order to limit the 
power dissipation in the 75 - ohm resistor to 90 watts.
 Solution. Fig.	 2.3	 represents	 the	 conditions	 of	 the	
problem.
    I2	×	75	 =	90
 \  I = 90 75 	=	1.095	A

	 Now,	 I = 120
75R +

	 or	 	 1.095	 =	 120
75R +

 \  R = 34.6 Ω
	 Power	dissipation	in	R = I2	R	=	(1.095)2	×	34.6	=		41.5 watts
 Example 2.5. A generator of e.m.f. E volts and internal resistance r ohms supplies current to 
a water heater. Calculate the resistance R of the heater so that three-quarter of the total energy 
developed by the generator is absorbed by the water.

Fig. 2.3
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 Solution.		Current	supplied	by	generator, I = E
R r+

	 Power	developed	by	generator	=	E I = 
2E

R r+

	 Power	dissipated	by	heater	=	I2R = 
2 2

2 2( ) ( )

E E RR
R r R r

× =
+ +

	 As	per	the	conditions	of	the	problem,	we	have,

  
2

2( )

E R
R r+

 = 
23

4

E
R r

×
+

 or 
4

3

R
R r

=
+

 \ R = 3 r

 Example 2.6. A direct current arc has a voltage/current relation expressed as :

  V = 44 + 
30
I

 volts

 It is connected in series with a resistor across 100 V supply.  If voltages across the arc and 
resistor are equal, find the ohmic value of the resistor.
 Solution.  Let R ohms	be	resistance	of	the	resistor.	The	voltage	across	the	arc	as	well	as	resistor	
=	50	volts.
	 Now	 50	 =	

30
44

I
+   \ I =	5	A

 \ R = 
50

5

V
I

=  = 10 Ω

Tutorial  Problems
 1. If	the	resistance	of	a	circuit	having	12	V	source	is	increased	by	4	Ω,	the	current	drops	by	0.5	A.	What	is	

the	original	resistance	of	the	circuit	?	 [8 Ω]
 2.  A	searchlight	takes	100	A	at	80	V.		It	is	to	be	operated	from	a	220	V	supply.		Find	the	value	of	the	resistor	

to	be	connected	in	series.	 	 	 	 [1.4 Ω]
 3.	 The	maximum	resistance	of	a	 rheostat	 is	4.8	Ω	and	 the	minimum	resistance	 is	0.5	Ω.	Find	for	each		

condition	the	voltage	across	the	rheostat	when	current	is	1.2	A.	 [5.76V ; 0.6V ]
 4. What	is	the	drop	across	the	150	Ω	resistor	in	Fig.	2.4	? [5.33 V]

   Fig. 2.4 Fig. 2.5

 5. Calculate	the	current	flow	for	Fig.	2.5.	 [3.51 mA]

2.3. D.C.  Parallel  Circuit
 When one end of each resistance is joined to a common point and the other end of each 
resistance is joined to another common point so that there are as many paths for current flow as 
the number of resistances, it is called a parallel circuit.
 Consider	three	resistances	R1,	R2	and	R3	ohms	connected	in	parallel	across	a	battery	of	V	volts	
as	shown	in	Fig.	2.6	(i).	The	total	current	I	divides	into	three	parts	:	I1	flowing	through	R1,	I2	flowing	
through	R2	and	I3 flowing	through	R3.	Obviously,	the	voltage	across	each	resistance	is	the	same	 
(i.e.	V volts	in	this	case	)	and	there	are	as	many	current	paths	as	the	number	of	resistances.	By	
Ohm’s	law,	current	through	each	resistance	is
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  I1 = V/R1  ;  I2 = V/R2  ;  I3 = V/R3

	 Now,		 I = I1 + I2 + I3

   = 
1 2 3

V V V
R R R

+ +

   = 
1 2 3

1 1 1V
R R R

 
+ + 

 

Fig. 2.6

 or 
I
V

 = 
1 2 3

1 1 1

R R R
+ +

	 But	V/I	is	equivalent	resistance	RP	of	the	parallel	resistances	[See	Fig.	2.6	(ii)] so that I/V	=	1/RP.

 \ 
1

PR
 = 

1 2 3

1 1 1

R R R
+ +

 Hence when a number of resistances are connected in parallel, the reciprocal of total 
resistance is equal to the sum of the reciprocals of the individual resistances.
 Also GP = G1 + G2 + G3

 Hence total conductance GP of resistors in parallel is equal to the sum of their individual 
conductances.
	 We	can	also	express	currents	I1,	I2	and	I3	in	terms	of	conductances.

  I1 = 1 1
1 1

1 1 2 3P P

G GV IVG G I I
R G G G G G

= = = × = ×
+ +

	 Similarly,	 I2 = 2

1 2 3

GI
G G G

×
+ +

 ; I3 = 3

1 2 3

G
I

G G G
×

+ +

2.4. Main  Features  of  Parallel  Circuits
 The	following	are	the	characteristics	of	a	parallel	circuit	:
 (i)	 The	voltage	across	each	resistor	is	the	same.
 (ii)	 The	current	through	any	resistor	is	inversely	proportional	to	its	resistance.
 (iii)	 The	total	current	in	the	circuit	is	equal	to	the	sum	of	currents	in	its	parallel	branches.
 (iv)	 The	reciprocal	of	the	total	resistance	is	equal	to	the	sum	of	the	reciprocals	of	the	individual	

resistances.
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 (v)	 As	 the	 number	 of	 parallel	 branches	 is	 increased,	 the	 total	 resistance	 of	 the	 circuit	 is	
decreased.

 (vi)	 The	total	resistance	of	the	circuit	is	always	less	than	the	smallest	of	the	resistances.
 (vii)	 If	n resistors,	each	of	resistance	R,	are	connected	in	parallel,	then	total	resistance	RP = R/n.
 (viii)	 The	conductances	are	additive.
 (ix)	 The	total	power	dissipated	in	the	circuit	 is	equal	to	the	sum	of	powers	dissipated	in	the	

individual	resistances.	Thus	referring	to	Fig.	2.6	(i),

  
1

PR
 = 

1 2 3

1 1 1

R R R
+ +

 or 
2

P

V
R

 = 
2 2 2

1 2 3

V V V
R R R

+ +

 or PP = P1 + P2 + P3

	 	Like	a	series	circuit,	 the total power dissipated in a parallel circuit is equal to the sum of 
powers dissipated in the individual resistances.
 Note. A	parallel	 resistor	 circuit	 [See	 Fig.	 2.6	 (i)]	 can	 be	 considered	 to	 be	 a	 current divider circuit 
because	the	current	through	any	one	resistor	is	a	fraction	of	the	total	circuit	current;	the	fraction	depending	
on	the	values	of	the	resistors.

2.5. Two  Resistances  in  Parallel
 A	frequent	special	case	of	parallel	resistors	is	a	circuit	that	contains	two	resistances	in	parallel.		
Fig.	2.7	shows	two	resistances	R1 and R2	connected	in	parallel	across	a	battery	of	V	volts.		The	total	
current I divides	into	two	parts	;	I1	flowing	through	R1	and	I2	flowing	through	R2.

 (i) Total resistance RP. 
1

PR
 = 2 1

1 2 1 2

1 1 R R
R R R R

+
+ =

  \ RP = 1 2

1 2

Product
Sum

R R
R R

=
+

 Hence the total value of two resistors connected in parallel is equal to the product divided by 
the sum of the two resistors.

Fig. 2.7

 (ii) Branch Currents. RP = 1 2

1 2

R R
R R+

  V = I RP = 1 2

1 2

R RI
R R+

	 	 Current	through	R1,	 I1 = 2

1 1 2

RV I
R R R

=
+  1 2

1 2
Putting 

R RV I
R R

 = + 
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  Current through R2, I2  = 1

2 1 2

RV I
R R R

=
+

 Hence in a parallel circuit of two resistors, the current in one resistor is the line current (i.e. 
total current) times the opposite resistor divided by the sum of  the two resistors.
	 We	can	also	express	currents	in	terms	of	conductances.
  GP = G1 + G2

  I1 = 1 1
1 1

1 1 2P P

G GV IVG G I I
R G G G G

= = × = × = ×
+

  I2 = 2 2
2 2

2 1 2P P

G GV IVG G I I
R G G G G

= = × = × = ×
+

 Note. When	two	resistances	are	connected	in	parallel	and	one	resistance	is	much	greater	than	the	other,	
then	 the	 total	 resistance	of	 the	 combination	 is	 very	nearly	 equal	 to	 the	 smaller	 of	 the	 two	 resistances.	For	
example,	 if	R1	=	10	Ω	and	R2	=	10	kΩ	and	 they	 are	 connected	 in	parallel,	 then	 total	 resistance	RP	 of	 the	
combination	is	given	by	;

  RP = 
4 5

1 2
4

1 2

10 10 10
10,01010 10

R R
R R

×= =
+ +

	=	9.99	Ω	 R1

 In	general,	if	R2	is	10	times	(or	more)	greater	than	R1,	then	their	combined	resistance	in	parallel	is	nearly	
equal to R1.

2.6. Advantages  of  Parallel  Circuits
 The	most	useful	property	of	a	parallel	circuit	is	the	fact	that	potential	difference	has	the	same	
value	between	the	terminals	of	each	branch	of	parallel	circuit.	This	feature	of	the	parallel	circuit	
offers	the	following	advantages	:
 (i)		The	appliances	rated	for	the	same	voltage	but	different	powers	can	be	connected	in	parallel	

without	disturbing	each	other’s	performance.	Thus	a	230	V,	230	W	TV	receiver	can	be	
operated	independently	in	parallel	with	a	230	V,	40	W	lamp.

 (ii)		If	a	break	occurs	in	any	one	of	the	branch	circuits,	it	will	have	no	effect	on	other	branch	
circuits.

	 Due	 to	 above	 advantages,	 electrical	 appliances	 in	 homes	 are	 connected	 in	 parallel.	We	 can	
switch	on	or	off	any	light	or	appliance	without	affecting	other	lights	or	appliances.

2.7. Applications  of  Parallel  Circuits
	 Parallel	circuits	find	many	applications	in	electrical	and	electronic	circuits.	We	shall	give	two	
applications	by	way	of	illustration.
 (i)	 Identical	voltage	sources	may	be	connected	in	parallel	to	provide	a	greater	current	capacity.		

Fig.	2.8	shows	two	12	V	automobile	storage	batteries	in	parallel.		If	the	starter	motor	draws	
400	A	at	starting,	then	each	battery	will	supply	half	the	current	i.e. 200	A.		A	single	battery	
might	not	be	able	to	provide	a	load	current	of	400	A.	Another	benefit	is	that	two	batteries	
in	parallel	will	supply	a	given	load	current	for	twice	the	time	when	compared	to	a	single	
battery	before	discharge	is	reached.

  Fig. 2.8 Fig. 2.9
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 (ii)	 Fig.	2.9	shows	another	application	for	parallel	connection.	A	low	resistor,	called	a	shunt, is 
connected	in	parallel	with	an	ammeter	to	increase	the	current	range	of	the	meter.	If	shunt	
is	not	used,	the	ammeter	is	able	to	measure	currents	up	to	1	mA.	However,	the	use	of	shunt	
permits	to	measure	currents	up	to	1	A.	Thus	shunt	increases	the	range	of	the	ammeter.

 Example 2.7. Two coils connected in series have a resistance of 18 Ω	and when connected in 
parallel have a resistance of 4 Ω. Find the value of resistances.
 Solution. Let R1	and R2	be	the	resistances	of	the	coils.	When	resistances	are	connected	in	series, 
RS	=	18	Ω.
 \ R1 + R2	 =	 18	 ...(i)
	 When	resistances	are	connected	in	parallel, RP		=	4	Ω.

 \	 4		=	 1 2

1 2

R R
R R+  ....(ii)

 Multiplying	Eqns.	(i)	and	(ii),	we	get,	 R1	R2	=	18	×	4	=	72

 Now R1	−	R2 = 2 2
1 2 1 2( ) 4 (18) 4 72R R R R+ − = − ×

 \ R1	−	R2 = ± 6	 ...(iii)
	 Solving	Eqns.	(i)	and	(iii),	we	get, R1 = 12 Ω or 6	Ω ; R2 = 6 Ω or 12 Ω 
 Example 2.8. A 100 watt, 250 V lamp is connected in parallel with an unknown resistance 
R across a 250 V supply. The total power dissipated in the circuit is 1100 watts. Find the value of 
unknown resistance. Assume the resistance of lamp remains unaltered.
 Solution. The	total	power	dissipated	in	the	circuit	is	equal	to	the	sum	of	the	powers	consumed	
by	the	lamp	and	unknown	resistance	R.
 \	 Power	consumed	by  R	 =	 1100	−	100	=	1000	watts

 \	 Value	of	resistance,	R = 
22 (250)

Power consumed 1000
V =  = 62.5	Ω

 Example 2.9.  A coil has a resistance of 5.2 ohms; the resistance has to be reduced to 5 Ω	 by 
connecting a shunt across the coil. If this shunt is made of manganin wire of diameter 0.025 cm, find 
the length of wire required. Specific resistance for manganin is 47 × 10−8 Ω m.
 Solution. Let R	ohms	be	the	required	resistance	of	the	shunt.

  RP  = 
5.2
5.2

R
R

×
+ 	 or	 5	=	 5.2

5.2
R

R +   \ R	=	130	W

  a  = ( )220.025 10
4

−π × 	=	490	×	10–10 m2 ;  ρ =	47	×	10−8	Ω-m

 Now R  = l
a

ρ

 \ l = 
10

8

130 (490 10 )

47 10

Ra −

−
× ×=

ρ ×
 = 13.55 m

 Example 2.10. Three equal resistors are connected as shown in Fig 2.10. Find the equivalent 
resistance between points A and B.
 Solution. The	 reader	 may	 observe	
that	one	end	of	each	resistor	is	connected	
to	 point	 A	 and	 the	 other	 end	 of	 each	
resistor	 is	 connected	 to	 point	B.	 Hence	
the	three	resistors	are	in	parallel.

 \ 1

ABR  = 1 1 1 3
R R R R

+ + =  or  RAB = 3
R

Fig. 2.10
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 Example 2.11. Find the branch currents for Fig. 2.11 using the current divider rule for parallel 
conductances.

Fig. 2.11

 Solution.   GP = G1 + G2 + G3	=	0.5	+	0.3	+	0.2	=	1	S

 \ I1 = 1 0.54
1P

GI
G

= ×  = 2 A

  I2 = 2 0.34
1P

GI
G

= ×  = 1.2 A

  I3 = 3 0.2
4

1P

GI
G

= ×  = 0.8 A

 Example 2.12. Find the three branch currents in the circuit shown in Fig. 2.12. What is the 
potential difference between points A and B?

  Fig. 2.12 Fig. 2.13
 Solution.	Current	sources	in	parallel	add	algebraically.	Therefore,	the	two	current	sources	can	
be	combined	to	give	the	resultant	current	source	of	current	I	=	24	–	5	=	19	A	as	shown	in	Fig.	2.13.	
Referring	to	Fig.	2.13,
  GP = G1 + G2 + G3	=	0.5	+	0.25	+	0.2	=	0.95	S

 \ I1 = 1 0.5
19

0.95P

GI
G

× = ×  = 10 A

  I2 = 2 0.25
19

0.95P

GI
G

× = ×  = 5 A

  I3 = 3 0.2
19

0.95P

GI
G

× = ×  = 4 A

	 The	voltage	across	each	conductance	is	the	same.

 \ VAB = 31 2

1 2 3

II I
G G G

= =

 or  VAB = 1

1

10 A

0.5 S

I
G

=  = 20 V

 Example 2.13. A current of 90 A is shared by three resistances in parallel. The wires are of the 
same material and have their lengths in the ratio 2 : 3 : 4 and their cross-sectional areas in the ratio 
1 : 2 : 3. Determine current in each resistance.
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 Solution.		 Conductance,	 G = a
l

σ  so that G ∝ a
l 	 ( s is same)

 \ G1	:	G2	:	G3	 ::	
31 2

1 2 3
: :

aa a
l l l

 or G1	:	G2	:	G3	 ::	
1 2 3: :
2 3 4

 or G1	:	G2	:	G3	 ::	 6	:	8	:	9
 \ I1 = 1

1 2 3

690
6 8 9

GI
G G G

× = ×
+ + + +  = 23.48 A

  I2 = 2

1 2 3

890
6 8 9

GI
G G G

× = ×
+ + + +  = 31.30 A

  I3 = 3

1 2 3

990
6 8 9

GI
G G G

× = ×
+ + + +  = 35.22 A

 Example 2.14. An aluminium wire 7.5 m long is connected in parallel with a copper wire  
6 m long. When a current of 5 A is passed through the combination, it is found that current in the 
aluminium wire is 3 A. The diameter of aluminium wire is 1 mm. Determine the diameter of copper 
wire. Resistivity of copper is 0.017 mW m and that of aluminium is 0.028 mW m.
 Solution.	Assign	suffix	A	to	aluminium	and	C	to	copper.	Then,
  IA	 =	 3	A	 and	 IC	=	5	–	IA	=	5	–	3	=	2	A
	 In	a	parallel	circuit,	the	current	in	any	branch	is	directly	proportional	to	conductance	(G)	of	that	
branch	( I = VG).
 \ IA ∝ GA	 and	 IC ∝ GC

 \ C

A

G
G  = 2

3
C

A

I
I

=

	 Now,	 GC = C

C C

a
lρ 	 and	 GA = A

A A

a
lρ

 \ C

A

G
G  = C A A

C C A

a l
l a

ρ×
ρ

 or 2
3

 = 
0.028 7.5

0.017 6
C

A

a
a

××
×

 or C

A

a
a  = 

0.017 62
3 0.028 7.5

××
× 	=	0.3238

 \ aC	 =	 0.3238	×	aA = 20.3238 (1 mm)
4
π×

 or 2( )
4 Cdπ  = 0.3238

4
π×

 \ dC = 0.3238  = 0.57 mm
 Example 2.15. A voltage of 200 V is applied to a tapped resistor of 500 Ω. Find the resistance 
between two tapping points connected to a circuit needing 0.1 A at 25 V.  Calculate the total power 
consumed. 
 Solution. Fig.	2.14	shows	the	conditions	of	the	problem.

  Current in AB = 250.1
R

+

  Also current in AB = 
200 25 175
500 500R R

− =
− −
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 \ 250.1
R

+   = 175
500 R−

 or 
0.1 25R

R
+

 = 175
500 R−

	 or	 (500	–	R)	(0.1R	+	25)	 =	 175	R
	 or	 0.1	R2	+	150	R	–	12500	 =	 0
	 On	solving	and	taking	the	positive	value,	R = 79 Ω.
  Total	current,	 I = Current in AB
   = 250.1

79
+ 	=	0.4165	A

 \	 Total	power	 =	 200	×	I =	200	×	0.4165	=	83.5 W
 Example 2.16. A heater has two similar elements controlled by a 3-heat switch. Draw a 
connection diagram of each position of the switch. What is the ratio of heat developed for each 
position of the switch?
 Solution. Fig.	2.15	shows	the	connections	of	3-heat	switch	controlling	two	similar	elements.		
Suppose	the	supply	voltage	is	V.
	 With	points	1	and	3	linked	and	supply	connected	across	1	and	3,	the	two	elements	will	be	in	
parallel.
 \	 Power	dissipated,	P1 = 

2 22
/2

V V
R R

=

	 With	voltage	across	1	and	2	or	2	and	3,	only	one	element	is	 in	the	
circuit.
 \	 Power	dissipated,	 P2 = 

2V
R

	 With	voltage	across	1	and	3,	the	two	elements	are	in	series.

 \	 Power	dissipated,	 P3 = 
2

2
V

R

 \ P1	:	P2	:	P3 = 
2 2 22 1

: : 2 :1:
2 2

V V V
R R R

=  = 4 : 2 : 1

 Example 2.17. The frame of an electric motor is connected to three earthing plates having 
resistance to earth of 10 Ω, 20 Ω and 30 Ω respectively. Due to a fault, the frame becomes live.  What 
proportion of total fault energy is dissipated at each earth connection ?
 Solution. The	three	resistances	are	in	parallel.	During	the	fault,	suppose	voltage	to	ground	is	V.	
Then	ratios	of	energy	dissipated	are	:

  
2 2 2

: :
10 20 30
V V V  = 1 1 1: :

10 20 30
	=	6	:	3	:	2

	 %	of	fault	energy	dissipated	in	10	Ω	=	 6 100
6 3 2

×
+ +  = 54.5%

 %	of	fault	energy	dissipated	in	20	Ω	=	 3 100
6 3 2

×
+ +  = 27.3%

 %	of	fault	energy	dissipated	in	30	Ω	=	 2 100
6 3 2

×
+ +  = 18.2%

 Example 2.18. A 50 W resistor is in parallel with 100 W resistor. Current in 50 W resistor is  
7.2 A. How will you add a third resistor and what will be its value if the line current is to be 12.1 A?
 Solution.	 Source	voltage	 =	 50	×	7.2	=	360	V

 \	 Current	in	100	W resistor = 360
100

	=	3.6	A

Fig. 2.14

Fig. 2.15
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	 Total	current	drawn	by	50	W	and	100	W	resistors	=	7.2	+	3.6	=	10.8	A
	 In	order	that	line	current	is	12.1	A,	some resistance R must be added in parallel.	The	current	
in R	is	to	be	=	12.1	–	10.8	=	1.3	A.
 \	 Value	of	R = 360

1.3
 = 277 W

Tutorial Problems
 1.	 Two	resistors	of	4	Ω	and	6	Ω	are	connected	in	parallel.	If	the	total	current	is	30	A,	find	the	current	through	

each	resistor.	    [18 A ; 12 A]
 2. Four	resistors	are	in	parallel.	The	currents	in	the	first	three	resistors	are	4	mA,	5	mA	and	6	mA	respectively.	

The	voltage	drop	across	the	fourth	resistor	is	200	volts.	The	total	power	dissipated	is	5	watts.	Determine	
the	values	of	the	resistances	of	the	branches	and	the	total	resistance.	

[50 k Ω, 40 k Ω, 33.33 k Ω, 8 k Ω, 5 k Ω]
 3.	 Four	resistors	of	2	Ω,	3	Ω,	4	Ω	and	5	Ω	respectively	are	connected	in	parallel.	What	potential	difference	

must	be	applied	to	the	group	in	order	that	total	power	of	100	watts	may	be	absorbed	?	 [8.826 volts]
 4.	 Three	resistors	are	in	parallel.	The	current	in	the	first	resistor	is	0.1	A.	The	power	dissipated	in	the	second	

is	3	watts.	The	voltage	drop	across	the	third	is	100	volts.	Determine	the	ohmic	values	of	resistors	and	the	
total	resistance	if	total	current	is	0.2	A. [1000 Ω, 3333.3 Ω, 1428.5 Ω, 500 Ω]

 5. Two	coils	each	of	250	Ω	resistance	are	connected	in	series	across	a	constant	voltage	mains.	Calculate	the	
value	of	resistance	to	be	connected	in	parallel	with	one	of	the	coils	to	reduce	the	p.d.	across	its	terminals	
by	1%.	 	 	 	 [12,375 Ω]

 6. When	a	resistor	is	placed	across	a	230	volt	supply,	the	current	is	12	A.	What	is	the	value	of	resistor	that	
must	be	placed	in	parallel	to	increase	the	load	to16	A	?	 [57.5 Ω]

 7. A 50-ohm	resistor	is	in	parallel	with	a	100-ohm	resistor.	The	current	in	50	Ω	resistor	is	7.2	A.	What	is	
the	value	of	third	resistance	to	be	added	in	parallel	to	make	the	line	current	12.1	A	? [276.9 Ω]

 8. Five	equal	resistors	each	of	2	Ω	are	connected	in	a	network	as	shown	in	Fig.	2.16.		Find	the	equivalent	
resistance	between	points	A	and	B.	 [2 Ω]

   Fig. 2.16 Fig. 2.17
 9. Find	the	equivalent	resistance	between	points	A	and	B	in	the	circuit	shown	in	Fig.	2.17.	 [10 Ω]

 10. Fig.	 2.18	 shows	 a	 50	V	 source	 connected	 to	 three	
resistances	:	R1	=	5	kΩ;	R2	=	25	kΩ	and	R3	=	10	kΩ.		
Calculate	(i)	branch	currents	(ii)	total	current	for	the	
given	figure.

 [(i) I1 = 10 mA ; I2 = 2 mA; I3 = 5 mA (ii) I = 17 mA]
 11. A	parallel	circuit	consists	of	four	parallel-connected	

480	Ω	 resistors	 in	parallel	with	 six	360	Ω	 resistors.		
What	is	the	total	resistance	and	total	conductance	of	
the	circuit?   [40 Ω ; 0.025 S]

Fig. 2.18
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2.8. D.C.  Series-Parallel  Circuit
 As	 the	name	 suggests,	 this	 circuit	 is	 a	 combination	of	 series	 and	parallel	 circuits.	A	 simple	
example	of	such	a	circuit	is	illustrated	in	Fig.	2.19.	Note	that	R2	and R3	are	connected	in	parallel	
with	each	other	and	that	both	together	are	connected	in	series	with	R1.	One	simple	rule	to	solve	such	
circuits	is	to	first	reduce	the	parallel	branches	to	an	equivalent	series	branch	and	then	solve	the	circuit	
as	a	simple	series	circuit.

Fig. 2.19

	 Referring	to	the	series-parallel	circuit	shown	in	Fig.	2.19,

   RP	for	parallel	combination	 =	
2 3

2 3

R R
R R+

	 	 	 Total	circuit	resistance	 =	 2 3
1

2 3

R RR
R R

+
+

	 	 Voltage	across	parallel	combination	 = 2 3
1

2 3

R RI
R R

×
+

	 The	reader	can	now	readily	find	the	values	of	I1, I2,	I3.
	 Like	series	and	parallel	circuits,	the	total	power	dissipated	in	the	circuit	is	equal	to	the	sum	of	
powers	dissipated	in	the	individual	resistances	i.e.,

	 	 Total	power	dissipated,	P = 2 2 2
1 1 2 2 3 3I R I R I R+ +

2.9. Applications  of  Series-Parallel  Circuits
 Series-parallel	circuits	combine	the	advantages	of	both	series	and	parallel	circuits	and	minimise	
their	disadvantages.	Generally,	less	copper	is	required	and	a	smaller	size	wire	can	be	used.	Such	
circuits	are	used	whenever	various	types	of	circuits	must	be	fed	from	the	same	power	supply.	A	few	
common	applications	of	series-parallel	circuits	are	given	below	:

 (i)	 In	an	automobile,	the	starting,	lighting	and	ignition	circuits	are	all	individual	circuits	joined	
to	make	a	series-parallel	circuit	drawing	its	power	from	one	battery.

 (ii)	 Radio	and	television	receivers	contain	a	number	of	separate	circuits	such	as	tuning	circuits,	
r.f.	 amplifiers,	 oscillator,	 detector	 and	 picture	 tube	 circuits.	 	 Individually,	 they	may	 be	
simple	series	or	parallel	circuits.		However,	when	the	receiver	is	considered	as	a	whole,	the	
result	is	a	series-parallel	circuit.

 (iii)	 Power	supplies	are	connected	in	series	to	get	a	higher	voltage	and	in	parallel	to	get	a	higher	
current.
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2.10.  Internal  Resistance  of  a  Supply
	 All	supplies	(e.g. a	cell)	must	have	some	internal	resistance,	however	small.	This	is	shown	as	a	
series	resistor	external	to	the	supply.	Fig	2.20	shows	a	cell	of	e.m.f. E volts	and	internal	resistance	r.	
When	the	cell	is	delivering	no	current	(i.e.	on	no	load),	the	p.d.	across	the	terminals	will	be	equal	to	
e.m.f. E	of	the	cell	as	shown	in	Fig.	2.20	(i).
	 When	some	load	resistance	R	is	connected	across	the	terminals	of	the	cell,	the	current	I starts 
flowing	in	the	circuit.	This	current	causes	a	voltage	drop	across	internal	resistance	r	of	the	cell	so	
that	terminal	voltage	V	available	will	be	less	than	E.	The	relationship	between	E	and	V	can	be	easily	
established	[See	Fig.	2.20	(ii)].
  I = E

R r+
 or I R = E −	I r

 But	 I R = V,	 the	terminal	voltage	of	the	cell.
 \ V = E	−	I r

Fig. 2.20

	 Internal	resistance	of	cell,		r  = 
( )E V E V R

I V
− −=  

VI
R

 = ∵

2.11.  Equivalent  Resistance
	 Sometimes	we	come	across	a	complicated	circuit	consisting	of	many	resistances.	The	resistance	
between	the	two	desired	points	(or	terminals)	of	such	a	circuit	can	be	replaced	by	a	single	resistance	
between	 these	points	using	 laws	of	 series	 and	parallel	 resistances.	Then	 this	 single	 resistance	 is	
called	equivalent	resistance	of	the	circuit	between	these	points.

 The equivalent resistance of a circuit or 
network between its any two points (or terminals) is 
that single resistance which can replace the entire 
circuit between these points (or terminals).
	 Once	 equivalent	 resistance	 is	 found,	 we	 can	
use	Ohm’s	law	to	solve	the	circuit.	It	is	important	to	
note	that	resistance	between	two	points	of	a	circuit	is	
different	for	different	point-pairs.	This	is	illustrated	
in	Fig.	2.21.

 (i)	 Between	points	A	and	B,	R1	is	in	parallel	with	the	series	combination	of	R2	and	R3 i.e.

  RAB = R1	||	(R2 + R3) = 1 2 3

1 2 3

( )R R R
R R R

+
+ +

Fig. 2.21
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 (ii)	 Between	points	A	and	C,	R3	is	in	parallel	with	the	series	combination	of	R1	and	R2 i.e.

  RAC = R3	||	(R1 + R2) = 3 1 2

1 2 3

( )R R R
R R R

+
+ +

 (iii)	 Between	points	B	and	C,	R2	is	in	parallel	with	the	series	combination	of	R1	and	R3 i.e.

  RBC = R2	||	(R1 + R3) = 2 1 3

1 2 3

( )R R R
R R R

+
+ +

 Example 2.19.  A battery having an e.m.f. of  E volts and internal resistance 0.1 Ω is connected 
across terminals A and B of the circuit shown in Fig. 2.22. Calculate the value of E in order that 
power dissipated in 2 Ω resistor shall be 2 W.
 Solution.		Resistance	between	E	and	F	is	given	by	;

  1

EFR  = 1 1 1 6
3 2 6 6

+ + =

Fig. 2.22

 \ REF	 =	 6/6	=	1	Ω
	 	 Resistance	of	branch	CEFD =	 1	+	5	=	6	Ω

	 	 Current	through	2	Ω	 =	 Power loss 2
Resistance 2

= =	1A

	 	 P.D.	across	EF =	 1	×	2		=	2V
	 	 Current	through	3	Ω	 =	 2/3	=	0.67	A	

	 	 Current	through	6	Ω	 =	 2/6	=	0.33	A

	 	 Current	in	branch	CED	 =	 1	+	0.67	+	0.33	=	2	A
	 	 P.D.	across	CD	 =	 6	×	2	=	12	V
	 	 Current	through	12	Ω	 =	 12/12	=	1	A

	 	 Current	supplied	by	battery	 =	 2	+	1	=	3	A
 \ E	=	P.D.	across	AB or CD	+	Drop	in	battery	resistance
	 	 	 =	 12	+	0.1	×	3	=	12.3 V
 Example 2.20. Calculate the values of various currents in the circuit shown in Fig. 2.23. What 
is total circuit conductance and total resistance?
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Fig. 2.23

 Solution. I	=	12	A		;		GBC	=	0.1	+	0.2	+	0.3	=	0.6	S

 \  I1 = 0.1 0.112
0.6BC

I
G

× = ×  = 2 A ; I2 = 0.2 0.212
0.6 0.6

I × = ×  = 4 A ;

   I3 = 0.3
0.6

I ×  = 6 A ; I = 12 A

	 Now,	GAB	=	0.4	S	and	GBC	=	0.6	S	are	in	series.

 \ 1

ACG  = 1 1 1 1 25
0.4 0.6 6AB BCG G

+ = + =  \ GAC = 6 S
25

	 	 Total	circuit	resistance,	RAC = 1 1
6 25ACG

= = Ω25
6

 Example 2.21. Six resistors are connected as shown in Fig. 2.24. If a battery having an e.m.f. 
of 24 volts and internal resistance of 1 Ω is connected to the terminals A and B, find (i) the current 
from the battery, (ii) p.d. across 8 Ω and 4 Ω	resistors and (iii) the current taken from the battery if 
a conductor of negligible resistance is connected in parallel with 8 Ω resistor.

Fig. 2.24

 Solution.
	 Resistance	between	E	and	F,		 REF = 

(4 2) 6
(4 2) 6

+ ×
+ +  = 3 W

 Resistance	between	C	and	D,	  RCD = 
(5 3) 8
(5 3) 8

+ ×
+ + 	=	4	W

	 	Resistance	between	A and	B,	 RAB =	 3	+	4	=	7	Ω
	 	 Total	circuit	resistance,	 RT = RAB	+	Supply	resistance	=	7	+	1	=	8	Ω
 (i)	 	 Current	from	battery,	 I = E/RT	=	24/8	=	3 A
 (ii)	 	 P.D.	across	8	Ω	=	E − I	(	3	+	1	)	=	24	−	3	(	4	)	=	12 V
	 	 	 Current	through	8	Ω	=	 12/8	=	1.5	A			
	 	 	 Current	through	5	Ω	=	 3	−	1.5	=	1.5A
	 	 	 P.D.	across	EF	=	 12	−	1.5	×	5	=	4.5	V
	 	 	 Current	through	6Ω	=	 4.5/6	=	0.75A
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  \	 Current	through	4	Ω	=	 1.5	−	0.75	=	0.75	A
  \	 Voltage	across	4Ω	=	 0.75	×	4	=	3 V
 (iii)	When	 a	 conductor	 of	 negligible	 resistance	 is	 connected	 across	 8	 Ω,	 then	 resistance	

between	C	and	D is	zero.	Therefore,	total	resistance	in	the	circuit	is	now	3	Ω	resistor	in	
series	with	1	Ω	internal	resistance	of	battery.

  \	 Current	from	battery		=	 24
3 1+  = 6 A

 Example 2.22. Two resistors R1 = 2500 Ω and R2 = 4000 Ω are joined in series and connected 
to a 100 V supply. The voltage drops across R1 and R2 are measured successively by a voltmeter 
having a resistance of 50000 Ω.  Find the sum of two readings.
 Solution. When	 voltmeter	 is	 connected	 across	 resistor	R1	 [See	 Fig.	 2.25	 (i)],	 it	 becomes	 a	 
series-parallel	circuit	and	total	circuit	resistance	decreases.

	 	 Total	circuit	resistance	 =	
2500 50000

4000
2500 50000

×+
+ 	=	4000	+	2381	=	6381	Ω

	 	 Circuit	current,	 I = 100 A
6381

	 	 Voltmeter	reading,	 V1 = I	×	2381	=	 100 2381
6381

× 	=	37.3	V

Fig. 2.25
 When	voltmeter	is	connected	across	R2	[See	Fig.	2.25	(ii)],	it	becomes	a	series-parallel	circuit.

	 	 Total	circuit	resistance	 =	
4000 50000

2500
4000 50000

×+
+ 	=	2500	+	3703.7	=	6203.7	Ω

	 	 Circuit	current,	 I ′	 =	 100 A
6203.7

	 	 Voltmeter	reading,	 V2 = I′	×	3703.7	=	 100 3703.7
6203.7

× 	=	59.7	V

 \	 Sum	of	two	readings	 =	 V1 + V2	=	37.3	+	59.7	=	97 V

 Example 2.23. A battery of unknown e.m.f. is 
connected across resistances as shown in Fig. 2.26. 
The voltage drop across the 8 Ω resistor is 20 V. What 
will be the current reading in the ammeter?  What is the 
e.m.f. of the battery?
 Solution. The	current	through	8	Ω	resistance	is	I 
=	20/8	=	2.5	A.	At	point	A in	Fig.	2.26,	the	current	I is 
divided	into	two	paths	viz I2	flowing	in	path	ABC of	15	
+	13	=	28	Ω	resistance	and	current	I1	flowing	in	path	
AC of	11	Ω	resistor.	By	current	divider	rule,	the	value	
of	I2	is	given	by	; Fig. 2.26
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  I2 = 11 112.5
11 28 39

I × = ×
+ 	=	0.7	A

	 Therefore,	ammeter	reads	0.7 A.
  Resistance	between	A and	C	 =	 (28	×	11)/39	=	308/39	Ω
	 	 Total	circuit	resistance,	 RT	 =	 8	+	11	+	(308/39)	=	1049/39	Ω
 \ E = I	×	RT	=	2.5	×	(1049/39)	=	67.3 V
 Example 2.24. Find the voltage VAB in the circuit shown in Fig. 2.27.

Fig. 2.27

 Solution. The	resistors	10	Ω	and	20	Ω	are	in	series	and	voltage	across	this	combination	is	10	V.

 \ VAC = 20 10
10 20

×
+ 	=	6.667	V

	 The	resistors	30	Ω	and	40	Ω	are	in	series	and	voltage	across	this	combination	is	10	V.

 \ VBC = 40 10
30 40

×
+ 	=	5.714	V

	 The	point	A is	positive	w.r.t. point	B.
 \ VAB = VAC – VBC	=	6.667	–	5.714	=	0.953 V
 Example 2.25. A circuit consists of four 100 W lamps connected in parallel across a 230 V 
supply. Inadvertently, a voltmeter has been connected in series with the lamps. The resistance of the 
voltmeter is 1500 Ω and that of the lamps under the conditions stated is six times their value then 
burning normally. What will be the reading of the voltmeter ?

Fig. 2.28

 Solution. Fig.	2.28	shows	the	conditions	of	the	problem.	When	burning	normally,	the	resistance	
of	each	lamp	is	R = V2/P	=	(230)2/100	=	529	Ω.		Under	the	conditions	shown	in	Fig.	2.28,	resistance	
of	each	lamp	=	6	×	529	=	3174	Ω.
\	 Equivalent	resistance	of	4	lamps	under	stated	conditions	is	RP	=	3174/4	=	793	Ω
	 	 Total	circuit	resistance	 =	 1500	+	RP 

	 	 	 =	 1500	+	793.5	=	2293.5	Ω
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 \	 Circuit	current,		 I = 230 A
2293.5

 \			Voltage	drop	across	voltmeter	=	I ×	1500	=	 230 1500
2293.5

×   150 V

 Example 2.26. Find the current supplied by the d.c. source in the circuit shown in Fig. 2.29.

Fig. 2.29

 Solution. In	the	circuit	shown	in	Fig.	2.29,	the	resistances	in	series	can	be	combined	and	the	
circuit	reduces	to	the	one	shown	in	Fig.	2.30	(i).	In	Fig.	2.30	(i),	the	resistances	in	parallel	can	be	
combined	using	the	formula	product	divided	by	sum	and	the	circuit	reduces	to	the	one	shown	in	 
Fig.	2.30	(ii).
	 In	Fig.	2.30	(ii),	the	resistances	in	series	can	be	combined	and	the	circuit	reduces	to	the	one	
shown	in	Fig.	2.30	(iii).	In	Fig.	2.30	(iii),	3.2	W	and	2	W	are	in	parallel	and	their	combined	resistance	
is	16/13	W.	Now	16/13	W	and	1	W	are	in	series	and	this	series	combination	is	in	parallel	with	2	W.

Fig. 2.30

 \			 Effective	resistance	of	the	circuit	is

  Reff = 16 581 || 2
13 55

 + Ω Ω = Ω  
	 [See	Fig.	2.30	(iv)]

 \			 Current	supplied	by	source	=	 30 30
58 55effR

=  = 28.45 A

 Example 2.27. Determine the current drawn by a 12 V battery with internal resistance 0.5 Ω 
by the following infinite network (See Fig. 2.31).
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Fig. 2.31

 Solution. Let x	be	the	equivalent	resistance	of	the	network.	Since	the	network	is	infinite,	the	
addition	of	one	set	of	three	resistances,	each	of	1	Ω,	will	not	change	the	total	resistance,	i.e.,	it	will	
remain x.	The	network	would	then	become	as	shown	in	Fig.	2.32.	The	resistances	x	and	1	Ω	are	in	
parallel	and	their	total	resistance	is	RP	given	by	;

  Fig. 2.32 Fig. 2.33

  RP = 
1
1 1

x x
x x

× =
+ +

	 The	circuit	then	reduces	to	the	one	shown	in	Fig.	2.33.	Referring	to	Fig.	2.33,

	 Total	resistance	of	the	network	=	1	+	1	+	 2
1 1

x x
x x

= +
+ +

	 But	total	resistance	of	the	network	is	x	as	mentioned	above.

 \ x = 2
1

x
x

+
+

 or x + x2	 =	 2	+	2x + x
 or x2	–	2x	–	2	 =	 0

 \ x = 
2 4 8 2 12 2 2 3

2 2 2
± + ± ±= =

 or x = 1 3±
	 As	the	value	of	the	resistance	cannot	be	negative,

 \ x = 1 3+ 	=	1	+	1.732	=	2.732	Ω
	 	 Total	circuit	resistance,	 RT = x	+	internal	resistance	of	the	supply
	 	 	 =	 2.732	+	0.5	=	3.232	Ω
 \	 	Current	drawn	by	the	network	is

  I = 12
3.232T

E
R

=  = 3.71 A
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 Example 2.28. Find RAB in the circuit shown in Fig. 2.34.

Fig. 2.34
 Solution.	The	circuit	shown	in	Fig.	2.34	reduces	to	the	one	shown	in	Fig.	2.35	(i).		This	circuit	
further	reduces	to	the	circuit	shown	in	Fig.	2.35	(ii).

Fig. 2.35
	 Referring	to	Fig.	2.35	(ii),	we	have,
  RAB	 =	 2	+	(50	||	25	||	50)	+	8
	 	 	 =	 2	+	(25	||	25)	+	8
	 	 	 =	 2	+	12.5	+	8	= 22.5 Ω
 Example 2.29. What is the equivalent resistance between the terminals A and B in Fig. 2.36?
 Solution.	The	network	shown	 in	Fig.	2.36	can	be	 redrawn	as	shown	 in	Fig.	2.37	 (i).	 It	 is	a	
balanced	Wheatstone	bridge.	Therefore,	points	C	and	D	are	at	the	same	potential.	Since	no	current	
flows	in	the	branch	CD,	this	branch	is	ineffective	in	determining	the	equivalent	resistance	between	
terminals A	and	B	and	can	be	removed.	The	circuit	then	reduces	to	that	shown	in	Fig.	2.37	(ii).

  Fig. 2.36                                 Fig. 2.37

	 The	branch	ACB	(=	R + R	=	2R)	is	in	parallel	with	branch	ADB 	(=	R+ R	=	2R).

 \ RAB = 
(2 ) (2 )

2 2
R R
R R

×
+  = R
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 Example 2.30. An electrical network is arranged as shown in Fig. 2.38. Find the value of 
current in the branch AF.
 Solution.	Resistance	between	E	and	C,

   REC = 
(5 9) 14
(5 9) 14

+ ×
+ + 	=	7	W

	 Resistance	between	B	and	E,

   RBE = 
(11 7) 18
(11 7) 18

+ ×
+ + 	=	9	W

	 Resistance	between	A	and	E,

   RAE = 
(13 9) 22
(13 9) 22

+ ×
+ + 	=	11	W

 i.e.,	Total	circuit	resistance,	RT		=	 11	W
 \	 Current	in	branch	AF,	I = V/RT =	22/11	=	2 A
 Example 2.31. A resistor of 5 W is connected in series with a parallel combination of a number 
of resistors each of 5 W. If the total resistance of the combination is 6 W, how many resistors are in 
parallel?
 Solution. Let n	 be	 the	 required	 number	 of	 5	W	 resistors	 to	 be	 connected	 in	 parallel.	 The	 
equivalent	resistance	of	this	parallel	combination	is

  1

PR  = 1 1 1 ... times =
5 5 5 5

nn+ +

	 Therefore,	 RP	 =	 5/n
 Now RP	(=	5/n)	in	series	with	5	W	is	equal	to	6	W i.e.,

  5 5
n

+ 	 =	 6	 \ n = 5

 Example 2.32. A letter A consists of a uniform wire of resistance 1 W per cm. The sides of the 
letter are each 20 cm long and the cross-piece in the middle is 10 cm long while the apex angle is 
60°. Find the resistance of the letter between the two ends of the legs.
 Solution.	 Fig.	 2.39	 shows	 the	 conditions	 of	 the	
problem.	 Point	B	 is	 the	mid-point	 of	AC,	 point	D is the 
mid-point	of	EC	and	BD =	10	cm.
 \  AB = BC = CD = DE = BD	=	10	cm
 or  R1 = R2 = R3 = R4 = R5	=	10	W	(	1	cm	=	1	W)
 Now R2	and	R3	are	in	series	and	their	total	resistance 
=	10	+	10	=	20	W.	This	20	W	resistance	is	in	parallel	with	R5.
 \  RBD	 =	 20	W || R5	=	20	W	||	10	W

    = 
20 10 20
20 10 3

× = Ω
+

	 Now,	R1,	RBD	and	R4	are	in	series	so	that	:
   RAE = R1 + RBD + R4

    = 2010 10
3

+ +  = 26.67 W

Fig. 2.38

Fig. 2.39
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 Example 2.33. All the resistances in Fig. 2.40 
are in ohms. Find the effective resistance between the 
points A and B.
 Solution.	Resistance	between	points	A	and	D is

   RAD	 =	 (3	+	3)	W	||	6	W = 
6 6
6 6

×
+  = 3 W

   RAE	 = 	 (RAD + 3) W	||	6	W = 
6 6
6 6

×
+  = 3 W

   RAF	 = 	 (RAE + 3) W	||	6	W = 
6 6
6 6

×
+  =  3 W

 \	 Resistance	between	points	A	and	B is
   RAB	 = 	 (RAF + 3) W || 3 W 

    =  
6 3 18
6 3 9

× =
+  = 2 W

 Example 2.34. What is the equivalent resistance of the ladder network shown in Fig. 2.41?

Fig. 2.41
 Solution.	Referring	to	Fig.	2.41,	the	resistance	between	points	K	and	L is
  RKL	 =	 (25	+	75)	W		||	100	W = 

100 100
100 100

×
+ 	=	50	W

	 The	circuit	of	Fig.	2.41	then	reduces	to	the	one	shown	in	Fig.	2.42	(i).	Referring	to	Fig.	2.42	(i),

  RGH	 =	 (50	+	50)	W	||	100	W = 
100 100
100 100

×
+ 	=	50	W

 The	circuit	of	Fig.	2.42	(i)	then	reduces	to	the	one	shown	in	Fig.	2.42	(ii).	Referring	to	Fig.	2.42	(ii), 

  REF	 =	 (50	+	50)	W	||	100	W = 
100 100
100 100

×
+ 	=	50	W

Fig. 2.42
	 The	circuit	of	Fig.	2.42	(ii)	then	reduces	to	the	one	shown	in	Fig.	2.42	(iii).	Referring	to	Fig.	
2.42	(iii),
	 Equivalent	resistance	of	the	ladder	network
	 	 	 =	 25	+	50	=	75 W

Fig. 2.40
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Tutorial Problems
 1.	 A	resistor	of	3.6	Ω	is	connected	in	series	with	another	of	4.56	Ω.	What	resistance	must	be	placed	across	

3.6	Ω	so	that	the	total	resistance	of	the	circuit	shall	be	6	Ω	?	 [2.4 Ω]
 2.	 A	circuit	consists	of	three	resistors	of	3	Ω,	4	Ω	and	6	Ω	in	parallel	and	a	fourth	resistor	of	4	Ω	in	series.	

A	battery	of	e.m.f.	12	V	and	internal	resistance	6	Ω	is	connected	across	the	circuit.		Find	the	total	current	
in	the	circuit	and	terminal	voltage	across	the	battery.	 [1.059 A, 5.65 V]

 3. A resistance R	is	connected	in	series	with	a	parallel	circuit	comprising	two	resistors	of	12	Ω	and	8	Ω	
respectively.	 	The	total	power	dissipated	in	the	circuit	 is	70	W	when	the	applied	voltage	is	22	volts.		
Calculate	the	value	of	R.	 	 	 	 [0.91 Ω]

 4.	 Two	resistors	R1	and	R2	of	12	Ω	and	6	Ω	are	connected	in	parallel	and	this	combination	is	connected	in	
series	with	a	6.25	Ω	resistance	R3	and	a	battery	which	has	an	internal	resistance	of	0.25	Ω.		Determine	
the	e.m.f.	of	the	battery.	 	 	 	 [12.6 V]

 5.	 Find	the	voltage	across	and	current	through	4	kΩ	resistor	in	the	circuit	shown	in	Fig.	2.43.	[4 V ; 1 mA]

   Fig. 2.43 Fig. 2.44

 6. Find the current I in the 50 W resistor in the circuit shown in Fig. 2.44. [1 A]
 7. Find the current in the 1 kW resistor in Fig. 2.45. [6.72 mA]

  Fig. 2.45 Fig. 2.46

 8. Calculate the value of different currents for the circuit shown in Fig. 2.46. What is the total circuit 
conductance and resistance ?   [I = 12 A ; I1 = 2 A ; I2 = 4 A ; I3 = 6 A ; GAC = 6/25 S ; RAC = 25/6 W]

 9. For the parallel circuit of Fig. 2.47, calculate (i) V (ii) I1 (iii) I2. [(i) 20 V (ii) 5 A (iii) –5 A]

  Fig. 2.47 Fig. 2.48



60    Basic  Electrical  Engineering 

 10.	 Prove	that	output	voltage	V0	in	the	circuit	of	Fig.	2.48	is	V/13.
 11.	 Find	the	current	I	supplied	by	the	50	V	source	in	Fig.	2.49.	 [I = 13.7 A]

Fig. 2.49

 12.	 An	electric	heating	pad	rated	at	110	V	and	55	W	is	to	be	used	at	a	220	V	source.		It	is	proposed	to	connect	
the	heating	pad	in	series	with	a	series-parallel	combination	of	light	bulbs,	each	rated	at	100	V	;	bulbs	are	
having	ratings	of	25	W,	60	W,	75	W	and	100	W.		Obtain	a	possible	scheme	of	the	pad-bulbs	combination.		
At	what	rate	will	heat	be	produced	by	the	pad	with	this	modification	?	

[100 W bulb in series with a parallel combination of two 60 W bulbs ; 54.54 W]

2.12.  Open  Circuits
	 As	the	name	implies,	an	open	is	a	gap	or	break	or	interruption	in	a	circuit	path.
 When there is a break in any part of a circuit, that part is said to be open-circuited.
	 No	current	can	flow	through	an	open.		Since	no	current	can	flow	through	an	open,	according	to	
Ohm’s	law,	an	open	has	infinite	resistance	(R = V/I = V/0	=	∞).	An	open	circuit	may	be	as	a	result	of	
component	failure	or	disintegration	of	a	conducting	path	such	as	the	breaking	of	a	wire.
 1. Open circuit in a series circuit.  Fig.	2.50	shows	an	open	circuit	fault	in	a	series	circuit. 

Here	resistor	R4	is	burnt	out	and	an	open	develops.	Because	of	the	open,	no	current	can	
flow	in	the	circuit.	

Fig. 2.50

 When	an	open	occurs	in	a	series	circuit,	the	following	symptoms	can	be	observed	:
 (i)	 The	circuit	current	becomes	zero.
 (ii)	 There	will	be	no	voltage	drop	across	the	resistors	that	are	normal.
 (iii) The entire voltage drop appears across the open. This	can	be	readily	proved.	Applying	

Kirchhoff’s	voltage	law	to	the	loop	ABCDEFA,	we	have,
	 	–	0	× R1	–	0	× R2	–	0	× R3 – VDE	–	0	× R5	+	120	=	0
 \ VDE	 =	 120	V



D.C.  Circuits 61 

 (iv)	 Since	the	circuit	current	is	zero,	there	is	no	voltage	drop	in	the	internal	resistance	of	the	
source.	Therefore,	terminal	voltage	may	appear	higher	than	the	normal.

 2. Open circuit in a parallel circuit.  One	or	more	branches	of	a	parallel	circuit may	develop	
an	open.		Fig.	2.51	shows	a	parallel	circuit	with	an	open.		Here	resistor	R3	is	burnt	out	and	now	has	
infinite	resistance.

Fig. 2.51

 The	following	symptoms	can	be	observed	:
 (i)	 Branch	current	I3	will	be	zero	because	R3	is	open.
 (ii)	 The	total	current	I will	be	less	than	the	normal.
 (iii)	 The	operation	of	the	branches	without	opens	will	be	normal.
 (iv)	 The	open	device	will	not	operate.		If	R3	is	a	lamp,	it	will	be	out.		If	it	is	a	motor,	it	will	not	

run.

2.13.  Short  Circuits
	 A	short	circuit	or	short	is	a	path	of	low	resistance.	A short circuit is an unwanted path of low 
resistance.  When	a	 short	 circuit	occurs,	 the	 resistance	of	 the	circuit	becomes	 low.	 	As	a	 result,	
current	greater	than	the	normal	flows	which	can	cause	damage	to	circuit	components.		The	short	
circuit	may	be	due	to	insulation	failure,	components	get	shorted	etc.
 1. Partial short in a series circuit. Fig.	2.52	(i) shows a series circuit with a partial short.  
An	unwanted	path	has	connected	R1 to R3	and	has	eliminated	R2	from	the	circuit.	Therefore,	the	
circuit	resistance	decreases	and	the	circuit	current	becomes	greater	than	normal.	The	voltage	drop	
across	components	that	are	not	shorted	will	be	higher	than	normal.	Since	current	is	increased,	the	
power	dissipation	in	the	components	that	are	not	shorted	will	be	greater	than	the	normal.	A	partial	
short	may	cause	healthy	component	to	burn	out	due	to	abnormally	high	dissipation.

Fig. 2.52
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 2. Dead short in a series circuit. Fig.	 2.52	 (ii) shows a series circuit with a dead 
short.  Here	all	the	loads	(i.e.	resistors	in	this	case)	have	been	removed	by	the	unwanted	path.	
Therefore,	 the	 circuit	 resistance	 is	 almost	 zero	 and	 the	 circuit	 current	 becomes	 extremely	
high.		If	there	are	no	protective	devices	(fuse,	circuit	breaker	etc.)	in	the	circuit,	drastic	results	
(smoke,	fire,	explosion	etc.)	may	occur.
 3. Partial short in a parallel circuit. Fig.	2.53	(i) shows a parallel circuit with a partial 
short. The	circuit	resistance	will	decrease	and	total	current	becomes	greater	than	the	normal.	
Further,	 the	 current	 flow	 in	 the	 healthy	 branches	 will	 be	 less	 than	 the	 normal.	 Therefore,	
healthy	branches	may	operate	but	not	as	they	are	supposed	to.

Fig. 2.53
 4. Dead short in a parallel circuit. Fig.	2.53	 (ii) shows a parallel circuit with a dead 
short.  Note	that	all	the	loads	are	eliminated	by	the	short	circuit	so	that	the	circuit	resistance	is	
almost	zero.		As	a	result,	the	circuit	current	becomes	abnormally	high	and	may	cause	extensive	
damage	unless	it	has	protective	devices	(e.g. fuse,	circuit	breaker	etc.).

2.14.  Duality  Between  Series  and  Parallel  Circuits
 Two physical systems or circuits are called dual if they are described by equations of the 
same mathematical form.
	 This	peculiar	pattern	of	relationship	exists	between	series	and	parallel	circuits.	For	example,	
consider	the	following	table	for	d.c.	series	circuit	and	d.c.	parallel	circuit.
 D.C. series circuit D.C. parallel circuit
 I1 = I2 = I3	=	...	 V1 = V2 = V3	=	...
 V = V1 + V2 + V3	+	...	 I = I1 + I2 + I3	+	...
 RS = R1 + R2 + R3	+	... GP = G1 + G2 + G3	+	...

 I = 31 2

1 2 3
...

VV V
R R R

= = =  V = 31 2

1 2 3
...

II I
G G G

= = =

 V1 = 1

S

RV
R  ; V2 = 2

S

RV
R   I1 = 1

P

GI
G   ; I2 = 2

P

GI
G    

	 Note	that	the	relations	for	parallel	circuit	can	be	obtained	from	the	series	circuit	by	replacing	
voltage	by	current,	current	by	voltage		and	resistance	by	conductance.		In	like	manner,	relations	for	
series	circuit	can	be	obtained	from	the	parallel	circuit	by	replacing	current	by	voltage,	voltage	by	
current	and	conductance	by	resistance.		Such	a	pattern	is	known	as	duality and	the	two	circuits	are	
said	to	be	dual	of	each	other.		Thus	series	and	parallel	circuits	are	dual	of	each	other.		Other	examples	
of	duals	are	:	short	circuits	and	open	circuits	are	duals	and	nodes	and	meshes	are	duals.
2.15.  Wheatstone  Bridge
	 This	bridge	was	first	proposed	by	Wheatstone	(an	English	telegraph	engineer)	for	measuring	
accurately	 the	 value	 of	 an	 unknown	 resistance.	 It	 consists	 of	 four	 resistors	 (two	 fixed	 known	
resistances P	and	Q,	a	known	variable	resistance	R	and	the	unknown	resistance X whose	value	is	
to	be	found)	connected	to	form	a	diamond-shaped	circuit	ABCDA as	shown	in	Fig.2.54	(i).	Across	
one	pair	of	opposite	junctions	(A and C	),	battery	is	connected	and	across	the	other	opposite	pair	of	
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Fig. 2.54
junctions	(B	and D),	a	galvanometer	is	connected	through	the	key	K.	The	circuit	is	called	a	bridge	
because	galvanometer	bridges	the	opposite	junctions	B	and	D.	Fig.	2.54	(ii)	shows	another*	way	
of	drawing	the	Wheatstone	bridge.
 Working. The	values	of	P	and	Q	are	properly	fixed.	The	value	of		R	is	varied	such	that	on	
closing	the	key	K,	there	is	no	current	through	the	galvanometer.	Under	such	conditions,	the	bridge	
is	said	to	be	balanced.	The	point	at	which	the	bridge	is	balanced	is	called	the	null point.	Let	I1 
and	I2	be	the	currents	through	P	and	R	respectively	when	the	bridge	is	balanced.	Since	there	is	no	
current	through	the	galvanometer,	the	currents	in	Q	and	X are also I1	and	I2	respectively.		As	the	
galvanometer	reads	zero,	points	B	and	D	are	at	the	same	potential.		This	means	that	voltage	drops		
from	A to B	and	A to D	must	be	equal.	Also	voltage	drops	from	B to C	and	D to C	must	be	equal.	Hence,
  I1 P = I2	R	 ...(i)
and	  I1 Q = I2	X ...(ii)
	 Dividing	exp.	(i)	by	(ii),	we	get,
  P/Q =  R/X
or  P X = Q R
i.e.  Product of opposite arms = Product of opposite arms

	 	 Unknown	resistance,  X = 
Q R
P

× 	 ...(iii)

 Since	 the	 **values	 of	Q, P	 and	R	 are	 known,	 the	 value	 of	 unknown	 resistance X can	 be	
calculated.	It	should	be	noted	that	exp.	(iii)	is	true	only	under	the	balanced	conditions	of	Wheatstone	
bridge.
 Note. When	the	bridge	is	balanced,	VB = VD	so	the	voltage	across	galvanometer	is	zero	i.e. VBD = VB – VD 
=	0.		When	there	is	zero	voltage	across	the	galvanometer,	there	is	also	zero	current	though	the	galvanometer.		
Consequently,	in a balanced Wheatstone bridge, galvanometer can be replaced by either a short circuit 
or an open circuit without affecting the voltages and currents anywhere else in the circuit.
 Example 2.35.  Verify that the Wheatstone bridge shown in Fig. 2.55 is balanced. Then find 
the voltage VT across the 0.2 A current source by	 (i) replacing the 200 Ω resistor with a short.  
(ii) replacing the 200 Ω resistor with an open.

*	 Note	the	four	points	A,B,	C	and	D,	each	lying	at	 the	junction	between	two	resistors.	A	galvanometer	should	
bridge	 a	 pair	 of	 opposite	 points	 such	 as	B and	D and	 the	battery	 the	other	 pair	A	 and	C.

** Resistances P and Q are called the ratio arms of bridge and are usually made equal to definite ratio such as 
1 to 1, 10 to 1 or 100 to 1. The resistance R is ca]lled the rheostat arm and is made continuously variable 
from 1 to 1000 ohms or from 1 to 10,000 ohms.
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Fig. 2.55

 Solution. The	Wheatstone	bridge	is	balanced	if	the	products	of	the	resistances	of	the	opposite	
arms	of	 the	bridge	are	equal.	An	 inspection	of	Fig.	2.55	shows	 that	R1R4 = R2R3.	Therefore,	 the	
bridge	is	balanced.
 (i) When 200 Ω resistor is shorted.  Fig.	2.56	(i)	shows	the	bridge	when	the	200	Ω	resistor	

(R5)	is	replaced	by	a	short.		In	this	case,	the	circuit	is	equivalent	to	a	series-parallel	circuit	
as	shown	in	Fig.	2.56	(ii).	Referring	to	Fig.	2.56	(ii),	the	circuit	is	equivalent	to	parallel	
combination	of	R1	and	R2	in	series	with	the	parallel	combination	of	R3	and	R4.

Fig. 2.56

  The	 circuit	 shown	 in	 Fig.	 2.56	 (ii)	 further	 reduces	 to	 the	 one	 shown	 in	 Fig.	 2.57	 (iii).		
Therefore,	total	circuit	resistance,	RT	=	90	+	45	=	135	Ω.	

  \	 Voltage	across	0.2	A	current	source	is	
   VT = I RT	=	0.2	×	135	=	27 V
 (ii) When 200 Ω resistor is open-circuited. Fig.	2.57	(i)	shows	the	bridge	when	200	Ω	resistor	

is	replaced	by	an	open.		In	this	case,	the	circuit	is	equivalent	to	a	series-parallel	circuit	in	
which	series	combination	of	R1	and	R3	is	in	parallel	with	the	series	combination	of	R2	and	
R4.		This	is	shown	in	Fig.	2.57	(ii).

Fig. 2.57
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 	 The	 circuit	 shown	 in	 Fig.	 2.57	 (ii)	 further	 reduces	 to	 the	 one	 shown	 in	 Fig.	 2.57	 (iii).		
Referring	to	Fig.	2.57	(iii),	the	total	circuit	resistance	RT	is	given	by	;

  RT = 
180 540
180 540

×
+ 	=	135	Ω

 \	 Voltage	across	0.2	A		current	source,	VT = I RT	=	0.2	×	135	=	27 V
  Note that the voltage across current source is unaffected whether 200 Ω resistor is replaced by 
a short or an open.

2.16.  Complex  Circuits
	 Sometimes	we	encounter	circuits	where	simplification	by	series	and	parallel	combinations	is	
impossible.	Consequently,	Ohm’s	law	cannot	be	applied	to	solve	such	circuits.	This	happens	when	
there	is	more	than	one	e.m.f.	in	the	circuit	or	when	resistors	are	connected	in	a	complicated	manner.		
Such	circuits	are	called	complex circuits. We	shall	discuss	two	such	circuits	by	way	of	illustration.
 (i)	 Fig.	2.58		shows	a	circuit	containing	two	sources	of	e.m.f. E1	and	E2	and	three	resistors.	This	

circuit	cannot	be	solved	by	series-parallel	combinations.	Are	resistors	R1	and	R3 in		parallel?
	 	Not	quite,	because	there	is	an	e.m.f. source E1	between	them.	Are	they	in	series?	Not	quite,	

because	same	current	does	not	flow	between	them.

  Fig. 2.58 Fig. 2.59

 (ii)	 Fig.	 2.59	 shows	 another	 circuit	 where	 we	 cannot	 solve	 the	 circuit	 by	 series-parallel	
combinations.	Though	 this	 circuit	 has	 one	 source	 of	 e.m.f.	 (E),	 it	 cannot	 be	 solved	 by	
using	series	and	parallel	combinations.	Thus	resistors	R1	and	R2 are neither in series nor in 
parallel;	the	same	is	true	for	other	pair	of	resistors.

	 	 In	 order	 to	 solve	 such	 complex	 circuits,	 Gustav	 Kirchhoff	 gave	 two	 laws,	 known	 as	
Kirchhoff’s	laws.

2.17.  Kirchhoff’s  Laws
 Kirchhoff	gave	two	laws	to	solve	complex	circuits,	namely	;
	 1.	Kirchhoff’s	Current	Law	(	KCL	)	 2.	 Kirchhoff’s	Voltage	Law	(KVL)	
1. KIRCHHOFF’S   CURRENT   LAW (KCL)
	 This	law	relates	to	the	currents	at	the	*junctions	of	an	electric	
circuit	and	may	be	stated	as	under	:
 The algebraic sum of the currents meeting at a junction in an 
electrical circuit is zero.
 An	algebraic	sum	is	one	 in	which	 the	sign	of	 the	quantity	 is	
taken	into	account.		For	example,	consider	four	conductors	carrying	
currents I1, I2, I3	and I4	and	meeting	at	point	O	as	shown	in	Fig.	2.60.		 Fig. 2.60

*	 A	 junction	 is	 that	 point	 in	 an	 electrical	 circuit	where	 three or more circuit	 elements	meet.
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If	we	take	the	signs	of	currents	flowing	towards	point	O as	positive,	then	currents	flowing	away	
from	point	O	will	be	assigned	negative	sign.	 	Thus,	applying	Kirchhoff’s	current	 law	to	the	
junction	O in	Fig.	2.60,	we	have,
	 	 (I1)	+	(I4)	+	(−	I2)	+	(−	I3)	 =	 0
 or I1 + I4 = I2 + I3

i.e.,	 Sum	of	incoming	currents		=		Sum	of	outgoing	currents
	 Hence,	Kirchhoff’s	current	law	may	also	be	stated	as	under	:
The sum of currents flowing towards any junction in an electrical circuit is equal to the sum of 
currents flowing away from that junction. Kirchhoff’s current law is also called junction rule.
	 Kirchhoff’s	current	law	is	true	because	electric	current	is	merely	the	flow	of	free	electrons	and	
they	cannot	accumulate	at	any	point	in	the	circuit.	This	is	in	accordance	with	the	law	of	conservation	
of	charge.	Hence,	Kirchhoff’s	current	law	is	based	on	the	law	of	conservation	of	charge.
2. KIRCHHOFF’S   VOLTAGE   LAW ( KVL )
	 This	law	relates	to	e.m.fs	and	voltage	drops	in	a	closed	circuit	or	loop	and	may	be	stated	as	
under	:
 In any closed electrical circuit or mesh, the algebraic sum of all the electromotive forces 
(e.m.fs) and voltage drops in resistors is equal to zero, i.e.,
 In	any	closed	circuit	or	mesh,
 Algebraic sum of e.m.fs + Algebraic sum of voltage drops = 0
	 The	validity	of	Kirchhoff’s	voltage	 law	can	be	 
easily	 established	 by	 referring	 to	 the	 closed	 loop	
ABCDA	 shown	 in	 Fig.	 2.61.	 If	 we	 start	 from	
any	 point	 (say	 point	 A)	 in	 this	 closed	 circuit	 and	
go	 back	 to	 this	 point	 (i.e., point A)	 after	 going	
around	 the	 circuit,	 then	 there	 is	 no	 increase	 or	 
decrease	 in	 potential.	 This	 means	 that	 algebraic	
sum	of	 the	e.m.fs of	 all	 the	 sources	 (here	only	one	
e.m.f.	source	is	considered)	met	on	the	way	plus the 
algebraic	sum	of	the	voltage	drops	in	the	resistances	
must	be	zero.	Kirchhoff’s	voltage	law	is	based	on	the	law	of	*conservation	of	energy, i.e.,	net	
change	in	the	energy	of	a	charge	after	completing	the	closed	path	is	zero.
 Note.   Kirchhoff’s	voltage	law	is	also	called	loop rule.

2.18.  Sign  Convention
	 While	 applying	Kirchhoff’s	 voltage	 law	 to	 a	 closed	 circuit,	 algebraic	 sums	 are	 considered.	
Therefore,	it	is	very	important	to	assign	proper	signs	to e.m.fs	and	voltage	drops	in	the	closed	circuit.	
The	following	convention	may	be	followed	:
 A **rise in potential should be considered positive and fall in potential should be 
considered negative.
 (i)	 Thus	if	we	go	from	the	positive	terminal	of	the	battery	to	the	negative	terminal,	there	is	fall	

of	potential	and	the e.m.f.	should	be	assigned	negative	sign.	Thus	in	Fig.	2.62	(i),	as	we	go	
from	A to B,	there	is	a	fall	in	potential	and	the	e.m.f. of	the	cell	will	be	assigned	negative	

Fig. 2.61

*	 As	a	charge	traverses	a	loop	and	returns	to	the	starting	point,	the	sum	of	rises	of	potential	energy	associated	
with e.m.fs	 in	 the	 loop	must	 be	 equal	 to	 the	 sum	of	 the	drops	of	 potential	 energy	 associated	with	 resistors.

**	 The	reverse	convention	is	equally	valid	i.e.	rise	in	potential	may	be	considered	negative	and	fall	in	potential	
as	 positive.
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sign.	 On	 the	 other	
hand,	if	we	go	from	the	
negative	terminal	to	the	
positive	 terminal	of	 the	
battery	 or	 source,	 there	
is	 a	 rise	 in	 potential	
and	the	e.m.f	should	be	
assigned	positive	sign.	Thus	in	Fig.	2.62	(ii)	as	we	go	from A to B,	there	is	a	rise	in	potential	
and	the	e.m.f.	of	the	cell	will	be	assigned	positive	sign.	It may be noted that the sign of e.m.f. 
is independent of the direction of current through the branch under consideration.

 (ii)	When	current	flows	through	a	resistor,	there	is	a	voltage	drop	across	it.	If	we	go	through	
the	resistor	in	the	same	direction	as	the	current,	there	is	a	fall	in	potential	because	current	
flows	from	higher	potential	to	lower	potential.	Hence	this	voltage	drop	should	be	assigned	
negative	 sign.	 In	 Fig.	
2.63	(i),	as	we	go	from	
A to B,	 there	 is	 a	 fall	
in	 potential	 and	 the	
voltage	 drop	 across	
the	 resistor	 will	 be	
assigned	negative	sign.	
On	the	other	hand,	if	we	go	through	the	resistor	against	the	current	flow,	there	is	a	rise	in	
potential	and	the	voltage	drop	should	be	given	positive	sign.	Thus	referring	to	Fig.	2.63	(ii),	
as	we	go	from	A to B,	there	is	a	rise	in	potential	and	this	voltage	drop	will	be	given	positive	
sign.  It may be noted that sign of voltage drop depends on the direction of current and is 
independent of the polarity of the e.m.f. of source in the circuit under consideration.

2.19.  Illustration  of  Kirchhoff’s  Laws
 Kirchhoff’s	Laws	can	be	beautifully	explained	by	referring	to	Fig.	2.64.		Mark	the	directions	of	
currents	as	indicated.	The	direction	in	which	currents	are	assumed	to	flow	is	unimportant,	since	if	
wrong	direction	is	chosen,	it	will	be	indicated	by	a	negative	sign	in	the	result.
 (i)	 The	 magnitude	 of	 current	 in	 any	

branch	 of	 the	 circuit	 can	 be	 found	
by	applying	Kirchhoff’s	current	law.	
Thus	at	 junction	C	 in	Fig.	2.64,	 the	
incoming	currents	to	the	junction	are	
I1	and	 I2.		Obviously,	the	current	in	
branch	CF	will	be I1+I2.

 (ii)	 There	 are	 three	 closed	 circuits	 in	
Fig	 2.64	 viz.	 ABCFA, CDEFC and	
ABCDEFA.	Kirchhoff’s	 voltage	 law	
can	be	applied	to	these	closed	circuits	
to	get	the	desired	equations.	

 Loop ABCFA. In	this	loop,	e.m.f. E1	will	be	given	positive	sign.	It	is	because	as	we	consider	
the	loop	in	the	order	ABCFA,	we	go	from	−ve	terminal	to	the	positive	terminal	of	the	battery	in	the	
branch	AB	and	hence	there	is	a	rise	in	potential.	The	voltage	drop	in	branch	CF	is	(	I1 + I2 ) R1	and	
shall	bear	negative	sign.	It	is	because	as	we	consider	the	loop	in	the	order	ABCFA,	we	go	with	current	
in	branch	CF and	there	is	a	fall	in	potential.	Applying	Kirchhoff’s	voltage	law	to	the	loop	ABCFA,
	 	 −	(	I1 + I2 ) R1 + E1	 = 	0

Fig. 2.62

Fig. 2.64

Fig. 2.63
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or  E1	 =	 (	I1 + I2 ) R1	 ...(i)
 Loop CDEFC.	As	we	go	around	the	loop	in	the	order	CDEFC,	drop	I2R2 is positive, e.m.f.	
E2 is negative and	drop	(	I1 + I2 ) R1 is positive.	Therefore,	applying	Kirchhoff’s	voltage	law	
to	this	loop,	we	get,
  I2 R2	+	( I1 + I2 ) R1	−	E2	 = 	0

or  I2	R2	+	(	I1 + I2 ) R1 = E2	 ...(ii)
 Since E1,	E2,	R1	and	R2	are	known,	we	can	find	 the	values	of	 I1	and	 I2	from	 the	above	 two	
equations.	Hence	currents	in	all	branches	can	be	determined.

2.20.  Method  to  Solve  Circuits  by  Kirchhoff’s  Laws
 (i)	 Assume	unknown	currents	in	the	given	circuit	and	show	their	direction	by	arrows.
 (ii)	 Choose	any	closed	circuit	and	find	the	algebraic	sum	of	voltage	drops	plus	the	algebraic	

sum	of	e.m.fs	in	that	loop.
 (iii)	 Put	the	algebraic	sum	of	voltage	drops	plus	the	algebraic	sum	of	e.m.fs	equal	to	zero.
 (iv)	Write	equations	for	as	many	closed	circuits	as	the	number	of	unknown	quantities.	Solve	

equations	to	find	unknown	currents.
 (v)	 If	the	value	of	the	assumed	current	comes	out	to	be	negative,	it	means	that	actual	direction	

of	current	is	opposite	to	that	of	assumed	direction.
 Note. It	may	be	noted	that	Kirchhoff’s	laws	are	also	applicable	to	a.c.	circuits.		The	only	thing	to	be	done	
is that I,	V	and	Z	are	substituted	for	I,	V	and R.		Here	I,	V	and	Z	are		phasor	quantities.

2.21.  Matrix  Algebra
	 The	solution	of	 two	or	 three	simultaneous	equations	can	be	achieved	by	a	method	that	uses	
determinants. A	determinant	 is	 a	 numerical	 value	 assigned	 to	 a	 square	 arrangement	of	 numbers	
called	a	matrix.	The	advantage	of	determinant	method	is	that	it	is	less	difficult	for	three	unknowns	
and	there	is	less	chance	of	error.	The	theory	behind	this	method	is	not	presented	here	but	is	available	
in	any	number	of	mathematics	books.
 Second-order determinant. A	2	×	2	matrix	has	four	numbers	arranged	in	two	rows	and	two	
columns.	 	The	value	of	such	a	matrix	 is	called	a	second-order determinant and	 is	equal to the 
product of the principal diagonal minus the product of the other diagonal.  For	example,	value	of	
the	matrix	=	ad – cb.
	 Second-order	 determinant	 can	 be	 used	 to	 solve	 simultaneous	
equations	with	two	unknowns.	Consider	the	following	equations	:
  a1	x + b1	y = c1
  a2 x + b2	y = c2
	 The	unknowns	are	x and y	in	these	equations.	The	numbers	associated	with	the	unknowns	are	
called	coefficients. The	coefficients	in	these	equations	are	a1,	a2,	b1	and	b2.	The	right	hand	number	
(c1 or c2)	of	each	equation	is	called	a	constant. The	coefficients	and	constants	can	be	arranged	as	a	
numerator matrix and	as	a	denominator matrix. The	matrix	for	the	numerator	is	formed	by	replacing	
the	coefficients	of	the	unknown	by	the	constants.	The	denominator	matrix	is	called	characteristic 
matrix and	is	the	same	for	each	fraction.	It	is	formed	by	the	coefficients	of	the	simultaneous	equations.

  x = 

1 1

2 2

1 1

2 2

c b
c b
a b
a b

  ;  y  =  

1 1

2 2

1 1

2 2

a c
a c
a b
a b
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	 Note	that	the	characteristic	determinant	(denominator)	is	the	same	in	both	cases	and	needs	to	be	
evaluated	only	once.	Also	note	that	the	coefficients	for	x	are	replaced	by	the	constants	when	solving	
for	x	and	that	the	coefficients	for	y are	replaced	by	the	constants	when	solving	for	y.
 Third-order determinant.  A	 third-order	 determinant	 has	 9	 numbers	 arranged	 in	 3	 rows	
and	 3	 columns.	 	 Simultaneous	 equations	with	 three	 unknowns	 can	 be	 solved	with	 third-order	
determinants.		Consider	the	following	equations	:
  a1x + b1y + c1z = d1 
  a2x + b2y + c2z = d2
  a3x + b3y + c3z = d3

 The	characteristic	matrix	forms	the	denominator	and	is	the	same	for	each	fraction.		It	is	formed	
by	the	coefficients	of	the	simultaneous	equations.

  Denominator = 
1 1 1

2 2 2

3 3 3

a b c
a b c
a b c

	 The	matrix	for	each	numerator	is	formed	by	replacing	the	coefficient	of	the	unknown	with	the	
constant.

  x = 

1 1 1

2 2 2

3 3 3

Denominator

d b c
d b c
d b c

  ;  y  = 

1 1 1

2 2 2

3 3 3

Denominator

a d c
a d c
a d c

   ;  z = 

1 1 1

2 2 2

3 3 3

Denominator

a b d
a b d
a b d

 Example 2.36. In the network shown in Fig. 2.65, the different currents and voltages are as 
under :
  i2 = 5e–2t ; i4 = 3 sin t ; v3 = 4e–2t

 Using KCL, find voltage v1.
 Solution.	Current	through	capacitor	is

  i3 = 23
3

2( ) (4 )tdv d dC C v e
dt dt dt

−= =

	 	 	 	=	 –16e–2t

	 Applying	KCL to	junction	A	in	Fig.	2.65,
  i1 + i2 + i3	+	(–i4)	 =	 0

 or i1	+	5e–2t	–	16e–2t – 3 sin t	 = 	0

 or i1 = 3 sin t	+	11e–2t

 \	 Voltage	developed	across	4H	coil	is

  v1 = 21
1( ) 4 (3 sin 11 )tdi d dL L i t e

dt dt dt
−= = +

	 	 	 =	 4(3	cos	t	–	22e–2t) = 12 cos t – 88e–2t

 Example 2.37. For the circuit shown in Fig. 2.66, find the currents flowing in all branches.
 Solution.	Mark	 the	currents	 in	various	branches	as	 shown	 in	Fig.	2.66.	Since	 there	are	 two	
unknown quantities I1	and	I2,	two	loops	will	be	considered.

Fig. 2.65
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 Loop ABCFA.	Applying	KVL,
	 	 30	−	2	I1	−	10	+	5	I2		=	 0
	 or	 	 2	I1	−	5	I2	 =	 20	 ...(i)
 Loop FCDEF.	Applying	KVL,
	 −5	I2	+	10	−	3	(	I1 + I2	)	−	5	−	4	(	I1 + I2	)	=	0
	 or	 	 7	I1	+	12	I2	 	=	5	 ...(ii)
	 Multiplying	eq.	(i) by	7	and	eq.	(ii) by	2,	we	get,
	 	 																				14	I1	−	35	I2		=	140					...(iii)
	 	 	 14	I1	+	24	I2		=	 10	 ...(iv)
	 Subtracting	eq.	(iv) from	eq.	(iii),	we	get,
	 	 −59	I2	 =	 130
 \ I2	 =	 −130/59	=	−2.2A	=	2.2 A from C to F
	 Substituting	the	value	of	I2	=	−2.2	A	in	eq.	(i),	we	get,	I1 = 4.5 A
	 Current	in	branch	CDEF =  I1 + I2	=	(	4.5)	+	(	−2.2	)	=	2.3 A
 Example 2.38. A Wheatstone bridge ABCD has the following  details ; AB = 1000 Ω	; BC = 
100 Ω; CD = 450 Ω	; DA = 5000 Ω.
 A galvanometer of resistance 500	 Ω	 is connected between B and D. A 4.5-volt battery of 
negligible resistance is connected between A and C with A positive.  Find the magnitude and 
direction of galvanometer current.
 Solution. Fig.	 2.67	 shows	 the	Wheatstone	 bridge	ABCD.	Mark	 the	 currents	 in	 the	 various	
sections	as	shown.	Since	there	are	three	unknown	quantities	(viz.	I1,	I2	and	Ig ),	three	loops	will	be	
considered.
 Loop ABDA. Applying	KVL,
	 	 −1000	I1	−	500	Ig	+	5000	I2	 = 	0
	 or	 2	I1 + Ig	−	10	I2	 =	 0	 	...(i)
 Loop BCDB. Applying	KVL,
	 −100(I1	−	Ig)	+	450(I2 + Ig)	+	500Ig	=	0
	 or	 2	I1	−	21	Ig	−	9	I2		=	 0	 ...(ii)
 Loop EABCFE. Applying	KVL,
	 −1000I1	−	100	(	I1	−	Ig	)	+	4.5	=	 0
	 or	 1100	I1	−	100	Ig	 =	 4.5	 ...(iii)
	 Subtracting	eq.	(ii)	from	eq.	(i),	we	get,
	 	 22	1g	−	I2	 =	 0	 ...(iv)
	 Multiplying	eq.	(i)	by	550	and	subtracting	eq.	
(iii)	from	it,	we	get,
	 	 650	Ig	−	5500	I2	 =	 −	4.5	 ...(v)
	 Multiplying	eq.	(iv)	by	5500	and	subtracting	eq.	(v)	from	it,	we	get,
	 	 120350	Ig	 =	 4.5

 \ Ig = 4.5
120350

	=	37.4	×	10–6 A = 37.4 µA from B to D

Fig. 2.66

Fig. 2.67
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 Example 2.39. A Wheatstone bridge ABCD is arranged as follows : AB = 1 Ω	; BC = 2 Ω	;   
CD = 3 Ω	;  DA = 4 Ω. A resistance of 5 Ω is connected between B and D. A 4-volt battery of internal 
resistance 1 Ω is connected between A and C. Calculate (i) the magnitude and direction of current 
in 5 Ω resistor and (ii) the resistance between A and C.
 Solution. (i) Fig.	 2.68	 shows	 the	
Wheatstone	 bridge	 ABCD.	 Mark	 the	
currents	in	the	various	branches	as	shown.	
Since there are three unknown quantities 
(viz. I1, I2	 and	 I3),	 three	 loops	 will	 be	
considered.

 Loop ABDA. Applying	KVL,
	 	 −	1	×	I1	−	5	I3	+	4	I2	 = 	0
 or I1	+	5	I3	−	4	I2	 =	 0	 ...(i)
 Loop BCDB. Applying	KVL,
	 −	2	(	I1	−	I3	)	+	3	(	I2 + I3	)	+	5I3 =	0

	 or	 			2	I1	−	10	I3	−	3	I2	 =	 0	 ...(ii)
 Loop FABCEF. Applying	KVL,
− I1	×	1	−	2	(	I1	−	I3	)	−	1	(	I1 + I2	)	+	4	=	0
	 or	 4	I1	−	2	I3 + I2	 =	 4			...(iii)
	 Multiplying	eq.(i)	by	2	and	subtracting	eq.	(ii) from	it,	we	get,	
	 	 20	I3	–	5	I2	 =	 0	 ...(iv)

	 Multiplying	eq. (i)	by	4	and	subtracting	eq. (iii)	from	it,	we	get,
	 	 22	I3	−	17	I2	 =	 −	4	 ...(v)

	 Multiplying	eq. (iv)	by	17	and	eq.	(v) by	5,	we	get,
	 	 340	I3	−	85	I2	 =	 0	 ...(vi)
	 	 110	I3	−	85	I2	 =	 −20	 ...(vii)
	 Subtracting	eq. (vii)	from eq. (vi),	we	get,
	 	 230	I3	 =	 20

 \ I3	 =	 20/230	=	0.087	A

 i.e	 Current	in	5	Ω,	I3 = 0.087 A from B to D
 (ii)	 Substituting	the	value	of	I3	 =	 0.087	A	in	eq. (iv),	we	get, I2	=	0.348	A.
	 	 Substituting	values	of  I3 =	 0.087	A	and I2	=	0.348	A	in	eq. (ii),	I1	=	0.957	A.
	 	Current	supplied	by	battery,	I = I1 + I2	=	0.957	+	0.348	=	1.305	A
	 	 P.D.	between	A	and	C =	 E.M.F.	of		battery	−	Drop	in	battery	=	4	−	1.305	×	1	=	2.695	V

\	 Resistance	between A and	C = 
. . across 2.695

Battery current 1.305
P D AC =  = 2.065	Ω

Fig. 2.68
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 Example 2.40. Determine the current in  
4 W resistance of the circuit shown in Fig. 2.69.
 Solution.	 The	 given	 circuit	 is	 redrawn	 as	
shown	 in	 Fig.	 2.70.	 Mark	 the	 currents	 in	 the	
various	branches	of	the	circuit	using	KCL.	Since	
there	 are	 three	 unknown	 quantities	 (viz. I1,	 I2 
and	 I3),	 three	 loops	will	 be	 considered.	While	
applying	KVL	 to	 any	 loop,	 rise	 in	 potential	 is	
considered	 positive	 while	 fall	 in	 potential	 is	
considered	negative.	This	convention	is	followed	
throughout	the	book.

Fig. 2.70
 Loop BCDHB.	Applying	KVL,	we	have,
	 	 	 –2(I1 – I2)	+	10I3	+	1	×	(I2	–	6)	 =	 0
 or  2I1 – 3I2	–	10I3	 =	 –6	 ...(i)
 Loop DEFHD.	Applying	KVL,	we	have,
	 	 	–2(I1 – I2	+	6	+	I3)	–	10	+	3(I2	–	6	–	I3)	–	10I3	=	0
	 or	 	 2I1	–	5I2	+	15I3	 =	 –40	 ...(ii)
 Loop BHFGAB.	Applying	KVL,	we	have,
	 	 	–1(I2	–	6)	–	3(I2	–	6	–	I3)	–	4I1	+	24	=	0
	 or	 	 4I1	+	4I2 – 3I3	 =	 48	 ...(iii)
	 Solving	eqs.	(i),	(ii)	and	(iii),	we	get,	I1	=	4.1	A.
 \	 Current	in	4	W resistance = I1 = 4.1 A
 Example 2.41. Two batteries E1 and E2 having e.m.fs of 6V and 2V respectively and internal 
resistances of 2 Ω and 3 Ω respectively are connected in parallel across a 5 Ω resistor. Calculate (i) 
current through each battery and (ii) terminal voltage.
 Solution.	 Fig.	 2.71	 shows	 the	 conditions	 of	 the	 problem.	Mark	 the	 currents	 in	 the	 various	
branches.	Since	there	are	two	unknown	quantities	I1	and	I2,	two	loops	will	be	considered.
 (i)  Loop HBCDEFH.		Applying	Kirchhoff’s	voltage	law	to	loop	HBCDEFH,	we	get,
		 	 2	I1	−	6	+	2	−	3	I2	 = 	0
	 or	 2	I1	−	3	I2	 =	 4	 ...(i)
 Loop ABHFEGA.  Applying	Kirchhoff’s	voltage	law	to	loop ABHFEGA,	we	get,
  3 I2	−	2	+	5	(I1 + I2)	 =	 0
	 or	 5	I1	+	8	I2	 =	 2	 ...(ii)

Fig. 2.69
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	 Multiplying	 eq.	 (i)	 by	 8	 and	 
eq.	 (ii)	by	3	and	 then	adding	 them,	
we	get,
	 31	I1	=	38		 	

or   I1 = 
38
31  = 1.23 A

i.e.	 battery	 E1	 is	 being	 discharged	
at	 1.23	A.	 Substituting	 I1	 =	 1.23	A	
in	eq.	 (i),	we	get,	 I2 = − 0.52A i.e. 
battery	E2	is	being	charged.

 (ii)	Terminal	voltage	=	(	I1 + I2	)	5	

=	(1.23	−	0.52	)	5	=	3.55 V
 Example 2.42. Twelve wires, 
each of resistance r, are connected to form a skeleton cube. Find the equivalent resistance between 
the two diagonally opposite corners of the cube.
 Solution. Let ABCDEFGH be	the	skeleton	cube	formed	
by	joining	12	wires,	each	of	resistance	r	as	shown	in	Fig.	
2.72.		Suppose	a	current	of	6I enters	the	cube	at	the	corner	
A.	Since	the	resistance	of	each	wire	is	the	same,	the	current	
at corner A	 is	divided	into	three	equal	parts:	2I	flowing	in	
AE,	 2I	 flowing	 in	AB	 and	2I	 flowing	 in	AD.	At	 points	B, 
D	and	E,	 these	currents	are	divided	 into	equal	parts,	each	
part	being	equal	to	I.	Applying	Kirchhoff’s	current	law,	2I 
current	flows	in	each	of	the	wires	CG, HG	and	FG.	These	
three	currents	add	up	at	the	corner	G	so	that	current	flowing	
out	of	this	corner	is	6I.
 Let E	=	e.m.f.	of	 the	battery	connected	 to	corners	A 
and	G of	the	cube	;	corner	A being	connected	to	the	+ve	
terminal.	Now	consider	any	closed	circuit	between	corners	A	and	G,	say	the	closed	circuit	AEFGA.	
Applying	Kirchhoff’s	voltage	law	to	the	closed	circuit	AEFGA,	we	have,
	 	 −	2	I r	−	I r	−	2	I r		=	 −	E	 or	 5	I r = E	 ...(i)
 Let R	be	the	equivalent	resistance	between	the	diagonally	opposite	corners	A	and	G.
	 Then,	 E	 =	 6	I R ...(ii)
	 From	eqs.	(i)	and	(ii),	we	get,		6IR	=	5I r or R = (5/6) r
 Example 2.43. Determine the current 
supplied by the battery in the circuit shown in 
Fig. 2.73.
 Solution.  Mark	the	currents	in	the	various	
branches	 as	 shown	 in	Fig.	 2.73.	Since	 there	
are three unknown quantities x,	y	and	z,	three	
equations	 must	 be	 formed	 by	 considering	
three	loops.
 Loop ABCA. Applying	KVL,	we	have,
	 	 –	100x	–	300z	+	500y	 = 	0
 or x	–	5y + 3z	 =	 0	

...(i)

Fig. 2.72

Fig. 2.73

Fig. 2.71
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 Loop BCDB. Applying	KVL,	we	have,
 	–	300x	–	100	(y + z)	+	500	(x – z)	=	0
	 or	 5x – y	–	9z	 =	 0	 ...(ii)
 Loop ABDEA. Applying	KVL,	we	have,
 	–	100x	–	500	(x – z)	+	100	–	100	(x + y)	=	0
	 or	 7x + y	–	5z	 = 	1	 ...(iii)

	 From	eqs.	(i),	(ii)	and	(iii),	 x =  1 A
5

 ; y = 1 A
10

 ; z = 1 A
10

 By Determinant Method.  We	shall	now	find	the	values	of	x,	y and	z	by	determinant	method.
  x	–	5y + 3z	 =	 0	 ...(i)
	 	 5x – y –	9z	 =	 0	 ...(ii)
	 	 7x + y 	–	5z	 = 	1	 ...(iii)

  
1 5 3

5 1 9

7 1 5

x
y
z

−   
   − −   
   −   

 = 
0

0

1

 
 
 
  

 \ x = 

0 5 3
0 1 9 1 9 0 9 0 1

0 5 3
1 1 5 1 5 1 5 1 1

1 5 3 1 9 5 9 5 1
1 5 3

5 1 9 1 5 7 5 7 1
7 1 5

−
− − − − − −+ +− − −

=
− − − − −+ +− − − −

−

    = 
0 [( 1 5) (1 9)] 5 [(0 5) (1 9)] 3[(0 1) (1 1)]
1[( 1 5) (1 9)] 5 [(5 5) (7 9) 3[(5 1) (7 1)]

− × − − × − + × − − × − + × − × −
− × − − × − + × − − × − + × − × −

    = 
0 45 3 48 1 A

14 190 36 240 5
+ + = =

+ +

   y = 

1 0 3
5 0 9
7 1 5 24 1 A

240 101 5 3
5 1 9
7 1 5

−
−

= =
−
− −

−

   z = 

1 5 0
5 1 0
7 1 1 24 1 A

240 101 5 3
5 1 9
7 1 5

−
−

= =
−
− −

−

 \		 Current	supplied	by	battery	=	x + y = 1 1
5 10

+ = 3 A
10
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 Example 2.44. Use Kirchhoff’s voltage law 
to find the voltage Vab in Fig. 2.74.
 Solution. We	shall	use	Kirchhoff’s	voltage	
law	 to	 solve	 this	 problem,	 although	 other	
methods	can	be	used.
	 Total	circuit	resistance,	RT	=	2	+	1	+	3	=	6	kΩ

	 Circuit	current,	 I = 
24 V
6 kT

V
R

=
Ω 	=	4	mA

	 Applying	Kirchhoff’s	 voltage	 law	 to	 loop	
ABCDA,	we	have,	
	 	 24	–	4	mA	×	2	kΩ	–	*Vab	 = 	0
	 or	 24	–	8	–	Vab	 =	 0	 	 \  Vab	=	24	–	8	=	16 V
 Example 2.45. For the 
ladder network shown in Fig. 
2.75, find the source voltage Vs 
which results in a current of 7.5 
mA in the 3 Ω resistor.
 Solution. Let us assume that 
current	in	branch	de is	1	A.
	 Since	the	circuit	is	linear,	the	
voltage	necessary	to	produce	1	A	
is	in	the	same	ratio	to	1	A	as	Vs	to	7.5	mA.
	 Voltage	between	c and	f,	 Vcf	 =	 1	(1	+	3	+	2)	=	6	V
 \	 Current	in	branch	cf, Icf =	6/6	=	1	A
	 Applying	KCL	at	junction	c,
  Ibc	 =	 1	+	1	=	2	A
	 Applying	KVL	to	loop	bcfgb, we	have,
	 	 –	4	×	2	–	6	×	1	+	Vbg	 =	 0	 \ Vbg	=	8	+	6	=	14	V

 \	 Current	in	branch	bg,	Ibg  =
14

7 7
bgV

= 	=	2	A

	 Applying	KCL	to	junction	b,	we	have,	Iab	=	2	+	2	=	4	A
	 Applying	KVL	to	loop	abgha, we	have,
	 	 	–	8	×	4	–	7	×	2	–	12	×	4	+	Vah 	=	0	 \ Vah	=	94	V	

 Now 
1 A

ahV
 = 

7.5 mA
sV

 or 3
94

1 A 7.5 10 A
sV

−=
×

 \ Vs = 0.705 V

 Example 2.46. De-
termine the readings of 
an ideal voltmeter con-
nected in Fig. 2.76 to  
(i) terminals a and b, (ii) 
terminals c and g.  The 
average power dissipat-
ed in the 5 Ω	 resistor is 
equal to 20 W.

*	 Note	 that	 point	a is	 positive	w.r.t.	 point	b.

Fig. 2.74

Fig. 2.75

Fig. 2.76
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 Solution. The	polarity	of	90	V	source	 suggests	 that	point	d is	positive	w.r.t.	c.	Therefore,	
current	flows	 from	point	d to c. The	average	power	 in	5	Ω	resistor	 is	20	W	so	 that	V2

dc/5	=	20.	
Therefore,	Vdc	=	10	V.	An	ideal voltmeter	has	an	infinite	resistance	and	indicates	the	voltage	without	
drawing	any	current.
 (i)	 Applying	KVL	to	loop	acdba, we	have,
  Vac + Vcd + Vdb + Vba	 = 	0
	 or	 0	+	10	+	0	+	Vba	 =	 0	 	 \  Vba = – 10 V
  If	the	meter	is	of	digital	type,	it	will	indicate	–	10	V.		For	moving-coil	galvanometer,	the	leads	
of	voltmeter	will	be	reversed	to	obtain	the	reading.
 (ii)	 Applying	KVL	to	loop	cefgc,	we	have,
  –Vce + Vef – Vfg – Vgc	 = 	0
	 or	 –17	×	2	+	90	–	6	×	2	–	Vgc	 =	 0	 	 \  Vgc = 44 V
 Example 2.47. Using Kirchhoff’s current law and Ohm’s law, find the magnitude and polarity 
of voltage V in Fig. 2.77.  Directions of the two current sources are shown.

Fig. 2.77

 Solution. Let	us	assign	the	directions	of	I1,	I2	and	I3	and	polarity	of	V as	shown	in	Fig.	2.77	(ii).		
We	shall	see	in	the	final	result	whether	our	assumptions	are	correct	or	not.		Referring	to	Fig.	2.77	(ii) 
and	applying	KCL	to	junction	A,	we	have,
	 	 Incoming	currents	 =	 Outgoing	currents
 or I2	+	30	 =	 I1 + I3	+	8
 \ I1 – I2 + I3	 =	 22	 ...(i)
	 Applying	Ohm’s	law	to	Fig.	2.77	(ii),	we	have,

  I1 = 
2
V  ; I3 = 

4
V  ; I2 = 

6
V−

	 Putting	these	values	of	I1,	I2	and		I3	in	eq.	(i),	we	have,

  
2 6 4
V V V − − +  

	 =	 22	 or	 V = 24 V

 Now I1 = V/2	 =	 24/2	=	12	A	 ;	 I2	=	–	24/6	=	–	4	A	 ;	 I3	=	24/4	=	6	A
	 The	 negative	 sign	 of	 I2	 indicates	 that	 the	 direction	 of	 its	 flow	 is	 opposite	 to	 that	 shown	 in	 
Fig.	2.77	(ii).
 Example 2.48. In the network shown in Fig. 2.78, v1 = 4 volts ; v4 = 4 cos 2t and i3 = 2e–t/3. 
Determine i2.
 Solution.	Voltage	across	6	H	coil	is

  v3 = 3
3( )

di dL L i
dt dt

=

   = /3 /36 (2 ) 4t td e e
dt

− −= −



D.C.  Circuits 77 

	 Applying	KVL	to	loop	ABCDA,	we	have,
  –v1 – v2 + v3 + v4	 = 	0
	 or	 –4	–	v2	–	4e–t/3	+	4	cos	2t	 = 	0
 \ v2	 =	 4	cos	2t	–	4e–t/3	–	4
	 Current	through	8	F	capacitor	is

  i2 = 2
2( )

dv dC C v
dt dt

=

   = /38 (4 cos 2 4 4)td t e
dt

−− −

   = /348 8 sin 2
3

tt e− − +  

   = −− + /33264 sin 2
3

tt e

Tutorial Problems

 1. Using	Kirchhoff’s	laws,	find	the	current	in	various	resistors	in	the	circuit	shown	in	Fig.	2.79.
 [6.574 A, 3.611 A ,10.185 A]

  Fig. 2.79 Fig. 2.80
 2. For	the	circuit	shown	in	Fig.	2.80,	determine	the	branch	currents	using	Kirchhoff’s	laws.

[151.35A, 224.55A, 27.7A , 179.05 A, 196.84 A]
 3. Two	batteries	A	and	B having	e.m.fs.	12	V	and	8	V	respectively	and	internal	resistances	of	2	Ω	and	 

1	Ω	respectively,	are	connected	in	parallel	across	10	Ω	resistor.		Calculate	(i)	the	current	in	each	of	the	
batteries	and	the	external	resistor	and	(ii)	p.d.	across	external	resistor.

 [(i) IA = 1.625 A discharge ; IB = 0.75 A charge; 0.875 A (ii) 8.75 V]
 4. A	Wheatstone	bridge	ABCD	is	arranged	as	follows	:	AB	=	20	Ω,	BC	=	5	Ω,	CD =	4	Ω	and	DA =	10	Ω.	A	

galvanometer	of	resistance	6Ω	is	connected	between	B	and	D.	A	100-volt	supply	of	negligible	resistance	
is	connected	between	A	and	C with A positive.	Find	the	magnitude	and	direction	of	galvanometer	current.

[0.667 A from D to B]
 5. A network ABCD consists	of	the	following	resistors	:	AB =	5	kΩ,	BC	=	10	kΩ,	CD	=	15	kΩ	and	DA =  

20	kΩ.	A	fifth	resistor	of	10	kΩ	is	connected	between	A	and	C.	A	dry	battery	of	e.m.f.	120	V	and	internal	
resistance	 500Ω	 is	 connected	 across	 the	 resistor	AD.	 Calculate	 (i) the	 total	 current	 supplied	 by	 the	
battery,	(ii) the	p.d.	across	points	C and	D and	(iii) the	magnitude	and	direction	of	current	through	branch	
AC.     [(i) 11.17 mA (ii) 81.72 V (iii) 3.27 mA from A to C]

 6. A	Wheatstone	bridge	ABCD is	arranged	as	follows	:	AB =	10	Ω,	BC	=	30	Ω,	CD =	15Ω	and	DA =	20Ω.	
A	2	volt	battery	of	internal	resistance	2Ω	is	connected	between	A	and	C with A positive.	A	galvanometer	
of	resistance	40Ω	is	connected	between	B	and	D.	Find	the	magnitude	and	direction	of	galvanometer	
current.    [11.5 mA from B to D]

 7.	 Two	batteries	E1	and	E2	having	e.m.fs 6	V	and	2	V	respectively	and	internal	resistances	of	2	Ω	and	3	Ω	
respectively	are	connected	in	parallel	across	a	5	Ω	resistor.	Calculate	(i)	current	through	each	battery	and	
(ii)	terminal	voltage.    [(i) 1.23A; –0.52A (ii) 3.55V]

Fig. 2.78
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 8. Calculate	the	current	in	20	Ω	resistor	in	Fig.	2.81.	 [26.67 mA]

  Fig. 2.81 Fig. 2.82
 9. In	the	circuit	shown	in	Fig.	2.82,	find	the	current	in	each	branch	and	the	current	in	the	battery.		What	is	

the	p.d.	between	A and C ?
   [Branch ABC = 0.581 A ; Branch ADC = 0.258 A ; Branch AC = 0.839 A ;  VAC = 2.32 V]
 10. Two	batteries	A and	B having	e.m.f.s	of	20	V	and	21	V	respectively	and	internal	resistances	of	0.8	Ω	and	

0.2	Ω	respectively,	are	connected	in	parallel	across	50	Ω	resistor.		Calculate	(i)	the	current	through	each	
battery	and	(ii)	the	terminal	voltage.	 [(i) Battery A = 0.4725 A ; Battery B = 0.0714 A (ii) 20 V]

 11. A	battery	having	an	e.m.f.	of	10	V	and	internal	resistance	0.01	Ω	is	connected	in	parallel	with	a	second	
battery	of	e.m.f.	10	V	and	internal	resistance	0.008	Ω.		The	two	batteries	in	parallel	are	properly	connected	
for	charging	from	a	d.c.	supply	of	20	V	through	a	0.9	Ω	resistor.		Calculate	the	current	taken	by	each	
battery	and	the	current	from	the	supply.	 [4.91 A, 6.14 A, 10.05 A]

 12. Find	ix	and	vx	in	the	network	shown	in	Fig.	2.83.	 [ix = – 5 A; vx = – 15 V]

  Fig. 2.83 Fig. 2.84

 13. Find	vx	for	the	network	shown	in	Fig.	2.84.	 [31 V]
 14. Find	i and	vab	for	the	network	shown	in	Fig.	2.85.	 [3 A ; 19 V]

Fig. 2.85
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2.22.  Voltage  and  Current  Sources
	 The	term	voltage source	is	used	to	describe	a	source	of	energy	which	establishes	a	potential	
difference	 across	 its	 terminals.	 Most	 of	 the	 sources	 encountered	 in	 everyday	 life	 are	 voltage	 
sources e.g.,	batteries,	d.c.	generators,	alternators	etc.	The	term	current source	is	used	to	describe	
a	source	of	energy	that	provides	a	current	e.g.,	collector	circuits	of	transistors.	Voltage	and	current	
sources	are	called	active	elements	because	they	provide	electrical	energy	to	a	circuit.
	 Unlike	 a	 voltage	 source,	which	we	 can	 imagine	 as	 two	 oppositely	 charged	 electrodes,	 it	 is	
difficult	to	visualise	the	structure	of	a	current	source.	However,	as	we	will	learn	in	later	sections,	a	
real	current	source	can	always	be	converted	into	a	real	voltage	source.	In	other	words,	we	can	regard	
a	current	source	as	a	convenient	fiction	that	aids	in	solving	circuit	problems,	yet	we	feel	secure	in	the	
knowledge	that	the	current	source	can	be	replaced	by	the	equivalent	voltage	source,	if	so	desired.

2.23.  Ideal  Voltage  Source  or  Constant-Voltage  Source
 An ideal voltage source (also called constant-voltage source) is one that maintains a constant 
terminal voltage, no matter how much current is drawn from it.  
 An ideal voltage source has zero internal resistance.	 	Therefore,	 it	would	 provide	 constant	
terminal	voltage	regardless	of	the	value	of	load	connected	across	its	terminals.		For	example,		an	
ideal	 12V	 source	would	maintain	 12V	 across	 its	 terminals	when	 a	 1	MΩ	 resistor	 is	 connected	 
(so	I	=	12	V/1	MΩ	=	12A)	as	well	as	when	a	1	kΩ	resistor	is	connected	(	I =	12	mA)	or	when	a	1	Ω	
resistor	is	connected	(I	=	12A).		This	is	illustrated	in	Fig.	2.86.

Fig. 2.86

 It	 is	 not	 possible	 to	 construct	 an	 ideal	
voltage	source	because	every	voltage	source	has	
some internal resistance that causes the terminal 
voltage	to	fall	due	to	the	flow	of	current.	However, 
if the internal resistance of voltage source is very 
small, it can be considered as a constant voltage 
source. 	This	is	illustrated	in	Fig.	2.87.  It has a 
d.c.	source	of	6	V	with	an	internal	resistance	Ri = 
0.005	Ω.		If	the	load	current	varies	over		a	wide	
range	of	1	to	10	A,	for	any	of	these	values,	the	internal	drop	across	Ri	(=	0.005	Ω)	is	
less	than	0.05	volt.		Therefore,	the	voltage	output	of	the	source	is	between	5.995	and	
5.95	volts.		This	can	be	considered	constant	voltage	compared	with	wide	variations	
in	load	current.		The	practical	example	of	a	constant	voltage	source	is	the	lead-acid	
cell.		The	internal	resistance	of	lead-acid	cell	is	very	small	(about	0.01	Ω)	so	that	it	
can	be	regarded	as	a	constant	voltage	source	for	all	practical	purposes.		A	constant	
voltage	source	is	represented	by	the	symbol	shown	in	Fig.	2.88.

Fig. 2.87

Fig. 2.88
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2.24.  Real  Voltage  Source
	 A	real	or	non-ideal	voltage	source	has	 low	but	finite	 internal	 resistance	(Rint) that causes its 
terminal	voltage	to	decrease	when	load	current	is	increased	and	vice-versa. A real voltage source  
can be represented as an ideal voltage source in series with a resistance equal to its internal 
resistance (Rint) as shown in Fig. 2.89.
	 When	 load	RL	 is	 connected	 across	 the	 terminals	 of	 a	 real	 voltage	 source,	 a	 load	 current	 IL  
flows	through	the	circuit	so	that	output	voltage	Vo	is	given	by	;
   Vo = E – IL Rint
	 Here	E	is	the	voltage	of	the	ideal	voltage	source	i.e.,	it	is	the	potential	difference	between	the	
terminals	of	the	source	when	no	current	(i.e.,	IL	=	0)	is	drawn.	Fig.	2.90	shows	the	graph	of	output	
voltage	Vo	versus	load	current	IL	of	a	real	or	non-ideal	voltage	source.

  Fig. 2.89 Fig. 2.90

 As Rint	 becomes	 smaller,	 the	 real	 voltage	 source	more	 closely	 approaches	 the	 ideal	 voltage	
source.	Sometimes	it	 is	convenient	when	analysing	electric	circuits	to	assume	that	a	real	voltage	
source	behaves	like	an	ideal	voltage	source.	This	assumption	is	justified	by	the	fact	that	in	circuit	
analysis,	we	are	not	usually	concerned	with	changing	currents	over	a	wide	range	of	values.

2.25.  Ideal  Current  Source
 An ideal current source or constant current source is one which will supply the same  
current to any resistance (load) connected across its terminals.
 An ideal current source has infinite internal resistance.	Therefore,	it	supplies	the	same	current	
to	 any	 resistance	connected	across	 its	 terminals.	This	 is	 illustrated	 in	Fig.	2.91.	The	 symbol	 for	 
ideal	current	source	is	shown	in	Fig.	2.92.	The	arrow	shows	the	direction	of	current	(conventional)	
produced	by	the	current	source.

  Fig. 2.91 Fig. 2.92

	 Since	an	ideal	current	source	supplies	the	same	current	regardless	of	the	value	of	resistance	
connected	across	 its	 terminals,	 it	 is	clear	 that	 the	 terminal	voltage	V	of	 the	current	source	will	
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depend	on	the	value	of	load	resistance.	For	example,	if	a	2	A	current	source	has	10	W across its 
terminals,	 then	terminal	voltage	of	 the	source	 is	V	=	2	A	×	10	W	=	20	volts.	 If	 load	resistance	
is	 changed	 to	 100	W,	 then	 terminal	 voltage	 of	 the	 current	 source	 becomes	V	 =	 2	A	 ×	 100	W  
=	200	volts.	This	is	illustrated	in	Fig.	2.91.

2.26.  Real  Current  Source
	 A	real	or	non-ideal	current	source	has	high	but	finite	internal	resistance	(Rint).	Therefore,	the	
load	current	(IL)	will	change	as	the	value	of	load	resistance	(RL)	changes.	A real current source 
can be represented by an ideal current source (I) in parallel with its internal resistance (Rint) as 
shown in Fig. 2.93.	When	load	resistance	RL	is	connected	across	the	terminals	of	the	real	current	
source,	the	load	current	IL is equal to the current I	from	the	ideal	current	source	minus	that	part	of	
the	current	that	passes	through	the	parallel	internal	resistance	(Rint) i.e.,

  Fig. 2.93 Fig. 2.94

  IL = −
int

VI
R

                                      where V	 =	 P.D.	between	output	terminals
 Fig.	2.94	shows	the	graph	of	load	current	IL	versus	output	voltage	V	of	a	real	current	source.
	 Note	 that	 load	current	 IL	 is	 less	 than	 it	would	be	 if	 the	 source	were	 ideal.	As	 the	 internal	
resistance	of	real	current	source	becomes	greater,	the	current	source	more	closely	approaches	the	
ideal	current	source.

 Note.	Current	sources	in	parallel	add	algebraically.	If	two	current	sources	are	supplying	currents	in	the	
same	direction,	their	equivalent	current	source	supplies	current	equal	to	the	sum	of	the	individual	currents.	If	
two	current	sources	are	supplying	currents	in	the	opposite	directions,	their	equivalent	current	source	supplies	a	
current	equal	to	the	difference	of	the	currents	of	the	two	sources.

2.27.  Source  Conversion
	 A	real	voltage	source	can	be	converted	to	an	equivalent	real	current	source	and	vice-versa.	
When	the	conversion	is	made,	the	sources	are	equivalent	in	every	sense	of	the	word;	it	is	impossible	
to	make	any	measurement	or	perform	any	test	at	the	external	terminals	that	would	reveal	whether	
the	source	is	a	voltage	source	or	its	equivalent	current	source.

 (i) Voltage to current source conversion.	 Let	 us	 see	 how	 a	 real	 voltage	 source	 can	 be	
converted	to	an	equivalent	current	source.	We	know	that	a	real	voltage	source	can	be	represented	by	
constant	voltage	E in series with its internal resistance Rint	as	shown	in	Fig.	2.95	(i).
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Fig. 2.95

	 It	is	clear	from	Fig.	2.95	(i)	that	load	current	IL	is	given	by	;

  IL = int int

int Lint L int int L

int

E
R RE E= = ×R + RR + R R R + R
R

 \ IL = int
S

int L

RI
R + R

× 	 ...(i)

  where IS = *

int

E
R

	 	 	 =	 Current	which	would	flow	in	a	short	circuit	across	the	output	
terminals	of	voltage	source	in	Fig.	2.95	(i)

	 From	eq.	 (i),	 the	voltage	 source	 appears	 as	 a	 current	 source	of	 current	 IS	which	 is	dividing	
between	 the	 internal resistance Rint	 and	 load	 resistance	 RL	 connected	 in	 parallel	 as	 shown	 in	 
Fig.	2.95	(ii).	Thus	the	current	source	shown	in	Fig.	2.95	(ii)	(dotted	box)	is	equivalent	to	the	real	
voltage	source	shown	in	Fig.	2.95	(i)	(dotted	box).
 Thus a real voltage source of constant voltage E and internal resistance Rint is equivalent to a 
current source of current IS = E/Rint and Rint in parallel with current source.
	 Note	that	internal	resistance	of	the	equivalent	current	source	has	the	same	value	as	the	internal	
resistance	of	the	original	voltage	source	but	is	in	parallel	with	current	source.	The	two	circuits	shown	
in	Fig.	2.95	are	equivalent	and	either	can	be	used	for	circuit	analysis.
 (ii)  Current to voltage source conversion.	Fig.	2.96	(i) shows a real current source whereas 
Fig.	2.96	(ii)	shows	its	equivalent	voltage	source.	Note	that	series	resistance	Rint	of	the	voltage	source	

Fig. 2.96

*	 The	 source	 voltage	 is	E	 and	 its	 internal	 resistance	 is	Rint.	 Therefore,	E/Rint	 is	 the	 current	 that	 would	 flow	
when	 source	 terminals	 in	Fig.	 2.95	 (i)	 are	 shorted.
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has the	same	value	as	the	parallel	resistance	of	the	original	current	source.	The	value	of	voltage	of	
the	equivalent	voltage	source	is	E = IS Rint where IS	is	the	magnitude	of	current	of	the	current	source.

	 Note	that	the	two	circuits	shown	in	Fig.	2.96	are	equivalent	and	either	can	be	used	for	circuit	
analysis.

 Note.	The	source	conversion	(voltage	source	into	equivalent	current	source	and	vice-versa)	often	simplifies	
the	analysis	of	many	circuits.	Any	resistance	that	is	in	series	with	a	voltage	source,	whether	it	be	internal	or	
external	resistance,	can	be	included	in	its	conversion	to	an	equivalent	current	source.	Similarly,	any	resistance	
in	parallel	with	current	source	can	be	included	when	it	is	converted	to	an	equivalent	voltage	source.

 Example 2.49. Show that the equivalent sources shown in Fig. 2.97 have exactly the same 
terminal voltage and produce exactly the same external current when the terminals (i) are shorted, 
(ii) are open and (iii) have a 500 Ω load connected.

Fig. 2.97

 Solution. Fig	2.97	(i)	shows	a	voltage	source	whereas	Fig.	2.97	(ii)	shows	its	equivalent	current	
source.
 (i) When terminals are shorted. Referring	to	Fig.	2.98,	the	terminal	voltage	is	0	V	in	both	
circuits	because	the	terminals	are	shorted.

  IL = 
15 V
500 Ω 	=	30	mA	...	voltage	source

  IL	 =	 30	mA		...current	source
	 Note	 that	 in	case	of	current	source,	30	mA	flows	 in	 the	shorted	 terminals	because	 the	short	
diverts	all	of	the	source	current	around	the	500	Ω	resistor.

Fig. 2.98

 (ii) When the terminals are open. Referring	 to	 Fig.	 2.99	 (i),	 the	 voltage	 across	 the	 open	
terminals	of	voltage	source	is	15	V	because	no	current	flows	and	there	is	no	voltage	drop	across	500	
Ω	resistor.	Referring	to	Fig.	2.99	(ii),	the	voltage	across	the	open	terminals	of	the	current	source	is	
also	15	V	;	V	=	30	mA	×	500	Ω	=	15	V.		The	current	flowing	from	one	terminal	into	the	other	is	zero	
in	both	cases	because	the	terminals	are	open.	
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Fig. 2.99

 (iii) Terminals have a 500 Ω load connected.
 (a)  Voltage source. Referring	to	Fig.	2.100	(i),

  Current in RL, IL = 
15 V

(500 500)+ Ω 	=	15	mA

Fig. 2.100

	 Terminal	voltage	of	source,	V = IL RL	=	15	mA	×	500	Ω	=	7.5	V
 (b)  Current source. Referring	to	Fig.	2.100	(ii),

  Current in RL, IL = 50030
500 500

×
+ 	=	15	mA

	 	 Terminal	voltage	of	source	 =	 IL RL	=	15	mA	×	500	Ω	=	7.5	V
	 We	conclude	that	equivalent	sources	produce	exactly	the	same	voltages	and	currents	at	their	
external	terminals,	no	matter	what	the	load	and	that	they	are	therefore	indistinguishable.
 Example 2.50. Find the current in 6 kΩ resistor in Fig. 2.101 (i) by converting the current 
source to a voltage source.
 Solution. Since	we	want	to	find	the	current	in	6	kΩ	resistor,	we	use	3	kΩ	resistor	to	convert	the	
current	source	to	an	equivalent	voltage	source.		Referring	to	Fig.	2.101	(ii),	the	equivalent	voltage	is	
  E	 =	 15	mA	×	3	kΩ	=	45	V

Fig. 2.101
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	 The	 circuit	 then	 becomes	 as	 shown	 in	 Fig.	 2.101	 (iii).	Note	 that	 polarity	 of	 the	 equivalent	
voltage	source	is	such	that	it	produces	current	in	the	same	direction	as	the	original	current	source.
 Referring	to	Fig.	2.101	(iii),	the	current	in	6	kΩ	is	

  I = 
45 V

(3 6) k+ Ω  = 5 mA

 In	the	series	circuit	shown	in	Fig.	2.101	(iii),	it	would	appear	that	current	in	3	kΩ	resistor	is	also	
5	mA.	However,	3	kΩ	resistor	was	involved	in	source	conversion,	so	we	cannot conclude	that	there	
is	5	mA	in	the	3	kΩ	resistor	of	the	original	circuit	[See	Fig.	2.101	(i)].	Verify	that	the	current	in	the	
3	kΩ	resistor	in	that	circuit	is,	in	fact,	10	mA.
 Example 2.51. Find the current in the 3 kΩ resistor in Fig. 2.101 (i) above by converting the 
current source to a voltage source.
 Solution. The	circuit	shown	in	Fig.	2.101	(i)	 is	 redrawn	in	Fig.	2.102	(i).	Since	we	want	 to	
find	the	current	in	3	kΩ	resistor,	we	use	6	kΩ	resistor	to	convert	the	current	source	to	an	equivalent	
voltage	source.	Referring	to	Fig.	2.102	(i),	the	equivalent	voltage	is	
   E	 =	15	mA	×	6	kΩ	=	90	V

Fig. 2.102

	 The	circuit	then	reduces	to	that	shown	in	Fig.	2.102	(ii).	The	current	in	3	kΩ	resistor	is	

  I = 
90 V 90 V

(6 3)k 9 k
=

+ Ω Ω  = 10 mA

 Example 2.52. Find the current in various resistors in the circuit shown in Fig. 2.103 (i) by 
converting voltage sources into current sources.
 Solution. Referring	 to	 Fig.	 2.103	 (i),	 the	 100	Ω	 resistor	 can	 be	 considered	 as	 the	 internal	
resistance	of	15	V	battery.		The	equivalent	current	is

  I = 
15 V

100 Ω 	=	0.15	A

Fig. 2.103

	 Similarly,	 20	 Ω	 resistor	 can	 be	 considered	 as	 the	 internal	 resistance	 of	 13	 V	 battery.	 The	
equivalent	current	is
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  I = 
13 V
20 Ω 	=	0.65	A

 Replacing	the	voltage	sources	with	current	sources,	the	circuit	becomes	as	shown	in	Fig.	2.103	
(ii).	The	current	 sources	 are	parallel-aiding	 for	 a	 total	flow	=	0.15	+	0.65	=	0.8	A.	The	parallel	
resistors	can	be	combined.
	 	 100	Ω	||	10	Ω	||	20	Ω	 =	 6.25	Ω
	 The	total	current	flowing	through	this	resistance	produces	the	drop	:
	 	 0.8	A	×	6.25	Ω	 =	 5	V
	 This	5	V	drop	can	now	be	“transported”	back	
to	 the	 original	 circuit.	 	 It	 appears	 across	 10	 Ω	
resistor	 [See	Fig.	2.104].	 	 Its	polarity	 is	negative	
at	 the	 bottom	 and	 positive	 at	 the	 top.	 	Applying	
Kirchhoff’s	voltage	 law	 (KVL),	 the	voltage	drop	
across	100	Ω	 resistor	=	15	–	5	=	10	V	and	drop	
across	20	Ω	resistor	=	13	–	5	=	8	V.

 \	 Current	in	100	Ω	resistor	 =	 10
100

 = 0.1 A

 	 Current	in	10	Ω	resistor	 =	 5
10

 = 0.5 A

 	 Current	in	20	Ω	resistor	 =	 8
20

 = 0.4 A

 Example 2.53. Find the current in and voltage across 2 Ω	resistor in Fig. 2.105.

Fig. 2.105

 Solution. We	use	5	Ω	resistor	to	convert	the	current	source	to	an	equivalent	voltage	source.	The	
equivalent	voltage	is
  E	 =	 5	A	×	5	Ω	=	25	V

Fig. 2.106

	 The	circuit	shown	in	Fig.	2.105	then	becomes	as	shown	in	Fig.	2.106.

Fig. 2.104
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 Loop ABEFA. Applying	Kirchhoff’s	voltage	law	to	loop	ABEFA,	we	have,
	 	 	–	5	I1	–	10	I1	–	10	–	3	(I1 – I2)	+	25	=	0
	 or	 	–	18	I1 + 3 I2	=	–	15	 ...(i)
 Loop BCDEB. Applying	Kirchhoff’s	voltage	law	to	loop	BCDEB,	we	have,
	 	 –	2	I2	+	20	+	3	(I1 – I2)		=	 0
 or  3 I1	–	5	I2	 =	 –	20	 ...(ii)
	 Solving	equations	(i)	and	(ii),	we	get,	I2	=	5	A.
 \	 Current	through	2	Ω	resistor	=	I2 = 5 A
 	Voltage	across	2	Ω	resistor	=	I2	×	2	=	5	×	2	=	10 V
 Example 2.54. Find the current in 28 W resistor in the circuit shown in Fig. 2.107.

Fig. 2.107

 Solution.	The	two	current	sources	cannot	be	combined	together	because	28	W	resistor	is	present	
between	points	A	and	C.	However,	this	difficulty	is	overcome	by	converting	current	sources	into	
equivalent	voltage	sources.	Now	10	A	current	source	in	parallel	with	4	W	resistor	can	be	converted	
into	equivalent	voltage	source	of	voltage	=	10	A	×	4	W	=	40	V	in	series	with	4	W resistor as shown 
in	Fig.	2.108	(i).	Note	that	polarity	of	the	equivalent	voltage	source	is	such	that	it	provides	current	
in	the	same	direction	as	the	original	current	source.

Fig. 2.108

	 Similarly,	 5	A	current	 source	 in	parallel	with	8	W	 resistor	 can	be	 converted	 into	 equivalent	
voltage	source	of	voltage	=	5	A	×	8	W	=	40	V	in	series	with	8	W	resistor.	The	circuit	then	becomes	
as	shown	in	Fig.	2.108	(ii).	Note	that	polarity	of	the	voltage	source	is	such	that	it	provides	current	in	
the	same	direction	as	the	original	current	source.	Referring	to	Fig.	2.108	(ii),
	 	 Total	circuit	resistance	 =	 4	+	28	+	8	=	40	W
	 	 Total	voltage	 =	 40	+	40	=	80	V

 \	 Current	in	28	W resistor = 80
40

 = 2 A
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 Example 2.55. Using source conversion technique, find the load current IL in the circuit shown 
in Fig. 2.109	(i).

Fig. 2.109

 Solution.	We	first	convert	6	V	source	in	series	with	3	W	resistor	into	equivalent	current	source	
of	current	=	6	V/3	W	=	2	A	in	parallel	with	3	W	resistor.	The	circuit	then	becomes	as	shown	in	Fig.	
2.109	(ii).	Note	that	polarity	of	current	source	is	such	that	it	provides	current	in	the	same	direction	as	
the	original	voltage	source.	In	Fig.	2.109	(ii),	3	W	and	6	W	resistors	are	in	parallel	and	their	equivalent	
resistance	=	(3	×	6)/3	+	6	=	2	W.	Therefore,	circuit	of	Fig.	2.109	(ii)	reduces	to	the	one	shown	in	 
Fig.	2.109	(iii).

Fig. 2.109

	 In	 Fig.	 2.109	 (iii),	 we	 now	 convert	 2	A	 current	 source	 in	 parallel	 with	 2	W resistor into 
equivalent	voltage	source	of	voltage	=	2	A	×	2	W	=	4	V	in	series	with	2	W	resistor.	The	circuit	
then	becomes	as	shown	in	Fig.	2.109	(iv).	The	polarity	of	voltage	source	is	marked	correctly.	In	
Fig.	2.109	(iv),	we	convert	4	V	source	in	series	with	2	+	2	=	4	W	resistor	into	equivalent	current	
source	of	current	=	4	V/4	W	=	1	A	in	parallel	with	4	W	resistor	as	shown	in	Fig.	2.109	(v).	Note	
that	direction	of	current	of	current	source	is	shown	correctly.

Fig. 2.109

	 In	Fig.	2.109	(v),	the	two	current	sources	can	be	combined	together	to	give	resultant	current	
source	of	3	+	1	=	4	A.	The	circuit	then	becomes	as	shown	in	Fig.	2.109	(vi).	Referring	to	Fig.	2.109	
(vi)	and	applying	current-divider	rule,

	 	 Load	current,	 IL = 44
(3 1) 4

×
+ +  = 2 A
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Tutorial Problems
 1. By	performing	an	appropriate	source	conversion,	find	the	voltage	across	120	Ω	resistor	in	the	circuit	

shown	in	Fig.	2.110.	 	 	  [20 V]

  Fig. 2.110 Fig. 2.111

 2. By	performing	an	appropriate	source	conversion,	find	the	voltage	across	120	Ω	resistor	in	the	circuit	
shown	in	Fig.	2.111.	 	 	  [30 V]

Fig. 2.112

 3. By	performing	an	appropriate	source	conversion,	find	the	currents	I1,	I2	and	I3 in the circuit shown in  
Fig.	2.112.	 	 	  [I1 = 1 A; I2 = 0.2 A; I3 = 0.8 A]

2.28.  Independent  Voltage  and  Current  Sources
	 So	far	we	have	been	dealing	with	independent	voltage	and	current	sources.	We	now	give	brief	
description	about	these	two	active	elements.
 (i) Independent voltage source. An independent 

voltage source is a two-terminal element (e.g. a 
battery, a generator etc.) that maintains a specified 
voltage between its terminals.

	 	 	An	 independent	 voltage	 source	 provides	 a	 voltage	
independent	 of	 any	 other	 voltage	 or	 current.	 The	
symbol	 for	 independent	 voltage	 source	 having	 v 
volts	across	its	terminals	is	shown	in	Fig.	2.113.	(i).	
As	shown,	the	terminal	a is v	volts	above	terminal	b.	
If	v	is	greater	than	zero,	then	terminal	a is	at	a	higher	
potential	than	terminal	b.	In	Fig.	2.113	(i),	the	voltage	v	may	be	time	varying	or	it	may	be	
constant	in	which	case	we	label	it	V. 

 (ii) Independent current source. An independent current source is a two-terminal element 
through which a specified current flows.

	 	 An	 independent	current	source	provides	a	current	 that	 is	completely	 independent	of	 the	
voltage	across	the	source.	The	symbol	for	an	independent	current	source	is	shown	in	Fig.	
2.113	(ii)  where i	is	the	specified	current.	The	direction	of	the	current	is	indicated	by	the	
arrow.	In	Fig.	2.113	(ii),	the	current	i	may	be	time	varying	or	it	may	be	constant	in	which	
case	we	label	it	I.

Fig. 2.113
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2.29.  Dependent  Voltage  and  Current  Sources
 A dependent source provides a voltage or current between its output terminals which depends 
upon another variable such as voltage or current.
	 For	example,	a	voltage	amplifier	can	be	considered	 to	be	a	dependent	voltage	source.	 	 It	 is	
because	the	output	voltage	of	the	amplifier	depends	upon	another	voltage	i.e.	the	input	voltage	to	the	
amplifier.		A	dependent	source	is	represented	by	a	*diamond-shaped	symbol	as	shown	in	the	figures	
below.		There	are	four	possible	dependent	sources	:
	 (i)	Voltage-dependent	voltage	source	 (ii)	 Current-dependent	voltage	source
	 (iii)	Voltage-dependent	current	source	 (iv)	 Current-dependent	current	source
 (i) Voltage-dependent voltage source. A voltage-dependent voltage source is one whose 

output voltage (v0) depends upon or is controlled by an input voltage (v1). Fig.	2.114	(i) 
shows	a	voltage-dependent	voltage	 source.	Thus	 if	 in	Fig.	2.114	 (i),	 	v1	=	20	mV,	 then	 
v0	=	60	×	20	mV	=	1.2	V.	If	v1	changes	to	30	mV,	then	v0	changes	to	60	×	30	mV	=	1.8	V.		
Note	that	the	constant	(60)	that	multiplies	v1	is	dimensionless.

Fig. 2.114

 (ii) Current-dependent voltage source. A current-dependent voltage source is one whose 
output voltage (v0) depends on or is controlled by an input current (i1). Fig.	2.114	(ii) shows 
a	current-dependent	voltage	source.	Note	that	the	controlling	current	i1 is in the same circuit 
as	the	controlled	source	itself.	The	constant	that	multiplies	the	value	of	voltage	produced	
by	the	controlled	source	is	sometimes	designated	by	a	letter	k	or	β.		Note	that	the	constant	
k	has	the	dimensions	of	V/A	or	ohm.	Thus	if	i1	=	50	µA	and	constant	k	is	0.5	V/A,	then	 
v0	=	50	×	10

–6	×	0.5	=	25	µV.
 (iii) Voltage-dependent current source. A voltage-dependent current source is one whose 

output current (i) depends upon or is controlled by an input voltage (v1). Fig.	2.115	(i) 
shows	a	voltage-dependent	current	source.	The	constant	that	multiplies	the	value	of	voltage	
v1	has	the	dimensions	of	A/V i.e.	mho	or	siemen.	For		example,	in	Fig.	2.115.	(i),	 if	the	
constant	is	0.2	siemen	and	if	input	voltage	v1	is	10	mV,	then	the	output	current	i	=	0.2	S	×	
10	mV	=	2	mA.

Fig. 2.115

*	 So	 as	 not	 to	 confuse	with	 the	 symbol	 of	 independent	 source.
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 (iv) Current-dependent current source. A current-dependent current source is one whose 
output current	 (i) depends upon or is controlled by an input current	 (i1).	Fig.	2.115	(ii) 
shows	a	current-dependent	current	source.	Note	that	controlling	current	i1 is in the same 
circuit	as	the	controlled	source	itself.	The	constant	(β)	that	multiplies	the	value	of	current	
produced	by	the	controlled	source	is	dimensionless.		Thus	in	Fig.	2.115	(ii),	if	il	=	50	µA	
and	if	constant	β	equals	100,	then	the	current	produced	by	the	controlled	current	source	is	i 
=	100	×	50	µA	=	5	mA.		If	i1	changes	to	20	µA,	then	i	changes	to	i	=	100	×	20	µA	=	2	mA.

2.30.  Circuits  With  Dependent-Sources
 Fig.	2.116	shows	the	circuit	 that	has	an	 independent	source,	
a	dependent-source	and	two	resistors.		The	dependent-source	is	a	
voltage	source	controlled	by	the	current	 i1.	 	The	constant	for	the	
dependent-source	 is	 	 0.5	V/A.	 	Dependent	 sources	 are	 essential	
components	in	amplifier	circuits.		Circuits	containing	dependent-
sources	are	analysed	in	the	same	manner	as	those	without	dependent-
sources.		That	is,	Ohm’s	law	for	resistors	and	Kirchhoff’s	voltage	
and	 current	 laws	 apply,	 as	 well	 as	 the	 concepts	 of	 equivalent	
resistance	and	voltage	and	current	division.		We	shall	solve	a	few	
examples	by	way	of	illustration.
 Example 2.56.  Find the value of v in the circuit 
shown in Fig. 2.117. What is the value of dependent-
current source ? 

 Solution.	 By	 applying	KCL	 to	 node*	A	 in	 Fig.	
2.117,	we	get,

	 	 	 4	–	i1	+	2i1 = 
2
v 	 ...(i)

	 By	Ohm’s	law,	 i1 = 
6
v

	 Putting	i1 = v/6	in	eq.	(i),	we	get,

   24
6 6
v v− +  = 

2
v  \ v = 12 V

	 Value	of	dependent-current	source	=	=2	i1 = 
2 122

6 6
v ×=  = 4 A

 Example 2.57.  Find the values of v, i1 and i2 in the circuit shown in Fig. 2.118 (i) which 
contains a voltage-dependent current source.  Resistance values are in ohms.

 Solution.		Applying	KCL	to	node	A	in	Fig.	2.118	(i),	we	get,
	 	 	 2	–	i1	+	4v = i2	 ...(i)

	 Now	 By	Ohm’s	law,	i1 = 
3
v 	and	i2 = 

6
v

	 Putting	 i1 = 
3
v 	and	i2 = 

6
v 	in	eq.	(i),	we	get,

  2 4
3
v v− +  = 

6
v  \ v = 

— 4
7  V

 \ i1 = 
41 1

3 3 3 7
v v −= × = ×  = 

— 4
21  A

*	 	 A	node	of	 a	 network	 is	 an	 equipotential	 surface	 at	which	 two or more	 circuit	 elements	 are	 joined.

Fig. 2.116

Fig. 2.117
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 \ i2 = 
41 1

6 6 6 7
v v −= × = ×  = 

— 2
21 A

	 	Value	of	dependent	current	source	=	4v = 
4 16

4 A
7 7

− −× =

Fig. 2.118

 Since	the	value	of	i1,	i2	comes	out	to	be	negative,	it	means	that	directions	of	flow	of	currents	
are	opposite	to	that	assigned	in	Fig.	2.118.	(i).		The	same	is	the	case	for	current	source.		The	actual	
directions	are	shown	in	Fig.	2.118	(ii).
 Example 2.58.  Find the value of i in the circuit shown in Fig. 2.119 if R = 10 Ω.
 Solution. 	Applying	KVL	to	the	loop	ABEFA,	we	have,
	 	 5	–	10	i1	+	5	i1	 =	 0	 	 \ i1	=	1	A
	 Applying	KVL	to	the	loop	BCDEB,	we	have,
	 	 10	i	–	25	–	5	i1	 = 	0
	 or	 10	i	–	25	–	5	 =	 0	 	 \ i = 3 A

  Fig. 2.119 Fig. 2.120

 Example 2.59. Find the voltage v in the branch shown in Fig. 2.120. for (i) i2 = 1 A, (ii)  
i2 = – 2 A and (iii) i2 = 0A.
 Solution.	The	voltage	v	 is	 the	sum	of	 the	current-independent	10	V	source	and	 the	current-
dependent	voltage	source	vx.	Note	the	factor	15	multiplying	the	control	current	carries	the	units	of	
ohm.
 (i)  v	=	10	+	vx	=	10	+	15	(1)	 =	 25 V
 (ii)      v	=	10	+	vx	=	10	+	15	(–	2)	=	– 20 V
 (iii)  v	=	10	+	vx	=	10	+	15	(0)	 =	 10 V
 Example 2.60. Find the values of current i and voltage drops v1 and v2 in the circuit of  
Fig. 2.121 which contains a current-dependent voltage source.  What is the voltage of the 
dependent-source?  All resistance values are in ohms.
 Solution.	 Note	 that	 the	 factor	 4	 multiplying	 the	 control	 current	 carries	 the	 units	 of	 ohms.		
Applying	KVL	to	the	loop	ABCDA	in	Fig.	2.121,	we	have,
   – v1	+	4	i – v2	+	6	 =	 0
 or  v1	–	4	i + v2	 =	 6	 ...(i)
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	 By	Ohm’s	law,	v1	=	2	i	and	v2	=	4	i.
	 Putting	the	values	of	v1	=	2	i	and	v2	=	4	i	in	eq.	(i),	we	have,
	 	 2	i	–	4	i	+	4	i	 =	 6	 	 \ i = 3 A
 \ v1	 = 	2i	=	2	×	3	=		6 V  ;  v2	=	4	i	=	4	×	3	=	12 V
	 	Voltage	of	the	dependent	source	=	4	i	=	4	×	3	=	12 V

  Fig. 2.121 Fig. 2.122

 Example 2.61. Find the voltage v across the 10 Ω resistor in Fig. 2.122, if the control current 
i1 in the dependent current-source is (i) 2A (ii) – 1A. 
 Solution.
 (i)  v	=		(i	–	4)10	=	[4	(2)	–	4]10	 = 40 V
 (ii)   v	=	(i	–	4)10	=	[4(–	1)	–	4]	10	=	 – 80 V
 Example 2.62.  Calculate the power delivered by the dependent-source in Fig. 2.123.
 Solution.		Applying	KVL	to	the	loop	ABCDA,	we	have,
	 	 –	2	I	–	4	I – 3 I	+	10	 =	 0	 	

 \ I	 =	 10/9	=	1.11	A
	 The	current	I	enters	the	positive	terminal	of	dependent-
source.	Therefore,	power	absorbed	=	1.11	×	4 (1.11)	=	4.93	
watts.		Hence	power	delivered	is – 4.93 W.
 Example 2.63.  In the circuit of Fig. 2.124, find the values of i and v.  All resistances are in ohms.
 Solution.	Referring	to	Fig.	2.124,	it	is	clear	that	va	=	12	+	v.
	 Therefore,	 v = va	–	12
	 	Voltage	drop	across	left	2	Ω	resistor	=	0	–	va
	 	Voltage	drop	across	top	2	Ω	resistor	=	va	–	12
	 Applying	KCL	to	the	node	a,	we	have,

  
0 12

2 4 2
a av vv− −+ − 	 =	 0	 	 or	 va	=	4	V

 \ v = va	–	12	=	4	–	12	=	– 8V

	 The	negative	sign	shows	that	 the	polarity	of	v is	opposite	 to	 that	shown	in	Fig.	2.124.	 	The	
current	 that	flows	 from	point	a	 to	ground	=	4/2	=	2	A.		
Hence	i = – 2 A.
 Example 2.64. In Fig. 2.125, both independent and 
dependent-current sources drive current through resistor 
R.  Is the value of R uniquely determined ?
 Solution.	By	definition	of	an	independent	source,	the	
current I must	be	10	A.

Fig. 2.123

Fig. 2.125

Fig. 2.124
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 \ I	 =	 10	A	=	2	VR 

 or VR	 =	 10/2	=	5	V
	 Now	 5	V	 =	 (10)	(R)  \ R =	5/10	=	0.5 Ω
	 No	other	value	of	R	is	possible.
 Example 2.65. Find the value of current i2 supplied by 
the voltage-controlled current source (VCCS) shown in Fig. 
2.126.
 Solution.	Applying	KVL	to	the	loop	ABCDA,	we	have,
	 	 8	–	v1	–	4	 =	 0		 \ v1	=	4V
	 The	current	supplied	by	VCCS	=	10	v1	=	10	×	4	=	40A
 As i2	flows	in	opposite	direction	to	this	current,	therefore,	
i2 = – 40A.
 Example 2.66.  By using voltage divider rule, calculate the voltages vx and vy in the circuit 
shown in Fig. 2.127.

Fig. 2.127

 Solution.	As	can	be	seen	from	Fig.	2.127,	12	V	drop	is	over	the	series	combination	of	1W,	2W 
and	3W	resistors.	Therefore,	by	voltage	divider	rule,

	 Voltage	drop	over	3W,	vx = 312
1 2 3

× + +  = 6V

 \	 Voltage	of	dependent	source	=	12vx	=	12	×	6	=	72	V
	 As	seen	72	V	drop	is	over	series	combination	of	4W	and	8W	resistors.	Therefore,	by	voltage	
divider	rule,
	 Voltage	drop	over	8W,	vy = 872

4 8
× + 	=	48	V

	 The	actual	sign	of	polarities	of		vy	is	opposite	to	that	shown	in	Fig.	2.127.	Hence	vy = – 48 V.
 Example 2.67. Find the values of i1, v1, vx and vab in 
the network shown in Fig. 2.128 with its terminals a and 
b open.
 Solution.	It	is	clear	from	the	circuit	that	i1 = 4A.

	 Applying	KVL		to	the		left-hand	loop,	we	have,

	 	 20	–	v1	–	40	=	 0		 \ v1 = – 20 V

	 Applying	 KVL	 to	 the	 second	 loop	 from	 left,	 we	
have,	

Fig. 2.126

Fig. 2.128
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  – vx	+	4v1	–	50	+	v1	 = 	0
 \ vx	 = 	5v1	–	50	=	5(–20)	–	50	=	– 150 V
	 Applying	KVL	to	the	third	loop	containing	vab,	we	have,
	 	 –	10	–	vab	+	50	–	4v1	 = 	0
 \ vab	 =	 –	10	+	50	–	4v1	=	–	10	+	50	–	4	(–	20)	=	120 V

Tutorial Problems

 1.	 The	circuit	of	Fig.	2.129	contains	a	voltage-dependent	voltage	source.	Find	the	current	supplied	by	the	
battery	and	power	supplied	by	the	voltage	source.	 [8A; 1920 W]

  Fig. 2.129 Fig. 2.130

 2.	 Applying	Kirchhoff’s	current	law,	determine	current	IS	in	the	electric	circuit	of	Fig.	2.130.	Take	V0 = 
16V.	 	 	 	 [1A]

Fig. 2.131

 3.	 Find	the	voltage	drop	v2	across	the	current-controlled	voltage	source	shown	in	Fig.	2.131.	 [40 V]

2.31.  Ground
 Voltage is relative.	That	is,	the	voltage	at	one	point	in	a	circuit	is	always	measured	relative	to	
another	point	in	the	circuit.	For	example,	if	we	say	that	voltage	at	a	point	in	a	circuit	is	+	100V,	we	
mean	that	the	point	is	100V	more	positive	than	some	reference	point	in	the	circuit.	This	reference	
point	 in	 a	 circuit	 is	 usually	 called	 the	ground point.	Thus	ground	 is	 used	 as	 reference	point	 for	
specifying	 voltages.	 The	 ground	 may	 be	
used	 as	 common	 connection	 (common 
ground)	or	as	a	zero	reference	point	(earth 
ground).	 There	 are	 different	 symbols	 for	
chassis	ground,	common	ground	and	earth	
ground	 as	 shown	 in	 Fig.	 2.132.	However, 
earth ground symbol is often used in place 
of chassis ground or common ground.

 (i) Ground as a common connection.	 It	 is	 a	 usual	 practice	 to	mount	 the	 electronic	 and	
electrical	components	on	a	metal	base	called	chassis (See	Fig.	2.133).	Since	chassis	is	good	
conductor,	it	provides	a	conducting	return	path	as	shown	in	Fig.	2.134.	It	may	be	seen	that	

Fig. 2.132



96    Basic  Electrical  Engineering 

all	points	connected	to	chassis	are	shown	as	grounded	and	represent	the	same	potential.	The	
adoption	of	this	scheme	(i.e.	showing	points	of	same	potential	as	grounded)	often	simplifies	
the	electrical	and	electronic	circuits.

  Fig. 2.133 Fig. 2.134

 (ii) Ground as a zero reference point.	Many	times	connection	is	made	to	earth	which	acts	as	a	
reference	point.	The	earth	(ground)	has	a	potential	of	zero	volt	(0V)	with	respect	to	all	other	
points	in	the	circuit.	Thus	in	Fig.	2.135(i),	point	E	is	grounded	(i.e.,	point	E	is	connected	to	
earth)	and	has	zero	potential.	The	voltage	across	each	resistor	is	25	volts.	The	voltages	of	
the	various	points	with	respect	to	ground	or	earth	(i.e.,	point	E)	are	:

   VE	=	 0V		;		VD	=	+	25	V		;		VC	=	+	50	V		;		VB	=	+	75	V		;		VA	=	+	100V

 Fig. 2.135

	 	If	 instead	of	point	E,	 the	point	D	 is	grounded	as	shown	in	Fig.	2.135	(ii),	 then	potentials	of	
various	points	with	respect	to	ground	(i.e.,	point	D)	will	be	:
  VE = – 25 V  ;  VD = 0 V  ;  VC = + 25 V  ;  VB = + 50 V  ;  VA = + 75 V
 Example 2.68.  In Fig. 2.136, find the relative potentials of points A, B, C, D and E when point A 
is grounded.
 Solution.   Net circuit voltage, V = 34 – 10 = 24 V
   Total circuit resistance, RT = 6 + 4 + 2 = 12 W

   Circuit current, I = V/RT = 24/12 = 2 A

   Drop across 2 W resistor = 2 × 2 = 4 V

   Drop across 4 W resistor = 2 × 4 = 8 V

   Drop across 6 W resistor = 2 × 6 = 12 V
Fig. 2.136
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 \	 Potential at point B, VB = 34 – 0 = 34 V
  Potential at point C, VC = 34 – drop in 2 W 
   = 34 – 2 × 2 = 30 V
  Potential at point D, VD = VC – 10 = 30 – 10 = 20 V
  Potential at point E, VE = VD – drop in 4W = 20 – 2 × 4 = 12 V
  Potential at point A, VA = VE – drop in 6 W 
   = 12 – 6 × 2 = 0 V
 Example 2.69.  Fig. 2.137 shows the circuit with 
common ground symbols. Find the total current I drawn 
from the 25 V source.

 Solution. The circuit shown in Fig. 2.137 is redrawn by 
eliminating the common ground symbols. The equivalent 
circuit then becomes as shown in Fig. 2.138. (i).  We see 
that 8 kW and  12 kW resistors are in parallel as are the 9 
kW and 4.5 kW resistors. Fig. 2.138 (ii) shows the circuit 
when these parallel combinations are replaced by their 
equivalent resistances :

                
8 12
8 12

×
+  =  4.8 kW	 and 

9 4.5
9 4.5

×
+  = 3 kW

Fig. 2.138

 Referring to Fig. 2.138 (ii), it is clear that 4.8 kW resistance is in series with 1.2 kW	resistance, 
giving an equivalent resistance of 4.8 + 1.2 = 6 kW.
	 The	circuit	then	becomes	as	shown	in	Fig.	2.139	(i).

Fig. 2.139

Fig. 2.137
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  Referring to Fig. 2.139 (i), 6 kW	is in parallel with 3 kW	giving the total resistance RT as :

   RT = 
6 3

6 3

×
+

 = 2 kW

 The circuit then reduces to the one shown in Fig. 2.139 (ii).
 \ Total current I drawn from 25 V source is

   I = 
25V 25V

2kTR
=

Ω
 = 12.5 mA

 Example 2.70. What is the potential difference between X and Y in the network shown in  
Fig. 2.140 ?

Fig. 2.140

 Fig. 2.141

 Solution.	Fig.	2.140	is	reproduced	as	Fig	2.141	with	required	labeling.	Consider	the	two	battery	
circuits	separately.	Referring	to	Fig.	2.141,
 Current flowing	in	2W	and	3W resistors is 

  I1 = 
2

2 3+
	=	0.4A

	 Current	flowing	in	3W	and	5W resistors is 
  I2 = 

4

3 5+
	=	0.5	A

 \		 Potential	difference	between	X	and	Y is
   VXY = VXA + VAB – VBY	 [See	Fig.	2.141]
    = 3I1	+	5	–	3I2
	 	 	 	 =	 3	×	0.4	+	5	–	3	×	0.5	=	4.7 V

2.32.  Voltage  Divider  Circuit
 A voltage divider (or potential divider) is a series circuit that is used to provide two or more 
reduced voltages from a single input voltage source.
	 Fig.	2.142	shows	a	simple	voltage	divider	circuit	which	provides	two	reduced	voltages	V1	and	
V2	from	 a	single	input	voltage	V.	Since	no	load	is	connected	to	the	circuit,	it	is	called	unloaded 
voltage divider.	The	values	of	V1	and	V2	can	be	found	as	under	:

   Circuit	current,		I = 
1 2

V
R R+

 = 
T

V
R
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 where RT	 =	 Total	resistance	of	the	voltage	divider

 \  V1 = IR1 = 1

T

RV
R

×

	 and	 	 V2 = IR2 = 2

T

RV
R

×

 Therefore, voltage drop across any resistor in an unloaded voltage 
divider is equal to the ratio of that resistance value to the total resistance 
multiplied by the source voltage.
 Loaded voltage divider.	When	load	RL	is	connected	
to	the	output	terminals	of	the	voltage	divider	as	shown	
in	Fig.	2.143,	the	output	voltage	(V2)	is	reduced	by	an	
amount	 depending	 on	 the	 value	 of	 RL.	 It	 is	 because	
load	 resistor	RL	 is	 in	parallel	with	R2	 and	 reduces	 the	
resistance	from	point	A	to	point	B.	As	a	result,	the	output	
voltage	is	reduced.	The	larger	the	value	of	RL,	the	less	
the	output	voltage	is	reduced	from	the	unloaded	value.	
Loading	a	voltage	divider	has	the	following	effects	:
 (i)	 The	 output	 	 voltage	 is	 reduced	 depending	

upon	the	value	of	load	resistance	RL..
 (ii)	 The	 current	 drawn	 from	 the	 source	 is	 increased	 because	 total	 	 resistance	 of	 the	 circuit	

is	reduced.	The	decrease	in	total	resistance	is	due	to	the	fact	that	loaded	voltage	divider	
becomes	series-parallel	circuit.

 Example 2.71. Design a voltage divider circuit that will operate the following loads from a 20 V 
source :
 5 V at 5 mA ; 12 V at 10 mA ; 15 V at 5 mA
 The bleeder current is 4 mA.
 Solution.  A	voltage	divider	that	produces	a	*bleeder	current	requires	N	+	1	resistors	where		N 
is	the	number	of	loads.	In	this	example,	the	number	of	loads	is	three.		Therefore,	four	resistors	are	
required	 for	 this	 voltage	 divider.	
The	 required	 circuit	 is	 shown	 in	
Fig.	2.144.		Here	R1	is	the	bleeder	
resistor.	The	 loads	are	arranged	 in	
ascending	 order	 of	 their	 voltage	
requirements,	starting	at	the	bottom	
of	the	divider	network.
	 Voltage	across	bleeder	resistor	
R1	=	5	V	;	Current	through	R1,	IB = 
4	mA	.

\	 Value of R1 = 
5V

4mA
 = 1.25 kW

 Next	 we	 shall	 find	 the	 value	
of	 resistor R2.	 For	 this	 purpose,	
we	find	the	current	through	R2	and	
voltage	across	R2.

Fig. 2.142

Fig. 2.143

*	 The	current	drawn	continuously	from	a	power	supply	by	the	resistive	voltage	divider	circuit	is	called	bleeder	
current.	Without	 a	 bleeder	 current,	 the	 voltage	 divider	 outputs	 go	 up	 to	 full	 value	 of	 supply	 voltage	 if	 all	
the	 loads	 are	 disconnected.

Fig. 2.144
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 Current through R2 = IB + 5 mA = 4 mA + 5 mA = 9 mA
 Voltage across R2 = VC – VD = 12 – 5 = 7 V

 \ Value of  R2 = 
7V

9mA
 = 778 W

 Now	we	shall	find	the	value	of	resistor	R3.
	 Current	through	R3 = Current in R2	+	10	mA	=	9	mA	+	10	mA	=	19	mA
	 		Voltage	across		R3 = VB – VC	 =	 15	–	12	=	3	V

 \ Value of R3  = 
3V

19mA
 = 158 W

	 Finally,	we	shall	determine	the	value	of	resistor	R4.
  Current through R4 = Current through R3 + 5 mA = 19 mA + 5 mA = 24 mA
  Voltage across R4 = VA – VB = 20 – 15 = 5 V

 \ Value of R4 = 
5V

24mA
= 208 W

 The design of voltage divider circuit means finding the values of R1, R2, R3 and R4.  Therefore, 
the design of voltage divider circuit stands completed.
 Example 2.72. Fig. 2.145 shows the voltage divider circuit. Find (i) the unloaded output voltage, 
(ii) the loaded output voltage for RL = 10 kW and RL = 100 kW.
 Solution. (i) When load RL is removed, the voltage 
across R2 is the unloaded output voltage of the voltage 
divider.

  \ Unloaded output voltage = 2

1 2
S

R V
R R

×
+

    = 
10

5
4.7 10

×
+

 

    = 3.4 V
 (ii) When RL = 10 kW is connected in parallel with R2, 

then equivalent resistance of this parallel combination is

   RT = 2

2

10 10

10 10
L

L

R R
R R

×=
+ +

 = 5 kW

Fig. 2.146

	 The	circuit	then	becomes	as	shown	in	Fig.	2.146	(i).

 \ Loaded output voltage = 
1

5
5

4.7 5
T

S
T

R V
R R

× = ×
+ +

 = 2.58 V

Fig. 2.145
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 When RL = 100 kW is connected in parallel with R2, then equivalent resistance of this parallel 

combination is given by ; R ′T =  2

2

10 100

10 100
L

L

R R
R R

×=
+ +

 = 9.1 kW

	 The	circuit	then	becomes	as	shown	in	Fig.	2.146	(ii).

 \ Loaded output voltage = 
1

T
S

T

R V
R R

′
×

′+
 = 

9.1
5

4.7 9.1
×

+
 = 3.3 V

 Example 2.73. Find the values of different voltages that can be obtained from 25V source with 
the help of voltage divider circuit of Fig. 2.147.

Fig. 2.147

 Solution.  Total circuit resistance, RT = R1 + R2 + R3 = 1 + 8.2 + 3.3 = 12.5 kW

	 	 Voltage	drop	across	R1,	V1 = 1
S

T

R V
R

×  = 
1

25
12.5

× =	2	V

 \	 Voltage at point B, VB = 25 – 2 = 23 V

	 	 Voltage	drop	across	R2,	V2 = 2 8.2
25

12.5S
T

R V
R

× = × 	=	16.4	V

 \	 Voltage at point C, VC = VB – V2 = 23 – 16.4 = 6.6 V
 The different available load voltages are :
 VAB = VA – VB = 25 – 23 = 2 V  ;  VAC = VA – VC = 25 – 6.6 = 18.4 V
 VBC = VB – VC = 23 – 6.6 = 16.4 V  ;  VAD = 25 V ; VCD = VC – VD = 6.6 – 0 = 6.6 V
 VBD = VB – VD = 23 – 0 = 23 V  
 Example 2.74. Fig. 2.148 shows a 10 kW potentiometer 
connected in a series circuit as an adjustable voltage divider. 
What total range of voltage V1 can be obtained by adjusting 
the potentiometer through its entire range ?
 Solution.  Total	circuit	resistance	is	
   RT = 5 + 10 + 10 = 25 kW
 The total voltage E that appears across the end terminals 
of potentiometer is 
  E = 

10 10
24

25S
T

V
R

× = × 	=	9.6	V

	 When	the	wiper	arm	is	at	the	top	of	the	potentiometer,

  V1 = 
10 10

9.6
10 10

E× = × 	=		9.6	V

Fig. 2.148
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	 When	the	wiper	arm	is	at	the	bottom	of	the	potentiometer,

  V1 = 
0 0

9.6
10 10

E× = × 	=		0	V

	 Therefore,	V1	can	be	adjusted	between 0 and 9.6 V. 
 Example 2.75.  Fig. 2.149 shows the voltage divider 
circuit.  Find (i) the current drawn from the supply, (ii) voltage 
across the load RL, (iii) the current fed to RL and (iv) the current 
in the tapped portion of the divider.
 Solution.	It	is	a	loaded	voltage	divider.

 (i) RBC = 120 W  300 W  = 
120 300

120 300

×
+

 = 85.71 W

  VAB = AB
S

AB BC

R V
R R

×
+

  = 
80

200
80 85.71

×
+

 = 96.55 V

 \ The current I drawn from the supply is

   I = 
96.55

80
AB

AB

V
R

=  = 1.21 A

 (ii)  VBC = 
85.71

200
80 85.71

BC
S

AB BC

R
V

R R
× = ×

+ +
 = 103.45 V

 (iii) \ Current fed to load, IL = 
103.45

300
BC

L

V
R

=  = 0.35 A

 (iv)	 Current	in	the	tapped	portion	of	the	divider	is	
   IBC = I – IL = 1.21 – 0.35 = 0.86A

Tutorial Problems

 1.	 Redraw	the	circuit	shown	in	Fig.	2.150	using	the	common	ground	symbol.		
                                                                                    Ans.

    
  Fig. 2.150

 2.	 Redraw	the	circuit	shown	in	Fig.	2.151	using	the	common	ground	symbol.			
                                                                             Ans.

  
   Fig. 2.151

Fig. 2.149
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 3.	 Draw	the	circuit	shown	in	Fig.	2.152	by	eliminating	the	common	ground	symbols.

 

   

     Fig. 2.152     

 4.	 A	voltage	of	200	V	is	applied	to	a	tapped	resistor	of	500	W.	Find	the	resistance	between	the	tapped	points	
connected	to	a	circuit	reading	0.1	A	at	25	V.	Also	calculate	the	total	power	consumed.	 [79W ; 83.3W]

Objective Questions

 1.	 Two	 resistances	 are	 joined	 in	 parallel	 whose	
resultant	 resistance	 is	 6/5	 ohms.	 One	 of	 the	
resistance	 wire	 is	 broken	 and	 the	 effective	
resistance	becomes	2	ohms.	Then	the	resistance	
of	the	wire	that	got	broken	is

	 (i)	 6/5	ohms	 (ii) 3 ohms
	 (iii)	 2	ohms	 (iv)	 3/5	ohms
 2.	 The	smallest	resistance	obtained	by	connecting	

50	resistances	of	1/4	ohm	each	is
	 (i)	 50/4	Ω	 (ii)	 4/50	Ω
	 (iii)	 200	Ω	 (iv)	 1/200	Ω
 3. Five	 resistances	 are	 connected	 as	 shown	 in	 

Fig.	 2.153.	 The	 effective	 resistance	 between	
points	A and	B is

Fig. 2.153

 (i)	 10/3	Ω	 (ii)	 20/3	Ω
	 (iii)	 15	Ω	 (iv)	 6	Ω
 4. A	 200	W	 and	 a	 100	W	 bulb	 both	 meant	 for	

operation	 at	 220	 V	 are	 connected	 in	 series.		
When	connected	to	a	220	V	supply,	the	power	
consumed	by	them	will	be

 (i)	 33	W	 (ii)	 100	W

 (iii)	 66	W	 (iv)	 300	W
 5. A	wire	has	a	resistance	of	12	ohms.	 It	 is	bent	

in	the	form	of	a	circle.		The	effective	resistance	
between	two	points	on	any	diameter	is

	 (i)	 6	Ω	 (ii)	 24	Ω
	 (iii)	 16	Ω	 (iv)	 3	Ω
 6. A	 primary	 cell	 has	 an	 e.m.f.	 of	 1.5	V.	When	

short-circuited,	 it	 gives	 a	 current	 of	 3	A.	The	
internal	resistance	of	the	cell	is

	 (i)	 4.5	Ω	 (ii)	 2	Ω
	 (iii)	 0.5	Ω	 (iv)	 1/4.5	Ω
 7. Fig.	 2.154	 shows	 a	 part	 of	 a	 closed	 electrical 

circuit.	Then	VA – VB is

Fig. 2.154

	 (i)	 −	8	V	 (ii)	 6	V
	 (iii)	 10	V	 (iv) 3 V
 8. The	current	I	in	the	electric	circuit	shown	in	Fig.	

2.155	is

Fig. 2.155

	 (i)	 1.3	A	 (ii)	 3.7	A
	 (iii)	 1A	 (iv)	 1.7	A

Ans.
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 9. Three	 2	 ohm	 resistors	 are	 connected	 to	 form	
a	 triangle.	 The	 resistance	 between	 any	 two	
corners is 

 (i) 6W (ii) 2W
 (iii) 3/4W (iv) 4/3W
 10. A	current	of	2	A	flows	in	a	system	of	conductors	

shown	 in	 Fig.	 2.156.	The	 potential	 difference	
VA – VB	will	be

Fig. 2.156

 (i) +2 V (ii) +1 V
 (iii) −1 V (iv) −2 V
 11. A	uniform	wire	of	resistance	R is	divided	into	

10	equal	parts	and	all	of	them	are	connected	in	
parallel.	The	equivalent	resistance	will	be

	 (i)	 0.01	R	 (ii)	 0.1 R
	 (iii)	 10	R	 (iv)	 100	R
 12. A	cell	of	negligible	resistance	and	e.m.f.	2	volts	

is	connected	to	series	combination	of	2,	3	and	5	
ohms.	The	potential	difference	in	volts	between	
the	terminals	of	3-ohm	resistance	will	be

	 (i)	 0.6	V	 (ii) 
2

V
3

	 (iii)	 3	V	 (iv)	 6	V
 13. The	equivalent	resistance	between	points	X	and	

Y	in	Fig.	2.157	is

Fig. 2.157

 (i) 10 W	 (ii) 22 W
 (iii) 20 W (iv) 50 W
 14. If	each	resistance	in	the	network	shown	in	Fig.	

2.158	 is	 R,	 what	 is	 the	 equivalent	 resistance	
between	terminals	A	and	B	?

Fig. 2.158

	 (i)	 5	R	 (ii) 3 R
	 (iii)	 6	R	 (iv) R
 15. Fig.	2.159	represents	a	part	of	a	closed	circuit.	

The	potential	difference	between	A	and	B	(	i.e. 
VA – VB ) is

Fig. 2.159

	 (i)	 24	V	 (ii)	 0	V
	 (iii)	 18	V	 (iv)	 6	V
 16. In	 the	 arrangement	 shown	 in	 Fig.	 2.160,	 the	

potential	 difference	 between	B	 and	D	will	 be	
zero	if	the	unknown	resistance	X is

Fig. 2.160

 (i)	 4	Ω	 (ii)	 2	Ω
	 (iii)	 20	Ω	 (iv)	 3	Ω
 17. Resistances	 of	 6	 Ω	 each	 are	 connected	 in	 a	

manner	shown	in	Fig.	2.161.	With	 the	current	
0.5A	 as	 shown	 in	 the	 figure,	 the	 potential	
difference	VP – VQ  is

Fig. 2.161
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	 (i)	 3.6	V	 (ii)	 6	V
	 (iii)	 3	V	 (iv)	 7.2	V
 18. An	 electric	 fan	 and	 a	 heater	 are	 marked	 

100	W,	220	V	and	1000	W,	220	V	respectively.	
The	resistance	of	the	heater	is	

	 (i)	 zero
	 (ii)	 greater	than	that	of	fan
	 (iii)	 less	than	that	of	fan	
	 (iv)	 equal	to	that	of	fan
 19. In	 the	 circuit	 shown	 in	 Fig.	 2.162,	 the	 final	

voltage	drop	across	the	capacitor	C is

Fig. 2.162

	 (i) 1

1 2

V r
r r+

	 (ii) 2

1 2

V r
r r+

	 (iii) 
( )1 2

2

V r r
r
+

	 (iv) 
( )2 1

1 2 3

V r r
r r r

+
+ +

 20. A	 primary	 cell	 has	 an	 e.m.f.	 of	 1.5	V.	When	
short	 circuited,	 it	 gives	 a	 current	 of	 3	A.	The	
internal	resistance	of	the	cell	is

	 (i)	 4.5	Ω	 (ii)	 2	Ω
	 (iii)	 0.5	Ω	 (iv)	 (	1/4.5	)	Ω

Answers
 1. (ii) 2. (iv) 3. (i) 4. (iii) 5. (iv) 
 6. (iii) 7. (iii) 8. (iv) 9. (iv) 10. (ii) 
 11. (i) 12. (i) 13. (i) 14. (iv) 15 (iii)  
 16. (ii) 17. (iii) 18. (iii) 19. (ii) 20. (iii)



Introduction
 Any arrangement of electrical energy sources, resistances and other circuit elements is called 
an electrical network. The terms circuit and network are used synonymously in electrical literature.  
In the text so far, we employed two network laws viz Ohm’s law and Kirchhoff’s laws to solve 
network problems. Occasions arise when these laws applied to certain networks do not yield quick 
and easy solution. To overcome this difficulty, some network theorems have been developed which 
are very useful in analysing both simple and complex electrical circuits. Through the use of these 
theorems, it is possible either to simplify the network itself or render the analytical solution easy. In 
this chapter, we shall focus our attention on important d.c. network theorems and techniques with 
special reference to their utility in solving network problems.

3.1.   Network  Terminology
 While discussing  network theorems and techniques, one often comes across the following terms:
 (i) Linear circuit. A linear circuit is one whose parameters (e.g. resistances) are constant i.e. 

they do not change with current or voltage.
 (ii) Non-linear circuit. A non-linear circuit is one whose parameters (e.g. resistances) change 

with voltage or current.
 (iii) Bilateral circuit. A bilateral circuit is one whose properties are the same in either direction.  

For example, transmission line is a bilateral circuit because it can be made to perform its 
function equally well in either direction.

 (iv) Active element. An active element is one which 
supplies electrical energy to the circuit.  Thus 
in Fig. 3.1, E1 and E2 are the active elements 
because they supply energy to the circuit.

 (v) Passive element. A passive element is one 
which receives electrical energy and then either 
converts it into heat (resistance) or stores in an 
electric field (capacitance) or magnetic field 
(inductance). In Fig. 3.1, there are three passive 
elements, namely R1, R2 and R3. These passive elements (i.e. resistances in this case) receive 
energy from the active elements (i.e. E1 and E2) and convert it into heat.

 (vi) Node.  A node of a network is an equipotential surface at which two or more circuit 
elements are joined.  Thus in Fig. 3.1, circuit elements R1 and E1 are joined at A and hence 
A is the node.  Similarly, B, C and D are nodes.

 (vii) Junction. A junction is that point in a network where three or more circuit elements are 
joined. In Fig. 3.1, there are only two junction points viz. B and D. That B is a junction is 
clear from the fact that three circuit elements R1, R2 and R3 are joined at it. Similarly, point 
D is a junction because it joins three circuit elements R2, E1 and E2.

 (viii) Branch. A branch is that part of a network which lies between two junction points. Thus 
referring to Fig. 3.1, there are a total of three branches viz. BAD, BCD and BD. The branch 

3
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Fig. 3.1
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BAD consists of R1 and E1 ; the branch BCD consists of R3 and E2 and branch BD merely 
consists of R2.

 (ix) Loop.  A loop is any closed path of a network. Thus in Fig. 3.1, ABDA, BCDB and ABCDA 
are the loops.

 (x) Mesh. A mesh is the most elementary form of a loop and cannot be further divided into 
other loops. In Fig. 3.1, both loops ABDA and BCDB qualify as meshes because they cannot 
be further divided into other loops. However, the loop ABCDA cannot be called a mesh 
because it encloses two loops ABDA and BCDB.

 (xi) Network and circuit. Strictly speaking, the term network is used for a circuit containing 
passive elements only while the term circuit implies the presence of both active and passive 
elements. However, there is no hard and fast rule for making these distinctions and the 
terms “network” and “circuit” are often used interchangeably.

 (xii) Parameters. The various elements of an electric circuit like  resistance (R), inductance (L) 
and capacitance (C) are called parameters of the circuit. These parameters may be lumped 
or distributed.

 (xiii) Unilateral circuit. A unilateral circuit is one whose properties change with the direction 
of its operation. For example, a diode rectifier circuit is a unilateral circuit. It is because a 
diode rectifier cannot perform rectification in both directions.

 (xiv) Active and passive networks. An active network is that which contains active elements 
as well as passive elements. On the other hand, a passive network is that which contains 
passive elements only.

3.2.   Network  Theorems  and  Techniques
 Having acquainted himself with network terminology, the reader is set to study the various 
network theorems and techniques. In this chapter, we shall discuss the following network theorems 
and techniques :
 (i) Maxwell’s mesh current method (ii) Nodal analysis
 (iii) Superposition theorem (iv) Thevenin’s theorem
 (v) Norton’s theorem (vi) Maximum power transfer theorem
 (vii) Reciprocity theorem (viii) Millman’s theorem
 (ix) Compensation theorem (x) Delta/star or star/delta transformation
 (xi) Tellegen’s theorem

3.3.   Important  Points  About  Network  Analysis
 While analysing network problems by using network theorems and techniques, the following 
points may be noted :

 (i) There are two general approaches to network analysis viz. (a) direct method (b) network 
reduction method. In direct method, the network is left in its original form and different 
voltages and currents in the circuit are determined. This method is used for simple circuits.  
Examples of direct method are Kirchhoff’s laws, Mesh current method, nodal analysis, 
superposition theorem etc. In network reduction method, the original network is reduced 
to a simpler equivalent circuit. This method is used for complex circuits and gives a better 
insight into the performance of the circuit. Examples of network reduction method are 
Thevenin’s theorem, Norton’s theorem, star/delta or delta/star transformation etc.
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 (ii) The above theorems and techniques are applicable only to networks that have linear, 
bilateral circuit elements.

 (iii) The network theorem or technique to be used will depend upon the network arrangement.  
The general rule is this. Use that theorem or technique which requires a smaller number of 
independent equations to obtain the solution or which can yield easy solution.

 (iv) Analysis of a circuit usually means to determine all the currents and voltages in the circuit.

3.4.   Maxwell’s  Mesh  Current  Method
 In this method, Kirchhoff’s voltage law is applied to a network to write mesh equations in terms 
of mesh currents instead of branch currents. Each mesh is assigned a separate mesh current. This 
mesh current is assumed to flow clockwise around the perimeter of the mesh without splitting at a 
junction into branch currents. Kirchhoff’s voltage law is then applied to write equations in terms of 
unknown mesh currents. The branch currents are then found by taking the algebraic sum of the mesh 
currents which are common to that branch.
 Explanation.  Maxwell’s mesh current method consists of following steps :
 (i) Each mesh is assigned a separate mesh current. For convenience, all mesh currents are 

assumed to flow in *clockwise direction. For example, in Fig. 3.2, meshes ABDA and 
BCDB have been assigned mesh currents I1 and I2 respectively. The mesh currents take on 
the appearance of a mesh fence and hence the name mesh currents.

 (ii) If two mesh currents are flowing through a circuit element, the actual current in the circuit 
element is the algebraic sum of the two. Thus in Fig. 3.2, there are two mesh currents I1 and 
I2 flowing in R2. If we go from B to D, current is I1 – I2 and if we go in the other direction 
(i.e. from D to B), current is I2 – I1.

 (iii) **Kirchhoff’s voltage law is applied to write equation for each mesh in terms of mesh 
currents.  Remember, while writing mesh equations, rise in potential is assigned positive 
sign and fall in potential negative sign.

 (iv) If the value of any mesh 
current comes out to be 
negative in the solution, it 
means that true direction 
of that mesh current is 
anticlockwise i.e. opposite 
to the assumed clockwise 
direction.

 Applying Kirchhoff’s voltage 
law to Fig. 3.2, we have,

 Mesh ABDA.
  – I1R1 – (I1 – I2) R2 + E1 = 0

 or I1 (R1 + R2) – I2R2 = E1 ...(i)

* It is convenient to consider all mesh currents in one direction (clockwise or anticlockwise). The same result 
will be obtained if mesh currents are given arbitrary directions.

**  Since the circuit unknowns are currents, the describing equations are obtained by applying KVL to the 
meshes.

Fig. 3.2



D.C.  Network  Theorems 109 

 Mesh BCDB.
  – I2R3 – E2 – (I2 – I1) R2 = 0
 or` – I1R2 + (R2 + R3) I2 = – E2 ...(ii)
 Solving eq. (i) and eq. (ii) simultaneously, mesh currents I1 and I2 can be found out. Once the 
mesh currents are known, the branch currents can be readily obtained. The advantage of this method 
is that it usually reduces the number of equations to solve a network problem.
 Note.  Branch currents are the real currents because they actually flow in the branches and can be measured.  
However, mesh currents are fictitious quantities and cannot be measured except in those instances where they 
happen to be identical with branch currents. Thus in branch DAB, branch current is the same as mesh current and 
both can be measured.  But in branch BD, mesh currents (I1 and I2) cannot be measured.  Hence mesh current 
is a concept rather than a reality. However, it is a useful concept to solve network problems as it leads to the 
reduction of number of mesh equations.

3.5.   Shortcut  Procedure  for  Network  Analysis  by  Mesh  Currents
 We have seen above that Maxwell mesh current method involves lengthy mesh equations. Here 
is a shortcut method to write mesh equations simply by inspection of the circuit. Consider the circuit 
shown in Fig. 3.3. The circuit contains resistances and independent voltage sources and has three 
meshes.  Let the three mesh currents be I1, I2 and I3 flowing in the clockwise direction.
 Loop 1.  Applying KVL to this loop, we have,
  100 – 20 = I1(60 + 30 + 50) – I2 × 50 – I3 × 30
 or 80 = 140I1 – 50I2 – 30I3 ...(i)
 We can write eq. (i) in a shortcut form as :
  E1 = I1R11 – I2R12 – I3R13
 Here E1 = Algebraic sum of e.m.f.s in Loop (1) in the direction of I1
   = 100 – 20 = 80 V
  R11 = Sum of resistances in Loop (1)
   = Self*-resistance of Loop (1)
   = 60 + 30 + 50 = 140 Ω
  R12 = Total resistance common to Loops (1) and (2)
   = Common resistance between Loops (1) and (2) = 50 Ω
  R13 = Total resistance common to Loops (1) and (3) = 30 Ω
 It may be seen that the sign of 
the term involving self-resistances is 
positive while the sign of common 
resistances is negative. It is because 
the positive directions for mesh 
currents were all chosen clockwise. 
Although mesh currents are 
abstract currents, yet mesh current 
analysis offers the advantage that 
resistor polarities do not have to 
be considered when writing mesh 
equations.
 Loop 2. We can use shortcut 
method to find the mesh equation for 
Loop (2) as under : Fig. 3.3

* The sum of all resistances in a loop is called self-resistance of that loop. Thus in Fig. 3.3, self-resistance of 
Loop (1) = 60 + 30 + 50 = 140 Ω.
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  E2 = –I1R21 + I2R22 – I3R23

 or 50 + 20 = –50I1 + 100I2 – 40I3 ...(ii)
 Here, E2 = Algebraic sum of e.m.f.s in Loop (2) in the direction of I2

   = 50 + 20 = 70 V

  R21 = Total resistance common to Loops (2) and (1) = 50 Ω

  R22 = Sum of resistances in Loop (2) = 50 + 40 + 10 = 100 Ω

  R23 = Total resistance common to Loops (2) and (3) = 40 Ω

 Again the sign of self-resistance of Loop (2) (R22) is positive while the sign of the terms of 
common resistances (R21, R23) is negative.

 Loop 3. We can again use shortcut method to find the mesh equation for Loop (3) as under :

  E3 = –I1R31 – I2R32 + I3R33

 or 0 = –30I1 – 40I2 + 90I3 ...(iii)
 Again the sign of self-resistance of Loop (3) (R33) is positive while the sign of the terms of 
common resistances (R31, R32) is negative.

 Mesh  analysis  using  matrix  form. The three mesh equations are rewritten below :

  E1 = I1R11 – I2R12 – I3R13

  E2 = –I1R21 + I2R22 – I3R23

  E3 = –I1R31 – I2R32 + I3R33

 The matrix equivalent of above given equations is :

  
11 12 13 1

21 22 23 2

31 32 33 3

R R R I
R R R I
R R R I

   
   
   
      

 = 
1

2

3

E
E
E

 
 
 
  

 It is reminded again that (i) all self-resistances are positive (ii) all common resistances are 
negative and (iii) by their definition, R12 = R21 ; R23 = R32 and R13 = R31.

 Example 3.1. In the network shown in Fig. 3.4 (i), find the magnitude and direction of each 
branch current by mesh current method.
 Solution.  Assign mesh currents I1 and I2 to meshes ABDA and BCDB respectively as shown in 
Fig. 3.4 (i).
 Mesh ABDA. Applying KVL, we have,

  –40I1 – 20(I1 – I2) + 120 = 0

 or 60I1 – 20I2 = 120 ...(i)
 Mesh BCDB. Applying KVL, we have,

  –60I2 – 65 – 20(I2 – I1) = 0

 or –20I1 + 80I2 = –65 ...(ii)
 Multiplying eq. (ii) by 3 and adding it to eq. (i), we get,

  220I2 = –75  ∴ I2 = –75/220 = – 0·341 A
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Fig. 3.4

 The minus sign shows that true direction of I2 is anticlockwise. Substituting I2 = – 0·341A in  
eq. (i), we get, I1 = 1·886 A. The actual direction of flow of currents is shown in Fig. 3.4 (ii).
 By determinant method
  60I1 – 20I2 = 120

  –20I1 + 80I2 = –65

 ∴ I1 = 

120 20

65 80 (120 80) ( 65 20) 8300
60 20 (60 80) ( 20 20) 4400

20 80

−
− × − − × −= =

− × − − × −
−

 = 1·886 A

  I2 = 

60 120

20 65 (60 65) ( 20 120) 1500

Denominator 4400 4400

− − × − − − × −= =  = – 0·341 A

 Referring to Fig. 3.4 (ii), we have,
 Current in branch DAB = I1 = 1·886 A  ;  Current in branch DCB = I2 = 0·341 A
 Current in branch BD = I1 + I2 = 1·886 + 0·341 = 2·227 A

 Example 3.2. Calculate the current in each branch of the circuit shown in Fig. 3.5.

Fig. 3.5

 Solution. Assign mesh currents I1, I2 and I3 to meshes ABHGA, HEFGH and BCDEHB 
respectively as shown in Fig. 3.6.
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 Mesh ABHGA. Applying KVL, we have,
   – 60I1 – 30(I1 – I3) – 50(I1 – I2) – 20 + 100 = 0
 or  140I1 – 50I2 – 30I3 = 80
 or  14I1 – 5I2 – 3I3 = 8 ...(i)
 Mesh GHEFG. Applying KVL, we have,
   20 – 50(I2 – I1) – 40(I2 – I3) – 10I2 + 50 = 0
 or  –50I1 + 100I2 – 40I3 = 70
 or  –5I1 + 10I2 – 4I3 = 7 ...(ii)
 Mesh BCDEHB. Applying KVL, we have,
   –20I3 – 40(I3 – I2) – 30(I3 – I1) = 0
 or  30I1 + 40I2 – 90I3 = 0
 or  3I1 + 4I2 – 9I3 = 0 ...(iii)
 Solving for equations (i), (ii) and (iii), we get, I1 = 1·65 A  ;  I2 = 2·12 A  ;  I3 = 1·5 A
 By determinant method
  14I1 – 5I2 – 3I3 = 8
  –5I1 + 10I2 – 4I3 = 7
  3I1 + 4I2 – 9I3 = 0

Fig. 3.6

  ∴ I1 = 

8 5 3

7 10 4

0 4 9

14 5 3

5 10 4

3 4 9

− −
−
−

− −
− −

−

 = 

10 4 7 4 7 10
8 5 3

4 9 0 9 0 4

10 4 5 4 5 10
14 5 3

4 9 3 9 3 4

− −
+ −

− −
− − − −

+ −
− −

    = 
8[(10 9) (4 4)] 5[(7 9) (0 4)] 3[(7 4) (0 10)]

14[(10 9) (4 4)] 5[( 5 9) (3 4)] 3[( 5 4) (3 10)]

× − − × − + × − − × − − × − ×
× − − × − + − × − − × − − − × − ×

    = 
592 315 84 991

1036 285 150 601

− − − −=
− + + −

 = 1·65 A
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   I2 = 

14 8 3

5 7 4

3 0 9 14[( 63) (0)] 8[(45) ( 12)] 3[(0) (21)]

Denominator 601

−
− −

− − − − − − − −=
−

    = 
882 456 63 1275

601 601

− − + −=
− −

= 2·12 A

   I3 = 

14 5 8

5 10 7

3 4 0 14[(0) (28)] 5[(0) (21)] 8[( 20) (30)]

Denominator 601

−
−

− + − + − −=
−

    = 
392 105 400 897

601 601

− − − −=
− −

 = 1·5 A

 ∴ Current in 60 Ω = I1 = 1·65 A from A to B
  Current in 30 Ω = I1 – I3 = 1·65 – 1·5 = 0·15 A from B to H
  Current in 50 Ω = I2 – I1 = 2·12 – 1·65 = 0·47 A from G to H
  Current in 40 Ω = I2 – I3 = 2·12 – 1·5 = 0·62 A from H to E
  Current in 10 Ω = I2 = 2·12 A from E to F
  Current in 20 Ω = I3 = 1·5 A from C to D
 Example 3.3. By using mesh resistance matrix, determine the current supplied by each battery 
in the circuit shown in Fig. 3.7.

Fig. 3.7
 Solution. Since there are three meshes, let the three mesh currents be I1, I2 and I3, all assumed 
to be flowing in the clockwise direction. The different quantities of the mesh-resistance matrix are :
   R11 = 5 + 3 = 8 Ω ; R22 = 4 + 2 + 3 = 9 Ω ; R33 = 8 + 2 = 10 Ω
   R12 = R21 = – 3 Ω ; R13 = R31 = 0 ; R23 = R32 = – 2 Ω
   E1 = 20 – 5 = 15 V ; E2 = 5 + 5 + 5 = 15 V ; E3 = – 30 – 5 = – 35 V
 Therefore, the mesh equations in the matrix form are :

  
11 12 13 1

21 22 23 2

31 32 33 3

R R R I
R R R I
R R R I

   
   
   
      

 = 
1

2

3

E
E
E

 
 
 
  

 

 or 
1

2

3

8 3 0

3 9 2

0 2 10

I
I
I

−   
   − −   
   −   

 = 
15

15

35

 
 
 
 − 
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 By determinant method, we have,

  I1 = 

15 3 0

15 9 2

35 2 10 1530
8 3 0 598

3 9 2

0 2 10

−
−

− −
=

−
− −

−

  =  2·56 A

  I2 =  

8 15 0

3 15 2

0 35 10 1090

Denominator 598

− −
−

=  =  1·82 A

  I3 = 

8 3 15

3 9 15

0 2 35 1875

Denominator 598

−
−

− − −=   =  – 3·13 A

 The negative sign with I3 indicates that actual direction of I3 is opposite to that assumed in  
Fig. 3.7.  Note that batteries B1, B3, B4 and B5 are discharging while battery B2 is charging.

 ∴  Current supplied by battery B1 = I1  =  2·56 A

   Current supplied to battery B2 = I1 – I2  =  2·56 – 1·82  =  0·74 A

   Current supplied by battery B3 = I2 + I3  =  1·82 + 3·13  =  4·95 A

   Current supplied by battery B4 = I2  =  1·82 A

   Current supplied by battery B5 = I3  =  3·13 A

 Example 3.4. By using mesh resistance matrix, calculate the current in each branch of the 
circuit shown in Fig. 3.8.

  Fig. 3.8 Fig. 3.9

 Solution. Since there are three meshes, let the three mesh currents be I1, I2 and I3, all assumed 
to be flowing in the clockwise direction as shown in Fig. 3.9. The different quantities of the mesh 
resistance-matrix are :
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   R11 = 60 + 30 + 50 = 140 Ω ; R22 = 50 + 40 + 10 = 100 Ω ; R33 = 30 + 20 + 40 = 90 Ω

   R12 = R21 = – 50 Ω ; R13 = R31 = – 30 Ω ; R23 = R32 = – 40 Ω

   E1 = 100 – 20 = 80 V ; E2 = 50 + 20 = 70 V ; E3 = 0 V

 Therefore, the mesh equations in the matrix form are :

  
11 12 13 1

21 22 23 2

31 32 33 3

R R R I
R R R I
R R R I

   
   
   
      

 = 
1

2

3

E
E
E

 
 
 
  

 

 or 
1

2

3

140 50 30

50 100 40

30 40 90

I
I
I

− −   
   − −   
   − −   

 = 
80

70

0

 
 
 
  

 

 By determinant method, we have,

  I1 = 

80 50 30

70 100 40

0 40 90 991000
140 50 30 601000

50 100 40

30 40 90

− −
−

−
=

− −
− −
− −

  =  1·65 A

   I2 =  

140 80 30

50 70 40

30 0 90 1275000

Denominator 601000

−
− −
−

=  =  2·12 A

   I3 = 

140 50 80

50 100 70

30 40 0 897000

Denominator 601000

−
−
− −

=   =  1·5 A

 ∴ Current in 60 Ω = I1 = 1·65 A in the direction of I1

  Current in 30 Ω = I1 – I3 = 0·15 A in the direction of I1
  Current in 50 Ω = I2 – I1 = 0·47 A in the direction of I2
  Current in 40 Ω = I2 – I3 = 0·62 A in the direction of I2
  Current in 10 Ω = I2 = 2·12 A in the direction of I2
  Current in 20 Ω = I3 = 1·5 A in the direction of I3

 Example 3.5. Find mesh currents i1 and i2 in the 
electric circuit shown in Fig. 3.10.
 Solution. We shall use mesh current method for 
the solution. Mesh analysis requires that all the sources 
in a circuit be voltage sources. If a circuit contains 
any current source, convert it into equivalent voltage 
source.

 Outer mesh. Applying KVL to this mesh, we have,
Fig. 3.10
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  –i1 × 1 – 2i2 – 3 + 4 = 0   or   i1 + 2i2 = 1 ...(i)
 First mesh. Applying KVL to this mesh, we have,

   – i1 × 1 – (i1 – i2) × 1 – 3i2 + 4 = 0   or   i1 + i2 = 2 ...(ii) 
 From eqs. (i) and (ii), we have i1 = 3A  ;  i2 = – 1 A
 Example 3.6. Using mesh current method, determine current Ix in the circuit shown in Fig. 3.11.

  Fig. 3.11 Fig. 3.12

 Solution. First convert 2A current source in parallel with 1Ω resistance into equivalent voltage 
source of voltage 2A × 1Ω = 2V in series with 1Ω resistance. The  circuit then reduces to that shown 
in Fig. 3.12. Assign mesh currents I1 and I2 to meshes 1 and 2 in Fig. 3.12.
 Mesh 1. Applying KVL to this mesh, we have,
   – 3I1 – 1 × (I1 – I2) – 2 + 2 = 0   or   I2 = 4I1

 Mesh 2. Applying KVL to this mesh, we have,
   –2I2 + 5 + 2 – (I2 – I1) × 1 = 0

 or     – 2 (4I1) + 7 – (4I1 – I1) = 0 ( I2 = 4I1)

 ∴  I1 = 
7

A
11

 and I2 = 4I1 = 
7 28

4 A
11 11

× =

 ∴  Current in 3Ω resistance, I1 = 
7

A
11

 ;  Current in 2Ω resistance, I2 = 
28

A
11

 Referring to the original Fig. 3.11, we have,

   Ix = I1 + (2 – I2) = 
7 28

2
11 11

 + −  
 = 

1 A
11

 Example 3.7. Using mesh current method, find the currents in resistances R3, R4, R5 and R6 of 
the circuit shown in Fig. 3.13 (i).

Fig. 3.13
 Solution. First convert 2 A current source in parallel with 12Ω  resistance into equivalent 
voltage source of voltage = 2A × 12Ω = 24V in series with 12Ω resistance. The circuit then 
reduces to the one shown in Fig. 3.13 (ii). Assign the mesh currents I1, I2 and I3 to three meshes 
1, 2 and 3 shown in Fig. 3.13 (ii).
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 Mesh 1. Applying KVL to this mesh, we have,
   –12I1 – 8 × (I1 – I2) – 20 × (I1 – I3) + 24 = 0
 or  10I1 –2I2 – 5I3 = 6 ...(i)
 Mesh 2. Applying KVL to this mesh, we have,
   – 4I2 – 6 × (I2 – I3) – 8(I2 – I1)   = 0
 or  – 4I1 + 9I2 – 3I3 = 0 ...(ii)
 Mesh 3. Applying KVL to this mesh, we have,
   –10I3 – 20 × (I3 – I1) – 6 × (I3 – I2) = 0
 or  – 10I1 – 3I2 + 18I3 = 0 ...(iii)
 From eqs. (i), (ii) and (iii), I1 = 1.125 A  ;  I2 = 0.75 A  ;  I3 = 0.75 A 
 ∴ Current in R3 (= 4Ω) = I2 = 0.75 A from A to B
  Current in  R4 (= 6Ω) = I2 – I3 = 0.75 – 0.75 = 0A
  Current in R5 (= 20Ω) = I1 – I3 = 1.125 – 0.75 = 0.375A from D to C
  Current in R6 (= 10Ω) = I3 = 0.75A from B to C
 Example 3.8. Use mesh current method to determine currents through each of the components 
in the circuit shown in Fig. 3.14 (i).

0.3 A10 V

+

–

10 � 30 �

8 V 0.3 A10 V

+

–

10 � 30 �

8 VI
2

I
1

+

–

( )i ( )ii

+

–

Fig. 3.14

 Solution. Suppose voltage across current source is v. Assign mesh currents I1 and I2 in the 
meshes 1 and 2 respectively as shown in Fig. 3.14 (ii).
 Mesh 1. Applying KVL to this mesh, we have,
  10 – 10I1 + v = 0 ...(i)
 Mesh 2. Applying KVL to this mesh, we have,
  – 30I2 – 8 – v = 0 ...(ii)
 Adding eqs. (i) and (ii), 2 – 10I1 – 30I2 = 0 ...(iii)
 Also current in the branch containing current source is
  I1 – I2 = 0.3 ...(iv)
 From eqs. (iii) and (iv),  I1 = 0.275 A  ;  I2 = – 0.025A
 ∴ Current in 10Ω = I1 = 0.275A
  Current in 30Ω = I2 = – 0.025 A
  Current in current source = I1 – I2 = 0.275 – (–0.025) = 0.3A
Note that negative sign means current is in the opposite direction to that assumed in the circuit.

Tutorial  Problems
 1. Use mesh analysis to find the current in each resistor in Fig. 3.15.
   [in 100 Ω = 0·1 A from L to R ; in 20 Ω = 0·4 A from R to L ; in 10 Ω = 0·5 A downward]
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  Fig. 3.15 Fig. 3.16

 2. Using mesh analysis, find the voltage drop across the 1 kΩ resistor in Fig. 3.16. [50 V]
 3. Using mesh analysis, find the currents in 50 Ω, 250 Ω and 100 Ω resistors in the circuit shown in  

Fig. 3.17.  [I(50 Ω) = 0·171 A → ; I(250 Ω) = 0·237 A ← ; I(100 Ω) = 0·408 A ↓]

Fig. 3.17

 4. For the network shown in Fig. 3.18, find the mesh currents I1, I2 and I3. [5 A, 1 A, 0·5 A]

Fig. 3.18

 5. In the network shown in Fig. 3.19, find the magnitude and direction of current in the various branches 
by mesh current method.    [FAB = 4 A ; BF = 3 A ; BC = 1 A ; EC = 2 A ; CDE = 3 A]

Fig. 3.19

3.6.   Nodal  Analysis
 Consider the circuit shown in Fig. 3.20. The branch currents in the circuit can be found by 
Kirchhoff’s laws or Maxwell’s mesh current method. There is another method, called nodal analysis 
for determining branch currents in a circuit.  In this method, one of the nodes (Remember a node is 
a point in a network where two or more circuit elements meet) is taken as the reference node. The 
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potentials of all the points in the circuit are measured w.r.t. this reference node. In Fig. 3.20, A, B, 
C and D are four nodes and the node D has been taken as the *reference node. The fixed-voltage 
nodes are called dependent nodes. Thus in Fig. 3.20, A and C are fixed nodes because VA = E1 =  
120 V and VC = 65 V.  The voltage from D to B is VB and its magnitude depends upon the parameters 
of circuit elements and the currents through these elements. Therefore, node B is called independent 
node.  Once we calculate the potential at the independent node (or nodes), each branch current can 
be determined because the voltage across each resistor will then be known.
 Hence nodal analysis essentially aims at choosing a reference node in the network and 
then finding the unknown voltages at the independent nodes w.r.t. reference node. For a circuit 
containing N nodes, there will be N–1 node voltages, some of which may be known if voltage 
sources are present.
 Circuit analysis. The circuit shown in Fig. 3.20 has only one independent node B. Therefore, 
if we find the voltage VB at the independent node B, we can determine all branch currents in the 
circuit.  We can express each current in terms of e.m.f.s, resistances (or conductances) and the 
voltage VB at node B.  Note that we have taken point D as the reference node.

Fig. 3.20
 The voltage VB can be found by applying **Kirchhoff’s current law at node B.
  I1 + I3 = I2 ...(i)
 In mesh ABDA, the voltage drop across R1 is E1 – VB.

 ∴ I1 = 1

1

BE V
R
−

 In mesh CBDC, the voltage drop across R3 is E2 – VB.

 ∴ I3 = 2

3

BE V
R
−

 Also I2 = 
2

BV
R

 Putting the values of I1, I2 and I3 in eq. (i), we get,

  1 2

1 3

B BE V E V
R R
− −+  = 

2

BV
R

 ...(ii)

 All quantities except VB are known. Hence VB can be found out. Once VB is known, all branch 
currents can be calculated. It may be seen that nodal analysis requires only one equation [eq. (ii)] 
for determining the branch currents in this circuit. However, Kirchhoff’s or Maxwell’s solution 
would have needed two equations.

* An obvious choice would be ground or common, if such a point exists.
** Since the circuit unknowns are voltages, the describing equations are obtained by applying KCL at the nodes.
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 Notes.
 (i) We can mark the directions of currents at will.  If the value of any current comes out to be negative 

in the solution, it means that actual direction of current is opposite to that of assumed.
 (ii) We can also express the currents in terms of conductances.

   I1 = 1

1

BE V
R
−

 = (E1 – VB)G1  ;  I2 = 
2

BV
R

 = VB G2  ;  I3 = 2

3

BE V
R
−

 = (E2 – VB)G3

3.7.   Nodal  Analysis  with  Two  Independent  Nodes
 Fig. 3.21 shows a network with two independent nodes B and C.  We take node D (or E) as the 
reference node.  We shall use Kirchhoff’s current law for nodes B and C to find VB and VC.  Once the 
values of VB and VC are known, we can find all the branch currents in the network.

Fig. 3.21
 Each current can be expressed in terms of e.m.f.s, resistances (or conductances), VB and VC.

  E1 = VB + I1R1  ∴ I1 = 1

1

BE V
R
−

 

  E3 = VC + I3R3   ∴  I3 = 3

3

CE V
R
−

  E2* = VB – VC + I2R2  ∴ I2 = 2

2

B CE V V
R

− +

 Similarly,  I4 = 
4

BV
R

 ; I5 = 
5

CV
R

 At node B. I1 + I2 = I4

 or 21

1 2

B CB E V VE V
R R

− +− +  = 
4

BV
R

 ...(i)

 At node C. I2 + I5 = I3

 or  2

2 5

B C CE V V V
R R

− + +  = 3

3

CE V
R
−

 ...(ii)

 From eqs. (i) and (ii), we can find VB and VC since all other quantities are known. Once we 
know the values of VB and VC, we can find all the branch currents in the network.
 Note.  We can also express currents in terms of conductances as under :
  I1 = (E1 – VB) G1 ; I2 = (E2 – VB + VC) G2

  I3 = (E3 – VC) G3 ; I4 = VB G4 ; I5 = VC G5

* As we go from C to B, we have,
  VC – I2R2 + E2 = VB

 ∴ E2 = VB – VC + I2R2
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 Example 3.9. Find the currents in the various branches of the circuit shown in Fig. 3.22 by 
nodal analysis.
 Solution. Mark the currents in the various branches as shown in Fig. 3.22. If the value of any 
current comes out to be negative in the solution, it means that actual direction of current is opposite 
to that of assumed. Take point E (or F) as the reference node. We shall find the voltages at nodes B 
and C.
 At node B. I2 + I3 = I1

 or 
*

10 15
B CB V VV −+  = 

100

20
BV−

 

 or 13VB – 4VC = 300 ...(i)
 At node C. I4 + I5 = I3

 or 
80

10 10
C CV V ++  = 

15
B CV V−

 or VB – 4VC = 120 ...(ii)

Fig. 3.22

 Subtracting eq. (ii) from eq. (i), we get, 12VB = 180 ∴ VB = 180/12 = 15 V
 Putting VB = 15 volts in eq. (i), we get, VC = – 26.25 volts.
 By determinant method
  13VB – 4VC = 300
  VB – 4VC = 120

 ∴ VB = 

300 4

120 4

13 4

1 4

−
−

−
−

 = 
(300 4) (120 4) 720

(13 4) (1 4) 48

× − − × − −=
× − − × − −

  =  15 V

 and VC = 

13 300

1 120

Denominator
 = 

(13 120) (1 300) 1260

48 48

× − × =
− −

  =  – 26·25 V

 ∴ Current I1 = 
100 100 15

20 20
BV− −=  = 4·25 A

  Current I2 = VB/10 = 15/10 = 1·5 A

  Current I3 = 
15 ( 26.25)

15 15
B CV V− − −=  = 2·75 A

* Note that the current I3 is assumed to flow from B to C. Therefore, with this assumption, VB > VC.
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  Current I4 = VC/10 = – 26·25/10 = – 2·625 A

  Current I5 = 
80 26.25 80

10 10
CV + − +=  = 5·375 A

 The negative sign for I4 shows that actual current flow is opposite to that of assumed.
 Example 3.10. Use nodal analysis to find the currents in various resistors of the circuit shown 
in Fig. 3.23 (i).

Fig. 3.23

 Solution. The given circuit is redrawn in Fig. 3.23 (ii) with nodes marked 1, 2, 3 and 4. Let us 
take node 4 as the reference node. We shall apply KCL at nodes 1, 2 and 3 to obtain the solution.
 At node 1. Applying KCL, we have,
  I1 + I2 + I3 = I

 or 1 31 1 2

2 3 5

V VV V V −−+ +  = 10

 or 31V1 – 10V2 – 6V3 = 300 ...(i)
 At node 2. Applying KCL, we have,
  I2 = I4 + I5

 or 1 2

3

V V−
 = 2 3 2

1 5

V V V− +

 or 5V1 – 23V2 + 15V3 = 0 ...(ii)
 At node 3. Applying KCL, we have,
  I3 + I4 = I6 + 2

 or 1 3 2 3

5 1

V V V V− −+  = 3

4

V
 + 2

 or 4V1 + 20V2 – 29V3 = 40 ...(iii)

 From eqs. (i), (ii) and (iii), V1 = 
6572

V
545

 ; V2 = 
556

V
109

 ; V3 = 
2072

V
545

 ∴ Current I1 = 1

2

V
 = 

6572 1

545 2
×  = 6.03 A

  Current I2 = 1 2 1 6572 556

3 3 545 109

V V−  = −  
 = 2.32A

  Current I3 = 1 3 1 6572 2072

5 5 545 545

V V−  = −  
 = 1.65 A
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  Current I4 = 2 3 556 2072

1 109 545

V V− = −  = 1.3A

  Current I5 = 2 556 1

5 109 5

V = ×  = 1.02A

  Current I6 = 3 2072 1

4 545 4

V = ×  = 0.95A

 Example 3.11. Find the total power consumed in the circuit shown in Fig. 3.24.
 Solution. Mark the direction of currents in the various branches as shown in Fig. 3.24. Take D 
as the reference node. If voltages VB and VC at nodes B and C respectively are known, then all the 
currents can be calculated.
 At node B. I1 + I3 = I2

 or  
15

1 0.5
C BB V VV −− +  = 

1
BV

 or  15 – VB + 2(VC – VB) – VB = 0

 or  4VB – 2VC = 15 ...(i)
 At node C. I3 + I4 = I5

 or  
0.5 2

C B CV V V− +  = 
20

1
CV−

 or  2(VC – VB) + 0·5VC – (20 – VC) = 0
 or  3·5VC – 2VB = 20

 or  4VB – 7VC = –40 ...(ii)

Fig. 3.24
 Subtracting eq. (ii) from eq. (i), we get, 5VC = 55
 ∴ VC = 55/5 = 11 volts
 Putting VC = 11 V in eq. (i), we get, VB = 9·25 V

 ∴ Current I1 = 
15 15 9.25

1 1
BV− −=  = 5·75 A

  Current I2 = VB/1 = 9·25/1 = 9·25 A

  Current I3 = 
11 9.25

0.5 0.5
C BV V− −= = 3·5 A

  Current I4 = VC/2 = 11/2 = 5·5 A

  Current I5 = 
20 20 11

1 1
CV− −=  = 9 A
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 ∴ Power loss in the circuit = I1
2 × 1 + I2

2 × 1 + I2
3 × 0·5 + I4

2 × 2 + I5
2 × 1

   = (5·75)2 × 1 + (9·25)2 × 1 + (3·5)2 × 0·5 + (5·5)2 × 2 + (9)2 × 1
   = 266·25 W 
 Example 3.12. Using nodal analysis, find node-pair voltages VB and VC and branch currents in 
the circuit shown in Fig. 3.25. Use conductance method.

Fig. 3.25

 Solution. Mark the currents in the various branches as shown in Fig. 3.25. If the value of any 
current comes out to be negative in the solution, it means that actual direction of current is opposite  
to that of assumed. Take point D (or E) as the reference node. We shall find the voltages at nodes B 
and C and hence the branch currents.

   G1 = 
1

1 1

2R
=  = 0·5 S  ;  G2 = 

2

1

R
 = 

1

4
 = 0·25 S ; G3 = 

3

1 1

16R
= = 0·0625 S ;

    G4 = 
4

1 1

10R
=  = 0.1 S ; G5 = 

5

1 1

20R
=  = 0·05 S

 At node B. I1 + I2 = I4

 or  (E1 – VB)G1 + (E2 – VB + VC)G2 = VBG4

 or  E1G1 + E2G2 = VB(G1 + G2 + G4) – VCG2

 or  (12 × 0.5) + (4 × 0.25) = VB(0·5 + 0·25 + 0·1) – VC × 0·25
 or  7 = 0·85 VB – 0·25 VC ...(i)
 At node C. I3 = I2 + I5

 or  (E3 –VC)G3 = (E2 – VB + VC)G2 + VC × G5

 or  E3G3 – E2G2 = – VBG2 + VC(G2 + G3 + G5)
 or  (8 × 0.0625) – (4 × 0.25) = – VB(0·25)  + VC(0·25 + 0·0625 + 0·05)
 or  –0·5 = – 0·25 VB +  0·362 VC ...(ii)
 From equations (i) and (ii), we get, VB = 9.82 V ; VC = 5·4V
 ∴ I1 = (E1 – VB)G1 = (12 – 9·82) × 0·5 = 1·09 A
  I2 = (E2 – VB + VC)G2 = (4 – 9·82 + 5·4) × 0·25 = –0·105A
  I3 = (E3 – VC)G3 = (8 – 5·4) × 0·0625 = 0·162A
  I4 = VBG4 = 9·82 × 0·1 = 0·982A
  I5 = VCG5 = 5·4 × 0.05 = 0·27A
 The negative sign for I2 means that the actual direction of this current is opposite to that 
shown in Fig. 3.25.
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 Example 3.13. Using nodal analysis, find the different branch currents in the circuit shown in 
Fig. 3.26 (i).

Fig. 3.26

 Solution. Mark the currents in the various branches as shown in Fig. 3.26 (ii). Take ground as 
the reference node. We shall find the voltages at the other three nodes.

 At first node. Applying KCL to the first node from left,

  I2 = I1 + 2

 or (V3 – V1)2 = (V1 – V2)1 + 2

 or 3V1 – V2 – 2V3 = – 2 ...(i)
 At second node. Applying KCL to the second node from left,

  I1 + 5 = I4

 or (V1 – V2)1 + 5 = V2 × 4

 or V1 – 5V2 = – 5 ...(ii)
 At third node. Applying KCL to the third node from left,

  I3 = 5 + I2

 or – V3 × 3 = 5 + (V3 – V1)2

 or 2V1 – 5V3 = 5 ...(iii)

 Solving eqs. (i), (ii) and (iii), we have, V1 = 3
V

2
−  ;  V2 = 7

V
10

 and V3 = 8
V

5

−

 ∴ I1 = (V1 – V2)1 = 
3 7

1
2 10

 − −  
 = – 2.2A

  I2 = (V3 – V1)2 = 
8 3

2
5 2

 − +  
 = – 0.2A

  I3 = –V3 × 3 = 
8

3
5

×  = 4.8 A

  I4 = V2 × 4 = 
7

4
10

×  = 2.8A

 The negative value of any current means that actual direction of current is opposite to that 
originally assumed.
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 Example 3.14. Find the current I in Fig. 3.27 (i) by changing the two voltage sources into their 
equivalent current sources and then using nodal method. All resistances are in ohms.

Fig. 3.27

 Solution. Since we are to find I, it would be convenient to take node 4 as the reference node. 
The two voltage sources are converted into their equivalent current sources as shown in Fig. 3.27. 
(ii). We shall apply KCL at nodes 1, 2 and 3 in Fig. 3.27 (ii) to obtain the required solution.
 At node 1. Applying KCL, we have,

  3 1 4
1

V V− +  = 1 1 2 5
1 1

V V V−+ +

 or 3V1 – V2 – V3 = – 1 ...(i)
 At node 2. Applying KCL, we have,

  1 25
1

V V−+  = 2 32 3
1 1

V VV −+ +

 or V1 – 3V2 + V3 = – 2 ...(ii)
 At node 3. Applying KCL, we have,

  2 3 33
1 1

V V V− + −  = 3 1 4
1

V V− +

 or V1 + V2 – 3V3 = 1 ...(iii)
 From eqs. (i), (ii) and (iii), we get, V2 = 0.5 V.

 ∴ Current I = 2 0

1

V −
 = 

0.5 0

1

−
 = 0.5A

 Example 3.15. Use nodal analysis to find the voltage across and current through 4 Ω resistor 
in Fig. 3.28 (i).
 Solution. We must first convert the 2V voltage source to an equivalent  current source. The 
value of the equivalent  current source is I = 2V/2Ω = 1 A. The circuit then becomes as shown in 
Fig. 3.28 (ii).

Fig. 3.28
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 Mark the currents in the various branches as shown in Fig. 3.28 (ii). Take point E (or F) as the 
reference node. We shall calculate the voltages at nodes A and B.    
 At node A.  I1 = I2 + I3

 or 1 = 
*

4 2
A B AV V V− +

 or 3VA – VB = 4 ...(i)
 At node B. I2 + I4 =  I5

 or 2
4

A BV V− +  = 
8
BV

 

 or 2VA – 3VB = –16 ...(ii)
 Solving equations (i) and (ii), we find VA = 4V and VB = 8V. Note that VB > VA, contrary to our 
initial assumption. Therefore, actual direction of current is from node B to node A.
 By determinant method
  3VA – VB = 4
  2VA – 3VB = –16

 ∴ VA = 

4 1

16 3 ( 12) (16) 28
3 1 ( 9) ( 2) 7

2 3

−
− − − − −= =

− − − − −
−

 = 4V

  VB = 

3 4

2 16 ( 48) (8) 56

Denominator 7 7

− − − −= =
− −

 = 8V

  Voltage across 4Ω resistor  = VB  –  VA = 8 – 4 = 4V

  Current through 4Ω resistor = 
4V

4Ω
 = 1A

 We can also find the currents in other resistors.

  I3 = 
4

2 2
AV =  = 2A

  I5 = 
8

8 8
BV =  = 1A

Fig. 3.29
* We assume that VA > VB. On solving the circuit, we shall see whether this assumption is correct or not.
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 Fig. 3.29 shows the various currents in the circuit. You can verify Kirchhoff’s current law at 
each node.
 Example 3.16. Use nodal analysis to find current in the 4 kΩ resistor shown in Fig. 3.30. 

Fig. 3.30

 Solution. We shall solve this example by expressing node currents in terms of conductance 
than expressing them in terms of resistance. The conductance of each resistor is

   G1 = 3
1

1 1

1 10R
=

×
 = 10–3 S  ;  G2 = 3

2

1 1

2 10R
=

×
 = 0.5 × 10–3 S 

   G3 = 3
3

1 1

2 10R
=

×
 = 0.5 × 10–3 S  ;  G4 = 3

4

1 1

4 10R
=

×
 = 0.25 × 10–3 S

 Mark the currents in the various branches as shown in Fig. 3.31. Take point E (or F) as the 
reference node. We shall find voltages at nodes A and B.
 At node A. I5 + I6 = I1 + I2 
 or 50 × 10–3 + 30 × 10–3 = G1(VA – VB) + G2 VA 
 or 80 × 10–3 = 10–3 (VA – VB) + 0.5 × 10–3 VA

 or 1.5VA – VB = 80 ...(i)

Fig. 3.31

 At node B. I1 =  I6 + I3 + I4

 or G1(VA – VB) = 30 × 10–3 + G3VB + G4VB
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 or 10–3 (VA – VB) = 30 × 10–3 + 0.5 × 10–3 VB + 0·25 × 10–3 VB

 or VA – 1·75 VB = 30 ...(ii)

 Solving equations (i) and (ii), we get, VB = 21·54 V.
 By determinant method
  1·5 VA – VB = 80

  VA – 1·75 VB = 30

 ∴ VB = 

1.5 80

1 30 (45) (80) 35
1.5 1 ( 2.625) ( 1) 1.625

1 1.75

− −= =
− − − − −

−

 = 21·54 V

 ∴   Current in 4 kΩ resistor, I4 = G4VB = 0·25 × 10–3 × 21·54 = 5·39 × 10–3 A = 5·39 mA
 Example 3.17. For the circuit shown in Fig. 3.32 (i), find (i) voltage v and (ii) current through 
2Ω resistor using nodal method.

Fig. 3.32

 Solution. Mark the direction of currents in the various branches as shown in Fig. 3.32 (ii). Let 
us take node C as the reference node. It is clear from Fig. 3.32 (ii) that VB = – 8V (VC = 0V). Also, 
v = 6 – VA.
 Applying KCL to node A, we have,
  I1 + I2 = I3

 or 
6 5

1 2
A AV v V− −+  = 

3
A BV V−

 or 
6 5(6 )

1 2
A A AV V V− − −+  = 

( 8)

3
AV − −

 On solving, we get, VA = 55
V

13

 (i) Voltage v = 6 – VA = 
55

6
13

−  = V
23
13

 (ii) Current through 2Ω, I2 = 
5

2
Av V−

 = 
5(23 13) (55 13)

2

−
 = 

3

30 A
1

3.8.   Shortcut  Method  for  Nodal  Analysis
 There is a shortcut method for writing node equations similar to the form for mesh equations. 
Consider the circuit with three independent nodes A, B and C as shown in Fig. 3.33.
 The node equations in shortcut form for nodes A, B and C can be written as under :
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   VA GAA + VB GAB + VC GAC = IA
   VA GBA + VB GBB + VC GBC = IB
   VA GCA  + VB GCB + VC GCC = IC
 Let us discuss the various terms in these equations.
   GAA = Sum of all conductances connected to node A
    = G1 + G2 in Fig. 3.33.
 The term GAA is called self-conductance at node A. Similarly, GBB and GCC are self-conductances 
at nodes B and C respectively. Note that product of node voltage at a node and self-conductance at 
that node is always a positive quantity. Thus VA GAA, VB GBB and VC GCC are all positive.
  GAB = Sum of all conductances directly connected 
    between nodes A and B
   = G2 in Fig. 3.33

Fig. 3.33
 The term GAB is called common conductance between nodes A and B. Similarly, the term GBC 
is common conductance between nodes B and C and GCA is common conductance between nodes 
C and A. The product of connecting node voltage with common conductance is always a negative 
quantity.  Thus VB GAB is a negative quantity. Here connecting node voltage is VB and common 
conductance is GAB. Note that GAB = GBA, GAC = GCA and so on.
 Note the direction of current provided by current source connected to the node. A current 
leaving the node is shown as negative and a current entering a node is positive. If a node has no 
current source connected to it, set the term equal to zero.
 Node A. Refer to Fig. 3.33. At node A, GAA = G1 + G2 and is a positive quantity. The product 
VBGAB is a negative quantity. The current IA is leaving the node A and will be assigned a negative 
sign. Therefore, node equation at node A is   
   VAGAA – VBGAB = –IA
 or  VA(G1 + G2) – VB (G2) = –IA
 Similarly, for nodes B and C, the node equations are :
   VB(G2 + G3 + G4) – VA(G2) – VC(G4) = 0
   VC(G4 + G5) – VB(G4) = IB 
 Example 3.18.  Solve the circuit shown in Fig. 3.34 using nodal analysis.

  Fig. 3.34  Fig. 3.35
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 Solution. Here point D is chosen as the reference node and A and B are the independent nodes.
 Node A. VA(0.02 + 0.01) – VB(0.01) = –2
 or  0.03 VA – 0.01 VB = –2 ...(i)
 Node B. VB(0.01 + 0.1)  – VA (0.01) =  –2
 or  –0.01 VA + 0.11 VB = –2 ...(ii)
 From equations (i) and (ii), we have, VA = –75V and VB = –25V
 Fig. 3.35 shows the circuit redrawn with solved voltages.
  Current in  0.02 S = VG = 75 × 0·02 = 1·5A
  Current in 0.1 S  = VG = 25  × 0·1 = 2·5A 
  Current in 0.01 S  = VG = 50 × 0·01 = 0·5 A
 The directions of currents will be as shown in Fig. 3.35.  
 Example 3.19. Solve the circuit shown in Fig. 3.36 using nodal analysis.

Fig. 3.36

 Solution. Here A, B and C are the independent nodes and D is the reference node.

 Node A. 1 1 1
*

15 2.5 2.5A BV V   + −      
 = –6

 or  0·467 VA – 0·4 VB = –6 ...(i)

 Node B. 
1 1 1 1 1

2.5 20 6 2.5 6B A CV V V     + + − −          
 = 0

 or  – 0·4 VA + 0·617 VB – 0·167 VC = 0 ...(ii)

 Node C. 
1 1 1

6 4 6C BV V   + −      
 = 2·5

 or  –0·167 VB + 0·417 VC = 2·5 ...(iii)
 From equations (i), (ii) and (iii), VA =  –30 V  ;  VB = –20 V  ;  VC = – 2 V

Fig. 3.37

* Note that 5Ω is omitted from the equation for node A because it is in series with the current source.
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 Fig. 3.37 shows the circuit redrawn with solved voltages. 
  Current in 15 Ω = 30/15 = 2 A
  Current in 20 Ω = 20/20 = 1 A   
  Current in 4 Ω = 2/4 = 0.5 A 
  Current in 6 Ω = 18/6 = 3 A
  Current in 2.5 Ω = 10/2.5 = 4 A 
  Current in 5 Ω = 4 + 2 = 6 A
 The directions of currents will be as shown in Fig. 3.37. 
 Example 3.20. Find the value of Ix in the circuit shown in Fig. 3.38 using nodal analysis. The 
various values are :
 Gu = 10 S ; Gv = 1S ; Gw = 2S ; 
 Gx = 1S ; Gy = 1S ; Gz = 1S and I = 100 A.
 Solution. 
 Node A.  (Gu + Gv + Gw)VA – GwVB – GuVC  = I
 Node B.  – GwVA + (Gw + Gx + Gz) VB – GzVC  =  0
 Node C.  – GuVA – GzVB + (Gu + Gy + Gz)VC  = –I
 Putting the various values in these equations, we have, 
  13 VA – 2 VB – 10 VC = I
  –2 VA + 4 VB – VC = 0
  –10 VA – VB  + 12 VC = –I
 Now VB can be calculated as the ratio of two determinants NB/D where

   D = 
13 2 10

2 4 1

10 1 12

− −
− −
− −

 = 624 – 20 – 20 – (400 + 48 + 13) = 123

 and  NB = 
13 10

2 0 1

10 12

I

I

−
− −
− −

 = 10I – 20I – (13I – 24I) = I

 ∴ VB = 
123

BN I
D

=

  Current Ix = GxVB = 100
1 1

123 123

I× = ×  = 0.813A

Tutorial  Problems

 1. Using nodal analysis, 
find the voltages at 
nodes A, B and C w.r.t. 
the reference node 
shown by the ground 
symbol in Fig. 3.39. 
[VA = –30V ; VB = 

–20V ; VC = –2V]

Fig. 3.38

Fig. 3.39
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 2. Using nodal analysis, find the current through 0.05 S conductance in Fig. 3.40. [0.264 A] 

  Fig. 3.40 Fig. 3.41

 3. Using nodal analysis, find the current flowing in the battery in Fig. 3.41. [1.21 A]

  Fig. 3.42 Fig. 3.43
 4. In Fig. 3.42, find the node voltages. [VA = –6.47 V; VB = – 11.8V]
 5. In Fig. 3.42, find current through 0.05 S conductance. Use nodal analysis. [264 mA]
 6. In Fig. 3.43, find the node voltages. [VA = 4.02 V; VB = 3.37 V ; VC = 3.72 V] 
 7. By using nodal analysis, find current in 0.3 S in Fig. 3.43. [196 mA]
 8. Using nodal analysis, find current in 0.4 S conductance in Fig. 3.43. [141 mA]

Fig. 3.44
 9. Find node voltages in Fig. 3.44.   [VA = 0.806 V; VB =  –2.18 V; VC = –5 V]
 10. Using nodal analysis, find current through the battery in Fig. 3.44. [1. 21A]

3.9.   Superposition  Theorem
 Superposition is a general principle that allows us to determine the effect of several energy 
sources (voltage and current sources) acting simultaneously in a circuit by considering the effect of 
each source acting alone, and then combining (superposing) these effects. This theorem as applied 
to d.c. circuits may be stated as under :
In a linear, bilateral d.c. network containing more than one energy source, the resultant potential 
difference across or current through any element is equal to the algebraic sum of potential differences 
or currents for that element produced by each source acting alone with all other independent ideal 
voltage sources replaced by short circuits and all other independent ideal current sources replaced 
by open circuits (non-ideal sources are replaced by their internal resistances).
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 Procedure. The procedure for using this theorem to solve d.c. networks is as under :
 (i) Select one source in the circuit and replace all other ideal voltage sources by short circuits 

and ideal current sources by open circuits.
 (ii) Determine the voltage across or current through the desired element/branch due to single 

source selected in step (i).
 (iii) Repeat the above two steps for each of the remaining sources.
 (iv) Algebraically add all the voltages across or currents through the element/branch under 

consideration. The sum is the actual voltage across or current through that element/branch 
when all the sources are acting simultaneously.

 Note. This theorem is called superposition because we superpose or algebraically add the components 
(currents or voltages) due to each independent source acting alone to obtain the total current in or voltage across 
a circuit element.
 Example 3.21. Using superposition theorem, 
find the current through the 40 Ω resistor in the 
circuit shown in Fig. 3.45 (i). All resistances are in 
ohms.
 Solution. In Fig. 3.45 (ii), 10V battery is 
replaced by a short so that 50V battery is acting 
alone. It can be seen that right-hand 5 Ω resistance is 
in parallel with 40 Ω resistance and their combined 
resistance = 5 Ω || 40 Ω = 4.44 Ω as shown in Fig. 3.45 (iii). The 4.44 Ω resistance is in series with 
left-hand 5 Ω resistance giving total resistance of (5 + 4.44) = 9.44 Ω to this path. As can be seen 
from Fig. 3.45 (iii), there are two parallel branches of resistances 20 Ω and 9.44 Ω across the 50 V 
battery. Therefore, current through 9.44 Ω branch is I = 50/9.44 = 5.296 A. Thus in Fig. 3.45 (ii), 
the current I (= 5.296 A) at point A divides between 5 Ω resistance and 40 Ω resistance. By current-
divider rule, current I1 in 40 Ω resistance is
  I1 = 

5

5 40
I ×

+
 = 

5
5.296

45
×  = 0.589 A  downward

Fig. 3.45
 In Fig. 3.45 (iv), the  50 V battery is replaced by a short so that 10 V battery is acting alone. 
Again, there are two parallel branches of resistances 20 Ω and 9.44 Ω across the 10V battery [See 
Fig. 3.45 (v)]. Therefore, current through 9.44 Ω branch is I = 10/9.44 = 1.059 A.

Fig. 3.45

10 V50 V

5 5

20

40

( )i
Fig. 3.45
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 Thus in Fig. 3.45 (iv), the current I (= 1.059 A) at point B divides between 5 Ω resistance and 
40 Ω resistance. By current-divider rule, current in 40 Ω resistance is

  I2 = 
5

1.059
5 40

×
+

 = 0.118 A  downward

 ∴   By superposition theorem, the total current in 40 Ω
   = I1 + I2 = 0.589 + 0.118 = 0.707 A  downward
 Example 3.22. In the circuit shown in Fig. 3.46 (i), the internal  resistances of the batteries are 
0·12 Ω and 0·08 Ω. Calculate (i) current in load (ii) current supplied by each battery.
 Solution. In Fig. 3.46 (ii), the right-hand 12 V source is replaced by its internal resistance so 
that left-hand battery of 12 V is acting alone. The various branch currents due to left-hand battery of 
12 V alone [See Fig. 3.46 (ii)] are :

  Total circuit resistance = 
0.08 0.5

0.12
0.08 0.5

×+
+

 = 0·189 Ω

  Total circuit current, I1′ = 12/0·189 = 63·5 A

  Current in 0·08 Ω, I2′ = 
0.5

63.5
0.08 0.5

×
+

   = 54·74 A

  Current in 0·5 Ω,  I3′ = 
0.08

63.5
0.08 0.5

×
+

  = 8·76 A

Fig. 3.46

 In Fig. 3.46 (iii), left-hand 12 V source is replaced by its internal resistance so that now right-
hand 12 V source is acting alone.
  Total circuit resistance = 

0.12 0.5
0.08

0.12 0.5

×+
+

 

   = 0·177 Ω

  Total circuit current, I2 ′′ = 12/0·177 = 67·8 A

  Current in 0·12  Ω, I1 ′′ = 0.5
67.8

0.12 0.5
×

+
 

   = 54·6 A

  Current in 0·5  Ω, I3 ′′ = 
0.12

67.8
0.12 0.5

×
+

 = 13·12 A

 The actual current values of  I1 (current in first battery), I2 (current in second battery) and I3 (load 
current) can be found by algebraically adding the component values.
  I1 = I1 ′ − I1′′ = 63·5 − 54·6 = 8·9 A

  I2 = I2′′ − I2′ = 67·8 − 54·74 = 13·06 A

Fig. 3.46
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  I3 = I3′ + I3′′ = 8·76 + 13·12 = 21·88 A
 Example 3.23. By superposition theorem, find  the current in resistance R in Fig. 3.47 (i).
 Solution. In Fig. 3.47 (ii), battery E2 is replaced by 
a short so that battery E1 is acting alone. It is clear that 
resistances of 1Ω (= R) and 0.04Ω are in parallel across 
points A and C.
 ∴  RAC = 1Ω ||0.04Ω = 

1 0.04

1 0.04

×
+

 = 0.038 Ω

 This resistance (i.e., RAC) is in series with 0.05 Ω.

 Total resistance to battery E1 = 0.038 + 0.05 = 0.088Ω

 ∴  Current supplied by battery E1 is 

  I = 1 2.05

0.088 0.088

E =  = 23.2A

 The current I(= 23.2A) is divided between the parallel resistances of 1Ω (= R) and 0.04Ω.

 ∴  Current in 1Ω (= R) resistance is 

  I1 = 
0.04

23.2
1 0.04

×
+

 = 0.892 A from C to A

Fig. 3.47

 In Fig. 3.47 (iii), battery E1 is replaced by a short so that battery E2 is acting alone.
 Total resistance offered to battery E2

   = (1Ω || 0.05Ω) + 0.04Ω

   = 
1 0.05

0.04
1 0.05

× +
+

 = 0.088Ω

 ∴ Current supplied by battery E2 is

  I =  
2.15

0.088
 = 24.4A

 The current I(= 24.4A) is divided between two parallel resistances of 1Ω (= R) and 0.05Ω.

 ∴  Current in 1Ω (= R) resistance is

  I2 = 
0.05

24.4
1 0.05

×
+

 = 1.16A from C to A

 ∴  Current through 1Ω resistance when both batteries are present 

  = I1 + I2 = 0.892 + 1.16 = 2.052A

Fig. 3.47
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 Example 3.24. Using the superposition 
principle, find the voltage across 1k Ω  resistor in  
Fig. 3·48. Assume the sources to be ideal.
 Solution. (i) The voltage across 1kΩ  resistor 
due to current source acting alone is found by 
replacing 25-V and 15-V sources by short circuit as 
shown in Fig. 3.49 (i).  Since 3 kΩ resistor is shorted 
out, the current in 1 kΩ resistor is, by current divider 
rule,
   I1 k Ω = 

4
10

1 4
 
 + 

 = 8 mA

 ∴ Voltage V1 across 1 kΩ resistor is

   V1 = (8 mA) (1 kΩ) = +8V     −

 The  + and − symbols indicate the polarity of the voltage due to current source acting alone as 
shown in Fig. 3.49 (i).

Fig. 3.49

 (ii) The voltage across the 1 k Ω resistor due to 25 V  source acting alone is found by replacing 
the 10 mA current source by an open circuit and 15 V source by a short circuit as shown in 
Fig. 3.49 (ii). Since the 25 V source is across the series combination of the 1 kΩ and 4 k Ω 
resistors, the voltage V2 across 1 kΩ resistor can be found by the voltage divider rule. 

  ∴ V2 = 
1

25
4 1

 
 + 

 = –5V+

  Note that 3 kΩ resistor has no effect on this computation.

 (iii) The voltage V3 across 1 kΩ resistor due to 15 V source acting alone is found by replacing 
the 25 V source by a short circuit and the 10 mA current source by an open circuit as shown in  
Fig. 3.49 (iii). The short circuit prevents any current from flowing in the 1 k Ω resistor.

  ∴ V3 = 0
 (iv) Applying superposition principle, the voltage across the 1kΩ resistor due to all the three 

sources acting simultaneously [See Fig. 3.49 (iv)] is

   V1 k Ω = V1  +  V2  + V3

    = + 8 V − +   −5 V+   +   0 V

    = +3 V −

Fig. 3.48
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 Note that V1 and V2 have opposite polarities so that the sum (net) voltage is actually 
   = 8 − 5  = 3 V

Fig. 3.49

 Example 3.25. To what voltage should 
adjustable source E be set in order to produce a 
current of 0.3 A in the 400 Ω resistor shown in Fig. 
3.50 ?
 Solution. We first find the current I1 in 400 Ω 
resistor due to the 0.6 A current source alone. This 
current can be found by replacing E by a short 
circuit as shown in Fig. 3.51 (i). Applying current 
divider rule to Fig. 3.51 (i),

   I1 = 
200

0.6
200 400

 
 + 

 = 0.2 A

Fig. 3.51

 In order that current in the 400 Ω resistor is equal to 0.3 A, the current produced in the resistor 
by the voltage source acting alone must be = 0.3 − 0.2 = 0.1 A.  The current in the 400 Ω resistor due 
to voltage source alone can be calculated by open-circuiting the current source as shown in Fig 3.51 
(ii).  Referring to Fig. 3.51 (ii) and applying Ohm’s law, we have,

  I = 
200 400 600

E E=
+

 or 0.1 = 
600

E
  ∴ E = 600 × 0.1 = 60 V

Fig. 3.50
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 Example 3.26. Use superposition theorem to find current I in the circuit shown in Fig. 3.52 (i). 
All resistances are in ohms.

Fig. 3.52

 Solution. In Fig. 3.52 (ii), the 10V voltage source has been replaced by a short and the 40A 
current source by an open so that now only 120A current source is acting alone. By current-divider 
rule, I1 is given by ;
  I1 = 

50
120

50 150
×

+
 = 30 A

 In Fig. 3.52 (iii), 40A current source is acting alone; 10 V voltage source being replaced by a 
short and 120A current source by an open. By current-divider rule, I2 is given by ;

  I2 = 
150

40
50 150

×
+

 = 30A

Fig. 3.52
 In Fig. 3.52 (iv), 10V voltage source is acting alone. By Ohm’s law, I3 is given by ;

  I3 = 
10

50 150+
 = 0.05A

 Currents I1 and I2, being equal and opposite, cancel out so that :
  I = I3 = 0.05 A 
 Example 3.27. Using superposition theorem, find the current in the branch AC of the network 
ABCD shown in Fig. 3.53 (i). 
 Solution. Let the current in section AC be I as shown in Fig. 3.53 (i). We shall determine the 
value of this current by superposition theorem.
 First consider 20A load acting alone 
 Let I1 and I2 be the currents through AB and AC respectively as shown in Fig. 3.53 (ii). Then the 
current distribution will be as shown. We shall apply Kirchhoff’s voltage law to loops ADCA and 
ABCA.   
 Loop ADCA. Applying KVL, we have,

   –(20 – I1 – I2) × 0.15 + 0.1 I2 = 0

 or  0.15 I1 + 0.25 I2 = 3 ...(i)
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 Loop ABCA. Applying KVL, we have, 
   –0.1 I1 + (20 – I1) × 0.05 + 0.1 I2 = 0
 or  0.15 I1 – 0.1 I2 = 1 ...(ii)
 From equations (i) and (ii), we get, I2 = 40/7A.

Fig. 3.53
 Consider now 50 A load acting alone
 Let I1′ and I2′ be the currents through AB and AC respectively. Then the current distribution will 
be as shown in Fig. 3.54 (i).
 Loop ABCA. Applying KVL, we have,
   –0.15 I1′ + 0.1 I2′ = 0
 or  0.15 I1′ – 0.1 I2′ = 0 ...(iii)
 Loop ADCA. Applying KVL, we have,
   –(50 – I1′ – I2′) × 0.15 + 0.1 I2′ = 0
 or  0.15 I1′ + 0.25 I2′ = 7.5 ...(iv)
 From equations (iii) and (iv), we get, I2′ = 150/7A.
 Consider now 30A load acting alone
 Let the currents circulate as shown in Fig. 3.54 (ii). It is required to find I2″. 
 Loop ABCA. Applying KVL, we have,
  –0.15 I1″ + 0.1 I2″ = 0
 or 0.15 I1″ – 0.1 I2″ = 0 ...(v)

Fig. 3.54
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 Loop ADCA. Applying KVL, we have,
   –(30 – I1″ – I2″) × 0.1 + 0.05 (I1″ + I2″) + 0.1I2″ = 0

 or  0.15 I1″ + 0.25 I2″ = 3 ...(vi)
 From equations (v) and (vi), we get, I2″ = 60/7A.
 According to superposition theorem, the total current in AC is equal to the algebraic sum of the 
component values.
  I = I2 + I2′ + I2″  
    = 40/7 + 150/7 + 60/7
   = 250/7 = 35.7A
 Example 3.28. Using superposition theorem, find the current in the each branch of the network 
shown in Fig. 3.55 (i).

Fig. 3.55

 Solution. Since there are three sources of e.m.f., three circuits [Fig. 3.55 (ii), Fig. 3.56 (i) and 
(ii)] are required for analysis by superposition theorem.
 In Fig. 3.55 (ii), it is shown that only 20 V source is acting. 

   Total resistance across source = 
20 10

15
20 10

×+
+

 = 21.67Ω 

 ∴  Total circuit current, I′1 = 20/21.67 = 0.923 A
   Current in 20 Ω, I′2 = 0.923 × 10/30 = 0.307A
   Current in 10 Ω, I′3 = 0.923 × 20/30 = 0.616 A
 In Fig. 3.56 (i), only 40V source is acting in the circuit.

   Total resistance across source = 
20 15

10
20 15

×+
+

 = 18.57Ω

   Total circuit current, I3″ = 40/18.57 = 2.15A
   Current in 20 Ω, I2″  = 2.15 × 15/35 = 0.92 A
   Current in 15 Ω, I1″ = 2.15 × 20/35 = 1.23 A
 In Fig. 3.56 (ii), only 30 V source is acting in the circuit.
   Total resistance across source = 20 + 10 × 15/(10 + 15) = 26 Ω
   Total circuit current, I2′″ = 30/26 = 1.153 A
   Current in 15 Ω, I1′″  = 1.153 × 10/25 = 0.461 A
   Current in 10 Ω, I3′″ = 1.153 × 15/25 = 0.692 A
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 The actual values of currents I1, I2 and I3 shown in Fig. 3.55 (i) can be found by algebraically 
adding the component values.

 
 (i) (ii)

Fig. 3.56

  I1 = I1′ – I1″ – I1″′ = 0.923 – 1.23 – 0.461 = –0.768 A
  I2 = – I2′ – I2″ + I2″′ = –0.307 –0.92 + 1.153 = – 0.074 A
  I3 = I3′ – I3″ + I3″′ = 0.616 – 2.15 + 0.692 = – 0.842 A
 The negative signs with I1, I2 and I3 show that their actual directions are opposite to that assumed 
in Fig. 3.55 (i).
 Example 3.29. Use superposition theorem to find the voltage V in Fig. 3.57 (i).

Fig. 3.57

 Solution. In Fig. 3.57 (ii), 12 V battery is replaced by a short and 2.5A current source by an open 
so that 15V battery is acting alone. Therefore, voltage V1 across open terminals A and B is 

  V1 = Voltage across 10Ω resistor

 By voltage-divider rule, V1 is given by ;

  V1 = 
10

15
40 10

×
+

 = 3V

 In Fig. 3.57 (iii), 15 V and 12 V batteries are replaced by shorts so that 2.5A current source is 
acting alone. Therefore, voltage V2 across open terminals A and B is 

  V2 = Voltage across 10 Ω resistor

 By current-divider rule, current in 10 Ω = 
40

2.5
50

×  = 2A

 ∴ V2 = 2 × 10 = 20V
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Fig. 3.57

 In Fig. 3.57 (iv), 15 V battery is replaced by a short and 2.5 A current source by an open so that 
12V battery is acting alone. Therefore, voltage V3 across open terminals A and B is
  V3 = –*12V 
 The minus sign is given because the negative terminal of the battery is connected to point A and 
positive terminal to point B.
 ∴  Voltage across open terminals AB when all sources are present is 
  V = V1 + V2 + (–V3) = 3 + 20 – 12 = 11V
 Example 3.30. Using superposition theorem, 
find the current in 23 Ω resistor in the circuit shown 
in Fig. 3.58.
 Solution. 
 200 V source acting alone. We first consider 
the  case when 200 V voltage source is acting alone 
as shown in Fig. 3.59. Note that current source 
is replaced by an open. The total resistance RT 
presented to the voltage source is 47 Ω in series 
with the parallel combination of 27 Ω and (23 + 4) 
Ω. Therefore, the value of RT is given by ;

  RT =  47 + [27  (23 + 4)] = 
27 27

47
27 27

×+
+

 = 47 + 13.5 = 60.5 Ω

 ∴ Current supplied by 200 V source is given by ;

   IT = 
200

60.5T

V
R

=  = 3.31 A

 At the node A, IT (= 3.31 A) divides between the parallel resistors of 27 Ω and (23 + 4) Ω.

 ∴ Current through 23 Ω,  I1 = 
27

3.31
27 27

×
+

 = 1.65 A downward

  Fig. 3.59 Fig. 3.60

Fig. 3.58

* The total circuit resistance at terminals AB = 4 + (40||10) = 12Ω. The circuit behaves as a 12V battery 
having internal resistance of 12Ω with terminals A and B open.
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 20 A current source acting alone. We now consider the case when the current source is acting 
alone as shown in Fig. 3.60. Note that voltage source is replaced by a short because its internal 
resistance is assumed zero. The equivalent resistance Req to the left of the current source is

  Req = 4 + (27 || 47) = 
27 47

4
27 47

×+
+

 = 4 + 17.15 = 21.15 Ω

 At node B, 20 A divides between two parallel resistors Req and 23 Ω.  By current divider rule,

  Current in 23Ω resistor, I2  = 
21.15

20 20
23 21.15 23

eq

eq

R
R

× = ×
+ +

 = 9.58 A

 Note that I2 in 23Ω resistor is downward.

 ∴  Total current in 23 Ω = I1 + I2 = 1.65 + 9.58 = 11.23 A  

 Example 3.31. Fig. 3.61 shows the circuit with two 
independent sources and one dependent source.  Find 
the power delivered to the 3 Ω resistor.
 Solution. While applying superposition theo-
rem, two points must be noted carefully. First, we 
cannot find the power due to each independent 
source acting alone and add the results to obtain 
total power. It is because the relation for power is 
non-linear (P = I2R or V2/R). Secondly, when the 
circuit also has dependent source, only independent 
sources act one at a time while dependent sources 
remain unchanged. Let us come back to the problem. Suppose v1 is the voltage across 3 Ω resis-
tor when 12 V source is acting alone and v2 is the voltage across 3 Ω resistor when 6 A source is 
acting alone. Therefore, v = v1 + v2. 
 When 12 V source is acting alone. When 12 V source is acting alone, the circuit becomes as 
shown in Fig. 3.62. Note that 6A source is replaced by an open. Applying KVL to the loop ABCDA 
in Fig. 3.62, we have,
  12 – v1 – 2i1 – i1 × 1 = 0
 or 12 – 3i1 – 2i1 – i1 = 0 ∴ i1 = 12/6 = 2 A
 ∴ v1 = 3i1 = 3 × 2 = 6V

 
  Fig. 3.62 Fig. 3.63

 When 6A source is acting alone. When 6A source is acting alone, the circuit becomes as shown 
in Fig. 3.63. Note that 12V source is replaced by a short because internal resistance of the source is 
assumed zero. Applying KVL to the loop ABCDA in Fig. 3.63, we have,
  –3(i2 + 6) – 2i2 – i2 × 1 = 0
 or –3i2 – 18 – 2i2 – i2 = 0  ∴ i2 = –18/6 = –3 A

 ∴ v2 = 3(i2 + 6) = 3 × 3 = 9 V

Fig. 3.61
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 ∴ v = v1 + v2 = 6 + 9 = 15 V

 ∴  Power delivered to 3Ω, P = 
2 2(15)

3 3

v =  = 75 W

 Example 3.32. Using superposition principle, find the current through GC conductance in the 
circuit shown in Fig. 3.64.  Given that GA = 0. 3 S  ;  GB = 0.4 S and GC = 0.1 S.

Fig. 3.64

 Solution. 
 Current source IA acting alone. We first consider the case when current source IA is acting 
alone as shown in Fig. 3.65. Note that current source IB is replaced by an open.  

 Total conductance, GT = GA + GC + GB = 0.3 + 0·1 + 0·4 = 0·8S

  Voltage acrossGC, V′ = 4

0.8
A

T

I
G

=  = 5 V

 ∴ Current through GC, I′C = V ′GC = 5 × 0·1 = 0· 5 A

Fig. 3.65

 Current source IB acting alone. We now consider the case when current source IB acts alone 
as shown in Fig. 3.66. Note that current source IA is replaced by an open.

   Voltage across GC, V″ = 8

0.8
B

T

I
G

=  = 10 V

   Current through GC, I″C = V″GC = 10 × 0·1 = 1 A

 ∴  Total current through GC, IC = I′C + I″C = 0·5 + 1 = 1·5 A

 Fig. 3.66
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 Note. It is important to note that superposition theorem applies to currents and voltages; it does not mean 
that powers from two sources can be superimposed. It is because power varies as the square of the voltage or 
the current and this relationship is nonlinear.
 Example 3.33. Using superposition theorem, find the value of output voltage V0 in the circuit 
shown in Fig. 3.67.

Fig. 3.67

 Solution. The problem will be divided into three parts using one source at a time.

 6A source acting alone. We first consider the case when 6 A source is acting alone as shown in 
Fig. 3.68. Note that voltage source is replaced by a short and the current source of 4 A is replaced by 
an open. According to current-divider rule, current i1 through 2 Ω resistor is 

  i1 = 
1

6
1 2 3

×
+ +

 = 1A ∴ V01 = 1× 2 = 2V

  Fig. 3.68 Fig. 3.69

 4A source acting alone. We now consider the case when 4A source is acting alone as shown 
in Fig. 3.69. Note that voltage source is replaced by a short and current source of 6A is replaced by 
an open. At point A, the current 4A finds two parallel paths; one of resistance 3 Ω and the other of 
resistance = 2 + 1 = 3 Ω. Therefore, current i2 through 2 Ω resistor is
  i2 = 4/2 = 2A ∴ V02 = 2 × 2 = 4V
 6 V source acting alone. Finally, we consider the case when 6 V 
source is acting alone as shown in Fig. 3.70. Note that each current 
source is replaced by an open. The circuit current is 1A and voltage drop 
across 2 Ω resistor = 2 × 1 = 2V.
 It is clear from Fig. 3.70 that :
  VA – 2V + 6V = VB ∴ VA – VB = V03 = – 4V Fig. 3.70
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 According to superposition theorem, we have,
  V0 = V01 + V02 + V03 = 2 + 4 – 4 = 2V  
 Example 3.34. Using superposition theorem, find voltage across 4Ω resistance in Fig. 3.71 (i).

Fig. 3.71 (i)

 Solution. In Fig. 3.71 (ii), the 5A current source is replaced by an open so that 10V source is 
acting alone. Referring to Fig. 3.71 (ii), the total circuit resistance RT offered to 10V source is 

  RT = 2Ω + [4Ω || (2 + 8)Ω] = 
4 10

2
4 10

×+
+

 = 4.857Ω

 ∴  Current I supplied by 10 V source is given by ;

  I = 
10V

TR
 = 

10V

4.857Ω
 = 2.059 A

 At point A in Fig. 3.71 (ii), the current 2.059 A divides into two parallel paths consisting of 4Ω 
resistance and (8 + 2) = 10Ω resistance. 
 ∴  By  current-divider rule, current I1 in 4Ω due to 10 V alone is 

  I1 = 
10

2.059
4 10

×
+

 = 1.471 A in downward direction

Fig. 3.71

 In Fig. 3.71 (iii), the 10V battery  is replaced by a short so that 5A current source is acting alone. 
At point B in Fig. 3.71 (iii), current 5A divides into two parallel paths consisting of 2Ω resistance 
and 8Ω + (2Ω||4Ω) = 8 + (2 × 4)/(2 + 4) = 9.333Ω.
 ∴  By current-divider rule, current in 8Ω resistance is 

  I8Ω = 
2

5
2 9.333

×
+

 = 0.8824 A

 At point A in Fig. 3.71 (iii), current 0.8824A divides into two parallel paths consisting of 2Ω 
resistance and 4Ω resistance.
 ∴  By current-divider rule, current I2 in 4Ω due to 5A alone is 

  I2 = 
2

0.8824
2 4

×
+

 = 0.294 A in downward direction

 By superposition theorem, total current in 4 Ω
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   = I1 + I2 = 1.471 + 0.294 = 1.765A in downward direction
 ∴       Voltage across 4Ω = 1.765 × 4 = 7.06V
 Note. We can also find I2 in another way. Current in left-hand side 2Ω resistance will be 2I2 because  
2Ω || 4Ω. By KCL, current in 8Ω resistance is
  I8Ω = I2 + 2I2 = 3I2

  Resistance to I8Ω flow = 8Ω + (4Ω || 2Ω) = 
2 4

8
2 4

×
+

+
 = 9.333 Ω

 Now 5A divides between two parallel paths of resistances 9.333 Ω and 2 Ω.

 ∴ I8Ω = 
2

5
2 9.333

×
+

 = 0.8824 A

 or 3I2 = 0.8824  ∴ I2 = 
0.8824

3
 = 0.294 A

 Tutorial  Problems

 1.  Use the superposition theorem to find the current in R1 (= 60 Ω) in the circuit shown in Fig. 3.72.   
    [0.125 A from left to right]

 2. Use the superposition theorem to find the current through R1 (= 1k Ω) in the circuit shown in Fig 3.73.   
    [2 mA from right to left]

  Fig. 3.72 Fig. 3.73

 3. Use the superposition theorem to find the current through R1 (= 10 Ω) in the circuit shown in  
Fig.  3.74.    [4.6 A from left to right]

  Fig. 3.74 Fig. 3.75

 4. Use superposition principle to find the current through resistance R1 (= 40 kΩ) in the  
circuit shown in Fig.  3.75.     [1 mA downward]

 5. Use superposition principle to find the voltage across R1 (= 1 k Ω) in the circuit shown in  Fig.  3.76.  Be 
sure to indicate the polarity of the voltage. [− (11 V) + ]
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Fig. 3.76
 6. Using superposition principle, find the  current through 10 Ω resistor in Fig. 3.77. [ 0.5 A↓ ]

  Fig. 3.77 Fig. 3.78
 7. Using superposition principle, find the voltage across 4 kΩ resistor in Fig. 3.78. [28 V+

– ]
 8. Referring to Fig. 3.79, the internal resistance RS of the current source is 100 Ω. The internal resistance RS 

of the voltage source is 10 Ω. Use superposition principle to find the power dissipated in 50 Ω resistor.  
    [8.26 W]

 Fig. 3.79
 9. Find v using superposition principle if  

R = 2Ω in Fig. 3.80. [8 V]

 10. State whether true or false.

 (i) Superposition theorem is applicable 
to multiple source circuits.

 (ii) Superposition theorem is restricted to 
linear circuits. [(i) True (ii) True]

Fig. 3.80



150    Basic  Electrical  Engineering 

 11. Find i using superposition theorem in Fig. 3.81. [ –6 A]

Fig. 3.81

3.10.   Thevenin’s  Theorem
 Fig. 3.82 (i) shows a network enclosed in a box with two terminals A and B brought out. The 
network in the box may consist of any number of resistors and e.m.f. sources connected in any 
manner. But according to Thevenin, the entire circuit behind terminals A and B can be replaced 
by a single source of e.m.f. VTh (called Thevenin voltage) in series with a single resistance RTh 
(called Thevenin resistance) as shown in Fig. 3.82 (ii). The values of VTh and RTh are determined as 
mentioned in Thevenin’s theorem. Once Thevenin’s equivalent circuit is obtained [See Fig. 3.82 (ii)], 
then current I through any load resistance RL connected across AB is given by ;

   I = TH

TH L

V
R R+

Fig. 3.82
 Thevenin’s theorem as applied to d.c. circuits is stated below :
 Any linear, bilateral network having terminals A and B can be replaced by a single source of 
e.m.f. VTh in series with a single resistance RTh.
 (i) The e.m.f. VTh is the voltage obtained across terminals A and B with load, if any removed 
i.e. it is open-circuited voltage between terminals A and B.
 (ii) The resistance RTh is the resistance of the network measured between terminals A and B 
with load removed and sources of e.m.f. replaced by their internal resistances. Ideal voltage sources 
are replaced with short circuits and ideal current sources are replaced with open circuits.
 Note how truly remarkable the implications of this theorem are.  No matter how complex the 
circuit and no matter how many voltage and / or current sources it contains, it is equivalent to a 
single voltage source in series with a single resistance (i.e. equivalent to a single real voltage 
source). Although Thevenin equivalent circuit is not the same as its original circuit, it acts the 
same in terms of output voltage and current.
 Explanation. Consider the circuit shown in Fig. 3.83 (i). As far as the circuit behind terminals 
AB is concerned, it can be replaced by a single source of e.m.f. VTh in series with a single resistance 
RTh as shown in Fig. 3.84 (ii).



D.C.  Network  Theorems 151 

Fig. 3.83

 (i) Finding VTh. The e.m.f. VTh is the voltage across terminals AB with load (i.e. RL) removed 
as shown in Fig. 3.83 (ii).  With RL disconnected, there is no current in R2 and VTh is the voltage 
appearing across R3.
 ∴ VTh = Voltage across R3 = 3

1 3

V R
R R

×
+

 

Fig. 3.84

 (ii)  Finding RTh. To find RTh, remove the load RL and replace the battery by a short-circuit 
because its internal resistance is assumed zero. Then resistance between terminals A and B is 
equal to RTh as shown in Fig. 3.84 (i). Obviously, at the terminals AB in Fig. 3.84 (i), R1 and R3 
are in parallel and this parallel combination is in series with R2.

 ∴ RTh = 1 3
2

1 3

R RR
R R

+
+

 When load RL is connected between terminals A and B [See Fig. 3.84 (ii)], then current in RL is 
given by ;
  I = Th

Th L

V
R R+

3.11.   Procedure  for  Finding  Thevenin  Equivalent  Circuit
 (i) Open the two terminals (i.e., remove any load) between which you want to find Thevenin 

equivalent circuit. 
 (ii) Find the open-circuit voltage between the two open terminals. It is called Thevenin voltage VTh.
 (iii) Determine the resistance between the two open terminals with all ideal voltage sources 

shorted and all ideal current sources opened (a non-ideal source is replaced by its internal 
resistance). It is called Thevenin resistance RTh.

 (iv) Connect VTh and RTh in series to produce Thevenin equivalent circuit between the two 
terminals under consideration.

 (v) Place the load resistor removed in step (i) across the terminals of the Thevenin equivalent 
circuit. The load current can now be calculated using only Ohm’s law and it has the same 
value as the load current in the original circuit.

 Note. Thevenin’s theorem is sometimes called Helmholtz’s theorem.
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 Example 3.35. Using Thevenin’s theorem, find the current in 6 Ω resistor in Fig. 3·85 (i).

Fig. 3.85

 Solution. Since internal resistances of batteries are not given, it will be assumed that they are 
zero.  We shall find Thevenin’s equivalent circuit at terminals AB in Fig. 3.85 (i).
 VTh = Voltage across terminals AB with load (i.e. 6 Ω resistor) removed as shown in Fig. 3·85 (ii).
   = *4·5 − 0.167 × 4 = 3·83 V
 RTh = Resistance at terminals AB with load (i.e. 6 Ω resistor) removed and battery replaced by a 
short as shown in Fig. 3·86 (i). 
   = 

4 5

4 5

×
+

 = 2.22 Ω

Fig. 3.86

 Thevenin’s equivalent circuit at terminals AB is VTh (= 3·83 V) in series with RTh (= 2·22 Ω).  
When load (i.e. 6 Ω resistor) is connected between terminals A and B, the circuit becomes as shown 
in Fig. 3·86 (ii).
 ∴ Current in 6 Ω resistor = 

6
Th

Th

V
R +

 = 
3.83

2.22 6+
 = 0.466A

 Example 3.36. Using Thevenin’s theorem, find p.d. across terminals AB in Fig. 3·87 (i).

Fig. 3.87

 * Net e.m.f. in the circuit shown in Fig. 3·85 (ii) is 4·5 − 3 = 1·5 V and total circuit resistance is 9 Ω.
 ∴ Circuit current = 1·5/9 = 0·167 A
 The voltage across AB is equal to 4·5 V less drop in 4 Ω resistor.
 ∴ VTh = 4·5 − 0·167 × 4 = 3·83 V
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 Solution. We shall find Thevenin’s equivalent circuit at terminals AB in Fig. 3.87 (i).
 VTh = Voltage across terminals AB with load (i.e. 10 Ω resistor) removed as shown in Fig. 3.87 (ii).
  = Voltage across terminals CD
  = 9 – drop in 5 Ω resistor

  = 9* – 5 × 0·27 = 7·65 V

 RTh = Resistance at terminals AB with load (i.e. 10 Ω resistor) removed and batteries replaced 
by a short as shown in Fig. 3.88 (i).

   = 
5 6

4
5 6

×+
+

 = 6.72Ω

 Thevenin’s equivalent circuit to the left of terminals AB is VTh (= 7·65 V) in series with  
RTh (= 6·72 Ω).  When load (i.e. 10 Ω resistor) is connected between terminals A and B, the circuit 
becomes as shown in Fig. 3.88 (ii).

Fig. 3.88

 ∴ Current in 10 Ω resistor = 
7.65

10 6.72 10
Th

Th

V
R

=
+ +

 = 0.457 A

  P.D. across 10 Ω resistor  = 0·457 × 10 = 4·57 V
 Example 3.37. Using Thevenin’s theorem, find the current through resistance R connected 
between points a and b in Fig. 3.89 (i).                

Fig. 3.89

 Solution. (i) Finding VTh. Thevenin voltage VTh is the voltage across terminals ab with 

* The net e.m.f. in the loop of circuit shown in Fig. 3·87 (ii) is 9 – 6 = 3V and total resistance is 5 + 6 = 11 Ω.
 ∴ Circuit current = 3/11 = 0·27 A
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resistance R (= 10Ω) removed as shown in Fig. 3.89 (ii). It can be found by Maxwell’s mesh current  
method.

Fig. 3.89

 Mesh 1. 45 – 120 – 15I1 – 5(I1 – I2) – 10(I1 – I2) = 0

 or  30I1 – 15I2 = –75 ...(i)
 Mesh 2. – 10(I2 – I1) – 5(I2 – I1) – 5I2 + 20 = 0

 or – 15I1 + 20I2  = 20 ...(ii)
 From eqs. (i) and (ii),  I1 = – 3.2A  ;  I2 = – 1.4 A

 Now, Va – 45 – 10(I2 – I1) = Vb

 or Va – Vb = 45 + 10 (I2 – I1) = 45 + 10 [–1.4 – (–3.2)] = 63V

 ∴ VTh = Vab = Va – Vb = 63V

 (ii) Finding RTh. Thevenin resistance RTh is the resistance at terminals ab with resistance  
R (= 10Ω) removed and batteries replaced by a short as shown in Fig. 3.89 (iii). Using laws of series 
and parallel resistances, the circuit is reduced to the one shown in Fig. 3.89 (iv).
  ∴   RTh = Resistance at terminals ab in Fig 3.89 (iv).

    = 10Ω || [5Ω + (15Ω || 5Ω)] = 10Ω || (5Ω + 3.75Ω) = 
14

3
Ω

Fig. 3.89

 ∴ Current in R (= 10Ω) = Th

Th

V
R R+

 = 
63

(14 3) 10+
 = 4.295A

 Example 3.38. A Wheatstone bridge ABCD has the following details : AB = 10 Ω, BC = 30 Ω, 
CD = 15 Ω and DA = 20 Ω. A battery of e.m.f. 2 V and negligible resistance is connected between 
A and C with A positive. A galvanometer of 40 Ω resistance is connected between B and D. Using 
Thevenin’s theorem, determine the magnitude and direction of current in the galvanometer.
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Fig. 3.90

 Solution.  We shall find Thevenin’s equivalent circuit at terminals BD in Fig. 3.90 (i).
 (i)  Finding VTh. To find VTh at terminals BD, remove the load (i.e. 40 Ω galvanometer) as 
shown in Fig. 3.90 (ii).  The voltage between terminals B and D is equal to VTh.

    Current in branch ABC = 
2

10 30+
 = 0.05 A

  P.D. between A and B, VAB = 10 × 0.05 = 0.5 V

    Current in branch ADC = 
2

20 15+
 = 0.0571A

  P.D. between A and D, VAD = 0.0571 × 20 = 1.142 V
∴  P.D. between B and D, VTh = VAD − VAB = 1.142 − 0.5 = 0.642 V 
 Obviously, point B* is positive w.r.t. point D i.e. current in the galvanometer, when connected 
between B and D, will flow from B to D.
 (ii)  Finding RTh. In order to find RTh, remove the load (i.e. 40 Ω galvanometer) and replace 
the battery by a short (as its internal resistance is assumed zero) as shown in Fig. 3.91 (i).  Then 
resistance measured between terminals B and D is equal to RTh.

Fig. 3.91

* The potential at point D is 1·142 V lower than at A. Also potential of point B is 0·5 V lower than A. Hence 

point B is at higher potential than point D.
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  RTh = Resistance at terminals BD in Fig. 3.91 (i).

   = 
10 30 20 15

10 30 20 15

× ×+
+ +

 = 7.5 + 8.57 = 16.07Ω

 Thevenin’s equivalent circuit at terminals BD is VTh (= 0.642 V) in series with RTh (= 16·07 Ω).  
When galvanometer is connected between B and D, the circuit becomes as shown in Fig. 3.91 (ii).

 ∴ Galvanometer current = 
0.642

40 16.07 40
Th

Th

V
R

=
+ +

   = 11.5 × 10−3 A = 11.5 mA from B to D
 Example 3·39. Find the Thevenin equivalent circuit lying to the right of terminals x − y in   
Fig. 3.92.
 Solution.  In this example, there is no external circuitry connected to x − y terminals.

Fig. 3.92

 (i) Finding RTh. To find Thevenin equivalent resistance RTh, we open-circuit the current 
source as shown in Fig. 3.93 (i). Note that 4 kΩ, 6 kΩ and 10 kΩ resistors are then in series 
and have a total resistance of 20 kΩ. Thus RTh is the parallel combination of that 20 kΩ 
resistance and the other 20 kΩ resistor as shown in Fig. 3·93 (ii).

 Fig. 3.93

 ∴  RTh = 20 kΩ || 20 kΩ = 20 20
10k

20 20

× = Ω
+

 (ii) Finding VTh. Fig. 3.94 (i) shows the computation of Thevenin equivalent voltage VTh.  Note 
that VTh is the voltage drop across the 20 kΩ resistor.  The current from the 5 mA source 
divides between 6 kΩ resistor and the series string of  10 kΩ + 20 kΩ + 4 kΩ = 34 kΩ.  
Thus, by the current divider-rule, the current in 20 kΩ resistor is

   I20 kΩ = 
6

5
34 6

  × + 
 = 0.75 mA
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Fig. 3.94

 Voltage across 20 kΩ resistor is given by ;
  VTh  = (0.75 mA) (20 kΩ) = 15 V
 Notice that terminal y is positive with respect to terminal x. Fig. 3.94 (ii) shows the Thevenin 
equivalent circuit. The polarity of VTh is such that terminal y is positive with respect to terminal x, 
as required.
 Example 3.40. Calculate the power which would be dissipated in a 50 Ω resistor connected 
across xy in the network shown in Fig. 3.95.

Fig. 3.95

 Solution. We shall find Thevenin equivalent circuit to the left of terminals xy.  With xy terminals 
open, the current in 10 Ω resistor is given by ;

  *I = 
100

20 10 20+ +
 = 2A

 ∴  Open circuit voltage across xy is given by ;
  VTh = I × 10 = 2 × 10 = 20V

 Fig. 3.96
 In order to find RTh replace the battery by a short since its internal resistance is assumed to be 
zero [See Fig. 3.96].
  RTh = Resistance looking into the terminals xy in Fig. 3.96.
   = 20 + [(20 + 20) || 10] + 20
* It is clear that (20 + 10 + 20) Ω is in parallel with 40 Ω resistor across 100 V source.
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   = 
*40 10

20 20
40 10

×+ +
+

 = 20 + 8 + 20 = 48 Ω

 Therefore, Thevenin’s equivalent circuit behind 
terminals xy is VTh ( = 20V) in series with RTh (= 48 Ω).  
When load RL (= 50 Ω) is connected across xy, the circuit 
becomes as shown in Fig. 3.97.
 ∴   Current I in 50 Ω resistor is

   I = 20 20
A

48 50 98
Th

Th L

V
R R

= =
+ +

 ∴  Power dissipated in 50 Ω resistor is

   P = I2RL = 
2

20

98
 
  

× 50 = 2·08 W 

 Example 3.41. Calculate the current in the 50 Ω resistor in the network shown in Fig. 3.98.

Fig. 3.98

 Solution. We shall simplify the circuit shown in Fig. 3.98 by the repeated use of Thevenin’s 
theorem. We first find Thevenin’s equivalent circuit to the left of **xx.

Fig. 3.97

* Note that 40 Ω resistor is shorted and may be considered as removed in the circuit shown in Fig. 3.96.
**   

  VTh = Current in 100 Ω × 100 Ω = 
80

100
100 100

×
+

 = 40V

  RTh = Resistance looking into the open terminals in Fig. (b)

   = 100 || 100 = 
100 100

100 100

×
+

 = 50Ω
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Fig. 3.99

  VTh = 
80

100
100 100

×
+

 = 40V

  RTh = 100 || 100 = 
100 100

100 100

×
+

 = 50Ω 

 Therefore, we can replace the circuit to the left of xx in  Fig. 3.98 by its Thevenin’s equivalent 
circuit viz. VTh (= 40V) in series with RTh (= 50 Ω). The original circuit of Fig. 3.98 then reduces to 
the one shown in Fig. 3.99.

 We shall now find Thevenin’s equivalent circuit to the left of yy in Fig. 3.99.

  V′Th = 
40

50 30 80+ +
 × 80 = 20 V

  R′Th = (50 + 30) || 80 = 
80 80

80 80

×
+

 = 40 Ω

 We can again replace the circuit to the left of yy in Fig. 3.99 by its Thevenin’s equivalent circuit. 
Therefore, the original circuit reduces to that shown in Fig. 3.100.

Fig. 3.100

 Using the same procedure to the left of zz, we have, 

  V″Th = 
20

60
40 20 60

×
+ +

 = 10 V

  R″Th = (40 + 20) || 60 = 
60 60

60 60

×
+

 = 30Ω 

 The original circuit then reduces to that shown in Fig. 3.101.
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Fig. 3.101
 By Ohm’s law, current I in 50 Ω resistor is

   I = 
10

30 20 50+ +
 = 0.1 A

 Example 3.42. Calculate the current in the 10 Ω resistor in the network shown in Fig. 3·102.

Fig. 3.102

 Solution. We can replace circuits  to the left of xx and right of yy by the Thevenin’s equivalent 
circuits. It is easy to see that to the left of xx, the Thevenin’s equivalent circuit is a voltage source of 
3V (= VTh)  in series with a resistor of *1·2 Ω (= RTh). Similarly, to the right of yy, the Thevenin’s 
equivalent circuit is a voltage source of 2V ( = VTh) in series with a resistor of  **1·6 Ω (= RTh).  The 
original circuit then reduces to that shown in Fig. 3.103.

Fig. 3.103 
 ∴  Current through 10 Ω resistor is given by ;

   I = Net voltage 3 2

Total resistance 1.2 10 1.6 5

−=
+ + +

 = 56·2 ×10–3 A = 56·2 mA

*  RTh = 2 || 3 = 
2 3

2 3

×

+
 = 1.2Ω

**  RTh = 2 || 8 = 
2 8

2 8

×

+
 = 1.6Ω
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 Example 3.43. Calculate the values of VTh and RTh between terminals A and B in Fig. 3.104 (i). 
All resistances are in ohms.

Fig. 3.104

 Solution. (i) Finding VTh. Between points E and F [See Fig. 3.104 (i)], 12Ω || (4 + 8)Ω.
 ∴                                      REF  =  12Ω || (4 + 8)Ω = 12Ω || 12Ω = 6Ω
 By voltage-divider rule, we have,
  VDE = 

6
48

6 6
×

+
 = 24V  ;  VEF = 

6
48

6 6
×

+
 = 24V

 Now VEF (= 24V) is divided between 4Ω and 8Ω resistances in series.

 ∴ VEG = 
4

24
4 8

×
+

 = 8V

 In going from A to B via D, E and G, there is fall in potential from D to E, fall in potential from 
E to G and rise in potential from B to A. Therefore, by KVL,
  VBA – VDE – VEG = 0 or VBA = VDE + VEG = 24 + 8 = 32V
 ∴ VTh = VBA = 32V ; A positive  w.r.t B.
 (ii) Finding RTh. RTh is the resistance between open terminals AB with voltage source replaced 
by a short as shown in Fig. 3.104 (ii). Shorting voltage source brings points A, D and F together. 
Now combined resistance of parallel combination of 6Ω and 12Ω = 6Ω || 12Ω = 4Ω and the circuit 
reduces to the one shown in Fig. 3.104 (iii).

Fig. 3.104

 ∴ RTh = RAB in Fig. 3.104 (iii) = 8Ω || (4 + 4)Ω = 4Ω
 Example 3.44. The circuit shown in Fig. 3.105 
consists of a current source I = 10 A paralleled by G 
= 0·1S and a voltage source E = 200 V with a 10 Ω 
series resistance. Find Thevenin equivalent circuit 
to the left of terminals AB.
 Solution. With terminals A and B open-
circuited, the current source will send a current 
through conductance G as shown in Fig. 3.106. Fig. 3.105
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 ∴ Voltage across G, VG = 
10

0.1

I
G

=  = 100 V    

  Thevenin voltage, VTh = Open-circuited voltage at terminals AB in Fig. 3.106.

   = E + VG = 200 + 100 = 300 V

  Fig. 3.106 Fig. 3.107

 In order to find Thevenin resistance RTh, replace the voltage source 
by a short and current source by an open. The circuit then becomes as 
shown in Fig. 3.107.
   RTh = Resistance looking into terminals AB 

in Fig. 3.107.

    = 
1R
G

+  = 
1

10
0.1

+  = 10 + 10 = 20Ω 

 Therefore, Thevenin equivalent circuit consists of 300V voltage source in series with a 
resistance of 20 Ω as shown in Fig. 3.108. 

 Example 3.45. Using Thevenin’s theorem, find the voltage across 3Ω resistor in Fig. 3.109 (i).

Fig. 3.109

 Solution. (i) Finding VTh. Thevenin voltage VTh is the voltage at the open-circuited load 
terminals AB (i.e., when 3Ω is removed) as shown in Fig. 3.109 (ii). It can be found by superposition 
theorem. First, open circuit both 15A current sources so that 20V voltage source is acting alone as 
shown in Fig. 3.109 (iii). It is clear that :

  VAB1 = *20V

 Next, open one 15A current source and replace 20V source by a short so that the second 15A 
source is acting alone as shown in Fig. 3.109 (iv). By current-divider rule, the currents in the various 
branches will be as shown in Fig. 3.109 (iv).

* The circuit behaves as a 20V source having internal resistance of (1 + 2)Ω || 6Ω with terminals AB open.

Fig. 3.108
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Fig. 3.109

 Referring to Fig. 3.109 (iv), we have,

  VA – I1 × 2 + I2 × 1 = VB

 ∴ VA – VB = I1 × 2 – I2 × 1 = 
35 10

2 1
3 3

× − ×  = 20 V

 ∴ VAB2 = VA – VB = 20V
 Finally, open the second 15A source and replace the 20V source by a short as shown in  
Fig. 3.109 (v). By current-divider rule, the currents in the various branches will be as shown in  
Fig. 3.109 (v).
 Now, VA – I3 × 2 + I4 × 1 = VB

 ∴     VA – VB = I3 × 2 – I4 × 1 = 
5 40

2 1
3 3

× − ×  = – 10V

 ∴ VAB3 = VA – VB = – 10V
 By superposition theorem, the open-circuited voltage at terminals AB (i.e., VTh) with all sources 
present is 
  VTh = VAB1 + VAB2 + VAB3 = 20 + 20 – 10 = 30V

Fig. 3.109

 (ii) Finding RTh. Thevenin resistance RTH is the resistance at terminals AB when 3Ω is 
removed and current sources replaced by open and voltage source replaced by short as 
shown in Fig. 3.109 (vi).

  ∴ RTh = (1Ω + 2Ω) || 6Ω = 2Ω

  ∴ Current in 3Ω, I = 
3

Th

Th

V
R +

 = 
30

2 3+
 = 6A

  ∴ Voltage across 3Ω = I × 3 = 6 × 3 = 18V
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 Example 3.46. Using Thevenin’s theorem, determine the current in 1 Ω resistor across AB of the 
network shown in Fig. 3.110 (i). All resistances are in ohms.

Fig. 3.110

 Solution. The circuit shown in Fig. 3.110 (i) can be redrawn as shown in Fig. 3.110 (ii). If we 
convert the current source into equivalent voltage source, the circuit becomes as shown in Fig. 3.110 
(iii).  In order to find VTh, remove 1 Ω resistor from the terminals AB. Then voltage at terminals AB 
is equal to VTh (See Fig. 3.111 (i)).  Applying KVL to the first loop in Fig. 3.111 (i), we have,
  3 – (3 + 2) x – 1 = 0  ∴  x = 0·4 A
 ∴ VTh = VAB = 3 – 3x = 3 – 3 × 0·4 = 1·8 V 
 In order to find RTh, replace the voltage sources by short  circuits and current sources by open 
circuits in Fig. 3.110 (ii). The circuit then becomes as shown in Fig. 3.111 (ii). Then resistance at 
terminals AB is equal to RTh.
 Clearly, RTh = 2 || 3 = 

2 3

2 3

×
+

 = 1.2 Ω

 Thevenin’s equivalent circuit is 1·8 V voltage source in series with 1·2 Ω resistor. When  
1 Ω resistor is connected across the terminals AB of the Thevenin’s equivalent circuit, the circuit 
becomes as shown in Fig. 3.111 (iii).

Fig. 3.111

 ∴ Current in 1 Ω = 
1.8

1 1.2 1
Th

Th

V
R

=
+ +

 = 0·82 A

 Example 3.47. At no-load, the terminal voltage of a d.c. generator is 120 V.  When delivering 
its rated current of 40 A, its terminal voltage drops to 112 V.  Represent the generator by its Thevenin 
equivalent.
 Solution. If R is the internal resistance of the generator, then,

  E = V + IR  or  R = 
120 112

40

E V
I
− −=  = 0.2Ω

            Therefore,  VTh = No-load voltage = 120 V and RTh = R = 0·2 Ω.
 Hence Thevenin equivalent circuit of the generator is 120 V source in series with 0·2 Ω  resistor.
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 Example 3.48. Calculate VTh and RTh between the open terminals A and B of the circuit shown 
in Fig. 3.112 (i).  All resistance values are in ohms.

Fig. 3.112
 Solution. If we replace the 48 V voltage source into equivalent current source, the circuit 
becomes as shown in Fig. 3.112 (ii). The two 12 Ω resistors are in parallel and can be replaced by  
6 Ω resistor. The circuit then reduces to the one shown in Fig. 3.112 (iii). It is clear that 4 A current 
flows through  6 Ω resistor.
 ∴ VTh = Voltage across terminals AB in Fig. 3.112 (iii)
   = Voltage across 6 Ω resistor = 4 × 6 = 24 V
 Note that terminal A is negative w.r.t. B. Therefore, VTh = – 24 V.
  RTh = Resistance between terminals AB in Fig. 3.112 (i) with 48V 

source replaced by a short and 8 A source replaced by an open
   = 12 || 12 = 6 Ω
 Example 3.49. Find the voltage across RL in Fig. 3.113 when (i) RL = 1 kΩ (ii) RL = 2 kΩ  
(iii)  RL = 9 kΩ.  Use Thevenin’s 
theorem to solve the problem.
 Solution. It is required to 
find the voltage across RL when 
RL has three different values. We 
shall find Thevenin’s equivalent 
circuit to the left of the terminals 
AB. The solution involves two 
steps.
 The first step is to find the 
open-circuited voltage VTh at 
terminals AB. For this purpose, we shall use the superposition principle. With the current source 
removed (opened), we find voltage V1 due to the 45 V source acting alone as shown in Fig. 3.114 (i). 
Since V1 is the voltage across the 3 kΩ resistor, we have by voltage-divider rule :

  V1 = 
3 k

45
1.5k 3 k

Ω×
Ω + Ω

 = 30V+
–

Fig. 3.114

Fig. 3.113
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 The voltage V2 due to the current source acting alone is found by shorting 45 V voltage source 
as shown in Fig. 3.114 (ii). By current-divider rule,

  Current in 3 kΩ resistor = 
1.5 k

12
1.5 k 3 k

Ω×
Ω + Ω

 = 4 mA

 ∴ V2 = 4 mA × 3 kΩ = 12 V+
–

  Note that V1  and V2 have opposite polarities.

 ∴ Thevenin’s voltage, VTh = V1 – V2 = 30 – 12 = 18 V–
+

 The second step is to find Thevenin’s resistance RTh.  For this purpose, we replace the 45 V 
voltage source by a short circuit and the 12 mA current source by an open circuit as shown in  
Fig. 3.115. As can be seen in the figure, RTh is equal to parallel equivalent resistance of 1·5 kΩ and 
3 kΩ resistors.
 ∴ RTh = 1·5 kΩ || 3 kΩ = 1 kΩ

 Fig. 3.116 shows Thevenin’s equivalent circuit.

  Voltage across RL,   VL = 18
1 k

L

L

R
R

×
Ω +

  Fig. 3.115 Fig. 3.116

 (i) When RL = 1 kΩ ; VL = 
1k

18
1k 1k

Ω×
Ω + Ω

 = 9 V

 (ii) When RL = 2 kΩ ; VL = 
2k

18
1k 2k

Ω×
Ω + Ω

 = 12 V

 (iii) When RL = 9 kΩ ; VL = 
9k

18
1k 9k

Ω×
Ω + Ω

 = 16·2 V

 Example 3.50. Find Thevenin’s equivalent circuit to the left of terminals AB in Fig. 3.117.

Fig. 3.117
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 Solution. To find VTh, remove RL from terminals AB.  The circuit then becomes as shown in Fig. 
3.118 (i).
 ∴ VTh = Voltage across terminals AB in Fig. 3.118 (i)

   = Voltage across 3 Ω resistor in Fig. 3.118 (i)

Fig. 3.118
 Note that voltage at point C is VTh and voltage at point D is VTh – 6.  Therefore, nodal equation 
becomes :
  

6

6 3
Th ThV V− +  = 2  or  VTh = 6 V

 In order to find RTh, remove RL and replace voltage source by a short and current source by an 
open in Fig. 3.117. The circuit then becomes as shown in Fig. 3.118 (ii).
 ∴ RTh = Resistance looking into terminals AB in Fig. 3.118 (ii).

   = 2 + (3 | | 6) = 
3 6

2
3 6

×+
+

= 4 Ω

 Therefore, Thevenin equivalent circuit to the left of terminals 
AB is a voltage source of 6 V (= VTh) in series with a resistor of  
4 Ω  (= RTh). When load RL is connected across the output terminals 
of Thevenin equivalent circuit, the circuit becomes as shown in 
Fig. 3.119. We can use Ohm’s law to find current in the load RL.

 ∴ Current in RL, I = 
6

4
Th

Th L L

V
R R R

=
+ +

 Example 3.51. Find Thevenin’s equivalent circuit in Fig. 3.120 when we view from (i) between 
points A and C (ii) between points B and C.

Fig. 3.120

 Solution. The Thevenin equivalent for any circuit depends on the location of the two points from 
between which circuit is “viewed”. Any given circuit can have more than one Thevenin equivalent, 
depending on how the viewpoints are designated.  For example, if we view the circuit in Fig. 3.120 

Fig. 3.119
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from between points A and C, we obtain a completely different result than if we view it from between 
points A and B or from between points B and C.
 (i) Viewpoint AC. When the circuit is viewed  from between points A and C,
   VTh = Voltage between open-circuited points A and C in Fig. 3.121 (i).
    = Voltage across (R2 + R3) in Fig. 3.121 (i)

Fig. 3.121

   = 2 3
1 2 3

( )SV R R
R R R

× +
+ +

 = 2 3

1 2 3
S

R R V
R R R

+ 
 + + 

 In order to find RTh, replace the voltage source by a short. Then resistance looking into the 
open-circuited terminals A and C [See Fig. 3.121 (ii)] is equal to RTh.

 ∴ RTh = R1 || (R2 + R3) = 1 2 3

1 2 3

( )R R R
R R R

+
+ +

 The resulting Thevenin equivalent circuit is shown in Fig. 3.121 (iii).
 (ii) Viewpoint BC. When the circuit is viewed from between points B and C,
   VTh = Voltage between open-circuited points B and C in Fig.3.122 (i).
    = Voltage across R3

    = 3
3

1 2 3 1 2 3

S
S

V RR V
R R R R R R

 × =  + + + + 

Fig. 3.122
 In order to find RTh, replace the voltage source by a short. Then resistance looking into the 
open-circuited terminals B and C [See Fig. 3.122 (ii)] is equal to RTh.

 ∴ RTh = (R1 + R2) || R3 = 3 1 2

1 2 3

( )R R R
R R R

+
+ +

 The resulting Thevenin equivalent circuit is shown in Fig. 3.122 (iii).
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 Example 3.52. Calculate (i) VTh and (ii) RTh between the open terminals A and B in the circuit 
shown in Fig. 3.123 (i). All resistance values are in ohms.

Fig. 3.123
 Solution. Since terminals A and B are open, it is clear from the circuit that 10V and 20V voltage 
sources are ineffective in producing current in the circuit. However, current sources will circulate 
currents in their respective loops. Therefore, 2A current circulating in its loop will produce a voltage 
drop across 10 Ω resistance = 2A × 10 Ω = 20 V. Similarly, 3A current will produce a voltage drop 
across 8 Ω resistance = 3A × 8Ω = 24V. Tracing the circuit from A to B via points C and D [See Fig. 
3.123 (i)], we have,
  VA – 24 – 20 + 20 = VB

 or VA – VB = 24 + 20 – 20 = 24V
 ∴ VTh = VAB = VA – VB = 24V
 In order to find RTh, open circuit the current sources and replace the voltage sources by a short 
as shown in Fig. 3.123 (ii). The resistance at the open-circuited terminals AB is RTh.
 ∴ RTh = Resistance at terminals AB in Fig. 3.123 (ii)
   = 8Ω + 10Ω + 2Ω = 20Ω
 Example 3.53. Find the current in the 25 Ω resistor in Fig. 3.124 (i) when E = 3 V.

Fig. 3.124

 Solution. Finding VTh. Remove the voltage 
source E and the 25 Ω resistor, leaving the terminals 
x – y open-circuited as shown in Fig. 3.124 (ii). The 
circuit shown in Fig. 3.124 (ii) can be redrawn as 
shown in Fig. 3.125. The voltage between terminals 
xy in Fig. 3.125 is equal to VTh. We can use voltage-
divider rule to find voltage drops across 60 Ω and 
45 Ω resistors.

Fig. 3.125
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  Voltage across 60 Ω = 
60

18
60 30

×
+

 = 12V

  Voltage across 45 Ω = 
45

18
90 45

×
+

 = 6V

 Applying KVL around the loop shown in Fig. 3.125, we have,
  12 – Vxy – 6 = 0    ∴  Vxy = 6 V

  But Vxy = VTh.  Therefore,   VTh = 6 V.
 Finding RTh. In order to find RTh, replace the voltage source by a short.  Then resistance at 
open-circuited terminals xy (See Fig. 3.126) is equal to RTh. Note that in Fig. 3.126, 30 Ω and 60 Ω  
resistors are in parallel and so are 90 Ω and 45 Ω resistors.

Fig. 3.126
 The circuit shown in Fig. 3.126 can be redrawn as shown in Fig. 3.127 (i). This further reduces 
to the circuit shown in Fig. 3.127 (ii).
 ∴ RTh = 20 + 30 = 50 Ω

Fig. 3.127
 Therefore, the Thevenin equivalent circuit is a voltage 
source of 6 V in series with 50 Ω resistor. When we reconnect 
E and 25 Ω resistor, the circuit becomes as shown in Fig. 3.128. 
Note that VTh

 and E are in series opposition.

 ∴ Current in 25 Ω, I = 
6 3

25 50 25
Th

Th

V E
R

− −=
+ +

   =  40 × 10–3 A = 40 mA
 Example 3.54. Find the current in the feeder AC of the distribution circuit shown in  
Fig. 3.129 (i) by using Thevenin’s theorem. Also determine the currents in other branches.
 Solution. To determine current in the feeder AC, we shall find Thevenin voltage VTh and 
Thevenin resistance RTh at terminals AC.
 (i) With AC removed, the voltage between A and C will be equal to VTh as shown in Fig. 3.129 

(ii).  Assuming that current I flows in AB, then current distribution in the network will be 
as shown in Fig. 3.129 (ii).

Fig. 3.128
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   Voltage drop along ADC = Voltage drop across ABC
        or  0·05 (100 – I) + 0·05 (80 – I) = 0.1 I + 0·1 (I – 30)
 or  0·3 I = 12 ∴ I = 12/0·3 = 40 A
 ∴  P.D. between A and C, VTh = Voltage drop from A to C
    = 0·05 (100 – 40) + 0·05 (80 – 40) = 5 V

Fig. 3.129

 (ii) With AC removed, the resistance between terminals A and C is equal to RTh.  Referring 
to Fig. 3.129 (ii), there are two parallel paths viz ADC (= 0·05 + 0·05 = 0·1 Ω) and  
ABC (= 0·1 + 0·1 = 0·2 Ω) between terminals A and C.

  ∴ RTh = 
0.2 0.1

0.2 0.1

×
+

 = 0·067 Ω

Fig. 3.130

 The Thevenin equivalent circuit at terminals AC will be VTh (= 5 V) in series with RTh  
(= 0·067  Ω).  When feeder AC (= 0·1 Ω) is connected between A and C, the circuit becomes as 
shown in Fig. 3.130 (i).

 ∴ Current in AC = 
5

0.1 0.067 0.1
Th

Th

V
R

=
+ +

 = 30 A
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 To find currents in other branches, refer to Fig. 3.130 (ii). 
With current in AC calculated (i.e. 30A) and current in  AB 
assumed to be I, the current distribution will be as shown in 
Fig. 3.130 (ii). It is clear that voltage drop along the path ADC 
is equal to the voltage drop along the path ABC i.e.

  0·05 (70 – I) + 0·05 (50 – I ) = 0·1 I + 0·1 (I – 30)
 or 0·3 I = 9
 ∴ I = 9/0·3 = 30 A
 The current distribution in the various branches will be as 
shown in Fig. 3.131. Note that branch BC of the circuit carries 
no current.
 Example 3.55. Using Thevenin’s theorem, calculate current in 1000Ω resistor connected 
between terminals A and B in Fig. 3.132 (i).

Fig. 3.132

 Solution. (i) Finding VTh. Thevenin voltage VTh is the voltage across open circuited terminals 
AB in Fig. 3.132 (i). Refer to Fig.  3.132 (i).
 By voltage-divider rule, we have,

  VBD = 
880

5
1000 880

×
+

 = 2.340426V

    Current in branch CAD is I = 
5 0.05

100 85

−
+

 = 0.026757A

 Now,  VA – 0.05 – 0.026757 × 85 = VD

 ∴ VAD = VA – VD = 0.05 + 0.026757 × 85 = 2.324324 V
 Clearly, point B is at higher potential than point A.
 ∴ VTh = VBA = 2.340426 – 2.324324 = 0.0161V
 (ii) Finding RTh. Thevenin resistance RTh is the resistance at open circuited terminals AB with 
5V battery replaced by a short as shown in Fig. 3.132 (ii).

 ∴ RTh = (100Ω || 85Ω) + (1000Ω || 880Ω)

   = 
100 85 1000 880

100 85 1000 880

× ×+
+ +

 = 514Ω

 ∴  Current in 1000Ω connected between terminals A and B

   = 
0.0161

1000 514 1000
Th

Th

V
R

=
+ +

 = 10.634 × 10–6 A

   = 10.634 µA from B to A

Fig. 3.131
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 Example 3.56. Calculate the values of VTh and RTh between the open terminals A and B of the 
circuit shown in Fig. 3.133 (i). All resistance values are in ohms.

Fig. 3.133

 Solution. If we eliminate the ground symbols in the circuit shown in Fig. 3.133 (i), we get the 
circuit shown in Fig. 3.133 (ii). Referring to Fig. 3.133 (ii),
 Total resistance offered to 24V battery
   = 3Ω + (6Ω || 6Ω) = 3Ω + 3Ω = 6Ω
 Current delivered by 24V battery = 24/6 = 4A

 The distribution of currents in the various branches of the circuit is shown in Fig. 3.133 (iii).

Fig. 3.133
 Referring to Fig. 3.133 (iii) and tracing the circuit from point A to point B via points C and D, 
we have,
  VA – 3 × 4 – 2 × 6 + 4 × 2 = VB  ∴ VA – VB = 3 × 4 + 2 × 6 – 4 × 2 = 16V
 ∴ VTh = VAB = VA – VB = 16V
 In order to find RTh, we replace the 24V source by a short and the circuit becomes as shown in 
Fig. 3.133 (iv). This circuit further reduces to the one shown in Fig. 3.133 (v).
 ∴ RTh = RAB = [(3Ω || 6Ω) + 2Ω] || 4Ω = [2Ω + 2Ω] || 4Ω = 2Ω
 Example 3.57.  Using Thevenin theorem, find current in 1 Ω resistor in the circuit shown in  
Fig. 3.134 (i).

Fig. 3.134
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 Solution. In order to find VTh, remove the load as shown in Fig. 3.134 (ii). Then voltage 
between the open-circuited terminals A and B is equal to VTh.  It is clear from Fig. 3.134 (ii) that 4 A  
(= 3 + 1) flows from D to C.  Applying KVL to the loop ECABFE, we have,
  4 + 2 × 4 – VAB = 0   ∴  VAB = VTh = 12 V

  RTh = Resistance looking into terminals AB in Fig. 3.134 (iii) = 2 Ω

Fig. 3.134

 When load (i.e. 1 Ω resistor) is reconnected, circuit becomes as shown in Fig. 3.134 (iv).

 ∴ Current in 1 Ω = 
12

2 1+
 = 4 A

3.12.   Thevenin  Equivalent  Circuit
 (Circuits containing both independent and dependent sources)
 Sometimes we come across circuits which contain both independent and dependent sources. 
One such example is shown in Fig. 3.135. The procedure for finding Thevenin equivalent circuit (i.e. 
finding vTh and RTh) in such cases is as under :

Fig. 3.135

 (i) The open-circuit voltage voc (= vTh) at terminals ab is determined as usual with sources 
present.

 (ii) We cannot find RTh at terminals ab simply by calculating equivalent resistance because of 
the presence of the dependent source. Instead, we place a short circuit across the terminals 
ab and find the value of short-circuit current isc at terminals ab.

 (iii) Therefore, Thevenin resistance *RTh = voc/isc(= vTh/isc). It is the same procedure as adopted 
for Norton’s theorem.

 Note. In case the circuit contains dependent sources only, the procedure of finding voc(= vTh) and RTh is as 
under :
 (a) In this case, voc = 0 and isc = 0 because no independent source is present.
 (b) We cannot use the relation RTh = voc/isc as we do in case the circuit contains both independent and 

dependent sources.

* Alternatively, we can find RTh in another way. We excite the circuit at terminals ab from external 1A current 
source and measure vab. Then RTh = vab/1Ω.
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 (c) In order to find RTh, we excite the circuit at terminals ab by connecting 1A source to the terminals a 
and b and calculate the value vab. Then RTh = vab/1Ω.

 Example 3.58. Find the values of vTh and RTh at 
terminals ab for the circuit shown in Fig. 3.136 (i).
 Solution. We first put a short circuit across 
terminals a and b and find short-circuit current isc at 
terminals ab as shown in Fig. 3.136 (ii). Applying 
KCL at node C,
  10 = i1 + i2 + isc
 or i2 = 10 – i1 – isc
 Applying KVL to loops 1 and 2, we have,
  – 4i2 + 6i1 – 2i1 = 0 ... Loop 1
 or – 4(10 – i1 – isc) + 4i1 = 0 ...(i)
 Also – 6i1 + 3isc = 0 ...(ii) ... Loop 2
 From eqs. (i) and (ii), isc = 5A.

Fig. 3.136

 In order to find voc (= vTh), we refer to Fig. 3.136 (iii) where we have,
  voc = 6i1 ...(iii)
 Applying KVL to the central loop in Fig. 3.136 (iii),
  – 4(10 – i1) + 6i1 – 2i1 = 0 ...(iv)
 From eqs. (iii) and (iv), we have, voc = vTh = 30V

 Also RTh = oc

sc

v
i

 = 
30

5
 = 6Ω

 Example 3.59. Find Thevenin equivalent circuit for the network shown in Fig. 3.137 (i) which 
contains only a dependent source.

Fig. 3.137

 Solution. In order to find RTh, we connect 1A current source to terminals a and b as shown in 
Fig. 3.137 (ii). Then by finding the value of vab, we can determine the value of RTh = vab/1Ω. It may 
be seen that potential at point A is the same as that at a.
 ∴ vab = Voltage across 12Ω resistor
 Applying KCL to point A, we have, 

Fig. 3.136
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2

1
6

abi v−
+  = 

12
abv

 or 4i – 3vab = –12 or 4 3
12
ab

ab
v

v  −    = –2  ∴ vab = 4.5V

 ∴ RTh = 4.5/1 = 4.5Ω
 Fig. 3.137 (iii) shows the Thevenin equivalent circuit.
 Example 3.60. Find Thevenin equivalent circuit at terminals ab for the circuit shown in Fig. 
3.138.

Fig. 3.138

 Solution. The current ix is zero because there is no return path for ix. The Thevenin voltage vTh 
will be the voltage across 25Ω resistor.

 With ix = 0,  vTh = v = vab = (–20i) (25) = –500i

 The current i is, i = 
5 3

2 1000

v−
×

 = 
5 3

2000
Thv−

                   ( v =  vTh)

 ∴ vTh = 
5 3

500
2000

Thv− −   
 or vTh = – 5V

 In order to find Thevenin resistance RTh, we find the short-circuit current isc at terminals ab. 
Then,
  RTh = Th

sc

v
i

Fig. 3.139

 To find isc, we short circuit the terminals ab as shown in Fig. 3.139 (i). It is clear that all the 
current from the dependent current source will pass through the short circuit ( 25Ω resistor is 
shunted by the short circuit).
 ∴ isc = – 20i
 Now, i = 

5

2000
 = 2.5 mA so that isc = – 20 × 2.5 = – 50 mA

 ∴ RTh = Th

sc

v
i

 = 3

5

50 10−

−
− ×

 = 100 Ω

 Fig. 3.139 (ii) shows the Thevenin equivalent circuit at terminals ab.
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Tutorial  Problems
 1. Using Thevenin’s theorem, find the current in 10 Ω resistor in the circuit shown in Fig. 3.140. [0.481 A]

  Fig. 3.140 Fig. 3.141
 2. Using Thevenin’s theorem, find current in the ammeter shown in Fig. 3.141. [1 A]
 3. Using Thevenin’s theorem, find p.d. across branch AB of the network shown in Fig. 3.142. [4.16 V]

  Fig. 3.142 Fig. 3.143
 4. Determine Thevenin’s equivalent circuit to the left of AB in Fig. 3.143. 
      [A 6 V source in series with 3 Ω]
 5. A Wheatstone bridge ABCD is arranged as follows : AB = 100 Ω, BC = 99 Ω, CD = 1000 Ω and   

DA = 1000 Ω.  A battery of e.m.f. 10 V and negligible resistance is connected between A and C with A 
positive. A galvanometer of resistance 100 Ω is connected between B and D. Using Thevenin’s theorem, 
determine the galvanometer current. [38.6 µA]

 6. Find the Thevenin equivalent circuit of the circuitry, excluding R1, connected to the terminals x – y in 
Fig. 3.144.    [10 V in series with 9Ω ; x positive w.r.t. y]

  Fig. 3.144 Fig. 3.145
 7. Find the voltage across R1 in Fig. 3.145 by constructing Thevenin equivalent circuit at the R1 terminals. 

Be sure to indicate the polarity of the voltage. [– (9.33V)  + ]
 8. By using Thevenin Theorem, find current I in the circuit shown in Fig. 3.146. [2·5 A]

  Fig. 3.146 Fig. 3.147
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 9. Find Thevenin equivalent circuit in Fig. 3.147. [VTh = 130 V;  RTh = 22 Ω]
 10. Find the Thevenin equivalent circuit of the circuitry, excluding R1, connected to terminals x – y in  

Fig. 3.148.    [VTh = 23·1 V;  RTh = 69 kΩ]

Fig. 3.148

 11. Using Thevenin’s theorem, find the magnitude and direction of current in 2Ω resistor in the circuit shown 
in Fig. 3.149.    [0.25A from D to B]

  Fig. 3.149 Fig. 3.150

 12. Using Thevenin’s theorem, find the current flowing and power dissipated in the 7Ω resistance branch in 
the circuit shown in Fig. 3.150.   [1.43A; 14.3W]

 13. Find Thevenin’s equivalent circuit at terminals BC of Fig. 3.151. Hence determine current through the 
resistor R = 1Ω.    [VTh = 76/7 V; RTh = 32/7Ω ; 76/39A]

  Fig. 3.151 3.152

 14. Find the Thevenin equivalent circuit of the network shown in Fig. 3.152. All resistances are in ohms.
      [vTh = 4V; RTh = 8Ω]
 15. Replace the circuit (See Fig. 3.153) to the left of terminals a – b by its Thevenin equivalent and use the 

result to find v.    [vTh = 12V ; RTh = 8Ω ; v = 4V]

  Fig. 3.153 Fig. 3.154

 16. Find the Thevenin equivalent circuit for the network shown in Fig. 3.154. All resistances are in ohms.
      [vTh = 0V; RTh =  2/5Ω]
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3.13.   Advantages  of  Thevenin’s  Theorem
  The Thevenin equivalent circuit is always an equivalent voltage source (VTh) in series with an 
equivalent resistance (RTh) regardless of the original circuit that it replaces.  Although the Thevenin 
equivalent is not the same as its original circuit, it acts the same in terms of output voltage and 
current.  It is worthwhile to give the advantages of Thevenin’s theorem.
 (i) It reduces a complex circuit to a simple circuit viz. a single source of e.m.f. VTh in series 

with a single resistance RTh.
 (ii) It greatly simplifies the portion of the circuit of lesser interest and enables us to view the 

action of the output part directly.
 (iii) This theorem is particularly useful to find current in a particular branch of a network as the 

resistance of that branch is varied while all other resistances and sources remain constant.
 (iv) Thevenin’s theorem can be applied in successive steps.  Any two points in a circuit can be 

chosen and all the components to one side of these points can be reduced to Thevenin’s 
equivalent circuit.

3.14.   Norton’s  Theorem
 Fig. 3.155 (i) shows  a network enclosed in a box with two terminals A and B brought out. 
The network in the box may contain any number of resistors and e.m.f. sources connected in 
any manner. But according to Norton, the entire circuit behind AB can be replaced by a current 
source IN in parallel with a resistance RN as shown in Fig. 3.155 (ii). The resistance RN is the same 
as Thevenin resistance RTh. The value of IN is determined as mentioned in Norton’s theorem. Once 
Norton’s equivalent circuit is determined [See Fig. 3.155 (ii)], then current in any load RL connected 
across AB can be readily obtained.

Fig. 3.155

 Hence Norton’s theorem as applied to d.c. circuits may be stated as under :
 Any linear, bilateral network having two terminals A and B can be replaced by a current source 
of current output IN in parallel with a resistance RN.
 (i) The output IN of the current source is equal to the current that would flow through AB 

when A and B are short-circuited.
 (ii) The resistance RN is the resistance of the network measured between A and B with load 

removed and the sources of e.m.f. replaced by their internal resistances.  Ideal voltage 
sources are replaced with short circuits and ideal current sources are replaced with open 
circuits.

 Norton’s Theorem is converse of Thevenin’s theorem in that Norton equivalent circuit uses a 
current generator instead of voltage generator and the resistance RN (which is the same as RTh) in 
parallel with the generator instead of being in series with it. Thus the use of either of these theorems 
enables us to replace the entire circuit seen at a pair of terminals by an equivalent circuit made up 
of a single source and a single resistor.
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 Illustration. Fig. 3.156 illustrates the application of Norton’s theorem.  As far as the circuit 
behind terminals AB is concerned [See Fig.  3.156 (i)], it can be replaced by a current source IN in 
parallel with a resistance RN as shown in Fig. 3.156 (iv).  The output IN of the current generator is 
equal to the current that would flow through AB when terminals A and B are short-circuited as shown 
in Fig. 3.156 (ii). The load on the source when terminals AB are short-circuited is given by ;

  R ′ = 2 3 1 2 1 3 2 3
1

2 3 2 3

R R R R R R R RR
R R R R

+ ++ =
+ +

  Source current, I′ = 2 3

1 2 1 3 2 3

( )V R RV
R R R R R R R

+=
′ + +

  Short-circuit current, IN = Current in R2 in Fig. 3.156 (ii)

   = 3 3

2 3 1 2 1 3 2 3

R VRI
R R R R R R R R

′ × =
+ + +

 To find RN, remove the load RL and replace battery by a short because its internal resistance is 
assumed zero [See Fig. 3.156 (iii)].

Fig. 3.156

 ∴ RN = Resistance at terminals AB in Fig. 3.156 (iii).

   = 1 3
2

1 3

R RR
R R

+
+

 Thus the values of IN and RN are known. The Norton equivalent circuit will be as shown in Fig. 
3.156 (iv).

3.15.   Procedure  for  Finding  Norton  Equivalent  Circuit
 (i) Open the two terminals (i.e. remove any load) between which we want to find Norton 

equivalent circuit.
 (ii) Put a short-circuit across the terminals under consideration.  Find the short-circuit current 

flowing in the short circuit.  It is called Norton current IN.
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 (iii) Determine the resistance between the two open terminals with all ideal voltage sources 
shorted and all ideal current sources opened (a non-ideal source is replaced by its internal 
resistance).  It is called Norton’s resistance RN.  It is easy to see that RN = RTh.

 (iv) Connect IN and RN in parallel to produce Norton equivalent circuit between the two 
terminals under consideration.

 (v) Place the load resistor removed in step (i) across the terminals of the Norton equivalent  
circuit.  The load current can now be calculated by using current-divider rule.  This load 
current will be the same as the load current in the original circuit.

 Example 3.61. Show that when Thevenin’s equivalent circuit of a network is converted into 
Norton’s equivalent circuit, IN = VTh/RTh and RN = RTh. Here VTh and RTh are Thevenin voltage and 
Thevenin resistance respectively.
 Solution. Fig. 3.157 (i) shows a network enclosed in a box with two terminals A and B brought 
out. Thevenin’s equivalent circuit of this network will be as shown in Fig. 3.157 (ii). To find Norton’s 
equivalent circuit, we are to find IN and RN. Referring to Fig. 3.157 (ii),
  IN = Current flowing through short-circuited AB in Fig. 3.157 (ii)  
   = VTh/RTh

  RN = Resistance at terminals AB in Fig. 3.157 (ii)
   = RTh

 Fig. 3.157 (iii) shows Norton’s equivalent circuit. Hence we arrive at the following two important 
conclusions :
 (i) To convert Thevenin’s equivalent circuit into Norton’s equivalent circuit,
   IN = VTh/RTh  ;  RN = RTh

Fig. 3.157

 (ii) To convert Norton’s equivalent circuit into Thevenin’s equivalent circuit,
   VTh = INRN  ;  RTh = RN

 Example 3.62. Find the Norton equivalent circuit at terminals x − y in Fig. 3.158.
 Solution.  We shall first find the Thevenin 
equivalent circuit and then convert it to an equivalent 
current source. This will then be Norton equivalent 
circuit.
 Finding Thevenin equivalent circuit. To find 
VTh, refer to Fig. 3.159 (i). Since 30 V and 18 V sources 
are in opposition, the circuit current I is given by ;

   I = 
30 18 12

20 10 30

− =
+

 = 0.4 A

 Applying Kirchhoff’s voltage law to loop ABCDA, we have,
  30 − 20 × 0.4 − VTh = 0  ∴ VTh = 30 − 8 = 22 V

Fig. 3.158
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Fig. 3.159

 To find RTh, we short both voltage sources as shown in Fig. 3.159 (ii). Notice that 10 Ω and  
20 Ω resistors are then in parallel.

 ∴ RTh = 10 Ω || 20 Ω = 
10 20

10 20

×
+

 = 6.67 Ω

 Therefore, Thevenin equivalent circuit will be as shown in Fig. 3.160 (i). Now it is quite easy 
to convert it into equivalent current source.

  IN = 
22

6.67
Th

Th

V
R

=  = 3.3A [See Fig. 3.160 (ii)]

  RN = RTh  =  6.67 Ω

Fig. 3.160

 Fig. 3.160 (iii) shows Norton equivalent circuit. Observe that the Norton equivalent resistance 
has the same value as the Thevenin equivalent resistance. Therefore, RN is found exactly the same 
way as RTh.
 Example 3.63. Using Norton’s theorem, calculate the current in the 5 Ω resistor in the circuit 
shown in Fig. 3.161.
 Solution. Short the branch that 
contains 5 Ω resistor in Fig. 3.161. The 
circuit then becomes as shown in Fig. 
3.162 (i). Referring to Fig. 3.162 (i), the 
6 Ω and 4 Ω resistors are in series and 
this series combination is in parallel with 
the short. Therefore, these resistors have 
no effect on Norton current and may be considered as removed from the circuit. As a result, 10 A 
divides between parallel resistors of 8 Ω and 2 Ω.

 ∴ Norton current,   IN = Current in 2 Ω resistor

   = 
8

10
8 2

×
+

 = 8 A ... Current-divider rule

Fig. 3.161
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Fig. 3.162

 In order to find Norton resistance RN (= RTh), open circuit the branch containing the 5 Ω resistor 
and replace the current source by an open in Fig. 3.161. The circuit then becomes as shown in Fig. 
3.162 (ii).
  Norton resistance, RN = Resistance at terminals AB in Fig. 3.162 (ii).

   = (2 + 8) || (4 + 6) = 10 || 10 = 
10 10

10 10

×
+

 = 5 Ω

 Therefore, Norton equivalent circuit consists of a current source of 8 A (= IN) in parallel with 
a resistance of 5 Ω (= RN) as shown in Fig. 3.163 (i). When the branch containing 5 Ω resistor is 
connected across the output terminals of Norton’s equivalent circuit, the circuit becomes as shown 
in Fig. 3.163 (ii).

Fig. 3.163

 By current-divider rule, the current I in 5 Ω resistor is

  I = 
5

8
5 5

×
+

 =  4 A

 Example 3.64. Find Norton equivalent circuit for Fig. 3.164 (i). Also solve for load current and 
load voltage.

Fig. 3.164

 Solution. Short the branch that contains RL (= 10 Ω) in Fig. 3.164 (i). The circuit then becomes 
as shown in Fig. 3.164 (ii). The resistor that is in parallel with the battery has no effect on the Norton 
current (IN). The resistor in parallel with the short also has no effect. Therefore, these resistors may 
be considered as removed from the circuit shown in Fig. 3.164 (ii). The circuit then contains two  
10 Ω resistors in series.
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 ∴ Norton current,  IN = 
12

10 10+
 = 0 ·6 A

Fig. 3.165

 In order to find Norton resistance RN (= RTh), open circuit the branch containing RL and replace 
the voltage source by a short ( internal resistance of the voltage source is assumed zero) in  
Fig. 3.164 (i). The circuit then becomes as shown in Fig. 3.165 (i).
  Norton resistance, *RN = Resistance at terminals AB in Fig. 3.165 (i)

   = (10 + 10) || 10 = 
20 10

20 10

×
+

 = 6·67 Ω

 Therefore, Norton equivalent circuit consists of a current source of 0·6 A (= IN) in parallel 
with a resistance of 6·67 Ω (=RN). When the branch containing RL (= 10 Ω) is connected across the 
output terminals of Norton equivalent circuit, the circuit becomes as shown in Fig. 3.165 (ii).
 By current-divider rule, the current I in RL is

  I = 
6.67

0.6
6.67 10

×
+

 = 0·24 A

  Voltage across RL = I RL = 0·24 × 10 = 2·4 V
 Example 3.65. Find the Norton current for the unbalanced Wheatstone bridge shown in   
Fig. 3.166.

Fig. 3.166

 Solution. The Norton current is found by shorting the load terminals as shown in Fig. 3.167 (i). 
This situation is more complicated than finding the Thevenin voltage.  Here is an easy way to find 
IN in the circuit of Fig. 3.167 (i). First determine the total current and then use Ohm’s law to find 
current in the four resistors. Once the currents in the four resistors are known, Kirchhoff’s current 
law can be used to determine Norton current IN.

* The resistor 10 Ω that is in parallel with short is ineffective and may be considered as removed from the 
circuit of Fig. 3.165 (i). Therefore, two 10 Ω resistors are in series and this series combination is in parallel 
with 10 Ω resistor.
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Fig. 3.167

 Fig. 3.167 (ii) shows the equivalent circuit of Fig. 3.167 (i). The total circuit resistance RT to  
10 V source is
  RT = 

10 30 20 40

10 30 20 40

× ×+
+ +

 = 7·5 + 13·33 = 20·83 Ω

  Total circuit current,  I = 
10

20.83
 = 0·48 A

  Referring to Fig. 3.167 (ii), we have,
  VCD = I × RCD = 0·48 × 7·5 = 3·6 V

  VDE = I × RDE = 0·48 × 13·33 = 6·4 V

 ∴ I1 = 
3.6

10 10
CDV =  = 0·36 A  ;  I2 = 

3.6

30 30
CDV =  = 0·12 A

  I3 = 
6.4

20 20
DEV =  = 0·32 A  ; I4 = 

6.4

40 40
DEV = = 0·16 A

 Referring to Fig. 3.167 (i), it is now clear that I1(= 0·36 A) is greater than I3(= 0·32 A). Therefore, 
current IN will flow from A to B and its value is
  IN = I1 – I3 = 0·36 – 0·32 = 0·04 A

 Example 3.66. Two batteries, each of e.m.f. 12 
V, are connected in parallel to supply a resistive load 
of 0·5 Ω. The internal resistances of the batteries 
are 0·12 Ω and 0·08 Ω. Calculate the current in the 
load and the current supplied by each battery.
 Solution. Fig. 3.168 shows the conditions of 
the problem. If a short circuit is placed across the 
load, the circuit becomes as shown in Fig. 3.169 (i). 
The total short circuit current is given by ;

  IN = 
12 12

0.12 0.08
+

   = 100 + 150 = 250 A

Fig. 3.168
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Fig. 3.169

 In order to find Norton resistance RN(= RTh), open circuit the load and replace the batteries by 
their internal resistances.  The circuit then becomes as shown in Fig. 3.169 (ii). Then resistance 
looking into the open-circuited terminals is the Norton resistance.
∴  Norton resistance, RN = Resistance looking into the open-circuited load terminals  
    in Fig. 3.169 (ii)

   = 0·12 || 0·08 = 
0.12 0.08

0.12 0.08

×
+

= 0·048 Ω

 Therefore, Norton equivalent circuit consists of a current source of 250 A (= IN) in parallel 
with a resistance of 0·048 Ω (= RN). When load (= 0·5 
Ω) is connected across the output terminals of Norton 
equivalent circuit, the circuit becomes as shown in Fig. 
3.170. By current-divider rule, the current I in load (= 0·5 
Ω) is given by ;
  I = 

0.048
250

0.048 0.5
×

+
 = 21·9 A

  Battery terminal voltage = I RL = 21·9 × 0·5

   = 10·95 V

  Current in first battery = 
12 10.95

0.12

−
 = 8·8 A

  Current in second battery = 
12 10.95

0.08

−
 = 13·1 A

 Example 3.67. Represent the network 
shown in Fig. 3.171 between the terminals 
A and B by one source of current IN  and 
internal resistance RN.  Hence calculate 
the current that would flow in a 6 Ω 
resistor connected across AB.
 Solution. Place short circuit 
across AB in Fig. 3.171. Then the 
circuit becomes as shown in Fig. 
3.172 (i). Note that 2 Ω resistor is 
shorted and may be considered as removed 
from the circuit. The total resistance RT presented to the 6 V source is a parallel 
combination of (3 + 1) Ω and 4 Ω in series with 4 Ω. Therefore, the value of RT is given  
by ;
  RT = [(3 + 1) || 4] + 4 = 

4 4
4

4 4

× +
+

 = 2 + 4 = 6 Ω

Fig. 3.171

Fig. 3.170
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 ∴  Current supplied by 6 V source, I = 6/6 = 1 A
  At node D, 1 A current divides between two parallel resistors of (3 + 1) Ω and 4 Ω.

 ∴ Norton current,  IN = 
4

1
4 4

×
+

= 0·5 A

Fig. 3.172

 Now Norton resistance RN (= RTh) is the resistance between open-circuited terminals AB with 
voltage source replaced by a short as shown in Fig. 3.172 (ii).  Referring to Fig. 3.172 (ii), (3 + 1) Ω 
resistance is in parallel with 4 Ω, giving equivalent  resistance of 2 Ω.  Now (2 + 4) Ω resistance is 
in parallel with 2 Ω.
 ∴ RN = (2 + 4) || 2 = 6 || 2 

   = 
6 2 12

6 2 8

× =
+

 = 1·5 Ω

 Therefore, Norton equivalent circuit is a current 
source of 0·5 A in parallel with resistance of 1·5 Ω. When 
a 6 Ω resistor is connected across AB, the circuit becomes as 
shown in Fig. 3.173. By current-divider rule, current in 6 Ω,

  I = 
1.5 1.5

0.5 0.5
1.5 6 7.5

× = ×
+

 = 0·1 A

 Example 3.68. For the circuit shown in Fig. 3.174, calculate the potential difference between 
the points O and N and what current would flow in a 50 Ω resistor connected between these points?

Fig. 3.174

Fig. 3.173
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 Solution. Place a short circuit across ON in Fig. 3.174. Then total short circuit current in ON is

   IN = 
40 30 20

10 20 40
+ +  = 4 + 1·5 + 0·5 = 6 A

 In order to find RN (= RTh), replace the voltage sources by short. Then 
RN is equal to the resistance looking into open circuited terminals ON.  It 
is easy to see that the resistors 10 Ω, 20 Ω and 40 Ω are in parallel across 
ON.
 ∴ 

1

NR
 = 

1 1 1 7

10 20 40 40
+ + =

 or RN = 
40

7
 = 5·71 Ω

 Therefore, the original circuit reduces to that shown in Fig. 3.175.
 ∴  Open-circuited voltage across ON = IN RN = 6 × 5·71 = 34·26 V
 When 50 Ω resistor is connected between points O and N,

  Current in 50 Ω connected between ON = 
5.71

6
5.71 50

×
+

 = 0·62 A

 Example 3.69. Find Norton equivalent circuit to the left of terminals AB in the circuit shown 
in Fig. 3.176. The current sources are I1 = 10 A and I2 = 15 A. The conductances are G1 = 0·2 S,  
G2 = 0·3 S and G3 is variable.

Fig. 3.176

 Solution. First, disconnect branch G3 and short circuit the terminals AB as shown in Fig. 3.177 
(i). Since the short circuit has infinite conductance, the total current of 25 A (= I1 + I2) supplied by 
the two sources would pass through the short-circuited terminals i.e.
  Norton current, IN = I1 + I2 = 10 + 15 = 25 A

Fig. 3.177

 Next, remove the short-circuit and replace the current sources by open. The circuit then becomes 
as shown in Fig. 3.177 (ii).
  Norton conductance, GN = Conductance at terminals AB in Fig. 3.177 (ii).

Fig. 3.175
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   = G1 + G2 = 0·2 + 0·3 = 0·5 S

 Therefore, Norton equivalent circuit consists of a 25 A current 
source in parallel with a conductance of 0·5 S. When conductance 
G3 is connected  across terminals AB, the circuit becomes as shown 
in Fig. 3·178. Although Norton equivalent circuit is not the same as 
its original circuit, it acts the same in terms of output voltage and current.

 Example 3.70. The circuit shown in Fig. 3.179 
consists of a current source I = 10 A paralleled by G = 
0·1 S and a voltage source E = 200 V with 10 Ω series 
resistance. Find Norton equivalent circuit to the left of 
terminals AB.

 Solution. We are to find Norton current and 
Norton resistance. In order to find Norton current IN, short-circuit the terminals AB as shown in  
Fig. 3.180 (i). Then current that flows in AB is IN. It is easy to see that current which flows in 
conductance G is *IG = 5 A (upward).
 ∴ Norton current,  IN = I + IG = 10 + 5 = 15 A

Fig. 3.180

 In order to find Norton resistance, remove the short circuit and replace the voltage source by a 
short and current source by an open.  The circuit then becomes as shown in Fig. 3.180 (ii).
   RN = Resistance looking into terminals 

AB in Fig. 3.180 (ii).

    = 
1 1

10
0.1

R
G

+ = +  = 10 + 10 = 20 Ω

 ∴ Norton conductance, GN = 
1 1

20NR
=  = 0·05 S

 Therefore, Norton equivalent circuit consists of a 15 A current source paralleled with 0·05 S 
conductance GN as shown in Fig. 3·181.

Fig. 3.178

Fig. 3.179

Fig. 3.181

* Applying KVL to loop CABDC, we have,

  – (I + IG) R + 200 – GI
G

 = 0

 or – (10 + IG) 10 + 200  – 
0.1

GI
 = 0

 or – 100  – 10IG + 200 – 10 IG = 0
 ∴ IG = 100/20 = 5 A
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 Example 3.71. Draw Norton’s equivalent circuit at terminals AB and determine the current  
flowing through 12Ω resistor for the network shown in Fig. 3.182 (i).

Fig. 3.182

 Solution. In order to find Norton current IN, short circuit terminals A and B after removing the 
load (= 12Ω). The circuit then becomes as shown in Fig. 3.182 (ii). The current flowing in the short 
circuit is the Norton current IN. It can be found by using superposition theorem.

 (i) When current source is acting alone. In this case, we short circuit the voltage source so 
that only current source acts in the circuit. The circuit then becomes as shown in Fig. 3.183 
(i). It is clear that :

   Norton current, IN1 = *Current in 5Ω resistor

    = 
8 160

20 A
8 5 13

× =
+

 (ii) When voltage source is acting alone. In this case, we open circuit the current source so 
that only voltage source acts in the circuit. The circuit then becomes as shown in Fig. 3.183 
(ii). It is clear that :

   Norton current, IN2 = 
40

4
 = 10A

 Therefore, when both voltage and current sources are present in the circuit, we have,

  Norton current, IN = IN1 + IN2 = 
160 290

10 A
13 13

+ =

Fig. 3.183

 In order to find RN, open circuit 12Ω resistor and replace current source by open circuit and 
voltage source by short circuit. Then circuit becomes as shown in Fig. 3.184 (i).
 ∴ RN = Resistance at terminals AB in Fig. 3.184 (i)

   = 4 || (5 + 8) = 4 || 13 = 
4 13

4 13

×
+

 = 
52

17
Ω

* No current flows in 4Ω resistor because it is short circuited at terminals A and B. Therefore, 20A divides 
between 8Ω and 5Ω connected in parallel.
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Fig. 3.184

 Thus Norton equivalent circuit at terminals AB is a current source of current 290/13 A in 
parallel with 52/17Ω resistance. When load resistor of 12Ω is connected across Norton’s equivalent 
circuit, the circuit becomes as shown in Fig. 3.184 (ii).

 ∴ Load current, IL = 
290 52 17

13 52 17 12
N

N
N L

RI
R R

× = ×
+ +

 = 4.53 A

 Example 3.72. Determine the values of I and R in the circuit shown in Fig. 3.185.

Fig. 3.185

 Solution. Short the terminals XY in Fig. 3.185 and we get the circuit shown in Fig. 3.186 (i). 
The currents in the various branches will be as shown. In order to find the short-circuit current  
Isc (= I = IN), we apply KVL to loops 1 and 2 in Fig. 3.186 (i).

Fig. 3.186

 Loop 1. –10 (i + 1) – 3(1 – i – Isc) + 8i = 0

 or  i + 3Isc = 13 ...(i)
 Loop 2. – 4Isc + 3(1 – i – Isc) = 0

 or 3i + 7Isc = 3 ...(ii)
 From eqs. (i) and (ii), we have, Isc = 18A.
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 In order to find the open-circuited voltage Voc (= VTh) at terminals X and Y, refer to Fig 3.186 
(ii). The various branch currents are shown. Applying KVL to loop 1 in Fig. 3.186 (ii), we have,

  –10 (i + 1) – 3(1 – i) + 8i = 0 or i = 13A

 ∴ Voc = Voltage across 3Ω resistor

   = 3(1 – i) = 3(1 – 13) = – 36 V

 Thevenin resistance, R(= RN)  = oc

sc

V
I

 = 
36

18
 = 2Ω 

  Current I = IN = – 18A 

 Note the polarity of current source I (= IN).
 Example 3.73. With the help of Norton’s theorem, find Vo in the circuit shown in Fig. 3.187 (i). 
All resistances are in ohms.

Fig. 3.187

 Solution. In order to find Vo, it is profitable to find Norton equivalent circuit to the left of 
terminals 1 – 1′ and  to the right of terminals 2 – 2′ in Fig. 3.187 (i). To the left of terminals 1 – 1′, 
Voc = 15 × 1 = 15 V and RN = 1 + 1 = 2Ω so that IN = 15/2 = 7.5A as shown in Fig. 3.187 (ii). To the 
right of terminals 2 – 2′, Voc = 10 V and RTh = RN = 4Ω so that IN = 10/4 = 2.5A as shown in Fig. 
3.187 (iii). The two  Norton equivalent circuits are put back at terminals 1 – 1′, and 2 – 2′ as shown in  
Fig. 3.187 (iv).

Fig. 3.187

 In Fig. 3.187 (iv), the two current sources, being parallel and carrying currents in the same 
direction, can be combined into a single current source of 7.5 + 2.5 = 10A. The three resistances 
are in parallel and can be combined to give a single resistance = 2Ω || 4Ω || 4Ω = 1Ω. Therefore, the 
circuit of Fig. 3.187 (iv) reduces to the circuit shown in Fig. 3.187 (v).
 ∴ Vo = 10A × 1Ω = 10V
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 Example 3.74. Find current in the 4 ohm resistor by any three methods for the circuit shown in 
Fig. 3.188(i).

Fig. 3.188
 Solution. Method 1. We shall find current in 4Ω resistor by mesh current method. Mark 
three mesh currents i1, i2 and i3 in the three loops as shown in Fig. 3.188 (ii). The describing circuit 
equations are :
  i1 = 5A due to the current source of 5A
  VA – VB = 6V due to voltage source of 6V
  i3 – i2 = 2A due to current source of 2A

  VA = (i1 – i2)2  ;  VB = i3 × 4
 Now, – 6 – 4i3 – 2 (i2 – i1) = 0 ... Applying KVL
 or – 6 – 4 (2 + i2) – 2 (i2 – 5) = 0
 or – 6i2 = 4

 ∴ i2 = 
4 2

A
6 3

− = −  and i3 = i2 + 2 = 
2 4

2 A
3 3

− + =

 ∴ Current in 4Ω resistor = i3 = 
4 A
3

 Method 2. We now find current in 4Ω resistor by Thevenin’s theorem. Remove 4Ω resistor 
(i.e. load) and the circuit becomes as shown in Fig. 3.188 (iii).
 Current in 2Ω resistor = 5 + 2 = 7A
 It is because 6V source is ineffective in producing any current.
 In going from point X to point Y via B and A, we have,
  VX + 6 – 7 × 2 = VY

 or VX – VY = 7 × 2 – 6 = 8V
 ∴ VTh = VXY = VX – VY = 8V
 In order to find RTh, short circuit the voltage source and open-circuit the current sources in  
Fig. 3.188 (iii). Then circuit becomes as shown in Fig. 3.188 (iv). The resistance at the open-circuited 
terminals XY in Fig. 3.188 (iv) is RTh.
 ∴ RTh = 2Ω

 ∴   Current in 4Ω resistor = 
4

Th

Th

V
R +

 = 
8

2 4+
 = 

4 A
3

Fig. 3.188
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 Method 3. Finally, we find current in 4Ω resistor by Norton’s theorem. To find IN, short-
circuit 4Ω resistor in Fig. 3.188 (i). The circuit then becomes as shown in Fig. 3.188 (v). The current 
distribution in the various branches will be as shown.

Fig. 3.188

 It is clear from Fig. 3.188 (v) that :

  IN = 2 + 2 = 4A

  RN = RTh = 2Ω  ...as calculated above

 When 4Ω resistor is connected to Norton equivalent circuit, it becomes as shown in  
Fig. 3.188 (vi).
 ∴  Current in 4Ω resistor is given by (current-divider rule) ;

  I = 
2

4
2 4

×
+

 = 
8

6
 = 4 A

3
 Example 3.75. Using Norton’s theorem, find current through 1Ω resistor in Fig. 3.189 (i). All 
resistances are in ohms,

Fig. 3.189

 Solution. To find the answers, we convert the three voltage sources into their equivalent current 
sources.

 (a) 12 V source in series with (4 + 2) = 6Ω resistance is converted into equivalent current 
source of 12V/6Ω = 2A in parallel with 6Ω resistance.

 (b) 6V source in series with 6Ω resistance is converted into equivalent current source of 6V/6Ω 
= 1A in parallel with 6Ω resistance.

 (c) 24V source in series with 12Ω resistance is converted into equivalent current source of 
24V/12Ω = 2A in parallel with 12Ω resistance.

  After the above source conversions, the circuit of Fig. 3.189 (i) becomes the circuit shown 
in Fig. 3.189 (ii).
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Fig. 3.189

  Referring to Fig. 3.189 (ii), we can combine the two current sources to the left of EF but 
cannot combine 2A source across CD with them because 3Ω resistance is between E and 
C. Therefore, combining the two current sources to the left of EF, we have a single current 
source of 2 + 1 = 3A and a single resistance of 6Ω || 6Ω = 3Ω in parallel with it. As a result, 
Fig. 3.189 (ii) reduces to the circuit shown in Fig. 3.189 (iii).

Fig. 3.189

 We now convert the circuit to the left of CD in Fig. 3.189 (iii) into Norton equivalent circuit.  
Fig. 3.189 (iv) shows this circuit to the left of CD. Its Norton equivalent circuit values are :

  IN = 
3

3
3 3

×
+

 = 1.5A  ;  RN = 3Ω + 3Ω = 6Ω

 Therefore, replacing the circuit to the left of CD in Fig. 3.189 (iii) by its Norton equivalent 
circuit, we get the circuit shown in Fig. 3.189 (v).

Fig. 3.189

 Referring to Fig. 3.189 (v), we can combine the two current sources into a single current source 
of 1.5 + 2 = 3.5 A and a single resistance of 6Ω || 12Ω = 4Ω in parallel with it. The circuit then 
reduces to the one shown in Fig. 3.189 (vi). By current-divider rule [See Fig. 3.189 (vi)],

  Current in 1Ω resistor, I = 
4

3.5
4 1

×
+

 = 2.8 A

3.16.   Norton  Equivalent  Circuit
 (Circuits containing both independent and dependent sources)
 Sometimes we come across circuits which contain both independent and dependent sources. 
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One such example is shown in Fig. 3.190. The procedure for finding Norton equivalent circuit (i.e. 
finding iN and RN) in such cases is as under :

Fig. 3.190

 (i) The open-circuited voltage voc(= vTh) at terminals ab is determined as usual with sources 
present.

 (ii) We cannot find RN (= RTh) at terminals ab simply by calculating equivalent resistance 
because of the presence of the dependent source. Instead, we place a short circuit across 
the terminals ab and find the value of short-circuit current isc (= iN) at terminals ab.

 (iii) Norton resistance, RN = voc/isc (= vTh/isc).
 Note. In case the circuit contains dependent sources only, the procedure for finding voc (= vTh) and  

RN(= RTh) is as under :
 (a) In this case, voc = 0 and isc = 0 because no independent source is present.
 (b) We cannot use the relation RN = voc/isc as we do in case the circuit contains both independent and 

dependent sources.
 (c) In order to find RN, we excite the circuit at terminals ab by connecting 1A source to the terminals a 

and b and calculate the value of vab. Then RN (= RTh) = vab/1Ω.

 Example 3.76. Find the values of iN and 
RN at terminals ab for the circuit shown in  
Fig. 3.191 (i).
 Solution. We first put a short circuit across 
terminals a and b to find short-circuit current  
isc (= iN) at terminals ab as shown in Fig. 3.191 (ii). 
Applying KCL at node c, we have,
  10 = i1 + i2 + isc
 or i2 = 10 – i1 – isc
 Applying KVL to loops 1 and 2, we have,
  – 4i2 + 6i1 – 2i1 = 0 ... Loop 1
 or – 4(10 – i1 – isc) + 4i1 = 0 ...(i)
 Also –6i1 + 3isc = 0 ...(ii) ... Loop 2
 From eqs. (i) and (ii), isc = iN = 5A.

Fig. 3.191
 In order to find voc (= vTh), we refer to Fig. 3.191 (iii) where we have,
  voc = 6i1 ...(iii)

Fig. 3.191
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 Applying KVL to the central loop in Fig. 3.191 (iii),
  – 4 (10 – i1) + 6i1 – 2i1 = 0 ...(iv)
 From eqs. (iii) and (iv), we have, voc = vTh = 30V.

 Also RN (= RTh) = oc

sc

v
i

 = 
30

5
 = 6Ω

Tutorial  Problems
 1. Using Norton’s theorem, find the current in 8 Ω resistor of the network shown in Fig. 3.192. [1.55 A]

 
  Fig. 3.192 Fig. 3.193
 2. Using Norton’s theorem, find the current in the branch AB containing 6 Ω resistor of the network shown 

in Fig. 3.193.    [0.466 A]
 3. Show that when Thevenin’s equivalent circuit of a network is converted into Norton equivalent circuit, 

IN = VTh/RTh  and  RN = RTh. 
 4. Find the voltage between points A and B in the network shown in Fig. 3.194 using Norton’s theorem.
      [2·56 V]

  Fig. 3.194 Fig. 3.195
 5. The ammeter labelled A in Fig. 3.195 reads 35 mA. Is the 2·2 kΩ resistor shorted ?  Assume that ammeter 

has zero resistance.    [Shorted]
 6. Find Norton equivalent circuit to the left of terminals a – b in Fig. 3.196. [IN = 1·5 A;  RN = 4 Ω]

 
  Fig. 3.196 Fig. 3.197
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 7. What is the current in the 100 Ω resistor in Fig. 3.197 if the 990 Ω resistor is changed to 1010 Ω ?  Use 
Norton theorem to obtain the result. [13·45 µA]

 8. Determine the Norton equivalent circuit and the load current in RL in Fig. 3.198. The various circuit 
values are :

   E ′ = 64 V  ;  R1 = 230 Ω  ; R2 = 450 Ω ;
   R3 = 260 Ω  ;  R4 = 550 Ω  ;   R5 = 440 Ω  ;   RL = 360 Ω

  Fig. 3.198 Fig. 3.199

 9. In Fig. 3.199, replace the network to the left of terminals ab with its Norton equivalent.

   [IN = 
2 A
+ 12.5

R
R

 ; RN = 
50 + 625

+ 25
R

R
Ω ]

 10. When any source (voltage or current) is delivering maximum power to a load, prove that overall circuit 
efficiency is 50%.

3.17.   Maximum  Power  Transfer  Theorem
 This theorem deals with transfer of maximum power from a source to load and may be stated 
as under :
 In d.c. circuits, maximum power is transferred from a source to load when the load resistance 
is made equal to the internal resistance of the source as viewed from the load terminals with load 
removed and all e.m.f. sources replaced by their internal resistances.

Fig. 3.200

  Fig. 3.200 (i) shows a circuit supplying power to a load RL. The circuit enclosed in the box 
can be replaced by Thevenin’s equivalent circuit consisting of Thevenin voltage V = VTh in series 
with Thevenin resistance Ri(=RTh) as shown in Fig. 3.200 (ii). Clearly, resistance Ri is the resistance 
measured between terminals AB with RL removed and e.m.f. sources replaced by their internal 
resistances.  According to maximum power transfer theorem, maximum power will be transferred 
from the circuit to the load when RL is made equal to Ri, the Thevenin resistance at terminals AB.

3.18.   Proof  of  Maximum  Power  Transfer  Theorem
 Consider a voltage source V of internal resistance Ri delivering power to a load RL.  We shall 
prove that when RL = Ri, the power delivered to RL is maximum.  Referring to Fig. 3.201 (i), we have,

  Circuit current, I = 
L i

V
R R+

  Power delivered to load, P = I2 RL
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   = 
2

L
L i

V R
R R

 
 + 

 ...(i)

 For a given source, generated voltage V and internal resistance Ri are constant. Therefore, 
power delivered to the load depends upon RL. In order to find the value of RL for which the value of 
P is maximum, differentiate eq. (i) w.r.t. RL and set the result equal to zero.

Fig. 3.201

 Thus, 
L

dP
dR

 = 
2

2
4

( ) 2 ( )

( )
L i L L i

L i

R R R R RV
R R

 + − +
 + 

 = 0

 or  (RL + Ri)
2 − 2 RL (RL + Ri)  = 0

 or  (RL + Ri) (RL + Ri − 2RL)  = 0
 or  (RL + Ri) (Ri − RL)  =   0
  Since RL + Ri cannot be zero,
 ∴  Ri − RL  =  0
 or  RL = Ri
 or  Load resistance  = Internal resistance of the source
 Thus, for maximum power transfer, load resistance RL must be equal to the internal resistance Ri 
of the source. Fig. 3.201 (ii) shows the graph between power delivered (P) and RL. We may extend 
the maximum power transfer theorem to a linear circuit rather than a single source by means of 
Thevenin’s theorem as under :
 The maximum power is obtained from a linear circuit at a given pair of terminals when ter-
minals are loaded by Thevenin’s resistance (RTh) of the circuit.
 The above statement is obviously true because by Thevenin’s theorem, the circuit is equivalent 
to a voltage source in series with internal resistance (RTh) of the circuit.
 Important Points. The following points are worth noting about maximum power transfer  
theorem :
 (i) The circuit efficiency at maximum power transfer is only 50% as one-half of the total 

power generated is dissipated in the internal resistance Ri of the source.

   Efficiency = 
2

2

Output power

Input power ( )
L

L i

I R
I R R

=
+

    = 
1

2 2
L

L

R
R

=  = 50% ( RL = Ri)

 (ii) Under the conditions of maximum power transfer, the load voltage is one-half of the open-
circuited voltage at the load terminals.
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  Load voltage = I RL = 
2 2

L
L

L i L

V RV VR
R R R

  = = + 

 (iii) Max. power transferred = 
2 2 2

2 4L L
L i L L

V V VR R
R R R R

   = =   +   
 Note. In case of a practical current source, the maximum power delivered is given by ;

  Pmax = 
2

4
N NI R

 where IN = Norton current
  RN = Norton resistance (= RTh = Ri)

3.19.   Applications  of  Maximum  Power  Transfer  Theorem
 This theorem is very useful in situations where transfer of maximum power is desirable. Two 
important applications are listed below :
 (i) In communication circuits, maximum power transfer is usually desirable. For instance, in a 

public address system, the circuit is adjusted for maximum power transfer by making load 
(i.e. speaker) resistance equal to source (i.e. amplifier) resistance.  When source and load 
have the same resistance, they are said to be matched.

  In most practical situations, the internal resistance of the source is fixed. Also, the device 
that acts as a load has fixed resistance. In order to make RL = Ri, we use a transformer. We 
can use the reflected-resistance characteristic of the transformer to make the load resistance 
appear to have the same value as the source resistance, thereby ‘‘fooling’’ the source 
into ‘‘thinking’’ that there is a match (i.e. RL = Ri). This technique is called impedance 
matching.

 (ii) Another example of maximum power transfer is found in starting of a car engine. The 
power delivered to the starter motor of the car will depend upon the effective resistance of 
the motor and  internal resistance of the battery.  If the two resistances are equal (as is the 
case when battery is fully charged), maximum power will be transferred to the motor to turn 
on the engine.  This is particularly desirable in winter when every watt that can be extracted 
from the battery is needed by the starter motor to turn on the cold engine.  If the battery is 
weak, its internal resistance is high and the car does not start.

 Note. Electric power systems are never operated for maximum power transfer because the efficiency under 
this condition is only 50%. This means that 50% of the generated power will be lost in the power lines.  This  
situation cannot be tolerated because power lines must operate at much higher than 50% efficiency.

 Example 3.77. Two identical cells connected in series deliver a maximum power of 1W to a 
resistance of 4 Ω. What is the internal resistance and e.m.f. of each cell ?
 Solution. Let E and r be the e.m.f. and internal resistance of each cell. The total internal 
resistance of the battery is 2r. For maximum power transfer,
  2 r = RL = 4  ∴ r = RL/2  =  4/2 =  2 Ω

  Maximum power = 
2*(2 )

4 L

E
R

 or 1 = 
24

4 L

E
R

 ∴ E = LR  = 4 = 2 V

* Here total voltage = 2E.
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 Example 3.78. Find the value of resistance R to have maximum power transfer in the circuit 
shown in Fig. 3.202 (i). Also obtain the amount of maximum power. All resistances are in ohms.

Fig. 3.202

 Solution. To find the desired answers, we should find VTh and RTh at the load (i.e. R) terminals. 
For this purpose, we first convert 120V voltage source in series with 10Ω resistance into equivalent 
current source of 120/10 = 12A in parallel with 10Ω resistance. The circuit then becomes as shown 
in Fig. 3.202. (ii).

Fig. 3.202

 To find VTh, remove R (i.e. load) from the circuit in Fig. 3.202 (ii), and the circuit becomes as  
shown in Fig. 3.202 (iii). Then voltage across the open-circuited terminals AB is VTh. Referring to 
Fig. 3.202 (iii) and applying KCL, we have,

  
10 5

Th ThV V+  = 12 + 6 or VTh = 60V

 In order to find RTh, remove R and replace the current sources by open in Fig. 3.202 (ii). Then 
circuit becomes as shown in Fig. 3.202 (iv). Then resistance at the open-circuited terminals AB is  
RTh.
 ∴ RTh = 10Ω || 5Ω = 

10 5

10 5

×
+

 = 
10

3
Ω

 When R is connected to the terminals of Thevenin equivalent circuit, the circuit becomes as  
shown in Fig. 3.202 (v).
 For maximum power transfer, the condition is

  R = RTh = 
10
3

Ω

 Max. power transferred, Pmax = 
2

4
Th

L

V
R

 = 
2 2(60)

4 4 (10 3)
ThV
R

=
×

 = 270 W
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 Example 3.79. Calculate the value of R which will absorb maximum power from the circuit of 
Fig. 3.203 (i). Also find the value of maximum power.

Fig. 3.203

 Solution. To find the desired answers, we should find VTh and RTh at the load (i.e. R) terminals. 
For this purpose, we first convert 2A current source in parallel with 15Ω resistance into equivalent 
voltage source of 2A × 15Ω = 30 V in series with 15Ω resistance. The circuit then becomes as shown 
in Fig. 3.203 (ii). 

Fig. 3.203

 To find VTh, remove R (i.e. load) from the circuit in Fig. 3.203 (ii) and the circuit becomes as 
shown in Fig. 3.203 (iii). Then voltage across the open-circuited terminals AB is VTh. Referring to 
Fig. 3.203 (iii),
 Current in 3Ω resistor, I = 

30 6

15 6 3

−
+ +

 = 1A

 In Fig. 3.203 (iii), as we go from point A to point B via 3Ω resistor, we have,
  VA – I × 3 – 8 = VB

 or VA – VB = I × 3 + 8 = 1 × 3 + 8 = 11V
 ∴ VTh = VAB = VA – VB = 11V
 In order to find RTh, remove R and replace the voltage sources by short in Fig. 3.203 (ii). Then 
circuit becomes as shown in Fig. 3.203 (iv). Then resistance at open-circuited terminals AB is RTh.

 ∴ RTh = (15 + 6)Ω || 3Ω = 
21 3

21 3

×
+

 = 
21

8
Ω

 For maximum power transfer, the condition is 

  R = RTh = 
21
8

Ω  

 Max. power transferred, Pmax = 
2

4
Th

L

V
R

 = 
2

4
ThV
R

 = 
2(11)

4 (21 8)×
 = 11.524 W
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 Example 3.80. Determine the value of RL in Fig. 3.204 (i) for maximum power transfer and 
evaluate this power.
 Solution. The three current sources in Fig. 3.204 (i) are in parallel and supply current in the 
same direction. Therefore, they can be replaced by a single current source supplying 0·8 + 1 + 0·9 
= 2·7 A as shown in Fig. 3.204 (ii). The circuit to the left of RL in Fig. 3.204 (ii) can be replaced by 
Thevenin’s equivalent circuit as under :

Fig. 3.204

  VTh = IN RN = 2·7 × 100 = 270 V

  Ri = RN = 100 Ω
 The Thevenin’s equivalent circuit to the left of RL is 
VTh(= 270 V) in series with Ri (= 100 Ω).  When load RL is 
connected, the circuit becomes as shown in Fig. 3.205.  It is 
clear that maximum power will be transferred when
  RL = Ri = 100 Ω

  Max. power = 
2 2(270)

4 4 100
Th

L

V
R

=
×

 

   = 182·25 watts
 Example 3.81. Determine the maximum power that can be delivered by the circuit shown in 
Fig. 3.206 (i).
 Solution. Fig. 3.206 (ii) shows the Norton’s equivalent circuit.  Maximum power transfer occurs 
when RL = RN = 300 Ω.

Fig. 3.206

 Referring to Fig. 3.206 (ii), current in RL (= 300 Ω) = IN/2 = 0·5/2 = 0·25 A
 ∴  Max. power transferred = (0·25)2 × RL = (0·25)2 × 300 = 18·8 W
 Example 3.82. What percentage of maximum possible power is delivered to RL in Fig. 3.207 (i) 
when RL = 2 RTh ?
 Solution. Fig. 3.207 (ii) shows the circuit when RL = 2 RTh.

  Circuit current = 
2 3

Th Th

Th Th Th

V V
R R R

=
+

Fig. 3.205
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  Voltage across load, VL = 
2

2
3 3

Th
Th Th

Th

V R V
R

× =

Fig. 3.207

  Power delivered to load, PL = 

2

22
2

43
2 18

Th
ThL

L Th Th

V VV
R R R

 
  = =

  Since Pmax = VTh
2 /4 RTh, the ratio of PL/Pmax is

  L

max

P
P

 = 

2

2

4

18

4

Th

Th

Th

Th

V
R

V
R

 = 
16

18

 ∴ PL = 16
100

18 maxP ×  =  88·89% of Pmax

 Example 3.83. Find the maximum power in RL which is variable in the circuit shown in Fig. 
3.208 (i).
 Solution. We shall use Thevenin theorem to obtain the result.  For this purpose, remove the load 
RL as shown in Fig. 3.208 (ii). The open-circuited voltage at terminals AB in Fig. 3.208 (ii) is equal 
to VTh. It is clear from Fig. 3.208 (ii) that current in the branch containing 40 Ω and 60 Ω resistors 
is 1 A. Similarly, current in the branch containing two 50 Ω resistors is 1 A. It is clear that point A is 
at higher potential than point B. Applying KVL to the loop EABCDE, we have,
  – 40 × 1 – VAB – 2 + 50 × 1 = 0  ∴  VAB = 8 V

 Now VAB in Fig. 3.208 (ii) is equal to VTh. Therefore, VTh = 8 V.

Fig. 3.208
 In order to find Thevenin’s resistance RTh, replace 100V and 2V batteries by a short in  
Fig. 3.208 (ii). Then resistance at terminals AB is the RTh. It is clear that 40 Ω and 60 Ω resistors are 
in parallel and so the two 50 Ω resistors.
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 ∴  RTh =  (40 || 60) + (50 || 50) = 
40 60 50 50

40 60 50 50

× ×+
+ +

 = 24 + 25 = 49 Ω

 Therefore, for maximum power, RL should be 49 Ω.  The Thevenin equivalent circuit is a 
voltage source of 8 V in series with a resistance of 49 Ω.  When load RL is connected across the 
terminals of Thevenin equivalent circuit, the total circuit resistance = 49 + 49 = 98 Ω.

 ∴ Circuit current, I = 
8 8

49 49 98
Th

Th L

V
R R

= =
+ +

= 0·08163 A

 ∴ Pmax = I2RL = (0·08163)2 × 49 = 0·3265 W
 Example 3.84. For the circuit shown in Fig. 3.209 (i), find the value of R that will receieve 
maximum power. Determine this power.

Fig. 3.209

 Solution. We will use Thevenin’s theorem to obtain the results. In order to find VTh, remove the 
variable load R as shown in Fig. 3.209 (ii). Then open-circuited voltage across terminals AB is equal 
to VTh.
  Current in branch  DAC = 

100

7.1 5.2+
 = 8·13 A

  Current in branch  DBC = 
100

19.6 10.9+
 = 3·28 A

 It is clear from Fig. 3.209 (ii) that point A is at higher* potential than point B. Applying KVL to 
the loop A′ACBB′A′, we have, 
  – 5·2 × 8·13 + 10· 9 × 3·28 + VAB = 0
 ∴ VAB = 6·52 V
 Now VAB in Fig. 3.209 (ii) is equal to VTh so that VTh = 6·52 V.
 In order to find RTh, replace the 100 V source in Fig. 3.209 
(ii) by a short. The circuit becomes as shown in Fig. 3.209 (iii). 
The resistance across terminals AB is the Thevenin resistance. 
Referring to Fig. 3.209 (iii),
   RAB = RTh = (5·2 | | 7·1) + (10·9 | | 19·6)
    = 3 + 7 = 10 Ω

 Therefore, for maximum power transfer, R = RTh = 10 Ω.

   Pmax = 
2 2( ) (6.52)

4 4 10
ThV
R

=
×

 = 1·06 W

* The fall in potential along DA is less than the fall in potential along DB. Since point D is common, point 
A will be at higher potential than point B.

Fig. 3.209
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 Example 3.85. For the circuit shown in Fig. 3.210 (i), what will be the value of RL to get 
maximum power? Also find this power.
 Solution. We shall use Thevenin’s theorem to obtain the results. In order to find VTh, remove the 
load RL as shown in Fig. 3.210 (ii). Then voltage at the open-circuited terminals AB is equal to VTh 
i.e. VAB = VTh. The total load on 10 V source is
  RT = (90 || 60 || 180) + 20 = 30 + 20 = 50 Ω

Fig. 3.210
 Current supplied by source,  I = 10/50 = 0·2 A
 ∴ VAB = VTh = 10 – 20 × 0·2 = 6V
 In order to find RTh, replace the 10 V source by a short in Fig. 3.210 (ii). Then,
  RTh = 20 || 90 || 60 || 180 = 12 Ω
 Therefore, the variable load RL will receive maximum power when RL = RTh = 12 Ω.

 ∴ Pmax = 
2 2( ) (6)

4 4 12
Th

L

V
R

=
×

 = 0·75 W

Tutorial  Problems
 1. Find the value of RL in Fig. 3.211 necessary to obtain maximum power in RL. Also find the maximum 

power in RL.    [150Ω ; 1.042 W]

  Fig. 3.211 Fig. 3.212
 2. If RL in Fig. 3.211  is fixed at 100 Ω, what alternation (s) can be made in the rest of the circuit to obtain 

maximum power in RL ?    [Short out 50 Ω resistor]
 3. What percentage of the maximum possible power is delivered to RL in Fig. 3.212, when  

RL = RTh/2 ?    [88.9%]
 4. Determine the value of RL for maximum power transfer in Fig. 3.213 and evaluate this power.  

    [100 Ω; 182·25 W]

  Fig. 3.213 Fig. 3.214
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 5. What value should RL be in Fig. 3.214 to achieve maximum power transfer to the load? [588 Ω]
 6. For the circuit shown in Fig. 3.215, find the value of RL for which power transferred is maximum. Also 

calculate this power.    [50 Ω; 0·72 W]

  Fig. 3.215 Fig. 3.216
 7. Calculate the value of RL for transference of maximum power in Fig. 3.216. Evaluate this power.  

    [220 Ω; 2·2 W]

3.20.   Reciprocity  Theorem
 This theorem permits us to transfer source from one position in the circuit to another and may 
be stated as under :
 In any linear, bilateral network, if an e.m.f. E acting in a branch X causes a current I  in branch 
Y, then the same e.m.f. E located in branch Y will cause a current I in branch X. However, currents 
in other parts of the network will not remain the same.
 Explanation.  Consider the circuit shown in Fig. 3.217 (i). The e.m.f. E (=100 V) acting in the 
branch FAC produces a current I amperes in branch CDF and is indicated by the ammeter. According 
to reciprocity theorem, if the e.m.f. E and ammeter are interchanged* as shown in Fig. 3.217 (ii), 
then the ammeter reading does not change i.e. the ammeter now connected in branch FAC will read 
I amperes. In fact, the essence of this theorem is that E and I are interchangeable. The ratio E/I is 
constant and is called transfer resistance (or impedance in case of a.c. system).

Fig. 3.217
 Note. Suppose an ideal current source is connected across points ab of a network and this causes a voltage 
v to appear across points cd of the network. The reciprocity theorem states that if the current source is now 
connected across cd, the same amount of voltage v will appear across ab. This is sometimes stated as follows: An 
ideal current source and an ideal voltmeter can be interchanged without changing the reading of the voltmeter. 
However, voltages in other parts of the network will not remain the same. 
 Example 3.86. Verify the reciprocity theorem for the network shown in Fig. 3.217 (i). Also find 
the transfer resistance.
 Solution. In Fig. 3.217 (i), e.m.f. E ( = 100V) is in branch FAC and ammeter is in branch CDF. 
Referring to Fig. 3.217 (i),
* If the source of e.m.f in the original circuit has an internal resistance, this resistance must remain in the 

original branch and cannot be transferred to the new location of the e.m.f.
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  Resistance between C and F = 20 Ω || (8 + 8) Ω = 20 × 16/36 = 8·89 Ω
  Total circuit resistance = 20 + 8·89 = 28·89 Ω
 ∴  Current supplied by battery  = 100/28·89 = 3·46 A
 The battery current is divided into two parallel paths viz. path CF of 20 Ω and path CDF of   
8 + 8 = 16Ω.
  Current in branch CDF, I = 3·46 × 20/36 = 1·923 A
 Now in Fig. 3.217 (ii), E and ammeter are interchanged.
 Referring to Fig. 3.217 (ii),
  Resistance between C and F = 20 × 20/40 = 10 Ω
  Total circuit resistance = 10 + 8 + 8 = 26 Ω
  Current supplied by battery = 100/26 = 3·846 A
 The battery current is divided into two parallel paths of 20 Ω each.
 ∴ Current in branch CAF = 3·846/2 = 1·923A
 Hence, ammeter reading in both cases is the same.  This verifies the reciprocity theorem.
  Transfer resistance = E/I = 100/1·923 = 52 Ω
 Example 3.87.  Find the currents in the various branches of the circuit shown in Fig. 3.218 (i). 
If a battery of 9V is added in branch BCD, find current in 4 Ω resistor using reciprocity theorem and 
superposition theorem.

Fig. 3.218

 Solution.  Referring to Fig. 3.218 (i), we have,
  Total resistance to source = 4 Ω + [6 Ω || (1 + 2) Ω] = 4 + 6 × 3/9 = 6 Ω
 Current supplied by source (i.e. current in 4 Ω resistor or branch DAB)
   = 18/6 = 3 A
  Current in branch BD = 3 × 3/9 = 1 A
  Current in branch BCD = 3 × 6/9  = 2 A
 In Fig. 3.218 (i), the current in branch BCD due to 18 V source acting alone is 2 A. If the 18V 
source is placed in branch BCD, then according to reciprocity theorem, the current in 4 Ω will be  
2 A flowing from B to A. If a  battery of  9 V is placed in branch BCD, then current in 4 Ω resistor 
due to it alone would be 2  × 9/18 = 1 A (By proportion).
 Now referring to Fig. 3.218 (ii), the current in 4 Ω due to 18 V battery alone is 3 A flowing from 
A to B. The current in 4 Ω resistor due to 9 V acting alone in branch BCD is 1 A flowing from B to 
A.  By superposition theorem, the current in 4 Ω is the algebraic sum of the two currents i.e.
  Current in 4 Ω = 3 − 1 = 2 A  from A to B
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 Example 3.88. Prove the reciprocity theorem.
 Solution. We now prove the reciprocity theorem for the circuit shown in Fig. 3.219. In  
Fig. 3.219 (i), the e.m.f. E is acting in the branch FAC and the current in the branch CDF is I2. If the 
same e.m.f. E now acts in branch CDF [See Fig. 3.219 (ii)], then current Ib in the branch FAC will 
be equal to I2. We now show that Ib = I2. Referring to Fig. 3.219 (i), we have,

Fig. 3.219

  E = I1 RT

 where RT = R1 + (R2 || R3) = 2 3
1

2 3

R RR
R R

 + + 

 ∴ E = 2 3
1 1

2 3

R RI R
R R

 + + 
 

   = 1 2 2 3 3 1
1

2 3

R R R R R RI
R R

+ + 
 + 

 ...(i)

 Also in Fig. 3.219 (i), 0 = –  (I1 – I2) R3 + I2 R2

 or I2 = 3
1

2 3

RI
R R

 
 + 

 ...(ii)

 Dividing eq. (i) by eq. (ii), we have,

  
2

E
I

 = 1 2 2 3 3 1

3

R R R R R R
R

+ +
 ...(iii)

 Similarly, it can be shown that in Fig. 3.219 (ii), we have,

  
b

E
I

 = 1 2 2 3 3 1

3

R R R R R R
R

+ +
 ...(iv)

 From eqs. (iii) and (iv), Ib = I2

 Therefore, reciprocity theorem stands proved.

3.21.   Millman’s  Theorem 
 Millman’s theorem is a combination of Thevenin’s and Norton’s theorems. It is used to reduce 
any number of parallel voltage/current sources to an equivalent circuit containing only one source. 
It has the advantage of being easier to apply to some networks than mesh analysis, nodal analysis or 
superposition. This theorem can be stated in terms of voltage sources or current sources or both.
 1. Parallel voltage sources. Millman’s theorem provides a method of calculating the common 
voltage across different parallel-connected voltage sources and may be stated as under :
 The voltage sources that are directly connected in parallel can be replaced by a single 
equivalent voltage source.
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 Obviously, the above statement is true by virtue of Thevenin’s theorem. Fig 3.220 (i) shows 
three parallel-connected voltage sources E1, E2 and E3. Then common terminal voltage VAB of these 
parallel voltage sources is given by ;

  VAB = 1 1 2 2 3 3

1 2 31 1 1
E R E R E R

R R R
+ +
+ +  = 1 2 3

1 2 3

I I I I
G G G G

+ + Σ=
+ + Σ

 ...(i)

 Fig. 3.220

 This voltage represents the Thevenin’s voltage VTh. The denominator represents Thevenin’s 
resistance RTh i.e.

  RTh = 
1 2 3

1

1 1 1R R R+ +

 Therefore, parallel-connected voltage sources in Fig 3.220 (i) can be replaced by a single voltage 
source as shown in Fig 3.220 (ii). If load RL is connected across terminals AB, then load current  
IL is given by ; 

  IL = Th

Th L

V
R R+

 Note. If a branch does not contain any voltage source, the same procedure is used except that current in 
that branch will be zero. This is illustrated in example 3.89.
 2. Parallel current sources. The Millman’s theorem states as under : 
 The current sources that are directly connected in parallel can be replaced by a single 
equivalent current source. The current of this single current source is the algebraic sum of the 
individual source currents. The internal resistance of the single current source is equal to the 
combined resistance of the parallel combination of the source resistances.

Fig. 3.221

 Fig. 3.221 (i) shows three parallel connected current sources. The resultant current of the three 
sources is 
  0·3 ↓ + 0·6 ↑ + 0·8 ↓ = 0·5 A ↓

 The internal resistance of the single current source is equal to the equivalent resistance of three 
parallel resistors.
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  400 || 200 || 400 = 100 Ω

 Thus the single equivalent current source has value 0·5 A and internal resistance 100 Ω in 
parallel as shown in Fig. 3.221 (ii).
 3. Voltage sources and current sources in parallel. The Millman’s theorem is also applicable 
if the circuit  has a mixture of parallel voltage and current sources. Each parallel-connected voltage 
source is converted to an equivalent current source. The result is a set of parallel-connected current 
sources and we can replace them by a single equivalent current source. Alternatively, each parallel-
connected current source can be converted to an equivalent voltage source and the set of parallel-
connected voltage sources can be replaced by an equivalent voltage source.

 Example 3.89. Using Millman’s theorem, determine the common voltage Vxy and the load 
current in the circuit shown in Fig. 3.222 (i).

Fig. 3.222

 Solution. Vxy = VTh = 1 1 2 2 3 3

1 2 31 1 1

E R E R E R
R R R

+ +
+ +

   = 
12 6 0 2 16 4 2 0 4 6

1 6 1 12 1 4 0.167 0.083 0.25 0.5

+ + + += =
+ + + +

 = 12V

  RTh = 
1

1 6 1 12 1 4+ +
 = 2Ω

 Therefore, the circuit shown in Fig. 3.222 (i) can be replaced by the one shown in Fig. 3.222 (ii). 

  Load current = 
12

2 20
Th

Th L

V
R R

=
+ +

 = 0.545 A

 Example 3.90. Find the current in the 1 k Ω 
resistor in Fig. 3.223 by finding Millman equivalent 
voltage source with respect to terminals x – y.
 Solution. As shown Fig. 3.224 (i), each of the 
three voltage sources is converted to an equivalent 
current source. For example, the 36 V source 
in series with 18 kΩ resistor becomes a 36 V/18  
kΩ = 2 mA current source in parallel with 18 kΩ. Note that the polarity of  each current source is 
such that it produces current in the same direction as the voltage source it replaces.

 The resultant current of the three current sources

   = 2 mA ↑ + 3 mA ↑ + 2 mA ↓ = 3 mA ↑

Fig. 3.223
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 The parallel equivalent resistance of three resistors

   = 18 kΩ || 9 kΩ || 3 kΩ = 2 kΩ

Fig. 3.224

 Fig. 3.224 (ii) shows the single equivalent current source. Fig. 3.224 (iii) shows the voltage 
source that is equivalent to current source in Fig. 3.224 (ii).
  VTh = 3 mA ×  2 kΩ = 6 V

Fig. 3.224

 When the 1 kΩ resistor is connected across the x – y terminals, the current is

  I = 
6V

3kΩ
 = 2 mA

 Example 3.91. Find an equivalent voltage source for the circuit shown in Fig. 3.225 (i). What 
is the load current?

Fig. 3.225

 Solution.   VAB = VTh = 1 1 2 2 3 3 4 4

1 2 3 41 1 1 1

E R E R E R E R
R R R R
+ + +

+ + +

   = 
10 10 *20 5 5 20 30 15 0.75

1 10 1 5 1 20 1 15 0.417

− + + −=
+ + +

 = – 1·8 V

 Negative sign shows that terminal A is negative w.r.t. terminal B.
* Note that polarity is opposite as compared to other sources.
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  RTh = 
1 2 3 4

1

1 1 1 1R R R R+ + +

   = 
1

1 10 1 5 1 20 1 15+ + +
 = 2.4Ω

 Therefore, equivalent voltage source consists of 1·8 V source in series with 2·4 Ω resistor as 
shown in Fig. 3.225 (ii).
 ∴ Load current, IL = 

1.8

2.4 5
Th

Th L

V
R R

=
+ +

 = 0.24A

 Example 3.92. For the circuit shown in Fig. 3.225 (i) above, find the equivalent current source. 
Also find load current.
 Solution. Convert the voltage sources to current sources as shown in Fig. 3.226 (i). The arrow 
for each current source corresponds to the polarity of each voltage source in the original circuit.

Fig. 3.226
 The equivalent current source is found by algebraically adding the currents of individual 
sources.
  Ieq = 1 A ↑ + 4 A ↓ + 0·25 A ↑ + 2 A ↑ = 0·75 A ↓
 The downward arrow for Ieq shows that terminal A is negative w.r.t. terminal B.

  Req = 10 Ω || 5 Ω || 20 Ω || 15 Ω = 2·4 Ω
 Therefore, the equivalent current source consists of 0·75 A current source in parallel with  
2·4 Ω resistor as shown in Fig. 3.226 (ii). By current-divider rule, the load current IL is

  IL = 
2.4

0.75
2.4 5

×
+

 = 0.243A

 Example 3.93. Find the load current for Fig. 3.227 (i) using the dual of Millman’s theorem.

Fig. 3.227
 Solution. There is a dual for Millman’s theorem and it is useful for solving circuits with series 
current sources [See Fig. 3.227 (i)]. In such a case, the following equations are used to find the 
current and resistance of the equivalent circuit.



214    Basic  Electrical  Engineering 

  Ieq = 1 1 2 2 3 3

1 2 3

I R I R I R
R R R

+ +
+ +

  Req = R1 + R2 + R3

 Thus referring to Fig. 3.227 (i), we have,

  Ieq = 
0.1 100 0.5 150 1 50 15

A
100 150 50 300

− × + × − × =
+ +

 = 50 mA

  Req = 100 + 150 + 50 = 300 Ω
 The equivalent circuit is shown in Fig. 3.227 (ii). By current-divider rule, the load current IL is

  IL = 
300

50
300 300

×
+

 = 25 mA

 Example 3.94. By constructing a Millman equivalent voltage source with respect to terminals  
x – y, find the voltage across 40 Ω resistor in Fig. 3.228 (i).

Fig. 3.228

 Solution. Note that 120 Ω and 180 Ω resistors are in a series path and can therefore be combined 
into an equivalent resistance of 300 Ω. The circuit is *redrawn as shown in Fig. 3.228 (ii). It is clear 
that redrawn circuit has three parallel-connected voltage sources. Referring to Fig. 3.228 (ii), we 
have, 
  Vxy = VTh = 1 1 2 2 3 3

1 2 31 1 1

E R E R E R
R R R

− +
+ +

   = 
7.5 300 22.5 100 15 300

1 300 1 100 1 300

− +
+ +

 = 
0.15

0.0167

−
 = – 9V

 Negative sign shows that terminal x is negative w.r.t. terminal y.

  RTh = 
1 2 3

1 1

1 1 1 1 300 1 100 1 300R R R
=

+ + + +
 = 60 Ω

 Therefore, the equivalent voltage source consists of 9 V in series with 60 Ω resistor. When load 
is connected across the terminals of the equivalent voltage source, the circuit becomes as shown in 
Fig. 3.229.
  Load current, IL = 

9

60 40
Th

Th L

V
R R

=
+ +

 = 0.09 A

  Voltage across 40 Ω  = IL RL = 0·09 × 40 = 3·6 V
 Note that Millman’s theorem is a powerful tool in the hands of engineers 
to solve many problems which cannot be solved easily by the usual methods 
of circuit analysis. Fig. 3.229

* It makes no difference on which side of each voltage source its series resistance is drawn.
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Tutorial  Problems

 1. Find the single equivalent current source for the circuit shown in Fig. 3.230. 

  Fig. 3.230 Fig. 3.231

 2. By constructing a Millman equivalent voltage source at terminals x – y, find the voltage across  
R1 (= 5 Ω) in the circuit shown in Fig. 3.231. [4 V ± ] 

 3. Find the single equivalent current source for the circuit shown  in Fig. 3.232.

Fig. 3.232

 4. What is the current flowing in the load resistor in Fig. 3.233 ? [2·25 mA]

  Fig. 3.233 Fig. 3.234

 5. What is the drop and polarity of the load in Fig. 3.234 ? [ 8·13V and terminal A is negative]

3.22.   Compensation  Theorem
 It is sometimes necessary to know, when making a change in one branch of a network, what 
effect this change will have on the various currents and voltages throughout the network. The 
compensation theorem deals with this situation and may be stated for d.c. circuits as under :
 The compensation theorem states that any resistance R in a branch of a network in which 
current I is flowing can be replaced, for the purpose of calculations, by a voltage equal to – IR. It 
follows from Kirchhoff’s voltage law that the current I is unaltered if an e.m.f. – IR is substituted for 
the voltage drop IR.
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Or
 If the resistance of any branch of a network is changed from R to (R + ∆R) where the current 
was originally I, then the change of current at any point in the network may be calculated by 
assuming than an e.m.f. – I∆R has been introduced into the modified branch while all other sources 
have their e.m.f.s. suppressed and are represented by their internal resistances only.
 Illustration. Let us illustrate the compensation theorem with a numerical example. Consider 
the circuit shown in Fig. 3.235 (i). The various branch currents in this circuit are :

  I1 = 
50

20 5+
 = 2 A   ;     I2 = I3 = 1 A

Fig. 3.235

 Now suppose that the resistance of the right branch is increased to 20 Ω i.e. ∆R = 20 – 10 =  
10 Ω and a voltage V = – I3 ∆R = – 1 × 10 = – 10 V is introduced in this branch and voltage source 
replaced by a short ( internal resistance is assumed zero). The circuit becomes as shown in Fig. 
3.235 (ii). The compensating currents produced by this 
voltage are also indicated. When these compensating 
currents are algebraically added to the original currents 
in their respective branches, the new branch currents will 
be as shown in Fig. 3.236. The compensation theorem 
is useful in bridge and potentiometer circuits, where a 
slight change in one resistance results in a shift from a 
null condition.

3.23.   Delta/Star  and  Star/Delta  Transformation
 There are some networks in which the resistances are neither in series nor in parallel. A familiar 
case is a three terminal network e.g. delta network or star network. In such situations, it is not 
possible to simplify the network by series and parallel circuit rules. However, converting delta 
network into star and vice-versa often simplifies the network and makes it possible to apply series-
parallel circuit techniques.

3.24.   Delta/Star  Transformation
 Consider three resistors RAB, RBC and RCA connected in delta to three terminals A, B and C as 
shown in Fig. 3.237 (i). Let the equivalent star-connected network have resistances RA, RB and RC. 
Since the two arrangements are electrically equivalent, the resistance between any two terminals of 
one network is equal to the resistance between the corresponding  terminals of the other network.
 Let us consider the terminals A and B of the two networks.
 Resistance between A and B for star = Resistance between A and B for delta
or  RA + RB = RAB || (RBC + RCA)

or  RA + RB = 
( )

( )
AB BC CA

AB BC CA

R R R
R R R

+
+ +

 ...(i) 

Fig. 3.236
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Fig. 3.237

 Similarly, RB + RC = 
( )BC CA AB

AB BC CA

R R R
R R R

+
+ +

 ...(ii)

 and RC + RA = 
( )CA AB BC

AB BC CA

R R R
R R R

+
+ +

 ...(iii)

 Subtracting eq. (ii) from eq. (i) and adding the result to eq. (iii), we have,

  RA = AB CA

AB BC CA

R R
R R R+ +

 ...(iv)

 Similarly, RB = BC AB

AB BC CA

R R
R R R+ +

 ...(v)

 and RC = CA BC

AB BC CA

R R
R R R+ +

 ...(vi)

 How to remember ?  There is an easy way to remember these relations. 
Referring to Fig. 3.238, star-connected resistances RA, RB and RC are 
electrically equivalent to delta-connected resistances RAB, RBC and RCA.  We 
have seen above that :

  RA = AB CA

AB BC CA

R R
R R R+ +

i.e.  Any arm of star-connection = 
Product of two adjacent arms of

Sum of arms of

∆
∆

 Thus to find the star resistance that connects to terminal A, divide the product of the two delta 
resistors connected to A by the sum of the delta resistors. Same is true for terminals B and C.

3.25.   Star/Delta  Transformation 
 Now let us consider how to replace the star-connected network of Fig. 3.237 (ii) by the 
equivalent delta-connected network of Fig. 3.237 (i).
 Dividing eq. (iv) by (v), we have,

  RA/RB = RCA/RBC

 ∴ RCA = A BC

B

R R
R

 Dividing eq. (iv) by (vi), we have,
  RA / RC = RAB / RBC

Fig. 3.238
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 ∴ RAB = A BC

C

R R
R

          Substituting the values of RCA and RAB in eq. (iv), we have,

  RBC = B C
B C

A

R RR R
R

+ +

  Similarly, RCA = C A
C A

B

R RR R
R

+ +

 and RAB = A B
A B

C

R RR R
R

+ +

 How to remember ? There is an easy way to remember these relations.

 Referring to Fig. 3.239, star-connected resistances RA, RB and RC are electrically equivalent to 
delta-connected resistances RAB, RBC and RCA. We have seen above that :

  RAB = A B
A B

C

R RR R
R

+ +

i.e. Resistance between two = Sum of star resistances connected to those terminals plus product of
 terminals of delta   same two resistances divided by the third star resistance

 Note. Figs. 3.240 (i) to (iii) show three ways that a wye (Y) arrangement might appear in a circuit. Because 
the wye-connected components may appear in the equivalent form shown in Fig. 3.240 (ii), the arrangement 
is also called a tee (T) arrangement. Figs. 3.240 (iv) to (vi) show equivalent delta forms. Because the delta (∆) 
arrangement may appear in the equivalent form shown in Fig. 3.240 (vi), it is also called a pi (π) arrangement. 
The figures show only a few of the ways the wye (Y) and delta (∆) networks might be drawn in a schematic 
diagram.  Many equivalent forms can be drawn by rotating these basic arrangements through various angles. 
Note that each network has three terminals.

Fig. 3.240

Fig. 3.239
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 Example 3.95. Using delta/star transformation, find the galvanometer current in the 
Wheatstone bridge shown in Fig. 3.241 (i).

Fig. 3.241

 Solution. The network ABDA in Fig. 3.241 (i) forms a delta. These delta-connected resistances 
can be replaced by equivalent star-connected resistances R1, R2 and R3 as shown in Fig. 3.241 (i).

  R1 = 
10 20

10 40 20
AB DA

AB BD DA

R R
R R R

×=
+ + + +

 = 2.86 Ω

  R2 = 
10 40

10 40 20
AB BD

AB BD DA

R R
R R R

×=
+ + + +

 = 5.72 Ω

  R3 = 
20 40

10 40 20
DA BD

AB BD DA

R R
R R R

×=
+ + + +

 = 11.4 Ω

 Thus the network shown in Fig. 3.241 (i) reduces to the network shown in Fig. 3.241 (ii).

  RAC = 
(30 5.72) (15 11.4)

2.86
(30 5.72) (15 11.4)

+ ++
+ + +

 = 18.04 Ω

  Battery current, I = 2/18·04  =  0·11 A
  The battery current divides at N into two parallel paths.

 ∴ Current in branch NBC, I1 = 0.11 × 
26.4

26.4 35.72+
 = 0·047 A

  Current in branch NDC, I2 = 
35.72

0.11
26.4 35.72

×
+

 = 0·063 A

  Potential of B w.r.t. C = 30 × 0·047 = 1·41 V

  Potential of D w.r.t. C = 15 × 0·063 = 0·945 V
 Clearly, point B is at higher potential than point D by
  1·41 –  0·945 = 0·465 V

 ∴  Galvanometer current = 
P.D.between and

Galvanometer resistance

B D

   = 0·465 / 40  = 11·6 × 10–3 A = 11·6 mA from B to D
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 Example 3.96. With the help of star/delta transformation, obtain the value of current supplied 
by the battery in the circuit shown in Fig. 3.242 (i).

Fig. 3.242

 Solution. The star-connected resistances 3 Ω, 3 Ω and 1 Ω in Fig. 3.242 (i), are shown separately 
in Fig. 3.242 (ii). These star-connected resistances are converted into equivalent delta-connected 
resistances R1, R2 and R3 as shown in Fig. 3.242 (iii).

  R1 = 
3 3

3 3
1

×+ +  = 15 Ω

  R2 = 
3 1

3 1
3

×+ +  = 5 Ω

  R3 = 
1 3

1 3
3

×+ +  = 5 Ω

 After above star-delta conversion, the circuit reduces to the one shown in Fig. 3.242 (iv). This 
circuit can be further simplified by combining parallel resistances and the circuit becomes as shown 
in Fig. 3.242 (v).

Fig. 3.242

 The three delta-connected resistances 1 Ω, 5 Ω and 8 Ω in Fig. 3.242 (v) are shown separately 
in Fig. 3.242 (vi). These delta-connected resistances can be converted into equivalent star-connected 
resistances R′1, R′2 and R′3 as shown in Fig. 3.242 (vii).
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  R′1 = 
1 8

1 5 8

×
+ +

 = 
4

7
Ω

  R′2 = 
5 1

1 5 8

×
+ +

 = 
5

14
Ω

  R′3 = 
8 5

1 5 8

×
+ +

 = 
20

7
Ω

Fig. 3.242
 After above delta-star conversion, the circuit reduces to the one shown in Fig. 3.242 (viii).

Fig. 3.242
 Total resistance offered by the circuit to the battery is

  RT = 4 5 20 20
2.5 || 7.6

7 14 7 9

    + + + +        

   = 
4 20 320

|| 7.6
7 7 63

 + +  
 = 10 Ω

 ∴  Current supplied by the battery [See Fig. 3.242 (ix)] is

  I = 
10

10T

V
R

=  = 1 A

 Example 3.97. A network of resistors is shown in Fig. 3.243 (i). Find the resistance (i) between 
terminals A and B (ii) B and C and (iii) C and A.
 Solution. The star-connected resistances 6 Ω, 3 Ω and 4 Ω in Fig. 3.243 (i) are shown 
separately in Fig. 3.243 (ii). These star-connected resistances can be converted into equivalent 
delta-connected resistances R1,  R2  and R3 as shown in Fig. 3.243 (ii).
  R1 = 4 + 6 + (4 × 6/3) = 18 Ω
  R2 = 6 + 3 + (6 × 3/4)  =  13·5 Ω
  R3 = 4 + 3 + (4 × 3/6) =  9 Ω
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Fig. 3.243
 These delta-connected resistances R1, R2 and R3 come in parallel with the original delta-connected 
resistances. The circuit shown in Fig. 3.243 (i) reduces to the circuit shown in Fig. 3.244(i).

Fig. 3.244

 The parallel resistances in each leg of delta in Fig. 3.244 (i) can be replaced by a single resistor 
as shown in Fig. 3.244 (ii) where
  RAC = 9 × 18/27 = 6 Ω
  RBC = 9 × 1/10  =  0·9 Ω
  RAB = 1·5 × 13·5/15 = 1·35 Ω 
 (i) Resistance between A and B  = 1·35 Ω || (6 + 0·9) Ω  = 1·35 × 6·9/8·25 = 1·13 Ω
 (ii) Resistance between B and  C = 0·9 Ω || (6 + 1·35) Ω =  0·9 × 7·35/8·25 = 0·8 Ω
 (iii) Resistance between A and  C = 6 Ω || (1·35 + 0·9) Ω = 6 × 2·25/8·25 = 1.636 Ω

 Example 3.98. Determine the load current in branch EF in the circuit shown in Fig. 3.245 (i).

Fig. 3.245
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 Solution. The circuit ACGA forms delta and is shown separately in Fig. 3.245 (ii) for clarity. 
Changing this delta connection into equivalent star connection [See Fig. 3.245 (ii)], we have,

  RAN = 
500 200

500 200 200

×
+ +

 = 111.11 Ω   ;   RCN = 
200 200

500 200 200

×
+ +

 = 44.44 Ω  ;

  RGN = 
500 200

500 200 200

×
+ +

 = 111.11 Ω

 Thus the circuit shown in Fig. 3.245 (i) reduces to the circuit shown in Fig. 3.246 (i). The branch 
NEF ( = 111·11 + 600 = 711·11 Ω) is in parallel with branch NCD ( = 44·44 + 600 = 644·44 Ω) and 
the equivalent resistance of this parallel combination is

   = 
711.11 644.44

711.11 644.44

×
+

 = 338 Ω

 The circuit shown in Fig. 3.246 (i) reduces to the circuit shown in Fig. 3.246 (ii).

Fig. 3.246

 ∴ Battery current, I = 
100

338 111.11+
 = 0.222 A

 This battery current divides into two parallel paths [See Fig. 3.246 (i)] viz. branch NEF and 
branch NCD.
 ∴  Current in branch NEF i.e. in branch EF

   = 
644.44

0.222
711.11 644.44

×
+

 = 0.1055 A

 Example 3.99. A square and its diagonals are made of a uniform covered wire. The resistance 
of each side is 1 Ω and that of each diagonal is 1·414 Ω. Determine the resistance between two 
opposite corners of the square.

Fig. 3.247
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 Solution. Fig. 3.247 (i) shows the given square. It is desired to find the resistance between 
terminals A and C. The star-connected resistances 1 Ω, 1 Ω and 1·414 Ω (with star point at B) are 
shown separately in Fig. 3.247 (ii). These star-connected resistances can be converted into equivalent 
delta connected resistances R1, R2 and R3 as shown in Fig. 3.247 (ii) where

  R1 = AB BC
AB BC

BD

R RR R
R

⋅+ +

   = 
1 1

1 1
1.414

×+ +  = 2.7 Ω

  R2 = 
1 1.414

1 1.414
1

×+ +  = 3·83 Ω

  R3 = 
1 1.414

1 1.414
1

×+ +  = 3·83 Ω 

 The circuit shown in Fig. 3.247 (i) then reduces to the circuit shown in Fig. 3.248 (i). Note 
that R1 comes in parallel with 1·414 Ω connected between A and C; R2 comes in parallel with 1 Ω 
connected between C and D and R3 comes in parallel with 1 Ω connected between A and D.

Fig. 3.248

 In Fig. 3.248 (i), branch AD has 1 Ω and 3·83 Ω resistances in parallel.

 ∴ RAD = 
1 3.83

1 3.83

×
+

 = 0.793 Ω  ;  RCD = 
1 3.83

1 3.83

×
+

 = 0.793 Ω ;

  RAC = 
2.7 1.414

2.7 1.414

×
+

 = 0.928 Ω

 ∴   Resistance between terminals A and C [See Fig. 3.248 (ii)]

   = 0·928 || (0·793 + 0·793) = 0·928 × 1·586/2·514 = 0·585 Ω
 Example 3.100. Determine the resistance between the terminals A and B of the network 
shown in Fig. 3.249 (i).
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Fig. 3.249

 Solution. We can combine series resistances on the right and left of Fig. 3.249 (i). The circuit 
then reduces to the one shown in Fig. 3.249 (ii). The resistances 5 Ω, 20 Ω and 15 Ω form a delta 
circuit and can be replaced by a star network where

 R1 = 
Product of two adjacent arms of delta

Sum of arms of delta
 = 

20 5 100

5 20 15 40

× =
+ +

 = 2.5 Ω ;

 R2 = 
20 15

40

×
 = 7.5 Ω   ;  R3 = 

5 15

40

×
 = 1.875 Ω

 Referring to Fig. 3.249 (ii), R1 is in series with 10 Ω resistor and their total resistance is 10 + R1 
= 10 + 2·5 = 12·5 Ω. Similarly, we have 30 + R2 = 30 + 7·5 = 37·5 Ω and 2 + R3 = 2 + 1·875 = 3·875 
Ω. The circuit then reduces to the one shown in Fig. 3.249 (iii).

Fig. 3.249

 Referring to Fig. 3.249 (iii), 3·875 Ω, 37·5 Ω and 30 Ω form a delta network and can be reduced 
to star network where
  R4 = 

3.875 37.5 3.875 37.5

3.875 37.5 30 71.375

× ×=
+ +

 = 2.04 Ω  ;

 R5 = 
37.5 30

71.375

×
 = 15.76 Ω  ;   R6 = 

3.875 30

71.375

×
 = 1.63 Ω

 Referring to Fig. 3.249 (iii), R4 is in series with 12.5 Ω resistor and their combined resistance =  
R4 + 12·5 = 2·04 + 12·5 = 14·54 Ω. The circuit then reduces to the one shown in Fig. 3.249 (iv). The 
resistance between terminals A and B is given by  ;

 RAB = 15.76 + [14.54 || (15 + 1.63)] = 
14.54 16.63

15.76
31.17

×+  = 23·5 Ω
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 Example 3.101. Determine the resistance between points A and B in the network shown in  
Fig. 3.250 (i).

Fig. 3.250

 Solution. The 3 Ω, 5 Ω and 8 Ω form star network and can be replaced by delta network where
 Resistance between two terminals of delta = Sum of star resistances connected to those 

terminals plus product of same two resistances 
divided by the third star resistance.

 ∴ R1 = 
3 5

3 5
8

×+ +  = 9·875 Ω

  R2 = 
3 8

3 8
5

×+ +  = 15·8 Ω

  R3 = 
5 8

5 8
3

×+ +  = 26·3 Ω

 Referring to Fig. 3.250 (ii), 5 Ω resistor is in parallel with R2 ( = 15·8 Ω) and their combined 
resistance is 3·8 Ω. Similarly, 4 Ω resistor is in parallel with R3 (= 26·3 Ω) and their combined 
resistance is 3·5 Ω. The circuit then reduces to the one shown in Fig. 3.250 (iii). Referring to  
Fig. 3.250 (iii), 6 Ω, 4 Ω and 9·875 Ω form a delta network and can be replaced by star network where

 R6 = 
6 4 24

6 4 9.875 19.875

× =
+ +

 = 1.2 Ω  ;  R7 = 
9.875 4

19.875

×
 = 1.99 Ω  ;  R8 = 

9.875 6

19.875

×
 = 2.98 Ω 

Fig. 3.250
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 Therefore, the circuit shown in Fig. 3.250 (iii) reduces to the one shown in Fig. 3.250 (iv). It is 
clear that :
  RAB  = (3·8 + R8) || (R7 + 3·5) + R6 = (3·8 + 2·98) || (1·99 + 3·5) + 1·2
   = (6·78 || 5·49) + 1·2 = 4·23 Ω
 Example 3.102. A π network is to be constructed as shown in Fig. 3.251 (i) so that the 
resistance RXZ looking into the X – Z terminals (with Y – Z open) equals the resistance RYZ looking 
into the Y – Z terminals (with X – Z open). If that resistance must equal 1 kΩ, find the value of R∆ 
that should be used in the π network.

Fig. 3.251

 Solution. The delta network shown in Fig. 3.251 (i) can be converted into star network as shown 
in Fig. 3.251 (ii). Note that the star network has equal-valued resistors R∆/3. It is clear from this 
figure that :   
   RXZ = RYZ = 

2

3 3 3

R R R∆ ∆ ∆+ =

 or  1 kΩ = 
2

3

R∆    or    R∆ = 1.5 kΩ

 Therefore, the π network must have three 1.5 kΩ 
resistors as shown in Fig 3.251 (iii).

 Example 3.103. Find the current distribution in the network shown in Fig. 3.252 (i).

Fig. 3.252

 Solution. The network OAB forms a delta and can be replaced by star where :

  R1 = 
1 2 1

6 3

× = Ω    ;   R2 = 
1 3

6

×
 = 0.5 Ω   ;   R3 = 

2 3

6

×
 = 1 Ω

 The network then reduces to the one shown in Fig. 3.252 (ii). The current through OP is 1 A and 
divides between two parallel paths at point P. By current-divider rule :

  Current in PA = Current in AC = 
5 5

1 1
1 4 0.5 5 10.5

× = ×
+ + +

 = 0.477 A

  Current in PB = Current in BC = 1 – 0.477 = 0.523A

Fig. 3.251
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  Voltage drop in PB = 1 × 0·523 = 0.523 V

  Voltage drop in PA = 0·5 × 0·477 = 0.238 V

 ∴ VAB = 0·523 – 0·238 = 0.285 V

 ∴ IAB = 0·285/3 = 0.095 A 
  Current in OB = Current in BC – Current in AB
   = 0.523 – 0.095 = 0.428 A
  Current in OA = 1 – 0.428 = 0.572 A

 Example 3.104. Find the current in 10 Ω resistor in the network shown in Fig. 3.253 (i) by 
star-delta transformation.

Fig. 3.253

 Solution. In Fig. 3.253 (i), the 4 Ω and 8 Ω resistors are in series and their total resistance is 8 + 
4 = 12 Ω. Similarly, at the right end of figure, 17 Ω and 13 Ω are in series so that their total resistance 
becomes 17 + 13 = 30 Ω. The circuit then reduces to the one shown in Fig. 3.253 (ii). Replacing the 
two deltas at the left end and right end in Fig. 3.253 (ii) by their equivalent star, we get the circuit 
shown in Fig. 3.253 (iii).

Fig. 3.253

 Referring to Fig. 3.253 (iii), the path CED has resistance = 4 + 34 + 10 = 48 Ω and path CABD 
has resistance = 4 + 10 + 10 = 24 Ω. The circuit then reduces to the one shown in Fig. 3.253 (iv). 
The total resistance RT presented to 180V source is 
  RT = 4 + (48 || 24) + 10 = 30 Ω

 ∴ Circuit current, I = 180/30 = 6 A

 ∴   Voltage across parallel combination = I × (48 || 24) = 6 × 16 = 96 V

 ∴  Current in 10 Ω resistor [part of 24 Ω in Fig. 3.253 (iv)] = 96/24 = 4 A
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 Example 3.105. Using Norton’s theorem, find the current through the 8 Ω resistor shown in  
Fig 3.254 (i). All resistance values are in ohms.

Fig. 3.254

 Solution. In order to find Norton current IN, place short circuit across the load of 8 Ω resistor. 
The circuit then becomes as shown in Fig. 3.254 (ii). The short circuit bypasses all the resistors 
except 2 Ω resistor. Therefore, ISC = IN = 200/2 = 100 A. In order to find RN, replace 200 V source by 
a short. Then RN is the resistance looking into open-circuited terminals A and B in Fig. 3.254 (iii).

Fig. 3.254

 In Fig. 3.254 (ii), ABC network forms a delta and can be replaced by equivalent star network as 
shown in Fig. 3.254 (iii). This circuit reduces to the one shown in Fig. 3.254 (iv).
  Norton’s resistance, RN = Resistance at the open-circuited terminals in Fig. 3.254 (iv)
   = 2 || 4 || (5·5 + 2·5) = 8/7 Ω
 Therefore, Norton equivalent circuit consists of 100A current source in parallel with a 
resistance of 8/7 Ω. When load RL ( = 8 Ω) is connected at the output terminals of Norton’s 
equivalent circuit, the circuit becomes as shown in Fig 3.254 (v). By current-divider rule, the load 
current IL through RL ( = 8 Ω) is given by ;
  IL = 

8 7
100

8 (8 7)
×

+
 = 12·5 A

 Example 3.106. In the network shown in Fig. 3.255 (i), find (i) Norton equivalent circuit at 
terminals AB (ii) the maximum power that can be provided to a resistor R connected between 
terminals A and B.

Fig. 3.255
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 Solution. (i) The star- connected resistances 4 Ω, 8 Ω and 2 Ω in Fig. 3.255 (i) can be converted 
into equivalent delta-connected resistances Rab, Rbc and Rca as shown in Fig. 3.255 (ii).

  Rab = 
4 8

4 8
2

×+ +  = 28 Ω

  Rbc = 
8 2

8 2
4

×+ +  = 14 Ω

  Rca = 
2 4

2 4
8

×+ +  = 7 Ω

 After above star-delta conversion, 
the circuit reduces to the one shown in  
Fig. 3.255 (ii). We can further 
simplify the circuit in Fig. 3.255 (ii) 
by combining the parallel resistances 
(4 Ω || 28 Ω = 3.5 Ω and 3 Ω  || 7 Ω 
= 2.1 Ω). The circuit then becomes 
as shown in Fig. 3.255 (iii). We now 
convert 48A current source in parallel 
with 2.1Ω resistance in Fig. 3.255 
(iii) into equivalent voltage source 
of 48 A × 2.1 Ω = 100.8 V in series 
with 2.1Ω resistance. The circuit then 
becomes as shown in Fig. 3.255 (iv). 
In order to find Norton current IN, 
we short circuit terminals A and B 
in Fig. 3.255 (iv) and get the circuit 
of Fig. 3.255 (v). Then current in 
the short-circuit is IN. Referring to  
Fig. 3.255 (v) and applying Ohm’s law, 
the value of IN is given by ;

          IN  =  
100.8

2.1 3.5+
 = 18A

 Note that no current will pass through 14 Ω resistor in Fig. 3.255 (v). It is because there is a 
short across this resistor and the entire current ( = IN) will pass through the short.    

Fig. 3.255

 In order to find Norton resistance RN(= RTh), we open circuit the terminals AB and replace the 
voltage source by a short in Fig. 3.255 (iv). The circuit then becomes as shown in Fig. 3.255 (vi).

 ∴ RN = Resistance at terminals AB in Fig. 3.255 (vi)

   = (3.5 + 2.1) Ω || 14 Ω = 5.6 Ω || 14 Ω = 4 Ω

Fig. 3.255

Fig. 3.255
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Fig. 3.255

 The Norton equivalent circuit at terminals AB is shown in Fig. 3.255 (vii).

 (ii) Maximum power will be provided to resistance R connected between terminals A and B 
when resistance R is equal to Norton resistance RN i.e.
  R = RN = 4 Ω
 When R(= 4 Ω) is connected across terminals A and B in Fig. 3.255 (vii), then by current-divider 
rule,
          Current in R (= 4 Ω), I = 

4
18

4 4
×

+
 = 9A 

 ∴   Maximum power (Pmax) provided to R is

  Pmax =  I2R = (9)2 × 4 = 324 W
 Remember that under the condition of maximum power transfer, the circuit efficiency is only 
50% and the remaining 50% is dissipated in the circuit.

 Example 3.107. Determine 
a non-negative value of R such 
that the power consumed by the  
2 Ω resistor in Fig. 3.256 (i) is 
maximum.

 Solution. In order to find 
maximum power consumed in 2 Ω 
resistor (i.e. load), we should find 
Thevenin resistance RTh at 2 Ω 
terminals. For this purpose, we open 
circuit the load terminals (i.e. remove 2 Ω resistor) and short circuit the voltage sources as shown in 
Fig. 3.256 (ii). The resistance at the open-circuited load (i.e. 2Ω) terminals XY is the RTh.

 RTh = Resistance at terminals XY   
           in Fig. 3.256 (ii).
 In order to facilitate the deter-
mination of RTh, we convert delta-
connected resistances R Ω, 3 Ω and 
3 Ω  in Fig. 3.256 (ii) into equivalent 
star-connected resistances R1, R2 and 
R3 as shown in Fig. 3.256 (iii). The 
values of R1, R2 and R3 are given by ;

  R1 = 
3 3

3 3 6

R R
R R

× =
+ + +

  R2 = 
3

3 3

R
R

×
+ +

 = 
3

6

R
R+

Fig. 3.256

Fig. 3.256
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  R3 = 
3 3 9

3 3 6R R
× =

+ + +

Fig. 3.256
 After above delta-star conversion, the circuit becomes as shown in Fig. 3.256 (iii). Then 
resistance at open-circuited terminals XY is RTh.
  Referring to Fig. 3.256 (iii),
  RTh = 

3 9 3
|| 3

6 6 6

R R
R R R

    + +    + + +    

   = 
3 27 3 3

||
6 6 6

R R R
R R R

+  + + + + 

   = 
3 (27 3 ) 3

(6 ) (27 3 3 ) 6

R R R
R R R R

× + +
+ + + +

 For maximum power in 2 Ω, the value of RTh should be equal to 2 Ω.

 ∴ 
3 (27 3 ) 3

(6 )(27 3 3 ) 6

R R R
R R R R

× + +
+ + + +

 = 2

 or 
3 (27 3 )

3
27 6

R R R
R

× + +
+

 = 2(6 + R)

 or  5R2 + 12R – 108 = 0 ...after simplification
 ∴ R = + 3.6 Ω or – 6 Ω
 Accepting the positive value, R = 3.6 Ω.

Tutorial  Problems
 1. Find the total current drawn from the voltage source and the current through R1 ( = 1 Ω) in the circuit 

shown in Fig. 3.257.    [4 A ; 2 A]
 2. Convert the delta network shown in Fig. 3.258 into equivalent wye network. 

  Fig. 3.257 Fig. 3.258
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 3. Convert the wye network shown in Fig. 3.259 into equivalent delta network.

  Fig. 3.259 Fig. 3.260

 4. Convert the delta network shown in Fig. 3.260 into the equivalent wye network.
 5. In the network shown in Fig. 3.261, find the resistance between terminals B and C using star/delta 

transformation.    [17/12 Ω]

  Fig. 3.261 Fig. 3.262

 6. In the network shown in Fig. 3.262, find the current supplied by the battery using star/delta 
transformation.    [0·452 A]

 7. What is the resistance between terminals A and B of the network shown in Fig. 3.263 ? [274·2 Ω]

  Fig. 3.263 Fig. 3.264

 8. Using delta/star transformation, find the resistance between terminals A and C of the network shown in 
Fig. 3.264.

 9. Using star/delta transformation, determine the value of R for the network shown in Fig. 3.265 such that 
4Ω resistor consumes the maximum power. [R = 36Ω]
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  Fig. 3.265 Fig. 3.266

 10. Calculate the current I flowing through the 10 Ω resistor in the circuit shown in Fig. 3.266. Apply 
Thevenin’s theorem and star/delta transformation. [5.45 mA from D to B]

ANSWERS  TO  PROBLEMS  2  TO  4

 Prob. 2 Prob. 3 Prob. 4

3.26.  Tellegen’s  Theorem
 This theorem has wide applications in electric networks and may be stated as under :
 For a network consisting of n elements if i1, i2, i3 .... in are the instantaneous currents 
flowing through the elements satisfying KCL and v1, v2, v3 ... vn are the instantaneous voltages 
across these elements satisfying KVL, then,
  v1i1 + v2i2 + v3i3 + ..... + vnin = 0

 or 
1

n

n n
n

v i
=

∑  = 0

 Now vi is the instantaneous power. Therefore, Tellegen’s theorem can also be stated as under :
 The sum of instantaneous powers for n branches in a network is always * zero.
 This theorem is valid for any lumped network that contains elements linear or non-linear, 
passive or active, time variant or time invariant.
 Explanation. Let us explain Tellegen’s theorem with a simple circuit shown in Fig. 3.267. The 
total resistance offered to the battery = 8 Ω + (4 Ω || 4 Ω) = 10 Ω. Therefore, current supplied by 
battery is I = 100/10 = 10A. This current divides equally at point A.
 Voltage drop across 8 Ω = – (10 × 8) = – 80 V
 Voltage drop across 4 Ω = – (5 × 4) = – 20 V
 Voltage drop across 1 Ω = – (5 × 1) = – 5V
 Voltage drop across 3 Ω = – (5 × 3) = – 15 V

* This is in accordance with the law of conservation of energy because power delivered by the battery is 
consumed in the circuit elements.
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 According to Tellegen’s theorem,
 Sum of instantaneous powers = 0
 or v1i1 + v2i2 + v3i3 + v4i4 + v5i5 = 0

 or (100 × 10) + (–80 × 10) + (–20 × 5) + (–5 × 5) 
 + (–15 × 5) = 0
 or 1000 – 800 – 100 – 25 – 75 = 0
 or 0 = 0 which is true
 Thus Tellegen’s theorem stands proved.

Objective  Questions
Fig. 3.267

 1. An active element in a circuit is one which 
.......... 

 (i) receives energy

 (ii) supplies energy

 (iii) both receives and supplies energy

 (iv) none of the above

 2. A passive element in a circuit is one which 
..........

 (i) supplies energy

 (ii) receives energy

 (iii) both supplies and receives energy

 (iv) none of the above

 3. An electric circuit contains ..........

 (i) active elements only

 (ii) passive elements only

 (iii) both active and passive elements

 (iv) none of the above

 4. A linear circuit is one whose parameters (e.g. 
resistances etc.) ..........

 (i) change with change in current

 (ii) change with change in voltage

 (iii) do not change with voltage and current

 (iv) none of the above

 5. In the circuit shown in Fig. 3.268, the number 
of nodes is ..........

 (i) one (ii) two

 (iii) three (iv) four

Fig. 3.268

 6. In the circuit shown in Fig. 3.268, there are 
.......... junctions. 

 (i) three  (ii) four
 (iii) two (iv) none of the above
 7. The circuit shown in Fig. 3.268 has .......... 

branches.
 (i) two (ii) four
 (iii) three (iv) none of these
 8. The circuit shown in Fig. 3.268 has .......... 

loops.
 (i) two  (ii) four
 (iii) three (iv) none of the above
 9. In the circuit shown in Fig. 3.268, there are 

.......... meshes.   
 (i) two (ii) three
 (iii) four (iv) five
 10. To solve the circuit shown in Fig. 3.268 by 

Kirchhoff’s laws, we require .......... 
 (i) one equation (ii) two equations
 (iii) three equations (iv) none of the above
 11. To solve the circuit shown in Fig. 3.268 by 

nodal analysis, we require ..........  
 (i) one equation  (ii) two equations
 (iii) three equations (iv) none of the above
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Fig. 3.269

 12. To solve the circuit shown in Fig. 3.269 by 
superposition theorem, we require ..........  

 (i) one circuit (ii) two circuits
 (iii) three circuits  (iv) none of the above
 13. To solve the circuit shown in Fig. 3.269 by 

Maxwell’s mesh current method, we require 
..........

 (i) one equation (ii) three equations
 (iii) two equations (iv) none of the above
 14. In the circuit shown in Fig. 3.270, the voltage 

at node B w.r.t. D is calculated to be 15V. The 
current in 3 Ω resistor will be .......... 

 (i) 2 A (ii) 5 A
 (iii) 2·5 A (iv) none of the above
 15. The current in 2 Ω horizontal resistor in Fig. 

3.270 is ..........
 (i) 10 A (ii) 5 A
 (iii) 2 A (iv) 2·5 A

Fig. 3.270

 16. In order to solve the circuit shown in Fig. 3.270 
by nodal analysis, we require ..........

 (i) one equation (ii) two equations
 (iii) three equations (iv) none of the above
 17. The superposition theorem is used when the 

circuit contains .......... 
 (i) a single voltage source
 (ii) a number of voltage sources
 (iii) passive elements only
 (iv) none of the above

 18. Fig. 3.271 (ii) shows Thevenin’s equivalent 
circuit of Fig. 3.271 (i). The value of Thevenin’s 
voltage VTh is ..........

 (i) 20 V (ii) 24 V
 (iii) 12 V (iv) 36 V

Fig. 3.271

 19. The value of RTh in Fig. 3.271 (ii) is ..........
 (i) 15 Ω (ii) 3·5 Ω
 (iii) 6·4 Ω (iv) 7·4 Ω
 20. The open-circuited voltage at terminals AB in 

Fig. 3.271 (i) is ..........
 (i) 12 V (ii) 20 V
 (iii) 24 V (iv) 40 V
 21. Find the value of RL in Fig. 3.272 to obtain 

maximum power in RL.

Fig. 3.272

 (i) 100 Ω (ii) 75 Ω
 (iii) 250 Ω (iv) 150 Ω
 22. In Fig. 3.272, find the maximum power in RL.
 (i) 2 W (ii) 1·042 W
 (iii) 2·34 W (iv) 4·52 W



D.C.  Network  Theorems 237 

 23. What percent of the maximum power is 
delivered to RL in Fig. 3.273 when RL = 2RTh?

Fig. 3.273

 (i) 79 % of PL (max)
 (ii) 65 % of PL (max)
 (iii) 88·89 % of PL (max)
 (iv) none of above
 24. What percent of the maximum power is 

delivered to RL in Fig. 3.273 when RL = RTh/2 ?
 (i) 65 % (ii) 70 %
 (iii) 88·89 % (iv) none of above
 25. Find Millman’s equivalent circuit w.r.t. 

terminals x – y in Fig. 3.274.

Fig. 3.274

 (i) Single current source of 0·1A and 
resistance 75 Ω 

 (ii) Single current source of 2 A and resistance 
50  Ω

 (iii) Single current source of 1 A and resistance 
25  Ω

 (iv) none of above
 26. Use superposition principle to find current 

through R1 in Fig. 3.275.

Fig. 3.275

 (i) 1 mA ← (ii) 2 mA ←
 (iii) 1·5 mA → (iv) 2·5 A ← 
 27. Use superposition principle to find current 

through R1 in the circuit shown in Fig. 3.276.

Fig. 3.276

 (i) 0·2 A ← (ii) 0·25 A →
 (iii) 0·125 A → (iv) 0·5 A → 
 28. Find Thevenin equivalent circuit to the left of 

terminals x – y in Fig. 3.277.

Fig. 3.277

 (i) VTh = 5 V  ;  RTh = 4·5 Ω
 (ii) VTh = 6 V  ;  RTh = 5 Ω
 (iii) VTh = 4·5 V  ;  RTh = 10 Ω
 (iv) VTh = 10 V  ;  RTh = 9 Ω 
 29. Convert delta network shown in Fig. 3.278 to 

equivalent Wye network.

Fig. 3.278

 (i) 

 (ii) 
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 (iii)  

 (iv)   

 30. What percentage of the maximum power is 
delivered to a load if load resistance is 10 times 
greater than the Thevenin resistance of the 
source to which it is connected ?

 (i) 25 % (ii) 40 %
 (iii) 35 % (iv) 33·06 %

Answers
 1. (ii) 2. (ii)  3. (iii)  4. (iii)  5. (iv)  
 6. (iii)  7. (iii)  8. (iii)  9. (i)  10. (ii) 
 11. (i)  12. (ii)  13. (iii)  14. (ii) 15. (iv) 
 16. (i)  17. (ii)  18. (ii) 19. (iv)  20. (iii)
 21. (iv) 22. (ii) 23. (iii) 24. (iii) 25. (i)
 26. (ii) 27. (iii) 28. (iv) 29. (i) 30. (iv)



Introduction
 Engineering is an applied science dealing with a very large number of *physical quantities 
like distance, time, speed, temperature, force, voltage, resistance etc.  Although it is possible to as-
sign a standard unit for each quantity, it is rarely necessary to do so because many of the quantities 
are functionally related through experiment, derivation or definition.  In the study of mechanics, 
for example, the units of only three quantities viz. mass, length and time need to be selected.  All 
other quantities (e.g. area, volume, velocity, force etc.) can be expressed in terms of the units of 
these three quantities by means of experimental, derived and defined **relationship between the 
physical quantities.  The units selected for these three quantities are called fundamental units.  
In order to cover the entire subject of engineering, three more fundamental quantities have been 
selected viz. †electric current, temperature and luminous intensity. Thus there are in all six fun-
damental quantities (viz, mass, length, time, current, temperature and luminous intensity) which 
need to be assigned proper and standard units. The units of all other physical quantities can be 
derived from the units of these six fundamental quantities. In this chapter, we shall focus our at-
tention on the mechanical, electrical and thermal units of work, power and energy.

4.1.   International  System  of  Units
 Although several systems were evolved to assign units to the above mentioned six fundamental 
quantities, only international system of units (abbreviated as SI) has been universally accepted. The 
units assigned to these six fundamental quantities in this system are given below.                           

Quantity Symbol Unit name Unit symbol
Length l, L metre m
Mass m kilogram kg
Time t second s
Electric Current I ampere A
Temperature T degree kelvin K
Luminous I candela Cd
Intensity

 It may be noted that the units of all other physical quantities in science and engineering (i.e. 
other than six fundamental or basic quantities above) can be derived from the above basic units and 
are called derived units. Thus unit of velocity (= 1 m/s) results when the unit of length (= 1 m) is 
divided by the unit of time (= 1 s). Similarly, the unit of force (= 1 newton) results when unit of mass  
(= 1 kg) is multiplied by the unit of acceleration (= 1 m/s2). Therefore, units of velocity and force 
are the derived units.

* A physical quantity is one which can be measured.
** For example, by definition, speed is the distance travelled per second.  Therefore, speed is related to distance  

(i.e. length) and time.
† For practical reasons, electric current and not charge has been taken as the fundamental quantity, though 

one is derivable from the other.  The important consideration which led to the selection of current as the 
fundamental quantity is that it serves as the link between electric, magnetic and mechanical quantities and 
can be readily measured.

4
Units—Work, Power and Energy
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4.2.   Important  Physical  Quantities
 It is profitable to give a brief description of the following physical quantities much used in  
science and engineering :
 (i) Mass. It is the quantity of matter possessed by a body. The SI unit of mass is kilogram 

(kg).  The mass of a body is a constant quantity and is independent of place and position of 
the body. Thus the mass of a body is the same whether it is on Earth’s surface, the Moon’s 
surface, on the top of a mountain or down a deep well.

   1 quintal = 100 kg  ; 1 tonne = 10 quintals = 1000 kg
 (ii) Force.  It is the product of mass (kg) and acceleration (m/s2). The unit of force is newton 

(N) ; being the force required to accelerate a mass of 1 kg through an acceleration of  
1 m/s2.

  \ F = m a newtons
  where m = mass of the body in kg
   a = acceleration in m/s2

 (iii) Weight. The force with which a body is attracted towards the centre of Earth is called the 
weight of the body.  Now, force = mass × acceleration.  If m is the mass of a body in kg and 
g is the acceleration due to gravity in m/s2, then,

        Weight, W = m g newtons

 As the value of g* varies from place to place on earth’s surface, therefore, the weight of the 
body varies accordingly.  However, for practical purposes, we take g = 9·81 m/s2 so that weight of 
the body = 9·81 m newtons.  Thus if a mass of 1 kg rests on a table, the downward force on the table 
i.e., weight of the body is W = 9·81 × 1 = 9·81 newtons.
 The following points may be noted carefully :
 (a) The mass of a body is a constant quantity whereas its weight depends upon the place or 

position of the body. However, it is reasonably accurate to express weight W = 9·81 m  
newtons where m is the mass of the body in kg.

 (b) Sometimes weight is given in kg. wt. units. One kg-wt means weight of mass of 1 kg i.e.             
9·81 × 1 = 9·81 newtons.

  \ 1 kg. wt. = 9·81 newtons
 Thus, when we say that a body has a weight of 100 kg, it means that it has a mass of 100 kg and 
that it exerts a downward force of 100 × 9·81 newtons.

4.3.   Units  of  Work  or  Energy
 Work is said to be done on a body when a force acts on it and the body moves through some 
distance. This work done is stored in the body in the form of energy.  Therefore, work and energy 
are measured in the same units. The SI unit of work or energy is joule and is defined as under :
 The work done on a body is one joule if a force of one newton moves the body through 1 m in 
the direction of force.
 It may be noted that work done or energy possessed in an electrical circuit or mechanical 
system or thermal system is measured in the same units viz. joules. This is expected because 
mechanical, electrical and thermal energies are interchangeable.  For example, when mechanical 
work is transferred into heat or heat into work, the quantity of work in joules is equal to the 
quantity of **heat in joules.
* The value of g is about 9.81 m/s2 at sea level whereas at equator, it is about 9.78 m/s2 and at each pole it 

is about 9.832 m/s2.
** Although heat energy was assigned a separate unit viz. calorie but the reader remembers that 1 calorie  

= 4.186 joules. In fact, the thermal unit calorie is obsolete and now-a-days heat is expressed in joules.
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 Note. To gain some appreciation for the magnitude of a joule of heat energy, it would require about  
90,000 J  to heat a cup of water from room temperature to boiling.

4.4.   Some  Cases  of  Mechanical  Work  or  Energy
 It may be helpful to give a few important cases of work done or energy possessed in a me-
chanical system :
 (i) When a force of F newtons is exerted on a body through 

a distance ‘d’ metres in the direction of force, then,
  Work done = F × d joules or Nm
 (ii) Suppose a force of F newtons in maintained tangentially 

at a radius r metres from O as shown in Fig. 4.1. In 
one revolution, the point of application of force travels 
through a distance of 2π r metres.

 \  Work done in one revolution
    = Force × Distance moved in 1 revolution
    = F × 2 π r
    = 2π × T joules or Nm
where T = F r is the torque.  Clearly, the SI unit of torque will be joules or Nm.  If the body makes 
N revolutions per minute, then,
   Work done/minute = 2π N T joules
 (iii) If a body of mass m kg is moving with a speed of v m/s, then kinetic energy possessed by 

the body is given by ;
   K.E. of the body = 21

2
mv  joules

 (iv) If a body having a mass of m kg is lifted vertically through a height of h metres and g is 
acceleration due to gravity in m/s2, then,

   Potential energy of body = Work done in lifting the body = Force required × height
    = Weight of body × height = m g × h
    = m g h joules

4.5.   Electrical  Energy
 The SI unit of electrical work done or electrical energy expended in a circuit is also joule—ex-
actly the same as for mechanical energy.  It is defined as under :
 One joule of energy is expended electrically when one coulomb is moved through a p.d. of  
1 volt.
 Suppose a charge of Q coulomb moves through a p.d. of V volts in time t in part AB of a circuit 
as shown in Fig. 4.2. Then electrical energy expended is given by ;
 Electrical energy expended
    = V Q joules
    = V I t joules (  Q = I t)
    = I2R t joules (  V = I R)

    = 
2V t

R
 joules 

VI
R

 =  
∵  

 It may be mentioned here that joule is also known as watt-second i.e. 1 joule = 1 watt-sec. 
When we are dealing with large amount of electrical energy, it is often convenient to express it in 
kilowatt hours (kWh).
   1 kWh = 1000 watt-hours = 1000 × 3600 watt-sec or joules

Fig. 4.1

Fig. 4.2
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 \  1 kWh = 36 × 105 joules or watt-sec
 Although practical unit of electrical energy is kWh, yet it is easy to see that this unit is readily 
convertible to joules with the help of above relation.
 The electricity bills are made on the basis of total electrical energy consumed by the consumer. 
The unit for billing of electrical energy is 1 kWh. Thus when we say that a consumer has consumed 
100 units, it means the electrical energy consumption is 100 kWh. Note that 1 kWh is also called 
Board of Trade Unit (B.O.T.U.) or unit of electricity.

4.6.   Thermal  Energy
 Heat is a particularly important form of energy in the study of electricity, not only because it 
affects the electrical properties of the materials but also because it is liberated whenever electric 
current flows. This liberation of heat is infact the conversion of electrical energy to heat energy.
 The thermal energy was originally assigned the unit ‘calorie’. One calorie is the amount of heat 
required to raise the temperature of 1 gm of water through 1ºC. If S is the specific heat of a body, 
then amount of heat required to raise the temperature of m gm of body through θºC is given by ;
   Heat gained = (m S θ) calories
 It has been found experimentally that 1 calorie = 4·186 joules so that heat energy in calories can 
be expressed in joules as under :
   Heat gained = (m S θ) × 4·186 joules
 The reader may note that SI unit of heat is also joule. In fact, the thermal unit calorie is obsolete 
and unit joule is preferred these days.

4.7.   Units  of  Power
 Power is the rate at which energy is expended or the rate at which work is performed. Since 
energy and work both have the units of joules, it follows that power, being rate, has the units joule/
second.  Now Joule/second is also called watt. In general,

   Power = 
W
t

 watts

where W is the total number of joules of work performed or total joules of energy expended in t 
seconds.
 Suppose a charge of Q coulomb moves through a p.d. of V volts in time t in part AB of a 
circuit as shown in Fig. 4.2. Then,

 Electrical energy expended = VQ = VIt = I2Rt = 
2V t

R

 \            Power of circuit, P = 
VIt
t

 = 
2I Rt
t

 = 
2V t

Rt

 or  P = VI = I2R = 
2V

R
 In practice, watt is often found to be inconveniently small, consequently the unit kilowatt (kW) 
is used. One kW is equal to 1000 watts i.e.
   1 kW = 1000 watts
 For larger powers, the unit megawatt (MW) is used. One megawatt is equal to 1000 kW i.e.
   1 MW = 1000 kW = 1000 × 1000 watts
 \  1 MW = 106 watts
 It may be noted that power of an electrical system or mechanical system or thermal system is 
measured in the same units viz joules/sec. or watts.
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 Important points. The following points are worth noting :
 (i) Sometimes power is measured in *horse power (h.p.). 
   1 h.p. = 746 watts
 (ii) If a body makes N r.p.m. and the torque acting is T newton-metre, then,
   Work done/minute = 2π N T joules  [See Art. 4·4]

   Work done/sec = 
2

60
NTπ

 joules/sec or watts

i.e.,   Power = 
2

60
NTπ

 watts

   Since 746 watts = 1 h.p., we have,

   Power = 
2

60 746
NTπ

×
 h.p.

where T is in newton-m and N is in r.p.m.
 (iii) Power can also be expressed in terms of force and velocity.
   Power = Work done/sec = Force × distance/sec
  \ Power = Force × velocity

4.8.   Efficiency  of  Electric  Device
 The efficiency of an electric device is 
the ratio of useful output power to the input 
power, i.e.

  Efficiency, η = 
Useful output power

Input power
 

   = 
Useful output Energy

Input Energy

 The law of conservation of energy 
states that “energy cannot be created or de-
stroyed but can be converted from one form 
to another.’’ Some of the input energy to an electric device may be converted into a form that is not 
useful. For example, consider an electric motor shown in Fig. 4.3. The purpose of the motor is to 
convert electric energy into mechanical energy. It does this but it also converts a part of input energy 
into heat. The heat produced is not useful. Therefore, the useful output energy is less than the input 
energy. In other words, the efficiency of motor is less than 100%. While selecting an electric device, 
its efficiency is an important consideration because the operating cost of the device depends upon 
this factor.
 Some electric devices are nearly 100% efficient. An electric heater is an example. In a heater, 
the heat is useful output energy and practically all the input electric energy is converted into heat 
energy.

4.9.   Harmful  Effects  of  Poor  Efficiency
 The poor (or low) efficiency of a device or of a circuit has the following harmful effects :
 (i) Poor efficiency means waste of energy on non-useful output.

* This unit for power was conceived by James Watt, a Scottish scientist who invented the steam engine.  In 
his experiments, he compared the output of his engine with the power a horse could put out. He found that 
an “average” horse could do work at the rate of 746 joules/sec. Although power can be expressed in watts 
or kW, the unit h.p. is still used.

Fig. 4.3
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 (ii) Non-useful output of a device or circuit usually appears in the form of heat.  Therefore, 
poor efficiency means a significant temperature rise.  High temperature is one of the major 
limiting factors in producing reliable electric and electronic devices.  Circuits and devices 
that run hot are more likely to fail.

 (iii) The heat produced as a result of poor efficiency has to be dissipated i.e., heat has to be 
transferred to the atmosphere or some other mass.  Heat removal can become quite difficult 
in high power circuits and adds to the cost and size of the equipment.

 Example 4.1. An electrically driven pump lifts 80 m3 of water per minute through a height of 
12 m.  Allowing an overall efficiency of 70% for the motor and pump, calculate the input power to 
motor.  If the pump is in operation for an average of 2 hours per day for 30 days, calculate the energy 
consumption in kWh and the cost of energy at the rate of Rs 2 per kWh.  Assume 1 m3 of water has 
a mass of 1000 kg and g = 9·81 m/s2.
 Solution. Mass of 80 m3 of water, m = 80 × 1000 = 8 × 104 kg
 Weight of water lifted, W  = m g = 8 × 104 × 9·81 N
 Height through which water lifted, h = 12 m
   W.D. by motor/minute = m g h = 8 × 104 × 9·81 × 12 joules

   W.D. by motor/second = 
48 10 9.81 12

60
× × ×

 = 156960 watts

 \  Output power of motor = 156960 watts

   Input power to motor = 
Motor output 156960=

Efficiency 0.7
 = 2,24,228 W = 224·228 kW

  Total energy consumption = Input power × Time of operation

    = (224·228) × (2 × 30) kWh = 13453 kWh
  Total cost of energy = Rs 2 × 13453 = Rs. 26906
 Example 4.2. Fig. 4.4 shows an electric motor driving an electric generator.  The 2 h.p. motor 
draws 14·6 A from a 120 V source and the generator supplies 56 A at 24 V.
 (i) Find the motor efficiency and generator efficiency
 (ii) Find the overall efficiency.

Fig. 4.4

 Solution. Efficiency of a machine is output power (Po) divided by input power (Pi).
 (i)  Pi (motor) =  120 × 14·6 = 1752 W
   Po (motor) = 2 h.p. = 2 × 746 = 1492 W

 \  η (motor) = 
1492
1752

 = 0.8516 or 85·16%
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   Pi (generator) = 2 h.p. = 1492 W
   Po (generator) = 24 × 56 = 1344 W

 \  η (generator) = 
1344
1492

 = 0·90 or 90%

 (ii)  η (overall) = 
(generator) 1344

(motor) 1752
o

i

P
P

=  = 0·767 or 76·7%

  Note that overall η is the product of efficiencies of the individual machines.
   η (overall)  = η (motor) × η (generator) = 0·8516 × 0·90 = 0·767.
 Example 4.3. Neglecting losses, at what horse power rate could energy be obtained from 
Bhakra dam which has an average height of 225 m and water flows at a rate of 500,000 kg/minute ?  
If the overall efficiency of conversion were 25%, how many 100 watt light bulbs could Bhakra dam 
supply ?
 Solution. Wt. of water flowing/minute
    = m g = 500,000 × 9·81 N
   Work done/minute = m g h = 500,000 × 9·81 × 225 joules

   Work done/second = 
500,000 9.81 225

60
× ×

 = 18394 × 103 watts

 \  Gross power obtained = 18394 × 103 watts = 18394 kW
   Useful output power = 18394 × 0·25 = 4598·5 kW

    = 
34598.5 10

746
×

 h.p. = 6164 h.p.

 No. of 100-watt bulbs that could be lighted

    = 
34598.5 10

100
×

 = 45985

 Example 4.4. A 100 MW hydro-electric station is supplying full-load for 10 hours a day.  Calcu-
late the volume of water which has been used.  Assume effective head of station as 200 m and overall 
efficiency of the station as 80%.
 Solution. Energy supplied by the station in 10 hours
    = (100 × 103) × 10 = 106 kWh
    = 36 × 105 × 106 = 36 × 1011 joules
   Energy input of station = 36 × 1011/0·8 = 45 × 1011 joules
 Suppose m kg is the mass of water used in 10 hours.
 Then,  m g h = 45 × 1011

 or  m = 
1145 10

9.81 200
×
×

 = 22.93 × 108 kg

 Since 1 m3 of water has a mass of 1000 kg,
 \ Volume of water used = 22·93 × 108/103 = 22·93 × 105 m3

 Example 4.5. Two coils are connected in parallel and a voltage of 200 V is applied to the ter-
minals.  The total current taken is 15A and the power dissipated in one of the coils is 1500 W.  What 
is the resistance of each coil ?
 Solution. Let R1 and R2 be the resistances of the coils and I1 and I2 be the current drawn from 
the supply. Since the coils are connected in parallel, voltage across each coil is the same i.e. 200 V.
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   V I1 = W or I1 = W/V = 1500/200 = 7·5A
 \  R1 = V/I1 = 200/7·5 = 26.7 Ω
   I1 + I2 = 15 ..... given \ I2 = 15 − I1 = 15 − 7·5 = 7·5A

 \  R2 = 
2

200
7.5

V
I

=  = 26.7 Ω

 Although not technically correct usage, it is convenient to say that resistance “dissipates  
power”, meaning that it dissipates (liberates) heat at a certain rate.
 Example 4.6. A motor is being self-started against a resisting torque of 60 N-m and at each 
start, the engine is cranked at 75 r.p.m. for 8 seconds.  For each start, energy is drawn from a lead-
acid battery. If the battery has the capacity of 100 Wh, calculate the number of starts that can be 
made with such a battery. Assume an overall efficiency of the motor and gears as 25%.
 Solution. Angular speed, ω = 2π N/60 rad/s = 2π × 75/60 = 7·85 rad/s

  Power required per start, P = 
Torque × Angular speed

Efficiency of motor
 = 

60 7.85
0.25
×

 = 1884 W

  Energy required/start = P × Time for start
    = 1884 × 8 = 15072 Ws = 15072 J
    = 15072/3600 = 4·187 Wh
 \ No. of starts with a fully-charged battery
    = 100/4·187  24
 Example 4.7. A hydro-electric power station has a reservoir of area 2·4 square kilometres and 
capacity 5 × 106 m3.  The effective head of water is 100 m.  The penstock, turbine and generator 
efficiencies are 95%, 90% and 85% respectively.
 (i) Calculate the total energy in kWh which can be generated from the power station.
 (ii) If a load of 15,000 kW has been supplied for 3 hours, find the fall in reservoir level.
 Solution.  
 (i) Wt. of water available,  W = Volume of reservoir × 1000 × 9·81 N
    = (5 × 106) × (1000) × (9·81) = 49·05 × 109 N
  Overall efficiency, ηoverall = 0·95 × 0·90 × 0·85 = 0·726
 Electrical energy that can be generated from the station
    = W × Effective head × ηoverall

    = (49·05 × 109) × (100) × (0·726) = 35·61 × 1011 watt-sec.

    = 
1135.61 10

1000 3600
×

×
 kWh = 9,89,116 kWh

 (ii)  Level of reservoir = 
6

6

Volume of reservoir 5 10
Area of reservoir 2.4 10

×=
×

 = 2·083 m

  kWh generated in 3 hrs = 15000 × 3 = 45,000 kWh
 Using unitary method, we get,

  Fall in reservoir level = 
2.083 45,000

9,89,166
×  = 0·0947 m = 9·47 cm
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 Example 4.8. A large hydel power station has a head of 324 m and an average flow of 1370  
m3/sec. The reservoir is a lake covering an area of 6400 sq. km. Assuming an efficiency of 90% for 
the turbine and 95% for the generator, calculate (i) the available electric power and (ii) the number 
of days this power could be supplied for a drop in water level by 1 metre.
 Solution. Water discharge = 1370 m3/sec  ;  Water head,  h = 324 m  ;  ηoverall = 0.9 × 0.95
 (i) As mass of 1 m3 of water is 1000 kg,
   \ Mass of water flowing/sec, m = 1370 × 1000 kg = 137 × 104 kg
  Weight of water flowing/sec, W = mg = 137 × 104 × 9.81 N
  Energy or work available per second (i.e. power) is
   Power available, P = Wh × ηoverall

    = (137 × 104 × 9.81) × 324 × (0.9 × 0.95)
    = 3723 × 106 W = 3723 MW
 (ii)  Area of reservoir, A = 6400 km2 = 6400 × 106 m2

   Rate of water discharge, Q = 1370 m3/sec
   Fall of reservoir level, h′ = 1 m
   Volume of water used = A × h′

  \ Required time, t = 
A h

Q
′×

 = 
66400 10 1

1370
× ×

    = 4.67 × 106 sec. = 54.07 days
 Example 4.9. Calculate the current required by a 500 V d.c. locomotive when drawing 100 
tonne load at 25 km/hr with a tractive resistance of 7 kg/tonne along (i) level road and (ii) a gradient 
1 in 100.  Given that the efficiency of motor and gearing is 70%.
 Solution. Weight of locomotive, W = 100 tonne = 100,000 kg
   Tractive resistance, F = 7 × 100 = 700 kg-wt = 700 × 9·81 = 6867 N
 (i) Level Track. In this case, the force required is equal to the tractive resistance F [See Fig. 
4.5 (i)].
   Distance travelled/sec = 

25 1000
3600
×

 = 6·94 m

   Work done/sec = Force × Distance/sec
  or  Motor output = 6867 × 6·94 = 47,657 watts
   Motor input = 47,657/0·7 = 68,081 watts
 \  Current drawn = 68,081/500 = 136·16A

 Fig. 4.5
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 (ii) Inclined plane. In this case, the total force required is the sum of tractive resistance F and 
component W sinθ of locomotive weight [See Fig. 4.5 (ii)]. Clearly, sin θ = 1/100 = 0·01.
 \  Force required = W sin θ + F
    = (100,000 × 0·01 + 700) 9·81 N = 16,677 N
   Work done/sec = Force × distance travelled/sec
    = 16,677 × 6·94 = 1,15,738 watts
 \  Motor output = 1,15,738 watts
   Motor input = 1,15,738/0·7 = 1,65,340 watts
 \  Current drawn = 1,65,340/500 = 330·68A
 Example 4.10. A diesel-electric generator set supplies an output of 25 kW. The calorific value of 
the fuel oil used is 12,500 kcal/kg. If the overall efficiency of the unit is 35%, calculate (i) the mass 
of oil required per hour (ii) the electric energy generated per tonne of the fuel.
 Solution.  Output power of set = 25 kW  ;  ηoverall = 35% = 0.35
 \ Input power to set = 25/0.35 = 71.4 kW
 (i) Input energy/hour = 71.4 kW × 1h = 71.4 kWh = 71.4 × 860 kcal
  As 1 kg of fuel oil produces 12,500 kcal, 

  \ Mass of fuel oil required/hour = 
71.4 860

12,500
×

 = 4.91 kg

 (ii) Heat content in 1 tonne fuel oil (= 1000 kg) = 1000 × 12,500 = 12.5 × 106 kcal

     = 
612.5 10

860
×

 kWh = 14,534 kWh

  \ Energy generated/tonne = 14,534 × 0.35 = 5087 kWh
 Example 4.11. The reservoir for a hydro-electric station is 230 m above the turbine house. The 
annual replenishment of the reservoir is 45 × 1010 kg.  What is the energy available at the generating 
station bus-bars if the loss of head in the hydraulic system is 30 m and the overall efficiency of the 
station is 85% ?  Also, calculate the diameter of the steel pipes needed if a maximum demand of 45 
MW is to be supplied using two pipes.
 Solution.  Actual available head, h = 230 − 30 = 200 m

 Energy available at turbine house is given by ;

   E = mgh = 45 × 1010 × 9·81 × 200 = 8·829 × 1014 J

    = 
14

5

8.829 10
36 10

×
×

 kWh = 24·52 × 107 kWh

 Energy available at bus-bars  = E × η = 24·52 × 107 × 0.85 = 20·84 × 107 kWh

   K.E. of water = Loss of potential energy of water

 or  21
2

mv  = mgh \ v = 2 2 9.81 200gh = × ×  = 62·65 m/s

 Power available from m kg of water is

   P = 21 1
2 2

mv =  × m × (62.65)2 W

 This power is equal to 45 MW (= 45 × 106 W).
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 \  P = 45 × 106 W

 or  
1
2

 × m × (62.65)2 = 45 × 106 \ m = 22930 kg/s

 If A is the total area of two pipes in m2, then flow of water is Av m3/s.
 \ Mass of water flowing/second = Av × 103 kg ( 1 m3 of water = 1000 kg)

 \  Av × 103 = 22930 or A = 3

22930
62.65 10×

 = 0·366 m2

   Area of each pipe = 0·366/2 = 0·183 m2

 If d is the diameter of each pipe, then,

   2

4
dπ

 = 0.183 or d = 
0.183 4×

π
 = 0·4826 m

 Example 4.12. A proposed hydro-electric station has an available head of 30 m, catchment 
area of 50 × 106 m2, the rainfall for which is 120 cm per annum. If 70% of the total rainfall can be 
collected, calculate the power that could be generated. Assume the following efficiencies: Penstock 
95%, Turbine 80% and Generator 85%.
 Solution. Available head, h = 30 m  ;  ηoverall = 0.95 × 0.8 × 0.85 = 0.646 

 Volume of water *available/annum = 0.7(50 × 106 × 1.2) = 4.2 × 107 m3

 Mass of water available/annum = 4.2 × 107 × 1000 = 4.2 × 1010 kg

 Mass of water available/sec; m = 
104.2 10

365 24 3600
×

× ×
 = 1.33 × 103 kg

 Potential energy available/sec = mgh = 1.33 × 103 × 9.8 × 30 = 391 × 103 J/s
 \ Power that could be generated = ηoverall × 391 × 103 W
    = 0.646 × 391 × 103 = 253 × 103 W = 253 kW
 Example 4·13. A current of 20A flows for one hour in a resistance across which there is a volt-
age of 8V. Determine the velocity in metres per second with which a weight of one tonne must move 
in order that kinetic energy shall be equal in amount to the energy dissipated in the resistance.
 Solution.  Energy dissipated in resistance
    = V It = 8 × 20 × 3600 = 576 × 103 J
   Mass of body, m = 1 tonne = 1000 kg
 Let v m/s be the required velocity of the weight.

   Kinetic energy = 21
2

mv  joules

 In order that K.E. of weight is equal to energy dissipated in resistance,

   21
2

mv  = 576 × 103  \ v = 
32 576 10

1000
× ×

 = 33·9 m/s

 Example 4·14. What must be the horse-power of an engine to drive by means of a belt a genera-
tor supplying 7000 lamps each taking 0·5 A at 250 V ?  The line drop is 5V and the efficiency of the 
generator is 95%.  There is a 2·5% loss in the belt drive.
 Solution. Total current supplied by generator,  I = 0·5 × 7000 = 3500 A
   Generated voltage, E = Load voltage + Line drop = 250 + 5 = 255 V
   Generator output = EI = 255 × 3500 W
* 0.7 × (Catchment area in m2 × Rainfall in m)
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 \  Engine output = 
255 3500

0.95 0.975
×
×

 = 963562 W = 
963562

746
 h.p. = 1292 h.p.

 Example 4.15. Find the head in metres of a hydroelectric generating station in which the 
reservoir of area 4000 m2 falls by 30 cm when 75 kWh is developed in the turbine.  The efficiency of 
the turbine is 70%.
 Solution. Hydroelectric generating stations are generally built in hilly areas.

  Volume of water used, V = 4000 × 0·3 = 1200 m3

  Mass of water used, m = 1200 × 103 = 1·2 × 106 kg

  Useful energy developed in turbine = mgh × η = 1·2 × 106 × 9.81 × h × 0·7

  But useful energy developed in turbine =  75 kWh = 75 × 3·6 × 106 J

 \ 1·2 × 106 × 9·81 × h × 0·7 = 75 × 3·6 × 106

 or h = 32·76 m
 Example 4.16. A room measures 3m × 4m × 4·75m and air in it has to be always kept 10°C 
higher than that of the incoming air.  The air inside has to be renewed every 30 minutes.  Neglecting 
radiation losses, find the necessary rating of electric heater for this purpose.  Take specific heat of 
air as 0·24 and density as 1·28 kg/m3.
 Solution. It is desired to find the power of the electric heater.

  Volume of air to be changed/second = 
3 4 4.75

30 60
× ×

×
 = 0·032 m3

  Mass of air to be changed/second = 0·032 × 1·28 = 0·041 kg
  Heat required/second = Mass/second × Specific heat × Rise in temp.
   = 0·041 × 0·24 × 10 kcal
   = 0·041 × 0·24 × 10 × 4186 W = 411 W 
 Here, we have neglected radiation losses. However, in practice, radiation
 losses do occur so that heater power required would be greater than the 
 calculated value.
 Example 4.17. An electric lift is required to raise a load of 5 tonne through a height of 30 m. 
One quarter of electrical energy supplied to the lift is lost in the motor and gearing. Calculate the  
energy in kWh supplied. If the time required to raise the load is 27 minutes, find the kW rating of the 
motor and the current taken by the motor, the supply voltage being 230V d.c. Assume the efficiency 
of the motor at 90%.
 Solution. Work done by lift = mgh = (5 × 103) × 9.8 × 30 = 1.47 × 106 J

   Input energy to lift = 
61.47 10

*lift

×
η

 = 
61.47 10

0.75
×

 = 1.96 × 106 J

    = 
6

5

1.96 10
36 10

×
×

 kWh = 0.545 kWh

   Motor energy output  = Input energy to lift = 1.96 × 106 J

   Motor energy input = 
61.96 10

motor

×
η

 = 
61.96 10

0.9
×

 = 2.18 × 106 J

* Since 25% energy is wasted in the motor and gearing, the efficiency of the lift is 75%.

1 kcal 4186 W
sec.

 =  
∵
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   Power rating of motor = 
Work done
Time taken

 = 
62.18 10

27 60
×
×

 = 1346 W

   Current taken by motor = 
1346
230

 = 5.85 A

 Example 4.18. An electric hoist makes 10 double journeys per hour. In each journey, a load of 
6000 kg is raised to a height of 60 m in 90 seconds and the hoist returns empty in 75 seconds.  The 
hoist cage weighs 500 kg and has a balance weight of 3000 kg. The efficiency of the hoist is 80% 
and that of the driving motor 88%. Calculate (i) the electrical energy absorbed per double journey  
(ii) the hourly consumption in kWh (iii) the horse-power of the motor (iv) the cost of electric energy 
if hoist works for 4 hours per day for 30 days. Cost per kWh is Rs 4.50.
 Solution. When the hoist cage goes up, the balance weight goes down and when the cage goes 
down, the balance weight goes up.
  Total mass lifted on upward journey = Load + mass of cage − mass of balance weight
   = 6000 + 500 − 3000 = 3500 kg
  Work done during upward journey = mgh = 3500 × 9·8 × 60 J
  Total mass moved on downward journey = Mass of balance wt. − Mass of cage
   = 3000 − 500 = 2500 kg
  Work done during downward journey = mgh = 250 × 9·8 × 60 J
  Work done during each double journey = 9·8 × 60 (3500 + 2500)J = 353 × 104 J
  Overall η = 0·8 × 0·88 = 0·704
 (i) Input energy per double journey = 353 × 104/0·704 = 501 × 104 J

   = 
4

6

501 10
3.6 10

×
×

 kWh = 1·4 kWh

 (ii) Hourly consumption = 1·4 × No. of double journeys/hr
   = 1·4 × 10 = 14 kWh
 (iii) The maximum rate of working is during upward journey.

 \  h.p. rating of motor = 
Work done in upward journey

Hoist efficiency × time for up journey × 746

    = 
3500 9.8 60
0.8 90 746

× ×
× ×

 = 38·4 h.p.

 (iv) Energy consumption for 30 days = Hourly consumption × 4 × 30 = 14 × 4 × 30 = 1680 kWh

  Total cost of energy = Rs. 1680 × 4·5 = Rs. 7560
 Example 4.19. A generator supplies power to a factory through cables of total resistance 20 
ohms. The potential difference at the generator is 5000 V and power output is 50 kW. Calculate  
(i) power suppled by the generator, (ii) potential difference at the factory.

 Solution.  Fig. 4.6 shows the conditions of the problem.

 Output power of generator is given by ;

   P = 50 kW = 50 × 103 W

   P.D. at the generator, E = 5000 V

 \ Current in cables is given by ;

   I = 
350 10

5000
P
E

×=  = 10 A Fig. 4.6
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 (i)  Power loss in cables = I2 R = (10)2 × 20 = 2000 W
 \ Power supplied at the factory = 50 × 103 − 2000 = 48,000 W
 (ii) Voltage drop in cables = I R = 10 × 20 = 200 V
 \ P.D. at the factory, V = E − I R = 5000 − 200 = 4800 V

Tutorial Problems

 1. The power required to drive a certain machine at 350 r.p.m. is 600 kW.  Calculate the driving torque.  
    [16370 Nm]

 2. An electrically driven pump lifts 1500 litres of water per minute through a height of 25 m.  Allowing 
an overall efficiency of 75%, calculate the input power to the motor.  If the pump is in operation for an 
average of 8 hours per day for 30 days, calculate the energy consumed in kWh and the cost of energy at 
the rate of 50 P/kWh.  Assume 1 litre  of water has a mass of 1000 kg and g = 9·81 m/s2. 

      [8·167 kW, 1960 kWh, Rs. 980]
 3. A 440-volt motor is used to drive an irrigation pump.  The efficiency of motor is 85% and the efficiency 

of pump is 66%.  The pump is required to lift 240 tonne of water per hour to a height of 30 metres.  
Calculate the current taken by the motor. [79·48 A]

 4. A hydro-electric generating plant is supplied from a reservoir of capacity 2 × 107 m3 with a head of 200 
m. The hydraulic efficiency of the plant is 0·8 and electric efficiency is 0·9. What is the total available 
energy ?    [7·85 × 109 watt-hours]

 5. A 460-V d.c. motor drives a hoist which raises a load of 100 kg with a velocity of 15 m/s. Calculate :
 (i) The power output of the motor assuming the hoist gearing to have an efficiency of 0·8.
 (ii) The motor current, assuming the motor efficiency to be 0·75.   [(i) 18·4 kW (ii) 53·2 A]

 6. When a certain electric motor is operated for 30 minutes, it consumes 0·75 kWh of energy.  During that 
time, its total energy loss is 3 × 105 J.

 (i) What is the efficiency of the motor ?
 (ii) How many joules of work does it perform in 30 minutes ?         [(i) 88·8% (ii) 2·4 × 106J]

 7. The total power supplied to an engine that drives an electric generator is 40·25 kW. If the generator  
delivers 15A to a 100 Ω load, what is the efficiency of the system ? [55·9%]

 8. A certain system consists of three identical devices in cascade, each having efficiency 0·85. The first  
device draws 3A from a 20V source. How much current does the third device deliver to a 50Ω load ?

      [0·027 A]

4.10.  Heating  Effect  of  Electric  Current
 When electric current is passed through a conductor, heat is produced in the conductor. This 
effect is called  heating effect of electric current.
 It is a matter of common experience that when electric current is passed through the element of 
an electric heater, the element becomes red hot. It is because electrical energy is converted into heat 
energy. This is called heating effect of electric current and is utilised in the manufacture of many 
heating appliances, e.g., electric iron, electric kettle, etc. The basic principle of all these devices is 
the same. Electric current is passed through a high resistance (called heating element), thus produc-
ing the required heat.
 Cause. Let us discuss the cause of heating effect of electric current. When potential difference 
is applied across the ends of a conductor, the free electrons move with drift velocity and current is 
established in the conductor. As the free electrons move through the conductor, they collide with 
positive ions of the conductor. On collision, the kinetic energy of an electron is transferred to the ion 
with which it has collided. As a result, the kinetic energy of vibration of the positive ion increases, 
i.e., temperature of the conductor increases. Therefore, as current flows through a conductor, the 
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free electrons lose energy which is converted into heat. Since the source of e.m.f. (e.g., a battery) 
is maintaining current in the conductor, it is clear that electrical energy supplied by the battery is 
converted into heat in the conductor.
 Applications. The heating effect of electric current is utilised in the manufacture of many heat-
ing appliances such as electric heater, electric toaster, electric kettle, soldering iron etc. The basic 
principle of all these appliances is the same. Electric current is passed through a high resistance 
(called heating element), thus producing the required heat. There are a number of substances used 
for making a heating element. One that is commonly used is an alloy of nickel and chromium, called 
nichrome. This alloy has a resistance more than 50 times that of copper. The heating element may 
be either nichrome wire or ribbon wound on some insulating material that is able to withstand heat.

4.11.    Heat  Produced  in  a  Conductor  by  Electric  Current
 On the basis of his experimental results, Joule found that the amount of heat produced (H) 
when current I amperes flows through a conductor of resistance R ohms for time t seconds is  
H = I2Rt joules. This equation is known as Joule’s law of heating.
 Suppose a battery maintains a potential difference of V volts across the ends of a conductor AB 
of resistance R ohms as shown in Fig. 4.7. Let the steady current that 
passes from A to B be I amperes. If this current flows for t seconds, 
then charge transferred from A to B in t seconds is
   q = It
 The electric potential energy lost (W) by the charge q as it 
moves from A to B is given by ;
   W = Charge × P.D. between A and B

    = qV = (It) V = I2Rt    (V = IR)

 or  W = I2Rt
 This loss of electric potential energy of charge is converted into heat (H) because the conductor 
AB has resistance only.
 \  H = W = I2Rt joules = 

2

4.18
I Rt

 calories ...(i)

 It is found experimentally that 1 cal = 4.18 J.
 Eq. (i) is known as Joule’s law of heating. It is because Joule was the first scientist who studied 
the heating effect of electric current through a resistor. Thus according to Joule, heat produced in a 
conductor is directly proportional to
 (i) square of current through the conductor
 (ii) resistance of the conductor
 (iii) time for which current is passed through the conductor.

 Note. H = VIt = I2Rt = 
2V t

R
 joules

    = 
4.18
VIt

 = 
2 2

4.18 4.18
I Rt V t

R
=

×
calories

 Important points. While dealing with problems on heating effect of electric current, the  
following points may be kept in mind :
 (i) The electrical energy in kWh can be converted into joules by the following relation :
   1 kWh = 36 × 105 joules

Fig. 4.7

V

R

A B

I
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 (ii) The heat energy in calories can be converted into joules by the following relation :
   1 calorie = 4·186 joules
   1 kcal = 4186 joules
 (iii) The electrical energy in kWh can be converted into calories (or kilocalories) by the 

following relation :

   1 kWh = 36 × 105 joules = 
536 10

4.186
×

calories = 860 × 103 calories

 \  1 kWh = 860 kcal
 (iv) The electrical energy supplied to the heating appliance forms the input energy. The heat 

obtained from the device is the output energy. The difference between the two, if any, 
represents the loss of energy during conversion from electrical into heat energy.

4.12.  Mechanical  Equivalent  of  Heat  (J)
 Joule performed a series of experiments to establish the relationship between the mechani-
cal work done and heat produced.  He found that heat produced (H) is directly proportional to the 
amount of mechanical work done (W) i.e.,

   H ∝ W or W = JH
where J is a constant of proportionality and is called mechanical equivalent of heat.  The experimen-
tally found value of J is
   J = 4·2 J/cal
 Note that J is a numerical factor relating mechanical units to heat units.  Let us interpret the 
meaning of J.  It takes 4·2 J of mechanical work to raise the temperature of 1g of water by 1°C.  In 
other words, 4·2J of mechanical energy is equivalent to 1 calorie of heat energy.
 Example 4.20. In Fig. 4.8, the heat produced in 5 Ω resistor due to current flowing through it  
is 10 calories per second. Calculate the heat generated in 4 Ω resistor.
 Solution. Let I1 and I2 be the currents in the two parallel branches as shown in Fig. 4.8.  The 
p.d. across the parallel branches is the same i.e.
   I1 (4 + 6) = 5 I2 \ I2 = 2 I1

 Heat produced per second in 5Ω resistor is

   H1 = 
2
2 5
4.2

I ×

or   10 = 
2

1(2 ) 5
4.2

I ×

 \  I1
2  = 2·1

 Heat produced in 4Ω resistor per second

    = 
2

1 4 2.1 4
4.2 4.2

I × ×=  = 2 cal/sec

 Example 4.21. An electric heater contains 4 litres of water initially at a mean temperature of 
15ºC. 0·25 kWh is supplied to the water by the heater.  Assuming no heat losses, what is the final 
temperature of the water ?
 Solution. Let tºC be the final temperature of water.
 Heat received by water (i.e. output energy)
    = mass × sp. heat × rise in temp. = 4 × 1 × (t − 15) kcal

Fig. 4.8
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 Electrical energy supplied to heater (i.e. input energy)
    = 0·25 kWh = 0·25 × 860 kcal        ( 1 kWh = 860 kcal)
 As there are no losses, output energy is equal to the input energy i.e.
   4 × 1 × (t − 15) = 0·25 × 860 or t = 68·8ºC
 Example 4.22. An immersion heater takes 1 hour to heat 50 kg of water from 20ºC to  
boiling point. Calculate the power rating of the heater, assuming the heating equipment to have an  
efficiency of 90%.
 Solution. Heat received by water (i.e. output energy)
    = mass × specific heat × rise in temperature
    = 50 × 1 × 80 = 4000 kcal = 4000/860 = 4·65 kWh
 Electrical energy supplied to heater (i.e. input energy)
    = 4·65/0·9 = 5·167 kWh

 \  Power rating = 
Energy 5.167
Time 1 hour

=  = 5.167 kW

 Example 4.23. The cost of boiling 2 kg of water in an electric kettle is 12 paise. The kettle takes 
6 minutes to boil water from an ambient temperature of 20ºC. Calculate (i) the efficiency of kettle 
and (ii) the wattage of kettle if cost of 1 kWh is 40 paise.
 Solution. (i)  Heat received by water (i.e. output energy)
    = 2 × 1 × 80 = 160 kcal
 Electrical energy supplied (i.e. input energy)
    = 12/40 kWh = 860 × 12/40 = 258 kcal

 \ Kettle efficiency = 
160 100
258

×  = 62%

 (ii) Let W kilowatt be the power rating of the kettle.
   Input energy = W × time in hours
 or  12/40 = W × 6/60

 \  Wattage of kettle, W = 
12 60
40 6

×  = 3 kW

 Example 4.24. How long will it take to raise the temperature of 880 gm of water from 16ºC to 
boiling point ? The heater takes 2 amperes at 220 V and its efficiency is 90%.
 Solution. Heat received by water (i.e. output energy)
    = 0·88 × 1 × (100 − 16) = 73·92 kcal = 73·92/860 = 0·086 kWh
 Electrical energy supplied to the heater (i.e. input energy)
    = 0·086/0·9 = 0·096 kWh
 The heater is supplying a power of 220 × 2 = 440 watts = 0·44 kW. Let t hours be the required time.
   Input energy = wattage × time or 0·096 = 0·44 × t
 \  t = 0·096/0·44 = 0·218 hours = 0·218 × 60 = 13·08 minutes
 Example 4.25. An electric kettle is required to raise the temperature of 2 kg of water from 20ºC 
to 100ºC in 15 minutes. Calculate the resistance of the heating element if the kettle is to be used on 
a 240 volts supply. Assume the efficiency of the kettle to be 80%.
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 Solution. Heat received by water (i.e. output energy)
    = 2 × 1 × (100 − 20) = 160 kcal = 160/860 = 0·186 kWh
 Electrical energy supplied to the kettle
    = 0·186/0·8 = 0·232 kWh
 The electrical energy of 0·232 kWh is supplied in 15/60 = 0·25 hours.
 \  Power rating of kettle = 0·232/0·25 = 0·928 kW = 928 watts
 Let R ohms be the resistance of the heating element.

 \  V2/R = 928 or R = 
240 240

928
×

 = 62 Ω

 Example 4.26. The heater element of an electric kettle has a constant resistance of 100 Ω and 
the applied voltage is 250 V. Calculate the time taken to raise the temperature of one litre of water 
from 15°C to 90°C assuming that 85% of the power input to the kettle is usefully employed. If the wa-
ter equivalent of the kettle is 100g, find how long will it take to raise a second litre of water through 
the same temperature range immediately after the first.

 Solution. Mass of water, m = 1 litre = 1 kg  ;  q = 90 – 15 = 75°C  ;  S = 1 
 Heat taken by water = mSq = 1 × 1 × 75 = 75 kcal
 Heat taken by kettle = water equivalent of kettle × q = 0.1 × 75 = 7.5 kcal 
 Heat taken by both = 75 + 7.5 = 82.5 kcal

 Now, I = 
250
100

 = 2.5 A  ;  J = 4200 J/kcal

 Heat produced electrically = 
2I Rt
J

 kcal ... t in seconds

 Heat available for heating = 
2

0.85 I Rt
J

×  kcal 

 or  
2

0.85 I Rt
J

×  = 82.5

 or  
2(2.5) 1000.85
4200

t× ××  = 82.5

 \  t = 652 s = 10 min. 52 seconds
 In the second case, heat would be required to heat water only because kettle would be already 
hot.

 \  
20.85 (2.5) 100

4200
t× × ×

  = 75 or t = 9 min. 53 seconds

 As expected, the time required for heating in the second case is less than the first case.
 Example 4.27. The heaters A and B are in parallel across the supply voltage V. Heater A pro-
duces 500 kcal in 20 minutes and B produces 1000 kcal in 10 minutes. The resistance of heater A 
is 10 Ω. What is the resistance of heater B ? If the same heaters are connected in series, how much 
heat will be produced in 5 minutes ?
 Solution.   Heat produced = 

2V t
R J×

 kcal

  For heater A, 500 = 
2 (20 60)

10
V

J
× ×

×
 ...(i)

  For heater B, 1000 = 
2 (10 60)V

R J
× ×

×
 ....(ii)
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 Dividing eq. (i) by eq. (ii), we get,

   
500

1000
 = 

20 60
10 60 10

R× ×
×

 \ R = 2·5 Ω

 When the heaters are connected in series, the total resistance becomes RT = 10 + 2·5 = 12·5 Ω.
 \ Heat produced in 5 minutes

    = 
2 2

T T

V t V t
R J J R

= ×
×

    = 
5,000 5 60

20 60 12.5
××

×
 = 100 kcal 2

From eq. ( )
5000

20 60

i
V
J

 
 
 = × 

 Example 4.28. A soldering iron is rated at 50 watts when connected to a 250 V supply. If the 
soldering iron takes 5 minutes to heat to a working temperature of 190°C from 20°C, find its mass, 
assuming it to be made of copper.  Given specific heat capacity of copper is 390 J/kg°C.
 Solution. Let m kg be the mass of soldering iron.
 Heat gained by the soldering iron = mSθ = m × 390 × (190 – 20) = 66,300 m joules
 Heat released by the heating element = power × time = (50) × (5 × 60) = 15,000 joules
 Assuming all the heat released by the element is absorbed by the copper i.e. soldering iron is 
100% efficient,
   15,000 = 66,300 m \ m = 15,000/66,300 = 0.226 kg
 Example 4.29. A cubic water tank has surface area of 6 m2 and is filled to 90% capacity 6 
times daily. The water is heated from 20°C to 65°C. The losses per square metre of tank surface per 
1°C temperature difference are 6.3 W. Find the loading in kW and the efficiency of the tank. Assume 
specific heat of water = 4200 J/kg/°C and 1 kWh = 3.6 MJ.

 Solution. Rise in temp, q = 65 – 20 = 45°C  ;  S = 4200 J/kg/°C. If l metres is one side of the 
tank, then surface area of the tank is 6l2.
 \  6l2 = 6m2 or l = 1m
 Volume of tank = l3 = (1)3 = 1m3

 Volume of water to be heated daily = 6 × 0.9 = 5.4 m3. As the mass of 1 m3 of water is 1000 kg,
 \ Mass of water to be heated daily, m = 5.4 × 1000 = 5400 kg
 Heat required to heat water to the desired temperature is 
   H1 = mSq = 5400 × 4200 × 45 = 1020.6 × 106 J

    = 
6

5

1020.6 10
36 10

×
×

 kWh = 283.5 kWh

   Heat losses, H2 = 
6.3 6 24

1000
× × θ ×

 kWh

    = 
6.3 6 45 24

1000
× × ×

 = 40.82 kWh

  Total energy supplied, H = H1 + H2 = 283.5 + 40.82 = 324.32 kWh

  Loading in kW = 
24 hr

H
 = 324.32 kWh

24 hr
  = 13.5 kW

  Efficiency of tank = 1 100H
H

×  = 
283.5 100

324.32
×  = 87.4% 
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 Example 4.30. An electric furnace is being used to melt 10 kg of aluminium. The initial tem-
perature of aluminium is 20°C. Assume the melting point of aluminium to be 660°C, its specific 
heat capacity to be 950 J/kg°C and its specific latent heat of fusion to be 387000 J/kg. Calculate the 
power required to accomplish the conversion in 20 minutes, assuming the efficiency of conversion 
to be 75%. What is the cost of energy consumed if tariff is 50 paise per kWh ?
 Solution. Heat used to melt aluminium (i.e. output energy)
    = 10 × 950 × (660 − 20) + 10 × 387000 = 995 × 104 joules

    = 
4

5

995 10
36 10

×
×

 = 2·76 kWh

 Electrical energy supplied to the heating element
    = 2·76/0·75 = 3·68 kWh
 This much energy (i.e. 3·68 kWh) is to be supplied in 20/60 = 1/3 hour.

 \  Power required = 
3.68
1 3

 = 3·68 × 3 = 11·04 kW

   Cost of energy = Rs. 0·5 × 3·68 = Rs. 1·84
 Example 4.31. A transmitting valve is cooled by water circulating through its hollow elec-
trodes. The water enters the valve at 25°C and leaves it at 85°C. Calculate the rate of flow in kg/
second needed per kW of cooling. The temperature of 1 kg of water is raised to 1°C by 4178 joules.
 Solution. Heat to be taken away/sec = 1 kW × 1 sec = 1000 × 1 = 1000 joules. Let the required 
flow of water be m kg per second.
  Heat produced/sec = mass × Sp. heat × rise in temp.
    = m × 4178 × (85 − 25) = 250,680 m joules

 \  250,680 m = 1000 or m = 
1000

250,680
 = 0·004 kg/sec

Tutorial  Problems
 1 .  An electric kettle marked 1 kW, 230 V, takes 7·5 minutes to bring 1 kg of water at 15ºC to boiling 

point (100ºC).  Find the efficiency of the kettle. [79·07%]
 2. An electric kettle contains 1·5 kg of water at 15ºC. It takes 2·5 hours to raise the temperature 

to 90ºC.  Assuming the heat losses due to radiation and heating the kettle to be 15 kcal, find (i) 
wattage of the kettle and (ii) current taken if supply voltage is 230 V. [(i) 59·2 W (ii) 0·257 A]

 3. A soldering iron is rated at 50 watts when connected to a 250 V supply.  If the soldering iron takes  
5 minutes to heat to a working temperature of 190ºC from 20ºC, find its mass, assuming it to be 
made of copper.  Given specific heat capacity of copper is 390 J/kgºC. [0·226 kg]

 4. Find the amount of electrical energy expended in raising the temperature of 45 litres of water 
by 75ºC.  To what height could a weight of 5 tonnes be raised with the expenditure of the same 
energy ? Assume efficiencies of heating and lifting equipment to be 90% and 70% respectively

[4·36 kWh, 224 m]
 5. Calculate the time taken for a 25 kW furnace, having an overall efficiency of 80% to melt 20 kg of  

aluminium. Take the specific heat capacity, melting point and latent heat of fusion of aluminium 
as 896 J/kgºC, 657ºC and 402 kJ/kg respectively. [16 min 13 sec]

 6. An electric boiler has two heating elements each of 230 V, 3·5 kW rating and containing 8 litres 
of water at 30ºC.  Assuming 10% loss of heat from the boiler, find how long after switching on 
the heater circuit will the water boil at atmospheric pressure

  (i)  if the two elements are in parallel
  (ii)  if the two elements are in series ?  The supply voltage is 230 V.  [(i) 373·3 s (ii) 1493·2 s]
 7. A coil of resistance 100 Ω is immersed in a vessel containing 0·5 kg of water at 16ºC and is 

connected to a 220 V electric supply. Calculate the time required to boil away all the water. Given 
J = 4200 J/kcal; latent heat of steam = 536 kcal/kg. [44 min 50 sec]
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 1. A 25W, 220 V bulb and a 100 W, 220 V bulb 
are joined in parallel and connected to 220 V 
supply.  Which bulb will glow more brightly ?

 (i) 25 W bulb 
 (ii) 100 W bulb
 (iii) both will glow with same brightness
  (iv) neither bulb will glow
 2. A 25 W, 220 V bulb and a 100 W, 220 V bulb are 

joined in series and connected to 220 V supply.  
Which bulb will glow brighter ?

 (i) 25 W bulb
 (ii) 100 W bulb
 (iii) both will glow with same brightness
 (iv) neither bulb will glow
 3. You are given three bulbs of 25 W, 40 W and  

60 W. Which of them has the lowest resistance ?
 (i) 25 W bulb 
 (ii) 40 W bulb
 (iii) 60 W bulb  
 (iv) information incomplete
 4. You have the following electric appliances :
 (a) 1 kW, 250 V electric heater
 (b) 1 kW, 250 V electric kettle
 (c) 1 kW, 250 V electric bulb
  Which of these has the highest resistance ?
 (i) heater
 (ii) kettle
 (iii) all have equal resistances
  (iv) electric bulb
 5. The time required for 1 kW electric heater 

to raise the temperature of 10 litres of water 
through 10ºC is

 (i) 210 sec (ii) 420 sec
 (iii) 42 sec (iv) 840 sec
 6. Two electric bulbs rated at P1 watt, V volt and 

P2 watt, V volt are connected in series across V 
volt. The total power consumed is

 (i) P1 + P2 (ii) 1 2PP

 (iii) 1 2

2
P P+

 (iv) 1 2

1 2

PP
P P+

 7. A tap supplies water at 22ºC. A man takes  
1 litre of water per minute at 37ºC from the  

geyser. The power of geyser is
 (i) 1050 W (ii) 1575 W
 (iii) 525 W (iv) 2100 W
 8. A 3ºC rise in temperature is observed in a  

conductor by passing a certain amount of  
current. When the current is doubled, the rise in 
temperature is

 (i)  15ºC (ii) 12ºC
 (iii) 9ºC (iv) 3ºC
 9. How much electrical energy in kWh is  

consumed in operating ten 50 W bulbs for 10 
hours in a day in a month of 30 days ?

 (i) 500 (ii) 15000
 (iii) 150 (iv) 15
 10. Two heater wires of equal length are first  

connected in series and then in parallel. The 
ratio of heat produced in the two cases will be

 (i) 2 : 1 (ii) 1 : 2
 (iii) 4 : 1 (iv) 1 : 4
 11. Two identical heaters each marked 1000 W, 250 

V are placed in series and connected to 250 V 
supply. Their combined rate of heating is

 (i) 500 W (ii) 2000 W
 (iii) 1000 W (iv) 250 W
 12. A constant voltage is applied between the 

ends of a uniform metallic wire.  Some heat is  
developed in it.  If both length and radius of the 
wire are halved, the heat developed during the 
same duration will become

 (i) half (ii) twice
 (iii) one fourth (iv) same
 13. What is immaterial for a fuse ?
 (i) its specific resistance
 (ii) its radius
 (iii) its length
 (iv) current flowing through it
 14. If the current in an electric bulb drops by 2%, 

then power decreases by
 (i) 1% (ii) 2%
 (iii) 4 % (iv) 16%
 15. The fuse wire is made of
 (i) tin-lead alloy (ii) copper
 (iii) tungsten (iv) nichrome

Answers
 1. (ii) 2. (i) 3. (iii) 4. (iii)  5. (ii) 
 6. (iv) 7. (i) 8. (ii) 9. (iii) 10. (iv) 
 11. (i) 12. (i) 13. (iii) 14. (iii)  15. (i) 

Objective  Questions



Introduction
 So far we have discussed that if two oppositely charged bodies are connected through a conduc-
tor, electrons will flow from the negative charge (excess of electrons) to the positive charge (defi-
ciency of electrons). This directed flow of electrons is called electric current. The electric current 
will continue to flow so long as the ‘excess’ and ‘deficiency’ of electrons exist in the bodies. In other 
words, electric current will continue to flow so long as we maintain the potential difference between 
the bodies. The branch of engineering which deals with the flow of electrons (i.e. electric current) is 
called current electricity and is important in many ways.  For example, it is the electric current by 
means of which electrical energy can be transferred from one point to another for utilisation.
 There can be another situation where charges (i.e. electrons) do not move but remain static or 
stationary on the bodies. Such a situation will arise when the charged bodies are separated by some 
insulating medium, disallowing the movement of electrons. This is called static electricity and the 
branch of engineering which deals with static electricity is called electrostatics. Although current 
electricity is of greater practical use, yet the importance of static electricity cannot be ignored. Many 
of the advancements made in the field of electricity owe their developments to the knowledge scien-
tists obtained from electrostatics. The most useful outcomes of static electricity are the development 
of lightning rod and the capacitor. In this chapter, we shall confine our attention to the behaviour 
and applications of static electricity.

5.1.   Electrostatics
 The branch of engineering which deals with charges at rest is called electrostatics.
 When a glass rod is rubbed with silk and then separated, the former becomes positively charged 
and the latter attains equal negative charge.  It is because during rubbing, some electrons are trans-
ferred from glass to silk.  Since glass rod and silk are separated by an insulating medium (i.e., air), 
they retain the charges.  In other words, the charges on them are static or stationary.  Note that the 
word ‘electrostatic’ means electricity at rest.

5.2.  Importance of Electrostatics
 During the past century, there was considerable increase in the practical importance of electro-
statics.  A few important applications of electrostatics are given below :
 (i) Electrostatic generators can produce voltages as high as 106 volts.  Such high voltages are 

required for X-ray work and nuclear bombardment.
 (ii) We use principles of electrostatics for spray of paints, powder, etc.
 (iii) The principles of electrostatics are used to prevent pollution.
 (iv) The problems of preventing sparks and breakdown of insulators in high voltage engineering 

are essentially electrostatic.
 (v) The development of lightning rod and capacitor are the outcomes of electrostatics.

5.3.  Methods of Charging a Conductor
 An uncharged conductor can be charged by the following two methods :
 (i) By conduction   (ii) By induction

5
Electrostatics



Electrostatics 261 

 (i) By conduction. In this method, a charged body is brought in contact with the uncharged  
conductor. Fig. 5.1 (i) shows the uncharged conductor B kept on an insulating stand. 
When the positively charged conductor A provided with insulating handle is touched 
with uncharged conductor B [See Fig. 5.1 (ii)], free electrons from conductor B move to 
conductor A. As a result, there occurs a deficit of electrons in conductor B and it becomes 
positively charged. Similarly, if the conductor A is negatively charged, the conductor B will 
also get negatively charged.

Fig. 5.1
  It may be noted that conductor A is provided with an insulting handle so that its charge does 

not escape to the ground through our body. For the same reason, the conductor B is kept on 
the insulating stand.

 (ii) By Induction. In this method, a charged body is brought close to the uncharged conductor 
but does not touch it. Fig. 5.2 (i) shows a negatively charged plastic rod (provided with 
insulating handle) kept near an uncharged metal sphere. The free electrons of the sphere 
near the rod are repelled to the farther end. As a result, the region of the sphere near the 
rod becomes positively charged and the farthest end of sphere becomes equally negatively 
charged. If now the sphere is connected to the ground through a wire as shown in Fig. 
5.2 (ii), its free electrons at the farther end flow to the ground. On removing the wire to 
the ground [See Fig. 5.2 (iii)], the positive charge at the near end of sphere remains held 
there due to the attractive force of external negative charge. Finally, when the plastic rod is 
removed [See Fig. 5.2 (iv)], the positive charge spreads uniformly on the sphere. Thus, the 
sphere is positively charged by induction. Note that in the process, the negatively charged 
plastic rod loses none of its negative charge. Similarly, the metal sphere can be negatively 
charged by bringing a positively charged rod near it.

Fig. 5.2

  Note that charging a body by induction requires no contact with the body inducing the 
charge. This is in contrast to charging a body by conduction which does require contact 
between the two bodies.

5.4.  Coulomb’s Laws of Electrostatics
 Charles Coulomb, a French scientist, observed that when two charges are placed near each 
other, they experience a force.  He performed a number of experiments to study the nature and 
magnitude of the force between the charged bodies.  He summed up his conclusions into two laws, 
known as Coulomb’s laws of electrostatics.
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 First law. This law relates to the nature of force between two charged bodies and may be stated 
as under :
 Like charges repel each other while unlike charges attract each other.
 In other words, if two charges are of the same nature (i.e. both positive or both negative), the 
force between them is repulsion.  On the other hand, if one charge is positive and the other negative, 
the force between them is an attraction.
 Second law. This law tells about the magnitude of force between two charged bodies and may 
be stated as under :
 The force between two *point charges is directly proportional to the product of their magni-
tudes and inversely proportional to the square of distance between their centres.

 Mathematically, F ∝ 1 2
2

Q Q
d

or   F = 1 2
2

Q Qk
d

 ...(i)

where k is a constant whose value depends upon the medium 
in which the charges are placed and the system of units 
employed.  In SI units, force is measured in newtons, charge 
in coulombs, distance in metres and the value of k is given 
by ;
   k = 

0

1
4 rπε ε

where  ε0 = Absolute permittivity 
of vacuum or air.

   εr = Relative permittiv-
ity of the medium in 
which the charges are placed.  For vacuum or air, its value is 1.

 The value of ε0 = 8·854 × 10−12 F/m and the value of εr is different for different media.

 \  F = 1 2
2

04 r

Q Q
dπε ε

 ...(ii)

 Now 
0

1
4πε

 = 12

1
4 8.854 10−π × ×

 = 9 × 109

 \  F = 9 1 2
29 10

r

Q Q
d

×
ε

 ...in a medium

    = 9 1 2
29 10 Q Q

d
×  ...in air

 Unit of charge. The unit of charge (i.e. 1 coulomb) can also be defined from Coulomb’s second 
law of electrostatics.  Suppose two equal charges placed 1 m apart in air exert a force of 9 × 109 
newtons i.e.   Q1 = Q2 = Q ; d = 1m ; F = 9 × 109 N

 \  F = 9 1 2
29 10 Q Q

d
×

 or  9 × 109  = 
2

9
29 10

(1)
Q×

* Charged bodies approximate to point charges if they are small compared to the distance between them.

Fig. 5.3



Electrostatics 263 

 or  Q2  = 1
 or  Q = ± 1 = 1coulomb
 Hence one coulomb is that charge which when placed in air at a distance of one metre 
from an equal and similar charge repels it with a force of 9 × 109 N.
 Note that coulomb is very large unit of charge in the study of electrostatics.  In practice, charges 
produced experimentally range between pico-coulomb (pC) and micro-coulomb (µC).
   1pC = 10−12C   ;  1µC = 10−6C
 Note. One disadvantage of SI units is that coulomb is an inconveniently large unit.  This is clear from the 
fact that the force exerted by a charge of 1C on another equal charge at a distance of 1m is 9 × 109N.  Could 
you hold two one-coulomb charges a metre apart ?

5.5.  Absolute and Relative Permittivity
 Permittivity is the property of a medium and affects the magnitude of force between two point 
charges. The greater the permittivity of a medium, the lesser the force between the charged bodies 
placed in it and vice-versa. Air or vacuum has a minimum value of permittivity.  The absolute (or 
actual) permittivity ε0 (Greek letter ‘epsilon’) of air or vacuum is 8·854 × 10−12 F/m.  The absolute 
(or actual) permittivity ε of all other insulating materials is greater than ε0.  The ratio ε/ε0 is   called 
the *relative permittivity of the material and is denoted by εr i.e.

   εr = 
0

ε
ε

where  ε = absolute (or actual) permittivity of the material
   ε0 = absolute (actual) permittivity of air or vacuum (8·854 × 10−12 F/m)
   εr = relative permittivity of the material.
 Obviously, εr for air would be ε0/ε0 = 1.
 Permittivity of a medium plays an important role in electrostatics.  For instance, the relative 
permittivity of insulating oil is 3. It means that for the same charges (Q1 and Q2) and distance (d), the 
force between the two charges in insulating oil will be one-third of that in air [See eq. (ii) in Art.5·4].

5.6.  Coulomb’s Law in Vector Form
 Consider two like point charges Q1 and Q2 separated by distance d in vacuum. Clearly, charges 
will repel each other [See Fig. 5.4].

 Let  21F
→

 = force on Q2 due to Q1

   12F
→

 = force on Q1 due to Q2

   12d̂  = unit vector pointing from Q1 to Q2

   �
21d  = unit vector pointing from Q2 to Q1

 According to Coulomb’s law,

   21F
→

 = �1 2
122

Q Qk d
d

 or  21F
→

 = �1 2
122

0

1
4

Q Q d
dπε

 ...(i)

 Similarly, 12F
→

 = 1 2
212

0

1 ˆ
4

Q Q d
dπε

 ...(ii)

 Eqs. (i) and (ii) express Coulomb’s law in vector form.

Fig. 5.4

* Thus when we say that relative permittivity of a material is 10, it means that its absolute or acutal  
permittivity e = e0 er = 8.854 × 10–12 × 10 = 8.854 × 10–11 F/m.
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 Importance of vector form. The reader may wonder about the utility of Coulomb’s law in vec-
tor form over the scalar form.  The answer will be readily available from the following discussion :

 (i) The vector form shows at a glance that forces 21F
→

 and 12F
→

 are equal and opposite.

   21F
→

 = �1 2
122

0

1
4

Q Q d
dπε

   12F
→

 = �1 2
212

0

1
4

Q Q d
dπε     

  As �
12d  = − �21d

  \ 21F
→

 = − 12F
→

 That is 21F
→

 is equal in magnitude to 12F
→

 but opposite in direction. The scalar form does not 
show this fact. This is a distinct advantage over the scalar form.

 (ii)  21F
→

  = 12F
→

−

 This means that 21F
→

 and 12F
→

 act along the same line i.e. along the line joining charges Q1 and 
Q2. In other words, the electrostatic force between two charges is a central force i.e. it acts along the 
line joining the centres of the two charges. However, scalar form does not show such a nature of 
electrostatic force between two charges.

5.7.  The Superposition Principle
 If we are given two charges, the electrostatic force between them can be found by using Cou-
lomb’s laws.  However, if a number of charges are present, the force on any charge due to the other 
charges can be found by superposition principle stated below :
 When a number of charges are present, the total force on a given charge is equal to the vector 
sum of the forces due to the remaining other charges on the given charge.
 This simply means that we first find the force on the given charge (by Coulomb’s laws) due to 
each of the other charges in turn. We then determine the total or net force on the given charge by 
finding the vector sum of all the forces.
 Notes. (i)  Consider two charges Q1 and Q2 located in air.  If a third charge Q3 is brought nearby, it has been 
found experimentally that presence of the third charge (Q3) has no effect on the force between Q1 and Q2. This 
fact permits us to use superposition principle for electric forces.
 (ii) The superposition principle holds good for electric forces and electric fields. This fact has made the 
mathematical description of electrostatic phenomena simpler than it otherwise would be.
 (iii) We can use superposition principle to find (a) net force (b) net field (c) net flux (d) net potential and 
(e) net potential energy due to a number of charges.
 Example 5.1. A small sphere is given a charge of + 20µC and a second sphere of equal diameter 
is given a charge of −5 µC.  The two spheres are allowed to touch each other and are then spaced 
10 cm apart. What force exists between them ? Assume air as the medium.
 Solution. When the two spheres touch each other, the resultant charge = (20) + (−5) = 15 µC.  
When the spheres are separated, charge on each sphere, Q1 = Q2 = 15/2 = 7·5 µC.

 \  Force, F = 9 1 2
29 10 Q Q

d
× ×

    = 
6 6

9
2

(7.5 10 ) (7.5 10 )9 10
(0.1)

− −× ×× ×  = 50.62 N repulsive
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 Example 5.2. A charge q is divided into two parts in such a way that they repel each other with 
a maximum force when held at a certain distance apart.  Find the distribution of the charge.
 Solution. Let the two parts be q′ and (q − q′).  Therefore, force F between them is

   F = 2
0

1 ( )
4

q q q
d

′ ′−
πε

 = 
2

2
0

1
4

qq q
d
′ ′−

πε

        For maximum value of F, 
dF
dq′  = 0 \ 

dF
dq′  = 2

0

1 ( 2 )
4

q q
d

′−
πε

 = 0

 or  q − 2q′ = 0 \ q′ = 
2
q

 Hence in order to have maximum force, q should be divided into two equal parts.

 Example 5.3. Three point charges of + 5µC, + 5µC 
and + 5µC are placed at the vertices of an equilateral 
triangle which has sides 10 cm long. Find the force on 
each charge.
 Solution. The conditions of the problem are 
represented in Fig. 5.5. Consider + 5µC placed at the 
corner C. It is being repelled by the charges at A and B 
along ACD and BCE respectively. These two forces are 
equal, each being given by ;

   F = 
6 6

9
2

(5 10 ) (5 10 )9 10
(0.1)

− −× ××  = 22.5 N

 Resultant force at C = 2F cos 30° = 2 × 22.5 × 
3

2
 = 38.97 N

 The forces acting on the charges placed at A and B will also be the same (i.e., 38.97 N)
 Example 5.4. Two small spheres, each having a mass of 0·1g are suspended from a point by 
threads 20 cm long. They are equally charged and they repel each other to a distance of 24cm. What 
is the charge on each sphere ?
 Solution. Fig. 5.6 shows the conditions of the problem. 
Let B and C be the spheres, each carrying a charge q.  The 
force of repulsion between the spheres is given by ;

   F = 
2

9
29 10

(0.24)
q×  

    = 156.25 × 109 q2

Each sphere is under the action of three forces :
 (i) weight m g acting vertically downward, (ii) tension 
T, and (iii) electrostatic force F. Considering the sphere B 
and resolving T into rectangular components, we have,
   m g = T sin θ  ;  F = T cos θ
 \  tan θ = mg/F

 Now, AD = 2 2 2 2(20) (12)AB BD− = −   = 16 cm

 \  tan θ = 
16
12

AD
BD

=  \ 
16
12

mg
F

=

Fig. 5.5

Fig. 5.6
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 or  F  = 
12
16

mg  = 0.75 mg = 0.75 × 10–4 × 9.8 = 7.4 × 10–4 N

 But  F = 156·25 × 109 q2

 \  156·25 × 109 q2 = 7·4 × 10−4 or q2 = 
4

9

7.4 10
156.25 10

−×
×

 = 4.8 × 10–15

 \  q = 6·9 × 10−8 C
 Example 5.5. Two point charges +Q and +4Q are placed at a distance ‘a’ apart on a horizontal 
plane. Where should the third charge be placed for it to be in equilibrium ?
 Solution. Let the point charge +q be placed at a distance x from the charge +4Q [See Fig. 5.7].

Fig. 5.7

 Force on charge +q due to charge +4Q is

   F1 = 2
0

(4 )
4
q Q

xπε
 from A to B

 Force on charge +q due to charge +Q is

   F2 = 2
0

( )
4 ( )

q Q
a xπε −

 from B to A

 In order that charge  +q is in equilibrium, F1 = F2.

 \  2
0

(4 )
4
q Q

xπε
 = 2

0

( )
4 ( )

q Q
a xπε −

 or x = 2a/3

 Example 5.6. Two point charges of +16 µC and −9 µC are 8 cm apart in air. Where can a third 
charge be located so that no net electrostatic force acts on it ?
 Solution. Let the third charge +Q be located at P at a distance x from the charge −9µC as shown 
in Fig. 5.8.

Fig. 5.8

 Force at P due to charge + 16 µC at A is

   F1 = 
6

2

16 10
( 0.08)

Qk
x

−× ×
+

 along AP

 Force at P due to charge −9 µC at B is

   F2 = 
6

2

9 10 Qk
x

−× ×
 along PB

 For zero electrostatic force at P, F1 = F2.

 \  
6

2

16 10
( 0.08)

Qk
x

−× ×
+

 = 
6

2

9 10 Qk
x

−× ×

 or  2

16
( 0.08)x +

 = 2

9
x

 or 
4 3
0.08x x

=
+

 \  x = 0.24 m = 24 cm
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 Example 5.7. Two small balls are having equal charge Q (coulomb). The balls are suspended 
by two insulating strings of equal length L (metre) from a hook fixed to a stand. The whole set up is 
taken in a satellite into space where there is no gravity.
 (i) What is the angle between the two strings ?
 (ii) What is the tension in each string ?
 Solution. (i) In the absence of gravity, the tension in the strings is only due to Coulomb’s repul-
sive force. Therefore, the strings become horizontal due to the electric force between the charges.  
Consequently, the angle between the strings is 180°.

 (ii)  F = 9 × 109 × 1 2
2

Q Q
d

 Here Q1 = Q2 = Q  ; d = 2 L

 \  F = 
2

9
29 × 10

4
Q
L

 Example 5.8. Two identical charged spheres are suspended by strings of equal length.  The 
strings make an angle of 30° with each other.  When suspended in a liquid of density  800 kg m−3, 
the angle remains the same. What is the dielectric constant of the liquid ? The density of the material 
of the sphere is 1600 kg m−3.
 Solution. Fig. 5.9 shows the conditions of the problem.  Suppose the mass of each sphere is m 
kg, the charge on each q coulomb and in equilibrium, the distance between them is r.  Each sphere 
is in equilibrium under the action of three forces as shown. Considering the sphere A,

   F = 
2

2
0

1
4

q
r

×
πε

 Now T cos 15° = mg  ; T sin 15° = F = 
2

2
0

1
4

q
rπε

 \  tan 15° = 
2

2
0

1
4

q
mg rπε

 ...(i)

 When the spheres are immersed in the liquid, the effective 
weight of each sphere and the force of repulsion both decrease. 
Consequently, tension also decreases.

  Weight of sphere in liquid = 
800* 1

1600
mg  −  

 = 
2

mg

  Electric force in liquid, F ′ = 
2

2
0

1
4

q
K r

×
πε

 Here K is the dielectric constant of the liquid.  If the reduced 
tension is T ′, then for the equilibrium of sphere A, we have,

   T ′ cos 15° = 
2

mg
 and T ′ sin 15° = 

2

2
0

1
4

q
K r

×
πε

 \  tan 15° = 
2

2
0

1 2
4

q
K mg rπε

 ...(ii)

 From eqs. (i) and (ii), we have,

Fig. 5.9

* Weight of sphere in liquid, W′ = Weight in air – Weight of liquid displaced.
 Now, Weight in air = mg

  Also, weight of liquid displaced = 
800

1600
m g mg mg     

         

σ σ= =
ρ ρ

 \ W′ = 
800 8001

1600 1600 2
mgmg mg mg   − = − =      
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2

2
0

1
4

q
mg rπε

 = 
2

2
0

1 2
4

q
K mg rπε

 \ K = 2

Tutorial Problems
 1. Two copper spheres A and B have their centres separated by 50 cm. If charge on each sphere is                            

6·5 × 10−7C, what is the mutual force of repulsion between them ?  The radii of the spheres are negli-
gible compared to the distance of separation.  What will be the magnitude of force if the two spheres are 
placed in water ? (Dielectric constant of water = 80). [1·52 × 10−2 N; 1·9 × 10−4 N]

 2. Charges q1 and q2 lie on the x-axis at points x = −4 cm and x = +4 cm respectively.  How must q1 and q2 
be related so that net electrostatic force on a charge placed at x = +2 cm is zero ? [q1 = 9q2]

 3. Two small spheres of equal size are 10 cm apart in air and carry charges +1 µC and − 3 µC.  Where should 
a third charge be located so that no net electrostatic force acts on it ? [24 cm from −3 µC]

 4. Two identical spheres, having unequal and opposite charges are placed at a distance of 90 cm apart.  After 
touching them mutually, they are again separated by same distance.  Now they repel each other with a 
force of 0·025N.  Find the final charge on each of them. [1·5 µC on each]

 5. Two small spheres, each of mass 0·05 g are suspended by silk threads from the same point.  When given 
equal charges, they separate the threads making an angle of 10o with each other.  What is the force of 
repulsion acting on each sphere ?  [4·3 × 10−5 N]

 6. Point charges of 2 × 10−9C lie at each of the three corners of a square of side 20cm. Find the magnitude 
of force on a charge of −1 × 10−9C placed at the centre of square. [9 × 107 N]

 7. The electrostatic force of repulsion between two positively charged ions carrying equal charge is  
3·7 × 10−9 N. If their separation is 5 Å, how many electrons are missing from each ion ? [2]

5.8.  Electric Field 
 The region surrounding a charged body is always under stress and strain because of the 
electrostatic charge. If a small charge is placed in this region, it will experience a force according to 
Coulomb’s laws. This stressed region around a charged body is called electric field. Theoretically, 
electric field due to a charge extends upto infinity but its effect practically dies away very quickly as 
the distance from the charge increases.
 The space (or field) in which a charge experiences a force is called an electric field or  
electrostatic field.

Fig. 5.10
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 The electric field around a charged body is represented by imaginary lines, called electric lines 
of *force. By convention, the direction of these lines of force at any point is the direction along which 
a unit positive charge (i.e., positive charge of 1C) placed at that point would move or tend to move.  
The unit positive charge is sometimes called a test charge because it is used as an indicator to find 
the direction of electric field.  Following this convention, it is clear that electric lines of force would 
always originate from a positive charge and end on a negative charge.  The electric lines of force 
leave or enter the charged surface **normally.
 Fig. 5.10 shows typical field distribution. Fig. 5.10 (i) shows electric field due to an isolated 
positively charged sphere. A unit positive charge placed near it will experience a force directed radi-
ally away from the sphere. Therefore, the direction of electric field will be radially outward as shown 
in Fig. 5.10 (i). For the negatively charged sphere [See Fig. 5.10 (ii)], the force acting on the unit 
positive charge would be directed radially towards the sphere. Fig. 5.10 (iii) shows the electric field 
between a positive charge and a negative charge while Fig. 5.10 (iv) shows electric field between 
two similarly charged (i.e. + vely charged) bodies.

5.9.  Properties of Electric Lines of Force
 (i) The electric field lines are directed away from a positive charge and towards a negative 

charge so that at any point, the tangent to a field line gives the direction of electric field at 
that point.

 (ii) Electric lines of force start from a positive charge and end on a negative charge.
 (iii) Electric lines of force leave or enter the charged surface normally.
 (iv) Electric lines of force cannot pass through a ***conductor. This means that electric field 

inside a conductor is zero.
 (v) Electric lines of force can never intersect each other. In case the two electric lines of force 

intersect each other at a point, then two tangents can be drawn at that point.  This would 
mean two directions of electric field at that point which is impossible.

 (vi) Electric lines of force have the tendency to contract in length. This explains attraction 
between oppositely charged bodies.

 (vii) Electric lines of force have the tendency to expand laterally i.e. they tend to separate from 
each other in the direction perpendicular to their lengths. This explains repulsion between 
two like charges.

5.10.  Electric Intensity or Field Strength (E)
 To describe an electric field, we must specify its intensity or strength. The intensity of electric 
field at any point is determined by the force acting on a unit positive charge placed at that point.
 Electric intensity (or field strength) at a point in an electric field is the force acting on a unit 
positive charge placed at that point.  Its direction is the direction along which the force acts.

 Electric intensity at a point, E = N/CF
Q+

       where Q = Charge in coulombs placed at that point
   F = Force in newtons acting on Q coulombs

* So called because forces are experienced by charges in this region.
** If a line of force is at an angle other than 90°, it will have a tangential component. This tangential component 

would cause redistribution (i.e. movement) of charge. By definition, electrostatic charge is static and hence 
tangential component cannot exist.

*** However, electric lines of force can pass through an insulator.
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 Thus, if a charge of 2 coulombs placed at a point in an electric field experiences a force 
of 10N, then electric intensity at that point will be 10/2 = 5N/C.  The following points may be 
noted carefully :
 (i) Since electric intensity is a force, it is a vector quantity possessing both magnitude and 

direction.
 (ii) Electric intensity can also be *described in terms of lines of force.  Where the lines of force 

are close together, the intensity is high and where the lines of force are widely separated, 
intensity will be low.

 (iii) Electric intensity can also be expressed in V/m.
   1 V/m = 1 N/C (See foot note on page 284)
Electric intensity due to a point charge. The value of electric 
intensity at any point in an electric field due to a point charge can 
be calculated by Coulomb’s laws. Suppose it is required to find the 
electric intensity at point P situated at a distance d metres from a 
charge of + Q coulomb (See Fig. 5.11). Imagine a unit positive 
charge (i.e. + 1C) is placed at point P. Then, by definition, electric 
intensity at P is the force acting on + 1C placed at P i.e.
   Electric intensity at P, E = Force on + 1C placed at P

    = 9
2

19 10
r

Q
d
××

ε

 \  E = 9
29 10

r

Q
d

×
ε

 ...in a medium

    = 9
29 10 Q

d
×  ...in air

 Note the direction of electric intensity. It is acting radially away from + Q. For a negative charge 
(i.e. − Q), its direction would have been radially towards the charge.
 The electric field intensity in vector form is given as :

   E
→

 = �9
29 10 Q d

d
×  ... in air

    = �9
29 10

r

Q d
d

×
ε

 ... in a medium

 where �d  is a unit vector directed from + Q to + 1C.
 Electric field intensity due to a group of point charges. The resultant (or net) electric field 
intensity at a point due to a group of point charges can be found by applying **superposition prin-
ciple. Thus electric field intensity at a point P due to n point charges (q1, q2, q3 ... qn) is equal to the 
vector sum of electric field intensities due to q1, q2, q3 .... qn at point P i.e.

   E
→

 = 1 2 3 .... nE E E E
→ → → →

+ + + +

 where E
→

 = Net or resultant electric field intensity at P

   1E
→

 = Electric field intensity at P due to q1

   2E
→

 = Electric field intensity at P due to q2
             and so on.
* It may be noted that electric lines of force do not actually exist. It is only a way of representing an electric 

field. However, it is a useful method of representation. It is a usual practice to indicate high field strength 
by drawing lines of force close together and low field strength by widely spaced lines.

** Since the electric force obeys the superposition principle, so does the electric field intensity—the force per 
unit charge.

Fig. 5.11
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 Example 5.9. Two equal and opposite charges of magnitude 2 × 10−7 C are placed 15cm apart.  
(i) What is the magnitude and direction of electric intensity (E) at a point mid-way between the 
charges? (ii) What force would act on a proton (charge = + 1·6 × 10−19 C) placed there ?
 Solution. Fig. 5.12 shows two equal and opposite 
charges separated by a distance of 15cm i.e. 0·15 m.  Let 
M be the mid-point i.e. AM = MB = 0·075 m.
 (i) Imagine a charge of + 1 C placed at M.
 \ Electric intensity at M due to charge + 2 × 10−7 C is

   E1 = 
7

9
2

2 109 10
(0.075)

−×× ×  = 0.32 × 106 N/C along AM

  Electric intensity at M due to charge −2 × 10−7C is

   E2 = 
7

9
2

2 109 10
(0.075)

−×× ×  = 0.32 × 106 N/C along MB

 Since electric intensities are acting in the same direction, the resultant intensity E is the sum of 
E1 and E2.

 \ Resultant intensity at point M is

   E = 0·32 × 106 + 0·32 × 106  = 0·64 × 106 N/C along AB
 (ii) Electric intensity E at M is 0·64 × 106 N/C.  Therefore, force F acting on a proton (charge, 
Q = +1·6 × 10−19 C) placed at M is
   F = E Q = (0·64 × 106) × (1·6 × 10−19) = 1·024 × 10−13 N along AB
 Example 5.10. A charged oil drop remains stationary when situated between two parallel plates 
25mm apart. A p.d. of 1000V is applied to the plates. If the mass of the drop is 5 ×10−15 kg, find the 
charge on the drop (take g = 10ms−2).
 Solution. Let Q coulomb be the charge on the oil drop. Since the drop is stationary,

 Upward force on drop = Weight of drop [See Fig. 5.13]
or   Q E = m g

Here  E = 3

1000
25 10

V
d −=

×
 = 4 × 104 V/m 

 \  Q = 
15

4
(5 10 ) 10

4 10
mg
E

−× ×=
×

 = 1.25 × 10–18 C

 Example 5.11. The diameter of a hollow metallic sphere is 60cm and the sphere carries a 
charge of 500µC. Find the electric field intensity (i) at a distance of 100cm from the centre of the 
sphere and (ii) at the surface of sphere.
 Solution. The electric field due to a charged sphere has spherical symmetry. Therefore, a charged 
sphere behaves for external points as if the whole charge is placed at its centre. [See Fig. 5.14]

 (i) d =  OP = 100cm = 1m  ;  Q = 500 µC = 500 × 10−6C

 \ E =  
6

9 9
2

500 109 10 9 10
1

Q
d

−×× = × ×  = 4.5 × 106 N/C

 (ii) d = OP′ = 30 cm = 0·3 m ;   Q = 500µC = 500 × 10−6C

 \  E = 
6

9 9
2 2

500 109 10 9 10
(0.3)

Q
d

−×× = × ×  = 5 × 107 N/C

Fig. 5.12

Fig. 5.13

Fig. 5.14



272    Basic  Electrical  Engineering 

 Example 5.12. Three point charges of +8 × 10−9 C, +32 × 10−9 C and +24 × 10−9 C are placed 
at the corners A, B and C of a square ABCD having each side 4 cm. Find the electric field intensity 
at the corner D. Assume that the medium is air.
 Solution. The conditions of the problem are represented in Fig. 5.15. It is clear that BD = 

2 0.04m× .

Fig. 5.15

 Magnitude of electric field intensity at D due to charge +8 × 10−9 C is

   E1 = 9 × 109 × 
9

2

8 10
(0.04)

−×
 = 4·5 × 104 N/C along DX

 Magnitude of electric field intensity at D due to charge +32 × 10−9 C is

   E2 = 9 × 109 × 
( )

9

2
32 10

2 0.04

−×

×
 = 9 × 104 N/C along DP

 Magnitude of electric field intensity at D due to charge +24 × 10−9 C is

   E3 = 9 × 109 × 
9

2

24 10
(0.04)

−×
 = 13·5 × 104 N/C along DY

   It is easy to see that θ = 45°.
 Resolving electric field intensities along X-axis and Y-axis, we have,
   Total X-component = E1 + E2 cos θ + 0
    = 4·5 × 104 + 9 × 104 × cos 45° = 10·86 × 104 N/C
   Total Y-component = 0 + E2 sin 45° + E3

    = 0 + 9 × 104 sin 45° + 13·5 × 104 = 19·86 × 104 N/C
 \ Magnitude of resultant electric intensity at D

    = 4 2 4 2(10.86 10 ) (19.86 10 )× + ×  = 22·63 × 104 N/C
 Let the resultant intensity make an angle f with DX.

 \  tanf = 
4

4
component 19.86 10
component 10.86 10

Y
X

− ×=
− ×

 = 1·828

 or  f = tan−1 1·828 = 61·32°

 Tutorial  Problems
 1. What is the magnitude of a point charge chosen so that electric field 20 cm away from it has a magnitude 

of 18 × 106 N/C ?    [80µC]
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 2. Two point charge s of 0·12 µC and −0·06 µC are situated 3m apart in air.  Calculate the electric field 
strength at a point midway between them on the line joining their centres. 

      [720 N/C towards −ve charge]
 3. An oil drop of 12 excess electrons is held stationary in a uniform electric field of 2·55 × 104 N/C.  If the 

density of oil is 12600 kg/m3, find (i) mass of the drop (ii) radius of the drop.

      [(i) 1·5 × 10−15 kg (ii) 9·8 × 10−7 m]
 4. A point charge of 0·33 × 10−8C is placed in a medium of relative permittivity of 5.  Calculate electric 

field intensity at a point 10cm from the charge. [525 N/C]
 5. Three point charges of +0·33 × 10−8C, + 0·33 × 10−8C and 0·165 × 10−8C are at the points A, B and C 

respectively of a square ABCD.  Find the electric field intensity at the corner D. [1·63 × 104 N/C]

5.11.  Electric Flux (ψ)
 Fig. 5.16 shows electric field between two equal and oppositely charged 
parallel plates. The electric field is considered to be filled with electric flux 
and each unit of charge is assumed to give rise to one unit of electric flux. 
The symbol for electric flux is the Greek letter ψ(psi) and it is measured in 
coulombs. Thus in Fig. 5.16, the charge on each plate is Q coulombs so that 
electric flux between the plates is 
   Electric flux, ψ	 = Q coulombs
 Electric flux is a measure of electric lines of force. The greater the 
electric flux passing through an area, the greater is the number of electric 
lines of force passing through that area and vice-versa. Suppose there is a 
charge of Q coulombs in a medium of absolute permittivity e	(= e0 er) where 
er is the relative permittivity of the medium. Then number of electric lines 
of force N produced by this charge is
   N =  

Q
ε

 = 
0 r

Q
ε ε

 (i) The electric flux through a surface area has maximum value when the surface is 
perpendicular to the electric field.

 (ii) The electric flux through the surface is zero when the surface is parallel to the electric field.

5.12.  Electric Flux Density (D)
 The electric flux density at any section in an electric field is the electric flux crossing normally 
per unit area of that section i.e.
  Electric flux density, D = 

A
ψ

 The SI unit of electric flux density is *C/m2.
 For example, when we say that electric flux density in an electric field is 4C/m2, it means 
that 4C of electric flux passes normally through an area of 1m2. Electric flux density is a vector  
quantity; possessing both magnitude and direction. Its direction is the same as the direction of elec-
tric intensity.
 Relation between D and E. Consider a charge of +Q 
coulombs placed in a medium of relative permittivity εr as 
shown in Fig. 5.17. The electric flux density at P at a distance 
d metres from the charge can be found as follows. With centre 
at the charge and radius d metres, an imaginary sphere can be 
considered. The electric flux of Q coulombs will pass normally 
through this imaginary sphere. Now area of sphere = 4π d2. Fig. 5.17

* D = e0erE = [C2 N–1 m–2] [N/C] = Cm–2 = C/m2

Fig. 5.16
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 \  Flux density at P, D = 2

Flux
Area 4

Q
d

=
π

 Also, Electric intensity at P, E = 2 2
0 0

1
4 4r r

Q Q
d d

= ×
πε ε π ε ε

    = 
0r

D
ε ε

 24
QD
d

 = π 
∵

 \  D =  ε0 εr E
 Hence flux density at any point in an electric field is ε0 εr times the electric intensity at  
that point.
 The electric flux density (D) is also called electric displacement.
 It may be noted that D and E are vector quantities having magnitude and direction. Therefore, 
in vector form,
   D

→

 = 0 r E
→

ε ε

 Also D
→

 = �
24

Q d
dπ

 The direction of D
→

 at every point is the same as that of E
→

 but its magnitude is D = e0erE.
 (i) The value of E depends upon the permittivity e(= e0er) of the surrounding medium, that of 

D is independent of it.
 (ii) Electric flux density (D) is directly related to electric field intensity (E); permittivity  

e(= e0er) of the medium being the factor by which one quantity differs from the other.
 (iii) The importance of relation D = e0erE lies in the fact that it relates density concept to 

intensity concept.
 (iv) Electric intensity at a point is also defined as equal to the electric lines of force passing 

normally through a unit cross-sectional area at that point. If Q coulombs is the charge, then 
number of electric lines of force produced by it is Q/e. If these lines fall normally on area 
A m2 surrounding the point, then electric intensity E at the point is 

   E = 
Q

A
ε

 = 
Q
Aε

  But 
Q
A

 = D = Electric flux density over the area.

  \	 E = 
0 r

D D=
ε ε ε

 ... in a medium

    = 
0

D
ε

  ... in air

 Example 5.13. Calculate the dielectric flux between two parallel flat metal plates each 35 
cm square with an air gap of 1·5 mm between; the potential difference being 3000 V. A sheet of 
insulating material 1·5 mm thick is inserted between the plates and the potential difference raised to 
7400V.  What is the relative permittivity of this material if the charge is now 32 µC ?

 Solution.  E = V/d   ; D = ε0εr E = 0 rV
d

ε ε
   ; ψ = DA

 \  ψ = 0 rV A
d

ε ε  ×  
 When medium is air (εr = 1)

   ψ = 
12 4

0
3

(8.85 10 ) 3000 (35 35 10 )
1.5 10

V A
d

− −

−

ε × × × × ×× =
×
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    = 21·6 × 10−7C = 2·16 µC
 When medium is insulating material

   ψ = 0 rV A
d

ε ε ×

 Here ψ = Q = 32 µC = 32 × 10−6 C  ;  V = 7400 volts  ;   d = 1·5 × 10−3 m

 \  εr = 
6 3

12 2 4
0

32 10 1.5 10
8.85 10 7400 (35) 10

d
VA

− −

− −

ψ × × × ×
=

ε × × × ×
 = 6

Tutorial Problems

 1. What is the total flux passing through a 10 cm × 6 cm surface in a region where the electric flux density 
is 2700 µC/m2 ?    [1·62 × 10−5 C]

 2. At a certain point in a material, the flux density is 0·09 C/m2 and electric field intensity is  
1·2 × 109 V/m.  What is the absolute permittivity of the material ? [7·5 × 10−11 C2 N−1 m−2]

5.13.  Gauss’s Theorem
 This theorem was first expressed by a German scientist Karl Fredrich Gauss (1777–1855) and 
may be stated as under :
 The electric flux passing through a closed surface surrounding a number of charges is equal to 
the algebraic sum of the charges inside the closed surface.

 To illustrate Gauss’s theorem, consider Fig. 5.18 where charges Q1, 
Q2, Q3 and −Q4 coulombs are placed inside a closed surface.  According to 
Gauss, the total electric flux ψ passing through this closed surface is given 
by the algebraic sum of the charges inside the closed surface i.e.
   ψ = Algebraic sum of the charges inside the closed 

surface

    =  (Q1) + (Q2) + (Q3) + (−Q4)

    = Q1 + Q2 + Q3 − Q4 coulombs

 The following points may be noted :

 (a) The location of charge/charges inside the closed surface does not matter.

 (b) The shape of the surface does not matter provided it is a closed surface enclosing the 
charge/charges.

 Explanation. (i)  Consider a charge of +Q coulomb placed at the centre of sphere of radius r 
as shown in Fig. 5.19 (i). Since the charge is at the centre of the sphere, electric flux density (D) is 
uniform over all the surface and perpendicular to the surface at every point.

   D = 2

Charge
Area of sphere 4

Q
r

=
π

 Therefore, the electric flux ψ passing outward through the sphere is

   ψ = D × Area = 2
2 4

4
Q r
r

× π
π

 = Q coulomb

The number of electric lines of force passing through the closed surface normally is Q/e0.

Fig. 5.18
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Fig. 5.19

 Thus the electric flux passing through the surface of sphere is equal to Q, the charge enclosed 
in the sphere.  This establishes Gauss’s theorem.
 If the sphere were enclosing a charge −Q placed at the centre [See Fig. 5.19 (ii)], then electric 
flux ψ = Q coulomb would pass inward through the surface and terminate at the charge.
 (ii) Now consider that the charge +Q coulomb is placed at any other point (other than centre 

O) inside the sphere as shown in Fig. 5.20. The electric lines of force flow outward but not 
normal to the surface. However, at any point on the sphere (such as point P), electric flux 
can be resolved into two rectangular components viz

 (a) Component normal to the surface i.e., cos θ component. 
 (b) Component perpendicular to the normal to the surface i.e. sin θ component.

 If we add all the sin θ components of electric flux 
over the whole surface, the result will be zero. It is 
because various sin θ components cancel each other.  
However, all cos θ components of flux are normal to 
the sphere surface and meet at the centre if produced 
backward.  Hence the resultant of all cos θ components 
over the surface of sphere is equal to Q coulomb i.e.
   ψ = Q coulomb

 The number of electric lines of force passing 
through the closed surface normally is Q/e0.

 Thus irrespective of the position of charge Q 
within the sphere, the flux passing through the sphere surface is Q coulomb. This establishes Gauss’s 
theorem. Similarly, it can be shown that if a surface encloses a number of charges, the electric flux 
passing through the surface is equal to the algebraic sum of charges inside the closed surface.

 Gauss’s law can also be expressed mathematically.

 We know that : ψ	= E dS
→ →

⋅∫�
where E dS

→ →
⋅∫�  is the surface integral of electric field ( )E

→

 over the entire closed surface  

enclosing the charge Q.
 \  ψ = E dS

→ →
⋅∫�  = 

0

Q
ε

Fig. 5.20
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  Hence, Gauss’s law may be stated as under :
 If a closed surface encloses a net charge (Q), then surface integral of electric field ( )E

→

 over 
the closed surface is equal to 1/e0 times the charge enclosed.

5.14.  Proof of Gauss’s Law
 Consider a positive charge + Q located at point O as shown 
in Fig. 5.21. We draw a sphere of radius r with charge + Q as 
its centre. We now show that total electric flux (i.e. total number 
of electric lines of force) passing through the closed surface is  
Q/e0. The magnitude of electric field at any point on the spherical 
surface is given by ;
   E = 2

04
Q

rπε
 

 The electric field is directed radially outward from + Q. The spherical surface is only imagi-
nary and is called Gaussian surface.

 Consider a small elementary area dS
→

 on the surface of sphere as shown in Fig. 5.21. It is clear 
that E

→

 is * parallel to dS
→

 i.e. angle between E
→

 and dS
→

 is zero. Therefore, electric flux through the 
entire closed spherical surface is

   ψ = cos0E dS E dS E dS
→ →

⋅ = ° =∫ ∫ ∫� � �
 Since E (magnitude of E

→

) is constant over the considered closed surface, it can be taken out of 
integral.
 \  ψ = E dS∫�
 Now E = 2

04
Q

rπε
 and dS∫�  = Surface area of sphere = 4pr2

 \  ψ = 2
2

0

4
4

Q r
r

× π
πε

 = 
0

Q
ε

 Hence, ψ = .E dS
→ →

∫�  = 
0

Q
ε

 Note.     We know : ψ	 = 
0

. QE dS
→ →

=
ε∫�

    = 0 .E dS
→ →

ε∫�  = Q

 \  ψ = .D dS
→ →

∫�  = Q                              0( )E D
→ →

ε =∵  

 Note that ψ	can be expressed in Q or Q/e0.
 Hence Gauss’s law may be stated in terms of flux density ( )D

→

 as under :
 If a closed surface encloses a net charge (Q), then surface integral of D

→
 (electric flux  

density) over the closed surface is equal to the charge enclosed by the closed surface.
 Example 5.14. A spherical surface 50 cm in diameter is penetrated by an inward flux uniformly 
distributed over the surface, the electric flux density being 2·5 × 10−7 C/m2. What is the magnitude 
and sign of the charge enclosed by this surface ?
 Solution. Area of spherical surface is
   A = 4πr2 = 4π × (25 × 10−2)2 = 0·785 m2

* This is true for every elementary area on the surface.

Fig. 5.21
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   Electric flux, ψ = D × A = (2·5 × 10−7) × (0·785) = 0·1962 × 10−6 C
 \  Charge enclosed = 0·1962 × 10−6 C = 0·1962 µC
 Since the electric flux is passing inward through the sphere, the charge enclosed is negative.

5.15.  Electric Potential Energy
 We know that earth has gravitational field which attracts the bodies towards earth. When a 
body is raised above the ground level, it possesses mechanical potential energy which is equal to the 
amount of work done in raising the body to that point. The greater the height to which the body is 
raised, the greater will be its potential energy. Thus, the potential energy of the body depends upon 
its position in the gravitational field; being zero on earth’s surface. Strictly speaking, sea level is 
chosen as the place of zero potential energy.
 Like earth’s gravitational field, every charge (+ Q) has electric field which theoretically extends 
upto infinity. If a small positive test charge + q0 is placed in this electric field, the test charge will 
experience a force of repulsion. If test charge + q0 is moved towards + Q, work will have to be done 
against the force of repulsion. This work done is stored in + q0 in the form of potential energy. We 
say the charge + q0 has electric potential energy. The electric potential energy of + q0 depends upon 
its position in the electric field ; being zero if q0 is situated at infinity.
 From the above discussion, it follows that just as a mass has mechanical potential energy in the 
gravitational field, similarly a charge has electric potential energy in the electric field. The electric 
potential energy of a charge is positive or negative depending upon the kind of charge.

5.16.  Electric Potential
 Just as we define electric field intensity as the force per unit charge, similarly electric potential 
is defined as the electric potential energy per unit charge.
 Consider an isolated charge +Q fixed in 
space as shown in Fig. 5.22. If a unit positive 
charge (i.e. + 1C) is placed at infinity, the force 
on it due to charge +Q is *zero. If the unit 
positive charge at infinity is moved towards 
+Q, a force of repulsion acts on it (like charges repel) and hence work is required to be done to 
bring it to a point like A. Hence when the unit positive charge is at A, it has some amount of electric 
potential energy which is a measure of electric potential. The closer the point to the charge, the 
higher will be the electric potential energy and hence the electric potential at that point.  Therefore, 
electric potential at a point due to a charge depends upon the position of the point; being zero if 
the point is situated at infinity. Obviously, in electric field, infinity is chosen as the point of **zero 
potential.
 Hence electric potential at a point in an electric field is the amount of work done in  
bringing a unit positive charge (i.e. +1 C) from infinity to that point i.e.

   Electric potential = 
Work

Charge
W
Q

=

where W is the work done to bring a charge of Q coulombs from infinity to the point under  
consideration.

Fig. 5.22

* F = 9
2

19 10 Q
d
×× × ; As d →	∞, F → 0

** In practice, earth is chosen to be at zero electric potential. It is because earth is such a huge conductor that 
its electric potential practically remains constant.
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 Unit. The SI unit of electric potential is *volt and may be defined as under :
 The electric potential at a point in an electric field is 1 volt if 1 joule of work is done in bringing 
a unit positive charge (i.e. + 1 C) from infinity to that point **against the electric field.
 Thus when we say that potential at a point in an electric field is +5V, it simply means that 5 
joules of work has been done in bringing a unit positive charge from infinity to that point.

5.17.  Electric Potential Difference
 In practice, we are more concerned with potential difference between two points rather than 
their †absolute potentials. The potential difference (p.d.) between two points may be defined as  
under :
 The potential difference between two points is the amount of work done in moving a unit  
positive charge (i.e. + 1C) from the point of lower potential to the point of higher potential.
 Consider two points A and B in the electric field of a charge 
+Q as shown in Fig. 5.23. Let V2 and V1 be the absolute potentials 
at A and B respectively. Clearly, V2 > V1. The potential V1 at B 
means that V1 joules of work has been done in bringing a unit 
positive charge from infinity to point B. Let the extra work done 
to bring the unit positive charge from B to A be W joules.
 \  Potential at A = V1 + W
 \  P.D. between A and B =  (V1 + W) − V1

 or   V2 − V1 = W = W.D. to move + 1C from B to A
 The SI unit of potential difference is volt and may be defined as under :
 The p.d. between two points is 1 V if 1 joule of work is done in bringing a unit positive 
charge (i.e. + 1 C) from the point of lower potential to the point of higher potential.
 Thus when we say that p.d. between two points is 5 volts, it simply means that 5 joules of work 
will have to be done to bring +1C of charge from the point of lower potential to the point of higher 
potential.  Conversely, 5 joules of work or energy will be released if + 1 C charge moves from the 
point of higher potential to the point of lower potential.

5.18.  Potential at a Point Due to a Point Charge
 Consider an isolated positive charge of Q coulombs 
placed in a medium of relative permittivity εr. It is desired to 
find the electric potential at point P due to this charge.  Let 
P be at a distance d metres from the charge. Imagine a unit 
positive charge (i.e. + 1 C) placed at A and situated x metres 
from the charge. Then the force acting on this unit charge 
(i.e. electric intensity) is given by [See Fig. 5.24] ;

   F = E = 2
04 r

Q
xπε ε

If this unit positive charge at A is moved through a small distance dx towards the charge +Q, then 
work done is given by ;
   dW = 2

04 r

Q
x

×
πε ε

 (– †† dx) 2
04 r

Q dx
x

= −
πε ε

Fig. 5.23

* Electric potential = W/Q = joules/coulomb. Now joule/coulomb has been given a special name viz volt.
** Note if the field is due to a positive charge (as is in this case), work will be done against the electric  field. 

However, if the field is due to a negative charge, work is done by the electric field.
† The potential at a point with infinity as reference is termed as absolute potential.
†† The negative sign is taken because dx is considered in the negative direction of distance (x).

Fig. 5.24
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Total work done in bringing a unit positive charge from infinity to point P is

   Total work done, W = 2 2
0 0

1
4 4

d d

r r

Q Qdx dx
x x∞ ∞

− = −
πε ε πε ε∫ ∫

    = ( )
0 0

1 1 1
4 4

d

r r

Q Q
x d∞

−   − − = − − −  πε ε πε ε ∞   

     = 
04 r

Q
dπε ε

 

    = 99 10
r

Q
d

×
ε

 joules 9

0

1 9 10
4

 = × πε 
∵

 By definition, the work done in joules to bring a unit positive charge from infinity to point P is 
equal to potential at P in volts.

 \  VP = 99 10
r

Q
d

×
ε

 volts ...in a medium

    = 99 10 Q
d

×  volts  ...in air

 The following points may be noted carefully :
 (i) The potential varies inversely with the distance d from the point charge Q. If the distance 

is increased three times, the potential is reduced one-third of its value and so on.
 (ii) Electric potential is a scalar quantity.

 (iii) At d = ∞ in air/vacuum, VP = 99 10 q×
∞

 = 0.

 (iv) If Q is positive, then potential at P is *positive. On the other hand, if Q is negative, then 
potential at P is negative.

5.19.  Potential at a Point Due to Group of Point Charges
 Electric potential obeys superposition principle. Therefore, electric 
potential at any point P due to a group of point charges Q1, Q2, Q3 .... Qn 
is equal to the algebraic sum of potentials due to Q1, Q2, Q3 ... Qn at point 
P.  Note that an algebraic sum is one in which sign of the physical quantity  
(potential in this case) is taken into account.
 Let the distances of Q1, Q2, Q3, .... Qn be d1, d2, d3 ... dn respectively from 
point P as shown in Fig. 5.25. Further, let V1, V2, V3 ... Vn be the potentials at 
P due to Q1, Q2, Q3 .... Qn respectively.  Assuming the medium to be free space/air,
   Total potential at P, VP = V1 + V2 + V3 + ..... + Vn

    = 31 2

0 1 0 2 0 3 0

1 1 1 1...
4 4 4 4

n

n

Q QQ Q
d d d d

+ + + +
πε πε πε πε

    = 31 2

0 1 2 3

1 ...
4

n

n

Q QQ Q
d d d d

 + + + + πε  

 \  VP = 9 31 2

1 2 3

9 10 ... n

n

Q QQ Q
d d d d

 × + + + + 
 

Fig. 5.25

* The potential near an isolated positive charge is positive because work is done by an external agency to push 
a test charge (positive) from infinity to that point. The potential near an isolated negative charge is negative 
because outside agent must exert a restraining force as test charge comes in from infinity.
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 If the system of charges is placed in a medium of relative permittivity εr, then,

   VP  = 
9

31 2

1 2 3

9 10 ... n

r n

Q QQ Q
d d d d

×  + + + + ε  

5.20.  Behaviour of Metallic Conductors in Electric Field
 When a metallic conductor (solid or hollow) is placed 
in an electric field, there is a momentary flow of charges 
(i.e., free electrons). Once the flow of charges ceases, the 
conductor is said to be in electrostatic equilibrium. It has 
been seen experimentally that under the conditions of 
electrostatic equilibrium, a conductor (solid or hollow) 
shows the following properties  [See Fig. 5.26] :
 (i) The net electric field inside a charged conductor is 

zero i.e., no electric lines of force exist inside the 
conductor.

 (ii) The net charge inside a charged conductor is zero.
 (iii) The electric field (i.e., electric lines of force) on the 

surface of a charged conductor is perpendicular to the surface of the conductor at every 
point.

 (iv) The magnitude of electric field just outside a charged conductor is σ/ε0 where σ is the 
surface charge density.

 (v) The electric potential is the same (i.e., constant) at the surface and inside a charged 
conductor.

  Inside a charged conductor, E = 0

 Now E = 
dV
dS

−  or 0 = 
dV
dS

−
 This means that V is constant.

5.21.  Potential of a Charged Conducting Sphere
 Consider an isolated conducting sphere of radius r metres placed in air and charged uniformly 
with Q coulombs. The field has spherical symmetry i.e. lines of force spread out normally from the 
surface and meet at the centre of the sphere if produced backward.  Outside the sphere, the field is 
exactly the same as though the charge Q on sphere were concentrated at its centre.
 (i) Potential at the sphere surface. Due to spherical symmetry of the field, we can imagine 
the charge Q on the sphere as concentrated at its centre O [See Fig. 5.27 (i)]. The problem then re-
duces to find the potential at a point r metres from a charge Q.

Fig. 5.27
 \ Potential at the surface of sphere

    = 
04

Q
rπε

 volts [See Art. 5·18]

Fig. 5.26
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    = 9 *9 10 Q
r

×  volts

 (ii) Potential outside the sphere. Consider a point P outside the sphere as shown in Fig. 5.27 
(ii).  Let this point be at a distance of D metres from the surface of sphere.

                Then potential at P  = 99 10
( )

Q
D r

×
+

 volts

 (iii) Potential inside the sphere. Since there is no electric flux inside the sphere, electric inten-
sity inside the sphere is zero.

   Now, electric intensity  = 
Change in potential

r
or   0 = Change in potential
 Hence, all the points inside the sphere are at the same potential as the points on the surface.
 Example 5.15. Two positive point charges of 16 × 10−10 C and 12 × 10−10 C are placed 10 cm 
apart.  Find the work done in bringing the two charges 4 cm closer.
 Solution. Suppose the charge 16 × 10−10 C to be fixed.
 Potential of a point 10 cm from the charge 16 × 10−10 C

     = 
10

9 16 109 10
0.1

−××  = 144 V

 Potential of a point 6 cm from the charge 16 × 10−10 C

    = 
10

9 16 109 10
0.06

−××  = 240 V

 \  Potential difference = 240 − 144 = 96 V
   Work done = Charge × p.d. = 12 × 10−10 × 96 = 11·52 × 10−8 joules
 Example 5.16. A square ABCD has each side of 1 m. Four point charges of +0·01 µC,  
− 0·02 µC, +0·03 µC and +0·02 µC are placed at A, B, C and D respectively. Find the potential at 
the centre of the square.
 Solution. Fig. 5.28 shows the square ABCD with charges 
placed at its corners. The diagonals of the square intersect at point 
P. Clearly, point P is the centre of the square. The distance of each 
charge from point P (i.e. centre of square) is

    = 2 21 1 1
2

+  = 0·707 m

 The potential at point P due to all charges is equal to the 
algebraic sum of potentials due to each charge.
 \ Potential at P due to all charges

    = 9 31 2 49 10
0.707 0.707 0.707 0.707

QQ Q Q × + + +  

    = ( )
9

69 10 0.01 0.02 0.03 0.02 10
0.707

−×  − + + 

    = 
9

69 10 0.04 10
0.707

−× × ×  = 509.2V

* If the sphere is placed in a medium (er), then potential is

    = 99 10
r

Q
r

×
ε

Fig. 5.28
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 Example 5.17. A hollow sphere is charged to 12µC. Find the potential (i) at its surface (ii) 
inside the sphere (iii) at a distance of 0·3m from the surface. The radius of the sphere is 0·1m.
 Solution. (i)  The potential at the surface of the sphere in air is

   V = 9

0

9 10
4

Q Q
d d

= × ×
πε

  Here Q = 12 µC = 12 × 10−6 C   ; d = 0·1m

  \ V = 
6

9 12 109 10
0.1

−×× ×  = 108 × 104 volts

 (ii) Potential inside the sphere is the same as at the surface i.e. 108 × 104 volts.
 (iii) Distance of the point from the centre = 0·3 + 0·1 = 0·4m

  \ Potential = 
6

9 12 109 10
0.4

−×× ×  = 27 × 104 volts

 Example 5.18. If 300 J of work is done in carrying a charge of 3 C from a place where the 
potential is −10 V to another place where potential is V, calculate the value of V.

 Solution.   VB − VA = 
W
Q

 Here VB = V  ; VA = −10V  ; W = 300 J  ; Q = 3 C
 \  V − (−10) = 300/3 or V + 10 = 100
 \  V = 100 − 10 = 90 volts
 Example 5.19. The electric field at a point due to a point charge is 30 N/C and the electric 
potential at that point is 15 J/C.  Calculate the distance of the point from the charge and magnitude 
of charge.
 Solution. Suppose q coulomb is the magnitude of charge and its distance from the point is r 
metres.
 Now, E = 2

k q
r

 = 30  ; 
k qV
r

=  = 15

 \  
E
V

 = 
1
r

 or r = 
15
30

V
E

=  = 0·5 m

 Now kq = 15 r = 15 × 0·5 = 7·5

 \  q = 9

7.5 7.5
9 10k

=
×

 = 0·83 × 10−9 C

 Example 5.20. Two point charges of +4 µC and −6 µC are separated by a distance of 20 cm in 
air.  At what point on the line joining the two charges is the electric potential zero ?
 Solution. Fig. 5.29 shows the conditions of the problem. Suppose C is the point of zero potential.  
Potential at point C is given by ;

   V = 
6 6

0 1 2

1 4 10 6 10
4 d d

− − × ×− πε  

 or  0 = 
6

0 1 2

10 4 6
4 d d

−  − πε  

 or  
1 2

4 6
d d

−  = 0 or d1 = 2
2
3

d  ...(i)

  Also d1 + d2 = 20 cm ...(ii)
 Solving eqs. (i) and (ii), we get, d1 = 8 cm ;  d2 = 12 cm.
 Therefore, the point of zero potential lies 8 cm from the charge of +4 µC or at 12 cm from the 
charge of −6 µC. 

Fig. 5.29
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Tutorial  Problems
 1. A charge of −4·5 × 10−7 C is carried from a distant point upto a charged metal sphere.  What is the 

electrical potential of the body if the work done is 1·8 × 10−3 joule ? [4 × 103 V]
 2. The difference of potentials between two points in an electric field is 6 volts. How much work is required 

to move a charge of 300 µC between these points ? [1·8 × 10−3 joule]
 3. A force of 0·032 N is required to move a charge of 42 µC in an electric field between two points 25 cm 

apart.  What potential difference exists between the two points ? [1·9 × 102 V]
 4. What is the magnitude of an isolated positive charge to give an electric potential of 100V at 10 cm from 

the charge ?    [1·11 × 10−9 C]
 5. A square ABCD has each side of 1m.  Four charges of +0·02 µC, +0·04 µC, +0·06 µC and +0·02 µC are 

placed at A, B, C and D respectively.  Find the potential at the centre of the square. [1000V]
 6. A sphere of radius 0·1 m has a charge of 5 × 10−8 C.  Determine the potential (i) at the surface of sphere, 

(ii) inside the sphere and (iii) at a distance of 1m from the surface of the sphere.  Assume air as the me-
dium.    [(i) 4500 V (ii) 4500 V (iii) 409 V]

5.22.  Potential Gradient
 The change of potential per unit distance is called potential gradient i.e.

   Potential gradient = 2 1V V
S
−

where V2 − V1 is the change in potential (or p.d.) between two points S metres apart.  Obviously, the 
unit of potential gradient will be volts/m.
 Consider a charge +Q and let there be two points A and B 
situated S metres apart in its electric field as shown in Fig. 5.30. 
Clearly, potential at point A is more than the potential at point B. If 
distance S is small, then the electric intensity will be approximate-
ly the same in this small distance.  Let it be E newtons/coulomb. It 
means that a force of E newtons will act on a unit positive charge  
(i.e. + 1C) placed anywhere between A and B. If a unit positive 
charge is moved from B to A, then work done to do so is given by ;
   Work done = E × S joules
 But work done in bringing a unit positive charge from B to A is the potential difference (VA − VB) 
between A and B.
 \  E × S = VA − VB

or   E = A BV V
S
−

 = Potential gradient

 In differential form, E = –
*dV
dS

 Hence electric intensity at a point is numerically equal to the potential gradient at that point.
 Since electric intensity is numerically equal to potential gradient at any point, both must be 
measured in the same units.  Clearly, electric intensity can also be measured in V/m.  For example, 
when we say that potential gradient at a point is 1000 V/m, it means that electric intensity at that 
point is also **1000 V/m or 1000 N/C.

Fig. 5.30

* Since work done in moving +1C from B to A is against electric field, a negative sign must be used to make 
the equation technically correct.

** It can be shown that 1 V/m = 1 N/C.

   1 V/m = 
joule coulomb newton × metre=

metre metre × coulomb
 = 1 N/C
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5.23.  Breakdown Voltage or Dielectric Strength
 In an insulator or dielectric, the valence electrons are tightly bound so that no free electrons 
are available for current conduction. However, when voltage applied to a dielectric is gradually 
increased, a point is reached when these electrons are torn away, a large current (much larger than 
the usual leakage current) flows through the dielectric and the material loses its insulating properties.  
Usually, a *spark or arc occurs which burns up the material. The minimum voltage required to break 
down a dielectric is called breakdown voltage or dielectric strength.
 The maximum voltage which a unit thickness of a dielectric can withstand without being 
punctured by a spark discharge is called **dielectric strength of the material.
 The dielectric strength (or breakdown voltage) is generally measured in kV/cm or kV/mm.  For 
example, air has a dielectric strength of 30kV/cm.  It means that maximum p.d. which 1 cm thickness 
of air can withstand across it without breaking down is 30kV.  If p.d. exceeds this value, the break-
down of air insulation will occur; allowing a large current to flow through it.  Below is given the 
table showing dielectric constant and dielectric strength of some common insulators or dielectrics : 

S.No. Dielectric Dielectric
Constant (εr)

Dielectric strength
(kV/cm)

1 Air 1 30
2 Paper (oiled) 2 400
3 Paraffin 2·25 350
4 Mica 6 500
5 Glass 8 1000

 The following points may be noted :
 (i) The value of dielectric strength of an insulator (or dielectric) depends upon temperature, 

moisture content, shape etc.
 (ii) The electric intensity, potential gradient and dielectric strength are numerically equal i.e.
   Electric intensity = Potential gradient = Dielectric strength
 (iii) The breakdown of solid insulating material (dielectric) usually renders it unfit for further 

use by puncturing, burning, cracking or otherwise damaging it. Gaseous and liquid 
dielectrics are self-healing and may be used repeatedly following breakdown.

 (iv) For reasons of safety, electric field applied to a dielectric is only 10% of the dielectric 
strength of the dielectric material.

 Note. To avoid electric breakdown of dielectric, capacitors are rated according to their working voltage, 
meaning the maximum safe voltage that can be applied to the capacitor.

5.24.  Uses of Dielectrics
 The insulating materials (or dielectrics) are widely used to provide electrical insulation to 
electrical and electronics apparatus. The choice of a dielectric for a particular situation will depend 
upon service requirements. A few cases are given below by way of illustration :
 (i) If the dielectric is to be subjected to a great heat, as in soldering irons or toasters; mica 

should be used.
 (ii) If space, flexibility and a fair dielectric strength are the deciding factors, as in the dielectric 

for small fixed capacitors, cellulose and animal tissue materials are used.

* This spark may burn a path through such dielectrics as paper, cloth, wood or mica. Hard materials such as 
porcelain or glass will crack or allow a small path to be melted through them. 

** Dielectric strength should not be confused with dielectric constant (relative permittivity).



286    Basic  Electrical  Engineering 

 (iii) If a high dielectric strength is desired, as in case of high voltage transformers, glass and 
porcelain should be used.

 (iv) If the insulation must remain liquid, like that used in large switches and circuit breakers to 
quench the arc when the circuit is opened, then various oils are used.

 Example 5.21. A parallel plate capacitor has plates 1 mm apart and a dielectric with relative 
permittivity of 3·39. Find (i) electric intensity and (ii) the voltage between plates if the surface 
charge density is 3 ×10−4 C/m2.
 Solution. (i) The surface charge density is equal to electric flux density D.
 Now, D =  ε0εr E

 \  Electric intensity, E = 
4

12
0

3 10
8.854 10 3.39r

D −

−

×=
ε ε × ×

 = 107 V/m

 (ii)  P.D. between plates, V = E × dx = 107 × (1 × 10−3) = 104V
 Example 5.22. The electric potential difference between the parallel deflection plates in an 
oscilloscope is 300V. If the potential drops uniformly when going from one plate to the other and if 
distance between the plates is 0·75 cm, what is the magnitude of the electric field between them and 
in which direction does it point?
 Solution. Let us choose the positive direction of ∆S to be in the direction of increasing potential.

 \  E = 
V
S

∆−
∆

 Here ∆V = + 300V ; ∆S = + 0·75 cm = 0·75 × 10−2 m

 \  E = 2

300
0.75 10−−

×
 = – 40,000 V/m

 The negative value of E tells us that E is directed opposite to ∆S.  Thus E is directed from the 
higher-voltage plate towards the lower-voltage one.
 Example 5.23. A uniform electric field is acting from 
left to right.  If a + 2C charge moves from a to b, a distance 
of 4m, [See Fig. 5.31], find (i) electric field strength and 
(ii) potential energy of charge at b w.r.t. a.  Given that p.d. 
between a and b is 50 volts.
 Solution.  Referring to Fig. 5.31, we have,
 (i) Electric intenstity =  Potential gradient = 50/4 
    = 12·5 V/m
 (ii) Potential energy of charge (i.e., +2C) at b w.r.t. a
    = Work per unit charge × 

Charge
    = Voltage between a and b × Charge
    = 50 joules/C × (2C) = 100 joules
 Example 5.24. A sheet of glass 1·5 cm thick and of relative permittivty 7 is introduced between 
two parallel brass plates 2 cm apart. The remainder of the space between the plates is occupied 
by air.  If a p.d. of 10,000 V is applied between the plates, calculate (i) electric intensity in air film 
between glass and plate and (ii) in the glass sheet.
 Solution. Fig. 5.32 shows the arrangement. Let V1 and V2 be the p.d. across air and glass 
respectively and E1 and E2 the corresponding electric intensities.
 Now, V1 = E1x1 = E1 × (0·5 × 10−2)

Fig. 5.31
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 and  V2 = E2x2 = E2 × (1·5 × 10−2)
 Now V = V1 + V2

 or  10,000 = (0·5 E1 + 1·5 E2)10−2

 or  E1 + 3E2 = 2 × 106 ...(i)
 Now electric flux density D (= ε0 εr E) is the same in the two media because it is independent 
of the surrounding medium.
 \  ε0 εr2 E1 =  ε0 εr2 E2

 or  E1 = 7 E2 ...(ii)
 From exps. (i) and (ii), we get,
 (i)  Electric intensity in air = 1·4 × 106 V/m
 (ii)  Electric intensity in glass = 0·2 × 106 V/m

  Fig. 5.32 Fig. 5.33

 Example 5.25. A capacitor has two dielectrics 1 mm and 2 mm thick. The relative permittivities 
of these dielectrics are 3 and 6 respectively. Calculate the potential gradient along the dielectrics if 
a p.d. of 1000 V is applied between the plates.
 Solution. Fig. 5.33 shows the arrangement. Finding the potential gradient means to find the 
electric intensity (or electric stress).
   V1 = E1 x1 = E1 × (1 × 10−3)
   V2 = E2 x2 = E2 × (2 × 10−3)
 Now V = V1 + V2

 or  1000 = (E1 + 2E2) 10−3

 or  E1 + 2E2 = 106 ...(i)
 Since flux density D (= ε0 εr E) is the same in the two media,
 \  ε0 εr1 E1 =  ε0 εr2 E2

 or  3 E1 = 6 E2 ...(ii)
 From exps. (i) and (ii), we get, E1 = 0·5 × 106 V/m  ; E2 = 0·25 × 106 V/m
 Example 5.26. Two series connected parallel plate capacitors have plate areas of 0·2 m2 and 
0·04 m2, plate separation of 0·5 mm and 0·125 mm and relative permittivities of 1 and 6 respectively.  
Calculate the total voltage across the capacitors that will produce a potential gradient of 100 kV/cm 
between the plates of first capacitor.
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 Solution. We shall use suffix 1 for the first capacitor and suffix 2 for the second capacitor. 
Suppose for a potential gradient of 100 kV/cm between the plates of first capacitor, the voltages 
across first and second capacitors are V1 and V2 respectively. Then,
 Total voltage V across capacitors is
   V = V1 + V2
 For the first capacitor E1 = 100 kV/cm = 100 × 103 × 102 = 107 V/m
 \  V1 = E1d1 = (107) × (0·5 × 10−3) = 5 × 103 V = 5kV
   D1 =  ε0 εr1E1 = ε0 × 107 (  εr1 = 1)
   Q1 = A1D1 = (0·2) × ε0 × 107 C
 For the second capacitor. Since the capacitors are connected in series, the charge on them is 
the same i.e.
   Q1 = Q2 = 0·2 × ε0 × 107 C

 \  D2 = 
7

02

2

0.2 10
0.04

Q
A

× ε ×=  = 0·5 × 108 × ε0 C/m2

 \  E2 = 
8 8

02

0 2 0

0.5 10 10 V m
6 12r

D × × ε= =
ε ε ε ×

 ( εr2 = 6)

 \  V2 = E2d2 = 
8

310 (0.125 10 )
12

−×  = 1·04 × 103 V = 1·04 kV

 \ Total voltage across the capacitors is
   V = V1 + V2 = 5 + 1·04 = 6·04 kV
 Example 5.27. A parallel plate capacitor consists of two square metal plates 500 mm on a side  
separated by 10 mm. A slab of Teflon (er = 2) 6 mm thick is placed on the lower plate leaving an 
air gap 4 mm thick between it and the upper plate. If 100V is applied across the capacitor, find the 
electric field Ea in the air, electric field Et in Teflon,  flux density Da in air, flux density Dt in Teflon 
and potential difference Vt across Teflon slab.
 Solution. Electric flux density (D) in the two media is the same. However, electric field inten-
sity (E) is inversely proportional to the relative permittivity (er) of the medium. If Ea is the electric 
intensity in air, then electric intensity in Teflon is Et = Ea/2 ( relative permittivity of Teflon = 2).
 Thickness of air, ta = 4 mm  ;   Thickness of Teflon, tt = 6 mm 
  Voltage between two plates, V = Eata + Ettt
 or 100 = 4 6

2
a

a
EE × + ×  

2
a

t
EE =  

∵

 \ Ea = 
100

7
 volts/mm = 14.286 kV/m

  Electric field in Teflon, Et = 
14.286

2
 = 7.143 kV/m

 As electric flux density is the same in the two media,

 \ Da = Dt = e0erEa = 8.854 × 10–12 × 1 × 14.286 × 1000

   = 1.265 × 10–7 C/m2

 P.D. across Teflon slab, Vt = Et × tt = 7.143 × 1000 × 6 × 10–3 = 42.86 V

Tutorial Problems
 1. An electron (charge = 1·6 × 10−19 C; mass = 9·1 × 10−31 kg) is released in a vacuum between two flat, 

parallel metal plates that are 10cm apart and are maintained at a constant electric potential difference of 
750V.  If the electron is released at the negative plate, what is the speed just before it strikes the positive 
plate ?    [1·6 × 107 ms−1]
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 2. To move a charged particle through an electric potential difference of 10−3V requires 2 × 10−6 J of work.  
What is the magnitude of charge ?  [2 × 10−3 C]

 3. A proton of mass 1·67 × 10−27 kg and charge = 1·6 × 10−19 C is accelerated from rest through an electric 
potential of 400 kV.  What is its final speed ? [8·8 × 106 ms−1]

5.25.  Refraction of Electric Flux
 When electric flux passes from one uniform dielectric 
medium to another of different permittivities, the electric flux 
gets refracted at the boundary of the two dielectric media. 
Under this condition, the following two conditions exist at the 
boundary (called boundary conditions) :
 (i) The normal components of electric flux density are 

equal i.e.
   D1n = 2nD
 (ii) The tangential components of electric field intensities 

are equal i.e.
   E1t = E2t

 Fig. 5.34 shows the refraction of electric flux at the boundary 
BB of two dielectric media of permittivities e1 and e2. As shown, the electric flux in the first me-
dium (e1) approaches the boundary BB at an angle q1 and leaves it at q2. D1n and D2n are the normal 
components of D1 and D2 while E1t and E2t are the tangential components of E1 and E2. Referring to  
Fig. 5.34,
   D1n = D1 cos q1 and D2n = D2cos q2

 Also E1 = D1/e1 and E1t = D1sinq1/e1

 Similarly, E2 = D2/e2 and E2t = D2sin q2/e2

 \  1

1

n

t

D
E

 = 1

1tan
ε

θ
 and 2

2

n

t

D
E

 = 2

2tan
ε

θ
 Since D1n = D2n and E1t = E2t ,

 \  1

2

tan
tan

θ
θ

 = 1

2

ε
ε

 ... (i)

 Eq. (i) gives the law of refraction of electric flux at the boundary of two dielectric media whose 
permittivities are different.
 It is clear that if e2 > e1, then q2 > q1.
 Note. When electric flux passes from one of the commonly used dielectrics (e	being 2 to 8) into another 
or air, there is hardly any refraction of electric flux.
 Example 5.28. An electric field in a medium with relative permittivity 7 passes into a medium 
of relative permittivity 2. If E makes an angle of 60° with the normal to the boundary in the first 
dielectric, what angle does the field make with the normal in the second dielectric ?
 Solution. As proved in Art 5.25,

   1

2

tan
tan

θ
θ

 = 1

2

ε
ε

 Here q1 = 60° ; e1 = 7 ; e2 = 2 ; q2 = ?

 \  
2

tan 60
tan

°
θ

 = 
7
2

 or tan q2 = 
23
7

×  = 0.495

 \  q2 = tan–1 0.495 = 26.33°

Fig. 5.34
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5.26. Equipotential Surface
 Any surface over which the potential is constant is called an equipotential surface.
 In other words, the potential difference between any 
two points on an equipotential surface is zero.  For example, 
consider two points A and B on an equipotential surface as 
shown in Fig. 5.35.
   VB – VA = 0 \ VB = VA

 The two important properties of equipotential surfaces 
are :
 (a) Work done in moving a charge over an equipoten-

tial surface is zero.
   Work done = Charge × P.D.
  Since potential difference (P.D.) over an equipotential surface is zero, work done is zero.
 (b) The electric field (or electric lines of force) are *perpendicular to an equipotential surface.
 Some cases of Equipotential surfaces. The fact that the electric field lines and equipotential 
surfaces are mutually perpendicular helps us to locate the equipotential surfaces when the electric 
field lines are known.
 (i) Isolated point charge. The potential at a point P at a distance r from a point charge +q is 

given  by ;
   VP = 

qk
r

 where k = 
0

1
4πε

 It is clear that potential at various points equidistant from the point charge is the same. Hence, 
in case of an isolated point charge, the spheres concentric with the charge will be the equipotential 
surfaces as shown in Fig. 5.36. Note that in drawing the equipotential surfaces, the potential dif-
ference is kept the same, i.e., 10 V in this case. It may be seen that distance between charge and 
equipotential surface I is small so that E (= dV/dr = 10/dr) is high. However, the distance between 
charge and equipotential surfaces II and III is large so that E (= dV/dr = 10/dr) is small. It follows, 
therefore, that equipotential surfaces near the charge are crowded (i.e., more E) and become widely 
spaced as we move away from the charge.

  Fig. 5.36 Fig. 5.37

Fig. 5.35

* If this were not so that is if there were a component of E
→

 parallel to the surface — it would require work 

to move the charge along the surface against this component of E
→

; and this would contradict that it is an 
equipotential surface.
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 (ii) Uniform electric field. In case of uniform electric field (e.g., electric field between the 
plates of a charged parallel-plate capacitor), the field lines are straight and equally spaced. Therefore, 
equipotential surfaces will be parallel planes at right angles to the field lines as shown in Fig. 5.37.

5.27.  Motion of a Charged Particle in Uniform Electric Field
 Consider that a charged particle of 
charge +q and mass m enters at right 
angles to a uniform electric field of 
strength E with velocity v along OX-axis 
as shown in Fig. 5.38. The electric field is 
along OY-axis and acts over a horizontal 
distance x.
 Since the electric field is along 
OY-axis, no horizontal force acts on 
the charged particle entering the field. 
Therefore, the horizontal velocity v of 
the charged particle remains the same 
throughout the journey. The electric field accelerates the charged particle along OY-axis only.

 Force on the charged particle, F = qE ... along OY

 Acceleration of the charged particle, a = 
qE
m

 ...along OY

 Time taken to traverse the field, t = 
x
v

 If y is the displacement of the charged particle along OY direction in the electric field during 
the time t, then,
   y = 21*(0)

2
t at+

 or  y = 
2

21 1
2 2

qE xat
m v

  =     

 or  y = 2
22

qE x
mv

 or  y = k x2 2 Constant
2
qE k
mv

 = =  
∵

 This is the equation of a parabola. Therefore, inside the electric field, the charged particle fol-
lows a parabolic path OA. As the charged particle leaves the electric field at A, it follows a straight 
line path AB tangent to path OA at A.
 Note. When an electron (or a charged particle) at rest is accelerated through a potential difference (P.D.) 
of V volts, then,
 Energy imparted to electron = Charge × P.D. = e × V

    K.E. gained by electron = 21
2

mv

 \  21
2

mv  = eV or v = 
2eV
m

 Here e is the charge on electron and m is the mass of electron. The velocity acquired by the electron is v.

Fig. 5.38

* At the time the charged particle enters the electric field, its velocity along OY-axis is zero.
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 Example 5.29. An electron moving with a velocity of 107 ms–1 enters mid-way between two 
horizontal plates P, Q in a direction parallel to the plates as shown in Fig. 5.39. The length of the 
plates is 5 cm and their separation is 2 cm. If a p.d. of 90 V is applied between the plates, calculate 
the transverse deflection produced by the electric field when the electron just passes the field. Assume 
e/m = 1.8 × 1011 C kg–1.
 Solution. Fig. 5.39 shows the conditions of the problem.

   Electric field, E = 2

90
2 10

V
d −=

×
 = 45 × 102 Vm–1

 Downward force on the electron = eE
 Downward acceleration of the electron is

   a = 
eE
m

 = (1.8 × 1011) × (45 × 102) = 81 × 1013 ms–2

 Time taken to cross the field, t = 
2

7

5 10
10

x
v

−×=  = 5 × 10–9 s

Fig. 5.39

 \ Transverse deflection, y = 21 1
2 2

at = (81 × 1013) × (5 × 10–9)2 = 0.01 m = 1cm

 Example 5.30. A potential gradient of 3 × 106 V/m is maintained between two horizontal  
parallel plates 1 cm apart. An electron starts from rest at the negative plate, travels under the influ-
ence of potential gradient to the positive plate. Given the mass of electron = 9.1 × 10–31 kg and the 
charge on electron = 1.603 × 10–19 C. Calculate (i) the force acting on the electron (ii) the ratio 
of electric force to gravitational force (iii) acceleration (iv) time taken to reach the positive plate.

 Solution. E = 3 × 106 V/m  ;  e = 1.603 × 10–19 C  ;  m = 9.1 × 10–31 kg  ;  S = 1 × 10–2 m

 (i) Force on electron, F = eE = 1.603 × 10–19 × 3 × 106 = 4.81 × 10–13 N
 (ii) Ratio of electric force to gravitational force

   =
F

mg
 = 

13

31

4.81 10
9.1 10 9.81

−

−

×
× ×

 = 5.39 × 1016

  Note that electric force is very large compared to the gravitational force.

 (iii) Acceleration of electron, a = 
13

31

4.81 10
9.1 10

F
m

−

−

×=
×

 = 51.66 × 1016 m/s2

 (iv) Distance travelled, S = 21
2

at

 \   Time taken to reach + ve plate, t = 
2S
a

 = 
2

16

2 1 10
51.66 10

−× ×
×

 = 1.968 × 10–10 s
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 Example 5.31. An electron of charge 1.6 × 10–19 C can move freely for a distance of 2 cm in 
a field of 1000 V/cm. The mass of the electron is 9.1 × 10–28 g. If the electron starts with an initial 
velocity of zero, what velocity will it attain, what will be the time taken and what will be its kinetic 
energy?
 Solution. e = 1.6 × 10–19 C  ;   m = 9.1 × 10–31 kg  ;  E = 1000 V/cm = 105 V/m
 Distance of free movement, d = 2 cm = 0.02 m
 \ Potential difference applied, V = E × d = 105 × 0.02 volts
 Energy imparted to electron = Charge × P.D. = e × V
    = 1.6 × 10–19 × 105 × 0.02 = 3.2 × 10–16 J

 Now, Energy imparted = K.E. of electron = 3.2 × 10–16 J

 Also v = 
2eV
m

 = 
16

31

2 3.2 10
9.1 10

−

−

× ×
×

 = 2.652 × 107 m/s

   Force on electron, F = eE = 1.6 × 10–19 × 105 = 1.6 × 10–14 N

  Acceleration of electron, a = 
14

31

1.6 10
9.1 10

F
m

−

−

×=
×

 = 1.758 × 1016 m/s2

  Distance travelled, d = 21
2

at

 \ Time taken, t = 
2d
a

 = 16

2 0.02
1.758 10

×
×

 = 1.51 × 10–9 s

Objective Questions

 1. The force between two electrons separated by a 
distance r varies as

 (i) r2 (ii) r
 (iii) r−1 (iv) r−2

 2. Two charges are placed at a certain distance 
apart.  A brass sheet is placed between them.  
The force between them will

 (i) increase (ii) decrease
 (iii) remain unchanged 
 (iv) none of the above
 3. Which of the following appliance will be stud-

ied under electrostatics ?
 (i) incandescent lamp
 (ii) electric iron
 (iii) lightning rod (iv) electric motor
 4. The relative permittivity of air is
 (i) 0 (ii) 1
 (iii) 8·854 × 10−12 (iv) none of the above
 5. The relative permittivity of a material is 10.  Its 

absolute permittivity will be 
 (i) 8·854 × 10−11 F/m
 (ii) 9 × 108 F/m

 (iii) 5 × 10−5 F/m (iv) 9 × 105 F/m
 6. Another name for relative permittivity is
 (i) dielectric constant
 (ii) dielectric strength
 (iii) potential gradient 
 (iv) none of the above
 7. The relative permittivity of most materials lies 

between
 (i) 20 and 100 (ii) 10 and 20
 (iii) 100 and 200 (iv) 1 and 10
 8. When the relative permittivity of the medium 

is increased, the force between two charges 
placed at a given distance apart

 (i) increases (ii) decreases
 (iii) remains the same
 (iv) none of the above
 9. Two charges are placed at a distance apart. If 

a glass slab is placed between them, the force 
between the charges will

 (i) be zero (ii) increase
 (iii) decrease (iv) remain the same
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 10. There are two charges of +1 µC and +5 µC.  The 
ratio of the forces acting on them will be

 (i) 1 : 1 (ii) 1 : 5
 (iii) 5 : 1 (iv) 1 : 25
 11. A soap bubble is given a negative charge.  Its 

radius 
 (i) decreases (ii) increases
 (iii) remains  unchanged 
 (iv) information is incomplete to say anything
 12. The ratio of force between two small spheres 

with constant charge in air and in a medium of 
relative permittivity K is

 (i) K2 : 1 (ii) 1 : K
 (iii) 1 : K2 (iv) K : 1
 13. An electric field can deflect
 (i) x-rays (ii) neutrons
 (iii) α-particles (iv) γ-rays
 14. Electric lines of force enter or leave a charged 

surface at an angle
 (i) of 90º (ii) of 30º
 (iii) of 60º
 (iv) depending upon surface conditions
 15. The relation between absolute permittivity of 

vacuum (ε0), absolute permeability of vacuum 
(µ0) and velocity of light (c) in vacuum is

 (i) µ0ε0 = c2 (ii) µ0/ε0 = c

 (iii) ε0/µ0 = c (iv) 
0 0

1
µ ε

 = c2

 16. As one penetrates a uniformly charged sphere, 
the electric field strength E

 (i) increases (ii) decreases
 (iii) is zero at all points
 (iv) remains the same as at the surface
 17. If the relative permittivity of the medium in-

creases, the electric intensity at a point due to a 
given charge

 (i) decreases (ii) increases
 (iii) remains the same
 (iv) none of the above
 18. Electric lines of force about a negative point 

charge are
 (i) circular, anticlockwise

 (ii) circular, clockwise
 (iii) radial, inward (iv) radial, outward
 19. A hollow sphere of charge does not produce an 

electric field at any
 (i) outer point (ii) interior point
 (iii) beyond 2 m (iv) beyond 10 m
 20. Two charged spheres of radii 10 cm and 15 cm 

are connected by a thin wire.  No current will 
flow if they have

 (i) the same charge (ii) the same energy
 (iii) the same field on their surface
 (iv) the same potential
 21. Electric potential is a
 (i) scalar quantity (ii) vector quantity
 (iii) dimensionless 
 (iv) nothing can be said
 22. A charge Q1 exerts some force on a second 

charge Q2.  A third charge Q3 is brought near.  
The force of Q1 exerted on Q2

 (i) decreases (ii) increases
 (iii) remains unchanged
 (iv) increases if Q3 is of the same sign as Q1 

and decreases if Q3 is of opposite sign
 23. The potential at a point due to a charge is 9 

V. If the distance is increased three times, the  
potential at that point will be

 (i) 27 V (ii) 3 V
 (iii) 12 V (iv) 18 V
 24. A hollow metal sphere of radius 5 cm is charged 

such that the potential on its surface is 10 V.  
The potential at the centre of the sphere is

 (i) 10 V (ii) 0 V
 (iii) same as at point 5 cm away from the sur-

face
 (iv) same as at point 25 cm away from the sur-

face
 25. If a unit charge is taken from one point to an-

other over an equipotential surface, then,
 (i) work is done on the charge
 (ii) work is done by the charge
 (iii) work on the charge is constant
 (iv) no work is done

Answers
 1. (iv) 2. (ii) 3. (iii) 4. (ii) 5. (i) 
 6. (i) 7. (iv) 8. (ii) 9. (iii) 10. (i) 
 11. (ii) 12. (iv) 13. (iii) 14. (i) 15. (iv) 
 16. (iii) 17. (i) 18. (iii) 19. (ii) 20. (iv)
 21. (i) 22. (iii) 23. (ii) 24. (i) 25. (iv)



Introduction
 It is well known that different bodies hold different charge when given the same potential. This 
charge holding property of a body is called capacitance or capacity of the body. In order to store suf-
ficient charge, a device called capacitor is purposely constructed. A capacitor essentially consists of 
two conducting surfaces (say metal plates) separated by an insulating material (e.g., air, mica, paper 
etc.). It has the property to store electrical energy in the form of electrostatic charge. The capaci-
tor can be connected in a circuit so that this stored energy can be made to flow in a desired circuit 
to perform a useful function. Capacitance plays an important role in d.c. as well as a.c. circuits. In 
many circuits (e.g., radio and television circuits), capacitors are intentionally inserted to introduce 
the desired capacitance. In this chapter, we shall confine our attention to the role of capacitance in 
d.c. circuits only.

6.1.  Capacitor
 Any two conducting surfaces separated by an insulating material is called a *capacitor  
or condenser. Its purpose is to store charge in a small space.
 The conducting surfaces are called the plates of the capacitor and the insulating material is 
called the **dielectric. The most commonly used dielectrics are air, mica, waxed paper, ceramics 
etc.  The following points may be noted carefully :
 (i) The ability of a capacitor to store charge (i.e. its capacitance) depends upon the area of 

plates, distance between plates and the nature of insulating material (or dielectric).
 (ii) A capacitor is generally named after the dielectric used e.g. air capacitor, paper capacitor, 

mica capacitor etc.
 (iii) The capacitor may be in the form of parallel plates, concentric cylinder or other arrangement.

6.2.  How does a Capacitor Store Charge ?
 Fig. 6.1 shows how a capacitor stores charge when connected to a d.c. supply. The parallel 
plate capacitor having plates A and B is connected across a battery of V volts as shown in Fig. 6.1 
(i). When the switch S is open as shown in Fig. 6.1 (i), the capacitor plates are neutral i.e. there is 
no charge on the plates. When the switch is closed as shown in Fig. 6.1 (ii), the electrons from plate 
A will be attracted by the +ve terminal of the battery and these electrons start ***accumulating on 
plate B. The result is that plate A attains more and more positive charge and plate B gets more and 
more negative charge. This action is referred to as charging a capacitor because the capacitor plates 
are becoming charged. This process of electron flow or charging (i.e. detaching electrons from plate 
A and accumulating on B) continues till p.d. across capacitor plates becomes equal to battery voltage 
V. When the capacitor is charged to battery voltage V, the current flow ceases as shown in Fig. 6.1 

* The name is derived from the fact that this arrangement has the capacity to store charge.  The name con-
denser is given to the device due to the fact that when p.d. is applied across it, the electric lines of force 
are condensed in the small space between the plates.

** A steady current cannot pass through an insulator but an electric field can.  For this reason, an insulator is 
often referred to as a dielectric.

*** The electrons cannot flow from plate B to A as there is insulating material between the plates.  Hence 
electrons detached from plate A start piling up on plate B.

6
Capacitance  and  Capacitors
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(iii). If now the switch is opened as shown in Fig. 6.1 (iv), the capacitor plates will retain the charges.  
Thus the capacitor plates which were neutral to start with now have charges on them. This shows 
that a capacitor stores charge. The following points may be noted about the action of a capacitor :
 (i) When a d.c. potential difference is applied across a capacitor, a charging current will flow 

until the capacitor is fully charged when the current will cease. This whole charging process 
takes place in a very short time, a fraction of a second. Thus a capacitor once charged, 
prevents the flow of direct current.

 (ii) The current does not flow through the capacitor i.e. between the plates. There is only 
transference of electrons from one plate to the other.

 (iii) When a capacitor is charged, the two plates carry equal and opposite charges (say + Q and 
–Q). This is expected because one plate loses as many electrons as the other plate gains.  
Thus charge on a capacitor means charge on either plate.

Fig. 6.1

 (iv) The energy required to charge the capacitor (i.e. transfer of electrons from one plate to the 
other) is supplied by the battery.

6.3.  Capacitance
 The ability of a capacitor to store charge is known as its capacitance.  It has been found 
experimentally that charge Q stored in a capacitor is directly proportional to the p.d. V across it i.e.
   Q ∝ V

or   
Q
V

 = Constant = C

 The constant C is called the capacitance of the capacitor. Hence capacitance of a capacitor can 
be defined as under :
 The ratio of charge on capacitor plates to the p.d. across the plates is called capacitance 
 of the capacitor.
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 Unit of capacitance
 We know that : C = Q/V
The SI unit of charge is 1 coulomb and that of voltage is 1 volt. Therefore, the SI unit of capacitance 
is one coulomb/volt which is also called farad (Symbol F) in honour of Michael Faraday.
   1 farad = 1 coulomb/volt
 A capacitor is said to have a capacitance of 1 farad if a charge of 1 coulomb accumulates  
on each plate when a p.d. of 1 volt is applied across the plates.
 Thus if a charge of 0·1C accumulates on each plate of a capacitor when a p.d. of 10V is applied 
across its plates, then capacitance of the capacitor = 0·1/10 = 0·01 F. The farad is an extremely large 
unit of capacitance.  Practical capacitors have capacitances of the order of microfarad (µF) and 
micro-microfarad (µµF) or picofarad (pF).
   1 µF = 10−6F   ; 1µµF (or 1 pF) = 10−12 F

6.4.  Factors Affecting Capacitance
 The ability of a capacitor to store charge (i.e. its capacitance) depends upon the following  
factors :
 (i) Area of plate. The greater the area of capacitor plates, the larger is the capacitance of the 

capacitor and vice-versa. It is because larger the plates, the greater the charge they can hold 
for a given p.d. and hence greater will be the capacitance.

 (ii) Thickness of dielectric. The capacitance of a capacitor is inversely proportional to the 
thickness (i.e. distance between plates) of the dielectric. The smaller the thickness of 
dielectric, the greater the capacitance and vice-versa. When the plates are brought closer, 
the electrostatic field is intensified and hence capacitance increases.

 (iii) Relative permittivity of dielectric. The greater the relative permittivity of the insulating 
material (i.e., dielectric), the greater will be the capacitance of the capacitor and vice-versa. 
It is because the nature of dielectric affects the electrostatic field between the plates and 
hence the charge that accumulates on the plates.

6.5.  Dielectric Constant or Relative Permittivity
 The insulating material between the plates of a capacitor is called dielectric. When the capacitor 
is charged, the electrostatic field extends across the dielectric. The presence of dielectric* increases 
the concentration of electric lines of force between the plates and hence the charge on each plate.  
The degree of concentration of electric lines of force between the plates depends upon the nature of 
dielectric.
 The ability of a dielectric material to concentrate electric lines of force between the plates of 
a capacitor is called dielectric constant or relative permittivity  of the material.
 Air has been assigned a reference value of dielectric constant (or relative permittivity) as 1. The 
dielectric constant of all other insulating materials is greater than unity. The dielectric constants of 
materials commonly used in capacitors range from 1 to 10. For example, dielectric constant of mica 
is 6.  It means that if mica is used as a dielectric between the plates of a capacitor, the charge on each 
plate will be 6 times the value when air is used; other things remaining equal. In other words, with 
mica as dielectric, the capacitance of the capacitor becomes 6 times as great as when air is used.

* Normally, the electrons of the atoms of the dielectric revolve around their nuclei in their regular orbits. When 
the capacitor is charged, electrostatic field causes distortion of the orbits of the electrons of the dielectric. This 
distortion of orbits causes an additional electrostatic field within the dielectric which causes more electrons 
to be transferred from one plate to the other. Hence, the presence of dielectric increases the charge on the 
capacitor plates and hence the capacitance.
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 Let  V = Potential difference between capacitor plates
   Q = Charge on capacitor when air is dielectric
 Then, Cair = Q/V
 When mica is used as a dielectric in the capacitor and the same p.d. is applied, the capacitor will 
now hold a charge of 6Q.

 \  Cmica = 
6

6
Q Q

V V
=  = 6 Cair

or   mica

air

C
C

 = 6 = Dielectric constant of mica

 Hence dielectric constant (or relative permittivity) of a dielectric material is the ratio  
of capacitance of a capacitor with that material as a dielectric to the capacitance of the same 
capacitor with air as dielectric.

6.6.  Capacitance of an Isolated Conducting Sphere
 We can find the capacitance of an isolated spherical conductor 
by assuming that “missing” plate is earth (zero potential). Suppose an 
isolated conducting sphere of radius r is placed in a medium  of rela-
tive permittivity er as shown in Fig. 6.2. Let charge +Q be given to this 
spherical conductor. The charge is spread *uniformly over the surface 
of the sphere. Therefore, in order to find the potential at any point on 
the surface of sphere (or outside the sphere), we can assume that entire 
charge + Q is concentrated at the centre O of the sphere.

  Potential at the surface of the sphere, V = 
04 r

Q
rπε ε

 \ Capacitance of isolated sphere,  C =  
Q
V

 = 4pe0er r

 \ **C = 4π ε0 εr r ... in a medium
   = 4π ε0 r  ... in air
 The following points may be noted :
 (i) The capacitance of an isolated spherical conductor is directly proportional to its radius.  

Therefore, for a given potential, a large spherical conductor (more r) will hold more charge 
Q (= CV) than the smaller one.

 (ii) Unit of ε0 = C/4πr = F/m. Hence, the SI unit of ε0 is F/m.
 Example 6.1. Twenty seven spherical drops, each of radius 3 mm and carrying 10–12 C of 
charge are combined to form a single drop.  Find the capacitance and potential of the bigger drop.
 Solution. Let r and R be the radii of smaller and bigger drops respectively.
   Volume of bigger drop = 27 × Volume of smaller drop

 or  34

3
Rπ  = 34

27
3

r× π

 or  R = 3r = 3 × 3 = 9 mm = 9 × 10–3 m

 Capacitance of bigger drop,  C = 4π ε0 R = 3
9

1
9 10

9 10
−× ×

×
 = 10–12 F = 1 pF

* Note that a charged conductor is an equipotential surface. Therefore, electric lines of force emerging from 
the sphere are everywhere normal to the sphere.

** Note that values of Q and V do not occur in the expression for capacitance. This again reminds us that 
capacitance is a property of physical construction of a capacitor.

Fig. 6.2
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 Since charge is conserved, the charge on the bigger drop is 27 × 10–12 C.

 \ Potential of bigger drop, V = 
12

12

27 10

10

Q
C

−

−

×=  = 27 V

6.7.  Capacitance of Spherical Capacitor
 We shall discuss two cases.
 (i) When outer sphere is earthed. A spherical capacitor consists of two concentric hollow 

metallic spheres A and B which do not touch each other as shown in Fig. 6.3. The outer 
sphere B is earthed while charge is given to the inner 
sphere A. Suppose the medium between the two spheres 
has relative permittivity εr.

  Let rA = radius of inner sphere A
   rB = radius of outer sphere B
 When a charge +Q is given to the inner sphere A, it induces 
a charge –Q on the inner surface of outer sphere B and +Q on the 
outer surface of B. Since sphere B is earthed, +Q charge on its 
outer surface is neutralised by earth.

 *Potential at inner sphere A, VA =  
0 04 4r A r B

QQ
r r

−   +   πε ε πε ε   

    = 
0 0

( )1 1
4 4

B A

r A B r A B

Q r rQ
r r r r

− − = π ε ε π ε ε 
 Since sphere B is earthed, its potential is zero (i.e., VB = 0).
 \  P.D. between A and B, VAB = VA – VB = VA – 0 = VA

 \ Capacitance of spherical capacitor, C  = 
A

Q
V

 = 04
( )

r A B

B A

r r
r r

π ε ε
−

 \  C = 04
( )

r A B

B A

r r
r r

π ε ε
−   ... in a medium

    = 04
( )

A B

B A

r r
r r

π ε
−   ... in air

 (ii) When inner sphere is earthed. Fig. 6.4 shows the situation. 
The system constitutes two capacitors in parallel.

 (a) One capacitor (CBA) consists of the inner surface of B and 
outer surface of A. Its capacitance as found above is

    CBA = 04 r A B

B A

r r
r r

π ε ε
−

  (b) The second capacitor (CBG) consists of outer surface of B and 
earth. Its capacitance is that of an isolated sphere.

  \  CBG = 4π ε0 rB … if surrounding medium is air
  \  Total capacitance = CBA + CBG

 Note. Unless stated otherwise, the outer sphere of a spherical capacitor is assumed to be earthed.

Fig. 6.3

* Potential on sphere A = (Potential on sphere A due to its own charge +Q) + (Potential on sphere A due to 

charge –Q on sphere B) = 
0 04 4r A r B

Q Q
r r

   −+   π ε ε π ε ε   

Fig. 6.4
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 Example 6.2. The thickness of air layer between two coatings of a spherical capacitor is 2 cm. 
The capacitor has the same capacitance as the capacitance of sphere of 1.2 m diameter. Find the 
radii of its surfaces.
 Solution. Given : 04 A B

B A

r r
r r
π ε

−  = 4π ε0 R \  A B

B A

r r
r r−  = R

 Here, rB – rA = 2 cm and R = 1·2/2 = 0·6 m = 60 cm

 \  
2

A Br r
 = 60 or rA rB = 120

 Now (rB + rA)2 = (rB – rA)2 + 4rA rB = (2)2 + 4 × 120 = 484

 \  rB + rA = 484  = 22 cm

 Since rB – rA = 2 cm and rB + rA = 22 cm, rB = 12 cm  ;  rA = 10 cm
 Example 6.3. A capacitor has two concentric thin spherical shells of radii 8 cm and 10 cm. The 
outer shell is earthed and a charge is given to the inner shell. Calculate (i) the capacitance of this 
capacitor and (ii) the final potential acquired by the inner shell if the outer shell is removed after the 
inner shell has acquired a potential of 200 V.
 Solution. It is assumed that medium between the two spherical shells is air so that er = 1.
 (i) Radius of inner sphere, rA = 8 cm = 0.08 m; Radius of outer sphere, rB = 10 cm = 0.1 m  

The capacitance C of the spherical capacitor is 

   C = 04 r A B

B A

r r
r r

πε ε
−  = 

124 8.854 10 0.08 0.1
0.1 0.08

−π × × × ×
−  = 44.44 × 10–12 F

 (ii) Charge on the capacitor when the inner sphere acquires a potential of 200 V is
   Q = CV = 44.44 × 10–12 × 200 = 8888 × 10–12 C
  When the outer shell is removed, the capacitance C′ of  the resulting isolated sphere is

   C′ = 4pe0er rA = 9
1 1 0.08

9 10
× ×

×
 = 8.88 × 10–12 F

 \ Potential V ′ acquired by the inner shell when outer shell is removed is

   V′ = 
Q
C′  = 

12

12

8888 10

8.88 10

−

−
×
×

 = 1000 V

Tutorial Problems
 1. Calculate the capacitance of a conducting sphere of radius 10 cm situated in air. How much charge is 

required to raise it to a potential of 1000 V? [11 pF; 1.1 × 10–8 C]
 2. When 1.0 × 1012 electrons are transferred from one conductor to another of a capacitor, a potential dif-

ference of 10V develops between the two conductors. Calculate the capacitance of the capacitor.
      [1.6 × 10–8 F]
 3. Calculate the capacitance of a spherical capacitor if the diameter of inner sphere is 0.2 m and that of the 

outer sphere is 0.3 m, the space between them being filled with a liquid having dielectric constant 12.
      [4 × 10–10 F]
 4. The stratosphere acts as a conducting layer for the earth. If the stratosphere extends beyond 50 km 

from the surface of the earth, then calculate the capacitance of the spherical capacitor formed between 
stratosphere and earth’s surface. Take radius of earth as 6400 km. [0.092 F]

 5. A spherical capacitor has an outer sphere of radius 0.15 m and the inner sphere of radius 0.1m. The outer 
sphere is earthed and inner sphere is given a charge of 6µC. The space between the concentric spheres 
is filled with a material of dielectric constant 18. Calculate the capacitance and potential of the inner 
sphere.    [6 × 10–10 F; 104 V]
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6.8.  Capacitance of Parallel-Plate Capacitor with Uniform Medium
 We have seen that the capacitance of a capacitor can be determined from its electrical properties 
using the relation C = Q/V. However, it is often desirable to determine the capacitance of a capacitor 
in terms of its dimensions and relative permittivity of the dielectric. Although there are many forms 
of capacitors, the most important arrangement is the parallel-plate capacitor.
 Consider a parallel plate capacitor consisting of two plates, each of area A square metres and 
separated by a uniform dielectric of thickness d metres and relative permittivity εr as shown in Fig. 
6.5. Let a p.d. of V volts applied between the plates place a charge of +Q and − Q on the plates. With 
reasonable accuracy, it can be assumed that electric field between the plates is uniform.
 Electric flux density between plates is
   D = Q/A coulomb/m2

 Electric intensity between plates is
   E = V/d
 But  D =  ε0 εr E    ...See Art. 5.12

 or  Q
A

 = 0 r
V
d

ε ε

 or  
Q
V  = 0 r A

d
ε ε

 The ratio Q/V is the capacitance C of the capacitor.

 \  C = 0 r A
d

ε ε
  ...in a medium

    = 0 A
d

ε
     ...in air

 The following points may be noted carefully :
 (i) Capacitance is directly proportional to εr and A and inversely proportional to d.

 (ii) med
r

air

C
C

= ε  = Relative permittivity of medium        

 (iii) Re-arranging the relation for C in air

      ε0 = 2

farad × m

m

Cd
A

=  = F/m

 Obviously, permittivity can also be measured in F/m.

6.9.  Parallel-Plate Capacitor with Composite Medium
 Suppose the space between the plates is occupied by three dielectrics of thicknesses d1, d2  
and d3 metres and relative permittivities εr1, εr2 and εr3 respectively as shown in Fig. 6.6. The 
electric flux density D in the dielectrics remains the *same and is equal to Q/A. However, the 
electric intensities in the three dielectrics will be different and are given by ;

  E1 = 2 3
0 1 0 2 0 3

; ;
r r r

D D DE E= =
ε ε ε ε ε ε

 If V is the total p.d. across the capacitor and V1, V2 and V3 the p.d.s. across the three dielectrics 
respectively, then,
  V = V1 + V2 + V3

   = E1 d1 + E2 d2 + E3 d3

Fig. 6.5

* The total charge on each plate is Q. Hence Q coulombs is also the total electric flux through each dielectric.
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   = 1 2 3
0 1 0 2 0 3r r r

D D Dd d d+ +
ε ε ε ε ε ε  

   = 31 2

0 1 2 3r r r

dd dD  + + ε ε ε ε 

   = 31 2

0 1 2 3r r r

dd dQ
A

 + + ε ε ε ε 
 ( )QD

A
=∵

 or 
Q
V  = 0

31 2

1 2 3r r r

A
dd d

ε
 + + ε ε ε 

 But Q/V is the capacitance C of the capacitor.

 \ C = 0

31 2

1 2 3

 farad

r r r

A
dd d

ε
 + + ε ε ε 

 In general,

  C = 0 farad

r

A
d

ε

ε∑
 ...(i)

Different cases. We shall discuss the following two cases :
 (i) Medium partly air. Fig. 6.7 shows a parallel plate capacitor having plates d metres apart.  

Suppose the medium between the plates consists partly of air and partly of dielectric of 
thickness t metres and relative permittivity εr2. Then thickness of air is d − t. Using the 
relation (i) above, we have,

  Fig. 6.7 Fig. 6.8 

   C = 0

21 r

A
d t t

ε
− +

ε

 = 0

2

 farad

r

A
td t

ε
 − − ε 

 (ii) When dielectric slab introduced. Fig. 6.8 shows a parallel-plate air capacitor having 
plates d metres apart. Suppose a dielectric slab of thickness t metres and relative 
permittivity εr2 is introduced between the plates of the capacitor.

  Using the relation (i) above, we have,

   C = 0

21 r

A
d t t

ε
− +

ε

 = 0

2

 farad

r

A
td t

ε
 − − ε 

 

Fig. 6.6
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6.10.  Special Cases of Parallel-Plate Capacitor
 We have seen that capacitance of a capacitor depends upon plate area, thickness of dielectric 
and value of relative permittivity of the dielectric.
 We consider two cases by way of illustration.
 (i) Fig. 6.9 shows that dielectric thickness is d but plate area is divided into two parts; area 

A1 having air as the dielectric and area A2 having dielectric of relative permittivity εr. The 
arrangement is equivalent to two capacitors in parallel. Their capacitances are :

    C1 = 0 1A
d

ε
 ; C2 = 0 2r A

d
ε ε

   The total capacitance C of this parallel-
plate capacitor is

    C = C1 + C2

  (ii) Fig. 6.10 shows that plate area is divided 
into two parts ; area A1 has dielectric 
(air) of thickness d and area A2 has a 
dielectric (εr) of thickness t and the 
remaining thickness is occupied by air. 
The arrangement is equivalent to two 
capacitors connected in parallel. Their 
capacitances are :

    C1 = 0 1A
d

ε
 ; C2 = 0 2

[ ( / )]r

A
d t t

ε
− − ε

  The total capacitance C of this parallel plate capacitor is
    C = C1 + C2

6.11.  Multiplate Capacitor
 The most *convenient way of 
achieving large capacitance is by 
using large plate area. Increasing the 
plate area may increase the physical 
size of the capacitor enormously. In 
order to obtain a large area of plate 
surface without using too bulky a 
capacitor, multiplate construction 
is employed.  In this construction, 
the capacitor is built up of alternate 
sheets of metal foil (i.e. plates) and 
thin sheets of dielectric. The odd-
numbered metal sheets are connected 
together to form one terminal T1 
and even-numbered metal sheets 
are connected together to form the 
second terminal T2.
 Fig. 6.11 shows a multiplate 
capacitor with seven plates. A little 

Fig. 6.9 Fig. 6.10

Fig. 6.11

* The capacitance of a capacitor can also be increased by (i) using a dielectric of high er and (ii) decreasing 
the distance between plates. High cost limits the choice of dielectric and dielectric strength of the insulating 
material limits the reduction in spacing between the plates..
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reflection shows that this arrangement is 
equivalent to 6 capacitors in parallel. The total 
capacitance will, therefore, be 6 times the 
capacitance of a single capacitor (formed by say 
plates 1 and 2). If there are n  plates, each of area 
A, then (n  − 1) capacitors will be in parallel.
 \ Capacitance of n plate capacitor is

   C = 0( 1) r An
d

ε ε−

where d is the distance between any two 
adjacent plates and εr is the relative permittivity 
of the medium.  It may be seen that plate area is 
increased from A to A (n − 1).
 Variable Air capacitor. It is a multiplate 
air capacitor whose capacitance can be varied 
by changing the plate area. Fig. 6.12 shows a 
variable air capacitor commonly used to “tune in” radio stations in the radio receiver.  It consists of 
a set of stationary metal plates Y fixed to the frame and another set of movable metal plates X fixed 
to the central shaft.  The two sets of plates are electrically insulated from each other.  Rotation of the 
shaft moves the plates X into the spaces between plates Y, thus changing the *common (or effective) 
plate area and hence the capacitance.  The capacitance of such a capacitor is given by ;

   C = 0( 1)
An

d
ε−               ( εr = 1)

 When the movable plates X are completely rotated in (i.e. the two sets of plates completely over-
lap each other), the common plate area ‘A’ is maximum and so is the capacitance of the capacitor. 
Minimum capacitance is obtained when the movable plates X are completely rotated out of station-
ary plates Y. The capacitance of such variable capacitors is from zero to about 4000 pF.
 Note. In all the formulas derived for capacitance, capacitance will be in farad if area is in m2 and the dis-
tance between plates is in m.
 Example 6.4. A p.d. of 10 kV is applied to the terminals of a capacitor consisting of two paral-
lel plates, each having an area of 0·01 m2 separated by a dielectric 1 mm thick. The resulting ca-
pacitance of the arrangement is 300 pF. Calculate (i) total electric flux (ii) electric flux density (iii) 
potential gradient and (iv) relative permittivity of the dielectric.

 Solution.  C = 300 × 10−12 F  ;  V  = 10 × 103 = 104 volts
 (i)  Total electric flux, Q = C V = (300 × 10−12) × 104 = 3 × 10−6 C = 3µC

 (ii)  Electric flux density, D = 
63 10

0 01
Q
A

−×=
⋅  = 3 × 10–4 C/m2

 (iii)  Potential gradient = 
4

3
10

1 10

V
d −=

×
 = 107 V/m

 (iv)  Now, E = 107 V/m

   Since D =  ε0εr E

 \  εr = 
4

12 7
0

3 10

(8.854 10 ) 10

D
E

−

−
×=

ε × ×
 = 3·39

Fig. 6.12

* Remember in the formula for capacitance, A is the common plate area i.e. plate area facing the opposite 
polarity plate area.
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 Example. 6.5. A capacitor is composed of two plates separated by 3mm of dielectric of per-
mittivity 4. An additional piece of insulation 5mm thick is now inserted between the plates. If the 
capacitor now has capacitance one-third of its original capacitance, find the relative permittivity of 
the additional dielectric.
 Solution. Figs. 6.13 (i) and 6.13 (ii) respectively show the two cases.

 For the first case, C = 0 1 0
3

4

3 10
r A A

d −
ε ε ε × ×=

×
 ...(i)

 For the second case, 
3
C  = 0

1 2

1 2r r

A
d d

ε

+
ε ε

    = 0
3 3

2

3 10 5 10
4 r

A
− −
ε

× ×+
ε

 ...(ii)

Fig. 6.13
 Dividing eq. (i) by eq. (ii), we get,

   3 = 
2

4 3 5
3 4 r

 + ε 
 or  9 = 3 + 20/εr2 \ εr2 = 20/6 = 3·33
 Example 6.6. Determine the dielectric flux in microcoulombs between two parallel plates 
each 0.35 metre square with an air gap of 1.5 mm between them, the p. d. being 3000 V. A sheet 
of insulating material 1 mm thick is inserted between the plates, the relative permittivity of the 
insulating material being 6. Find out the potential gradient in the insulating material and also in air 
if the voltage across the plates is raised to 7500 V.
 Solution. A = 0.35 × 0.35 = 0.1225 m2  ;  d = 1.5 mm = 1.5 × 10–3 m  ;  er = 1(air).
 Capacitance C of the parallel-plate air capacitor is 

   C = 0 r A
d

ε ε
 = 

12

3

8.854 10 1 0.1225

1.5 10

−

−
× × ×

×
 = 723 × 10–12 F

 Dielectric flux, ψ = Q = CV =  723 × 10–12 × 3000 = 2.17 × 10–6 C = 2.17 µC
 Suppose the potential gradient in air is ga. Then potential gradient in the insulating material is 
gi = ga/er = ga/6.
 Thickness of air ; ta = 1.5 – 1 = 0.5 mm = 0.5 × 10–3 m  ;  Thickness of insulating material, ti = 
1mm = 10–3 m.
 \  Applied voltage, V = gata + giti
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 or  7500 = ga × 0.5 × 10–3 + 
6
ag

 × 10–3

 \  ga = 11.25 × 106 V/m

 and  gi = 
6
ag

 = 
611.25 10

6
×

 = 1.875 × 106 V/m

 Example 6.7. An air capacitor has two parallel plates of 1500 cm2 in area and 5 mm apart.  
If a dielectric slab of area 1500 cm2, thickness 2 mm and relative permittivity 3 is now introduced 
between the plates, what must be the new separation between the plates to bring the capacitance to 
the original value?
 Solution. This is a case of introduction of dielectric slab into an air capacitor.  As proved in Art. 
6.9, the capacitance under this condition becomes :

   C = 0

( / )r

A
d t t

ε
− − ε  ...(i)

 If the medium were totally air, capacitance would have been

   Cair = 0 A
d

ε
 ...(ii)

 Inspection of eqs. (i) and (ii) shows that with the introduction of dielectric slab between the 
plates of air capacitor, its capacitance increases. The distance between the plates is effectively  
reduced by t − (t/εr). In order to bring the capacitance to the original value, the plates must be 
separated by this much distance in air.
 \ New separation between the plates
    = d + (t − t/εr) = 5 + (2 − 2/3) = 6·33 mm
 Example 6.8. A variable air capacitor has 11 movable plates and 12 stationary plates. The 
area of each plate is 0·0015 m2 and separation between opposite plates is 0·001 m. Determine the 
maximum capacitance of this variable capacitor.
 Solution. The capacitance will be maximum when the movable plates are completely rotated 
in i.e. when the two sets of plates completely overlap each other. Under this condition, the common 
(or effective) area is equal to the physical area of each plate.

   C = 0( 1) r An
d

ε ε−

 Here n = 11 + 12 = 23 ; εr = 1 ; A = 0·0015 m2  ; d = 0·001 m

 \  C = 
128.854 10 1 0.0015

(23 1)
0.001

−× × ×− ×  = 292 × 10−12F = 292 pF

 Example 6.9. The capacitance of a variable radio capacitor can be changed from 50 pF to 950 
pF by turning the dial from 0º to 180º. With dial set at 180º, the capacitor is connected to 400 V bat-
tery.  After charging, the capacitor is disconnected from the battery and the dial is tuned at 0º. What 
is the potential difference across the capacitor when the dial reads 0º ?
 Solution. With dial at 0º, the capacitance of the capacitor is
   C1 = 50 pF = 50 × 10–12 F
 With dial at 180º, the capacitance of the capacitor is
   C2 = 950 pF = 950 × 10–12 F
   P.D. across C2, V2 = 400 V
 \   Charge on C2, Q = C2V2 = (950 × 10–12) × 400 = 380 × 10–9 C
 When the battery is disconnected, charge Q remains the same. Suppose V1 is the potential dif-
ference across the capacitor when the dial reads 0º.
 \  Q = C1V1
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 or  V1 = 
9

12
1

380 10

50 10

Q
C

−

−
×=

×
 = 7600 V

 Example 6.10. A parallel plate capacitor has plates of area 2 m2 spaced by three layers of dif-
ferent dielectric materials. The relative permittivities are 2, 4, 6 and thicknesses are 0.5, 1.5 and 0.3 
mm respectively. Calculate the combined capacitance and the electric stress (potential gradient) in 
each material when applied voltage is 1000 V.

 Solution. Capacitance, C = 0

31 2

1 2 3r r r

A
dd d

ε

+ +
ε ε ε

    = 
12

3 3 3
8 854 10 2

0 5 10 1 5 10 0 3 10
2 4 6

−

− − −
⋅ × ×

⋅ × ⋅ × ⋅ ×+ +
 = 0·0262 × 10–6 F

   Charge on each plate, Q = CV = (0·0262 × 10–6) × 1000 = 26·2 × 10–6 C

   Electric flux density, D = 
626 2 10

2
Q
A

−⋅ ×=  = 13·1 × 10–6 C/m2

 Electric stress in the material with εr1 = 2 is

   E1 = 
6

12
0 1

13 1 10

8 854 10 2r

D −

−
⋅ ×=

ε ε ⋅ × ×
 = 74 × 104 V/m

 Electric stress in the material with εr2 = 4 is

   E2 = 
6

12
13 1 10

8.854 10 4

−

−
⋅ ×
× ×

 = 37 × 104 V/m

 Electric stress in the material with εr3 = 6 is

   E3 = 
6

12
13 1 10

8·854 10 6

−

−
⋅ ×
× ×

 = 24.67 × 104 V/m

 It is clear from the above example that electric stress is greatest in the material having the least 
relative permittivity. Since air has the lowest relative permittivity, efforts should be made to avoid 
air pockets in the dielectric materials.
 Example 6.11. A parallel plate capacitor is maintained at a certain potential difference. When 
a 3 mm slab is introduced between the plates in order to maintain the same potential difference, the 
distance between the plates is increased by 2·4 mm. Find the dielectric constant of the slab.
 Solution. The capacitance of parallel-plate capacitor in air is

   C = 0 A
d

ε
 ...(i)

 With the introduction of slab of thickness t, the new capacitance is

   C ′ = 0

(1 1/ )r

A
d t

ε
′ − − ε  ...(ii)

 Now the charge (Q = CV) remains the same in the two cases.

 \  0 A
d

ε
 = 0

(1 1/ )r

A
d t

ε
′ − − ε

 or  d = d ′ – t(1 – 1/εr)
   Here, d ′ = d + 2·4 × 10–3 m  ;  t = 3 mm = 3 × 10–3 m

 \  d = d + 2·4 × 10–3 – 3 × 10–3 11
r

 − ε 
 or  2·4 × 10–3 = 3 × 10–3 11

r

 − ε  \  εr = 5
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 Example 6.12. A parallel plate capacitor has three similar parallel plates. Find the ratio of 
capacitance when the inner plate is mid-way between the outers to the capacitance when inner plate 
is three times as near one plate as the other.
 Solution. Fig. 6.14 (i) shows the condition when the inner plate is mid-way between the outer 
plates.  This arrangement is equivalent to two capacitors in parallel.

 \ Capacitance of the capacitor C1 = 0 0 04
/2 /2
r r rA A A

d d d
ε ε ε ε ε ε+ =

Fig. 6.14
 Fig. 6.14 (ii) shows the condition when inner plate is three times as near as one plate as the other.

 \  Capacitance of the capacitor C2 = 0 0 016
/4 3 /4 3
r r rA A A

d d d
ε ε ε ε ε ε+ =

 \  C1/C2 = 0.75
 Example 6.13. The permittivity of the dielectric material between the plates of a parallel-plate 
capacitor varies uniformly from e1 at one plate to e2 at other plate. Show that the capacitance is 
given by ;

   C = 2 1

2 1loge

A
d

ε − ε
ε ε

 where A and d are the  area of each plate and separation between the 
plates respectively.
 Solution. Fig. 6.15 shows the conditions of the problem. The permittiv-
ity of the dielectric material at a distance x from the left plate is

   ex = 1 2 1( )x
d

ε + ε − ε

 Consider an elementary strip of width dx at a distance x from the left 
plate. The capacitance C of this strip is

   C = x A
dx

ε

 or  1
C  = 

x

dx
Aε  = 

1 2 1( )

dx
xA
d

 ε + ε − ε  

 = 
1 2 1( )

d dx
A d xε + ε − ε

\ Total capacitance CT between the plates is 

   *1

TC  = 
0

1
x d

x
C

=

=
∫  = 

1 2 1
0

( )

d
d dx
A d xε + ε − ε∫

    = ** 1 2 1

2 1 0

log { ( ) }
d

e d xd
A

ε + ε − ε 
 ε − ε 

Fig. 6.15

* The arrangement constitutes capacitors in series.

** 
log ( )e a bxdx

a bx b
+=

+∫
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    = 1 2 1 1
2 1

[log ( ) log ]
( ) e e

d d d d d
A

ε + ε − ε − ε
ε − ε

    = 2 2

2 1 1 2 1 1
log log

( ) ( )e e
dd d

A d A
ε ε=

ε − ε ε ε − ε ε

 \  CT = 2 1

2

1
loge

A
d

ε − ε
ε
ε

Tutorial Problems
 1. A capacitor consisting of two parallel plates 0·5 mm apart in air and each of effective area 500 cm2 is 

connected to a 100V battery. Calculate (i) the capacitance and (ii) the charge.  [(i) 885 pF (ii) 0·0885 µC]
 2. A capacitor consisting of two parallel plates in air, each of effective area 50 cm2 and 1 mm apart, carries 

a charge of 1770 × 10−12 C. Calculate the p.d. between the plates.  If the distance between the plates is 
increased to 5mm, what will be the electrical effect ?  [40 V ; p.d. across plates is increased to 200 V]

 3. Two insulated parallel plates each of 600 cm2 effective area and 5 mm apart in air are charged to a p.d. 
of 1000 V. Calculate (i) the capacitance and (ii) the charge on each plate.

  The source of supply is now disconnected, the plates remaining insulated. Calculate (iii) the p.d. between 
the plates when their spacing is increased to 10 mm and (iv) the p.d. when the plates, still 10 mm apart, 
are immersed in oil of relative permittivity 5. [(i) 106·2 pF (ii) 106·2 × 10−12 C (iii) 2000 V (iv) 400 V]

 4. A p.d. of 500 V is applied across a parallel plate capacitor with a plate area of 0·025 m2. The plates are 
separated by a dielectric of relative permittivity 2·5. If the capacitance of the capacitor is 500 µF, find (i) 
the electric flux (ii) electric flux density and (iii) the electric intensity.

 [(i) 0·25 µC (ii) 0·01 mC/m2 (iii) 45.3 × 106 V/m]
 5. A capacitor consists of two parallel metal plates, each of area 2000 cm2 and 5 mm apart. The space be-

tween the plates is filled with a layer of paper 2 mm thick and a sheet of glass 3 mm thick. The relative 
permittivities of paper and glass are 2 and 8 respectively.  A p.d. of 5 kV is applied across the plates.  
Calculate (i) the capacitance of the capacitor and (ii) the potential gradient in each dielectric. 

[(i) 1290 pF (ii) 1820 V/mm (paper); 453 V/mm (glass)]
 6. A parallel plate capacitor has a plate area of 20 cm2 and the plates are separated by three dielectric layers 

each 1 mm thick and of relative permittivity 2, 4 and 5 respectively. Find the capacitance of the capacitor 
and the electric stress in each dielectric if applied voltage is 1000 V. 

 [18·6 pF ; 5·26 × 105 V/m; 2·63 × 105 V/m; 2·11 × 105 V/m]
 7. A 1µF parallel plate capacitor that can just withstand a p.d. of 6000 V uses a dielectric having a relative 

permittivity 5, which breaks down if the electric intensity exceeds 30 × 106 V/m. Find (i) the thickness 
of dielectric required and (ii) the effective area of each plate. [(i) 0·2 mm (ii) 4·5 m2]

 8. An air capacitor has two parallel plates 10 cm2 in area and 5 mm apart. When a dielectric slab of area 10 
cm2 and thickness 5 mm was inserted between the plates, one of the plates has to be moved by 0·4 cm 
to restore the capacitance. What is the dielectric constant of the slab ? [5]

 9. A multiplate parallel capacitor has 6 fixed plates connected in parallel, interleaved with 5 similar plates; 
each plate has effective area of 120 cm2. The gap between the adjacent plates is 1 mm.  The capacitor is 
immersed in oil of relative permittivity 5. Calculate the capacitance. [5·31 pF]

 10. Calculate the number of sheets of tin foil and mica for a capacitor of 0·33 µF capacitance if area of each 
sheet of tin foil is 82 cm2, the mica sheets are 0·2 mm thick and have relative permittivity 5.  
    [182 sheets of mica; 183 sheets of tin foil]

6.12.  Cylindrical Capacitor
 A cylindrical capacitor consists of two co-axial cylinders separated by an insulating medium.  
This is an important practical case since a single core cable is in effect a capacitor of this kind.  The 
conductor (or core) of the cable is the inner cylinder while the outer cylinder is represented by lead 
sheath which is at earth potential. The two co-axial cylinders have insulation between them.
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 Consider a single core cable with conductor diameter d 
metres and inner sheath diameter D metres (See Fig. 6.16).  
Let the charge per metre axial length of the cable be Q 
coulombs and εr be the relative permittivity of the insulating 
material. Consider a cylinder of radius x metres. According to 
Gauss’s theorem, electric flux passing through this cylinder is 
Q coulombs. The surface area of this cylinder is

    = 2πx × 1 = 2πx m2

\ Electric flux density at any point P on the considered 
cylinder is given by ;
   Dx = 

2
Q

xπ  C/m2

 Electric intensity at point P is given by;

   Ex = 
0 02

x

r r

D Q
x

=
ε ε π ε ε  V/m

 The work done in moving a unit positive charge from point P through a distance dx in the direc-
tion of electric field is Ex dx.  Hence the work done in moving a unit positive charge from conductor 
to sheath, which is the p.d. V between the conductor and sheath, is given by ;

   V = 
/2 /2

0 0
/2 /2

log
2 2

D D

x e
r rd d

Q Q DE dx dx
x d

= =
π ε ε πε ε∫ ∫

\   Capacitance of cable, C = 0

0

2
F/m F/m

log ( / )log
2

r

e
e

r

Q Q
QV D dD

d

πε ε= =

πε ε

    = 
12

9

10 10

2 8 854 10
F/m 10 F/m

2 303 log ( / ) 41 4 log ( / )
r r

D d D d

−
−π× ⋅ × × ε ε= ×

⋅ ⋅
 If the cable has a length of l metres, then capacitance of the cable is

    = 9

10 10

24
10 F pF

41 4log ( / ) log ( / )
r rl l

D d D d
−ε ε× =

⋅
 Example 6.14. In a concentric cable 20 cm long, the diameter of inner and outer cylinders are 
15 cm and 15·4 cm respectively. The relative permittivity of the insulation is 5. If a p.d. of 5000 V is 
maintained between the two cylinders, calculate :
 (i) capacitance of cylindrical capacitor
 (ii) the charge
 (iii) the electric flux density and electric intensity in the dielectric.
 Solution. (i)  Capacitance of the cylindrical capacitor is

   C = 9 9

10 10

5 0 210 10 F
41 4 log ( / ) 41 4 log (15 4 /15)

r l
D d

− −ε × ⋅× = ×
⋅ ⋅ ⋅  = 2.11 × 10–9 F

 (ii) Charge on capacitor, Q = CV = (2·11 × 10–9) × 5000 = 10·55 × 10–6 C = 10·55 µC

 (iii) To determine D and E in the dielectric, we shall consider the average radius of dielectric, 
i.e.,

 Average radius of dielectric, x = 
15 41 15

2 2 2
⋅ +    = 7·6 cm = 0·076 m

Fig. 6.16
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 Flux density in dielectric, D = 
6

2 10 55 10C/m
2 2 0 076 0 2

Q
xl

−⋅ ×=
π π× ⋅ × ⋅  = 110·47 × 10–6 C/m2

 Electric intensity in dielectric, E = 
6

12
0

110 47 10

8 854 10 5r

D −

−
⋅ ×=

ε ε ⋅ × ×
 = 2.5 × 106 V/m

 Example 6.15. A 33 kV, 50 Hz, 3-phase underground cable, 4 km long uses three single core 
cables. Each of the conductor has a diameter of 2·5 cm and the radial thickness of insulation is 
0·5 cm. Determine (i) capacitance of the cable/phase (ii) charging current/phase (iii) total charging 
kVAR.  The relative permittivity of insulation is 3. 

 Solution. (i)  Capacitance of cable/phase, C = 9

10
10 F

41 4 log ( / )
r l

D d
−ε ×

⋅
  Here εr = 3   ;   l = 4 km = 4000 m
   d = 2·5 cm  ;  D = 2.5 + 2 × 0.5 = 3.5 cm
  Putting these values in the above expression, we get,

   C =  
—9

10

3 4000 10
41 4 log (3 5 / 2 5)

× ×
⋅ × ⋅ ⋅  = 1984 × 10–9 F

 (ii)  Voltage/phase, Vph = 
333 10

3

×  = 19·05 × 103 V

  Charging current/phase, IC = ph

C

V
X  = 2π f C Vph

    = 2π × 50 × 1984 × 10–9 × 19·05 × 103 = 11·87 A

 (iii)  Total charging kVAR = 3Vph IC = 3 × 19·05 × 103 × 11·87 = 678·5 × 103 kVAR

6.13.  Potential Gradient in a Cylindrical Capacitor
 Under operating conditions, the insulation of a cable is subjected to electrostatic forces.  This is 
known as dielectric stress.  The dielectric stress at any point in a cable is infact the potential gradient 
(or *electric intensity) at that point.
 Consider a single core cable with core diameter d and internal 
sheath diameter D.  As proved in Art. 6.12, the electric intensity at a 
point x metres from the centre of the cable is

   Ex = 
02 r

Q
xπε ε  volts/m

 By definition, electric intensity is equal to potential gradient. 
Therefore, potential gradient g at a point x metres from the centre of 
the cable is 
   g = Ex

 or  g = 
02 r

Q
xπε ε  volts/m ...(i)

 As proved in Art. 6.12, potential difference V between conductor 
and sheath is 
   V = 

0
log

2 e
r

Q D
dπε ε  volts

 or  Q = 02

log

r

e

V
D
d

πε ε
 ...(ii)

Fig. 6.17

* It may be recalled that potential gradient at any point is equal to the electric intensity at that point.
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 Substituting the value of Q from exp. (ii) in exp. (i), we get,

   g = 0

0

2
log log
2

r

e
e

r

V V
D d Dx

dx

πε ε =

πε ε

 volts/m ...(iii)

 It is clear from exp. (iii) that potential gradient varies inversely as the distance x. Therefore, 
potential gradient will be maximum when x is minimum i.e., when x = d/2 or at the surface of the 
conductor.  On the other hand, potential gradient will be minimum at x = D/2 or at sheath surface.

 \ Maximum potential gradient, gmax = 2

loge

V
Dd
d

 volts/m [Putting x = d/2 in exp. (iii)]

  Minimum potential gradient, gmin = 2

loge

V
DD
d

 volts/m [Putting x = D/2 in exp. (iii)]

 \ max

min

g
g  = 

2
log /

2
log /

e

e

V
d D d

V
D D d

 = D
d

 The variation of stress in the dielectric is shown in Fig. 6.17. It is clear that dielectric stress is 
maximum at the conductor surface and its value goes on decreasing as we move away from the con-
ductor. It may be noted that maximum stress is an important consideration in the design of a cable.  
For instance, if a cable is to be operated at such a voltage that *maximum stress is 5 kV/mm, then 
the insulation used must have a dielectric strength of atleast 5 kV/mm, otherwise breakdown of the 
cable will become inevitable.

6.14.  Most Economical Conductor Size in a Cable
 It has already been shown that maximum stress in a cable occurs at the surface of the conductor.  
For safe working of the cable, dielectric strength of the insulation should be more than the maximum 
stress. Rewriting the expression for maximum stress, we get,

   gmax  = 2

loge

V
Dd
d

 volts/m ...(i)

 The values of working voltage V and internal sheath diameter D have to be kept fixed at certain 
values due to design considerations.  This leaves conductor diameter d to be the only variable in exp. 
(i). For given values of V and D, the most economical conductor diameter will be one for which gmax 
has a minimum value.  The value of gmax will be minimum when d loge D/d  is maximum i.e.

   loge
d Dd
dd d

 
  

 = 0 or 2
—log . .e

D d Dd
d D d

+  = 0

 \  loge (D/d) − 1 = 0

 or  loge (D/d) = 1 or  (D/d) = e = 2·718 

 \ Most economical conductor diameter, d = 
2.718

D

and the value of gmax under this condition is 

   gmax = 2V
d  volts/m  [Putting loge D/d = 1 in exp. (i)]

* Of course, it will occur at the conductor surface.
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 For low and medium voltage cables, the value of conductor diameter arrived at by this method 
(i.e., d = 2V/gmax) is often too small from the point of view of current density. Therefore, the 
conductor diameter of such cables is determined from the consideration of safe current density. For 
high voltage cables, designs based on this theory give a very high value of d, much too large from the 
point of view of current carrying capacity and it is, therefore, advantageous to increase the conductor 
diameter to this value. There are three ways of doing this without using excessive copper :
 (i) Using aluminium instead of copper because for the same current, diameter of aluminium 

will be more than that of copper.
 (ii) Using copper wires stranded around a central core of hemp.
 (iii) Using a central lead tube instead of hemp.
 Example 6.16. The maximum and minimum stresses in the dielectric of a single core cable are 
40 kV/cm (r.m.s.) and 10 kV/cm (r.m.s.) respectively.  If the conductor diameter is 2 cm, find :
 (i) thickness of insulation   (ii) operating voltage
 Solution.  Here, gmax  = 40 kV/cm ;  gmin = 10 kV/cm ;  d = 2 cm ;  D  = ?
 (i) As proved in Art. 6.13,

   max

min

g
g  = D

d  or D = 40 2
10

max

min

g d
g

× = ×  = 8 cm

 \  Insulation thickness = —
2

D d  = 8 — 2
2

 = 3 cm

 (ii)  gmax = 2

loge

V
Dd
d

 \  V = 
log 40 2log 4

kV
2 2

max e e

Dg d
d ×=  =  55.45 kV r.m.s.

 Example 6.17. A single core cable for use on 11 kV, 50 Hz system has conductor area of 0·645 
cm2 and internal diameter of sheath is 2·18 cm. The permittivity of the dielectric used in the cable 
is 3·5.  Find (i) the maximum electrostatic stress in the cable (ii) minimum electrostatic stress in the 
cable (iii) capacitance of the cable per km length (iv) charging current.
 Solution. Area of cross-section of conductor,  a = 0.645 cm2

  Diameter of the conductor, d = 4a
π  = 

4 0 645× ⋅
π  = 0·906 cm

  Internal diameter of sheath, D = 2·18 cm
 (i) Maximum electrostatic stress in the cable is

   gmax = 2 2 11 kV cm
2.18log 0.906log

0.906e e

V
Dd
d

×=  = 27.65 kV/cm r.m.s.

 (ii) Minimum electrostatic stress in the cable is

   gmin = 2 2 11 kV cm
2.18log 2.18 log

0.906e e

V
DD
d

×=  = 11.5 kV/cm r.m.s.

 (iii) Capacitance of cable, C = 9

10

10 F
41.4 log

r l
D
d

−ε ×

 Here  εr = 3.5 ; l = 1 km = 1000 m
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 \ C = 9

10

3 5 1000 10
2 1841 4 log

0 906

−⋅ × ×⋅⋅
⋅

 = 0·22 × 10–6 F

 (iv) Charging current, IC = 
C

V
X  = 2π f C V = 2π × 50 × 0·22 × 10− 6 × 11000 = 0·76 A

 Example 6.18. Find the most economical size of a single-core cable working on a 132 kV, 
3-phase system, if a dielectric stress of 60 kV/cm can be allowed.

 Solution. Phase voltage of cable = 132 3 = 76·21 kV

  Peak value of phase voltage, V = 76·21 × 2  = 107·78 kV
 Max. permissible stress, gmax = 60 kV/cm 
 \ Most economical conductor diameter is

   d = 
2 2 107 78

60max

V
g

× ⋅=  =  3·6 cm

 Internal diameter of sheath,  D = 2·718 d = 2·718 × 3·6 = 9·78 cm
 Therefore, the cable should have a conductor diameter of 3.6 cm and internal sheath diameter 
of 9·78 cm.
 Example 6.19. The radius of the copper core of a single-core rubber-insulated cable is  
2.25 mm. Calculate the radius of the lead sheath which covers the rubber insulation and the cable 
capacitance per metre. A voltage of 10 kV may be applied between the core and the lead sheath 
with a safety factor of 3. The rubber insulation has a relative permittivity of 4 and breakdown field 
strength of 18 × 106 V/m.
 Solution. As proved in Art 6.13,

   gmax = 2

loge

V
Dd
d

Here,  gmax = Emax = 18 × 106 V/m ;  V = Breakdown voltage × Safety factor
    = 104 × 3 = 30,000 volts ;  d = 2.25 × 2 = 4.5 mm

 \  18 × 106 = 
3

2 30,000

4.5 10 loge
D
d

−

×

× ×

 or  D
d  = 2.1  \ D = 2.1 × d = 2.1 × 4.5 = 9.45 mm

\  Radius of sheath =  
2
D  = 9.45

2
 = 4.72 mm

 Capacitance, C = 9

10

10 F
41.4 log

rl
D
d

−ε
×  = 9

10

4 1
10

9.4541.4log
4.5

−× ×  = 0.3 × 10–9 F

6.15.  Capacitance Between Parallel Wires
 This case is of practical importance in 
overhead transmission lines. The simplest 
system for power transmission is 2-wire d.c. or 
a.c. system. Consider 2-wire transmission line 
consisting of two parallel conductors A and B 
spaced d metres apart in air. Suppose that radius 
of each conductor is r metres. Let their respective 
charges be + Q and − Q coulombs per metre length [See Fig. 6.18].

Fig. 6.18
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 The total p.d. between conductor A and neutral “infinite” plane is

   VA
* = 

0 02 2
r d

QQ dx dx
x x

∞ ∞
−+

π ε π ε∫ ∫
    = 

0 0
log log volts log

2 2e e e
Q Q d

r d r
∞ ∞ − = π ε π ε 

 volts

 Similarly, p.d. between conductor B and neutral “infinite” plane is

   VB = 
0 02 2

r d

Q Qdx dx
x x

∞ ∞
− +
π ε π ε∫ ∫

    = 
0 0

log log log
2 2e e e

Q Q d
r d r

− −∞ ∞ − = π ε π ε 
 volts

 Both these potentials are w.r.t. the same neutral plane. Since the unlike charges attract each 
other, the potential difference between the conductors is

   VAB  = 2VA  = 
0

2
log volts

2 e
Q d

rπ ε

 \  Capacitance, CAB = Q/VAB  =  

0

2
log

2 e

Q
Q d

rπ ε

 F/m

 \  CAB = 0 
F/m

loge
d
r

π ε
 ...(i)

 The capacitance for a length l is given by ;

   CAB = 0 F
loge

l
d
r

πε
 ... in air

    = 0 F
log

r

e

l
d
r

πε ε
 … in a medium

 Example 6.20. A 3-phase overhead transmission line has its conductors arranged at the cor-
ners of an equilateral triangle of 2 m side. Calculate the capacitance of each line conductor per km.  
Given that diameter of each conductor is 1·25 cm.
 Solution. Conductor radius,  r = 1·25/2  = 0·625 cm ; Spacing of conductors, d = 2 m = 200 cm

 Capacitance of each line conductor = 02
F m

loge d r
π ε

 = 
122 8 854 10

F m
log 200 0.625e

−π × ⋅ ×

    = 0·0096 × 10−9 F/m = 0·0096 × 10− 6 F/km = 0·0096 µF/km

* The electric intensity E at a distance x from the centre of the conductor in air is given by ;

  E = 
0

 volts/m
2

Q
xπ ε

Here, Q = charge per metre length ; e0 = permittivity of air
 As x approaches infinity, the value of E approaches zero. Therefore, the potential difference between the
 conductors and infinity distant neutral plane is 

 VA = 
02

r

Q dx
x

∞

π ε∫
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6.16.  Insulation Resistance of a Cable Capacitor
 The cable conductor is provided with a suitable thickness of 
insulating material in order to prevent leakage current. The path for 
leakage current is radial through the insulation. The opposition offered 
by insulation to leakage current is known as insulation resistance of the 
cable. For satisfactory operation, the insulation resistance of the cable 
should be very high.
 Consider a single-core cable of conductor radius r1 and internal 
sheath radius r2 as shown in Fig. 6.19. Let l be the length of the cable and 
ρ be the resistivity of the insulation.
 Consider a very small layer of insulation of thickness dx at a radius x. The length through which 
leakage current tends to flow is dx and the area of X-section offered to this flow is 2π x l.
 \ Insulation resistance of considered layer

    = 
2

dx
x l

ρ
π

 Insulation resistance of the whole cable is

   R = 
2 2

1 1

1

2 2

r r

r r

dx dx
x l l x

ρρ =
π π∫ ∫

 \  R = 2

1
log

2 e
r

l r
ρ
π

 This shows that insulation resistance of a cable is inversely proportional to its length.  In other 
words, if the cable length increases, its insulation resistance decreases and vice-versa.
 Example 6.21. Two underground cables having conductor resistances of 0.7W and 0.5W and 
insulation resistances of 300 MW and 600 MW respectively are joined (i) in series (ii) in parallel. 
Find the resultant conductor and insulation resistance.
 Solution. (i) Series connection. In this case, conductor resistances are added like resistances in 
series. However, insulation resistances are given by reciprocal relation.
\ Total conductor resistance = 0.7 + 0.5 = 1.2W

 The total insulation resistance R is given by ;

   1
R  = 1 1

300 600
+  \ R = 200 MW

 (ii) Parallel connection. In this case, conductor resistances are governed by reciprocal relation 
while insulation resistances are added.

\ Total conductor resistance = 
0.7 0.5
0.7 0.5

×
+  = 0.3 W

 Total insulation resistance = 300 + 600 = 900 MW
 Example 6.22. The insulation resistance of a single-core cable is 495 MΩ per km. If the core 
diameter is 2·5 cm and resistivity of insulation is 4·5 × 1014 Ω-cm, find the insulation thickness.
 Solution.  Length of cable, l = 1 km = 1000 m
 Cable insulation resistance,  R = 495 MΩ = 495 × 106Ω
   Conductor radius, r1 = 2·5/2 = 1·25 cm
  Resistivity of insulation, ρ = 4·5 × 1014 Ω-cm = 4·5 × 1012Ωm

  Let r2 cm be the internal sheath radius.

  Now, R = 2

1
log

2 e
r

l r
ρ
π

Fig. 6.19
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 or  2

1
loge

r
r  = 

6

12

2 2 1000 495 10

4 5 10

l Rπ π× × ×=
ρ ⋅ ×

 = 0·69

 or  2·3 log10 r2 /r1 = 0·69
 or  r2/r1 = Antilog 0·69/2·3 = 2
 or  r2  =  2 r1 = 2 × 1·25 = 2·5 cm
 \  Insulation thickness = r2 − r1 = 2·5 − 1·25 = 1·25 cm
 Example 6.23. The insulation resistance of a kilometre of the cable having a conductor di-
ameter of 1.5 cm and an insulation thickness of 1.5 cm is 500 MW. What would be the insulation 
resistance if the thickness of the insulation were increased to 2.5 cm?
 Solution. R1 = 500 MW  ;  l = 100 m  ;  R2 = ?

 For first case :  R1 = 2

1
log

2 e
r

l r
ρ
π

 For second case: R2 = 2

1
log

2 e
r

l r
′ρ

π ′

 \  2

1

R
R  = 2 1

2 1

log ( )
log ( )

e

e

r r
r r
′ ′

 Now, r1 = 1.5/2 = 0.75 cm  ;  r2 = 0.75 + 1.5 = 2.25 cm   \ r2/r1 = 3

 r′1 = 0.75 cm ; r′2 = 0.75 + 2.5 = 3.25 cm ;    \ r′2/r′1 = 4.333

 \  2

500
R

 = 
log (4.333)

log (3)
e

e
 = 1.334

 or  R2 = 500 × 1.334 = 667.3 MW

Tutorial Problems
  1. A single-core cable has a conductor diameter of 2·5 cm and insulation thickness of 1·2 cm. If the specific 

resistance of insulation is 4·5 × 1014 Ω cm, calculate the insulation resistance per kilometre length of the 
cable.    [305·5 MΩ]

  2. A single core cable 3 km long has an insulation resistance of 1820 MΩ. If the conductor diameter is 1·5 
cm and sheath diameter is 5 cm, calculate the resistivity of the dielectric in the cable.

[28·57 × 1012 Ωm]
 3. Determine the insulation resistance of a single-core cable of length 3 km and having conductor radius 

12·5 mm, insulation thickness 10 mm and specific resistance of insulation of 5 × 1012Ωm. [156 MΩ]

6.17.   Leakage Resistance of a Capacitor
 The resistance of the dielectric 
of the capacitor is called leakage 
resistance. The dielectric in an 
ideal capacitor is a perfect insulator 
(i.e., it has infinite resistance) and 
zero current flows through it when a 
voltage is applied across its terminals. 
The dielectric in a real capacitor 
has a large but finite resistance so a 
very small current flows between the 
capacitor plates when a voltage is 
applied.

Fig. 6.20
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 Fig. 6.20 shows the equivalent circuit of a real capacitor consisting of an ideal capacitor in 
parallel with leakage resistance Rl. Typical values of leakage resistance may range from about 1 
MΩ (considered a very “leaky” capacitor) to greater than 100,000 MΩ. A well designed capacitor 
has very high leakage resistance (> 104 MΩ) so that very little power is dissipated even when high 
voltage is applied across it.

6.18.  Voltage Rating of a Capacitor
 The maximum voltage that may be safely applied to a capacitor is usually expressed in terms of 
its d.c. working voltage.
 The maximum d.c. voltage that can be applied to a capacitor without breakdown of its  
dielectric is called voltage rating of the capacitor.
 If the voltage rating of a capacitor is exceeded, the dielectric may break down and conduct 
current, causing permanent damage to the capacitor. Both capaci-
tance and voltage rating must be taken into consideration before 
a capacitor is used in a circuit application.
 Example 6.24. Given some capacitors of 0·1 µF capable of 
withstanding 15 V. Calculate the number of capacitors needed if 
it is desired to obtain a capacitance of 0·1 µF for use in a circuit 
involving 60 V.
 Solution. Fig. 6.21 shows the conditions of the problem. 
  Capacitance of each capacitor, C = 0.1 µF
  Voltage rating of each capacitor, VC = 15 V
  Supply voltage, V = 60 V
 Since each capacitor can withstand 15 V, the number of capacitors to be connected in series = 
60/15 = 4.
 Capacitance of 4 series-connected capacitors, CT = C/4 = 0·1/4 = 0·025 µF. Since it is desired 
to have a total capacitance of 0·1 µF, number of such rows in parallel = C/CT = 0·1/0·025 = 4.
 \ Total number of capacitors = 4 × 4 = 16
 Fig. 6.21 shows the arrangement of capacitors.
 Example 6.25. A capacitor of capacitance C1 = 1 µF withstands the maximum voltage V1 = 6 
kV while another capacitance C2 = 2 µF withstands the maximum voltage V2 = 4 kV.  What maximum 
voltage will the system of these two capacitors withstand if they are connected in series ?
 Solution. The maximum charges Q1 and Q2 that can be placed on C1 and C2 are :
   Q1 = C1V1 = (1 × 10–6) × (6 × 103) = 6 × 10–3 C
   Q2 = C2V2 = (2 × 10–6) × (4 × 103) = 8 × 10–3 C
 The charge on capacitor C1 should not exceed 6 × 10–3 C. Therefore, when capacitors are con-
nected in series, the maximum charge that can be placed on the capacitors is 6 × 10–3 C (= Q1).

 \  Vmax = 
3 3

1 1
6 6

1 2

6 10 6 10

1 10 2 10

Q Q
C C

− −

− −
× ×+ = +
× ×

    = 6 × 103 + 3 × 103 = 103 (6 + 3) = 9 × 103 V = 9 kV
 Example 6.26. A parallel plate capacitor has plates of dimensions 2 cm × 3 cm.  The plates are 
separated by a 1 mm thickness of paper.
 (i) Find the capacitance of the paper capacitor.  The dielectric constant of paper is 3·7.
 (ii) What is the maximum charge that can be placed on the capacitor ? The dielectric strength 

of paper is 16 × 166 V/m.

Fig. 6.21
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 Solution. (i) C = 0 r A
d

ε ε

 Here ε0 = 8·85 × 10–12 F/m ; εr = 3·7; A = 6 × 10–4 m2; d = 1 × 10–3 m

 \  C = 
12 4

3

(8 85 10 ) (3 7) (6 10 )

1 10

− −

−
⋅ × × ⋅ × ×

×
 = 19·6 × 10–12 F

 (ii) Since the thickness of the paper is 1 mm, the maximum voltage that can be applied before 
breakdown occurs is

   Vmax = Emax × d
 Here Emax = 16 × 106 V/m  ;  d = 1 mm = 1 × 10–3 m
 \  Vmax = (16 × 106) × (1 × 10–3) = 16 × 103 V
 \ Maximum charge that can be placed on capacitor is
   Qmax = CVmax = (19·6 × 10–12) × (16 × 103) = 0.31 × 10–6 C = 0·31 µC

6.19.  Capacitors in Series
 Consider three capacitors, having capacitances C1, C2 and C3 farad respectively, connected in 
series across a p.d. of V volts [See Fig. 6.22 (i)].  In series connection, charge on each capacitor is 
the *same (i.e.  +Q on one plate and −Q on the other) but p.d. across each is different.

Fig. 6.22

 Now, V = V1 + V2 + V3 = 
1 2 3

Q Q Q
C C C

+ +

    = 
1 2 3

1 1 1Q
C C C

 + +  

 or  V
Q  = 

1 2 3

1 1 1
C C C

+ +

 But Q/V is the **total capacitance CT between points A and B so that V/Q = 1/CT [See Fig. 6.22 (ii)].

 \  1

TC  = 
1 2 3

1 1 1
C C C

+ +

Thus capacitors in series are treated in the same manner as are resistors in parallel.
 Special Case. Frequently we come across two capacitors in series.  The total capacitance in such 
a case is given by ;
   1

TC  = 1 2

1 2 1 2

1 1 C C
C C C C

++ =

* When voltage V is applied, a similar electron movement occurs on each plate. Hence the same charge is 
stored by each capacitor. Alternatively, current (charging) in a series circuit is the same. Since Q = It and 
both I and t are the same for each capacitor, the charge on each capacitor is the same.

** Total or equivalent capacitance is the single capacitance which if substituted for the series capacitances, 
would provide the same charge for the same applied voltage.
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 or  CT = 1 2

1 2

Product. .
Sum

C C i e
C C+

 Note. The capacitors are connected in series when the circuit voltage exceeds the voltage rating of 
individual units. In using the series connection, it is important to keep in mind that the voltages across capacitors 
in series are not the same unless the capacitances are equal. The greater voltage will be across the smaller 
capacitance which may result in its failure if the capacitances differ very much.

6.20.  Capacitors in Parallel
 Consider three capacitors, having capacitances C1, C2 and C3 farad respectively, connected in 
parallel across a p.d. of V volts [See Fig. 6.23 (i)]. In parallel connection, p.d. across each capacitor 
is the same but charge on each is different.

Fig. 6.23
 Now, Q = Q1 + Q2 + Q3 = C1 V + C2 V + C3 V

    = V(C1 + C2 + C3)
 or  Q/V = C1 + C2 + C3

 But Q/V is the total capacitance CT of the parallel combination [See Fig. 6.23 (ii)].
 \  CT  = C1 + C2 + C3

 Thus capacitors in parallel are treated in the same manner as are resistors in series.
 Note. Capacitors may be connected in parallel to obtain larger values of capacitance than are available 
from individual units.
 Example 6.27. In the circuit shown in Fig. 6.24, the total charge is 750 µC. Determine the 
values of V1, V and C2.
 Solution. V1 = 

6

6
1

750 10

15 10

Q
C

−

−
×=

×
 = 50 V

  V = V1 + V2 = 50 + 20 = 70 V
  Charge on C3 = C3 × V2

   = (8 × 10−6) × 20
    = 160 × 10−6 C = 160 µC
 \ Charge on C2 = 750 − 160 = 590 µC

 \ Capacitance of C2 = 
6590 10

20

−×

   = 29·5 × 10–6 F = 29·5 µF
 Example 6.28. Two capacitors A and B are connected in series across a 200 V d.c. supply. The 
p.d. across A is 120 V. This p.d. is increased to 140 V when a 3µF capacitor is connected in parallel 
with B. Calculate the capacitances of A and B.

Fig. 6.24
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 Solution. Let C1 and C2 µF be the capacitances of capacitors A and B respectively. When the 
capacitors are connected in series [See Fig. 6.25 (i)], charge on each capacitor is the same.

Fig. 6.25

 \  C1 × 120 = C2 × 80 or C2 = 1·5 C1 ...(i)
 When a 3µF capacitor is connected in parallel with B [See Fig. 6.25 (ii)], the combined 
capacitance of this parallel branch is (C2 + 3). Thus the circuit shown in Fig. 6.25 (ii) can be thought 
as a series circuit consisting of capacitances C1 and (C2 + 3) connected in series.
 \  C1 × 140 = (C2 + 3) 60
 or  7C1 − 3 C2 = 9 …(ii)
  Solving eqs. (i) and (ii), we get, C1 = 3.6 µF ;  C2 = 5·4 µF
 Example 6.29. Obtain the equivalent capacitance for the network shown in Fig. 6.26. For 300 
V d.c. supply, determine the charge and voltage across each capacitor.

  Fig. 6.26 Fig. 6.27

 Solution. Equivalent Capacitance. The above network can be redrawn as shown in Fig. 6.27.  
The equivalent capacitance C ′ of series-connected capacitors C2 and C3 is

   C ′ = 2 3

2 3

200 200
200 200

C C
C C

× ×=
+ +  = 100 pF

 The equivalent capacitance of parallel combination C ′ (= 100 pF) and C1 is
   CBC = C′ + C1 = 100 + 100 = 200 pF
 The entire circuit now reduces to two capacitors C4 and CBC (= 200 pF) in series.
 \ Equivalent capacitance of the network is

   C = 4

4

100 200
100 200

BC

BC

C C
C C

× ×=
+ +  = 200 pF

3
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Charges and p.d. on various capacitors
   Total charge, Q = CV = 12200 10 300

3
− × ×  

 = 2 × 10–8 C

 \  Charge on C4 = 2 × 10–8 C

 \  P.D. across C4, V4 = 
8

12
4

2 10

100 10

Q
C

−

−
×=
×

 = 200 V

  P.D. between B and C, VBC = 300 – 200 = 100 V
   Charge on C1, Q1 = C1VBC = (100 × 10–12) × 100 = 10–8 C
   P.D. across C1, V1 = VBC = 100 V
   P.D. across C2 = P.D. across C3 = 100/2 = 50 V
   Charge on C2 = Charge on C3 = Total charge – Charge on C1

    = (2 × 10–8) – (10–8) = 10–8 C
 Example 6.30. Two perfect  insulated capacitors are connected in series. One is an air capacitor 
with a plate area of 0.01 m2, the plates being 1 mm apart, the other has a plate area of 0.001 m2, the  
plates separated by a solid dielectric of 0.1 mm thickness with a dielectric constant of 5. Determine 
the voltage across the combination if the potential gradient in the air capacitor is 200 V/mm.
 Solution. Capacitance C1 of air capacitor is 

   C1 = 0 1 1

1

r A
t

ε ε
 = 

12

3

8.854 10 1 0.01

1 10

−

−
× × ×

×
 = 88.54 × 10–12 F

 Capacitance C2 of the capacitor with dielectric of  er2
= 5 is

   C2 = 0 2 2

2

r A
t

ε ε
 = 

12

3

8.854 10 5 0.001

0.1 10

−

−
× × ×

×
 = 442.7 × 10–12 F

   Voltage across C1, V1 = g1 × t1 = 200V/mm × 1 mm = 200 V

   Charge on C1, Q1 = C1V1 = 88.54 × 10–12 × 200 = 177.08 × 10–10 C

 As the capacitors are in series, the charge on each capacitor is the same i.e. Q2 = Q1 =  177.08 
× 10–10 C.

\ Voltage across C2, V2 = 2

2

Q
C  = 

10

12

177.08 10

442.7 10

−

−
×
×

 = 40 V

\ Voltage across combination, V = V1 + V2 = 200 + 40 = 240 volts
 Example 6.31. In the network shown in Fig. 6.28 (i), C1 = C2 = C3 = C4 = 8 µF and  
C5 = 10 µF.  Find the equivalent capacitance between points A and B.

Fig. 6.28

 Solution. A little reflection shows that circuit of Fig. 6.28 (i) can be redrawn as shown in  
Fig. 6.28 (ii). We find that the circuit is a Wheatstone bridge. Since the product of opposite arms of 
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the bridge are equal (C1C4 = C2C3 because C1 = C2 = C3 = C4), the bridge is balanced. It means that 
points C and D are at the same potential. Therefore, there will be no charge on capacitor C5. Hence, 
this capacitor is ineffective and can be removed from the circuit as shown in Fig. 6.28 (iii). Refer-
ring to Fig. 6.28 (iii), the equivalent capacitance C ′ of the series connected capacitors C1 and C2 is

   C ′ = 1 2

1 2

8 8
8 8

C C
C C

×=
+ +  = 4 µF

The equivalent capacitance C ′′ of series connected capacitors C3 and C4 [See Fig. 6.28 (iii)] is

   C ′′ = 3 4

3 4

8 8
8 8

C C
C C

×=
+ +  = 4 µF

 Now CAB = C ′ || C′′ = 4 || 4 = 4 + 4 = 8 µF
 Example 6.32. Find the charge on 5 µF capacitor in 
the circuit shown in Fig. 6.29.
 Solution. The p.d. between A and B is 6 V.  Consider-
ing the branch AB, the capacitors 2 µF and 5 µF are in 
parallel and their equivalent capacitance = 2 + 5 = 7 µF. 
The branch AB then has 7 µF and 3 µF in series. Therefore, 
the effective capacitance of branch AB is

   CAB = 7 3 21 F
7 3 10

× = µ
+

   Total charge in branch AB is 
   Q = CABV = 21

10
 × 6 = 63 C

5
µ

   P.D. across 3 µF capacitor = 63 1 21  volts
3 5 3 5
Q = × =

 \  P.D. across parallel combination = 21 96  volts
5 5

− =

   Charge on 5 µF capacitor = (5 × 10–6) × 9
5

 = 9 × 10–6 C = 9 µC

 Example 6.33. Two parallel plate capacitors A and B having capacitances of 1 µF and 5 µF 
are charged separately to the same potential of 100 V. Now positive plate of A is connected to the 
negative plate of B and the negative plate of A is connected to the positive plate of B. Find the final 
charge on each capacitor.
 Solution.  Initial charge on A, Q1 = C1V = (1 × 10–6) × 100 = 100 µC

   Initial charge on B, Q2 = C2V = (5 × 10–6) × 100 = 500 µC
 When the oppositely charged plates of A and B are connected together, the net charge is
   Q = Q2 – Q1 = 500 – 100 = 400 µC

   Final potential difference = 
6

6

Net charge 400 10 200 V
Net capacitance 3(1 5)10

−

−
×= =

+

   Final charge on A = 6
1

200 200(1 10 )
3 3

C −× = × ×  = µ200 C
3

   Final charge on B = 6
2

200 200(5 10 )
3 3

C −× = × ×  = 1000 µC
3

 Example 6.34. A capacitor is filled with two dielectrics of the same dimensions but of dielectric 
constants K1 and K2 respectively. Find the capacitances in two possible arrangements.

Fig. 6.29
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Fig. 6.30

 Solution. The two possible arrangements are shown in Fig. 6.30.
 (i) The arrangement shown in Fig. 6.30 (i) is equivalent to two capacitors in series, each with 
plate area A and plate separation d/2 i.e.,

   C1 = 1 0 1 02
/2

K A K A
d d
ε ε=  ; C2 = 2 0 2 02

/2
K A K A

d d
ε ε=

 The equivalent capacitance C ′ is given by ;

   1
C′  = 

1 2 1 0 2 0 0 1 2

1 1 1 1
2 2 2

d d d
C C K A K A A K K

 + = + = + ε ε ε  

    = 1 2

0 1 22
K Kd

A K K
+ 

 ε  

 \  C ′ =  
  

0 1 2

1 2

2 A K K
d K + K
ε

 (ii) The arrangement shown in Fig. 6.30 (ii) is equivalent to two capacitors in parallel, each with 
plate area A/2 and plate separation d i.e.,

   C1 = 1 0 1 0( /2)
2

K A K A
d d

ε ε=    ;  C2 = 2 0 2 0( /2)
2

K A K A
d d

ε ε=

 The equivalent capacitance C ′′ is given by ;

   C ′′ = C1 + C2 = 1 0 2 0 0
1 2( )

2 2 2
K A K A A K K

d d d
ε ε ε+ = +

 \  C ′′ = 0
1 2( + )

2
A K K
d

ε

 Example 6.35. Determine the capacitance between terminals A and B of the network shown in 
Fig. 6.31.  The values shown are capacitances in µF.

Fig. 6.31

 Solution. The circuit shown in Fig. 6.31 is equivalent to the circuit shown in Fig. 6.32.
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  Fig. 6.32 Fig. 6.33

 Replacing the star network at D (consisting of capacitances 10, 10 and 15) by equivalent delta, 
we have,
   C1 = 10 10 20

10 10 15 7
× =

+ +   (between A and C)

   C2 = 10 15 30
10 10 15 7

× =
+ +   (between B and C)

   C3 = 10 15 30
10 10 15 7

× =
+ +   (between A and B)

 The circuit then reduces to the circuit shown in Fig. 6.33. Referring to Fig. 6.33,

    CAC = 20 19525
7 7

+ =  = 27·86 ; CBC = 30 17020
7 7

+ =  = 24·29

 The circuit then reduces to the circuit shown in 
Fig. 6.34.
 \  CAB = 3

AC BC

AC BC

C C C
C C

× +
+

    = 27 86 24 29 4 28
27 86 24 29

⋅ × ⋅ + ⋅
⋅ + ⋅

     = 12·98 + 4·28 = 17·3 µF
 Example 6.36. In the network shown 
in Fig. 6.35, the capacitances are in µF.  
If the capacitance between terminals P 
and Q is 5 µF, find the value of C.
 Solution. The capacitances 1 and 
1 are in parallel and their equivalent 
capacitance = 1 + 1 = 2. Likewise, the 
capacitances 1 and 3 are in parallel and 
their equivalent capacitance = 1 + 3 = 4.  
Therefore, the original circuit reduces to the circuit shown in Fig. 6.36.

  Fig. 6.36 Fig. 6.37

Fig. 6.35

Fig. 6.34
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 Replacing the star network at S (consisting of capacitances 4, 4 and 2) in Fig. 6.36 by its 
equivalent delta network,

   Cab = 4 4 1 6
4 4 2

× = ⋅
+ +   ; Cbc = 4 2 0 8

4 4 2
× = ⋅

+ +   ;  Cca = 4 2 0 8
4 4 2

× = ⋅
+ +

 The circuit in Fig. 6.36 then reduces to the one shown in Fig. 6.37. Referring to Fig. 6.37, 
capacitances 2 and 1·6 are in parallel and their equivalent capacitance = 2 + 1·6 = 3·6. Likewise, the 
capacitances 2 and 0·8 are in parallel and their equivalent capacitance = 2 + 0·8 = 2·8. Therefore, 
the circuit shown in Fig. 6.37 reduces to that shown in Fig. 6.38.

  Fig. 6.38 Fig. 6.39

 Referring to Fig. 6.38, capacitances 3·6 and 2·8 are in series and their equivalent capacitance 
= 3·6 × 2·8/(3·6 + 2·8) = 1·575.  Likewise, capacitances 3 and C are in series and their equivalent 
capacitance = 3 × C/(3 + C). The circuit shown in Fig. 6.38 reduces to that shown in Fig. 6.39. 
Referring to Fig. 6.39,
   CPQ = 1·575 + 0·8 + 3

3
C
C

×
+

 or  5 = 1·575 + 0·8 + 3
3

C
C+  [Given CPQ = 5 µF]

 \  C = 21 µF

Tutorial Problems

 1. Three capacitors have capacitances of 2, 3 and 4µF respectively. Calculate the total capacitance when 
they are connected (i) in series (ii) in parallel. [(i) 0·923µF (ii) 9µF]

 2. Three capacitors of values 8µF, 12 µF and 16µF respectively are connected in series across a 240 V d.c. 
supply.  Calculate (i) the resultant capacitance and (ii) p.d. across each capacitor.

   [(i) 3·7µF (ii) V1 = 111V, V2 = 74 V, V3 = 55 V]
 3. How can three capacitors of capacitances 3µF, 6µF and 9µF respectively be arranged to give a capacitance 

of 11µF ?    [3µF and 6µF in series, with 9µF in parallel with both]
 4. Two capacitors of capacitances 0·5µF and 0·3µF are joined in series. What value of capacitance joined 

in parallel with this combination would give a capacitance of 0·5µF ? [0·31µF]
 5. Three capacitors A, B and C are connected in series across a 200 V d.c. supply. The p.d.s. across the 

capacitors are 40 V, 70V and 90V respectively.  If the capacitance of A is 8µF, what are the capacitances  
of B and C ?    [4·57 µF, 3·56 µF]

 6. A capacitor of 4µF capacitance is charged to a p.d. of 400V and then connected in parallel with an un-
charged capacitor of 2µF capacitance. Calculate the p.d. across the parallel capacitors. [267 V]

 7. Circuit ABC is made up as follows : AB consists of a 3µF capacitor, BC consists of a 3µF capacitor in 
parallel with 5µF capacitor. If a d.c. supply of 100 V is connected between A and C, determine the charge 
on each capacitor.    [160 µC (AB); 60 µC (3µF in BC); 100 µC]

 8. Two capacitors, A and B, having capacitances of 20µF and 30µF respectively, are connected in series to 
a 600 V d.c. supply. If a third capacitor C is connected in parallel with A, it is found that p.d. across B is 
400 V.  Determine the capacitance of capacitor C. [40µF]
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6.21.  Joining Two Charged Capacitors
 Consider two charged capacitors of capacitances C1 and C2 charged to 
potentials V1 and V2 respectively as shown in Fig. 6.40. With switch S open,
   Q1 = C1V1 and Q2 = C2V2

 When switch S is closed, positive charge will flow from the capacitor of 
higher potential to the capacitor of lower potential. This flow of charge will 
continue till p.d. across each capacitor is the same. This is called common 
potential (V).

   Common potential, V = 1 2

1 2

Total charge
Total capacitance

Q Q
C C

+=
+

 \  V = 1 1 2 2

1 2

C V C V
C C

+
+  ...(i)

 The following points may be noted :
 (i) Although there is a redistribution of charge on connecting the capacitors (i.e., closing 

switch S), the total charge before and after the connection remains the same (Remember 
charge is a conserved quantity). This means that charge lost by one capacitor is *equal to 
the charge gained by the other capacitor.

 (ii) When switch S is closed, the capacitors are in parallel.

 (iii) Since the two capacitors acquire the same common potential V,

   V = 1 2

1 2

Q Q
C C

=  \ 1 1

2 2

Q C
Q C

=

  Therefore, the charges acquired by the capacitors are in the ratio of their capacitances.

 (iv) In this process of charge sharing, the total stored energy of the capacitors decreases. It is 
because energy is dissipated as heat in the connecting wires when charge flows from one 
capacitor to the other.

 Example 6.37. Two capacitors of capacitances 4 µF and 6 µF respectively are connected in 
series across a p.d. of 250 V. The capacitors are disconnected from the supply and are reconnected 
in parallel with each other. Calculate the new p.d. and charge on each capacitor.
 Solution. In series-connected capacitors, p.d.s across the capacitors are in the inverse ratio of 
their capacitances.

 \ P.D. across 4 µF capacitor = 6250
4 6

×
+  = 150 V

   Charge on 4 µF capacitor = (4 × 10–6) × 150 = 0·0006 C
 Since the capacitors are connected in series, charge on each capacitor is the same.
 \ Charge on both capacitors = 2 × 0·0006 = 0·0012 C
 Parallel connection. When the capacitors are connected in parallel, the total capacitance CT = 
4 + 6 = 10 µF.  The total charge 0·0012 C is distributed between the capacitors to have a common p.d.

 \  P.D. across capacitors = 6

Total charge 0 0012

10 10TC −
⋅=
×

 = 120 V

   Charge on 4 µF capacitor = (4 × 10–6) × 120 = 480 × 10–6C = 480 µC
   Charge on 6 µF capacitor = (6 × 10–6) × 120 = 720 × 10–6C = 720 µC

Fig. 6.40

* Thus referring to exp. (i), V(C1 + C2) = C1V1 + C2V2  or  C1V1 – C1V = C2V – C2V2

\ Charge lost by one = Charge gained by the other
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6.22.  Energy Stored in a Capacitor
 Charging a capacitor means transferring electrons from one 
plate of the capacitor to the other. This involves expenditure of 
energy because electrons have to be moved against the *opposing 
forces. This energy is stored in the electrostatic field set up in 
the dielectric medium. On discharging the capacitor, the field 
collapses and the stored energy is released.
 Consider a capacitor of C farad being charged from a d.c. 
source of V volts as shown in Fig. 6.41. Suppose at any stage of 
charging, the charge on the capacitor is q coulomb and p.d. across the plates is v volts.

 Then, C = 
q
v

 At this instant, v joules (by definition of v) of work will be done in transferring 1 C of charge 
from one plate to the other. If further small charge dq is transferred, then work done is
   dW = v dq
    = C v dv q C v

dq C dv
= 

 ∴ = 
∵

 \ Total work done in raising the potential of uncharged capacitor to V volts is

   W = 
2

0 0
2

VV
vC v dv C

 
=  

 ∫
 or  W = 21 joules

2
C V

 This work done is stored in the electrostatic field set up in the dielectric.
 \ Energy stored in the capacitor is

   E = 
2

2 †1 1
= ** joules

2 2 2
QC V Q V
C

=

 Note that an ideal (or pure) capacitor does not dissipate or consume energy; instead, it stores 
energy.

6.23.  Energy Density of Electric Field
The energy stored per unit volume of the electric field is called energy density of the electric field

 \  Energy density, u = 
Total energy stored ( )
Volume of electric field

U

 We have seen that energy is stored in the electric field of a capacitor. In fact, 
wherever electric field exists, there is stored energy. While dealing with electric 
fields, we are generally interested in energy density (u) i.e. energy stored per 
unit volume. Consider a charged parallel plate capacitor of plate area A and plate 
separation d as shown in Fig. 6.42. 
   Energy stored = 21

2
CV

 Volume of space between plates = A d

 \  Energy density, u = 
2Energy stored

Volume 2
CV

Ad
=

* Electrons are being pushed to the negative plate which tends to repel them. Similarly, electrons are removed 
from the positive plate which tends to attract them. In either case, forces oppose the transfer of electrons 
from one plate to the other. This opposition increases as the charge on the plates increases.

** Putting C = Q/V in the exp., E = 1
2

QV

† Putting V = Q/C in the exp., E = Q2/2C

Fig. 6.41

Fig. 6.42
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 We know that capacitance of a parallel plate capacitor is C = e0A/d.

 \  u = ( )22
0

0
1

2 2
A V V

d Ad d
ε × = ε

 But V/d is the electric field intensity (E) between the plates.

 \  Energy density, u = 2
0

1
2

Eε  ... in air ...(i)

    = 2
0

1
2 r Eε ε  ... in a medium ...(ii)

 Obviously, the unit of energy density will be joules/m3.
 Therefore, energy density (i.e., electric field energy stored per unit volume) in any region of 
space is directly proportional to the square of the electric field intensity in that region.
 Note that we derived exps. (i) and (ii) for the special case of a parallel plate capacitor. But it can 
be shown to be true for any region of space where electric field exists.
 Note. We can also express energy density of electric field in terms of electric flux density D (= e0erE).

   u = 1
2

DE  = 
2

02 r

D
ε ε

 Example 6.38. A 16 µF capacitor is charged to 100 V.  After being disconnected, it is immediately 
connected in parallel with an uncharged capacitor of capacitance 4µF. Determine (i) the p.d. across 
the combination, (ii) the electrostatic energies before and after the capacitors are connected in 
parallel and (iii) loss of energy. 
 Solution.  C1 = 16 µF ; C2 = 4 µF
Before joining
 Charge on 16 µF capacitor, Q = C1 V1 = (16 × 10−6) × 100 = 1·6 × 10−3 C

   Energy stored, E1 = 1
2

 C1V1
2 = 1

2
 (16 × 10−6) × 1002 = 0·08 J

 After joining. When the capacitors are connected in parallel, the total capacitance CT = C1 + C2 
= 16 + 4 = 20 µF.  The charge 1·6 × 10−3 C distributes between the two capacitors to have a common 
p.d. of V volts.
 P.D. across parallel combination, V = 

3

6
1 6 10

20 10T

Q
C

−

−
⋅ ×=

×
 = 80 V

  Energy stored, E2 = 2 6 21 1 (20 10 ) (80)
2 2TC V −= × ×  = 0.064 J

  Loss of energy = E1 – E2 = 0·08 – 0·064 = 0·016 J
 It may be noted that there is a loss of energy.  This is due to the heat dissipated in the conductor 
connecting the capacitors.
 Example 6.39. A capacitor-type stored-energy welder is to deliver the same heat to a single 
weld as a conventional weld that draws 20 kVA at 0·8 p.f. for 0·0625 second/weld. If C = 2000 µF, 
find the voltage to which it is charged.
 Solution. The energy supplied per weld in a conventional welder is
   W = VA × cos f × time = (20 × 103) × (0·8) × 0·0625 = 1000 J
 The stored energy in the capacitor should be 1000 J.

 \  1000 = 21
2

CV

 or  V = 6
2 1000 2 1000

2000 10C −
× ×=

×
 = 1000 V
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 Example 6.40. A parallel plate 100 µF capacitor is charged to 500 V. If the distance between 
the plates is halved, what will be the new potential difference between the plates and what will be 
the new stored energy ?
 Solution. C = 100 µF = 100 × 10–6 F = 10–4 F ; V = 500 volts
 When plate separation is decreased to half, the new capacitance C ′ becomes twice i.e., C′ = 2C.  
Since the capacitor is not connected to the battery, the charge on the capacitor remains the same.  The 
potential difference between the plates must decrease to maintain the same charge.

 \  Q = CV = C′V ′ or V ′ = 500
2 2 2

CV CV V
C C

= = =′  = 250 volts

   New stored energy = 
2

21 1 (2 )
2 2 2

VC V C  ′ ′ =   

    = 
2

21 1 1
2 2 2 2

CV CV =   

    = 4 21 1 10 (500)
2 2

− × ×  
 = 6·25 J

 Example 6.41. A parallel-plate capacitor is charged with a battery to a charge q0 as shown in 
Fig. 6.43 (i). The battery is then removed and the space between the plates is filled with a dielectric 
of dielectric constant K. Find the energy stored in the capacitor before and after the dielectric is 
inserted.
 Solution. Energy stored in the capacitor in the absence of dielectric is

   *E0 = 2
0 0

1
2

C V

   Since V0 = q0/C0, this can be expressed as :

   E0 = 
2
0

02
q
C  …(i)

 Eq. (i) gives the energy stored in the capacitor in the absence of dielectric.
 After the battery is removed and the dielectric is inserted between the plates, charge on the 
capacitor remains the same. But the capacitance of the capacitor is increased K times i.e., new 
capacitance is C ′ = K C0 [See Fig. 6.43 (ii)].
 \ Energy stored in the capacitor after insertion of dielectric is

   E = 
2 2
0 0 0

02 2
q q E
C K C K

= =′

 or  E = 0E
K  …(ii)

Fig. 6.43

* The subscript 0 indicates the conditions when the medium is air.



Capacitance  and  Capacitors 331 

 Since K > 1, we find that final energy is less than the initial energy by the factor 1/K. How will 
you account for “missing energy” ? When the dielectric is inserted into the capacitor, it gets pulled 
into the device. The external agent must do negative work to keep the dielectric from accelerating.  
This work is simply = E0 – E. Alternately, the positive work done by the system = E0 – E.
 Example 6.42. Suppose in the above problem, the capacitor is kept connected with the battery 
and then dielectric is inserted between the plates. What will be the change in charge, the capaci-
tance, the potential difference, the electric field and the stored energy ?
 Solution. Since the battery remains connected, the potential difference V0 will remain 
unchanged.
 As a result, electric field (= V0 /d) will also remain unchanged.
 The capacitance C0 will increase to C = K C0.
 The charge will also increase to q = K q0 as explained below.
   q0 = C0 V0   ; q = CV0 = KC0 V0 = K q0

   Initial stored energy, E0 = 2
0 0

1
2

C V

   Final stored energy, E = 2 2
0 0 0 0

1 1
2 2

CV K C V KE= =

 \  E = KE0

 Note that stored energy is increased K times. Will any work be done in inserting the dielectric ? 
The answer is yes. In this case, the work will be done by the battery. The battery not only gives the 
increased energy to the capacitor but also provides the necessary energy for inserting the dielectric.
 Example 6.43. An air-capacitor of capacitance 0·005 µF connected to a direct voltage of  
500 V is disconnected and then immersed in oil with a relative permittivity of 2·5.  Find the energy 
stored in the capacitor before and after immersion.

 Solution. Energy before immersion, E1 = 2 6 21 1 0 005 10 (500)
2 2

CV −= × ⋅ × ×  = 625 × 10–6 J

When the capacitor is immersed in oil, its capacitance becomes C ′ = εrC = 2·5 × 0·005 = 0·0125 µF. 
Since charge remains the same (V = Q/C), new voltage is decreased and becomes V ′ = V/εr = 500/2·5 
= 200 V.
 \ Energy after immersion, E2 = 2 6 21 1 0 0125 10 (200)

2 2
C V −′ ′ = × ⋅ × ×  = 250 × 10–6 J

 Example 6.44. In the circuit shown in Fig. 6.44, the 
battery e.m.f. is 100 V and the capacitor has a capacitance 
of 1 µF.  The switch is operated 100 times every second.  
Calculate (i) the average current through the switch 
between switching operations and (ii) the average power 
dissipated in the resistor.  It may be assumed that the 
capacitor is ideal and that the capacitor is fully charged 
or discharged before the subsequent switching.
 Solution. (i)  Maximum charge on capacitor, Q = CV = (1 × 10–6) × (100) = 10–4 C
  The time taken to acquire this charge (or to lose it) is

   T = 1 1
100f

=  = 0.01 s

  \ Average current, Iav = 
410

0 01
Q
T

−∆ =
∆ ⋅  = 0·01 A = 10 mA

Fig. 6.44
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 (ii) The maximum energy stored during charging is

   Em = 2 6 21 1 10 (100)
2 2

CV −= × ×  = 0·005 J

 During the charging period, a similar quantity of energy must be dissipated in the resistor. In the 
subsequent discharging period, the stored energy in the capacitor is dissipated in the resistor. Hence 
for every switching action, 0·005 J is dissipated in the resistor. For 100 switching operations, the 
energy E dissipated is
   E = 100 × 0·005 = 0·5 J

   Average power taken = 0 5
1

E
T

∆ ⋅=
∆  = 0·5 W

 Note that amount of energy stored in a capacitor is very small because the value of C is very 
small.

6.24.  Force on Charged Plates
 Consider two parallel conducting plates x metres apart and carrying 
constant charges of +Q and −Q coulombs respectively as shown in Fig. 
6.45. Let the force of attraction between the two plates be F newtons. If 
one of the plates is moved away from the other by a small distance dx, 
then work done is 
   Work done = F × dx joules ...(i)

 Since the charges on the plates remain constant, no electrical energy 
can enter or leave the system during the movement dx.
 \  Work done = Change in stored energy

   Initial stored energy = 
21  joules

2
Q
C

 Since the separation of the plates has increased, the capacitance will decrease by dC. The final 
capacitance is, therefore, (C − dC).

   Final stored energy = 
21

2 ( )
Q

C dC−  = 
2

2 2

( )*

2[ ( ) ]

Q C dC
C dC

+
−

 Since dC is small compared to C, (dC)2 can be neglected compared to C2.

 \ Final stored energy = 
2 2 2

2 2

( )
22 2

Q C dC Q Q dC
CC C

+ = +  

 \ Change in stored enegry  = 
2 2 2

22 22

Q Q QdC
C CC

 
+ − 

 
 =  

2

22

Q dC
C

 ...(ii)

 Equating eqs. (i) and (ii), we get,

   F × dx = 
2

22

Q dC
C

 or  F  = 
2

22

Q dC
dxC

    = 21
2

dCV
dx   ...(iii)  ( V = Q/C)

 Now C = 0 r A
x

ε ε

Fig. 6.45

* Note this exp. Multiply the numerator and denominator by (C + dC).
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 \  dC
dx  = 0

2
r A

x
ε ε−

 \ Substituting the value of dC/dx in eq. (iii), we get,

   F = 2 0
2

1
2

r AV
x

ε ε−  = 
2

0
1
2 r

VA
x

 − ε ε   
   

    = 2
0

1
2 r A E− ε ε             ...in a medium

    = 2
0

1
2

A E− ε            ...in air

 This represents the force between the plates of a parallel-plate capacitor charged to a p.d. of 
V volts. The negative sign shows that it is a force of attraction.
 Note. The force of attraction between charged plates may be utilised as a means of measuring potential 
difference. An instrument of this kind is known as an electrostatic voltmeter.
 Example 6.45. A parallel plate capacitor has its plates separated by 0·5 mm of air. The area 
of plates is 2 m2 and they are charged to a p.d. of 100 V. The plates are pulled apart until they are 
separated by 1 mm of air. Assuming the p.d. to remain unchanged, what is the mechanical force 
experienced in separating the plates ?
 Solution. Here, A = 2m2 ; d = 0.5 mm = 0.5 × 10–3 m ; V = 100 volts 

   Initial capacitance, C1 = 0 A
d

ε
 = 

12
9

3
8 85 10 2 35 4 10 F

0 5 10

−
−

−
⋅ × × = ⋅ ×

⋅ ×

   Initial stored energy, E1 = 2
1

1
2

C V  = 9 2 51 (35 4 10 ) 100 17 7 10 J
2

− −× ⋅ × × = ⋅ ×

   Final capacitance, C2 = 1
1
2

C  = 91 (35.4 10 )
2

−×  = 17.7 × 10–9 F

   Final stored energy, E2 = 2
2

1
2

C V  = 9 2 51 (17 7 10 ) 100 8 85 10 J
2

− −⋅ × × = ⋅ ×

  Change in stored energy  = (17·7 − 8·85) × 10−5 = 8·85 × 10−5 J
 Suppose F newtons is the average mechanical force between the plates.  The plates are separated 
by a distance dx = 1 − 0·5 = 0·5 mm.
 \  F × dx = Change in stored energy

or   F = 
5

3
8 85 10

0 5 10

−

−
⋅ ×
⋅ ×

 = 17.7 × 10–2 N

 Note that small low-voltage capacitors store microjoules of energy.

6.25.  Behaviour of Capacitor in a D.C. Circuit
 When d.c. voltage is applied to an uncharged capacitor, there is transfer of electrons from 
one plate (connected to +ve terminal of source) to the other plate (connected to –ve terminal of 
source).  This is called charging current because the capacitor is being charged. The capacitor is 
quickly charged to the applied voltage and charging current becomes zero. Under this condition, 
the capacitor is said to be fully charged. When a wire is connected across the charged capacitor, 
the excess electrons on the negative plate move through connecting wire to the positive plate. The 
energy stored in the capacitor is dissipated in the resistance of the wire. The charge is neutralised 
when the number of free electrons on both plates are again equal. At this time, the voltage across the 
capacitor is zero and the capacitor is fully discharged. The behaviour of a capacitor in a d.c. circuit 
is summed up below :
 (i) When d.c. voltage is applied to an uncharged capacitor, the capacitor is quickly (not 

instantaneously) charged to the applied voltage.
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  Charging current, i = ( )
dQ d dVCV C
dt dt dt

= =

  When the capacitor is fully charged, capacitor voltage becomes constant and is equal to the 
applied voltage. Therefore, dV/dt = 0 and so is the charging current. Note that dV/dt is the 
slope of v–t graph of a capacitor.

 (ii) A capacitor can have voltage across it even when there is no current flowing.
 (iii) The voltage across a capacitor (Q = CV) is proportional to charge and not the current.
 (iv) There is no current through the dielectric of the capacitor during charging or discharging 

because the dielectric is an insulating material. There is merely transfer of electrons from 
one plate to the other through the connecting wires.

 (v) When the capacitor is fully charged, there is no circuit current. Therefore, a fully charged 
capacitor appears as an open to d.c.

 (vi) An uncharged capacitor is equivalent to a *short circuit as far as d.c. voltage is 
concerned. Therefore, a capacitor must be charged or discharged by connecting a 
resistance in series with it to limit the charging or discharging current.

 (vii) When the circuit containing capacitor is disconnected from the supply, the capacitor 
remains charged for a long period.  If the capacitor is charged to a high value, it can 
be dangerous to someone working on the circuit.

 Example 6.46. A certain voltage source causes the current to an initially discharged 1000 µF 
capacitor to increase at a constant rate of 0·06 A/s.  Find the voltage across the capacitor after t = 
10 s.
 Solution.  Charging current, iC = 0·06t
 \ Voltage across the capacitor after t = 10 s is

   **vC = 
10 10

6
0 0

1 1 0 06
1000 10

Ci dt t
C −= ⋅

×∫ ∫

    = 
10 102

3

00

10 0 06 60
2
tt dt

 
× ⋅ =  

 ∫

    = 
21060

2
×  = 3000 V

 Example 6.47. A voltage across a 100 µF capacitor varies as follows : (i) uniform increase 
from 0 V to 700 V in 10 sec (ii) a uniform decrease from 700 V to 400 V in 2 sec (iii) a steady value 
of 400 V (iv) an instantaneous drop from 400 V to zero.  Find the circuit current during each period.

 Solution. i = 6 4100 10 10 Adv dv dvC
dt dt dt

− −= × =

 (i)  dv = 700 V ;  dt = 10 sec

  \ i = 4 370010 7 10 A
10

− −× = ×  = 7 mA
 (ii)  dv = 700 – 400 = 300 V ;  dt = 2 sec

  \ i = 4 30010
2

− ×  = 15 × 10–3 A = 15 mA
* When d.c. voltage is applied to an uncharged capacitor, the charging current is limited only by the small 

resistance of source and any wiring resistance present. The surge current that flows when no resistor is 
present may be great enough to damage the capacitor, the source or both.

** i = dvC
dt  or dv i

dt C
=  \ Integrating, v = 

0

1
t

idt
C ∫   
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 (iii)  dv/dt = 0.  Therefore, current is zero.
 (iv)  dv = 400 – 0 = 400 V ;  dt = 0

  \ i = 10–4 × 400
0

 = infinite
 Note that in this period, the current is extremely high.

6.26.  Charging of a Capacitor
 Consider an uncharged capacitor of capacitance C farad 
connected in series with a resistor R to a d.c. supply of V 
volts as shown in Fig. 6.46. When the switch is closed, the 
capacitor starts charging up and charging current flows in the 
circuit. The charging current is maximum at the instant of 
switching and decreases gradually as the voltage across the 
capacitor increases. When the capacitor is charged to applied 
voltage V, the charging current becomes zero.
 1. At switching instant. At the instant the switch is closed, the voltage across capacitor is 

zero since we started with an uncharged capacitor. The entire voltage V is dropped across 
resistance R and charging current is maximum (call it Im).

 \  Initial charging current, Im = V/R
   Voltage across capacitor = 0
   Charge on capacitor = 0
 2. At any instant. After having closed the switch, the charging current starts decreasing and 

the voltage across capacitor gradually increases.  Let at any time t during charging :
   i = Charging current
   v = P.D. across C
   q = Charge on capacitor = C v
 (i) Voltage across capacitor
  According to Kirchhoff’s voltage law, the applied voltage V is equal to the sum of voltage 

drops across resistor and capacitor.
 \  V = v + iR …(i)
 or  V = v + CR* dv

dt
 or  dv

V v
−

−  = dt
RC

−
 Integrating both sides, we get,

   dv
V v

−
−∫  = dt

RC
−∫

 or  loge (V – v) = t K
RC

− +  …(ii)

where K is a constant whose value can be determined from the initial conditions. At the instant of 
closing the switch S, t = 0 and v = 0.
 Substituting these values in eq. (ii), we get, loge V = K.

 Putting the value of K = loge V in eq. (ii), we get,

   loge (V – v) = loge
t V

RC
− +

Fig. 6.46

* i = ( ) ( )
dq d d dvq Cv C
dt dt dt dt

= = =
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 or  loge
V v

V
−  = t

RC
−

 or  V v
V
−  = e–t /RC

 \  v = V [1 – e–t /RC] …(iii)
 This is the expression for variation of voltage across the capacitor (v) w.r.t. time (t) and is rep-
resented graphically in Fig. 6.47 (i). Note that growth of voltage across the capacitor follows an 
exponential law. An inspection of eq. (iii) reveals that as t increases, the term e–t/RC gets smaller and 
voltage v across capacitor gets larger.
 (ii) Charge on Capacitor
   q = Charge at any time t
   Q = Final charge
 Since v = q/C and V = Q /C, the exp. (iii) becomes :

   
q
C  = /[1 ]t RCQ e

C
−−

 or  q = Q (1 – e–t /RC) …(iv)
 Again the increase of charge on capacitor plates follows exponential law.

Fig. 6.47
 (iii) Charging current
 From exp. (i), V – v = i R
 From exp. (iii), V – v = V e–t/RC

 \  iR = V e–t/RC

 or  i = /t RCV e
R

−

 \  i = Im e–t/RC

where Im (= V/R) is the initial charging current. Again the charging current decreases following 
exponential law. This is also represented graphically in Fig. 6.47 (ii).
 (iv) Rate of rise of voltage across capacitor
 We have seen above that :
   V = dvv CR

dt
+

 At the instant the switch is closed, v = 0.

 \  V = dvCR
dt
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 or Initial rate of rise of voltage across capacitor is given by ;

   dv
dt  = volts/secV

CR  …(iv)

 Note. The capacitor is almost fully charged in a time equal to 5 RC i.e., 5 time constants.

6.27.  Time Constant
 Consider the eq. (iii) above showing the rise of voltage across the capacitor :
   v = V (1 – e–t/RC)
 The exponent of e is t/RC.  The quantity RC has the *dimensions of time so that exponent of e 
is a number. The quantity RC in called the time constant of the circuit and affects the charging (or 
discharging) time. It is represented by λ (or T or τ).
 \  Time constant, λ = RC seconds
 Time constant may be defined in one of the following ways :
 (i) At the instant of closing the switch, p.d. across capacitor is zero. Therefore, putting v = 0 in 

the expression V = v + ,
dvCR
dt  we have, 

   V = dvCR
dt

 or  dv
dt  = V

CR
 If this rate of rise of voltage could continue, the capacitor voltage will reach the final value V in 
time = V ÷ V/CR = RC seconds = time constant λ.
 Hence time constant may be defined as the time required for the capacitor voltage to rise  
to its final steady value V if it continued rising at its initial rate (i.e., V/CR).
 (ii) If the time interval t = λ (or RC), then,
   v = V (1 – e–t /t) = V (1 – e–1) = 0·632 V
 Hence time constant can also be defined as the time required for the capacitor voltage  
to reach 0·632 of its final steady value V.
 (iii) If the time interval t = λ (or RC), then,
   i = Im e–t/t = Im e–1 = 0·37 Im
 Hence time constant can also be defined as the time required for the charging current to  
fall to 0·37 of its initial maximum value Im.
 Fig. 6.48 as well as adjoining table shows the percentage of final voltage (V) after each time 
constant interval during voltage buildup (v) across the capacitor. An uncharged capacitor charges 
to about 63% of its fully charged voltage (V) in first time constant. A 5 time-constant interval is 
accepted as the time to fully  charge (or discharge) a capacitor and is called the transient time.

  Fig. 6.48

Number of time
constants

% of final value

1 63
2 86
3 95
4 98
5 99 considered 100 %

* RC = ( )Volt Coulomb×
Ampere Volt

 
  

 = ( )Volt Coulomb×
(Coulomb sec) Volt

 = seconds
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6.28.  Discharging of a Capacitor
 Consider a capacitor of C farad charged to a p.d. of V volts and connected in series with a 
resistance R through a switch S as shown in Fig. 6.49 (i). When the switch is open, the voltage across 
the capacitor is V volts. When the switch is closed, the voltage across capacitor starts decreasing.  
The discharge current rises instantaneously to a value of V/R (= Im) and then decays gradually to zero.

Fig. 6.49
 Let at any time t during discharging,
   v = p.d. across the capacitor
   i = discharging current
   q = charge on capacitor
 By Kirchhoff’s voltage law, we have,

   0 = dvv RC
dt

+

 or  dv
v  = dt

RC
−

 Integrating both sides, we get,

   dv
v∫  = 1 dt

RC
− ∫

 \  loge v = t K
RC

− +  …(i)

 At the instant of closing the switch, t = 0 and v = V.  Putting these values in eq. (i), we get,
   loge V = K
\ Equation (i) becomes :  loge v = (–t/RC) + loge V

 or  loge
v
V  = t

RC
−

 or  v
V  = e–t/RC

 \  v = V e–t/λ …(ii)
 Again λ (= RC) is the time constant and has the dimensions of time.
 Similarly, q = Q e–t/RC

 and  i = –Im e–t/RC

 Note that negative sign is attached to Im.  This is because the discharging current flows in the 
opposite direction to that in which the charging current flows.
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 Fig. 6.50 as well as adjoining table shows the percentage of initial voltage (V) after each time 
constant interval during discharging of capacitor. A fully charged capacitor discharges to about 37% 
of its initial fully charged value in first time constant. The capacitor is fully discharged in a 5 time-
constant interval.

  Fig. 6.50

 Example 6.48. A 2 µF capacitor is connected, by closing a switch, to a supply of 100 volts 
through a 1 MΩ series resistance. Calculate (i) the time constant (ii) initial charging current (iii) 
the initial rate of rise of p.d. across capacitor (iv) voltage across the capacitor 6 seconds after the 
switch has been closed and (v) the time taken for the capacitor to be fully charged.
 Solution. (i) Time constant, λ = RC = (106) × (2 × 10–6) = 2 seconds

 (ii)  Initial charging current, Im = 6
6

100 10
10

V
R

= ×  = 100 µA

 (iii) Initial rate of rise of voltage across capacitor is

   dv
dt  = 6 6

100

(2 10 ) 10

V
CR −=

× ×
 = 50 V/s

 (iv)  v = V (1 – e–t/RC)
  Here V = 100 volts ; t = 6 seconds ; RC = 2 seconds
  \ v = 100 (1 – e–6/2) = 100 (1 – e–3) = 95.1 V
 (v) Time taken for the capacitor to be fully charged
    = 5 RC = 5 × 2 = 10 seconds
 Example 6.49. A capacitor of 8 µF capacitance is connected to a d.c. source through a resis-
tance of 1 megaohm. Calculate the time taken by the capacitor to receive 95% of its final charge.  
How long will it take the capacitor to be fully charged ?
 Solution. q = Q (1 – e–t / RC)
 Here RC = (10)6 × 8 × 10–6 = 8 seconds ;  q/Q = 0·95
 \  0·95 = 1 – e–t/8  or  e–t/8 = 0·05
 \  et/8 = 1/0·05 = 20
 or  (t/8) loge e = loge 20
 \  t = 8 loge 20 = 23·96 seconds
 Time taken for the capacitor to be fully charged
    = 5 RC = 5 × 8 = 40 seconds

 Alternatively. t = 0loge
C

V V
V v

−
λ

−
 ... See Art. 6.30

 or  t = 0loge
Q q
Q q

−λ
−

Number of time
constants

% of Initial value

1 37
2 14
3 5
4 2
5 1 considered 0
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 Here, l = 8s ; q0 = 0 ; q = 95% of Q = 0.95 Q

 \  t = 
0

8 log 8 log
0.95 0.05e e

Q Q
Q Q Q

−× = ×
−  = 23.96 seconds

 Example 6.50. A resistance R and a 4 µF capacitor are connected in series across a 200 V d.c. 
supply. Across the capacitor is connected a neon lamp that strikes at 120 V. Calculate the value of 
R to make the lamp strike after 5 seconds.
 Solution. The voltage across the neon lamp has to rise to 120 V in 5 seconds.

 Now, v = V (1 – e–t/λ) or 120 = 200 (1 – e–5/λ)

 or  e–5/λ = 1 – (120/200) = 0·4 or e5/λ = 1/0·4 = 2·5
 \  (5/λ) loge e = loge 2·5

 or  λ = 5
log 2 5e ⋅  = 5·457 seconds

 or  RC = 5·457 \ R = 6
5 457

4 10−
⋅

×
 = 1·364 × 106 Ω = 1·364 MΩ

 Alternatively. t = 0loge
C

V V
V v

−
λ

−
 Here, t = 5s ; V = 200 volts ; V0 = 0 ; vC = 120 volts
 Putting these values in the above expression, we get, l = 5.457s.

 Now l = RC  or  R = C
λ  = 6

5.457

4 10−×
 = 1.364 × 106W = 1.364 MW

 Example 6.51. A capacitor of 1 µF and resistance 82 kΩ are connected in series with an e.m.f. 
of 100 V. Calculate the magnitude of energy and the time in which energy stored in the capacitor will 
reach half of its equilibrium value.
 Solution.  Equilibrium value of energy = 21

2
CV

 \  Energy stored ∝ V2

 Half energy of the equilibrium value will be stored when voltage across capacitor is v = 100 2  
= 70·7 volts.
 \  Energy stored = 21 1

2 2
Cv = (1 × 10–6) × (70·7) = 0·0025 J

 Now, v = V (1 – e–t/RC)
 Here, RC = (82 × 103) × (1 × 10–6) = 0·082 s ; v = 70·7 V ; V = 100 V
 \  70·7 = 100 (1 – e–t/0·082) or e–t/0·082 = 1 – (70·7/100) = 0·293
 \  et/0·082 = 1/0·293 = 3·413
 or  (t/0·082) loge e = loge 3·413
 \  t = 0·082 × loge 3·413 = 0·1 second
 Example 6.52. When a capacitor C charges through a resistor R from a d.c. source voltage E, 
determine the energy appearing as heat.
 Solution. When R – C series circuit is switched on to d.c. source of voltage E, the charging 
current i decreases at exponential rate given by ;
   i = I e–t/l

   where I = E/R  ;  l = RC
 Energy appearing as heat in small time Dt is 
   DWR = i2 R Dt 
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 Total energy appearing as heat in the entire process of charging is

   WR = 2

0

i R dt
∞

∫  = 2

0

( )tR I e dt
∞

− λ∫  = 2 2

0

tR I e dt
∞

− λ∫

    = 2 2

0

tR I e dt
∞

− λ× ∫  = 
2

2

0
2

teRI
∞− λ 

 − λ 

    = ( ) 2
2 0( ) [ ] ( 1)

2 2
RCER E R e e

R
−∞ −−λ  × − = × × −  

 \  WR = 21
2

CE

 Although energy stored in a capacitor is very small, it can provide a large current (and hence 
large power) for a short period of time.
 Note. Energy stored in the capacitor at the end of charging process is CE2/2. Also energy appearing as heat 
in the entire process of charging the capacitor is CE2/2.

\ Total energy received from the source = 2 21 1
2 2

CE CE+  = CE2

 Thus during charging of capacitor, the total energy received from the source is CE2 ; half is converted into 
heat and the rest half stored in the capacitor.
 Example 6.53. Referring to the circuit shown in Fig. 6.51, 
 (i) Write the mathematical expression for 

charging current i and voltage v across 
capacitor when the switch is placed in 
position 1.

 (ii) Write the mathematical expression for the 
discharging current and voltage across 
capacitor when switch is placed in position 
2 after having been in position 1 for 1 s.

 Solution.
 (i) When the switch is placed in position 1, the capacitor charges through R1 only.  Therefore, 

time constant during charging is
  Time constant, λ = R1C = (100) × (1000 × 10–6) = 0·1 s
  Initial charging current, Im = V/R1 = 20/100 = 0·2 A
  The charging current at any time t is given by ;
   i = Im e–t/λ or i = 0·2 e–t/0·1 A
  The voltage v across the capacitor at any time t is given by ;
   v = V (1 – e–t/λ) or v = 20 (1 – e–t/0·1) volts
 (ii) Since the switch remains in position 1 for 1 s or 10 time constants, the capacitor charges 

fully to 20 V. When the switch is placed in position 2, the capacitor discharges through R2 
only.  Therefore, time constant during discharge is

   Time constant, λ = R2C = (200) × (1000 × 10–6) = 0·2 s
 Initial discharging current, Im = V/R2 = 20/200 = 0·1 A
 The discharging current at any time t is given by ;
   i = –Im e–t/λ or i = –0·1 e–t/0·2 A
 The voltage v across the capacitor at any time t is given by ;
   v = V e–t/λ or v = 20 e–t/0·2 volts

Fig. 6.51
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 Example 6.54. A cable 10 km long and of capacitance 2.5µF discharges through its insulation 
resistance of 50 MW. By what percentage the voltage would have fallen 1, 2 and 5 minutes respectively 
after disconnection from its bus-bars?
 Solution. Capacitance of cable capacitor, C = 2.5 × 10–6 F; Insulation resistance of cable,  
R = 50 MW = 50 × 106 W
 Time constant, l = RC = (50 × 106) × (2.5 × 10–6) = 125 seconds
 During discharging, decreasing voltage v across the capacitor is given by ;
   v = Ve–t/l = Ve–t/125

 At t = 1 min. = 60 seconds, v1 = Ve–60/125 = 0.618 V
 At t = 2 min. = 120 seconds, v2 = Ve–120/125 = 0.383 V
 At t = 5 min. = 300 seconds, v3 = Ve–300/125 = 0.09 V
 \ At t = 1 min, the % age fall in voltage across capacitor

    = 
0.618

100
V V

V
− ×  = 38.2%

 At t = 2 min; the % age fall in voltage across capacitor

    = 
0.383

100
V V

V
− ×  = 61.7%

 At t = 5 min; the % age fall in voltage across capacitor

    = 
0.09

100
V V

V
− ×  = 91%

Tutorial Problems

 1. A capacitor is being charged from a d.c. source through a resistance of 2MΩ. If it takes 0·2 second for 
the charge to reach 75% of its final value, what is the capacitance of the capacitor ? [18 × 10−4 F]

 2. A 8 µF capacitor is connected is series with 0·5 MΩ resistance across 200 V supply. Calculate (i) initial 
charging current (ii) the current and p.d. across capacitor 4 seconds after it is connected to the supply.  
    [(i) 400 µA (ii) 147 µA; 126·4 V]

 3. What resistance connected in series with a capacitance of 4µF will give the circuit a time constant of 2 
seconds ?    [500 kΩ]

 4. A series RC circuit is to have an initial charging current of 4 mA and a time constant of 3·6 seconds when 
connected to 120 V d.c. supply. Calculate the values of R and C. What will be the energy stored in the 
capacitor ?    [30 kΩ ; 120 µF ; 0·864 J]

 5. A 20µF capacitor initially charged to a p.d. of 500V is discharged through an unknown resistance. After 
one minute, the p.d. at the terminals of the capacitor is 200 V.  What is the value of the resistance ?

[3·274 MΩ]

6.29.  Transients in D.C. Circuits
 When a circuit goes from one steady-state condition to another steady-state condition, it passes 
through a transient state which is of short duration. The word transient means temporary or short-
lived. When a d.c. voltage source is first connected to a series RC network, the charging current 
flows only until the capacitor is fully charged. This charging current is called a transient current. 
In connection with d.c. circuits, a transient is a voltage or current that changes with time for a short 
duration of time and remains constant thereafter. As a capacitor charges, its voltage builds up (i.e., 
changes) until the capacitor is fully charged and its voltage equals the source voltage. After that time, 
there is no further change in capacitor voltage. Thus the voltage across a capacitor during the time 
it is being charged is an example of a transient voltage.
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6.30.  Transient Relations During Charging/Discharging of Capacitor
 When a capacitor is charging or discharging, it goes from one steady-state condition (called 
initial condition) to another steady-state condition (called final condition). During this change, the 
voltage across and current through the capacitor change continuously. These are called *transient 
conditions and exist for a short duration. It can be shown mathematically that voltage vC across the 
capacitor at any time t during charging or discharging is given by ;
   vC = V – (V –V0)e

–t/l ...(i)
 where vC = voltage across capacitor at any time t
   V = Source voltage during charging
   V0 = Voltage across capacitor at t = 0
   l = Time constant (= RC)
 Note that for discharging of capacitor, V = 0 because there is no source voltage.
 1. Transient conditions during charging. When we charge an uncharged capacitor, V0 = 0 so 
that eq. (i) becomes :
   vC = V – (V – 0)e– t/l = V – Ve– t/l

 \  vC = V(1 – e–t/l) ...(ii)
 This is the same equation that we derived in Art. 6.26 for charging of a capacitor.
 From eq. (ii), V – vC = Ve– t/l

 But V – vC = iR, where i is the charging current at time t.

 \  iR = Ve–t/l  or  i = tV e
R

− λ

 \  i = Ie– t/l  ...(iii)
 where I (= V/R) is the initial charging current.
 Note that eq. (iii) is the same that we derived in Art. 6.26 for charging of a capacitor. Fig. 6.52 
shows capacitor voltage (vC) and charging current (i) waveforms for a charging capacitor. It may be 
seen that voltage across the capacitor is building up at an exponential rate while the charging current 
is decreasing at an exponential rate.

  Fig. 6.52 Fig. 6.53

 2. Transient conditions during discharging. For discharging of a capacitor, V = 0 because 
there is no source voltage. Therefore, eq. (i) becomes :
   vC = 0 – (0 – V0)e

– t/l

 or  vC = V0e
– t/ l ...(iv)

 Here V0 is, of course, the voltage to which the capacitor was originally charged. Note that this 
is the same expression which derived in Art. 6.28 for discharging of a capacitor.

 Now, Cv
C

 = 0 tV e
C

− λ

 or  q = Q0e
– t/ l

* The word transient means temporary or short-lived.
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where Q0 is the initial charge on the capacitor and q is the charge on the capacitor at time t.
   Similarly, i = I0e

– t/l

where I is the initial discharging current and i is the discharging current at time t.
 Fig. 6.53 shows the capacitor voltage and discharging current waveforms. Both decrease at 
exponential rate and reach zero value at the same time.
 Time for charge or discharge. Sometimes it is desirable to determine how long will it take 
the capacitor in RC series circuit to charge or discharge to a specified voltage. This can be found as 
follows : From eq. (i), vC = V – (V – V0) e

– t/l

 or  V – vC = (V – V0)e
– t/l

 or  
0

CV v
V V

−
−

 = e– t/l

 or  0

C

V V
V v

−
−

 = et/l

 Taking the natural log, we have,

   loge
t e
λ

 = 0loge
C

V V
V v

−
−

 \  t = 0loge
C

V V
V v

−
λ

−
 ...(v)

 Exp. (v) is applicable for charging as well as discharging of a capacitor.
 For charging. When C is charging from 0V (i.e. capacitor is uncharged), V0 = 0. Therefore, 
putting V0 = 0 in exp. (v), we have,

   t = 0
loge

C

V
V v

−λ
−

 = loge
C

V
V v

λ
−

 \  t = loge
C

V
V v

λ
−

 If the capacitor has some initial charge instead of zero, then value of V0 will be corresponding 
to that charge.

 For discharging. In this case, V = 0. Therefore, putting V = 0 in exp. (v), we have,

   t = 00
log

0e
C

V
v

−
λ

−
 = 0loge

C

V
v

λ

 \  t = 0loge
C

V
v

λ

 Example 6.55. The uncharged capacitor in Fig. 6.54 is initially switched to position 1 of the 
switch for two seconds and then switched to position 2 for the next two seconds. What will be the 
voltage on the capacitor at the end of this period?
 Solution. When uncharged capacitor is 
switched to position 1, it will be instantaneously 
charged to 100 V because there is no resistance 
in the charging circuit. Therefore, after 2 
seconds, the capacitor will be at 100 V. Now 
when switch is put to position 2, the time of 
discharge t is given by ;

100 V 100 Fµ

1 2

15 kΩ

Fig. 6.54
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   t = 0loge
c

V V
V v

−λ
−

 Here t = 2s  ;  l = RC = 15000 × 100 × 10–6 = 1.5s  ;  V = 0  ;  V0 = 100 volts

 \  2 = 
0 100

1.5log
0e

cv
−
−  = 1001.5loge

cv
   On solving,  vc = 26.36 V
 Example 6.56. A 50µF capacitor and  a 20 kW resistor are connected in series across a battery 
of 100 V at the instant t = 0. At instant t = 0.5s, the applied voltage is suddenly increased to 150V. 
Find the charge on the capacitor at t = 0.75 s.
 Solution. Time constant, l = RC = 20,000 × 50 × 10–6 = 1 sec.

 For first case. t = 0loge
c

V V
V v

−λ
−

 Here, t = 0.5s ; l = 1s ; V = 100 volts ; V0 = 0 ; vC = ?

 \  0.5 = 100 0
1 log

100e
Cv

−×
−

 = 100log
100e

Cv−
   On solving,  vC = 39.4 volts
 For second case. After 0.5 sec., the source voltage is increased to 150 V.

 Now t = 0loge
C

V V
V v

−
λ

−

 Here, t = 0.75 – 0.5 = 0.25s  ;  l = 1s ; V = 150 volts ; V0 = 39.4 volts ;  v′C = ?

 \  0.25 = 
150 39.4

1 log
150e

Cv
−×
− ′  = 110.6

log
150e

Cv− ′
   On solving, v′C = 63.6 volts
 \            Charge on capacitor = C × v′C = 50 × 10–6 × 63.6 = 3.18 × 10–3 C
 Example 6.57. Find how long it takes after the switch S is closed before the total current from 
the supply reaches 25 mA when V = 10 V, R1 = 500W , R2 = 700W and C = 100µF.
 Solution. When switch S is closed, the current in 
R1 = 500W is set up instantaneously and its value is  
= 10/R1 = 10/500 = 0.02A = 20 mA. In order to draw 25 
mA current from the supply, current in capacitor circuit is
= 25 – 20 = 5mA. Now when switch S is closed, the current 
in capacitor circuit is maximum and its value is I = 10/R2  
= 10/700 = 0.0143A = 14.3 mA and decreases at exponential 
rate. Our problem is to find the time t in which charging 
current in capacitor circuit decreases from 14.3 mA to 5 mA.

Now,  i = Ie– t/l

Here i = 5 mA  ;  I = 14.3 mA  ;  l = R2C =  700 × 100 × 10–6 = 0.07 s

 \  5 = 14.3 e–t/0.07

   On solving,  t = 0.0735 s
 Example 6.58. In an RC series circuit, R = 2MW, C = 5µF and applied voltage V = 100 volts. 
Calculate (i) initial rate of change of capacitor voltage (ii) initial rate of change of capacitor current 
(iii) initial rate of change of voltage across 2MW resistor.

Fig. 6.55



346    Basic  Electrical  Engineering 

 Solution. Time constant, l = RC = 2 × 106 × 5 × 10–6 =  10 seconds
 (i)  vC = V(1 – e– t/l)

 \  Cdv
dt

 = ( )10 tVe− λ− −
λ  = tV e− λ

λ

   At t = 0, Cdv
dt

 = 0 100
10

V Ve− λ = =
λ λ  = 10 V/s

 (ii)  i = I e– t/l

 \  di
dt  = ( )/ 1tIe− λ −

λ  = tI e− λ−
λ

   At t = 0,  di
dt  = – 

6
0 100 2 10

10
V RI Ie− λ ×= − = − = −

λ λ λ  = –5 µA/s

 (iii)  vR = iR = (Ie– t/l)R = ( )tV e R
R

− λ  = Ve– t/l

 \  Rdv
dt  = ( )1tVe− λ −

λ  = tV e− λ−
λ

   At t = 0, Rdv
dt  = 0V e− λ−

λ  = – 
V
λ

= 100
10

−  = – 10 V/s

 Example 6.59. Calculate the values of i2, i3, v2, v3,vC and vL in the network shown in Fig. 6.56 
at the following times :
 (i) At time, t = 0 immediately after the switch S is 

closed.
 (ii) At time, t → ∞ i.e. in the steady state. All resistances 

are in ohms.
 Solution. (i) At the instant of closing the switch (i.e. at 
t = 0), the inductance (= 1 H) behaves as an open circuit so 
that no current flows in the coil.
 \ i2 = 0 A  ;  v2 = 0 V  ;  vL =  20 V
 At the instant of closing the switch, the capacitor 
behaves as a short circuit.

 \ i3 = 20
5 4+  = 20 A

9   ;  v3 = 
20

4
9

×  = 
80 V
9

  ;  vC = 0 V

 (ii) Under steady state conditions (i.e. when the capacitor is fully charged), the capacitor be-
haves as an open circuit and the inductance (= 1H) as short.

 \ i2 = 
20

5 7+
 = 

5 A
3

   ;   v2 = 
5

7
3

×  = 
35 V
3

  ;  vL = 0 V  ;  i3 = 0A ;

 v3 = 0 V  ;  vC = 20 V
 Example 6.60. In Fig. 6.57, the 
capacitor C is uncharged. Determine 
the final voltage on the capacitor 
after the switch has been in position 
2 for 3s and then in position 3 for 5s.
 Solution. When the switch is in 
position 2, the voltage vC across the 
capacitor is 

Fig. 6.56

Fig. 6.57



Capacitance  and  Capacitors 347 

   vC = V(1 – e– t/l)
 Here, V = 75 volts ; t = 3s ; l = R2C = (1 × 106) × 2 × 10–6 = 2s
 \  vC = 75(1 – e–3/2) = 75 (1 – 0.223) = 58.3 V
 Therefore, after 2s, voltage across capacitor is 58.3 V.
 When switch is in position 3, voltage v′C  across capacitor is
   v′C = V – (V – vC)e –t/l

 Here, V = 100 volts ; t = 5s  ;   vC = 58.3 volts  ;   l = R1C = 2 × 106 × 2 × 10–6 = 4s
 \  v′C = 100 – (100 – 58.3)e–5/4   
    = 100 – (100 – 58.3) × 0.287 = 88.0 V
 Therefore, final voltage across the capacitor is 88.0 V.

Tutorial Problems
 1. A capacitor of capacitance 12µF is allowed to discharge through its own leakage resistance and a fall 

of p.d. from 120 V to 100 V is recorded in a time interval of 300 seconds by an electrostatic voltmeter 
connected in parallel. Calculate the leakage resistance of the capacitor. [137 MW]

 2. When a capacitor charged to a p.d. of 400 V is connected to a voltmeter having a resistance of 25 MW, 
the voltmeter reading is observed to have fallen to 50 V at the end of an interval of 2 minutes. Find the 
capacitance of the capacitor.    [2.31 µF]

 3. An 8µF capacitor is connected through a 1.5 MW resistance to a direct current source. After being on 
charge for 24 seconds, the capacitor is disconnected and discharged through a resistor. Determine what 
% age of the energy input from the supply is dissipated in the resistor. [43.2%]

 4. An 8µF capacitor is connected in series with a 0.5 MW resistor across a 200V d.c. supply. Calculate (i) 
the time constant (ii) the initial charging current (iii) the time taken for the p.d. across the capacitor to 
grow to 160 V and (iv) the current and the p.d. across the capacitor in 4 seconds after it is connected to 
the supply.    [(i) 4s (ii) 0.4 mA (iii) 6.4s (iv) 0.14 mA ; 126.4 V]

Objective  Questions
 1. The capacitance of a capacitor is ................. 

relative permittivity.
 (i) directly proportional to 
 (ii) inversely proportional to
 (iii) independent of 
 (iv) directly proportional to square of
 2. An air capacitor has the same dimensions as that 

of a mica capacitor.  If the capacitance of mica 
capacitor is 6 times that of air capacitor, then 
relative permittivity of mica is

 (i) 36 (ii) 12
 (iii) 3 (iv) 6
 3. The most convenient way of achieving large 

capacitance is by using 
 (i) multiplate construction
 (ii) decreased distance between plates
 (iii) air as dielectric
 (iv) dielectric of low permittivity
 4. Another name for relative permittivity is 
 (i) dielectric strength 
 (ii) breakdown voltage
 (iii) specific inductive capacity

 (iv) potential gradient
 5. A capacitor opposes
 (i) change in current
 (ii) change in voltage
 (iii) both change in current and voltage
 (iv) none of the above
 6. If a multiplate capacitor has 7 plates each of 

area 6 cm2, then,
 (i) 6 capacitors will be in parallel
 (ii) 7 capacitors will be in parallel
 (iii) 7 capacitors will be in series
 (iv) 6 capacitors will be in series
 7. The capacitance of three-plate capacitor [See 

Fig. 6.58 (ii)] is ....................... that of 2-plate 
capacitor.

Fig. 6.58
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 (i) 3 times (ii) 6 times
 (iii) 4 times (iv) 2 times
 8. The capacitance of a 4-plate capacitor [See Fig. 

6.58 (iii)] is ........... that of 2-plate capacitor.
 (i) 2 times (ii) 4 times
 (iii) 3 times (iv) 6 times
 9. Two capacitors of capacitances 3 µF and 6 µF 

in series will have a total capacitance of 
 (i) 9 µF (ii) 2 µF
 (iii) 18 µF (iv) 24 µF
 10. The capacitance of a parallel-plate capacitor 

does not depend upon
 (i) area of plates 
 (ii) medium between plates
 (iii) separation between plates
 (iv) metal of plates
 11. In order to increase the capacitance of a parallel-

plate capacitor, one should introduce between 
the plates a sheet of

 (i) mica (ii) tin
 (iii) copper (iv) stainless steel
 12. The capacitance of a parallel-plate capacitor 

depends upon 
 (i) the type of metals used
 (ii) separation between plates
 (iii) thickness of plates
 (iv) potential difference between plates
 13. The force between the plates of a parallel plate 

capacitor of capacitance C and distance of 
separation of plates d with a potential difference 
V between the plates is

 (i) 
2

2

CV
d

 (ii) 
2 2

22

C V
d

 (iii) 
2 2

2

C V
d

 (iv) 
2V d

C
 14. A parallel-plate air capacitor is immersed in 

oil of dielectric constant 2. The electric field 
between the plates is

 (i) increased 2 times
 (ii) increased 4 times
 (iii) decreased 2 times
 (iv) none of above
 15. Two capacitors of capacitances C1 and C2 are 

connected in parallel. A charge Q given to them 
is shared. The ratio of charges Q1/Q2 is

 (i) C2 / C1 (ii) C1 / C2

 (iii) C1C2 / 1 (iv) 1 / C1C2

 16. The dimensional formula of capacitance is
 (i) M−1L−2T−4A2 (ii) M−1L2T4A2

 (iii) ML2T−4A (iv) M−1L−2T4A2

 17. Four capacitors are connected as shown in 
Fig. 6.59. What is the equivalent capacitance 
between A and B ?

Fig. 6.59

 (i) 36 µF (ii) 5·4 µF
 (iii) 52 µF (iv) 11·5 µF
 18. The empty space between the plates of a 

capacitor is filled with a liquid of dielectric 
constant K. The capacitance of capacitor

 (i) increases by a factor K
 (ii) decreases by a factor K
 (iii) increases by a factor K2

 (iv) decreases by a factor K2

 19. A parallel plate capacitor is made by stacking 
n equally spaced plates connected alternately.  
If the capacitance between any two plates is C, 
then the resulting capacitance is

 (i) C (ii) nC
 (iii) (n − 1) C (iv) (n + 1) C
 20. 64 drops of radius r combine to form a bigger 

drop of radius R. The ratio of capacitances of 
bigger to smaller drop is 

 (i) 1 : 4 (ii) 2 : 1
 (iii) 1 : 2 (iv) 4 : 1
 21. Two capacitors have capacitances 25 µF when 

in parallel and 6 µF when in series. Their 
individual capacitances are 

 (i) 12 µF and 13 µF
 (ii) 15 µF and 10 µF
 (iii) 10 µF and 8 µF
 (iv) none of above
 22. A capacitor of 20 µF charged to 500 V is 

connected in parallel with another capacitor of  
10 µF capacitance and charged to 200 V. The 
common potential is 

 (i) 200 V (ii) 250 V
 (iii) 400 V (iv) 300 V
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 23. Which of the following does not change when a 
glass slab is introduced between the plates of a 
charged parallel plate capacitor?

 (i) electric charge (ii) electric energy
 (iii) capacitance
 (iv) electric field intensity
 24. A capacitor of 1 µF is charged to a potential 

of 50 V. It is now connected to an uncharged 
capacitor of capacitance 4 µF. The common 
potential is

 (i) 50 V (ii) 20 V
 (iii) 15 V (iv) 10 V

 25. Three parallel plates each of area A with 
separation d1 between first and second and d2 
between second and third are arranged to form 
a capacitor.  If the dielectric constants are K1 and 
K2, the capacitance of this capacitor is 

 (i) 0 1 2

1 2( )

K K
A d d

ε
+

 (ii) 0

1 2

1 2

d dA
K K

ε
 + 
 

 (iii) 0 1 2

1 2

AK K
d d

ε
+

 (iv) 0

1 2

1 2

A
d d
K K

ε

+

Answers
 1. (i) 2. (iv) 3. (i) 4. (iii) 5. (ii) 
 6. (i) 7. (iv) 8. (iii) 9. (ii) 10. (iv) 
 11. (i) 12. (ii) 13. (i) 14. (iii) 15. (ii) 
 16. (iv) 17. (ii) 18. (i) 19. (iii) 20. (iv)
 21. (ii) 22. (iii) 23. (i) 24. (iv) 25. (iv)



Introduction
 In the ancient times people believed that the invisible force of magnetism was purely a 
magical quality and hence they showed little practical interest. However, with steadily increasing 
scientific knowledge over the passing centuries, magnetism assumed a larger and larger role. 
Today magnetism has attained a place of pride in electrical engineering. Without the aid of 
magnetism, it is impossible to operate such devices as electric generators, electric motors, 
transformers, electrical instruments etc. Without the use of magnetism, we should be deprived 
of such valuable assets as the radio, television, telephone, telegraph and the ignition systems of 
our cars, airplanes, trucks etc. In fact, electrical engineering is so much dependent on magnetism 
that without it a very few of our modern devices would be possible.  The purpose of this chapter 
is to present the salient features of magnetism. 

7.1.  Poles of a Magnet
 If we take a bar magnet and dip it into iron filings, it will be observed that the iron filings 
cluster about the ends of the bar magnet. The ends of the bar magnet are apparently points of 
maximum magnetic effect and for convenience we call them the *poles of the magnet. A magnet 
has two poles viz north pole and south pole. In order to determine the polarity of a magnet, suspend 
or pivot it at the centre. The magnet will then come to rest in north-south direction. The end of the 
magnet pointing north is called north pole of the magnet while the end pointing south is called the 
south pole. The following points may be noted about the poles of a magnet :
 (i) The poles of a magnet cannot be separated. If a bar magnet is broken into two parts, each 

part will be complete magnet with poles at its ends. No matter how many times a magnet 
is broken, each piece will contain N-pole at one end and S-pole at the other.

 (ii) The two poles of a magnet are of equal strength. The pole strength is represented by m.
 (iii) Like poles repel each other and unlike poles attract each other.

7.2.  Laws of Magnetic Force
 Charles Coulomb, a French scientist observed 
that when two **isolated poles are placed near each 
other, they experience a force. He performed a number 
of experiments to study the nature and magnitude of 
force between the magnetic poles. He summed up his 
conclusions into two laws, known as Coulomb’s laws of 
magnetic force. These laws give us the magnitude and 
nature of magnetic force between two magnetic poles.

* Magnetic poles have no physical reality, but the concept enables us to appreciate magnetic effects more 
easily.

** It is not possible to get an isolated pole because magnetic poles exist in pairs.  However, if we take thin 
and long steel rods (about 50 cm long) with a small steel ball on either end and then magnetise them, N 
and S poles become concentrated in the steel balls.  Such poles may be assumed point poles for all practical 
purposes.

Fig. 7.1

7
Magnetism  and  Electromagnetism
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 (i) Like poles repel each other while unlike poles attract each other.
 (ii) The force between two magnetic poles is directly proportional to the product of their pole 

strengths and inversely proportional to the square of distance between their centres.
 Consider two poles of magnetic strength m1 and m2 placed at a distance d apart in a medium as 
shown in Fig. 7.1. According to Coulomb’s laws, the force between the two poles is given by ;

   F ∝ 1 2
2

m m
d

    = 1 2
2

m mK
d

where K is a constant whose value depends upon the surrounding medium and the system of units 
employed. In SI units, force is measured in newtons, pole strength in *weber, distance in metres and 
the value of K is given by ;
   K = 1

4 r0π µ µ
where  µ0 = Absolute permeability of vacuum or air
   µr = Relative permeability of the surrounding medium. For 

vacuum or air, its value is 1.
 The value of µ0 = 4π × 10−7 H/m and the value of µr is different for different media.

 \ F = 1 2
2

04 r

m m
dπ µ µ

 newtons ...in a medium

   = 1 2
2

04

m m
dπµ

 newtons ...in air

 Unit of pole strength. By unit pole strength we mean 1 weber. It can be defined from Coulomb’s 
laws of magnetic force. Suppose two equal point poles placed 1 m apart in air exert a force of 62800 
newtons i.e.
   m1 = m2 = m ; d = 1 m ; F = 62800 N

 \  F = 1 2
2

04

m m
dπµ

 (   For air, µr = 1)

 or  62800 = 
2

7 24 4 10 (1)

m
−π × π × ×

 or  m2 = (62800) × (4π × 4π × 10−7 × 1) = 1
 \  m = ± 1 Wb
 Hence a pole of unit strength (i.e. 1 Wb) is that pole which when placed in air 1 m from an 
identical pole, repels it with a force of 62800 newtons.

 In vector form : F
→

 = �1 2
2

04 r

m m d
dπµ µ

where �d is a unit vector to indicate the direction of d.
 Example 7.1. Two magnetic S poles are located 5 cm apart in air. If each pole has a strength of 
5 mWb, find the force of repulsion between them.

 Solution. F = 1 2
2

04

m m
dπµ

 (   For air, µr = 1)

* The unit of magnetic flux is named after Wilhelm Weber (1804–1890), the founder of electrical system of 
measurements.
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 Here m1 = m2 = 5 mWb = 5 × 10−3 Wb   ;    d = 5 cm = 0·05 m

 \  F = 
3 3

7 2

(5 10 ) (5 10 )

4 4 10 (0.05)

− −

−
× × ×

π × π × ×
 = 633 N 

7.3.  Magnetic Field
 Just as electric field exists near a charged object, similarly magnetic field exists around a 
magnet.  If an isolated magnetic pole is brought near a magnet, it experiences a force according 
to Coulomb’s laws. The region near the magnet where forces act on magnetic poles is called a 
magnetic field. The magnetic field is strongest near the pole and goes on decreasing in strength as 
we move away from the magnet.
 The space (or field) in which a magnetic pole 
experiences a force is called a magnetic field.
 The magnetic field around a magnet is 
represented by imaginary lines called magnetic 
lines of force. By convention, the direction of 
these lines of force at any point is the direction 
along which an *isolated unit N-pole (i.e. N-pole 
of 1 Wb) placed at that point would move or tends 
to move.  Following this convention, it is clear that 
magnetic lines of force would emerge from N-pole 
of the magnet, pass through the surrounding 
medium and re-enter the S-pole. Inside the 
magnet, each line of force passes from S-pole to 
N-pole (See Fig. 7.2), thus forming a closed loop or magnetic circuit. Although magnetic lines of 
force have no real existence and are purely imaginary, yet they are a useful concept to describe the 
various magnetic effects.
Properties of magnetic lines of force. The important properties of magnetic lines of force are :
 (i) Each magnetic line of force forms a closed loop i.e. outside the magnet, the direction of a 

magnetic line of force is from north pole to south pole and it continues through  the body 
of the magnet to form a closed loop (See Fig. 7.2).

 (ii) No two magnetic lines of force intersect each other. If two magnetic lines of force intersect, 
there would be two directions of magnetic field at that point which is not possible.

 (iii) Where the magnetic lines of force are close together, the magnetic field is strong and  
where they are well spaced out, the field is weak.

 (iv) Magnetic lines of force contract longitudinally and widen laterally.
 (v) Magnetic lines of force are always ready to pass through magnetic materials like iron in 

preference to pass through non-magnetic materials like air.
 It may be noted  that in practice, magnetic fields are produced by (a) current carrying con-
ductor or coil or (b) a permanent magnet. Both these means of producing magnetic fields are 
widely used in electrical engineering.
7.4.  Magnetic Flux
 The number of magnetic lines of force in a magnetic field determines the value of magnetic 
flux. The more the magnetic lines of force, the greater the magnetic flux and the stronger the 
magnetic field.

Fig. 7.2

* Theoretically, it is not possible to get an isolated N-pole. However, a small compass needle well approximates 
to an isolated N-pole. The marked end (N-pole) of the compass needle indicates the direction of magnetic 
lines of force as shown in Fig. 7.2.
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 The total number of magnetic lines of force produced by a magnetic source is called mag-
netic flux. It is denoted by Greek letter f (phi).
 A unit N-pole is supposed to radiate out a flux of one weber. Therefore, the magnetic flux 
coming out of N-pole of m weber is
   f = m Wb
Now  1Wb = 108 lines of force 
 Sometimes we have to use smaller unit of magnetic flux viz microweber (µWb).
   1 µWb = 10–6 Wb = 10–6 × 108 lines = 100 lines

7.5.  Magnetic Flux Density

 The magnetic flux density is defined as the magnetic flux passing normally per unit area i.e.

   Magnetic flux density, B = A
φ  Wb/m2 

   where     f = flux in Wb
   A = area in m2 normal to flux
 The SI unit of magnetic flux density is Wb/m2 or *tesla. Flux density is a measure of field 
concentration i.e. amount of flux in each square metre of the field.  In practice, it is much more 
important than the total amount of flux.  Magnetic flux density is a vector quantity.
 (i) When the plane of the coil is perpendicular to the flux direction [See Fig. 7.3], maximum 

flux will pass through the coil i.e.
   Maximum flux, fm =  B A Wb

  Fig. 7.3 Fig. 7.4

 (ii) When the plane of the coil is inclined at an angle θ to the flux direction [See Fig. 7.4], then 
flux f through the coil is

   f = B A sin θ Wb
 (iii) When the plane of the coil is parallel to the flux direction, q = 0° so that no flux will pass 

through the coil (f = BA sin 0° = 0).
 Example 7.2. A circular coil of 100 turns and diameter 3·18 cm is mounted on an axle through 
a diameter and placed in a uniform magnetic field, where the flux density is 0·01 Wb/m2, in such a 
manner that axle is normal to the field direction. Calculate :
 (i) the maximum flux through the coil and the coil position at which it occurs.
 (ii) the minimum flux and the coil position at which it occurs.
 (iii) the flux through the coil when its plane is inclined at 60º to the flux direction.

*  Named in honour of Nikola Tesla (1857–1943), an American electrician and inventor.



354    Basic  Electrical  Engineering 

 Solution. Fig. 7.5 shows the conditions of the 
problem.
 (i) The maximum flux will pass through the coil 

when the plane of the coil is perpendicular to 
the flux direction.

 \  Maximum flux, fm = B × Total coil area

    = (0·01) × π r2

    = 0·01 × π × 
2

43 18 10
2

−⋅  ×  
 = 0·795 × 10−5 Wb

 (ii) When the plane of the coil is parallel to the flux direction, no flux will pass through the coil.  
This is the minimum flux coil position and the minimum flux is zero.

 (iii) When the plane of the coil is inclined at an angle θ to the flux direction, the flux f through 
the coil is                                    f =  B A sin θ = (B A) sin θ = (0·795 × 10−5) × sin 60º

   =  0·69 × 10−5 Wb
 Example 7.3. The total flux emitted from the pole of a bar magnet is 2 × 10–4 Wb (See Fig. 7.6).
 (i) If the magnet has a cross-sectional area of 1 cm2, determine the flux density within the 

magnet.
 (ii) If the flux spreads out so that a certain distance from the pole, it is distributed over an area 

of 2 cm by 2 cm, find the flux density at that point.

Fig. 7.6

 Solution. (i) Flux density within magnet. f = 2 × 10–4 Wb  ;  A = 1 cm2 = 1 × 10–4 m2

 \  Flux density, B = 
4

4

2 10

1 10A

−

−
×φ =
×

 = 2 Wb/m2

 (ii) Flux density away from the pole.
   f = 2 × 10–4 Wb  ;  A = 2 × 2 = 4 cm2 = 4 × 10–4 m2

 \   Flux density, B = 
4

4

2 10

4 10A

−

−
×φ =
×

 = 0.5 Wb/m2

 Example 7.4. Flux density in the air gap between N and S poles is 2.5 Wb/m2. The poles are 
circular with a diameter of 5.6 cm. Calculate the total flux crossing the air gap.
 Solution. B =  2.5 Wb/m2  ;   Area of each pole, A = pr2 = p × (5.6/2)2 = 24.63 cm2 = 24.63 × 
10–4 m2

 \   Flux crossing the air gap is given by ;
   f = B × A = 2.5 × 24.63 × 10–4 = 6.16 × 10–3 Wb = 6.16 mWb

Fig. 7.5
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7.6.  Magnetic Intensity or Magnetising Force (H)
 Magnetic intensity (or field strength) at a point in a magnetic field is the force acting on a unit  
N-pole (i.e., N-pole of 1 Wb) placed at that point. Clearly, the unit of H will be N/Wb.
 Suppose it is desired to find the magnetic intensity at a point 
P situated at a distance d metres from a pole of strength m webers 
(See Fig. 7.7). Imagine a unit north pole (i.e. N-pole of 1 Wb) is 
placed at P. Then, by definition, magnetic intensity at P is the 
force acting on the unit N-pole placed at P i.e.
      Magnetic intensity at  P,  H = Force on unit N-pole placed at P

 or  H = 2
0

1
N Wb

4

m
d

×
πµ

 [   µr = 1 for air]

 or  H = 2
0

N Wb
4

m
dπµ

 The reader may note the following points carefully :
 (i) Magnetic intensity is a vector quantity, possessing both magnitude and direction. In vector 

form, it is given by ;
   H

→
 = �

2
04

m d
dπµ

 (ii) If a pole of m Wb is placed in a uniform magnetic field of strength H newtons/Wb, then 
force acting on the pole, F = m H newtons.

7.7.  Magnetic Potential
 The magnetic potential at any point in the magnetic field is measured by the work done in 
moving a unit N-pole (i.e. 1 Wb strength) from infinity to that point against the magnetic force.
 Consider a magnetic pole of strength m webers placed in a medium of relative permeability µr. 
At a point at a distance x metres from it, the force on unit N-pole is

   F = 2
04 r

m
xπµ µ

 If the unit N–pole is moved towards m through a small distance dx, then  work done is 

   dW = 2
0

( )
4 r

m dx
x

× −
πµ µ

 The negative sign is taken because dx is  considered in the negative direction of x.
 Therefore, the total work done (W) in bringing a unit N-pole from infinity to any point which is 
d metres from m is 

   W = 2
04

x d

rx

m dx
x

=

= ∞

−
πµ µ∫  = 

0
J Wb

4 r

m
dπµ µ

 By definition, W = Magnetic potential V at that point.

\ Magnetic potential, V = 
0

J Wb
4 r

m
dπµ µ

 Note that magnetic potential is a scalar quantity.

7.8.  Absolute and Relative Permeability
 Permeability of a material means its conductivity for magnetic flux. The greater the permeability 
of a material, the greater is its conductivity for magnetic flux and vice-versa. Air or vacuum is the 
poorest conductor of magnetic flux. The absolute (or actual) permeability *µ0 (Greek letter “mu”) 

Fig. 7.7

* The absolute (or actual) permeability of all non-magnetic materials is also 4π × 10−7 H/m. 
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of air or vacuum is 4π × 10−7 H/m. The absolute (or actual) permeability µ of magnetic materials is  
much greater than µ0. The ratio µ/µ0 is called the relative permeability of the material and is denoted 
by µr i.e.
   µr = 

0

µ
µ

where  µ = absolute (or actual) permeability of the material
   µ0 = absolute permeability of air or vacuum
   µr = relative permeability of the material

 Obviously, the relative permeability for air or vacuum would be µ0/µ0 = 1. The value of µr for 
all non-magnetic materials is also 1. However, relative permeability of magnetic materials is very 
high. For example, soft iron (i.e. pure iron) has a relative permeability of 8,000 whereas its value for 
permalloy (an alloy containing 22% iron and 78% nickel) is as high as 50,000.
 Concept of relative permeability. The relative permeability of a material is a measure of the 
relative ease with which that material conducts magnetic flux compared with the conduction of flux 
in air.  Fig. 7.8 illustrates the concept of relative permeability.  In Fig. 7.8 (i), the magnetic flux passes 
between the poles of a magnet in air. Consider a soft iron ring (µr = 8,000) placed between the same 
poles as shown in Fig. 7.8 (ii). Since soft iron is a very good conductor of magnetic flux, the flux 
follows a path entirely within the soft iron itself. The flux density in the soft iron is much greater 
than it is in air. In fact, flux density in soft iron will be 8,000 times (i.e. µr times) the flux density in 
air.

Fig. 7.8

 Due to high relative permeability of magnetic materials (e.g. iron, steel and other magnetic al-
loys), they are widely used for the cores of all electromagnetic equipment.

7.9.  Relation Between B and H
 The flux density B produced in a material is directly proportional to the applied magnetising 
force H.  In other words, the greater the magnetising force, the greater is the flux density and vice-
versa i.e.
   B ∝ H

or   B
H  = Constant = µ

 The ratio B/H in a material is always constant and is equal to the absolute permeability  
µ (= µ0 µr) of the material. This relation gives yet another definition of absolute permeability of a 
material.
   Obviously,   B = µ0 µr H       ...in a medium

    = µ0 H           ...in air
 Suppose a magnetising force H produces a flux density B0 in air. Clearly, B0 = µ0 H. If air is 
replaced by some other material (relative permeability µr) and the same magnetising force H is 
applied, then flux density in the material will be Bmat = µ0 µrH.



Magnetism  and  Electromagnetism 357 

 \  
0

matB
B  = 0

0

r H
H

µ µ
µ  = µr

 Hence relative permeability of a material is equal to the ratio of flux density produced in 
that material to the flux density produced in air by the same magnetising force.
 Thus when we say that µr of soft iron is 8000, it means that for the same magnetising force, 
flux density in soft iron will be 8000 times its value in air.  In other words, for the same cross-
sectional area and H, the magnetic lines of force will be 8000 times greater in soft iron than in air.

7.10.  Important Terms
 (i) Intensity of magnetisation (I). When a magnetic material is subjected to a magnetising 
force, the material is magnetised. Intensity of magnetisation is a measure of the extent to which the 
material is magnetised and depends upon the nature of the material. It is defined as under :
 The intensity of magnetisation of a magnetic material is defined as the magnetic moment devel-
oped per unit volume of the material.
\  Intensity of magnetisation, I = M

V
 where M = magnetic moment developed in the material
   V = volume of the material
 If m is the pole strength developed, a is the area of X-section of the material and 2l is the 
magnetic length, then,
   I = 

2
2

m l m
a l a

× =
×

 Hence intensity of magnetisation of a material may be defined as the pole strength developed 
per unit area of cross-section of the material.

   I = 
2

3

magnetic moment Amp. (metre)
volume (metre)

=  = A m–1

 \ SI units of I are A m–1.
 (ii)  Magnetic susceptibility (χm). The magnetic susceptibility of a material indicates how 
easily the material can be magnetised. It is defined as under :
 The magnetic susceptibility of a material is defined as the ratio of intensity of magnetisation 
(I) developed in the material to the applied magnetising force (H).  It is represented by χm (Greek 
alphabet Chi).
\  Magnetic susceptibility, χm = I

H
 The unit of I is the same as that of H so that χm is a number. Since I is magnetic moment per 
unit volume, χm is also called volume susceptibility of the material.

7.11.  Relation Between mr and χm

 Consider a current carrying toroid having core material of relative permeability µr. The total 
magnetic flux density in the material is given by ;
   B = B0 + BM
where  B0 = magnetic flux density due to current in the coils.
   BM = magnetic flux density due to the magnetisation of the material.
 Now B0 = µ0 H and BM = µ0 I*
* We can imagine that BM is produced by a fictitious current IM in the coils.

\ BM = µ0 n IM = 0 0
M

M
N N I AI
l Al

µ = µ  = µ0 I

 where N IM A = magnetic dipole moment developed and A l is the volume of the specimen.
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 \  B = µ0 H + µ0 I = µ0 (H + I)
 or  B = µ0 (H + I)

 Now χm = I
H  so that I = χm H

 \  B = µ0 (H + χm H) = µ0 H (1 + χm)
 But  B = µ H = µ0 µr H
 \  µ0 µr H = µ0 H (1 + χm)
 or  µr = 1 + χm

 Example 7.5. The magnetic moment of a magnet (10 cm × 2 cm × 1 cm) is 1 Am2.  What is the 
intensity of magnetisation ?
 Solution.  Volume of the magnet, V = 10 × 2 × 1 = 20 cm3 = 20 × 10–6 m3

  Magnetic moment of magnet, M = 1 Am2

 \ Intensity of magnetisation, I = 6
1

20 10

M
V −=

×
 = 5 × 104 A/m

 Example 7.6. A specimen of iron is uniformly magnetised by a magnetising field of 500 A/m. If 
the magnetic induction in the specimen is 0·2 Wb/m2, find the relative permeability and susceptibility.
 Solution. B = µH = µ0 µr H
 \  Relative permeability of the specimen is

                                       µr = 7
0

0 2
µ 4 10 500

B
H −

⋅=
π × ×

 = 318·5

 Now µr = 1 + χm

 \  Susceptibility, χm = µr – 1 = 318·5 – 1 = 317·5

7.12.  Refraction of Magnetic Flux
 When magnetic flux passes from one medium to another of different permeabilities, the 
magnetic flux gets refracted at the boundary of the two media [See Fig. 7.9]. Under this condition, 
the following two conditions exist at the boundary (called boundary conditions) : 
 (i) The normal components of magnetic flux density are 

equal i.e.
   B1n = B2n

 (ii) The tangential components of magnetic field intensities 
are equal i.e.

   H1t = H2t

  As proved in Art. 5.25, in a similar way, it can be proved 
that :

   1

2

tan
tan

θ
θ  = 1

2

µ
µ

  This relation is called law of magnetic flux refraction.

7.13.  Molecular Theory of Magnetism
 The molecular theory of magnetism was proposed by Weber in 1852 and modified by Ewing 
in 1890.  According to this theory, every molecule of a magnetic substance (whether magnetised or 
not) is a complete magnet in itself having a north pole and a south pole of equal strength.

Fig. 7.9
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Fig. 7.10

 (i) In an unmagnetised substance, the molecular magnets are randomly oriented and form 
closed chains as shown in Fig. 7.10 (i). The north pole of one molecular magnet cancels the 
effect of the south pole of the other so that the substance does not show any net magnetism.

 (ii) When a magnetising force is applied to the substance (e.g. by rubbing a magnet or by 
passing electric current through a wire wound over it), the molecular magnets are turned 
and tend to align in the same direction with N-pole of one molecular magnet facing the  
S-pole of other as shown in Fig. 7.10 (ii). The result is that magnetic fields of the molecular 
magnets aid each other and two definite N and S poles are developed near the ends of the 
specimen ; the strength of the two poles being equal. Hence the substance gets magnetised.

 (iii) The extent of magnetisation of the substance depends upon the extent of alignment of 
molecular magnets.  When all the molecular magnets are fully aligned, the substance is said 
to be saturated with magnetism.

 (iv) When a magnetised substance (or a magnet) is heated, the molecular magnets acquire  
kinetic energy and some of them go back to the closed chain arrangement.  For this reason, 
a magnet loses some magnetism on heating.

 Curie temperature. The magnetisation of a magnetised substance decreases with the increase 
in temperature. It is because when a magnetised substance is heated, random thermal motions tend 
to destroy the alignment of molecular magnets. As a results, the magnetisation of the substance 
decreases. At sufficiently high temperature, the magnetic property of the substance suddenly 
disappears and the substance loses magnetism.
 The temperature at which a magnetised substance loses its magnetism is called Curie 
temperature or Curie point of the substance.
 For example, the curie temperature of iron is 770°C. Therefore, if the temperature of the 
magnetised iron piece becomes 770°C, it will loose its magnetism. Similarly, the curie temperatures 
of nickel and cobalt are 358°C and 1121°C respectively.

7.14.  Modern View about Magnetism
 According to modern view, the magnetic properties 
of a substance are attributed to the motions of electrons 
(orbital and spin) in the atoms. We know that an atom 
consists of central nucleus with electrons revolving 
around the nucleus in different orbits. This motion of 
electrons is called orbital motion [See Fig. 7.11 (i)]. The 
electrons also rotate around their own axis. This motion 
of electrons is called spin motion [See Fig. 7.11 (ii)]. 
Due to these two motions, each atom is equivalent to a 
current loop i.e. each atom behaves as a magnetic dipole. Fig. 7.11
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 (i) In the unmagnetised substances, the magnetic dipoles are randomly oriented so that 
magnetic fields mutually cancel. When the substance is magnetised, the magnetic dipoles 
are aligned in the same direction. Hence the substance shows net magnetism.

 (ii) Since the revolving and spinning electrons in each atom cause magnetism, no substance is 
non-magnetic.

 (iii) It is important to note that spinning motion of electrons in particular is responsible for 
magnetism of a substance.

7.15.  Magnetic Materials
 We can classify materials into three categories viz. diamagnetic, paramagnetic and ferromag-
netic. The behaviour of these three classes of substances is different in an external magnetic field.
 (i)  When a diamagnetic substance (e.g. copper, zinc, bismuth etc.) is placed in a magnetic 

field, the substance if feebly magnetised in a direction opposite to that of the applied field.  
Therefore, a diamagnetic substance is feebly repelled by a strong magnet.

 (ii) When a paramagnetic substance (e.g. aluminium, antimony etc.) is placed in a magnetic 
field, the substance is feebly magnetised in the direction of the applied field.  Therefore, a 
paramagnetic substance is feebly attracted by a strong magnet.

 (iii) When a ferromagnetic substance (e.g. iron, nickel, cobalt etc.) is placed in a magnetic 
field, the substance is strongly magnetised in the direction of the applied field.  Therefore, 
a ferromagnetic substance is strongly attracted by a magnet.

 Note that diamagnetism and paramagnetism are weak forms of magnetism. However, 
ferromagnetic substances exhibit very strong magnetic effects.

7.16.   Electromagnetism
 The first discovery of any connection between electricity and magnetism was made by Hans 
Christian Oersted, a Danish physicist in 1819. On one occasion at the end of his lecture, he 
inadvertently placed a wire carrying current parallel to a compass needle. To his surprise, needle 
was deflected.  Upon reversing the current in the wire, the needle deflected in the opposite direction.
 Oersted found that the compass deflection was due to a magnetic field established around the 
current carrying conductor. This accidental discovery was the first evidence of a long suspected 
link between electricity and magnetism. The production of magnetism from electricity (which we 
call electromagnetism) has opened a new era. The operation of all electrical machinery is due to the 
applications of magnetic effects of electric current in one form or the other.

7.17.  Magnetic Effect of Electric Current
 When an electric current flows through a conductor, magnetic field is set up all along the length 
of the conductor. Fig. 7.12 shows the magnetic field produced by the current flowing in a straight 
wire. The magnetic lines of force are in the form of *concentric circles around the conductor.
 The direction of lines of force depends upon the direction of current and may be determined 
by right-hand rule.  Hold the conductor in the right-hand with the thumb pointing in the direction 
of current (See Fig. 7.12). Then the fingers will point in the direction of magnetic field around the

Fig. 7.12

* This can be readily established with a compass needle. If a compass needle is placed near the conductor 
and it is progressively moved in the direction of its north pole, it will be seen that the paths of magnetic 
lines of force are concentric circles.
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conductor. Applying this rule to Fig. 7.12, it is clear that when viewed from left-hand side, the 
direction of magnetic lines of force will be clockwise. 

The following points may be noted about the magnetic effect of electric current :

 (i) The greater the current through the conductor, the stronger the magnetic field and vice-
versa.

 (ii) The magnetic field neart the conductor is stronger and becomes weaker and weaker as we 
move away from the conductor.

 (iii) The magnetic lines of force around the conductor will be either clockwise or anticlockwise, 
depending upon the direction of current. One may use right-hand rule to determine the 
direction of magnetic field around the conductor.

 (iv) The shape of the magnetic field depends upon the shape of the conductor.

7.18.  Typical Electromagnetic Fields
 The current carrying conductor may be in the form of a straight wire, a loop of one turn, a 
coil of several turns. The shape of the magnetic field would eventually depend upon the shape 
of conductor. By way of illustration, we shall discuss magnetic fields produced by some current 
carrying conductor arrangements.

 (i)  Long  straight conductor.  If a straight long conductor is carrying current, the magnetic  
lines of force will be concentric circles around the conductor as shown in Fig. 7.13. In  
Fig. 7.13 (i), the conductor is carrying current into the plane of paper (usually represented by a cross 
inside the X-section of the conductor). Applying right-hand rule, it is clear that direction of magnetic 
lines of force will be clockwise. In Fig. 7.13 (ii), the conductor is carrying current out of the plane 
of paper (usually represented by a dot inside the X-section of the conductor). Clearly, the direction 
of magnetic lines of force will be anticlockwise.

Fig. 7.13

 (ii)  Parallel conductors. Consider two parallel conductors A and B placed close together and 
carrying current into the plane of the paper as shown in Fig. 7.14 (i). The magnetic lines of force 
will be clockwise around each conductor. In the space between A and B, the lines of force due to the 
conductors are in the opposite direction and hence they cancel out each other. This results in a field 
that entirely surrounds the conductors as shown in Fig. 7.14 (ii).
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Fig. 7.14
 If there are several parallel conductors placed close together and carrying current into the plane 
of the paper as shown in Fig. 7.15 (i), the magnetic field envelops the conductors. If the direction of 
current is reversed, the direction of field is also reversed as shown in Fig. 7.15 (ii).

Fig. 7.15
 (iii)  Coil of several turns. Consider a coil of several truns wound on a hollow tube or iron bar 

as shown in Fig. 7.16 (i). Such an arrangement is called a *solenoid.  Suppose current flows through 
the coil in the direction shown.  In the upper part of each turn (at points 1, 2, 3, 4 and 5), the current 
is flowing into the plane of the paper and in the lower part of each turn (at points 6, 7, 8 and 9), 
current is flowing out of the plane of paper. This is shown in the cross-sectional view of the coil in 
Fig. 7.16 (ii). It is clear that a clockwise field entirely surrounds the conductors 1, 2, 3, 4 and 5 while 
anticlockwise field completely envelops the conductors 6, 7, 8 and 9. As a result, the field becomes 
similar to that of a bar magnet with flux emerging from one end of the coil and entering the other.

Fig. 7.16

 It is clear that left-hand face of the coil [See Fig. 7.16 (ii)] becomes a N-pole and right-hand 
face S-pole. The magnetic polarity of the coil can also be determined by the right-hand rule for 
coil. Grasp the whole coil with right-hand so that the fingers are curled in the direction of current.  
Then thumb stretched parallel to the axis of the coil will point towards the N-pole end of the coil (See 

* Solenoid is Greek word meaning “tube-like.”
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Fig. 7.17). It may be noted that both right-
hand rules (for a conductor and for a coil) 
discussed so far can be applied in reverse.  
If we know the direction of magnetic field 
encircling a conductor or the magnetic 
polarity of a coil, we can determine the 
directiron of current by applying appropriate 
right-hand rule.

7.19.  Magnetising Force (H) Produced by Electric Current
 The magnetic flux (f) can be produced by (i) current-carrying conductor or coil or (ii) a 
permanent magnet. We generally use current-carrying conductor or coil to produce magnetic flux. 
Experiments show that magnetic flux (f) produced by a current-carrying coil is directly proportional 
to the product of number of turns (N) of the coil and electric current (I) which the coil carries. The 
quantity NI is called magnetomotive force (m.m.f) and is measured in ampere-turns (AT) or *amperes (A)
 \  m.m.f. = NI   Ampere-turns (AT)
 Just as e.m.f. (electromotive force) is required to produce electric current in an electric circuit, 
similarly, m.m.f. is required to produce magnetic flux in a **magnetic circuit. The greater the 
m.m.f., the greater is the magnetic flux produced in the magnetic circuit and vice-versa.
 The magnetising force (H) produced by an electric current is defined as the m.m.f. set up per 
unit length of the magnetic circuit i.e.

   Magnetising force, H = AT m
NI
l

where  NI = m.m.f. (AT)

   l = length of magnetic circuit in m
 Different current-carrying conductor arrangements produce different magnetising force. 
Magnetising force (H) is known by different names such as magnetic field strength, magnetic 
intensity and magnetic potential gradient.
 Example 7.7. A toroidal coil has a magnetic path length of 33 cm and a magnetic field strength 
of 650 A/m. The coil current is 250 mA. Determine the number of coil turns.

 Solution. H = NI
l

 Here, H = 650 A/m  ;  I = 250 mA = 0.25A  ;  l = 33 cm = 0.33 m

 \  650 = 
0.25

0.33
N ×

  or  N = 
650 0.33

0.25
×

 = 858 turns

 Example 7.8. Determine the m.m.f. required to generate a total flux of 100µWb in an air gap 
0.2 cm long. The cross-sectional area of the air gap is 25 cm2.

 Solution. f = 100 µWb = 100 × 10–6 Wb  ;  l = 0.2 × 10–2 m  ;  A = 25 × 10–4 m2

   Flux density, B = 
6

4

100 10

25 10A

−

−
×φ =
×

 = 4 × 10–2 Wb/m2

   Magnetising force, H = 
2

7
0

4 10

4 10

B −

−
×=

µ π ×
 = 3.18 × 104 AT/m

Fig. 7.17

* Since number of turns is dimensionless, ampere turns and amperes are the same as for as dimensions are 
concerned.

** The closed path followed by magnetic flux is called a magnetic circuit; just as the closed path followed by 
electric current is called an electric circuit.
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Now,  H = m.m.f.
l

 \  m.m.f. = H × l = 3.18 × 104 × 0.2 × 10–2 = 63.7 AT
 An air gap is a necessity in a rotating machine such as a motor or a generator. It provides 
mechanical clearance between the fixed and moving parts. Air gaps are also used to prevent 
saturation in some magnetic devices.

7.20. Force on Current-carrying Conductor Placed in a Magnetic Field
 When a current-carrying conductor is placed at right angles to 
a magnetic field, it is found that the conductor experiences a force 
which acts in a direction perpendicular to the direction of both the 
field and the current. Consider a straight current-carrying conductor 
placed in a uniform magnetic field as shown in Fig. 7.18.
 Let B = magnetic flux density in Wb/m2

  I = current through the conductor in amperes
  l = effective length of the conductor in metres 

i.e. the length of the conductor lying in the 
magnetic field

  θ = angle which the conductor makes with the direction of the magnetic field
 It has been found experimentally that the magnitude of force (F) acting on the conductor is 
directly proportional to the magnitudes of flux density (B), current (I), length (l) and sin θ i.e.
  F ∝ BIl sin θ newtons
 or F = k BIl sin θ
where k is a constant of proportionality.  Now SI unit of B is so defined that value of k becomes unity.
 \ F = BIl sin θ
 By experiment, it is found that the direction of the force is always perpendicular to the plane 
containing the conductor and the magnetic field.
 Both magnitude and direction of the force will be given by the following vector equation :

   F
→

 = ( )I l B
→ →

×
 The direction of this force is perpendicular to the plane containing l

→
 and B

→
. It can be found 

by using right-hand rule for cross product.
 Special Cases. F = BIl sin θ
 (i) When θ = 0° or 180°  ;  sin θ = 0
 \  F = BIl × 0 = 0
  Therefore, if a current-carrying conductor is placed parallel to the direction of magnetic 
field, the conductor will experience no force.
 (ii) When θ = 90° ; sin θ = 1
 \  F = BIl ...maximum value
 Therefore, a current-carrying conductor will experience a maximum force when it is placed at 
right angles to the direction of the magnetic field.

 Direction of force. The direction of force F
→

 is always perpendicular to the plane containing l
→

 

and B
→

 and can be determined by right-hand rule for cross product stated below :
 Orient your right hand so that your outstretched fingers point along the direction of the 
conventional current; the orientation should be such that when you bend your fingers, they must 

Fig. 7.18
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point along the direction of the magnetic field ( )B
→

. Then your extended thumb will point in the di-
rection of the force on the conductor.

Fig. 7.19

 Thus applying right-hand rule for cross product to Fig. 7.19, it is clear that magnetic force on 
the conductor is vertically upward.
 Note. If the current-carrying conductor is at right angles to the magnetic field, the direction of force can 
also be found by Fleming’s Left-hand rule stated below :
 Fleming’s Left-hand Rule. Stretch out the First finger, seCond finger and thuMb of your left 
hand so that they are at right angles to one another. If the first finger points in the direction of 
magnetic field (North to South) and second finger (i.e. middle finger) points towards the direction of 
current, then the thumb will point in the direction of motion of the conductor.
  Example 7.9. A conductor of length 100 cm and carrying 100 A is situated in and at right 
angles to a uniform magnetic field produced by the pole core of an electrical machine. If the pole 
core has a circular cross-section of 120 mm diameter and the total flux in the core is 16 mWb, find 
(i) the mechanical force on the conductor and (ii) power required to move the conductor at a speed 
of 10 m/s in a plane at right angles to the magnetic field.
 Solution. In this case, mechanical force acts on the conductor.
 X-sectional area of pole core  = (π/4) × (0·12)2 = 0·0113 m2

  Flux density of field, B = 
316 10Flux

Polecore area 0.0113

−×=  = 1·416 Wb/m2

 (i) Force on the conductor is given by ; 
   F = B I l = 1·416 × 100 × 1 = 141·6 N
 (ii)  Power required = Force × distance/second
    = 141·6 × 10 = 1416 watts
 Example 7.10. The plane of a rectangular coil makes an angle of 60° with the direction of a 
uniform magnetic field of flux density 4 × 10–2 Wb/m2.  The coil is of 20 turns, measuring 20 cm by  
10 cm, and carries a current of 0·5 A. Calculate the torque acting on the coil.
 Solution. Consider a rectangular coil, measuring b by l, of N turns carrying a current of I 
amperes and placed in a uniform magnetic field of B Wb/m2. The coil is pivoted about the mid points 
of the sides b and is free to rotate about an axis in its own plane ; this axis being at right angles to 
the field density B [See Fig. 7.20 (i)]. When current is passed through the coil, forces acting on the 
coil sides are :
 (i) The forces developed on each half of coil sides b are equal and produce torques of opposing 

sense. They, therefore, cancel each other.
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 (ii) The coil sides l always remain at right angles to the field as the coil rotates. The force F 
acting on each of the coil sides l gives rise to a torque as shown in Fig. 7.20 (ii).

 Force on each coil side l, F =  B I l N newtons

Fig. 7.20

 The perpendicular distance between the lines of action of the two forces is b cos θ.
 \  Torque, T = F × b cos θ = (B I l N) b cos θ
 or  T = BINA cos θ newton-metre
where A (= l × b) is the area of the coil. By an extension of this reasoning, the expression may be 
proved quite generally for a coil of area A and of any shape.
 In the given problem, the data is

  B = 4 × 10–2 Wb/m2 ; A = 20 × 10 = 200 cm2 = 2 × 10–2 m2 ; I = 0·5 A ; θ = 60° ; N = 20

 \  Torque, T = (4 × 10–2) × (0·5) × (20) × (2 × 10–2) × cos 60° = 4 × 10–3 Nm

Tutorial Problems
 1. A straight conductor 0·4m long carries a current of 12 A and lies at right angles to a uniform field of  

2·5 Wb/m2. Find the mechanical force on the conductor when (i) it lies in the given position (ii) it lies in 
a position such that it is inclined at an angle of 30º to the direction of field. [(i) 12 N (ii) 6 N]

 2. A conductor of length 100 cm and carrying 100 A is situated in and at right angles to a uniform magnetic 
field of strength 1 Wb/m2. Calculate the force and power required to move the conductor at a speed of 
100 m/s in a plane at right angles to the magnetic field. [100 N ; 1000 watts]

 3. A d.c. motor consists of an armature winding of 400 turns (equivalent to 800 conductors). The effective 
lengths of conductor in the field is 160 mm and the conductors are situated at a radius of 100 mm from 
the centre of the motor shaft.  The magnetic flux density is 0·6 Wb/m2 and a current of 25 A flows through 
the winding.  Calculate the torque available at the motor shaft. [192 Nm]

 4. A d.c. motor is to provide a torque of 540 Nm.  The armature winding consists of 600 turns (equivalent 
to 1200 conductors). The effective length of a conductor in the field is 250 mm and the conductors are 
situated at a radius of 150 mm from the centre of the motor shaft.  Each conductor carries a current of  
10 A. Calculate the flux density which must be provided by the radial field in which the conductors lie.

[1·2 Wb/m2]

7.21.  Ampere’s Work Law or Ampere’s Circuital Law
 The magnetising force (H) at any point in an electromagnetic field is the force experienced 
by a unit N-pole placed at that point. If the unit N-pole is made to move in a complete path around  
N current-carrying conductors, then work is done provided the unit N-pole is moved in opposition to 
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the lines of force. Conversely, if the unit N-pole moves in the direction of magnetic field, then work 
will be done by the magnetic force on whatever force is restraining the movement of the pole. In 
either case, unit N-pole makes one complete loop around the N conductors. The work done is given 
by Ampere’s work law stated below :
 The work done on or by a unit N-pole in moving once around any complete path is equal to 
the product of current and number of turns enclosed by that path i.e.

   *
rH dr

→ →
⋅∫�  = N I

Fig. 7.21
where rH

→
 is the magnetising force at a distance r. The circle around the integral sign indicates that 

the integral is around a complete path.
 The work law is applicable regardless of the shape of complete path. Thus in Fig. 7.21, paths 
‘a’ and ‘b’ completely enclose N conductors. If a unit N-pole is moved once around any of these 
complete paths, the work done in each case will be equal to N I. Although path ‘c’ is a complete path, 
it fails to enclose any current carrying conductor. Hence, no work is done in moving a unit N-pole 
around such a path.
 Note. The work law is applicable for all magnetic fields, irrespective of the shape of the field or of the 
materials which may be present.

7.22.  Applications of Ampere’s Work Law
 Ampere’s work law can be used to find magnetising 
force (H) in simple conductor arrangements. We shall discuss 
two cases by way of illustration.
 1.  Magnetising force around a long straight 
conductor. Consider the case of a long straight conductor 
carrying a current of I amperes as shown in Fig. 7.22. The 
conductor will set up magnetic lines of force which encircle 
it. Consider a circular path of radius r metres. By symmetry, 
the field intensity H on all the points of this circular path 
will be the same. If a unit N-pole is moved once around this 
circular path, then work done is = 2πrH.  By work law, this must be equal to the product of current 
and number of turns enclosed by this circular path.
 \ 2π r H =  I ( N = 1)

 or  H = 
2

I
rπ

Fig. 7.22

* This law can also be stated as the closed line integral of magnetic field intensity (H) is equal to the encloed 
ampere-turns that produce the magnetic field.
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 Note that magnetic lines of force encircle the conductor like concentric circles. The direction of 
magnetic lines of force can be determined by right-hand rule.
 If there had been N turns enclosed by the path, then,

   H = 
2
N I

rπ

  Flux density, B = µ0 H = 0

2
N I

r
µ

π
 ... in air

   = 0

2
r N I

r
µ µ

π
 ... in a medium

 The following points may be noted carefully :
 (i) If we choose a complete path for which r is smaller, H on that circle will be large. However, 

2π r H will be still equal to N I.
 (ii) Inspection of above expression reveals that H can 

also be expressed in ampere-turns per metre (AT/m).
 (iii) It is reminded that the quantity N I (i.e. product of 

the number of turns in a winding and the current 
flowing through it) is called magnetomotive force 
(m.m.f.).

   m.m.f. = N I ampere-turns
 2.  Magnetising force due to long solenoid. Consider 
a long solenoid of length l and wound uniformly with N 
turns (See Fig. 7.23). The length of the solenoid is much 
greater than the breadth, say 10 times greater. The following 
assumptions are permissible :
 (i) The field strength external to the solenoid is effectively zero.
 (ii) The field strength inside the solenoid is uniform.
 Suppose the current I flowing through the solenoid produces uniform magnetic field strength H 
within the solenoid. Applying work law to any closed path say dotted one shown in Fig. 7.23,
  Total work done around closed path = Ampere turns linked
 Since there is negligible field strength (H) outside the solenoid, the only work done will be in 
travelling length l within the solenoid.
 \  H × l = NI

 or  H = NI
l  AT/m or A/m

  Incidentally, B = µ0 H = 0 NI
l

µ
 Wb/m2 ...in air

   = µ0 µr H = 0 r NI
l

µ µ
 Wb/m2 ...in a medium

 It is reminded that the magnetic field strength (H) is a vector quantity since it has magni-
tude and direction.
 Example 7.11. An air-cored toroidal coil shown in Fig. 7.24 has 3000 turns and carries a cur-
rent of 0.1A. The cross-sectional area of the coil is 4 cm2 and the length of the magnetic circuit is  
15 cm. Determine the magnetic field strength, the flux density and the total flux within the coil.

 Solution. N = 3000 turns  ;   I = 0.1 A  ;   A = 4 × 10–4 m2  ;   l = 15 × 10–2 m

  Magnetic field strength, H = 2

3000 0.1

15 10

NI
l −

×=
×

    = 2000 AT/m

Fig. 7.23
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   Flux density, B = µ0H = 4p × 10–7 × 2000
    = 2.5 × 10–3 Wb/m2

   Total flux, f = B × A = 2.5 × 10–3 × 4 × 10–4

    = 1 × 10–6 Wb = 1 µWb
 Example 7.12. An air-cored solenoid has length of 15 cm and inside 
diameter of 1.5 cm. If the coil has 900 turns, determine the total flux within 
the solenoid when the coil current is 100 mA.
 Solution. For a solenoid, the length of the magnetic circuit, l = coil 
length = 15 × 10–2 m.
   D = 1.5 × 10–2 m ; N = 900 turns ; I = 100 × 10–3 A
 \  m.m.f. = NI = 900 × 100 × 10–3 = 90 AT

   Magnetising force, H = m.m.f.
l

 = 2
90

15 10−×
 = 600 AT/m

   Magnetic flux density, B = µ0H = 4p × 10–7 × 600 = 24p × 10–5 Wb/m2

 \  Total flux, f = BA = 24p × 10–5 × 
2

4
Dπ

    = 24p × 10–5 × p × 
2 2(1.5 10 )

4

−×
 = 1.33 × 10–7 Wb

 If the solenoid were iron-cored, the magnitude of the magnetic flux within the solenoid would 
have been much greater than the calculated value because of very high relative permeability of iron.

7.23.  Biot-Savart Law
 A conductor carrying current I produces a magnetic field 
around it. We can consider the current carrying conductor to be 
consisting of infinitesimally small *current elements I dl

→
; each 

current element contributing to magnetic field. Biot-Savart law 
gives us expression for the magnetic field at a point due to a 
current element.
 Consider a current element I dl

→
 of a conductor XY carrying 

current I [See Fig. 7.25]. Let P be the point where the magnetic 

field dB
→

 due to the current element is to be found. Suppose r
→

 

is the position vector of point P from the current element I dl
→

 
and q is the angle between dl

→
 and .r

→

 According to Biot-Savart law, the magnitude dB of magnetic field at point P due to the current 
element depends upon the following factors :

 (i) dB ∝ I (ii) dB ∝ dl (iii) dB ∝ 1/r2 (iv) dB ∝ sinq

 Combining all these four factors, we get,

   dB ∝ 2

sinI dl
r

θ

 or  dB = 2

sinI dlK
r

θ

Fig. 7.24

Fig. 7.25

* The current element I dl
→

 is a vector. Its direction is tangent to the element and acts in the direction of flow 
of current in the conductor.
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where K is a constant of proportionality. Its value depends on the medium in which the conductor is 
situated and the system of units adopted.

 For free space and SI units, K = 0

4
µ

π  = 10–7 Tm A–1

   where µ0 = Absolute permeability of free space = 4p × 10–7 Tm A–1

 \  dB = 0
2

sin
4

Idl
r

µ θ⋅
π  ...(i)

 Eq. (i) is known as Biot-Savart law and gives the magnitude of the magnetic field at a point due 

to small current element I dl
→

. Note that Biot-Savart law holds strictly for steady currents.

 In vector form. dB
→

 = 0
3

( )
4

I dl r
r

→ →
µ ×

π  ...(ii)

 The Biot-Savart law is analogous to Coulomb’s law. Just as the charge q is the source of 

electrostatic field, similarly, the source of magnetic field is the current element I dl
→

.

 Direction of B
→

. dB
→

 = 0
3

( )
4

I dl r
r

→ →
µ ×

π

 The direction of dB
→

 is perpendicular to the plane containing dl
→

 and r
→

. By right-hand rule for 
the cross product, the field is directed inward.
 Magnetic field due to whole conductor. Eq. (ii) gives the magnetic field at point P due to a 

small current element I dl
→

. The total magnetic field at point P is found by summing (integrating) 
over all current elements.

   B
→

 = dB
→

∫  = 0
3

( )
4

I dl r
r

→ →
µ ×

π∫
where the integration is taken over the entire conductor in which current I flows.

 Special cases. dB = 0
2

sin
4

I dl
r

µ θ⋅
π

 (i) When q = 0° i.e., point P lies on the axis of the conductor, then,

   dB = 0
2

sin 0
4

I dl
r

µ °⋅
π  = 0

 Hence, there is no magnetic field at any point on the thin linear current carrying conductor.

 (ii) When q = 90° i.e., point P lies at a perpendicular position w.r.t. current element, then,

   dB = 0 0
2 2

sin90
4 4

I dl I dl
r r

µ µ°⋅ = ⋅
π π        ... Maximum value

 Hence magnetic field due to a current element is maximum in a plane passing through the 
element and perpendicular to its axis.
 (iii) When q = 0° or 180°, dB = 0    ...Minimum value

 Important points about Biot-Savart law. This law has the following salient features :
 (i) Biot-Savart law is valid for symmetrical current distributions.
 (ii) Biot-Savart law cannot be proved experimentally because it is not possible to have a current 

carrying conductor of length dl.
 (iii) Like Coulomb’s law in electrostatics, Biot-Savart law also obeys inverse square law.

 (iv) The direction of dB
→

 is perpendicular to the plane containing I dl
→

 and r
→

.
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7.24.  Applications of Biot-Savart Law
 Biot-Savart law is very useful in determining magnetic flux density B and hence magnetising 
force H (= B/µ0) due to current-carrying conductor arrangements. We shall discuss the following 
cases by way of illustration.
 (i) Magnetic flux density at the centre of current-carrying circular coil.
 (ii) Magnetic flux density due to straight conductor carrying current.

 (iii) Magnetic flux density on the axis of circular coil carrying current.

7.25.  Magnetic Field at the Centre of Current-Carrying Circular Coil
 This is a practical case because the operation of many devices 
depends upon the magnetic field produced by the current-carrying 
circular coil. Consider a circular coil of radius r and carrying 
current I in the direction shown in Fig. 7.26. Suppose the loop lies 
in the plane of paper. It is desired to find the magnetic field at the 
centre O of the coil. Suppose the entire circular coil is divided into 
a large number of current elements, each of length dl. According 

to Biot-Savart law, the magnetic field dB
→

 at the centre O of the 

coil due to current element I dl
→

 is given by ;

   dB
→

 = 0
3

µ ( )
4

I dl r
r

→ →
×

π

where r
→

is the position vector of point O from the current element.  

The magnitude of dB
→

at the centre O is

   dB = 0 0
3 2

µ µsin sin
4 4

I dl r I dl
r r

θ θ=
π π  ...(i)

 The direction of dB
→

is perpendicular to the plane of the coil and is directed inwards.  Since each 
current element contributes to the magnetic field in the same direction, the total magnetic field B at 
the centre O can be found by integrating eq. (i) around the loop i.e.

   B = 0
2

µ sin
4

I dldB
r

θ=
π∫ ∫

 For each current element, angle between dl
→

 and r
→

is 90°. Also distance of each current element 
from the centre O is r.

 \  B = 0
2

µ sin 90
4

I dl
r

°
π ∫

 Now, dl∫  = Total length of the coil = 2π r

 \  B = 0
2

µ
(2 )

4
I r

r
π

π

 or  B = 0µ
2

I
r

 Also, H = 0

0 0

1
2 2

IB I
r r

µ= × =
µ µ

 If the coil has N turns, each carrying current in the same direction, then contributions of all the 
turns are added up.  Therefore, the magnetic field at the centre of the coil is greatly increased and is 
given by ;

Fig. 7.26
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    B = 0µ
2
N I
r

 Also, H = 
0µ 2

B NI
r

=

 Direction of B
→

 . The direction of magnetic field B
→

 is perpendicular to the plane of the coil and 
for Fig. 7.27, magnetic field inside the coil is directed inwards. The magnetic lines of force are 
circular near the wire but practically straight near the centre of the coil.  In the middle M of the coil, 
the magnetic field is uniform for a short distance on either side.  The direction of magnetic field at 
the centre of a current-carrying circular coil can be determined by right-hand palm rule.

Fig. 7.27

 Right-hand palm rule. Orient the thumb of your right hand perpendicular to the grip of the 
fingers such that curvature of the fingers points in the direction of current in the circular coil. Then 
thumb will point in the direction of the magnetic field near the centre of the circular coil.

7.26.  Magnetic Field Due to Straight Conductor Carrying Current
 Consider a straight conductor XY carrying current I in the direction shown in Fig. 7.28. It is 
desired to find the magnetic field at point P located at a perpendicular distance a from the conductor 

(i.e. PQ = a). Consider a small current element of length dl. Let r
→

 be the position vector of point P 

from the current element and θ be the angle between dl
→

 

and r
→

(i.e., ∠POQ = θ). Let us further assume that QO = l.
 According to Biot-Savart law, the magnitude of 

magnetic field dB
→

 at point P due to the considered current 
element is given by ;

  dB = 0
2

µ sin
4

I dl
r

θ
π  ...(i)

 To get the total magnetic field B, we must integrate 
eq. (i) over the whole conductor. As we move along the 
conductor, the quantities dl, θ and r change. The integration 
becomes much easier if we express everything in terms of 
angle f shown in Fig. 7.28.
 In the right angled triangle PQO, θ = 90° – f.
 \ sin θ = sin (90° – f) = cos f

Fig. 7.28
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 Also, cos f = a
r  or r = 

cos
a

φ

      Further, tan f = l
a  or l = a tan f

 or  dl = a sec2f df
 Putting the values of sin θ, dl and r in eq. (i), we have,

   dB = 
2

0
2

µ ( sec ) cos
4 ( / cos )

I a d
a

φ φ φ
π φ

 or  dB = 0µ cos
4

I d
a
φ φ

π  ...(ii)

 The direction of dB
→

 is perpendicular to the plane of the conductor and is directed inwards 
(Right-hand grip rule, See section 7.17). Since each current element contributes to the magnetic field 
in the same direction, the total magnetic field B at point P can be found by integrating eq. (ii) over 
the length XY i.e.

   B = 
2 2

1 1

0µ
cos

4

IdB d
a

φ φ

−φ −φ
= φ φ

π∫ ∫
    = 2

1

0 0
2 1

µ µ
[sin ] (sin sin )

4 4

I I
a a

φ
−φφ = φ + φ

π π

 \  B = 0
2 1

µ
(sin sin )

4
I
a

φ + φ
π  ...(iii)

 Also, H = 2 1
0

(sin sin )
µ 4
B I

a
= φ + φ

π
 Eq. (iii) gives the value of B at point P due to a conductor of finite length.
Special cases. We shall discuss a few important cases.
 (i) When the conductor XY is of infinite length and point P lies at the centre of the conductor.
 In this case, f1 = f2 = 90° = π/2.

 \  B = 0µ
(sin /2 sin /2)

4
I
a

π + π
π

 or  B = 0µ 2
4

I
aπ

 Also, H = 
0

1 2
4 2

B I I
a a

= ⋅ =
µ π π

 (ii) When conductor XY is of infinite length but point P lies near one end Y (or X). In this case, 
f1 = 90° and f2 = 0°.

 \  B = 0µ
(sin 90 sin 0 )

4
I
a

° + °
π

 or  B = 0µ
4

I
aπ

 Note that it is half of that for case (i).

 Also,  H = 
0 4

B I
a

=
µ π

 (iii) If the length of the conductor is finite (say l) and point P lies on the right bisector of the 
conductor. In this case, f1 = f2 = f.
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 Now, sin f = 
2 2 2 2

/2

( / 2) 4

l l
a l a l

=
+ +

 \  B = 0 0µ µ 2(sin sin ) sin
4 4

I I
a a

φ + φ = φ
π π

 or  B = 0

2 2

µ 2
4 4

I l
a a lπ +

 Also H = 
2 20

1 2
4 4

B I l
a a l

= ⋅
µ π +

 Direction of B
→

. For a long straight conductor carrying current, the magnetic lines of force are 
concentric circles with conductor as the centre ; the direction of magnetic lines of force can be found 

by right-hand grip rule. The direction of B
→

 at any point is along the tangent to field line at that point 
as shown in Fig. 7.29.

Fig. 7.29

 Note. For a given current, B ∝ 1/a so that graph between B and a is a hyperbola.

7.27.  Magnetic Field on the Axis of Circular Coil Carrying Current
 Consider a circular coil of radius a, centre O and carrying a current I in the direction shown in 
Fig. 7.30. Let the plane of the coil be perpendicular to the plane of the paper. It is desired to find the 
magnetic field at a point P on the axis of the coil such that OP = x.

Fig. 7.30

 Consider two small current elements, each of length dl, located diametrically opposite to each 
other at Q and R. Suppose the distance of Q or R from P is r i.e. PQ = PR = r.
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 \  r = 2 2a x+
 According to Biot-Savart law, the magnitude of magnetic field at P due to current element at Q 
is given by ;
   dB = 0

2

µ sin 90
4

I dl
r

°
π  ( θ* = 90°)

or   dB = 0
2 2

µ
4 ( )

I dl
a xπ +

 ...(i)

 The magnetic field at P due to current element at Q is in the plane of paper and at right angles 
to r

→
and in the direction shown.

 Similarly, magnitude of magnetic field at point P due to current element at R is given by ;

   dB′ = 0
2 2

µ
4 ( )

I dl
a xπ +

 ...(ii)

 It also acts in the plane of paper and at right angles to r
→

 but in opposite direction to dB. 
 From eqs. (i) and (ii), dB = dB′.
 It is clear that vertical components (dB cos α and dB′ cos α) will be equal and opposite and 
thus cancel each other. However, components along the axis of the coil (dB sin α and dB′ sin α) 
are added and act in the direction PX. This is true for all the diametrically opposite elements of the 
circular coil. Therefore, when we sum up the contributions of all the current elements of the coil, 
the perpendicular components will cancel. Hence the resultant magnetic field at point P is the vector 
sum of all the components dB sin α over the entire coil.

 \  B = 0 0
2 2 2 2

µ sin µ sin
sin

4 ( ) 4 ( )

I dl IdB dl
a x a x

α αα = =
π + π +∫ ∫ ∫

 Now sin α = 
2 2

a
a x+

 and 2dl a= π∫

 \  B = 
2

0
2 2 3/2

µ

2( )

I a
a x+

 along PX ...(iii)

 Also, H = 
2

2 2 3 2
0 2( )

B Ia
a x

=
µ +

 If the circular coil has N turns, then,

   B = 
2

0
2 2 3/2

µ

2( )

NI a
a x+

 along PX ...(iv)

 Also, H = 
2

2 2 3 2
0 2( )

B NIa
a x

=
µ +

Different Cases. Let us discuss some special cases.
 (i) When point P is at the centre of the coil. In this case, x = 0 and eq. (iv) becomes :

   B = 
2

0 0
3

µ

22

NIa NI
aa

µ=

  This is the expression for the magnetic field at the centre of a current-carrying circular coil 
already derived in section 7.25. Note that the value of magnetic field is maximum at the centre of 
the coil.

* The radius vector QP of each current element is perpendicular to it so that q = 90° in each case.
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 Also, H = 
0 2

B NI
a

=
µ

 (ii) When point P is far away from the centre of coil.  In this case, x >> a so that a2 + x2  x2.

 \  B = 
2

0
3

µ

2

NI a
x

 Also, H = 
2

3
0 2

B NIa
x

=
µ

 The magnetic field is directed along the axis of the coil and falls off as the cube of the distance 
from the coil.
 Direction of B

→
. The magnetic field at the centre of a coil carrying current is along the axis of 

the coil as shown in Fig. 7.31. The direction of magnetic field can be determined by using right-
hand fist rule. Hold the axis of the coil in the right-hand fist in such a way that fingers point in the 
direction of current in the coil. Then outstretched thumb gives the direction of the magnetic field.  
Applying this rule to Fig. 7.31, it is clear that direction of magnetic lines of force is along the axis 
of the coil as shown.

Fig. 7.31
 Example 7.13. How far from a compass should a wire carrying 1 A current be located if 
its magnetic field at the compass is not to exceed 1 percent of the *earth’s magnetic field  
(3 × 10–5 Wb/m2) ?
 Solution. Let r metre be the desired distance.
 Required flux density at the compass is
   B = 1% of Earth’s flux density
    = 0·01 × 3 × 10–5 = 3 × 10–7 Wb/m2

 Required magnetising force at the compass is

   H = 
7

7
0

3 10

4 10

B −

−
×=

µ π×
 = 0·239 AT/m

 Now, H = 
2

I
rπ   \ r = 1

2 2 0 239
I
H

=
π π × ⋅  = 0·67 m

  Example 7.14.  A horizontal overhead power line carries a current of 50 A in west to east 
direction.  What is the magnitude and direction of the magnetic field 1·5 m below the line ?
* Earth’s magnetic field. The earth itself has a weak magnetic field. This is believed to be caused by electric 

currents circulating within its core. The currents are probably generated by convection in the liquid core 
maintained by radioactive heating of the earth’s interior. 
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 Solution. Figure 7.32 shows the conditions of the problem. The magnitude of magnetic field at 
point P, 1·5 m below the wire is given by ;

   B = 0

2
I
a

µ
π

 Here, µ0 = 4p × 10–7 H/m  ;  I = 50 A  ;  a = 1·5 m

 \  B = 
74 10 50

2 1 5

−π× ×
π ⋅  = 6.7 × 10–6 T

 According to right-hand grip rule, the direction of magnetic field below the wire is from south 
to north.

  Fig. 7.32 Fig. 7.33

 Example 7.15. A current of 1 A is flowing in the sides of an equilateral triangle of side 2 m.  
Find the magnetic field at the centroid of the triangle.
 Solution. It is clear that all the three sides of the triangle will produce magnetic field at the 
centroid O in the same direction. Therefore, total magnetic field at O is = 3 × magnetic field due to 
one side.
 Magnetic field at O due to side BC [See Fig. 7.33] is

   B1 = 0

4
I
a

µ
π  (sin f1 + sin f2)

 Here,  I = 1 A ;  f1 = f2 = 60° ; µ0 = 4π × 10–7 H/m

   a = OD = /2 2/2 1
tan 60 tan 60 3 3

BD BC= = =
° °

 \  B1 = 
74 10 1

4 1/ 3

−π× ×
π  (sin 60º + sin 60º)

    = 7 3 310 3
2 2

−  
× + 

 
 = 3 × 10–7 T

 \  Magnetic field at O due to the whole triangle is
   B =  3B1 = 3(3 × 10–7) = 9 × 10–7 T
 Example 7.16. A square loop of wire of side 2l carries a current I. What is the magnetic field 
at the centre of the square ? If the square wire is reshaped into a circle, would the magnetic field 
increase or decrease at the centre ?
 Solution.  Square loop. Figure 7.34 (i) shows the conditions of the problem. It is clear that 
each side of the square produces magnetic field at the centre O of the square in the same direction.  
Therefore, total magnetic field at O = 4 × magnetic field due to one side.
 Magnetic field at O due to side AB is given by ;
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   B1 =  0

4
I
a

µ
π  (sin f1 + sin f2)

 Here µ0 = 4π × 10–7 H/m ; f1 = f2 = 45º ; a = OM = AB/2 = l

 \  B1 = 
74 10

4
I
l

−π× ×
π  (sin 45° + sin 45°)

    = 7 7210 2 10 T
2

I I
l l

− − × = ×  
 Magnetic field at O due to the whole square is

   B = 4B1 = –74 2 × 10I T
l  ...(i)

 Circular loop.  The total length of the square loop = 4 × 2l = 8l.  When this square loop is shaped 
into a circular loop of radius r, then [See Fig. 7.34 (ii)],

   2π r = 8l  or  r = 8 4
2

l l=
π π

Fig. 7.34

 Magnetic field at the centre of the circular loop is 

   B = 
7 2

70 4 10
10

2 2(4 / ) 2
I I I

r l l

−
−µ π× × π= = × ×

π

 \  B = –74.93 × × 10I T
l

 ...(ii)

 Comments. Inspection of eqs. (i) and (ii) reveals that magnetic field in case of square loop will 
be more.
 Example 7.17. A current of 15A is passing along a straight wire. Calculate the force on a unit 
N-pole placed 0.15 metre from the wire. If the wire is bent to form into a loop, calculate the diameter 
of the loop so as to produce the same force at the centre of the coil upon a unit N-pole when carrying 
a current of 15A.
 Solution. By definition, the force on the unit N-pole is the magnetising force H. Therefore, force 
on a unit N-pole placed at a point 0.15 m (i.e. a =  0.15m) from a long straight wire carrying current 
I(= 15A) is given by ;
   H = 15

2 2 0.15
I
a

=
π π ×  = 

50 AT m or N Wb
π

 Force on a unit N-pole placed at the centre of a loop of radius r when the loop carries a current 
I(= 15 A) is
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   H ′ = 15
2 2
I
r r

=  AT/m

 As per the statement of the problem, H′ = H.

 \  15
2r  = 50

π  or r = 15
2 50

π
×  = 0.4713 m

 \ Diameter of loop, D = 2r = 2 × 0.4713 = 0.9426 m = 94.26 cm

Tutorial Problems
 1. A horizontal overhead power line carries a current of 90 A in east to west direction. What is the magnitude 

and direction of magnetic field due to the current 1·5 m below the wire ? [1·2 × 10–5 T towards south]
 2. A long straight wire is turned into a loop of radius 10 cm as shown in Fig. 7.35. If a current of 8 A is 

passed, then find the value of magnetic field at the centre O of the loop. 
[3·4 × 10–5 T perpendicular to plane of paper pointing upward]

  [Hint : The magnetic field at O due to straight wire is perpendicular to the plane of paper and is directed 
downward. However, field due to circular loop is directed in opposite direction.]

  Fig. 7.35 Fig. 7.36

 3. A circular segment of radius 10 cm subtends an angle of 60° at its centre. A current of 9 A is flowing 
through it. Find the magnitude and direction of magnetic field produced at the centre [See Fig. 7.36].

 [9·42 × 10–6 T perpendicular to the plane of paper pointing downward]
  [Hint :  The magnetic field at the centre of a single turn circular coil is 

   B = 0

2
I

a
µ    ... a is the radius of coil.

      For the given arc, B = 060
360 2

I
a

µ °
 °  

 4. A long wire having a semicircular loop of radius a carries a current I amperes as shown in Fig. 7.37. Find 

the magnetic field at the centre of the semicircular arc. 
 
  

0µ
4

I
a

  [Hint :  The straight portions AB and DE do not contribute to any magnetic field at O. Therefore, magnetic 
field at O is only due to semicircular loop.]

  Fig. 7.37 Fig. 7.38
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 5. The wire shown in Fig. 7.38 carries a current I. What will be the magnitude and direction of magnetic 
field at the centre O ?  Assume that various portions of wire do not touch each other at P.

   ( ) 
  

0µ 11 +
2

I
perpendicular to the plane of paper directed upward

a π
  [Hint : The magnetic field due to straight conductor and that due to circular part aid each other at O.]

7.28.  Force Between Current-Carrying Parallel Conductors
 When two current-carrying conductors are parallel to each other, a mechanical force acts on 
each of the conductors. This force is the result of each conductor being acted upon by the magnetic 
field produced by the other. If the currents are in the same direction, the forces are attractive ; if 
currents are in opposite direction, the forces are repulsive. This can be beautifully illustrated by 
drawing the magnetic field produced by each conductor.
 (i)  Currents in the same direction. Consider two parallel conductors A and B carrying cur-
rents in the same direction (i.e. into the plane of paper) as shown in Fig. 7.39 (i). Each conductor will 
set up its own magnetic field as shown. It is clear that in the space between A and B, the two fields 
are in opposition and hence they tend to cancel each other.  However, in the space outside A and B, 
the two fields assist each other. Hence the resultant field distribution will be as shown in Fig. 7.39 (ii).

Fig. 7.39

 Since magnetic lines of force behave as stretched elastic cords, the two conductors are attracted 
towards each other.  Alternatively, the conductors can be viewed as moving away from the relatively 
strong field (in the space outside A and B) into the weaker field between the conductors.
 (ii)  Currents in opposite direction.  Consider two parallel conductors A and B carrying currents 
in the opposite direction as shown in Fig. 
7.40. Each conductor will set up its own field 
as shown.  It is clear that in the space outside 
A and B, the two fields are in opposition and 
hence they tend to cancel each other.  However, 
in the space between A and B, the two fields 
assist each other. The lateral pressure between 
lines of force exerts a force on the conductors 
tending to push them apart.  In other words, the 
conductors experience a repulsive force.
 If currents are in the same directions, the conductors attract each other ; if currents are in op-
posite directions, the conductors repel each other.

7.29.  Magnitude of Mutual Force
 Fig. 7.41 (i) shows two parallel conductors placed in air and carrying currents in the same 
direction.  Here I1 and I2 are the currents in conductors 1 and 2 respectively, l is the length of each 
conductor in metres and d is the distance between conductors in metres. It is clear that each of the 
two parallel conductors lies in the magnetic field of the other conductor.

Fig. 7.40
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Fig. 7.41

 In order to determine the magnitude of force, we can consider conductor 2 placed in the magnetic 
field produced by conductor 1 as shown in Fig. 7.41 (ii). Now field intensity H due to current I1 in 
conductor 1 at the centre of conductor 2 is given by ;

   H = 1

2
I

dπ  

         But B = µ0 µr H = µ0 H = 0 1

2
I
d

µ
π  [For air, µr = 1]

 Force acting on conductor 2 is given by ;

   F = B I2 l = 0 1
22

I I l
d

µ  π 

    = 
7

1 24 10
2

I I l
d

−π ×
π  = 71 22

10
I I l

d
−×  newtons

 \  F = 71 22
10 N

I I l
d

−×

 It can be easily shown that conductor 1 will experience an equal force in the opposite direction 
[See Fig. 7.41 (ii)].
 Force per metre run of the conductor is given by ;

   F ′ = 71 22
10 N m

I I
d

−×

 According to Fleming’s left-hand rule, the two conductors will attract each other.

7.30.  Definition of Ampere
 The force acting between two parallel conductors has led to the modern definition of an ampere.  
We have seen above that force between two parallel current-carrying conductors is

   F = 71 22
10

I I l
d

−×  newtons

    If   I1 = I2 = 1A ;  l = 1 m ; d = 1 m, then,

   F = 7 72 1 1 1
10 2 10 N

1
− −× × × × = ×

 Hence one ampere is that current which, if maintained in two 
long parallel conductors, and placed 1 m apart in vacuum, would 
produce between these conductors a force equal to 2 × 10−7 newton 
per metre of length (See Fig. 7.42).
 Historically, the ampere was fixed originally in a very different way.  The constant 2 × 10−7 that 
appears in the modern definition was chosen so as to keep the magnitude of ampere the same as 
formerly.

Fig. 7.42



382    Basic  Electrical  Engineering 

 Example 7.18. Two long horizontal wires are kept parallel at a distance of 0·2 cm apart in a 
vertical plane. Both the wires have equal currents in the same direction. The lower wire has a mass 
of 0·05 kg/m. If the lower wire appears weightless, what is the current in each wire ?
 Solution. Let I amperes be the current in each wire. The lower wire is acted upon by two forces 
viz (i) upward magnetic force and (ii) downward force due to weight of the wire. Since the lower 
wire appears weightless, the two forces are equal over 1m length of the wire.

   Upward force/m length = 
7

71 2
2

2 2 10
10

0.2 10

I I I I
d

−
−

−
× × ×× =

×
 = 10–4 I2 N

  Downward force/m length = mg = 0·05 × 9·8 = 0·49 N

 \  10−4 I2 = 0·49 or I = 40.49 10×  = 70 A
 Example 7.19. A rectangular loop ABCD carrying a current of 
16A in clockwise direction is placed with its longer side parallel to a 
straight conductor 4 cm apart and carrying a current of 20A as shown 
in Fig. 7.43. The sides of the loop are 15 cm and 6 cm. What is the net 
force on the  loop ?  What will be the difference in force if the direction 
of current in the loop is reversed ?
 Solution. Fig. 7.43 shows the arrangement. The long straight 
conductor XY will exert an attractive force on arm AB of the loop 
while arm CD will experience a repulsive force. The forces on the 
arms BC and AD will be equal and opposite and hence cancel out.  
Referring to Fig. 7.43, 
 d1 = 4 cm = 0·04 m  ;   d2 = 4 + 6 = 10 cm = 0·1 m

   Force on arm AB, F1 = 71 2

1

2
10

I I
d

−×  × Length AB  ... towards XY   

    = 7 42 20 16
10 0 15 2 4 10 N

0 04
− −× × × × ⋅ = ⋅ ×

⋅

   Force on arm CD, F2 = 71 2

2

2
10

I I
d

−×  × Length CD  ... away from XY

    = 7 42 20 16
10 0 15 0 96 10 N

0 1
− −× × × × ⋅ = ⋅ ×

⋅
  Net force on the loop is F = F1 − F2 = 10−4 (2·4 − 0·96) = 1·44 × 10−4 N
 Therefore, the net force on the loop is directed towards the current-carrying straight conductor 
XY.  If the direction of current in the loop is reversed, the magnitude of net force on the loop remains  
the same (i.e. F = 1·44 × 10−4 N) but its direction will be away from the current-carrying straight 
conductor XY.
 Example 7.20. Two long straight parallel wires, standing in air 2m apart, carry currents I1 and 
I2 in the same direction. The magnetic intensity at a point midway between 
the wires is 7.95 AT/m. If the force on each wire per unit length is 2.4 × 
10–4 N, evaluate I1 and I2.
 Solution. Fig. 7.44 shows the conditions of the problem. Here, 
separation between the wires is d = 2 m and O is the point midway between 
the two wires. As proved in Art. 7.26, the magnetic intensity H at a point 
distant a from a long straight current-carrying wire is

   H = 
2

I
aπ

Fig. 7.43

Fig. 7.44
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 Since the two wires are carrying currents in the same direction, the net magnetic intensity H at 
O is the difference of the magnetic intensities at O due to two currents i.e.
   H = H1 – H2

 or  7.95 = 1 2

2 1 2 1
I I−

π × π ×  ( point O is 1m from each wire)

 \  I1 – I2 = 50 ...(i)
 As proved in Art. 7.29, force per unit length of the conductors is 

   F = 71 22
10

I I
d

−×

 or  2.4 × 10–4 = 71 22
10

2
I I −×

 \  I1I2 = 2400

 Now, (I1 + I2)
2 = (I1 – I2)

2 + 4I1I2 = (50)2 + 4 × 2400 = 12100
 \  I1 + I2 = 110 ...(ii) 
 From eqs. (i) and (ii), I1 = 80A   ;   I2 = 30A
 Example 7.21. A horizontal straight wire 5 cm long of mass 1·2 g/m is placed perpendicular 
to a uniform magnetic field of 0·6 T. If resistance of the wire is 3·8 Ω m–1, calculate the p.d. that 
has to be applied between the ends of the wire to make it just self-supporting.
 Solution. The current (I) in the wire is to be in such a direction that magnetic force acts on 
it vertically upward. To make the wire self-supporting, its weight should be equal to the upward 
magnetic force i.e.
   B I l = m g ( θ = 90°)

 or  I = 
mg
Bl

 Here, m = 1·2 × 10–3 l  ;   B = 0·6 T   ;  g = 9·8 ms–2

 \  I = 
3(1 2 10 ) 9 8

0 6
l
l

−⋅ × × ⋅
⋅ ×  = 19·6 × 10–3 A

  Resistance of the wire,  R = 0·05 × 3·8 = 0·19 Ω

 \  Required P.D., V =  I R = (19·6 × 10–3) 0·19 = 3·7 × 10–3 V

Tutorial Problems
 1. A pair of rising mains has a spacing of 200 mm between centres. If each conductor carries 500 A, determine 

the force between the conductors for each 10m length of run. [2·5 N repulsive]
 2. Two busbars, each 20 m long, feed a circuit and are spaced at a distance of 80 mm inbetween centres. If 

a short-circuit current of 20,000 A flows through the conductors, calculate the force per metre between 
the bars.    [1000 N]

 3. Two long straight parallel conductors carry the same current I in the same direction. The conductors are    
placed 20 cm apart in air.  The magnetic flux density between the conductors 5 cm from one of them is 
1·33 × 10−5 Wb/m2. If the force on each conductor per metre length is 25 × 10−6 N, find the current in 
each conductor.    [5 A]

 4. The wires that supply current to a 120 V, 2kW electric heater are 2 mm apart. What is the force per metre 
between the wires ?    [0·028 N/m]

 5. The busbars 10 cm apart are supported by insulators every metre along their length. The busbars each 
carry a current of 15 kA. What is the force acting on each insulator ? [450 N]
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Objective Questions

 1. When a magnet is heated,
 (i) it gains magnetism
 (ii) it loses magnetism
 (iii) it neither loses nor gains magnetism
 (iv) none of the above
 2. The magnetic material used in permanent 

magnets is 
 (i) iron (ii) soft steel
 (iii) nickel (iv) hardened steel
 3. The magnetic material used in temporary 

magnets is
 (i) hardened steel (ii) cobalt steel
 (iii) soft iron (iv) tungsten steel
 4. Magnetic flux density is a
 (i) vector quantity (ii) scalar quantity
 (iii) phasor  (iv) none of the above
 5. The relative permeability of a ferromagnetic 

material is 1000. Its absolute permeability will 
be

 (i) 106 H/m (ii) 4π × 10−3 H/m
 (iii) 4π × 10−11 H/m (iv) none of the above
 6. The main advantage of temporary magnets is 

that we can
 (i) change the magnetic flux
 (ii) use any magnetic material
 (iii) decrease the hysteresis loss
 (iv) none of the above
 7. One weber is equal to
 (i) 106 lines  (ii) 4π × 10−7 lines
 (iii) 1012 lines (iv) 108 lines
 8. Magnetic field intensity is a 
 (i) scalar quantity (ii) vector quantity
 (iii) phasor (iv) none of the above
 9. The absolute permeability of a material having 

a flux density of 1 Wb/m2 is 10−3 H/m. The 
value of magnetising force is

 (i) 10−3 AT/m (ii) 4π × 10−3 AT/m
 (iii) 1000 AT/m (iv) 4π × 103 AT/m
 10. When the relative permeability of a material is 

slightly less than 1, it is called a
 (i) diamagnetic material
 (ii) paramagnetic material
 (iii) ferromagnetic material
 (iv) none of the above
 11. The greater percentage of substances are

 (i) diamagnetic  (ii) paramagnetic
 (iii) ferromagnetic (iv) none of the above
 12. When the relative permeability of material is 

much greater than 1, it is called
 (i) diamagnetic material
 (ii) paramagnetic material
 (iii) ferromagnetic material
 (iv) none of the above
 13. The magnetic flux density in an air-cored coil 

is 10−2 Wb/m2. With a cast iron core of relative 
permeability 100 inserted, the flux density will 
become

 (i) 10−4 Wb/m2 (ii) 104 Wb/m2

 (iii) 10−2 Wb/m2 (iv) 1 Wb/m2

 14. Which of the following is more suitable for the 
core of an electromagnet ?

 (i) soft iron (ii) air
 (iii) steel (iv) tungsten steel
 15. The source of a magnetic field is
 (i) an isolated magnetic pole
 (ii) static electric charge
 (iii) magnetic substances
 (iv) current loop
 16. A magnetic needle is kept in a uniform magnetic 

field.  It experiences
 (i) a force and a torque
 (ii) a force but not a torque
 (iii) a torque but not a force
 (iv) neither a torque nor a force
 17. The unit of pole strength is
 (i) A/m2 (ii) Am
 (iii) Am2 (iv) Wb/m2

 18. When the relative permeability of a material is 
slightly more than 1, it is called a

 (i) diamagnetic material
 (ii) paramagnetic material
 (iii) ferromagnetic material
 (iv) none of the above

 19. AT/m is the unit of
 (i) m.m.f.
 (ii) reluctance
 (iii) magnetising force
 (iv) magnetic flux density
 20. A magnetic needle is kept in a non-uniform 

magnetic field.  It experiences
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 (i) a force and a torque
 (ii) a force but not a torque
 (iii) a torque but not a force
 (iv) neither a force nor a torque
 21. Magnetic flux passes more readily through
 (i) air (ii) wood
 (iii) vacuum (iv) iron
 22. Iron is ferromagnetic
 (i) above 770oC
 (ii) below 770oC
 (iii) at all temperatures
 (iv) none of the above

 23. The relative permeability of a material is 
0·9998.  It is

 (i) diamagnetic (ii) paramagnetic 
 (iii) ferromagnetic (iv) none of the above
 24. Magnetic lines of force
 (i) intersect at infinity
 (ii) intersect within the magnet
 (iii) cannot intersect at all
 (iv) none of the above
 25. Demagnetising of magnets can be done by
 (i) rough handling (ii) heating
 (iii) magnetising in opposite direction
 (iv) all of the above

Answers 
 1. (ii) 2. (iv) 3. (iii) 4. (i) 5. (ii) 
 6. (i) 7. (iv) 8. (ii) 9. (iii) 10. (i) 
 11. (ii) 12. (iii) 13. (iv) 14. (i) 15. (iv) 
 16. (iii) 17. (ii) 18. (ii) 19. (iii) 20. (i)
 21. (iv) 22. (ii) 23. (i) 24. (iii) 25. (iv)



Introduction
 We have seen that magnetic lines of force form closed loops around and through the magnetic 
material. The closed path followed by magnetic flux is called a magnetic circuit just as the closed 
path followed by current is called an electric circuit. Many electrical devices (e.g. generator, 
motor, transformer etc.) depend upon magnetism for their operation. Therefore, such devices 
have magnetic circuits i.e. closed flux paths. In order that these devices function efficiently, their 
magnetic circuits must be properly designed to obtain the required magnetic conditions. In this 
chapter, we shall focus our attention on the basic principles of magnetic circuits and methods to 
obtain their solution.

8.1.  Magnetic Circuit
 The closed path followed by magnetic flux is called a magnetic circuit.
 In a magnetic circuit, the magnetic flux leaves the N-pole, passes through the entire circuit, and 
returns to the starting point. A magnetic circuit usually consists of materials having high permeability 
e.g. iron, soft steel etc. It is because these materials offer very small opposition to the ‘flow’ of 
magnetic flux. The most usual way of producing magnetic flux is by passing electric current through 
a wire of number of turns wound over a magnetic material. This helps in exercising excellent control 
over the magnitude, density and direction of magnetic flux.
 Consider a coil of N turns wound on an iron core as shown in Fig. 8.1. When current I is passed 
through the coil, magnetic flux φ is set up in the core. The flux follows the closed path ABCDA and 
hence ABCDA is the magnetic circuit. The following points may be noted carefully :
 (i) The amount of magnetic flux set up in the core depends upon current (I) and number of 

turns (N). If we increase the current or number of turns, the amount of magnetic flux also 
increases and vice-versa. The product *N I is called the magnetomotive force (m.m.f.) 
and determines the amount of flux set up in the 
magnetic circuit.

   m.m.f. = N I ampere-turns
  It can just be compared to electromotive force 

(e.m.f.) which sends current in an electric circuit.
 (ii) The opposition that the magnetic circuit offers 

to the magnetic flux is called reluctance. It 
depends upon length of magnetic circuit (i.e. 
length ABCDA in this case), area of X-section of 
the circuit and the nature of material that makes 
up the magnetic circuit.

8.2.  Analysis of Magnetic Circuit
 Consider the magnetic circuit shown in Fig. 8.1. Suppose the mean length of the magnetic 
circuit (i.e. length ABCDA) is l metres, cross-sectional area of the **core is ‘a’ m2 and relative 
* Coiling a conductor into two or more turns has the effect of using the same current for more than once. For 

example, 5-turn coil carrying a current of 10A produces the same magnetic flux in a given magnetic circuit 
as a 1-turn coil carrying a current of 50A. Hence m.m.f. is equal to the product of N and I.

** The arrangement of magnetic materials to form a magnetic circuit is generally called a core.

Fig. 8.1

8
Magnetic  Circuits
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permeability of core material is µr. When current I is passed through the coil, it will set up flux φ in 
the material.

 Flux density in the material, B  = 2Wb m
a
φ

 Magnetising force in the material, H = 
0 0

AT m
r r

B
a

φ=
µ µ µ µ  

 According to work law, the work done in moving a unit magnetic pole once around the magnetic 
circuit (i.e. path ABCDA in this case) is equal to the ampere-turns enclosed by the magnetic circuit.

 \  *H × l = N I

 or  
0 r

l
a

φ ×
µ µ  = N I

 or  φ = 
0( )r

NI
l aµ µ

 The quantity NI which produces the magnetic flux is called the magnetomotive force (m.m.f.) 
and is measured in ampere-turns. The quantity l/a µ0 µr is called the reluctance of the magnetic 
circuit. Reluctance is the opposition that the magnetic circuit offers to magnetic flux.

 \  Flux, φ = m.m.f.
reluctance

 ...(i)

 Note that the relationship expressed in eq. (i) has a strong resemblance to Ohm’s law of electric 
circuit (I = E/R). The m.m.f. is analogous to e.m.f. in the electric circuit, reluctance is analogous to 
resistance and flux is analogous to current. Because of this similarity, eq. (i) is sometimes referred 
to as Ohm’s law of magnetic circuit.

8.3.  Important Terms
 In the study of magnetic circuits, we generally come across the following terms :
 (i) Magnetomotive force (m.m.f.). It is a magnetic pressure which sets up or tends to set up 
flux in a magnetic circuit and may be defined as under :
 The work done in moving a unit magnetic pole once around the magnetic circuit is called the 
magnetomotive force (m.m.f.). It is equal to the product of current and number of turns of the coil i.e.
   m.m.f. = N I ampere-turns (or AT)
Magnetomotive force in a magnetic circuit corresponds to e.m.f. in an electric circuit. The only 
change in the definition is the substitution of unit magnetic pole in place of unit charge.
 (ii) Reluctance. The opposition that the magnetic circuit offers to magnetic flux is called 
reluctance. The reluctance of a magnetic circuit depends upon its length, area of X-section and 
permeability of the material that makes up the magnetic circuit. Its unit is †AT/Wb.

   Reluctance, S = 
0 r

l
a µ µ

 Reluctance in a magnetic circuit corresponds to resistance (R = ρ l/a) in an electric circuit. Both 
of them vary as length ÷ area and are dependent upon the nature of material of the circuit. Magnetic 
materials (e.g. iron, steel etc.) have a low reluctance because the value of µr is very large in their 
case. On the other hand, non-magnetic materials (e.g. air, wood, copper, brass etc.) have a high 
reluctance because they possess least value of µr ; being 1 in case of all non-magnetic materials.

* You may recall that H means force acting on a unit magnetic pole.  If the unit pole is moved once around 
the magnetic circuit (i.e. distance covered is l), then work done = H × l.

† Reluctance = m.m.f. AT AT/Wb
flux Wb

= =
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 The reciprocal of permeability µ(= µ0µr) corresponds to resistivity r of the electrical circuit 
and is called reluctivity. It may be noted that magnetic permeability (µ) is the analog of electrical 
conductivity.
 (iii)  Permeance. It is the reciprocal of reluctance and is a measure of the ease with which flux 
can pass through the material. Its unit is Wb/AT.

   Permeance = 01
Reluctance

ra
l

µ µ
=

 Permeance of a magnetic circuit corresponds to conductance (reciprocal of resistance) in an 
electric circuit.
8.4.  Comparison Between Magnetic and Electric Circuits
 There are many points of similarity between magnetic and electric circuits. However, the two 
circuits are not anologous in all respects. A comparison of the two circuits is given below in the 
tabular form.
 Magnetic Circuit Electric Circuit

   Fig. 8.2           Fig. 8.3
Similarities

1. The closed path for magnetic flux is 
called a magnetic circuit.

1. The closed path for electric current is called 
an electric circuit.

2. Flux, φ = 
m.m.f.

reluctance
2. Current, I = 

e.m.f.
resistance

3. m.m.f. (ampere-turns) 3. e.m.f. (volts)

4. Reluctance, S = 
0 r

l
aµ µ 4. Resistance, 

lR
a

= ρ

5. Flux density, B = 2Wb m
a
φ

5. Current density, J = 2A mI
a

6. m.m.f. drop = φ S 6. Voltage drop = I R

7. Magnetic intensity, H = N I/l 7. Electric intensity, E = V/d

8. Permeance 8. Conductance.

9. Permeability 9. Conductivity

Dissimilarities
1. Truly speaking, magnetic flux does not 

flow.
1. The electric current acutally flows in an 

electric circuit.
2. There is no magnetic insulator. For 

example, flux can be set up even in air 
(the best known magnetic insulator) with 
reasonable m.m.f.

2. There are a number of electric insulators.  
For instance, air is a very good  insulator and 
current cannot pass through it.
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3. The value of µr is not constant for a given 
magnetic material. It varies considerably 
with flux density (B) in the material. This 
implies that reluctance of a magnetic 
circuit is not constant rather it depends 
upon B.

3. The value of resistivity (r) varies very slightly 
with temperature. Therefore, the resistance 
of an electric circuit is practically constant.  
This salient feature calls for different 
approach to the solution of magnetic and 
electric circuits. 

4. No energy is expended in a magnetic 
circuit. In other words, energy is required 
in creating the flux, and not in maintaining 
it.

4. When current flows through an electric 
circuit, energy is expended so long as the 
current flows. The expended energy is 
dissipated in the form of heat.

8.5.  Calculation of Ampere-Turns
 In any magnetic circuit, flux produced is given by ;

   Flux, φ = 
0

m.m.f.
reluctance ( )r

AT
l a

=
µ µ

 \  AT required = 
0 0r r

l l
a a

φφ × = ×
µ µ µ µ  

    = 
0 r

B l×
µ µ             B

a
φ =  

∵  

    = H × l     ( H = B/µ0 µr)
i.e.  AT required for any part = Field strength H in that part × length of that part
     of magnetic circuit 

8.6.  Series Magnetic Circuits
 In a series magnetic circuit, the same flux φ flows through each part of the circuit. It can just 
be compared to a series electric circuit which carries the same current throughout.
 Consider a *composite series magnetic circuit consisting of three different magnetic materi-
als of different relative permeabilities along with an air gap as shown in Fig. 8.4. Each part of this 
series magnetic circuit will offer reluctance to the magnetic flux φ. The reluctance offered by each 
part will depend upon dimensions and µr of that part. Since the different parts of the circuit are in 
series, the total reluctance is equal to the sum of reluctances of individual parts, i.e.

  Total reluctance = 31 2

1 0 1 2 0 2 3 0 3 0

**g

r r r g

lll l
a a a a

+ + +
µ µ µ µ µ µ µ

  Total m.m.f. = Flux × Total reluctance

   = 31 2

1 0 1 2 0 2 3 0 3 0

g

r r r g

lll l
a a a a

 
φ + + + µ µ µ µ µ µ µ 

   = 1 2 3
1 0 1 2 0 2 3 0 3 0

g
r r r g

l l l l
a a a a

φ φ φ φ× + × + × + ×
µ µ µ µ µ µ µ

   = 31 2
1 2 3

0 1 0 2 0 3 0

g
g

r r r

BBB Bl l l l× + × + × + ×
µ µ µ µ µ µ µ  

   = H1 l1 + H2 l2 + H3 l3 + Hg lg  ( H = B/µ0 µr)

* A series magnetic circuit that has parts of different dimensions and materials is called a composite 
series circuit.

** For air, µr = 1.



390    Basic  Electrical  Engineering 

 Hence the total ampere-turns required for a series 
magnetic circuit can be found as under :
 (i) Find H for each part of the series magnetic 

circuit. For air, H = B/µ0 whereas for magnetic 
material, H = B/µ0µr.

 (ii) Find the mean length (l) of magnetic path for 
each part of the circuit.

 (iii) Find AT required for each part of the magnetic 
circuit using the relation, AT = H × l.

 (iv) The total AT required for the entire series circuit 
is equal to the sum of AT for various parts.

8.7.  Air Gaps in Magnetic Circuits
 In many practical magnetic circuits, air gap is 
indispensable. For example, in electromechanical 
conversion devices like electric motors and generators, the 
magnetic flux must pass through stator as well as rotor. This 
necessitates to have a small air gap between the stator and 
rotor to permit mechanical clearance.
 The magnitude of AT required for air gap is much 
greater than that required for iron part of the magnetic 
circuit. It is because reluctance of air is very large 
compared to that offered by iron. Consider a magnetic 
circuit of uniform cross-sectional area a with an air gap as shown in Fig. 8.5. The length of the air 
gap is lg and the mean length of iron part is li. The flux density B(= φ/a) is constant in the magnetic 
circuit.
 \  Reluctance of air gap = 

0

gl
aµ

   Reluctance of iron part = 
0

i

r

l
aµ µ

 Now relative permeability µr of iron is very high (> 6000) so that reluctance of iron part is very 
small as compared to that of air gap inspite of the fact that li > lg. In fact, most of ampere-turns (AT) 
are required in a magnetic circuit to force the flux through the air gap than through the iron part. 
In some magnetic circuits, we neglect reluctance of iron part compared to the air gap/gaps. This 
assumption leads to reasonable accuracy.

8.8.  Parallel Magnetic Circuits
 A magnetic circuit which has more 
than one path for flux is called a parallel 
magnetic circuit. It can just be compared 
to a parallel electric circuit which has 
more than one path for electric current.
 The concept of parallel magnetic 
circuit is illustrated in Fig. 8.6. Here 
a coil of N turns wounded on limb AF 
carries a current of I amperes. The flux 
φ1 set up by the coil divides at B into two 
paths, namely ;

Fig. 8.4

Fig. 8.5

Fig. 8.6
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 (i) flux φ2 passes along the path BE
 (ii) flux φ3 follows the path BCDE
   Clearly, φ1 = φ2 + φ3
 The magnetic paths BE and BCDE are in parallel and form a parallel magnetic circuit. The AT 
required for this parallel circuit is equal to AT required for any *one of the paths.
 Let  S1 = reluctance of path EFAB
   S2 = reluctance of path BE
   S3 = reluctance of path BCDE
 \   Total m.m.f. required = m.m.f. for path EFAB + m.m.f. for path BE or path BCDE
or   NI = φ1 S1 + φ2 S2
    = φ1 S1 + φ3 S3
 The reluctances S1, S2 and S3 must be determined from a calculation of l/aµ0µr for those paths 
of the magnetic circuit in which φ1, φ2 and φ3 exist respectively.

8.9.  Magnetic Leakage and Fringing
 The flux that does not follow the desired path in a magnetic circuit is called a leakage flux.
 In most of practical magnetic circuits, a 
large part of flux path is through a magnetic 
material and the remainder part of flux path is 
through air. The flux in the air gap is known 
as useful flux because it can be utilised for 
various useful purposes. Fig. 8.7 shows an 
iron ring wound with a coil and having a 
narrow air gap. The total flux produced by 
the coil does not pass through the air gap as 
some of it **leaks through the air (path at ‘a’) 
surrounding the iron. These flux lines as at ‘a’ 
are called leakage flux.
 Let  φi = total flux produced i.e., flux in the ***iron ring
   φg = useful flux across the air gap
 \    Leakage flux,  φleak = φi – φg

   Leakage coefficient, l = 
Total flux
Useful flux

i

g

φ=
φ

 The value of leakage coefficients for electrical machines is usually about 1.15 to 1.25. 
 Magnetic leakage is undesirable in electrical machines because it increases the weight as well 
as cost of the machine. Magnetic leakage can be greatly reduced by placing source of m.m.f. close 
to the air gap.
 Fringing. When crossing an air gap, magnetic lines of force tend to bulge out such as lines 
of force at bb in Fig. 8.7. It is because lines of force repel each other when passing through non-

* This means that we may consider either path, say path BE, and calculate AT required for it. The same AT 
will also send the flux (φ3 in this case) through the other parallel path BCDE. The situation is similar to that 
of two resistors R1 and R2 in parallel in an electric circuit.  The voltage V required to send currents (say I1 
and I2) in the resistors is equal to that appearing across either resistor i.e. V = I1 R1 = I2 R2.

** Air is not a good magnetic insulator. Therefore, leakage of flux from iron to air takes place easily.
*** The flux φi is not constant all around the ring. However, for reasonable accuracy, it is assumed that the iron 

carries the whole of the flux produced by the coil. 

Fig. 8.7
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magnetic material such as air. This effect is known as fringing. The result of bulging or fringing is 
to increase the effective area of air gap and thus decrease the flux density in the gap. The longer the 
air gap, the greater is the fringing and vice-versa.
 Note. In a short air gap with large cross-sectional area, the fringing may be insignificant. In other situations, 
10% is added to the air gap’s cross-sectional area to allow for fringing.

8.10.  Solenoid
 A long coil of wire consisting of closely packed loops is called a solenoid.
 The word solenoid comes from Greek word 
meaning ‘tube-like’. By a long solenoid we 
mean that length of the solenoid is very large as 
compared to its diameter. When current is passed 
through the coil of air-cored solenoid, magnetic 
field is set up as shown in Fig. 8.8. The path of the 
magnetic flux is made up of two components :
 (i) length l1 of the path within the coil
 (ii) length l2 of the path outside the coil.
 The total m.m.f. required for the solenoid is the sum of m.m.f.s required for these two paths i.e.
 Total m.m.f. = m.m.f. for path l1 + m.m.f. for path l2
 But m.m.f. for path l1 *>> m.m.f. for path l2
 \ Total m.m.f. = m.m.f. for path l1
 Hence, for a solenoid (air-cored or iron-cored), the length of the magnetic circuit is the coil 
length l1. We can use right-hand rule to determine the direction of magnetic field in the core of the 
solenoid.
 Example 8.1. A cast steel electromagnet has an air gap length of 3 mm and an iron path of 
length 40 cm. Find the number of ampere-turns necessary to produce a flux density of 0.7 Wb/m2 in 
the gap. Neglect leakage and fringing. Assume ampere-turns required for air gap to be 70% of the 
total ampere-turns.
 Solution. Air-gap length, lg = 3 mm = 3 × 10–3 m
  Flux density in air gap, Bg = 0.7 Wb/m2

 \  Magnetising force, Hg  = 
0

g

r

B
µ µ  = 7

0.7

4 10 1−π × ×
 = 5.57 × 105 AT/m

  AT required for air gap, ATg = Hg × lg = 5.57 × 105 × 3 × 10–3 = 1671 AT

   It is given that : ATg = 70% of total AT

 \  Total AT = 1671
0.7 0.7

gAT
=  = 2387 AT

 Example 8.2. An iron ring has a cross-sectional area of 400 mm2 and a mean diameter of  
25 cm. It is wound with 500 turns. If the value of relative permeability is 250, find the total flux set 
up in the ring. The coil resistance is 474 Ω and the supply voltage is 240 V.
* The lengths l2 and l1 do not differ very much. However, the cross-sectional area of path l2 is very large as 

compared to that of path l1. Therefore, reluctance of path l2 is very small as compared to that of path l1.
 Now, m.m.f. = flux × reluctance 
 Since reluctance of path l2 is very small, the m.m.f. required for this path is negligible compared to that for 

path l1.   

Fig. 8.8
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 Solution. The conditions of the problem are represented in Fig. 8.9.

Fig. 8.9

  Current through the coil, I = V/R = 240/474 = 0·506 A
 Mean length of magnetic circuit is given by ; 
   l = π × (25 × 10−2) = 0·7854 m

   Magnetising force, H = 
500 0.506

0.7854
Nl
l

×=  = 322.13 AT/m

   Flux density, B = µ0 µr H = (4π × 10−7) × 250 × 322·13 = 0·1012 Wb/m2

 \  Flux in the ring, φ = B × a = 0·1012 × (400 × 10−6) = 40·48 × 10−6 Wb
 Example 8.3. An iron ring of cross-
sectional area 6 cm2 is wound with a wire 
of 100 turns and has a saw cut of 2 mm. 
Calculate the magnetising current required 
to produce a flux of 0·1 mWb if mean length 
of magnetic path is 30 cm and relative 
permeability of iron is 470.
 Solution. The conditions of the problem 
are represented in Fig. 8.10. It will be as-
sumed that flux density in the air gap is equal 
to the flux density in the core i.e. fringing is 
neglected. This assumption is quite reasonable in this case.

 Flux density, B = 
3

4

0.1 10

6 10a

−

−
×φ =

×
 = 0.167 Wb/m2

 Ampere-turns required for iron will be : 
  ATi = Hi × li

   = 7
0

0.167
0.3

4 10 470
i

r

B l −× = ×
µ µ π × ×

 = 84.83 AT

  Ampere-turns required for air will be :

  ATg = 3
7

0

0 167 (2 10 ) 265 8
4 10

g
B l −

−
⋅× = × × = ⋅

µ π ×
 AT

 \ Total AT = 265·8 + 84·83 = 350·63 AT
 \  Magnetising current, I = 350·63/N = 350·63/100 = 3·51 A
 It may be seen that many more ampere-turns are required to produce the magnetic flux through 
2 mm of air gap than through the iron part. This is expected because reluctance of air is much more 
than that of iron.

Fig. 8.10



394    Basic  Electrical  Engineering 

 Example 8.4. A circular iron ring has a mean circumference of 1·5 m and a cross-sectional area 
of 0·01 m2. A saw-cut of 4 mm wide is made in the ring. Calculate the magnetising current required 
to produce a flux of 0·8 mWb in the air gap if the ring is wound with a coil of 175 turns. Assume 
relative permeability of iron as 400 and leakage factor 1·25.
 Solution. φg = 0·8 × 10−3 Wb ; a = 0·01 m2 ; li = 1·5m ; lg = 4 × 10−3 m

 AT for air gap Bg = 
30.8 10

0.01
g

a

−φ ×=  = 0.08 Wb/m2

   Hg = 7
0

0 08
63662 AT/m

4 10

gB
−

⋅= =
µ π ×

 \  ATg = Hg  × lg = 63662 × (4 × 10−3) = 254·6 AT
 AT for iron path φi = φg × λ = 0·8 × 10−3 × 1·25 = 10−3 Wb
   Bi = φi/a = 10−3/0·01 = 0·1 Wb/m2

   Hi = 
7

0

0 1
199 AT/m

4 10 400r

iB
−

⋅
= =

µ µ π × ×

 \  ATi = Hi  × li = 199 × 1·5 = 298·5 AT

 \  Total AT = 254·6 + 298·5 = 553·1 AT

 \  Magnetising current, I = 553·1/N = 553·1/175 = 3·16 A
 Example 8.5. A shunt field coil is required to develop 1500 AT with an applied voltage of  
60 V. The rectangular coil is having a mean length of 50 cm. Calculate the wire size. Resistivity of 
copper may be assumed to be 2 × 10–6 Ω-cm at the operating temperature of the coil. Estimate also 
the number of turns if the coil is to be worked at a current density of 3 A/mm2.
 Solution. Suppose the number of turns of coil is N. 
 Then the total length of the coil, l = 50 × N cm 
   Current in coil, I = V/R = 60/R

   Resistance of coil, R = 
4

6 50 10
2 10

N Nl
A A A

−
− × ×ρ = × × =  ...(i)

 Also  NI = 1500 or N × (60/R) = 1500 \ R = N/25 ...(ii)

 From eqs. (i) and (ii), 
25
N  = 

410N
A

−×
 or A = 25 × 10–4 cm2 = 0·25 mm2

 If D is the diameter of the wire, then,

   2

4
Dπ  = 0·25 or D = 0·568 mm

 In order to operate the coil at a current density of 3 A/mm2, the current in the coil is
   I ′ = A × current density = 0·25 × 3 = 0·75 A
 \  N ′I ′ = 1500 or N ′ = 1500/I ′ = 1500/0·75 = 2000
 Example 8.6. An iron ring has a mean diameter of 15 cm, a cross-section of 20 cm2 and a radial 
gap of 0·5 mm cut in it. It is uniformly wound with 1500 turns of insulated wire and a magnetising 
current of 1 A produces a flux of 1 mWb. Neglecting the effect of magnetic leakage and fringing, 
calculate (i) reluctance of the magnetic circuit, (ii) relative permeability of iron and (iii) inductance 
of the winding.
 Solution. (ii)  a = 20 × 10–4 m2 ; li = π × 0·15 = 0·471 m ; lg = 0·5 × 10–3 m

  Flux density in air gap,  B = 
3

4

1 10

20 10a

−

−
×φ =
×

 = 0·5 Wb/m2
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  Magnetising force in air gap, Hg = B/µ0 = 0·5/4π × 10–7 = 398 × 103 AT/m
  Ampere-turns for air gap, ATg = Hg × lg = (398 × 103) × 0·5 × 10–3 = 199 AT
  Total AT provided = NI = 1500 × 1 = 1500 AT
 \  AT available for iron part, ATi = 1500 – 199 = 1301 AT

  Magnetising force in iron, Hi = 1301
0.471

i

i

AT
l

=  = 2762 AT/m

 Now, B = µ0µr Hi

 \  µr = 7
0

0.5
µ 4 10 2762i

B
H −=

π × ×
 = 144

 (i)  Reluctance of air gap = 
3

4 7
0

0 5 10
µ (20 10 ) 4 10

gl
a

−

− −
⋅ ×=

× × π ×
 = 1·99 × 105 AT/Wb

  Reluctance of iron part = 4 7
0

0.471
µ (20 10 ) 4 10 144

i

r

l
a − −=

µ × × π × ×
 = 13·01 × 105 AT/Wb

 \  Total circuit reluctance = 105 (1.99 + 13.01) = 15 × 105 AT/Wb

 (iii)  Inductance of winding = 
3(1500) (1 10 )

1
N
I

−× ×φ =  = 1.5 H  

 Example 8.7. A magnetic circuit is constructed as shown in Fig. 8.11. Both sections A and B 
are of 20 mm by 20 mm square cross-section and the mean dimensions are 100 mm by 80 mm. The 
relative permeability of section A is 250 and of section B is 500. Find the reluctance of each section 
and the total circuit reluctance.
 If the joints between sections A and B have an air gap of 0·5 mm at each joint, find the total 
reluctance of the circuit.
 Solution. The conditions of the problem are represented in Fig. 8.11. The area of X-section of 
the core, a = 20 × 20 = 400 mm2 = 4 × 10–4 m2.
 Section A
 Length of magnetic path, lA = 80 + 10 + 10 = 100 mm = 0·1 m

 \  Reluctance of section A = 4 7
0

0 1
µ µ (4 10 ) 4 10 250

A

r

l
a − −

⋅=
× × π × ×

 = 0·796 × 106 AT/Wb

Fig. 8.11
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 Section B
 Length of magnetic path, lB = 80 + 90 + 90 = 260 mm = 0·26 m

 \  Reluctance of section B = 4 7
0

0 26
µ µ (4 10 ) 4 10 500

B

r

l
a − −

⋅=
× × π × ×

 = 1·035 × 106 AT/Wb

 \ Total circuit reluctance = 106 (0·796 + 1·035) = 1·831 × 106 AT/Wb
 Regarding the second part of the problem, the total length of air gaps is lg = 2 × 0·5 = 1 mm  
= 0·001 m.

 \  Reluctance of air gaps = 4 7
0

0 1
µ (4 10 ) 4 10

gl
a − −

⋅=
× × π ×

 = 1·99 × 106 AT/Wb

 \ Total circuit reluctance = 106 (1·831 + 1·99) = 3·821 × 106 AT/Wb
 The reader may note that the reluctance of even small air gaps is very large. It is very important, 
therefore, that the joints of magnetic circuits — for example, the core of a transformer — should be 
tightly bolted together.

 Note. The air gap is very small. Therefore, the magnetic length of iron part is the same in the two cases.

 Example 8.8. A rectangular iron core is shown in Fig. 
8.12. It has a mean length of magnetic path of 100 cm, cross-
section of 2 cm × 2 cm, relative permeability of 1400 and 
an air gap of 5 mm cut in the core. The three coils carried 
by the core have number of turns Na = 335, Nb = 600 and  
Nc = 600 and the respective currents are 1·6 A, 4 A and  
3 A. The directions of the currents are as shown in  
Fig. 8.12. Find the flux in the air gap.
 Solution. By applying right-hand rule for the coil, it 
is easy to see that fluxes produced by currents Ia and Ib are in the clockwise direction through the 
iron core while the flux produced by current Ic is in the anticlockwise direction through the core.
 \  Net m.m.f. = NaIa + NbIb – NcIc = 335 × 1·6 + 600 × 4 – 600 × 3 = 1136 AT

  Reluctance of air gap = 
3

7 4
0

5 10
µ 4 10 4 10

gl
a

−

− −
×=

π × × ×
 = 9·946 × 106 AT/Wb

  Reluctance of iron path = 
2

7 4
0

(100 0 5) 10
µ µ 4 10 1400 4 10

i

r

l
a

−

− −
− ⋅ ×=

π × × × ×
 = 1·414 × 106 AT/Wb

 \  Total reluctance = (9·946 + 1·414) × 106 = 11·36 × 106 AT/Wb
 The statement of the example suggests that there is no leakage flux. Therefore, flux in the air 
gap is the same as in the iron core.

 \  Flux in air gap = 6
Net m.m.f. 1136

Total reluctance 11 36 10
=

⋅ ×
 = 100 × 10–6 Wb = 100 µWb

 Example 8.9. An angular ring of wood has a cross-sectional area of 4 cm2 and a mean diameter 
of 30 cm. It is uniformly wound with 1200 turns of wire having a resistance of 6 Ω. The core of the 
second ring, with same dimensions and similarly wound, is made of a magnetic material of relative 
permeability 50. When the two windings are connected in parallel to a battery, the sum of the two 
fluxes in the two cores is 0·2 mWb [See Fig. 8.13]. Find the terminal voltage of the battery.

Fig. 8.12
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Fig. 8.13
 Solution. The windings will carry the same current I as their resistances are equal. Moreover, 
each ring has the same mean magnetic length l = π × 0·3 = 0·942 m.

 Wooden ring. Reluctance = 4 7
0

0 942
µ µ (4 10 ) 4 10 1r

l
a − −

⋅=
× × π × ×

 = 18·74 × 108 AT/Wb

 Now, m.m.f. = flux × reluctance

 \ Flux in wooden ring, φ1 = 8
m.m.f. 1200

reluctance 18 74 10

I=
⋅ ×

 = 6·4 × 10–7 I Wb

 Iron ring. Reluctance = 4 7
0

0 942
µ µ (4 10 ) 4 10 50r

l
a − −

⋅=
× × π × ×

 = 0·375 × 108 AT/Wb

 \ Flux in the iron ring, φ2 = 8
1200

0 375 10

I
⋅ ×

 = 320 × 10–7 I Wb

 \ Total flux in the two rings = (6·4 + 320) 10–7 I = 326·4 × 10–7 I Wb
 But the sum of two fluxes in the rings is given to be 0·2 × 10–3 Wb.

 \  326·4 × 10–7 I = 0·2 × 10–3 or I = 
3

7

0 2 10

326 4 10

−

−
⋅ ×
⋅ ×

 = 6·13 A

 \ Battery terminal voltage = IR = 6·13 × 6 = 36·78 V
 Example 8.10. In the magnetic circuit shown in Fig. 8.14, find (i) the total reluctance of the 
magnetic circuit and (ii) value of flux linking the coil. Assume that the relative permeability of the 
magnetic material is 800. The exciting coil has 1000 turns and carries a current of 1·25 A.

Fig. 8.14
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 Solution. The total flux φ set up by the exciting coil is divided into two parallel paths viz. path 
AGFE and path ABCDE. Since the two parallel paths are identical, each path will carry a flux = φ/2 
and that each parallel path has the same reluctance.

 lAE = 10 cm ; lAG = lFE = 12 cm ; lGF = 2 mm ; a = 2 × 2 = 4 cm2

 (i)  Reluctance of magnetic path AGFE
    = 2* (Reluct. of path AG) + Reluct. of air gap GF

    = 
0 0

2
µ µ µ
AG GF

r

l l
a a

  +  

    = 
3

4 7 4 7

2 100 122
(4 10 ) 4 10 800 4 10 4 10

−

− − − −

  ×⋅ + 
× × π × × × × π × 

    = 5·968 × 105 + 39·788 × 105 = 45·756 × 105 AT/Wb
 Reluctance of magnetic path AE will be

    = 4 7
0

0 1
µ µ (4 10 ) 4 10 800

AE

r

l
a − −

⋅=
× × π × ×

 = 2·486 × 105 AT/Wb

 Total reluctance of magnetic circuit will be
    = 45·75 × 105 + 2·486 × 105 = 48·242 × 105 AT/Wb
 (ii)  m.m.f. = flux × reluctance
 or  1000 × 1·25 = φ × (48.242 × 105)

 \  φ = 5

1000 1 25

48 242 10

× ⋅
⋅ ×

 = 25·9 × 10–5 Wb

 Example 8.11. A magnetic circuit consists of three parts in series, each of uniform cross-sec-
tional area. They are :
 (a) a length of 80 mm and cross-sectional area 50 mm2

 (b) a length of 60 mm and cross-sectional area 90 mm2

 (c) an air gap of length 0·5 mm and cross-sectional area 150 mm2.
 A coil of 4000 turns is wound on part (b) and the flux density in the air gap is 0·3 Wb/m2. 
Assuming that all the flux passes through the given circuit, and that relative permeability µr is 1300, 
estimate the coil current to produce such a flux density.
 Solution.  Flux in the circuit, φ  = Bg × ag = 0·3 × 1·5 × 10–4 = 0·45 × 10–4 Wb/m2

  m.m.f. required for part (a) = φ Sa = 
0µ µ

a

r a

l
a

φ ×

    = 
3

4
7 6

80 10
0 45 10

4 10 1300 50 10

−
−

− −
×⋅ × ×

π × × × ×
 = 44·07 AT

  m.m.f. required for part (b) = φ Sb = 
0µ µ

b

r b

l
a

φ ×

    = 
3

4
7 6

60 10
0 45 10

4 10 1300 90 10

−
−

− −
×⋅ × ×

π × × × ×
 = 18·4 AT

  m.m.f. required for part (c) = φ Sc = 
0µ
c

c

l
a

φ ×

    = 
3

4
7 6

0 5 10
0 45 10

4 10 150 10

−
−

− −
⋅ ×⋅ × ×

π × × ×
 = 119·3 AT

   Total m.m.f. required = 44·07 + 18·4 + 119·3 = 181·77 AT

* Reluctance of path AG = Reluctance of path FE
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 \  NI = 181·77 or I = 181·77/N = 181·77/4000 = 45·4 × 10–3 A = 45·4 mA
 Since the absolute permeability of air (m0) is much smaller than that of a ferromagnetic 
material, the value of reluctance of air gap (= lg/agm0) is much greater than the reluctance of 
adjacent magnetic material (= li/aim0mr). Therefore, the m.m.f. required to force flux through the 
air gap can be quite large.
 Example 8.12. A laminated soft-iron ring has a mean circumference of 600 mm, cross-sectional 
area 500 mm2 and has a radial air gap of 1 mm cut through it. It is wound with a coil of 1000 turns. 
Estimate the current in the coil to produce a flux of 0·5 mWb in the air gap assuming :
 (i) the relative permeability of the soft iron is 1000, (ii) the leakage factor is 1·2, (iii) fringing 

is negligible, (iv)  the space factor is 0·9.
 Solution. AT for air-gap 
  φg = 0·5 mWb = 5 × 10–4 Wb ; lg = 1 × 10–3 m ; ag = 500 × 10–6 m2

   m.m.f. for air gap = φg Sg = 
0µ
g

g
g

l
a

φ ×

    = 
3

4
7 6

1 10
5 10

4 10 500 10

−
−

− −
×× ×

π × × ×
 = 795·7 AT

 AT for iron part 
  φi = φg × 1·2* = 5 × 10–4 × 1·2 Wb ; li = 600 × 10–3 m ; ai = 500 × 10–6 × 0·9**m2

 \  m.m.f. for iron part = φi Si = 
0µ µ

i
i

r i

l
a

φ ×

    = 
3

4
7 6

600 10
5 10 1 2

4 10 1000 500 10 0 9

−
−

− −
×× × ⋅ ×

π × × × × × ⋅
    = 636·6 AT
 \  Total m.m.f. required = 795·7 + 636·6 = 1432·3 AT
 Now  NI = 1432·3 \ I = 1432·3/N = 1432.3/1000 = 1·432 A
 Note that AT for air-gap are comparable to that for iron part. It is because length of air gap is 
very small.
 Example 8.13. The ring-shaped core shown in Fig. 8.15 is made of material having relative 
permeability 1000. The flux density in the thicker section is 1·5 T. If the current through the coil is 
not to exceed 0·5 A, find the number of turns of the coil.
 Solution. The statement of the problem suggests 
that flux in the thicker as well as in thin section is the 
same i.e. it is a series magnetic circuit.
 Flux in the magnetic circuit is
  φ = 1·5 × 6 × 10–4

   = 9 × 10–4 Wb
 AT for thick section

  H1 = 1
7

0

1 5
µ µ 4 10 1000r

B
−
⋅=

π × ×
 = 1194 AT/m

  m.m.f. for thick section = H1 l1 = (1194) × (10 × 10–2) 
* The leakage factor refers to the flux leakage in the iron part of the magnetic circuit.

   Leakage factor = Total flux
Useful flux

**   Space factor = Useful area
Total area

             Fig. 8.15
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                                  =  119·4 AT

 AT for thin section B2 = 
4

4

9 10

4 10a

−

−
×φ =
×

 = 2·25 T

   H2 = 2
7

0

2 25
µ µ 4 10 1000r

B
−
⋅=

π × ×
 = 1790 AT/m

   m.m.f. for thin section = H2 l2 = (1790) × (25 × 10–2) = 448 AT

 \  Total m.m.f. required = 119·4 + 448 = 567·4 AT
 Now NI = 567·4 or N = 567·4/I = 567·4/0·5 = 1135
 Example 8.14. A steel ring 30 cm mean diameter and of circular section 2 cm in diameter has 
an air gap 1 mm long. It is wound uniformly with 600 turns of wire carrying current of 2·5 A. Find 
(i) total m.m.f., (ii) total reluctance and (iii) flux. Neglect magnetic leakage. The iron path takes 40% 
of the total m.m.f.
 Solution. (i) Total m.m.f. = NI = 600 × 2·5 = 1500 AT
 (ii)  Let M1 and M2 be the m.m.f. for iron part and air gap respectively and S1 and S2 their 
corresponding reluctances. 
   M1 = 40% of 1500 = (40/100) × 1500 = 600 AT
   M2 = 1500 – 600 = 900 AT
 Now, M1 = φS1 and M2 = φS2

 \  1

2

S
S  = 1

2

600
900

M
M

=  = 0·67

   S2 = 
3

2 2 7
0

1 10

(1 10 ) 4 10

gl
a

−

− −
×=

µ π × × π ×
 = 2·5 × 106 AT/Wb

 \  S1 = 0·67S2 = 0·67 × (2·5 × 106) = 1·675 × 106 AT/Wb
   Total reluctance = S1 + S2 = (1·675 + 2·5) × 106 = 4·175 × 106 AT/Wb

 (iii)  Flux = 6
Total m.m.f. 1500

Total reluctance 4 175 10
=

⋅ ×
    = 0·36 × 10–3 Wb = 0·36 mWb
 Example 8.15. A cast steel magnetic structure made of a bar of section 2 cm × 2 cm is shown 
in Fig. 8.16. Determine the current that the 500 turn magnetising coil on the left limb should carry 
so that a flux of 2mWb is produced in the right limb. Take µr = 600 and neglect leakage.
 Solution. The magnetising coil on the left 
limb produces flux φ which divides into two 
parallel paths; φ1 in path B and φ2 in path C. Since 
paths B and C are in parallel, AT required for path  
B (= φ1 SB) are equal to that required for path C ( = φ2 Sc) i.e.

   φ1SB = φ2Sc

 or  1
0

B

r

l
a

φ ×
µ µ  = 2

0

C

r

l
a

φ ×
µ µ

 \  φ1 = 2
C

B

l
l

φ ×  = 25 102 mWb
15 3

× =  (∵  φ2 = 2mWb)

 Total flux in path A, φ = φ1 + φ2 = 10 162 mWb
3 3

+ =

Fig. 8.16
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 Total AT required for the whole magnetic circuit are equal to the sum of (i) AT required for path 
A and (ii) AT required for one of the parallel paths B or C.

  Flux density in path A, BA = 
3

2
4

(16 3) 10 40 Wb m
34 10a

−

−
×φ = =

×

  AT required for path A = 7
0

(40 3)
0.25

4 10 600
A

A
r

B l −× × ×
µ µ π × ×

 = 4420 AT

  Flux density in path B, BB = 
3

1
4

(10 3) 10

4 10a

−

−
φ ×=

×
 = 8.33 Wb/m2

  AT required for path B = 
0

B
B

r

B l×
µ µ  = 7

8.33 0.15
4 10 600− ×

π × ×
 = 1658 AT

 \  Total AT required = 4420 + 1658 = 6078 AT

 Now, NI = 6078  \ I = 6078
N  = 6078

500
 = 12.16 A

 Example 8.16. A magnetic core made of annealed sheet steel has the dimensions as shown in 
Fig. 8.17. The X-section is 25 cm2 everywhere. The flux in branches A and B is 3500 µWb but that in 
the branch C is zero. Find the required ampere-turns for coil A and for coil C. Relative permeability 
of sheet steel is 1000.

Fig. 8.17
 Solution. AT for coil A. Flux paths B and C are in parallel. Therefore, AT required for coil A is 
equal to AT for path A plus AT for path B or path C.

  AT for path A = flux × reluctance = 6
4 7

0 8(3500 10 )
(25 10 ) 4 10 1000

−
− −

⋅× ×
× × π × ×

 = 891·3 AT

 AT for path B = flux × reluctance = 6
4 7

0 3
(3500 10 )

(25 10 ) 4 10 1000
−

− −

⋅× ×
× × π × ×

 =  334·2 AT

 Total AT for coil A = 891·3 + 334·2 = 1225·5 AT
 AT for coil C. The coil C produces flux φC µWb in the opposite direction to that produced by coil A.
   m.m.f. of path B = m.m.f. of path C
   φB SB = φC SC

 or  6

0

(3500 10 )
µ µ

B

r

l
a

−× ×  = 
0µ µ
C

C
r

l
a

φ ×

 \ φC = (3500 × 10–6) × lB/lC = (3500 × 10–6) × 0·3/0·8 = 1312·5 µWb
   Total AT for coil C = φC × reluctance

    = 6
4 7

0 8(1312 5 10 )
(25 10 ) 4 10 1000

−
− −

⋅⋅ × ×
× × π × ×

= 334.22 AT 
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 Example 8.17. A magnetic circuit is shown in 
Fig. 8.18. It is made of cast steel 0.05 m thick. The 
length of air gap is 0.003 m. Find the m.m.f. to es-
tablish a flux of 5 × 10–4 Wb in the air gap. The 
relative permeability for the material is 800.
 Solution. The flux φ set up by the current-
carrying coil in the path bhga divides into two 
parallel paths viz path ab and path aedb. Therefore, 
total m.m.f. required is equal to AT required for path 
bhga plus AT required for one of the parallel paths 
(i.e. path aedb or path ab) i.e.
 Total m.m.f = AT for path aedb + AT for path bhga
 1. AT for path aedb. The m.m.f. required for this path is equal to AT required for air gap ed plus 
AT required for steel path (ae + db)
 (i) AT for air gap. φg = 5 × 10–4 Wb ; ag = 0.05 × 0.05 = 0.0025 m2 ; lg = 0.003 m

 \  Bg = g

ga
φ

 = 
45 10

0.0025

−×
 = 0.2 Wb/m2

 Now, Hg = 
0

gB
µ  = 7

0.2

4 10−π ×
 = 15.92 × 104 AT/m

 \  ATg = Hg × lg = 15.92 × 104 × 0.003 = 477.6 AT
 (ii) AT for steel path (ae + db). The flux density in this path is also 0.2 Wb/m2.
   lae + lbd = 0.5 – 0.003 = 0.497 m

 Magnetising force, Hs = 
0

0.2

rµ µ  = 7
0.2

4 10 800−π × ×
 = 198.94 AT/m

 \  ATs = 198.94 × 0.497 = 98.87 AT
 \ AT required for path aedb =  477.6 + 98.87 = 576.47 AT = ATab

 2. AT for path bhga. We first find flux φ in this path. Now, lab = 0.2 m.
 Also, ATab = 576.47 AT ... Calculated above

   Flux density, Bab = 0ab r

ab

AT
l
× µ µ

 = 
7576.47 4 10 800

0.2

−× π × ×
 = 2.898 Wb/m2

                                 Flux,  φab = Bab × a = 2.898 × 0.0025 = 0.007245 Wb
 \  φ = φg + φab = 5 × 10–4 + 0.007245 = 0.007745 Wb

  Flux density in path bhga =  a
φ  = 0.007745

0.0025
 = 3.098 Wb/m2

   Magnetising force, H = 7
0

3.098 3.098

4 10 800r
−=

µ µ π × ×
 = 3081.63 AT/m

   Length of path bhga, l = 0.5 m

 AT for path bhga = H × l = 3081 .63 × 0.5 = 1540.815 AT

 \ Total m.m.f. required = 576.47 + 1540.815 = 2117.285 AT
 Example 8.18. The magnetic core shown in Fig. 8.19 has the following dimensions :
 l1 = 10 cm ; l2 = l3 = 18 cm ; cross-sectional area of l1 path = 6.25 × 10–4 m2 ; cross-sectional 
areas of l2 and l3 paths = 3 × 10–4 m2 ; length of air gap, l4 = 2mm.

Fig. 8.18
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 Determine the current that must be passed through the 600-turn coil to produce a total flux of 
100 µWb in the air gap. Assume that the metal has relative permeability of 800.

Fig. 8.19
 Solution. φg = 100 µWb = 100 × 10–6 Wb ; ag = 6.25 × 10–4 m2

 AT for air gap. Bg = g

ga
φ

 = 
6

4

100 10

6.25 10

−

−
×
×

 = 0.16 Wb/m2

 Now, Hg = 
0µ
gB

 = 7
0.16

4 10−π ×
 = 1.27 × 105 AT/m

 \  ATg = Hg × lg = 1.27 × 105 × 2 × 10–3 = 254 AT
 AT for path l1. B1 =  0.16 Wb/m2 ; l1 = 10 × 10–2 m

 Now, H1 = 1

0 r

B
µ µ  = 7

0.16

4 10 800−π × ×
 = 159 AT/m

 \  AT1 = H1 × l1 = 159 × 10 × 10–2 = 15.9 AT
 Here, we neglect lg, being very small, compared to iron path. Paths l2 and l3 are similar so that 
total flux (= 100 × 10–6 Wb) divides equally between these two paths. Since paths l2 and l3 are in 
parallel, it is necessary to consider m.m.f. for only one of them. Let us find AT for path l2.
 AT for path l2. φ2 = 50 × 10–6 Wb ; µr = 800 ; l2 = 18 × 10–2 m

 \  B2 = 2

a
φ

 = 
6

4

50 10

3 10

−

−
×

×
 = 0.167 Wb/m2

 Now, H2 = 2

0 r

B
µ µ  = 7

0.167

4 10 800−π × ×
 = 166 AT/m

 \  AT2 = H2 × l2 = 166 × 18 × 10–2 = 29.9 AT

 \  Total AT = 254 + 15.9 + 29.9 = 300 AT

 Now, NI = 300 or I = 300 300
600N

=  = 0.5 A = 500 mA

Tutorial Problems

 1. It is required to produce a flux density of 0·6 Wb/m2 in an air gap having a length of 8 mm. Calculate the 
m.m.f. required.    [480 × 103 AT/m]

 2. A coil of 200 turns is wound uniformly over a wooden ring having a mean circumference of 60 cm and a 
uniform cross-sectional area of 5 cm2. If the current through the coil is 4A, calculate (i) the magnetising 
force (ii) the flux density and (iii) the total flux.  [(i) 1333 AT/m (ii) 1675 µWb/m2 (iii) 0·8375 µWb]

 3. A core forms a closed magnetic loop of path length 32 cm. Half of this path has a cross-sectional area 
of 2 cm2 and relative permeability 800. The other half has a cross-sectional area of 4 cm2 and relative 
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permeability 400. Find the current needed to produce a flux of 0·4 Wb in the core if it is wound with 
1000 turns of insulated wire. Ignore leakage and fringing effects. [636·8 A]

 4. An iron ring has a cross-sectional area of 400 mm2 and a mean diameter of 250 mm. An air gap of 1 mm 
has been made by a saw-cut across the section of the ring. If a magnetic flux of 0·3 mWb is required in 
the air gap, find the current necessary to produce this flux when a coil of 400 turns is wound on the ring. 
The iron has a relative permeability of 500. [3·84 A]

 5. An iron ring has a mean circumferential length of 60 cm and a uniform winding of 300 turns. An air gap 
has been made by a saw-cut across the section of the ring. When a current of 1 A flows through the coil, 
the flux density in the air gap is found to be 0·126 Wb/m2. How long is the air gap ? Assume iron has a 
relative permeability of 300.     [1 mm]

 6. An iron magnetic circuit has a uniform cross-sectional area of 5 cm2 and a length of 25 cm. A coil of 120 
turns is wound uniformly over the magnetic circuit. When the current in the coil is 1·5 A, the total flux 
is 0·3 Wb. Find the relative permeability of iron. [663]

 7. The uneven ring-shaped core shown in Fig. 8.20 has µr = 1000 and the flux density in the thicker section 
is to be 0.75 T. If the current through a coil wound on the core is to be 500 mA, determine number of 
coil turns required.     [567]

  Fig. 8.20 Fig. 8.21
 8. A rectangular magnetic core shown in Fig. 8.21 has square cross section of area 16 cm2. An air gap of  

2 mm is cut across one of its limbs. Find the exciting current needed in the coil having 1,000 turns wound 
on the core to create an air-gap flux of 4 mWb. The relative permeability of the core is 2000. [4.713 A]

 9. The magnetic circuit of Fig. 8.22 is energised by a current of 3A. If the coil has 1500 turns, find the flux 
produced in the air gap. The relative permeability of the core material is 3000. [65.25 × 10–4 Wb]

0.5 m
0.2 cm

25 SQ. CM.

Area
0.2 mm 0.2 mm21 cms

Cast steel

Cast iron

  Fig. 8.22 Fig. 8.23

 10. A ring [See Fig. 8.23] has a diameter of 21 cm and a cross-sectional area of 10 cm2. The ring is made up 
of semicircular sections of cast iron and cast steel with each joint having a reluctance equal to an air gap 
of 0.2 mm. Find the ampere turns required to produce a flux of 8 × 10–4 Wb. The relative permeabilities 
of cast steel and cast iron are 800 and 166 respectively. Neglect leakage and fringing effects. [1783 AT]

8.11.  B-H Curve
 The B-H curve (or magnetisation curve) indicates the manner in which the flux density (B) 
varies with the magnetising force (H).
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 (i)  For non-magnetic materials. For non-
magnetic materials (e.g. air, copper, rubber, wood 
etc.), the relation between B and H is given by ;
  B = µ0 H

 Since µ0 (= 4π × 10−7H/m) is constant,
 \ B ∝ H
 Hence, the B-H curve of a non-magnetic 
material is a straight line passing through the origin 
as shown in Fig. 8.24. Two things are worth noting. 
First, the curve never saturates no matter how great 
the flux density may be. Secondly, a large m.m.f. is required to produce a given flux in the non-
magnetic material e.g. air.
 (ii)  For magnetic materials. For magnetic materials (e.g. iron, steel etc.), the relation between 
B and H is given by ;
  B  = µ0 µr H

 Unfortunately, µr is not constant but varies with the flux density. Consequently, the B-H curve of 
a magnetic material is not linear. Fig. 8.25 (i) shows the general *shape of B-H curve of a magnetic 
material. The non-linearity of the curve indicates that relative permeability µr (= B/µ0H) of a material 
is not constant but depends upon the flux density. Fig. 8.25 (ii) shows how relative permeability µr 
of a magnetic material (cast steel) varies with flux density.

Fig. 8.25
 While carrying out magnetic calculations, it should be ensured that the values of µr and H are 
taken at the working flux density. For this purpose, the B-H curve of the material in question may be 
very helpful. In fact, the use of B-H curves permits the calculations of magnetic circuits with a fair 
degree of ease.

8.12.  Magnetic Calculations From B-H Curves
 The solution of magnetic circuits can be easily obtained by the use of B-H curves. The procedure 
is as under :
 (i) Corresponding to the flux density B in the material, find the magnetising force H from the 

B-H curve of the material.

Fig. 8.24

* Note the shape of the curve.  It is slightly concave up for ‘low’ flux densities (portion OA) and exhibits a 
straight line character (portion AB) for ‘medium’ flux densities.  In the portion AB of the curve, the µr of 
the material is almost constant.  For higher flux ‘densities’, the curve concaves down (called the knee of the 
curve).  After knee of the curve, any further increase in H does not increase B.  From now onwards, the 
curve is almost flat and the material is said to be saturated.  In terms of molecular theory, saturation can 
be explained as the point at which all the molecular magnets are oriented in the direction of applied H. 
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 (ii) Compute the magnetic length l.
 (iii) m.m.f. required = H × l

Fig. 8.26
 The reader may note that the use of B-H curves for magnetic calculations saves a lot of time. 
Fig. 8.26 shows the B-H curves for sheet steel, cast steel and cast iron.
 Note. We do not use B-H curve to find m.m.f. for air gap. We can find Hg directly from Bg/µ0 and hence 
the m.m.f. = Hg × lg. However, in a magnetic material, *Hi = Bi/µ0 µr. Since the value of µr depends upon the 
working flux density, this realtion will not yield correct result. Instead, we find Hi corresponding to Bi in the 
material from the B-H curve. Then m.m.f. required for iron path = Hi × li.
 Example 8.19. A cast steel ring of mean diameter 30 cm having a circular cross-section of  
5 cm2 is uniformly wound with 500 turns. Determine the magnetising current required to establish a 
flux of 5 × 10−4 Wb (i) with no air gap (ii) with a radial air gap of 1 mm.
 The magnetisation curve for cast steel is given by the following :
 B(Wb/m2) 0·2 0·4 0·6 0·8 1 1·2
 H(AT/m) 175 300 400 600 850 1250
 Solution. Plot the B-H curve from the given data as shown in Fig. 8.27.
 (i) With no air gap  

  Bi =  
4

4

5 10

5 10a

−

−
×φ =
×

 = 1 Wb/m2

 From the B-H curve, we find that for a flux density 
of 1 Wb/m2, the value of
  Hi = 850 AT/m
 Now, li = π D = π × 30 × 10−2

   = 0·942 m
 \ Total AT required = Hi × li
   = 850 × 0·942 = 800·7 AT
 \ Magnetising current, I  = 800·7/500 = 1·6 A 
 (ii) With air gap of 1 mm
  Flux density in air gap, Bg = 1 Wb/m2 (same as in steel)

* The suffix i denotes iron part while suffix g denotes air gap.

Fig. 8.27
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 Magnetising force required, *Hg = 7
0

1

4 10

B
−=

µ π ×
 = 7·96 × 105 AT/m

   AT required for air gap = Hg × lg = (7·96 × 105) × (1 × 10−3) = 796 AT
   Total AT required = 800·7 + 796 = 1596·7 AT
 \ Magnetising current, I = 1596·7/500 = 3·19 A
 Example 8.20. A magnetic 
circuit made of wrought iron is 
arranged as shown in Fig. 8.28. The 
central limb has a cross-sectional 
area of 8 cm2 and each of the side 
limbs has a cross-sectional area of 
5 cm2. Calculate the ampere-turns 
required to produce a flux of 1 
mWb in the central limb, assuming 
the magnetic leakage is negligible. 
Given that for wrought iron (from 
B-H curve), H = 500 AT/m at B = 
1·25 Wb/m2 and H = 200 AT/m at B = 1 Wb/m2. 
 Solution. The flux φ set up in the central limb divides equally into two identical parallel paths 
viz. path ABC and path AEC. The toal m.m.f. required for the entire circuit is the sum of the following 
three m.m.fs’ :
 (i) that required for path CD
 (ii) that required for air gap DA
 (iii) that required for either of parallel paths (i.e. path ABC or path AEC).
 (i) AT for path CD  
   B = 

3

4

1 10

8 10a

−

−
×φ =
×

 = 1.25 Wb/m2

  Now H at 1·25 Wb/m2 = 500 AT/m (given)

 \ AT required for path CD = 500 × 0·15 = 75 AT
 (ii) AT for air gap DA
   H in air gap = 7

0

1 25

4 10

B
−

⋅=
µ π ×

 = 994·7 × 103 AT/m

 \  AT required for air gap = (994·7 × 103) × (0·1 × 10−2) = 994·7 AT
 (iii) AT for path ABC
   Flux in path ABC = φ/2 = 1/2 = 0·5 mWb

   Flux density in path ABC = 
3

4

0.5 10

5 10

−

−
×

×
 = 1 Wb/m2

   Now H at 1 Wb/m2 = 200 AT/m  (given)
  \ AT required for path ABC = 200 × 0·34 = 68 AT
 \  Total AT required = 75 + 994·7 + 68 = 1137·7 AT
 The reader may note that air gap “grabs” 87 per cent of the applied ampere-turns.

Fig. 8.28

* We do not use B-H curve to find AT for air gap. It is because µr for air (in fact for all non-magnetic 
materials) is constant, being equal to 1, and AT can be calculated directly.
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 Example 8.21. A series magnetic circuit comprises three sections (i) length of 80 mm with 
cross-sectional area 60 mm2, (ii) length of 70 mm with cross-sectional area 80 mm2 and (iii) air gap 
of length 0.5 mm with cross-sectional area 60 mm2. Sections (i) and (ii) are of a material having  
magnetic characteristics given by the following table.
 H(AT/m) 100 210 340 500 800 1500
 B(Tesla) 0.2 0.4 0.6 0.8 1.0 1.2
 Determine the current necessary in a coil of 4000 turns wound on section (ii) to produce a flux 
density of 0.7 T in the air gap. Neglect magnetic leakage.
 Solution. Air-gap flux density, Bg = 0.7 T   ;   Air-gap area, ag = 60 × 10–6 m2

 Air-gap, flux, φg = Bg × ag = 0.7 × 60 × 10–6 = 42 × 10–6 Wb
 Since it is a series magnetic circuit, the flux in each of the three sections will be the same  
(=φg = 42 × 10–6 Wb) but flux density will depend on the area of X-section of the section.
 AT for section (i). B = 0.7 T because it has the same cross-sectional area as the air gap. If we 
plot the B – H curve, it will be found that corresponding to B = 0.7 T, H = 415 AT/m.
 \ AT required for section (i) = H × l = 415 × 80 × 10–3 = 33.2 AT

 AT for section (ii). B = 
6

6

42 10

80 10

g

a

−

−

φ ×=
×

 = 0.525 T

 From B–H curve, corresponding to B = 0.525 T,  H = 285 AT/m.
 \ AT required for section (ii) = H × l = 285 × 70 × 10–3 = 19.95 AT
 AT for section (iii). This section is air gap.

   Bg = 0.7 T and Hg = 
0

gB
µ  = 7

0.7

4 10−π ×
 = 0.557 × 106 AT/m

 \ AT required for air gap = Hg × lg = 0.557 × 106 × 0.5 × 10–3 = 278.5 AT
 Total AT required = 33.2 + 19.95 + 278.5 = 331.6 AT

 Now, NI = 331.6 or I = 331.6
N  = 331.6

4000
 = 0.083 A

 Example 8.22. A magnetic circuit is made of mild steel 
arranged as shown in Fig. 8.29. The central limb is wound 
with 500 turns and has a cross-sectional area of 8cm2. Each 
of the outer limbs has a cross-sectional area of 5 cm2. The 
air gap has a length of 1 mm. Calculate the current required 
to set up a flux of 1·3 mWb in the central limb, assuming 
no magnetic leakage and fringing. The mean lengths of the 
various magnetic paths are shown in the diagram. Given that 
for mild steel (from B-H curve) H = 3800 AT/m at B = 1·625 T 
and H = 850 AT/m at B = 1·3 T.
 Solution. Flux density in the central limb

    = 
3

4

1.3 10Flux
cross-sectional area 8 10

−

−
×=

×
  = 1.625 T

   Given that H = 3800 AT/m at B = 1·625 T
 \  m.m.f. for central limb = H1 l1 = 3800 × 0·12 = 4·56 AT
 Since half the flux returns through one outer limb and half through the other, the two outer limbs 
are magnetically equivalent to a single limb having a cross-sectional area of 10 cm2 and a length of 
30 cm.
 \   Flux density in outer limbs = 

3

4

1.3 10

10 10

−

−
×
×

 = 1.3 T

Fig. 8.29
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   Given that H = 850 AT/m at B = 1·3 T

 \  m.m.f. for outer limbs = H2l2 = 850 × 0·3 = 255 AT

  Flux density in airgap, B = 1·625 T

 Magnetising force for air gap is given by ;

   H3 = 6
7

0

1 625 1 294 10 AT/m
4 10

B
−

⋅= = ⋅ ×
µ π ×

   m.m.f. for air gap = H3 l3 = (1·294 × 106) × (1 × 10−3) = 1294 AT
   Total m.m.f. = 456 + 255 + 1294 = 2005 AT

 \  Magnetising current, I = 
Total m.m.f. 2005

Turns 500
=   4A

 Example 8.23. Fig. 8.30 shows the cross-section of a simple relay. Calculate the ampere-turns 
required on the coil for a flux density of 0·1 Wb/m2 in the air gaps from the following data :
 Cross-sectional area of yoke = 2 cm2

 Magnetic length of yoke = 25 cm
 Cross-sectional area of armature = 3 cm2

 Magnetic length of armature = 12 cm
 Air gap area = 6 cm2

 Each air gap length = 5 mm
 Leakage coefficient = 1·33
 The yoke and armature material have the following magnetic characteristics :
 H (AT/m) 100 210 340 500 800 1500
 B (Wb/m2) 0·2 0·4 0·6 0·8 1·0 1·2
 Solution. Plot the B-H curve from the given data as shown in Fig. 8.31.
          Flux in air gap, φg  =  6 × 10–4 × 0·1 = 6 × 10–5 Wb = Flux in armature
    Flux in yoke, φy = λ φg = 1·33 × 6 × 10–6 = 7·98 × 10–5 Wb
 AT for armature
   Flux density in armature = 

5

4

6 10

3 10

−

−
×
×

 = 0·2 Wb/m2

        Corresponding to B  = 0·2 Wb/m2 (See B-H curve), H = 100 AT/m.
 \ AT required for armature = 100 × 0·12 = 12 AT

  Fig. 8.30 Fig. 8.31
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 AT for yoke
   Flux density in the yoke = 

5

4

7 98 10

2 10

−

−
⋅ ×

×
 = 0·4 Wb/m2

   Corresponding to B = 0·4 Wb/m2, H = 210 AT/m.
 \  AT required for yoke = 210 × 0·25 = 52·5 AT
 AT for air gaps
  Magnetising force in air gaps = 7

0

0 1 0 1
µ 4 10−

⋅ ⋅=
π ×

 = 7·96 × 104 AT/m

  AT for two air gaps = (7·96 × 104) × (10 × 10–3) = 796 AT

  Total AT required = 12 + 52·5 + 796 = 860·5 AT
 Example 8.24. An iron ring of mean diameter 19.1 cm and having cross-sectional area of 4 cm2 
is required to produce a flux of 0.44 mWb. Find the coil m.m.f. required. If a saw-cut 1 mm wide is 
made in the ring, how many extra ampere-turns are required to maintain the same flux ? B – µr curve 
is as follows :
 B(Wb/m2) 0.8 1.0 1.2 1.4
 µr 2300 2000 1600 1100
 Solution. Dm =  0.191 m ; a = 4 × 10–4 m2; φ = 0.44 × 10–3 Wb

 Length of mean path, lm = p Dm = p × 0.191 = 0.6 m

 Flux density in ring, Bi = 
3

4

0.44 10

4 10a

−

−
×φ =

×
 = 1.1 Wb/m2

 By *interpolation, for flux density of 1.1 Wb/m2, µr = 1800.

 \ Magnetising force, Hi = 
0

i

r

B
µ µ  = 7

1.1

4 10 1800−π × ×
 = 486.5 AT/m

 \ m.m.f. required = Hi × lm = 486.5 × 0.6 = 292 AT
 If a saw-cut of 1 mm wide is made in the ring, we require extra AT to maintain the same flux  
(= 0.44 × 10–3Wb).

 Now Hg = 
0

gB
µ  = 7

1.1

4 10−π ×
 = 875352 AT/m ; lg = 1 × 10–3 m

 \ Extra m.m.f. required = Hg × lg = 875352 × 1 × 10–3 = 875 AT
 Example 8.25. A transformer core made of annealed steel sheet has the form and dimensions 
shown in Fig. 8.32. A coil of N turns is wound on the central limb. The average length of magnetic 
circuit (i.e. path ABCDA or path EFGHE) is 30 cm. Determine the ampere-turns of the coil required 
to produce a flux density of 1 Wb/m2 in the central leg. What will be the total amount of flux in the 
central leg and in each outside leg ? Given that for annealed sheet steel (from B-H curve), H = 200 
AT/m at 1 Wb/m2.

* For B = 1.0 Wb/m2, µr = 2000 and for B = 1.2 Wb/m2, µr = 1600. By interpolation, we are to find µr for 
B = 1.1Wb/m2.

 If increase in B is 0.2 Wb/m2 (= 1.2 – 1.0 = 0.2), then decrease in µr is 400 (2000 – 1600 = 400). If increase 
in B is 0.1/Wb/m2 (1.1 – 1.0 = 0.1), then decrease in µr

   = 400 0.1
0.2

×  = 200

 \ µr at 1.1 Wb/m2 = 2000 – 200 = 1800
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Fig. 8.32

 Solution. It is a case of parallel magnetic circuit. It is clear from Fig. 8.32 that central leg has 
twice the area of an outside leg. The flux φ set up in the central limb divides equally into two parallel 
identical paths viz. path ABCD and path EFGH. It may be noted very carefully that flux density is 
the *same in the central leg, each outside leg and other parts.

 Mean length of magnetic path (i.e. path ABCDA and EFGHE)

    = 30 cm = 0·3 m

 \  AT required = 200 × 0·3 = 60 AT
   Area of central leg = 0·06 × 0·06 = 0·0036 m2

   Flux in central leg = Flux density × Area = 1 × 0·0036 = 0·0036 Wb
   Area of each outside leg = 0·03 × 0·06 = 0·0018 m2

   Flux in each outside leg = 1 × 0·0018 = 0·0018 Wb
 Alternatively, flux in each outside leg will be half that in the central leg i.e. 0·0036/2 = 0·0018 Wb.
 Example 8.26. A ring of cast steel has an external diameter of 24 cm and a square cross-section 
of 3 cm side. Inside and cross the ring, an ordinary steel bar 18 cm × 3 cm × 0·4 cm is fitted with 
negligible gap. Calculate the number of ampere-turns required to be applied to one half of the 
ring to produce a flux density of 1·0 weber per metre2 in the other half. Neglect leakage. The B-H 
characteristics are as below : 

For Cast Steel For Ordinary Plate
B in Wb/m2 1·0 1·1 1·2 B in Wb/m2 1·2 1·4 1·45

Amp-turn/m 900 1020 1220 Amp-turn/m 590 1200 1650

 Solution. The conditions of the problem lead to the magnetic circuit shown in Fig. 8.33. 
The equivalent electrical circuit is shown in Fig. 8.34. Note that m.m.f. is shown as a battery and 
reluctances as resistances. Referring to Fig. 8.33, the flux paths D and C are in parallel. Therefore, 
total AT required is equal to AT for path A plus AT for path C or path D.

* The area of central leg is ‘a’ and flux is φ so that B = φ/a. The area of each outside and other part of flux 
path is a/2 and flux is φ/2 so that B is again = φ/a.
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  Fig. 8.33 Fig. 8.34

   Mean diameter of ring = 
24 18

2
+

 = 21 cm

   Mean circumference = π × 21 = 66 cm
   Length of path A or C = 66/2 = 33 cm = 0·33 m

 AT for path C. We shall first determine AT required for path C because flux density in this path 
is known (1 Wb/m2). From the B-H characteristic, H corresponding to 1 Wb/m2 is 900 AT/m.

 \  AT required for path C = H × Length of path C
    = 900 × 0·33 = 297 AT

 AT for path D. Since paths C and D are in parallel, AT required for path D = 297 AT and H  
= 297/0·18 = 1650 AT/m. From the B-H characteristic, B corresponding to 1650 AT/m is 1·45  
Wb/m2.
   Flux through C, φC = B × A = 1 × 9 × 10–4 = 9 × 10–4 Wb

   Flux through D, φD = (1·45) × (3 × 0·4 × 10–4) = 1·74 × 10–4 Wb

 \  Flux through A, φA = φC + φD = (9 + 1·74) × 10–4 = 10·74 × 10–4 Wb

   Flux density in A = 
4

4

10 74 10

9 10

−

−
⋅ ×

×
 = 1·193 Wb/m2

 From the B-H characteristics, H corresponding to 1·193 Wb/m2 is 1200 AT/m (approx.).
 \  AT for path A = 1200 × 0·33 = 396 AT
 \  Total AT required = AT for path C + AT for path A
    = 297 + 396 = 693 AT

Tutorial  Problems
 1. A cast iron-cored toroidal coil has 3000 turns and carries a current of 0.1A . The length of the magnetic 

circuit is 15 cm and cross-sectional area of the coil is 4 cm2. Find H, B and total flux. Use the following 
B–H curve for cast iron :

   H(AT/m) : 200 400 1000 2000 3000
   B(T) : 0.1 0.19 0.375 0.57 0.625
   [2000 AT/m ; 0.57 T; 2.28 × 10–4 Wb]
 2. A series magnetic circuit has an iron path of length 50 cm and an air gap of length 1 mm. The cross- 

sectional area of the iron is 6 cm2 and the exciting coil has 400 turns. Determine the current required  
to produce a flux of 0.9 mWb in the circuit. The following points are taken from the magnetisation 
characteristic :

   B(Wb/m2) : 1.2 1.35 1.45 1.55
   H(AT/m) : 500 1000 2000 4500 [6.35 A]
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 3. A cast-steel ring of mean circumference 50 cm has a cross-section of 0.52 cm2. It has a saw-cut of 1 mm 
at one place. Given the following data :

  B(Wb/m2) : 1.0 1.25 1.46 1.60
  µr : 714 520 360 247
  Calculate how many ampere-turns are required to produce a flux of 0.052 mWb if leakage factor is 1.2.
      [1647 AT]
 4. A magnetic circuit with a uniform cross-sectional area of 6 cm2 consists of a cast steel ring with a mean 

magnetic length of 80 cm and an air gap of 2 mm. The magnetising  winding has 540 ampere-turns. 
Estimate the magnetic flux produced in the gap. The relevant points on the magnetisation curve of cast 
steel are : 

  B(Wb/m2) : 0.12 0.14 0.16 0.18 0.20
  H(AT/m) : 200 230 260 290 320 [0.1128 mWb]

8.13.  Determination of B/H or Magnetisation Curve
 The variation of permeability µ (= µ0µr) with flux density creates a design problem. Permeability 
must be known in order to find the flux density (B = µH) but permeability changes with flux 
density. This necessitates a graphical approach to magnetic circuit design. We plot B-H curves or 
magnetisation curves for various magnetic materials. The value of permeability is determined from 
the B-H curve of the material. The B-H curve can be determined by the following two methods 
provided the material is in the form of a ring : (i) By means of ballistic galvanometer, (ii) By means 
of fluxmeter.

8.14.  B-H Curve by Ballistic Galvanometer
 A ballistic galvanometer is similar in principle to the permanent moving coil instrument. It has 
a moving coil suspended between the poles of a permanent magnet. The coil is wound on a non-
metallic former so that there is very little damping. The first deflection or ‘throw’ is proportional to 
the charge passed through the galvanometer if the duration of the charge passed is short compared 
with the time of one oscillation.

Fig. 8.35

 Fig. 8.35 shows the circuit arrangement for the determination of B-H curve of a magnetic 
material by ballistic galvanometer. The specimen ring of uniform cross-section is wound uniformly 
with a coil P, thereby eliminating magnetic leakage. The primary coil P is connected to a battery 
through a reversing switch RS, an ammeter A and a variable resistor R1. Another secondary coil S 
(called search coil) is wound over a small portion of the ring and is connected through a resistance 
R to the ballistic galvanometer BG.
 Theory. We shall use subscript P for primary and subscript S for secondary.
 Let θ = first deflection or ‘throw’ of the galvanometer when primary current IP is reversed
  k = ballistic constant of the galvanometer i.e. charge per unit deflection
 \  Charge passing through BG = k θ coulombs ...(i)
 If φ is the flux produced in the ring by IP amperes through primary P and t the time in seconds 
of *reversal of flux, then,
* The flux changes from φ to − φ by changing reversing switch RS. Therefore, change in flux is 2φ Wb.
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   Rate of change of flux = 
2
t
φ

 Wb/s
 If NS is the number of turns in the secondary or search coil, then,

  Average e.m.f. induced in S = 
2

SN
t
φ×  volts

 If RS is the total resistance in the secondary circuit, then,

 Current through secondary or BG, IS = 
2 S

S

N
R t

φ
 amperes

 \ Charge through BG = IS × t = 
2 2S S

S S

N Nt
R t R

φ φ× =  coulombs        ...(ii)

  From eqs. (i) and (ii), we get, kθ = 
2 S

S

N
R

φ
 \ φ = 

2
S

S

k R
N
θ

 Wb

 If A is the area of cross-section of the ring in m2, then,

  Flux density in the ring, B = 
2

S

S

k R
A N A

θφ =  Wb/m2

 If NP is the number of turns on coil P, l the mean circumference of the ring and IP is the current 
through coil P, then,

  Magnetising force, H = P PN I
l

 The above experiment is repeated with different values of primary current and from the data 
obtained, the B-H curve can be plotted.

8.15.  B-H Curve by Fluxmeter
 In this method, the BG is replaced by the fluxmeter which is a special type of ballistic galva-
nometer. Its operation is based on the change in flux linkages.
 Theory.    Let θ = fluxmeter deflection when current through P is reversed
   c = fluxmeter constant i.e. Wb-turns per unit deflection
 \  Change of flux linkages with coil S = c θ ...(i)
 If the flux in the ring changes from φ to – φ when the current through the coil P is reversed and 
NS is the number of turns on coil S, then,
 Change of flux linkages with coil S = 2φ NS ...(ii)
 From eqs. (i) and (ii), we get, 2φ NS = c θ \ φ = 

2 S

c
N
θ

 Wb
 If A is the cross-sectional area of the ring in m2, then,

   Flux density, B = 
2 S

c
A N A

θφ =  Wb/m2

 Also, H = P PN I
l

      where l = mean circumference of the ring in metres
 Thus we can plot the B-H curve.
 Example 8.27. A fluxmeter is connected to a search coil having 600 turns and mean area of  
4 cm2. The search coil is placed at the centre of an air-cored solenoid 1 m long and wound with 1000 
turns. When a current of 4A is reversed, there is a deflection of 20 scale divisions on the fluxmeter. 
Calculate the calibration in Wb-turns per scale division.
 Solution. Here, NP = 1000 turns ; IP = 4A ; l = 1m ; NS = 600 turns ;  A = 4 × 10–4 m2. 
 Since the length of the solenoid is large compared to its diameter, the magnetising force inside 
the solenoid is uniform. Therefore, magnetising force H at the centre of the solenoid is 
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   H = P PN I
l  = 

1000 4
1

×
 = 4000 AT/m

 \ Flux density, B = µ0H = 4p × 10–7 × 4000 = 16p × 10–4 Wb/m2

 Flux linked with search coil, φ = BA = 16p × 10–4 × 4 × 10–4 = 64p × 10–8 Wb
 When current in the solenoid is reversed, the change in flux linkages with search coil
    = 2NSφ = 2 × 600 × 64p × 10–8 = 7.68p × 10–4 Wb-turns
 It c is the fluxmeter constant, then, value of c is given by ;

   c = 
Change in flux linkages

Deflection produced
 

    = 
47.68 10

20

−π ×
 = 1.206 × 10–4 Wb-turns/division

 Example 8.28. A solenoid 1·2 m long is uniformly wound with a coil of 800 turns. A short coil of 
50 turns, having a mean diameter of 30 mm, is placed at the centre of the solenoid and is connected 
to a ballistic galvanometer. The total resistance of the galvanometer circuit is 2000 Ω. When a cur-
rent of 5 A through the solenoid primary winding is reversed, the initial deflection of the ballistic 
galvanometer is 85 divisions. Determine the ballistic constant.
 Solution. Within the solenoid, we have,

   H = P PN I
l ; B = µ0H = 0µ P PN I

l
 \  Flux passing through the secondary or search coil of area A is

   φ = B × A = 0µ P PN I A
l

 Here,  NP = 800 ; IP = 5 A ; A = π × (15)2 × 10–6 m2 ; l = 1·2 m

 \  φ = 
7 2 64 10 800 5 ( 15 10 )

1 2

− −π × × × × π × ×
⋅  = 2·96 × 10–6 Wb

   Ballistic constant, k = 
62 2 50 2 96 10

2000 85
S

S

N
R

−φ × × ⋅ ×=
θ ×

    = 1·74 × 10–9 C/div = 1740 pC/div.
 Example 8.29. A steel ring, 400 mm2 cross-sectional area with a mean length 800 mm, is wound 
with a magnetising winding of 1000 turns. A secondary coil with 200 turns of wire is connected to a 
ballistic galvanometer having a constant of 1 µC/div. The total resistance of the secondary circuit is 
2 kΩ. On reversing a current of 1 A in the magnetising coil, the galvanometer gives a throw of 100 
scale divisions. Calculate :
 (i) The flux density in the specimen.
 (ii) The relative permeability at this flux density.
 Solution.
 (i) As proved in Art. 8·14, the flux density B within the ring is given by ;

   B = 
2

S

S

k R
N A
θ

 Here, k = 1 µC/div = 1 × 10–6 C/div ; θ = 100 divisions ;
   RS = 2 kΩ = 2000 Ω ; NS = 200 ; A = 400 mm2 = 400 × 10–6 m2

 \  B = 
6

6

(1 10 ) (100) (2000)

2 200 400 10

−

−
× × ×

× × ×
 = 1·25 T
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 (ii)  H = 3

1000 1

800 10
P PN I
l −

×=
×

 = 1·25 × 103 AT/m

 Now B = µ0 µr H

 \  Relative permeability, µr = 7 3
0

1.25
µ 4 10 1.25 10

B
H −=

π × × ×
 = 796

 Example 8.30. An iron ring has a mean diameter of 0·1 m and a cross-section of 33·5 × 10–6 
m2. It is wound with a magnetising winding of 320 turns and the secondary winding of 220 turns. On 
reversing a current of 10 A in the magnetising winding, a ballistic galvanometer gives a throw of 272 
scale divisions, while a Hilbert magnetic standard with 10 turns and a flux of 2·5 × 10–4 Wb gives a 
reading of 102 scale divisions, other conditions remaining the same. Find the relative permeability 
of the specimen.
 Solution. Within the iron ring, we have,
  Length of magnetic path, l = πD = 0·1π m

   H = 
320 10

0.1
P PN I
l

×=
π  = 10186 AT/m

   B = µ0 µr H = 4π × 10–7 × µr × 10186 = 0.0128 µr ...(i)
 From Hilbert’s magnetic standard, we have,
   2.5 × 10–4 × 10 = k × 102 \ k = 2.45 × 10–5 Wb-turn/div.
 On reversing a current of 10 A in the primary coil, change in terms of Wb-turn is
   2φ NS = kθ or 2 × φ × 220 = 2.45 × 10–5 × 272

 \  φ = 
52.45 10 272

2 220

−× ×
×  = 1.51 × 10–5 Wb

   B = 
5

6

1.51 10

33.5 10A

−

−
×φ =
×

 = 0.45 Wb/m2

 But B = 0·0128 µr as is evident from eq. (i).
 \  0.45 = 0.0128 µr or µr = 0.45/0.0128 = 35.1
 Example 8.31. A coil of 120 turns is wound uniformly over a steel ring having a mean 
circumference of 1 m and a cross-sectional area of 500 mm2. A search coil of 15 turns, wound on the 
ring, is connected to a fluxmeter having a constant of 300 µWbt/div. When a current of 6 A through 
the 120-turn coil is reversed, the fluxmeter deflection is 64 divisions. Calculate :
 (i) The flux density in the ring.
 (ii) The corresponding value of relative permeability.

 Solution. (i)  Fluxmeter constant, c = 
2 SN φ

θ
  Here c = 300 × 10–6 Wbt/div. ;  NS = 15  ;  θ = 64 div.

 \  φ = 
6300 10 64

2 2 15S

c
N

−× ×θ =
×

 = 0·64 × 10–3 Wb

  Note that φ is the flux passing through the search coil.

 \  Flux density, B = 
3

6

0.64 10

500 10A

−

−
×φ =
×

 = 1·28 Wb/m2

 (ii)  Within the ring, H = 
120 6

1
P PN I
l

×=  = 720 AT/m

 Now, B = µ0 µr H
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 \  µr = 7
0

1 28
µ 4 10 720

B
H −

⋅=
π × ×

 = 1400

Tutorial Problems
 1. A moving coil ballistic galvanometer of 150W resistance gives a throw of 75 divisions when the flux 

through a search coil to which it is connected is reversed. Find the flux density given that the galvanometer 
constant is 110 µC per scale division and the search coil has 1400 turns, a mean area of 50 cm2 and a 
resistance of 20W.    [0.1T]

 2. A fluxmeter is connected to a search coil having 500 turns and mean area of 5 cm2. The search coil is 
placed at the centre of a solenoid one metre long wound with 800 turns. When a current of 5A is reversed, 
there is a deflection of 25 scale divisions on the fluxmeter. Calculate the fluxmeter constant.

      [10–4 Wb-turn/division]
 3. A ballistic galvanometer connected to a search coil for measuring flux density in a core gives a throw of 

100 scale divisions on reversal of flux. The galvanometer coil has a resistance of 180W. The galvanometer 
constant is 100µC per scale division. The search coil has an area of 50 cm2 wound with 1000 turns having 
a resistance of 20W . Calculate the flux density in the core. [0.2 T]

8.16.  Magnetic Hysteresis
 When a magnetic material is subjected to a cycle of magnetisation (i.e. it is magnetised first in 
one direction and then in the other), it is found that flux density B in the material lags behind the 
applied magnetising force H. This phenomenon is known as hysteresis.
 The phenomenon of lagging of flux density (B) behind the magnetising force (H) in a 
magnetic material subjected to cycles of magnetisation is known as magnetic hysteresis.
 The term ‘hysteresis’ is derived from the Greek word hysterein meaning to lag behind. If a 
piece of magnetic material is subjected to *one cycle of magnetisation, the resultant B-H curve is 
a closed loop abcdefa called hysteresis loop [See Fig. 8.36 (ii)]. Note that B always lags behind H. 
Thus at point ‘b’, H is zero but flux density B has a positive finite value ob. Similarly at point ‘e’, H 
is zero, but flux density has a finite negative value oe. This tendency of flux density B to lag behind 
magnetising force H is known as magnetic hysteresis.

Fig. 8.36

* If we start with unmagnetised iron piece, then magnetise it in one direction and then in the other direction 
and finally demagnetise it (i.e. obtain the original condition we started with), the piece is said to go through 
one cycle of magnetisation. Compare it with one cycle of alternating current or voltage.
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 Hysteresis Loop. Consider an unmagnetised iron bar AB wound with N turns as shown in Fig. 
8.36 (i). The magnetising force H (= NI/l) produced by this solenoid can be changed by varying 
the current through the coil. The double-pole, double-throw switch (DPDT) is used to reverse the 
direction of current through the coil. We shall see that when the iron piece is subjected to a cycle of 
magnetisation, the resultant B-H curve traces a loop abcdefa called hysteresis loop. 
 (i) We start with unmagnetised solenoid AB. When the current in the solenoid is zero,  

H = 0 and hence B in the iron piece is 0. As H is increased (by increasing solenoid current), 
the flux density (+ B) also increases until the point of maximum flux density (+ Bmax) is 
reached. The material is saturated and beyond this point, the flux density will not increase 
regardless of any increase in current or magnetising force. Note that B-H curve of the iron 
follows the path oa.

 (ii) If now H is gradually reduced (by reducing solenoid current), it is found that the flux 
density B does not decrease along the same line by which it had increased but follows the 
path ab. At point b, the magnetising force H is zero but flux density in the material has a 
finite value + Br (= ob) called residual flux density. It means that after the removal of H, 
the iron piece still retains some magnetism (i.e. + Br). In other words, B lags behind H. The 
greater the lag, the greater is the residual magnetism (i.e. ordinate ob) retained by the iron 
piece. The power of retaining residual magnetism is called retentivity of the material.

   The hysteresis effect (i.e. lagging of B behind H) in a magnetic material is due to the 
opposition offered by the magnetic domains (or molecular magnets) to the turning effect 
of magnetising force. Once arranged in an orderly position by the magnetising force, 
the magnetic domains do not return exactly to the original positions. In other words, the 
material retains some magnetism even after the removal of magnetising force. This results 
in the lagging of B behind H.

 (iii) To demagnetise the iron piece (i.e. to remove the residual magnetism ob), the magnetising 
force H is reversed by reversing the current through the coil. When H is graudally increased 
in the reverse direction, the B-H curve follows the path bc so that when H = oc, the residual 
magnetism is zero. The value of H (= oc) required to wipe out residual magnetism is known 
as coercive force (Hc).

 (iv) If H is further increased in the reverse direction, the flux density increases in the reverse 
direction (− B). This process continues (curve cd) till the material is saturated in the reverse 
direction (−Bmax point) and can hold no more flux.  

 (v) If H is now gradually decreased to zero, the flux density also decreases and the curve 
follows the path de. At point e, the magnetising force is zero but flux density has a finite 
value −Br (= oe) — the residual magnetism.

 (vi) In order to neutralise the residual magnetism oe, magnetising force is applied in the positive 
direction (i.e. original direction) so that when H = of (coercive force Hc), the flux density 
in the iron piece is zero. Note that the curve follows the path ef. If H is further increased in 
the positive direction, the curve follows the path fa to complete the loop abcdefa.

 Thus when a magnetic material is subjected to one cycle of magnetisation, B always lags 
behind H so that the resultant B-H curve forms a closed loop, called hysteresis loop. 
 For the second cycle of magnetisation, a *similar loop abcdefa is formed. If a magnetic material 
is located within a coil through which alternating current (50 Hz frequency) flows, 50 loops will be 
formed every second. This hysteresis effect is present in all those electrical machines where the iron 
parts are subjected to cycles of magnetisation e.g. armature of a d.c. machine rotating in a stationary 
magnetic field, transformer core subjected to alternating flux etc.

* Owing to the nature of magnetic material, a second or even third cycle of H would not exactly lie on the 
tops of the first one.  After a relatively few cycles, the successive loops would follow a fixed path.
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8.17.  Hysteresis Loss
 When a magnetic material is subjected to a cycle of magnetisation (i.e. it is magnetised first in 
one direction and then in the other), an energy loss takes place due to the *molecular friction in the 
material. That is, the domains (or molecular magnets) of the material resist being turned first in one 
direction and then in the other. Energy is thus expended in the material in overcoming this opposi-
tion. This loss is in the form of heat and is called hysteresis loss. Hysteresis loss is present in all those 
electrical machines whose iron parts are subjected to cycles of magnetisation. The obvious effect of 
hysteresis loss is the rise of temperature of the machine.
 (i) Transformers and most electric motors operate on alternating current. In such devices, the 

flux in the iron changes continuously, both in value and direction. Hence hysteresis loss 
occurs in such machines.

 (ii) Hysteresis loss also occurs when an iron part rotates in a constant magnetic field e.g. d.c. 
machines.

8.18.  Calculation of Hysteresis Loss
 We will now show that area of hysteresis loop represents the †energy loss/m3/cycle.
 Let  l = length of the iron bar
   A = area of X-section of bar
   N = No. of turns of wire of solenoid
 Suppose at any instant the current in the solenoid is i. Then,

   H = Ni
l  or i = Hl

N
 Suppose the current increases by di in a small time dt. This will cause the flux density to 
increase by dB [See Fig. 8.37] and hence an increase in flux dφ (= AdB). This causes an e.m.f. e 
to be induced in the solenoid.
 \  e = d dBN NA

dt dt
φ =

Fig. 8.37

 By Lenz’s law, this e.m.f. opposes the current i so that energy dW is spent in overcoming this 
opposing e.m.f.
* The opposition offered by the magnetic domains (or molecular magnets) to the turning effect of magnetising 

force is sometimes referred to as the molecular friction.
† In order to set up magnetic field, certain amount of energy has to be supplied which is stored in the field.  

If the field is in free space, the stored energy is returned to the circuit when the field collapses.  If the field 
is in a magnetic material, not all the energy supplied can be returned ; part of it having been converted into 
heat due to hysteresis effect.
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 \  dW = ei dt joules

    = dB HlNA
dt N

   ×      
× dt joules

    = Al × H × dB joules
    = V × (H × dB) joules
        where Al = V = volume of iron bar
 Now H × dB is the area of the shaded strip (See Fig. 8.37). For one cycle of magnetisation, the 
area H × dB will be equal to the area of hysteresis loop.
 \  Hysteresis energy loss/cycle, Wh = V × (area of loop) joules
 If f is the frequency of reversal of magnetisation, then,
  Hysteresis power loss, Ph = Wh × f = V × (area of loop) × f
 Note. While calculating the area of hysteresis loop, proper scale factors of B and H must be considered.
 For example, if the scales are : 1 cm = x AT/m ...for H
  1 cm = y Wb/m2 ...for B
 Then, Wh = xy × (area of loop in cm2) × V joules
   where x and y are the scale factors.

8.19.  Factors Affecting the Shape and Size of Hysteresis Loop
 There are three factors that affect the shape and size of hysteresis loop.
 (i) The material. The shape and size of the hysteresis loop largely depends upon the nature 

of the material. If the material is easily magnetised, the loop will be narrow. On the other 
hand, if the material does not get magnetised easily, the loop will be wide. Further, different 
materials will saturate at different values of magnetic flux density thus affecting the height 
of the loop.

 (ii) The maximum flux density. The loop area also depends upon the maximum flux density 
that is established in the material. This is illustrated in Fig. 8.38. It is clear that the loop area 
increases as the alternating magnetic field has progressively greater peak values.

  Variation of peak flux density
  Fig. 8.38 Fig. 8.39

 (iii) The initial state of the specimen. The shape and size of the hysteresis loop also depends 
upon the initial state of the specimen. To illustrate this point, refer to Fig. 8.39. It is clear that 
the specimen is already saturated to start with. The magnetic flux density is then reduced to 
zero and finally the specimen is returned to the saturated condition.
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8.20.  Importance of Hysteresis Loop
 The shape and size of the hysteresis loop *largely depends upon the nature of the material. The 
choice of a magnetic material for a particular application often depends upon the shape and size of 
the hysteresis loop. A few cases are discussed below by way of illustration.
 (i) The smaller the hysteresis loop area of a magnetic material, the less is the hysteresis loss. 

The hysteresis loop for silicon steel has a very small area [See Fig. 8.40 (i)]. For this reason, 
silicon steel is widely used for making transformer cores and rotating machines which are 
subjected to rapid reversals of magnetisation.

Fig. 8.40

 (ii) The hysteresis loop for hard steel [See Fig. 8.40 (ii)] indicates that this material has high 
retentivity and coercivity. Therefore, hard steel is quite suitable for making permanent 
magnets. But due to the large area of the loop, there is greater hysteresis loss. For this 
reason, hard steel is not suitable for the construction of electrical machines.

 (iii) The hysteresis loop for wrought iron [See Fig. 8.40 (iii)] shows that this material has 
fairly good residual magnetism and coercivity. Hence, it is suitable for making cores of 
electromagnets.

8.21.  Applications of Ferromagnetic Materials
 Ferromagnetic materials (e.g. iron, 
steel, nickel, cobalt etc.) are widely used 
in a number of applications. The choice of 
a ferromagnetic material for a particular 
application depends upon its magnetic 
properties such as retentivity, coercivity and 
area of the hysteresis loop. Ferromagnetic 
materials are classified as being either 
soft (soft iron) and hard (steel). Fig. 8.41 
shows the hysteresis loop for soft and hard 
ferromagnetic materials. The table below 
gives the magnetic properties of hard and 
soft ferromagnetic materials.

* It also depends upon (i) the maximum value of flux density established and (ii) the initial magnetic state of 
the material.

Fig. 8.41
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Magnetic property Soft Iron Hard Steel
Hysteresis loop narrow large area
Retentivity high high
Coercivity low high
Saturation flux density high good

 (i) The permanent magnets are made from hard ferromagnetic materials (steel, cobalt steel, 
carbon steel etc). Since these materials have high retentivity, the magnet is quite strong. 
Due to their high coercivity, they are unlikely to be demagnetised by stray magnetic fields.

 (ii) The electromagnets or temporary magnets are made from soft ferromagnetic materials 
(e.g. soft iron). Since these materials have low coercivity, they can be easily demagnetised. 
Due to high saturation flux density, they make strong magnets.

 (iii) The transformer cores are made from soft ferromagnetic materials. When a transformer 
is in use, its core is taken through many cycles of magnetisation. Energy is dissipated in 
the core in the form of heat during each cycle. The energy dissipated is known as hysteresis 
loss and is proportional to the area of hysteresis loop. Since the soft ferromagnetic materials 
have narrow hysteresis loop (i.e. smaller hysteresis loop area), they are used for making 
transformer cores.

 Example 8.32. A magnetic circuit is made of silicon steel and has a volume of 2 × 10–3 m3. The 
area of hysteresis loop of silicon steel is found to be 7·25 cm2 ; the scales being 1 cm = 10 AT/m and 
1 cm = 4 Wb/m2. Calculate the hysteresis power loss when the flux is alternating at 50 Hz.
 Solution. 1 cm = 10 AT/m on x-axis and 1 cm = 4 Wb/m2 on y-axis.
  Area of hysteresis loop in J/m3/cycle = (Area in cm2) × (Scale factors) = (7·25) × (xy)
   = (7·25) × (10 × 4) = 290 J/m3/cycle
 \ Hysteresis power loss, Ph = Volume × area of loop × frequency
   = (2 × 10–3) × (290) × (50) W = 29 W
 Example 8.33. The area of hysteresis loop obtained with a certain magnetic material was  
9·3 cm2. The co-ordinates were such that 1 cm = 1000 AT/m and 1 cm = 0·2 Wb/m2. If the density of 
the given material is 7·8 g/cm3, calculate the hysteresis loss in watts/kg at 50 Hz.
 Solution. 1 cm = 1000 AT/m on x-axis and 1 cm = 0.2 Wb/m2 on y-axis.

  Volume of 1 kg of material, V = 
310

7 8⋅ 10–6 = 1·282 × 10–4 m3

  Area of hysteresis loop in J/m3/cycle = Area in cm2 × scales factors
   = (9·3) × (1000 × 0·2) = 1860 J/m3/cycle
  Hysteresis energy loss, Wh = V × (area of loop in J/m3/cycle)
   = (1·282 × 10–4) × 1860 = 0·238 J/cycle

  Hysteresis power loss, Ph = Wh × f = 0·238 × 50 = 11·9 W

 Since we have considered 1 kg of material, \ Hysteresis power loss, Ph = 11·9 W/kg
 Example 8.34. Calculate the loss of energy caused by hysteresis in 1 hour in 50 kg of iron when 
subjected to cyclic magnetic changes. The frequency is 25 Hz, the area of hysteresis loop is equiva-
lent in area to 240 J/m3/cycle and the density of iron is 7·8 g/cm3.
 Solution. Hysteresis energy loss = 240 J/m3/cycle

   Volume of iron = 
350 10mass

density 7 8
×=
⋅ 10–6 = 6·41 × 10–3 m3
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   No. of cycles/hour = 25 × 60 × 60 = 9 × 104

 \  Energy loss/hour = volume × (area of loop in J/m3/cycle) × cycles/hour
    = (6·41 × 10–3) × (240) × (9 × 104) = 138456 J
 Example 8.35. The armature of a 4-pole d.c. generator has a volume of 12 × 10–3 m3. During 
rotation, the armature is taken through a hysteresis loop whose area is 20 cm2 when plotted to a scale 
of 1 cm = 100 AT/m, 1 cm = 0·1 Wb/m2. Determine the hysteresis loss in watts when the armature 
rotates at a speed of 900 r.p.m.
 Solution. 1 cm = 100 AT/m on x–axis and 1 cm = 0.1 Wb/m2 on y-axis. Since it is a 4-pole 
machine, two hysteresis loops will be formed in one revolution of the armature.
 \  No. of loops generated/second, f = 2 × 900/60 = 30
  Hysteresis energy loss/cycle = Area of loop in cm2 × scale factors
   = 20 × (100 × 0·1) = 200 J/m3/cycle
  Total hysteresis energy loss/second = volume × (area of loop in J/m3/cycle) × f
   = (12 × 10–3) × 200 × 30 = 72 W
 i.e. Hysteresis power loss = 72 W
 Example 8.36. A magnetic circuit core is made of silicon steel and has a volume of 1000000 
mm3. Using the hysteresis loop shown in Fig. 8.42, calculate the hysteresis power loss when the flux 
is alternating at 50 Hz.
 Solution. Hysteresis power loss, Ph = V × f × (area of loop in J/m3/cycle)
  Volume of material, V = 1000000 mm3 = 1000000 × 10–9 m3

Fig. 8.42
  Area of loop in J/m3/cycle  = Area in square units × scale factors
   = 7·25 × 4 × 10 = 290 J/m3/cycle
 \ Ph = (1000000 × 10–9) × 50 × 290 = 14·5 W
 Example 8.37. A hysteresis loop is plotted with horizontal axis scale of 1 cm = 1000 AT/m and 
vertical axis scale of 5 cm = 1T. The area of the loop is 9 cm2 and overall height is 14 cm. Find (i) 
hysteresis loss in J/m3/cycle (ii) Bm and (iii) hysteresis loss in W/kg if density is 7800 kg/m3. The 
frequency is 50 Hz.
 Solution. (i) 1 cm = 1000 AT/m on x-axis and 1 cm = 0.2T on y-axis.
  Area of hysteresis loop in J/m3/cycle = (Area of loop in cm2) × scale factors
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   = (9) × (1000 × 0.2) = 1800 J/m3/cycle
 i.e. Hysteresis energy loss = 1800 J/m3/cycle
 (ii) In a hysteresis loop, flux density varies from + Bm to – Bm. The scale for B is 5 cm = 1T and 
the overall height of the loop is 14 cm.
 \ 2 Bm = 14

5
 = 2.8 T or Bm = 2.8

2
 = 1.4 T

 (iii)  Volume of 1 kg of material, V = Mass
Density

 = 31 m
7800

 \  Hysteresis power loss, Ph = Energy loss/m3/cycle × V × f

   = 11800 50
7800

× ×  = 11.538 W

 Since we have considered 1 kg of material,  \ Ph = 11.538 W/kg

Tutorial Problems

 1. The hysteresis loop for a specimen of mass 12 kg is equivalent to 30 W/mm3. Find the loss of energy in 
kWh in one hour at 50 Hz. The density of the specimen is 7·8 g/cm3. [0·024 kWh]

 2. A transformer is made of 200 kg of steel plate with a specific gravity of 7·5. It may be assumed that the 
maximum operating flux density is 1·1 Wb/m2 for all parts of the steel. When a specimen of the steel was 
tested, it was found to have a hysteresis loop of area 100 cm2 for a maximum flux density of 1·1 Wb/
m2. If the scales of the hysteresis loop graph were 1 cm = 50 AT/m and 1 cm = 0·1 Wb/m2, calculate the 
hysteresis power loss when the transformer is operated on 50 Hz mains. [667 W]

 3. A magnetic core is made from sheet steel, the hysteresis loop of which has an area of 2·1 cm2; the scales 
being 1 cm = 400 AT/m and 1 cm = 0·4 Wb/m2. The core measures 100 cm long and has an average 
cross-sectional area of 10 cm2. The hysteresis loss is 16·8 W. Calculate the frequency of alternating flux.

[50 Hz]
8.22.  Steinmetz Hysteresis Law
 To eliminate the need of finding the area of hysteresis loop for computing the hysteresis 
loss, Steinmetz devised an empirical law for finding the hysteresis loss. He found that the area of 
hysteresis loop of a magnetic material is directly proportional to 1·6 the power of the maximum 
flux density established i.e.
   Area of hysteresis loop ∝ *B1·6

max

 or   Hysteresis energy loss ∝ B1·6
max joules/m3/cycle

 or  Hysteresis energy loss = η B1·6
max joules/m3/cycle

where η is a constant called hysteresis coefficient. Its value depends upon the nature of material. 
The smaller the value of η of a magnetic material, the lesser is the hysteresis loss. The armatures 
of electrical machines and transformer cores are made of magnetic materials having low hysteresis 
coefficient in order to reduce the hysteresis loss. The best transformer steels have η values around 
130, for cast steel they are around 2500 and for cast iron about 3750.
 If V is the volume of the material in m3 and f is the frequency of reversal of magnetisation, then,
  Hysteresis power loss, Ph = η f B1·6

max V J/s or watts
 Example 8.38. The volume of a transformer core built up of sheet steel laminations is  
5000 cm3 and the gross cross-sectional area is 240 cm2. Because of the insulation between the plates, 
the net cross-sectional area is 90% of the gross. The maximum value of flux is 22 mWb and the fre-
quency is 50 Hz. Find (i) the hysteresis loss/m3/cycle and (ii) power loss in watts. Take hysteresis 
coefficient as 250.

* The index 1·6 is called Steinmetz index.  In fact, the value of this index depends upon the nature of material 
and may vary from 1·6 to 2·5.  However, reasonable accuracy is obtained if it is taken as 1·6.
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 Solution.  a = 0·9 × 240 = 216 cm2 ; Bmax = 
3

4

22 10

216 10

−

−
×
×

 = 1·019 Wb/m2

 (i) Hysteresis energy loss = η B1·6
max = 250 × (1·019)1·6 = 257·6 J/m3/cycle

 (ii) Hysteresis power loss, Ph = η f B1·6
max × V = (257·6) × (50) × (5000 × 10–6) = 64·4 W

 Example 8.39. The area of hysteresis loop obtained with a certain specimen of iron was  
9·3 cm2. The co-ordinates were such that 1 cm = 1000 AT/m and 1 cm = 0·2 Wb/m2. Calculate (i) 
the hysteresis loss in J/m3/cycle (ii) hysteresis loss in W/m3 at a frequency of 50 Hz. (iii) If the 
maximum flux density was 1·5 Wb/m2, calculate the hysteresis loss/m3 for a maximum flux density of 
1·2 Wb/m2, and a frequency of 30 Hz, assuming the loss to be proportional to B1·8

max.
 Solution. 1 cm = 1000 AT/m on x-axis and 1 cm = 0.2 Wb/m2 on y-axis.
 (i)  Hysteresis energy loss = (xy) × (area of loop) J/m3/cycle
    = (1000 × 0·2) × 9·3 = 1860 J/m3/cycle
 (ii)  Hysteresis power loss = 1860 × 50 = 93,000 W/m3

 (iii) Hysteresis power loss/m3 = η f (Bmax)
1·8

 or  93000 = η × 50 × (1·5)1·8

 \  η = 18
93000

50 (1 5) ⋅× ⋅
 = 896·5

        For Bmax = 1·2 Wb/m2 and f = 30 Hz,
   Hysteresis loss/m3 = η f (Bmax)

1·8 W = 896·5 × 30 × (1·2)1·8 = 37342 W
 Example 8.40. A cylinder of iron of volume 8 × 10–3 m3 revolves for 20 min at a speed  
of 3000 r.p.m. in a two-pole field of flux density 0.8 Wb/m2. If the hysteresis coefficient of iron  
is 753.6 J/m3, specific heat of iron is 0.11, the loss due to eddy current is equal to that due to  
hysteresis and 25% of heat produced is lost by radiation, find the temperature rise of iron. Take density  
of iron as 7.8 × 103 kg/m3.
 Solution. When an armature revolves in a multipolar field, one magnetic reversal occurs after 
it passes a pair of poles. If P is the number of poles, the number of magnetic reversals in one 
revolution is P/2. If the speed of the armature is N r.p.m., then number of revolutions/second = N/60.
 \ No. of magnetic reversals/second = Reversal in one sec. × No. of revolutions/sec.

or  Frequency of magnetic reversals = 
2 60
P N×  = 2 3000

2 60
×  = 50 cycles/sec

 According to Steinmetz hysteresis law,
  Hysteresis power loss, Ph = hfB1.6

max V joules/sec.
    = 753.6 × 50 × (0.8)1.6 × 8 × 10–3 = 211 J/s
 \  Energy loss in 20 min. = 211 × (20 × 60) = 253.2 × 103 J
   Eddy current loss = 253.2 × 103 J ... given
 \  Total energy loss = 2 × 253.2 × 103 = 506.4 × 103 J

   Heat produced = 
3 3506.4 10 506.4 10

4200J
× ×=  = 120.57 kcal

 It is given that 25% of heat produced is lost due to radiation.
 \ Heat used to heat iron cylinder = 0.75 × 120.57 = 90.43 kcal
 Now, mass of iron cylinder, m = volume × density = 8 × 10–3 × 7.8 × 103 = 62.4 kg; specific 
heat, S = 0.11.
 If θ°C is the rise of temperature of iron cylinder, then,

   mSθ = 90.43 or θ = 90.43
62.4 0.11×  = 13.17°C
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 Example 8.41. In a certain transformer, the hysteresis loss was found to be 160 watts when 
the maximum flux density was 1·1 Wb/m2 and the frequency 60 Hz. What will be the loss when the 
maximum flux density is reduced to 0·9 Wb/m2 and frequency to 50 Hz ?
 Solution. According to Steinmetz hysteresis law,

   Hysteresis loss, Ph ∝ f (Bmax)
1·6

   For the first case, P1 ∝ 60 × (1·1)1·6

   For the second case, P2 ∝ 50 × (0·9)1·6

 \  2

1

P
P  = 

16

16

50 (0 9)

60 (1 1)

⋅

⋅
× ⋅
× ⋅

 = 0·604

 \  P2 = 0·604 P1 = 0·604 × 160 = 96·64 W
 Example 8.42. Calculate the loss of energy caused by hysteresis in one hour in 11·25 kg of iron 
if maximum flux density reached is 1·3 Wb/m2 and frequency is 50 Hz. Assume Steinmetz coefficient 
as 500 J/m3/cycle and density of iron as 7·5 g/cm3.
 What will be the area of B/H curve (i.e. hysteresis loop) of this specimen if 1 cm = 50 AT/m and 
1 cm = 0·1 Wb/m2 ?
 Solution. Volume of iron, V = 3

11 25

7 5 10

⋅
⋅ ×

 = 1·5 × 10–3 m3

  Hysteresis power loss, Ph = η f (Bmax)
1·6 V watts

    = 500 × 50 × (1·3)1·6 × (1·5 × 10–3) = 57·06 W
 \  Hysteresis energy loss in 1 hour
    = 57·06 × 3600 = 205416 J
 According to Steinmetz hysteresis law,
   Hysteresis energy loss = η (Bmax)

1·6 J/m3/cycle
 1 cm = 50 AT/m on x-axis and 1 cm = 0.1 Wb/m2 on y-axis.
   Hysteresis energy loss = xy × (area of loop) J/m3/cycle
 Equating the two, we get,
   500 × (1·3)1·6 = (50 × 0·1) × Area of loop

 \  Area of loop = 
16500 (1 3)

50 0 1

⋅× ⋅
× ⋅  = 152·16 cm2

Tutorial Problems

 1. The hysteresis loss in an iron specimen is given by the expression; Hysteresis loss is J/m3/cycle = hB1.7
max 

where Bmax is the maximum flux density. If loss is 5.215 W/kg at a frequency of 50 Hz and a maximum 
flux density is 1.1 Wb/m2, find  the constant h if density of iron is 7600 kg/m3. Also find the hysteresis 
loss at 60 Hz if Bmax = 1.7 Wb/m2.  [674.11; 13.117 W/kg]

 2. A sample of silicon steel has a hysteresis coefficient of 100 and a corresponding Steinmetz index of 
1.6. Calculate the hysteresis power loss in 106 mm3 when the flux is alternating at 50 Hz, such that the 
maximum flux density is 2T.    [15.2 W]

 3. The hysteresis loss in an iron specimen is proportional to (Bmax)
1.7. At Bmax  = 1.1T, the hyteresis loss is 

320W at 50 Hz. Find hysteresis loss at 60 Hz if  Bmax = 1.6 T. [726.05 W]

8.23.  Comparison of Electrostatics and Electromagnetic Terms
 It may be worthwhile to compare the terms and symbols used in electrostatics with the 
corresponding terms and symbols used in electromagnetism. (See table on page 427).
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Electrostatics Electromagnetism
Term Symbol Term Symbol
Electric flux ψ Magnetic flux φ
Electric flux density D Magnetic flux density B
Electric field strength E Magnetic field strength H
Electromotive force E Magnetomotive force —
Electric potential difference V Magnetic potential difference —

Permittivity of free space ε0 Permeability of free space µ0
Relative permittivity εr Relative permeability µr
Absolute permittivity Absolute permeability

 = electric flux density
electric field strength

 = magnetic flux density
magnetic field strength

i.e. ε0εr = ε = D/E i.e. µ0µr = µ = B/H

Objective  Questions

 1. In Fig. 8.43, the magnetic circuit is the path

Fig. 8.43

 (i) DAB (ii) ABCDA
 (iii) ABC (iv) ABCD
 2. If l is the magnetic path in Fig. 8.43, then 

magnetising force is
 (i) NI (ii) NI × l
 (iii) l/NI (iv) NI/l
 3. The reluctance of the magnetic circuit shown in 

Fig. 8.43 is
 (i) NI/l (ii) φ/NI
 (iii) NI/φ (iv) φ/l
 4. The SI unit of reluctance is
 (i) AT/Wb (ii) AT/m
 (iii) AT (iv) N/Wb
 5. A magnetic circuit has m.m.f. of 400 AT and  

reluctance of 2 × 105 AT/Wb. The magnetic flux 
in the magnetic circuit is

 (i) 3 × 10−5 Wb (ii) 2 × 10−3 Wb
 (iii) 1·5 × 10−2 Wb (iv) 2·5 × 10−4 Wb

 6. A 2 cm long coil has 10 turns and carries a 
current of 750 mA. The magnetising force of 
the coil is 

 (i) 225 AT/m (ii) 675 AT/m
 (iii) 450 AT/m (iv) 375 AT/m
 7. A magnetic device has a core with cross-section 

of 1 inch2. If the flux in the core is 1 mWb, then 
flux density (1 inch = 2.54 cm) is 

 (i) 2.5 T (ii) 1.3 T
 (iii) 1.55 T (iv) 0.25 T
 8. The reluctance of a magnetic circuit varies as 

........
 (i) length × area (ii) length ÷ area
 (iii) area ÷ length (iv) (length)2 + area

 9. The reluctance of a magnetic circuit is ..... 
relative permeability of the material comprising 
the circuit.

 (i) directly proportional to 
 (ii) inversely proportional to
 (iii) independent of
 (iv) none of the above
 10. M.M.F. in a magnetic circuit corresponds to ...... 

in an electric circuit.
 (i) voltage drop (ii) potential difference
 (iii) electric intensity (iv) e.m.f.
 11. Permeance of a magnetic circuit is ........... area 

of x-section of the circuit.
 (i)  inversely proportional to
 (ii) directly proportional to
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 (iii) independent of
 (iv) none of the above.
 12. The magnitude of AT required for air gap is 

much greater than that required for iron part of 
a magnetic circuit because ........

 (i) air is a gas 
 (ii) air has the lowest relative permeability
 (iii) air is a conductor of magnetic flux
 (iv) none of the above
 13. In electro-mechanical conversion devices (e.g. 

motors and generators), a small air gap is left 
between the rotor and stator in order to .....

 (i)  complete the magnetic path
 (ii) decrease the reluctance of magnetic path
 (iii) permit mechanical clearance
 (iv) increase flux density in air gap
 14. A magnetic circuit carries a flux φi in the iron 

part and a flux φg in the air gap. Then leakage 
coefficient is ......

 (i) φi /φg (ii) φg / φi
 (iii) φg × φi (iv) none of the above
 15. The value of leakage coefficient for electrical 

machines is usually about.......
 (i) 0·5 to 1 (ii) 4 to 10
 (iii) above 10 (iv) 1·15 to 1·25
 16. The reluctance of a magnetic circuit depends 

upon ........
 (i) current in the coil
 (ii) no. of turns of coil
 (iii) flux density in the circuit
 (iv) none of the above
 17. The B-H curve for ....... will be a straight line 

passing through the origin.
 (i) air  (ii) soft iron
 (iii) hardened steel (iv) silicon steel
 18. Whatever may be the flux density in ......., the 

material will never saturate.
 (i) soft iron (ii) cobalt steel
 (iii) air (iv) silicon steel
 19. The B-H curve of ....... will not be a straight line.
 (i) air (ii) copper
 (iii) wood (iv) soft iron
 20. The B-H curve is used to find the m.m.f. of ........ 

in a magnetic circuit.
 (i) air gap (ii) iron part
 (iii) both air gap and iron part
 (iv) none of the above

 21. A magnetising force of 800 AT/m will produce 
a flux density of ........... in air.

 (i) 1 mWb/m2 (ii) 1 Wb/m2

 (iii) 10 mWb/m2 (iv) 0·5 Wb/m2

 22. The saturation flux density for most magnetic 
materials is about ...........

 (i) 0·5 Wb/m2 (ii) 10 Wb/m2

 (iii) 2 Wb/m2 (iv) 1 Wb/m2

 23. Hysteresis is the phenomenon of ............. in a 
magnetic circuit.

 (i) lagging of B behind H
 (ii) lagging of H behind B
 (iii) setting up constant flux
 (iv) none of the above
 24. In Fig. 8.44, the point ........... represents the 

saturation condition.
 (i) b (ii) c
 (iii) a (iv) e

Fig. 8.44

 25. In Fig. 8.44, ................ represents the residual 
magnetism.

 (i) of (ii) oc
 (iii) ob (iv) none of the above
 26. In Fig. 8.44, oc represents the ..............
 (i) residual magnetism
 (ii) coercive force
 (iii) retentivity (iv) none of the above
 27. If a magnetic material is located within a coil 

through which alternating current (50 Hz fre-
quency) flows, then ................ hysteresis loops 
will be formed every second.

 (i) 50 (ii) 25
 (iii) 100 (iv) 150
 28. Out of the following materials, the area of 

hysteresis loop will be least for ..............
 (i) wrought iron (ii) hard steel
 (iii) silicon steel (iv) soft iron



Magnetic  Circuits 429 

 29. The materials used for the core of a good relay 
should have ............... hysteresis loop.

 (i) large (ii) very large
 (iii) narrow (iv) none of the above

 30. The magnetic material used for ............. should 
have a large hysteresis loop.

 (i) transformers (ii) d.c. generators
 (iii) a.c. motors (iv) permanent magnets

Answers
 1. (ii) 2. (iv) 3. (iii) 4. (i) 5. (ii)  
 6. (iv) 7. (iii) 8. (ii) 9. (ii) 10. (iv)  
 11. (ii) 12. (ii) 13. (iii) 14. (i) 15. (iv)  
 16. (iii) 17. (i) 18. (iii) 19. (iv) 20. (ii)
 21. (i) 22. (iii) 23. (i) 24. (iii) 25. (iii)  
 26. (ii) 27. (i) 28. (iii) 29. (iii) 30. (iv)



Introduction
	 In	the	beginning	of	nineteenth	century,	Oersted	discovered	that	a	magnetic	field	exists	around	
a	current-carrying	conductor.	 In	other	words,	magnetism	can	be	created	by	means	of	an	electric	
current.	Can	a	magnetic	field	create	an	electric	current	in	a	conductor	?	In	1831,	Michael	Faraday,	
the	famous	English	scientist,	discovered	that	 this	could	be	done.	He	demonstrated	that	when	the	
magnetic	flux	linking	a	conductor	changes,	an	e.m.f.	is	induced	in	the	conductor.	This	phenomenon	
is	known	as	electromagnetic induction.	The	great	discovery	of	electromagnetic	induction	by	Faraday	
through	a	series	of	brilliant	experiments	has	brought	a	revolution	in	the	engineering	world.	Most	of	
the	electrical	devices	(e.g.	electric	generator,	transformer,	telephones	etc.)	are	based	on	this	principle.	
In	this	chapter,	we	shall	confine	our	attention	to	the	various	aspects	of	eletromagnetic	induction.

9.1.  Electromagnetic Induction
 When	the	magnetic	flux	*linking	a	conductor	changes,	an	e.m.f.	is	induced	in	the	conductor.	If	
the	conductor	forms	a	complete	loop	or	circuit,	a	current	will	flow	in	it.	This	phenomenon	is	known	
as	**electromagnetic	induction.	
 The phenomenon of production of e.m.f. and hence current in a conductor or coil when the 
magnetic flux linking the conductor or coil changes is called electromagnetic induction. 

Fig. 9.1

	 To	demonstrate	the	phenomenon	of	electromagnetic	induction,	consider	a	coil	C	of	several	turns	
connected	to	a	centre	zero	galvanometer	G as	shown	in	Fig.	9.1.	If	a	permanent	magnet	is	moved	
towards	the	coil,	it	will	be	observed	that	the	galvanometer	shows	deflection	in	one	direction.	If	the	
magnet	is	moved	away	from	the	coil,	the	galvanometer	again	shows	deflection	but	in	the	opposite	
direction. In either case, the deflection will persist so long as the magnet is in motion.	The	production	
of	e.m.f.	and	hence	current	in	the	coil	C	is	due	to	the	fact	that	when	the	magnet	is	in	motion	(towards	
or	 away	 from	 the	 coil),	 the	 amount	 of	 flux	 linking	 the	 coil	 changes—the	 basic	 requirement	 for	
inducing	e.m.f.	in	the	coil.		If	the	movement	of	the	magnet	is	stopped,	though	the	flux	is	linking	the	

*	 Magnetic	 lines	 of	 force	 form	 closed	 loops.	 Flux	 linking	 the	 conductor	means	 that	 the	 flux	 embraces	 it	 i.e. 
it	 encircles	 the	 conductor.

**	 So	called	because	electricity	is	produced	from	magnetism	(i.e. electromagnetic)	and	that	there	is	no	physical	
connection	 (induction)	 between	 the	magnetic	field	 and	 the	 conductor.

9
Electromagnetic  Induction
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coil,	there	is	no change in flux and	hence	no	e.m.f.	is	induced	in	the	coil.	Consequently,	the	deflection	
of	the	galvanometer	reduces	to	zero.
	 The	following	points	may	be	noted	carefully	:
 (i) The basic requirement for inducing e.m.f. in a coil is not the magnetic flux linking the coil 

but the change in flux linking the coil. No change in flux, no e.m.f. induced in the coil.
 (ii)	 The	change	in	flux	linking	the	coil	can	be	brought	about	in	two	ways.	First,	the	conductors	

(or	coils)	are	moved	through	a	stationary	magnetic	field	as	is	the	case	with	d.c.	generators.	
Secondly,	the	conductors	are	stationary	and	the	magnetic	field	is	moving	as	is	the	case	with	
a.c.	generators.	In	either	case,	the	basic	principle	is	the	same	i.e.	the	amount	of	flux	linking	
the	conductors	(or	coils)	is	changed.

 (iii) The e.m.f. and hence current in the conductors (or coils) will persist so long as the 
magnetic flux linking them is changing.

 Note. We	have	seen	that	when	magnetic	flux	linking	a	conductor	changes,	an	e.m.f.	is	induced		in	it.		An	
equivalent	statement	is	like	this	:	When a conductor cuts magnetic field lines , an e.m.f. is induced in it. If the 
conductor	moves	parallel	to	the	magnetic	field	lines,	no	e.m.f.	is	induced.	This	terminology	is	very	helpful	in	
visualising	the	concept	of	production	of	e.m.f.

9.2.  Flux Linkages

 The product of number of turns (N) of the coil and the magnetic flux (φ) linking the coil is called 
flux linkages i.e.
   Flux	linkages	 =	 N φ
	 Experiments	show	that	the	magnitude	of	e.m.f.	induced	in	a	coil	is	directly	proportional	to	the	
rate	of	change	of	flux	linkages.	If	N	is	the	number	of	turns	of	the	coil	and	the	magnetic	flux	linking	
the	coil	changes	(say	increases)	from	φ1 to φ2 in t seconds, then,

   Induced e.m.f., e ∝ Rate	of	change	of	flux	linkages

or   e ∝ 2 1N N
t

φ − φ

9.3.  Faraday’s Laws of Electromagnetic Induction
 Faraday	performed	a	series	of	experiments	to	demonstrate	the	phenomenon	of	electromagnetic	
induction.	He	summed	up	his	conclusions	into	two	laws,	known	as	Faraday’s	laws	of	electromagnetic	
induction.
 First Law.	It	tells	us	about	the	condition	under	which	an	e.m.f.	is	induced	in	a	conductor	or	coil	
and	may	be	stated	as	under	:
 When the magnetic flux linking a conductor or coil changes, an e.m.f. is induced in it.
	 It	does	not	matter	how	the	change	in	magnetic	flux	is	brought	about.	The	essence	of	the	first	law	
is	that	the	induced	e.m.f.	appears	in	a	circuit	subjected	to	a	changing	magnetic	field.	
 Second Law. It	gives	the	magnitude	of	the	induced	e.m.f.	in	a	conductor	or	coil	and	may	be	
stated	as	under	:
 The magnitude of the e.m.f. induced in a conductor or coil is directly proportional to the rate 
of change of flux linkages i.e.
  Induced e.m.f., e ∝ 2 1N N

t
φ − φ

or  e	 = 	 2 1N Nk
t

φ − φ
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where	the	value	of	k	is	*unity	in	SI	units.

\  e	 = 	 2 1N N
t

φ − φ

	 In	differential	form,	we	have,		e	 = 	 dN
dt
φ

	 The	direction	of	induced	e.m.f.	(and	hence	of	induced	current	if	the	circuit	is	closed)	is	given	
by Lenz’s law.	The	magnitude	and	direction	of	induced	e.m.f.	should	be	written	as	:	

  e	 = 	 dN
dt
φ− 	 ...(i)

 The minus sign on the R.H.S. represents Lenz’s law mathematically.	In	SI	units,	e is measured 
in	volts,	φ in webers and t in seconds.

9.4.  Direction of Induced E.M.F. and Current
 The	direction	of	induced	e.m.f.	and	hence	current	(if	the	circuit	is	closed	)	can	be	determined	by	
one	of	the	following	two	methods	:
	 (i)	 Lenz’s	Law	 (ii)	 	Fleming’s	right-hand	rule
 (i) Lenz’s law.	 Emil	Lenz,	 a	German	 scientist,	 gave	 the	 following	 simple	 rule	 (known	 as	
Lenz’s	law)	to	find	the	direction	of	the	induced	current	:
The induced current will flow in such a direction so as to oppose the cause that produces it i.e. 
the induced current will set up magnetic flux to oppose the change in flux.
 Note that Lenz’s law is reflected mathematically in the minus sign on the R.H.S. of Faraday’s 
second law viz. e = − N dφldt. 
	 The	negative	sign	simply	reminds	us	that	the	induced	current	opposes the changing magnetic 
field	that	caused	the	induced	current.	The negative sign has no other meaning.
 Let	us	apply	Lenz’s	 law	to	Fig.	9.2.	Here	the	N-pole	of	 the	magnet	 is	approaching	a	coil	of	
several	turns.	As	the	N-pole	of	the	magnet	moves	towards	the	coil,	the	magnetic	flux	linking	the	coil	
increases.	Therefore	an	e.m.f.	and	hence	current	is	induced	in	the	coil	according	to	Faraday’s	laws	
of	electromagnetic	induction.	According	to	Lenz’s	law,	the	direction	of	the	induced	current	will	be	
such	so	as	to	oppose	the	cause	that	produces	it.	In	the	present	case,	the	cause	of	the	induced	current	
is	the	increasing	magnetic	flux	linking	the	coil.	Therefore,	the	induced	current	will	set	up	magnetic	
flux	that	opposes	the	increase	in	flux	through	the	coil.	This	is	possible	only	if	the	left	hand	face	of	
the	coil	becomes	N-pole.	Once	we	know	the	magnetic	polarity	of	the	coil	face,	the	direction	of	the	
induced	current	can	be	easily	determined	by	applying	right-hand	rule	for	the	coil.	If	the	magnet	is	
moved	away	from	the	coil,	then	by	Lenz’s	law,	the	left	hand	face	of	the	coil	will	become	S-pole.	
Therefore,	by	right-hand	rule	for	the	coil,	the	direction	of	induced	current	in	the	coil	will	be	opposite	
to	that	in	the	first	case.

Fig. 9.2

*	 One	 volt	 	 (SI	 unit	 of	 e.m.f.)	 has	 been	 so	 defined	 that	 the	 value	 of	 k	 becomes	 unity.	Thus	 1V	 is	 said	 to	 be	
induced	 in	 a	 coil	 if	 the	flux	 linkages	 change	by	1	Wb-turn	 in	 1	 second.

	 Here,	 N φ2 − N φ1	=	1	Wb-turn,	 t	 =	 1	 s	 and	e	 =	 1	 volt	 \	 1	=	 1
1

k ×  or k	 =	 1.
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	 It	may	be	noted	here	that	Lenz’s	law	directly	follows	from	the	law	of	conservation	of	energy	i.e. 
in	order	to	set	up	induced	current,	some	energy	must	be	expended.	In	the	above	case,	for	example,	
when the N-pole	of	the	magnet	is	approaching	the	coil,	the	induced	current	will	flow	in	the	coil	in	
such	a	direction	that	the	left-hand	face	of	the	coil	becomes	N-pole.	The	result	is	that	the	motion	of	
the	magnet	is	opposed.	The	mechanical	energy	spent	in	overcoming	this	opposition	is	converted	into	
electrical	energy	which	appears	in	the	coil.	Thus	Lenz’s	law	is	consistent	with	the	law	of	conserva-
tion of energy.
 (ii)  Fleming’s Right-Hand Rule. This	law	is	particularly	suitable	to	find	the	direction	of	the	
induced	e.m.f.	and	hence	current	when	the	conductor	moves	at	right	angles	to	a	stationary	magnetic	
field.	It	may	be	stated	as	under	:
 Stretch out the forefinger, middle finger and thumb of your right hand so that they are at right 
angles to one another. If the forefinger points in the direction of magnetic field, thumb in the direction 
of motion of the conductor, then the middle finger will point in the direction of induced current.

Fig. 9.3
 Consider a conductor AB moving	upwards	at	right	angles	to	a	uniform	magnetic	field	as	shown	
in	Fig.	9.3.	Applying	Fleming’s	right-hand	rule,	it	is	clear	that	the	direction	of	induced	current	is	
from B to A.	If	the	motion	of	the	conductor	is	downward,	keeping	the	direction	of	magnetic	field	
unchanged,	then	the	direction	of	induced	current	will	be	from	A to B.

 Example 9.1. A coil of 200 turns of wire is wound on a magnetic circuit of reluctance 2000 
AT/Wb. If a current of 1A flowing in the coil is reversed in 10 ms, find the average e.m.f. induced in  
the coil.
 Solution.		 Flux	in	the	coil	 =	 m.m.f. 200 1 0 1 Wb

reluctance 2000
×= = ⋅

	 When	the	current	(i.e.	1A)	in	the	coil	is	reversed,	flux	through	the	coil	is	also	reversed.

   e	 = 	 dN
dt
φ

	 Here,	  N =	200	; dφ	 =	 0·1	−	(−0·1)	=	0·2	mWb	;	dt	=	10	×	10−3s

 \  e	 = 	
3

3
0 2 10200
10 10

−

−
⋅ ××

×
	=	4 V

 Example 9.2. The field winding of a 4-pole d.c. generator consists of 4 coils connected in series, 
each coil being wound with 1200 turns. When the field is excited, there is a magnetic flux of 0·04  
Wb/pole. If the field switch is opened at such a speed that the flux falls to the residual value of 0·004 
Wb/pole in 0·1 second, calculate the average value of e.m.f. induced across the field winding ter-
minals.
 Solution.	Total	no.	of	turns,	 N	=	 1200	×	4	=	4800
	 	 	 Total	initial	flux	 =			4	×	0·04	=	0·16	Wb	
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	 	 	 Total	residual	flux	 =	 4	×	0·004	=	0·016	Wb
	 	 	 Change	in	flux, dφ =	 0·16	−	0·016	=	0·144	Wb
	 	 	 Time	taken,	dt	 =	 0·1	second

 \  Induced e.m.f., e	 = 	 0.1444800
0.1

dN
dt
φ = × 	=	6912 V

 Example 9.3. A fan blade of length 0·5m rotates perpendicular to a magnetic field of 5×10–5T. 
If the e.m.f. induced between the centre and end of the blade is 10−2V, find the rate of rotation of the 
blade.
 Solution. Let n	be	the	required	number	of	rotations	in	one	second.	The	magnitude	of	induced	
e.m.f.	is	given	by	;
   e	 = 	 ( )

d d dAN N BA B
dt dt dt
φ = = 	 	 												( N	=	1)

	 Here	dA	is	the	area	swept	by	the	blade	in	one	revolution	and	dt	is	the	time	taken	to	complete	one	
revolution.
 Now   e	=10−2	V	;	B	=	5	×	10−5T	;	 dA	=	π	r2	=	π	×	(0·5)2 m2	;	 dt	=	 1 s

n

 \	 	 10−2	 = 	
( )2

5 0 5
5 10

1/ n
− π × ⋅

× ×

or   n	 = 	 ( ) ( )
2

25

10

5 10 0 5

−

−× × π × ⋅
	=	254.7 rev / second

	 Doubling	the	speed	of	rotation	of	the	blade	would	double	the	value	of	dA/dt.	Hence,	the	e.m.f.	
induced	would	be	doubled.
 Example 9.4. A coil of mean area 500 cm2 and having 1000 turns is held perpendicular to a 
uniform field of 0.4 gauss. The coil is turned through 180° in 1/10 second. Calculate the average 
induced e.m.f.
 Solution.  φ	 = 	NBA	cos	θ
	 When	the	plane	of	the	coil	is	perpendicular	to	the	field,	θ	=	0°.	When	the	coil	is	turned	through	
180°,	θ	=	180°.	Therefore,	initial	flux	linked	with	the	coil	is
   φ1	 = 	NBA	cos	0°	=	NBA
	 Flux	linked	with	coil	when	turned	through	180°	is
   φ2	 = 	NBA	cos	180°	=	−	NBA
	 Change	in	flux	linking	the	coil	is
	 	 																																			∆φ		 =	 φ2	−	φ1	=	(–NBA)	–	(NBA)	=	–2	NBA

 \ 	 Average	induced	e.m.f.,	e	=	 2NBA
t t

∆φ− =
∆ ∆

	 Here	N	=	1000	;		B	=	0.4	gauss	=	0.4	×	10–4	T		;		A	=	500	×	10–4 m2  ;		∆t	=	0.1	s

 \  e	 = 	
4 42 1000 (0.4 10 ) 500 10

0.1

− −× × × × ×
	=	0.04 V

 Example 9.5. The magnetic flux passing perpendicular to the plane of the coil and directed into 
the paper (See Fig. 9.4) is varying according to the relation :
   φB	 = 	6t2 + 7t + 1
 where φB is in mWb and t in seconds.
 (i) What is the magnitude of induced e.m.f. in the loop when t = 2 seconds ?
	 (ii) What is the direction of current through the resistor R ?
 Solution.  φB	 =	 (6t2 + 7t	+	1)	mWb	=	(6t2 + 7t	+	1)	×	10−3 Wb
 (i)	Magnitude	of	induced	e.m.f.	is Fig. 9.4
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   e	 = 	 Bd d
dt dt
φ = 	(6t2 + 7t	+	1)	×	10–3	=	(12t	+	7)	×	10–3	V

	 	 	 At	t	=	2	sec,	e	 =	 (12	×	2	+	7)	×	10–3	=	31	×	10–3	V	=	31 mV
 (ii)	 According	to	Lenz’s	law,	the	direction	of	induced	current	will	be	such	so	as	to	oppose	the	

change	in	flux.	This	means	that	direction	of	current	in	the	loop	will	be	such	as	to	produce	
magnetic	field	opposite	to	the	given	field.	For	this	(i.e.,	upward	field),	the	current	induced	in	
the	loop	will	be	anticlockwise.	Therefore,	current in resistor R will be from left to right.

Tutorial Problems
 1.	 A	square	coil	of	side	5	cm	contains	100	loops	and	is	positioned	perpendicular	to	a	uniform	magnetic	

field	of	0.6	T.		It	is	quickly	removed	from	the	field	(	moving	perpendicular	to	the	field)	to	a	region	where	
magnetic	field	is	zero.	It	takes	0.1	s	for	the	whole	coil	to	reach	field-free	region.	If	resistance	of	the	coil	
is	100	Ω,	how	much	energy	is	dissipated	in	the	coil	?	 [2·3×10–3J]

 2.	 A	flat	search	coil	containing	50	turns	each	of	area	2×10–4 m2	is	connected	to	a	galvanometer;	the	total	
resistance	of	the	circuit	is	100Ω.	The	coil	is	placed	so	that	its	plane	is	normal	to	a	magnetic	field	of	flux	
density	0·25	T.

	 (i)	 What	 is	 the	 change	 in	magnetic	flux	 linking	 the	 circuit	when	 the	 coil	 is	moved	 to	 a	 region	of	
negligible	magnetic	field	?

	 (ii)	 What	charge	passes	through	the	galvanometer	?	 [(i) 2·5×10–3 Wb (ii) 25 µC]
 3.	 The	magnetic	flux	passing	perpendicular	to	the	plane	of	a	coil	and	directed	into	the	plane	of	the	paper	is	

varying	according	to	the	following	equation	:
   φ	 =	 5	t2	+	6	t +2
  where φ is in mWb and t	in	seconds.	Find	the	e.m.f.	induced	in	the	coil	at	t = 1	s.	 [16mV]
 4.	 A	coil	has	an	area	of	0.04	m2	and	has	1000	turns.	It	is	suspended	in	a	magnetic	field	of	5	×10–5 Wb/m2 

perpendicular	to	the	field.	The	coil	is	rotated	through	90º	in	0·2s.	Calculate	the	average	e.m.f.	induced	
in	the	coil	due	to	rotation.	 	 	 	 [0·01V]

 5.	 A	gramophone	disc	of	brass	of	diameter	30	cm	rotates	horizontally	at	the	rate	of	100/3	revolutions	per	
minute.	 If	 the	vertical	component	of	earth’s	field	 is	0·01	T,	calculate	 the	e.m.f.	 induced	between	 the	
centre and the rim of the disc.    [3·9 × 10–4 V]

9.5.  Induced E.M.F.
	 When	the	magnetic	flux	linking	a	conductor	(or	coil)	changes,	an	e.m.f.	is	induced	in	it.	This	
change	in	flux	linkages	can	be	brought	about	in	the	following	two	ways	:
 (i)	 The	conductor	is	moved	in	a	stationary	magnetic	field	in	such	a	way	that	the	flux	linking	it	

changes	in	magnitude.	The	e.m.f.	induced	in	this	way	is	called	dynamically induced e.m.f. 
(as	in	a	d.c.	generator).	It	is	so	called	because	e.m.f.	is	induced	in	the	conductor	which	is	in	
motion.

 (ii)	 The	 conductor	 is	 stationary	 and	 the	magnetic	 field	 is	 moving	 or	 changing.	 The	 e.m.f.	
induced	in	this	way	is	called	statically induced e.m.f. (as	in	a	transformer).	It	is	so	called	
because the e.m.f. is induced in a conductor which is stationary.

 It may be noted that in either case, the magnitude of induced e.m.f. is given by Ndφ/dt or 
derivable from this relation.

9.6.  Dynamically Induced E.M.F.
	 Consider	a	single	conductor	of	length	l	metres	moving	at	*right	angles	to	a	uniform	magnetic	
field	of	B Wb/m2	with	a	velocity	of	v m/s [See	Fig.	9.5	(i)].	Suppose	the	conductor	moves	through	a	
small	distance	dx in dt seconds.	Then	area	swept	by	the	conductor	is	=	l × dx.
*	 If	 	 the	 conductor	 is	moved	 parallel	 to	 the	magnetic	 field,	 there	would	 be	 no	 change	 in	 flux	 and	 hence	 no	

e.m.f.	would	be	 induced.
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Fig. 9.5

 \	 	 Flux	cut,	dφ =	 Flux	density	×	Area	swept	=	B l dx Wb
	 According	to	Faraday’s	laws	of	electromagnetic	induction,	the	magnitude	of	e.m.f.	e induced in 
the	conductor	is	given	by	;
   e	 = 	 dN

dt
φ 	=	

B l dx
dt 	 ( N	=	1)

 \  e	 = 	B l v	volts	 ( dx / dt	=	v)
 Special case. If	the	conductor	moves	at	angle	θ	to	the	magnetic	field	[See	Fig.	9.5	(ii)], then the 
velocity	at	which	the	conductor	moves	across	the	field	is	*v	sin	θ.
 \  e	 = 	B l v sin	θ
	 The	direction	of	the	induced	e.m.f.	can	be	determined	by	Fleming’s	right-hand	rule.
 Example 9.6. An aircraft has a wing span of 56 m. It is flying horizontally at a speed of 810 
km/hr and the vertical component of earth’s magnetic field is 4×10−4 Wb/m2. Calculate the potential 
difference between the wing tips of the aircraft.
 Solution. Induced	e.m.f.	=	B lv

	 Here	 B	=	4	×	10−4 Wb/m2	;	l	=	56	m	;	 v	=	 810 1000 225 m/s
3600
× =

 \	 	 Induced	e.m.f.	 =	 (4×10−4)	×	56	×	(225)	=	5·04	V
or	 	 	 Potential	difference	 =	 5·04 V
 Example 9.7. A d.c. generator consists of conductors lying in a radius of 10 cm and the effective 
length of a conductor in a constant radial field of strength 0·9 Wb/m2 is 12 cm. The armature rotates 
at 1400 r.p.m. Given that the generator has 152 conductors in series, calculate the voltage being 
generated.
 Solution. Since	the	magnetic	field	is	radial,	the	conductors	cut	the	magnetic	lines	of	force	at	
right	angles.
	 	 	 Velocity,	v	 =	 ω	×	r	=	

2
60

N rπ × 	=	 2
0 1 14 66 m s

60
π ×1400 × ⋅ = ⋅

	 Voltage	generated	in	each	conductor	=	B lv	=	0·9	×	0·12	×	14·66	=	1·583	V
	 Voltage	generated	in	152	conductors	in	series
	 	 	 	 =	 1·583	×	152	=	240·6 V
	 Note	 that	 effective	 length	 (l)	 is	 that	portion	of	 the	 conductor	which	 takes	part	 in	 the	 actual	
cutting	of	magnetic	flux	lines.
*	 The	 component	v cos θ	 is	 parallel	 to	magnetic	field	 and	 hence	 no	 e.m.f.	 is	 induced	 in	 the	 conductor	

due	 to	 this	 component.
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 Example 9.8. A square metal wire loop of side 
10 cm and resistance 1 Ω is moved with a constant 
velocity v0 in a uniform magnetic field of induction 
B = 2 Wb/m2 as shown in Fig. 9.6. The magnetic 
field lines are perpendicular to the plane of the 
loop directed into the paper. The loop is connected 
to a network of resistors each of value 3 Ω. The 
resistances of lead wires OS and PQ are negligible. What should be the speed v0 of the loop so as to 
have a steady current of 1 mA in the loop ? Also indicate the direction of current in the loop.
 Solution. We	shall	first	find	the	equivalent	resistance	of	the	network.	It	is	clear	that	network	is	
a	balanced	Wheatstone	bridge.	Therefore,	the	resistance	in	the	branch	AC	is	ineffective.	The	equiva-
lent	resistance	R′	of	the	network	is	given	by	;

   1
R′ 	 = 	

1 1 1
6 6 3

+ =  or R′	=	3	Ω

	 The	resistance	of	the	loop	is	1	Ω.
 \  Effective resistance of the circuit, R	=	R′	+	1	=	3	+	1	=	4	Ω
	 E.M.F.	induced	in	the	loop,	 e	 = 	Bl v0

	 	 	 Current	in	the	loop,	i	 = 	 0Blve
R R

=  \	 Speed	of	the	loop,	 v0	=	
iR
Bl

	 Here	  i	=	1	mA	=	10–3	A	 ;	 R	=	4	Ω	 ;	 B	=	2	Wb/m2 ;	 l	=	0.1	m

 \  v0	 = 	
310 4

2 0.1

− ×
× 	=	2	×	10–2 ms–1	=	2 cm/second

	 According	to	Fleming’s	right-hand	rule,	direction	of	induced	current	is	clockwise from O to P.
 Example 9.9. A wheel with 10 metal spokes each 0.5 m long is rotated with a speed of  
120 r.p.m. in a plane normal to earth’s magnetic field at a place. If the magnitude of the field is  
0.4 G, what is the magnitude of induced e.m.f. between the axle and rim of the wheel ?
 Solution.  Length	of	spoke,	l	 =	 radius	r	=	0.5	m
	 	 	Frequency	of	rotation,	n	 =	 120	r.p.m.	=	2	r.p.s.
	 	 	Magnetic	flux	density,	B	 =	 0.4	G	=	0.4	×	10–4	T
	 	 	 Angular	frequency,	ω	 =	 2π	n	=	2π	×	2	=	4π	rad	s–1

	 As	the	wheel	rotates,	the	linear	velocity	of	spoke	end	at	the	rim	=	ω	r	and	linear	velocity	of	spoke	
end	at	the	axle	=	0.

 \	 Average	linear	velocity,	v	=	
0 1

2 2
r r+ ω = ω

	 Induced	e.m.f.	across	the	ends	of	each	spoke	is

   e	 = 	Bl v	=	(B)	(r) 21 1
2 2

r B r ω = ω  

 or  e	 = 	 21 1
2 2

B r ω = (0.4	×	10–4)	×	(0.5)2	×	4π	=	6.28 × 10–5 V

	 One	end	of	all	10	spokes	is	connected	to	the	rim	and	the	other	end	to	the	axle.	Therefore,	the	
spokes	are	connected	in	parallel.	As	a	result,	e.m.f.	between	rim	and	axle	is	equal	to	the	e.m.f.	across	
the	ends	of	each	spoke.
 Example 9.10. A conductor 10 cm long and carrying a current of 50 A lies perpendicular to a 
field of strength 1000 A/m. Calculate :
 (i) the force acting on the conductor.

Fig. 9.6
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 (ii) the mechanical power to move this conductor against the force with a speed of 1 m/s.
	 (iii) e.m.f. induced in the conductor.
 Solution. (i) F	=	BIl. Now H	=	1000	A/m
 \  B	 = 	µ0H	=	4π	×	10

–7	×	1000	=	4π	×	10–4 Wb/m2

 \  F	 =	 (4π	×	10–4)	×	50	×	0.1	=	6.28 × 10–3 N
 (ii)	Mechanical	power	required	is	given	by	;
   P	 = 	F	×	v	=	6.28	×	10–3	×	1	=	6.28 × 10–3 W
 (iii)	 E.M.F.	induced	in	the	conductor	is	given	by	;
   e	 = 	Blv	=	(4π	×	10–4)	×	0.1	×	1	=	4π	× 10–5 V
	 Note	that	electric	power	developed	=	eI	=	(4π	×	10–5)	×	50	=	6.28	×	10–3	W.	This	is	equal	to	the	
mechanical	input	power.	Therefore,	law	of	conservation	of	energy	is	obeyed.

Tutorial Problems
 1.	 A	copper	disc	40	cm	 in	diameter	 is	 rotated	at	3000	 r.p.m.	on	a	horizontal	axis	perpendicular	 to	and	

through	the	centre	of	the	disc,	the	axis	lying	in	the	magnetic	meridian.	Two	brushes	make	contact	with	
the	disc,	one	at	 the	edge	and	 the	other	at	 the	centre.	 If	 the	horizontal	 component	of	 earth’s	field	be	 
0.02	m	Wb/m2,	calculate	the	e.m.f.	induced	between	the	brushes.	 [0.12 mV]

 2.	 A	meter	driving	motor	consists	of	a	horizontal	disc	of	aluminium	20	cm	in	diameter,	pivoted	on	a	vertical	
spindle	and	lying	in	a	permanent	magnetic	field	of	density	0.3	Wb/m2.	The	current	flow	is	radial	from	the	
spindle	to	the	circumference	of	the	disc.	The	circuit	resistance	is	0.225	W	and	a	p.d.	of	2.3	V	is	required	
to	pass	a	current	of	10	A	through	the	motor.	Calculate	the	rotational	speed	of	the	disc	and	the	power	lost	
in friction.    [319 r.p.m. ; 0.5 W]

 3.	 If	the	vertical	component	of	earth’s	magnetic	field	be	4	×	10–5 Wb/m2,	then	what	will	be	the	induced	
potential	difference	produced	between	the	rails	of	a	metre-gauge	when	a	train	is	running	on	them	with	a	
speed	of	36	km/hr	?	 	 	 	 [4 × 10–4 V]

9.7.  Statically Induced E.M.F.
 When	the	conductor	is	stationary	and	the	field	is	moving	or	changing,	the	e.m.f.	induced	in	the	
conductor	is	called	statically	induced	e.m.f.	A	statically	induced	e.m.f.	can	be	further	sub-divided	
into	:
	 1.	Self-induced	e.m.f.	 2.		Mutually	induced	e.m.f.
 1.  Self-induced e.m.f. The e.m.f. induced in a coil due to the change of its own flux 
linked with it is called self-induced e.m.f.
	 When	a	coil	is	carrying	current	(See	Fig.	
9.7),	a	magnetic	field	is	established	through	
the	coil.	If	current	in	the	coil	changes,	then	
the	flux	linking	the	coil	also	changes.	Hence	
an	e.m.f.	(=	N dφ/dt)	 is	 induced	in	the	coil.	
This	 is	 known	 as	 self-induced	 e.m.f.	 The	
direction	 of	 this	 e.m.f.	 (by	 Lenz’s	 law)	 is	
such	 so	 as	 to	 oppose	 the	 cause	 producing	
it,	namely	the	change	of	current	(and	hence	
field)	in	the	coil.	The	self-induced	e.m.f.	will	
persist	 so	 long	 as	 the	 current	 in	 the	 coil	 is	
changing.	The	following	points	are	worth	noting	:
 (i)		 When	current	in	a	coil	changes,	the	self-induced	e.m.f.	opposes	the	change	of	current	in	the	
coil.	This	property	of	the	coil	is	known	as	its	self-inductance or inductance.

Fig. 9.7
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 (ii)  The self-induced e.m.f. (and hence inductance) does not prevent the current from 
changing ; it serves only to delay the change. Thus	after	the	switch	is	closed	(See	Fig.	9.7),	
the	current	will	rise	from	zero	ampere	to	its	final	steady	value	in	some	time	(a	fraction	of	a	
second).	This	delay	is	due	to	the	self-induced	e.m.f.	of	the	coil.
 2. Mutually induced e.m.f. The e.m.f. induced in a coil due to the changing current in the 
neighbouring coil is called mutually induced e.m.f.
 Consider	two	coils	A and B	placed	adjacent	to	each	other	as	shown	in	Fig.	9.8.	A	part	of	the	
magnetic	flux	produced	by	coil	A	passes	through	or	links	with	coil	B.	This	flux	which	is	common	to	
both	the	coils	A and B	is	called	mutual flux (φm).	If	current	in	coil	A	is	varied,	the	mutual	flux	also	
varies	and	hence	e.m.f.	is	induced	in	both	the	coils.	The	e.m.f.	induced	in	coil	A	is	called	self-induced	
e.m.f.	as	already	discussed.	The	e.m.f.	induced	in	coil	B	is	known	as	mutually induced e.m.f.

Fig. 9.8

 The	magnitude	of	mutually	induced	e.m.f.	is	given	by	Faraday’s	laws	i.e. eM = NB dφm/dt where 
NB	is	the	number	of	turns	of	coil	B and dφm/dt is	the	rate	of	change	of	mutual	flux	i.e.	flux	common	
to	both	the	coils.	The	direction	of	mutually	induced	e.m.f.	(by	Lenz’s	law)	is	always	such	so	as	to	
oppose	the	very	cause	producing	it.	The	cause	producing	the	mutually	induced	e.m.f.	in	coil	B is the 
changing	mutual	flux	produced	by	coil	A.	Hence	the	direction	of	induced	current	(when	the	circuit	
is	completed)	in	coil	B	will	be	such	that	the	flux	set	up	by	it	will	oppose	the	changing	mutual	flux	
produced	by	coil	A.
	 The	following	points	may	be	noted	carefully	:
 (i)	 The	mutually	induced	e.m.f.	in	coil	B	persists	so	long	as	the	current	in	coil	A is changing. If 

current	in	coil	A	becomes	steady,	the	mutual	flux	also	becomes	steady	and	mutually	induced	
e.m.f.	drops	to	zero.

 (ii)	 The	property	of	two	neighbouring	coils	to	induce	voltatge	in	one	coil	due	to	the	change	of	
current	in	the	other	is	called	mutual inductance.

9.8.  Self-inductance (L)
 The property of a coil that opposes any change in the amount of current flowing through it is 
called its self-inductance or inductance.
 This	property	(i.e. inductance)	is	due	to	the	self-induced	e.m.f.	in	the	coil	itself	by	the	changing	
current.	If	the	current	in	the	coil	is	increasing,	the	self-induced	e.m.f.	is	set	up	in	such	a	direction	so	
as	to	oppose	the	rise	of	current	i.e.	direction	of	self-induced	e.m.f.	is	opposite	to	that	of	the	applied	
voltage.	Similarly,	if	the	current	in	the	coil	is	decreasing,	self-induced	voltage	will	be	such	so	as	to	
oppose	the	decrease	in	current	i.e.	self-induced	e.m.f.	will	be	in	the	same	direction	as	the	applied	
voltage.	It	may	be	noted	that	self-inductance	does	not	prevent	the	current	from	changing	;	it	serves	
only	to	delay	the	change.
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 Factors affecting inductance. The	 greater	 the	 self-induced	 voltage,	 the	 greater	 the	 self-
inductance	 of	 the	 coil	 and	 hence	 larger	 is	 the	 opposition	 to	 the	 changing	 current.	According	 to	
Faraday’s	laws	of	electromagnetic	induction,	induced	voltage	in	a	coil	depends	upon	the	number	
of	turns	(N)	and	the	rate	of	change	of	flux	(dφ/dt)	linking	the	coil.	Hence,	the	inductance	of	a	coil	
depends	upon	these	factors,	viz :
 (i)	 Shape	and	number	of	turns.
 (ii)	 Relative	permeability	of	the	material	surrounding	the	coil.	
 (iii)	 The	speed	with	which	the	magnetic	field	changes.
	 In	 fact,	 anything	 that	 affects	 magnetic	 field	 also	 affects	 the	 inductance	 of	 the	 coil.	 Thus,	
increasing	the	number	of	turns	of	a	coil	increases	its	inductance.	Similarly,	substituting	an	iron	core	
for air core increases its inductance.
 It may be noted carefully that inductance makes itself felt in a circuit (or coil) only when 
there is a changing current. Thus,	although	a	circuit	element	may	have	inductance	by	virtue	of	its	
geometrical	and	magnetic	properties,	 its	presence	 in	 the	circuit	 is	not	exhibited	unless	 there	 is	a	
change	of	current	in	the	circuit.	For	example,	if	a	steady	direct	current	(d.c.)	is	flowing	in	a	circuit,	
there	will	be	no	inductance.	However,	when	alternating	current	is	flowing	in	the	same	circuit,	the	
current	is	constantly	changing	and	hence	the	circuit	exhibits	inductance.
 Note.	The	self-inductance	of	a	coil	opposes	the	change	of	current	(increase	or	decrease)	through	the	coil.	
This	opposition	occurs	because	a	changing	current	produces	self-induced	e.m.f.	(e)	which	opposes	the	change	
of	current.	For	this	reason,	self-inductance of a coil is called electrical inertia of the coil.

9.9.  Magnitude of Self-induced E.M.F.
	 Consider	a	coil	of	N turns carrying a current of I	amperes.	If	current	in	the	coil	changes,	the	flux	
linkages	of	the	coil	will	also	change.	This	will	set	up	a	self-induced	e.m.f.	e	in	the	coil	given	by	;

   e	 = 	 ( )
d dN N
dt dt
φ = φ

	 Since	flux	is	due	to	current	in	the	coil,	it	follows	that	flux	linkages	(= Nφ)	will	be	proportional	to	I.
 \  e	 = 	 d

dt 	(Nφ) ∝ dI
dt

 \  e	 =	 Constant	×	 dI
dt

 or  e	 = 	 dIL
dt

	 (in magnitude)	 ...(i)

where L	is	a	constant	called	self-inductance or inductance	of	the	coil.	The	unit	of	inductance	is	
henry	(H).	If	in	eq.	(i) above, e =	1	volt,	dI/dt	=	1	A/second,	then	L	=	1	H.
 Hence a coil ( or circuit ) has an inductance of 1 henry if an e.m.f. of 1 volt is induced in it 
when current through it changes at the rate of 1 ampere per second.
 Note.	The	magnitude	of	self-induced	e.m.f.	is	e	=	LdI/dt.	However,	the	magnitude	and	direction	of	self-
induced	e.m.f.	should	be	written	as	:
   e	 = 	– dIL

dt
	 The	minus	sign	is	because	the	self-induced	e.m.f.	tends	to	send	current	in	the	coil	in	such	a	direction	so	
as to produce	magnetic	flux	which	opposes	the	change	in	flux	produced	by	the	change	in	current	in	the	coil.	In	
fact,	minus	sign	represents	Lenz’s	law	mathematically.

9.10.  Expressions for Self-inductance
 The	self-inductance	(L)	of	a	circuit	or	coil	can	be	determined	by	one	of	 the	following	three	
ways	:
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 (i)  First Method.	If	the	magnitude	of	self-induced	e.m.f.	(e) and the rate of change of current 
(dI/dt)	are	known,	then	inductance	can	be	determined	from	the	following	relation	:

   e	 = 	 dIL
dt

 \  L	 = 	
( )

e
dI dt 	 ...(i)

 (ii)  Second Method. If	the	flux	linkages	of	the	coil	and	current	are	known,	then	inductance	can	
be	determined	as	under	:
   e	 = 	 dI dL

dt dt
= 	(	LI )

	 Also	 e	 = 		 d dN
dt dt
φ = (N φ)

	 From	the	two	expressions,	we	have,

   L I = N φ

 \  L	 = 	 N
I
φ 	 ...(ii)

Thus,	inductance	is	the	flux	linkages	of	the	coil	per	ampere.	If	N φ = 1 Wb-turn and I = 1	A,	then	 
L =	1H.
 Hence a coil has an inductance of 1 henry if a current of 1 A in the coil sets up flux linkages  
of 1 Wb-turn.
 Note. Relation	 (ii)	 above	 reveals	 that	 inductance	depends	upon	 the	 ratio	φ/I. Therefore,	 inductance	 is	
constant	only	when	the	flux	changes	uniformly	with	current.	This	condition	is	met	only	when	the	flux	path	is	
entirely	composed	of	non-magnetic	material	e.g.	air.	But	when	the	flux	path	is	through	a	magnetic	material	
(	e.g.	coil	wound	over	 iron	bar),	 inductance	of	 the	coil	will	be	constant	only	over	 the	 linear	portion	of	 the	
magnetisation curve.
 (iii)  Third Method. The	inductance	of	a	magnetic	circuit	can	be	found	in	terms	of	its	physical	
dimensions.	Consider	an	iron-cored	*solenoid	of	dimensions	as	shown	in	Fig.	9.9.	Inductance	of	the	
solenoid	is	given	by	[from	exp.	(ii)	above]	;

  L	 = 	 dN
dI

φ

 Now φ	 = 	
0

m.m.f.
reluctance / r

N I
l a

=
µ µ

 Differentiating φ w.r.t. I, we get,

  d
dI

φ 	 = 	 0 rN a
l
µ µ

 \ L	 = 	
( )0 rN a

N
l
µ µ

or  L	 = 	
2

0 rN a
l
µ µ

	 ...(iii)

	 	 	 = 	
2

0/ r

N
l a µ µ 	=	 ( )

2

Reluctance
N

S 	 ...(iv)

 Thus,	inductance	can	be	determined	by	using	the	relation	(iii)	or	(iv). It is important to note [See 
relation (iv)] that inductance is directly proportional to turns squared and inversely proportional 

*	 Solenoid	is	an	important	winding	arrangement,	being	simple	to	manufacture,	it	 is	found	in	relays,	inductors,	
small	 transformers	 in	 the	 form	considered.

Fig. 9.9
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to the reluctance of the magnetic path.	The	smaller	the	reluctance	of	the	magnetic	path,	the	larger	
the inductance and vice-versa.	 For	 this	 reason,	 an	 iron-cored	 coil	 has	more	 inductance	 than	 the	
equivalent	air-cored	coil.
 Example 9.11. A coil wound on an iron core of permeability 400 has 150 turns and a cross-
sectional area of 5 cm2. Calculate the inductance of the coil. Given that a steady current of 3 mA 
produces a magnetic field of 10 lines/cm2 when air is present as the medium.

 Solution.  µi	 = 	
Flux density in iron
Flux density in air 10

iB=

 \  Bi	 =	 10	×	µi	=	10	×	400	=	4000	lines/cm
2

	 Flux	produced	by	3	mA	current	in	the	iron	core	is
   φ	 = 	Bi × a	=	4000	×	5	=	20,000	lines	=	2	×	10−4	Wb

 \  L	 = 	
4

3

150 2 10

3 10

N
I

−

−
φ × ×=

×
	= 10 H

 Example 9.12. A solenoid with 900 turns has a total flux of 1.33 × 10–7 Wb through its air core 
when the coil current is 100 mA. If the flux takes 75 ms to grow from zero to its maximum level, cal-
culate the inductance of the coil. Also, calculate the induced e.m.f. in the coil during the flux growth.
 Solution.	The	magnitude	of	induced	e.m.f.	is	given	by	the	following	two	expressions	:

   e	 = 	 dIL
dt 	;	e	=	

dN
dt
φ

 \  dIL
dt 	 = 	

dN
dt
φ    or    L	=	 dN

dI
φ

	 Here	 N	=	900	;	dφ	 =	 1.33	×	10–7	Wb	;	dt	=	75	ms	=	75	×	10–3	s	;
   dI	=	100	mA	 =	 100	×	10–3A

 \  L	 = 	
7

3

1.33 10
900

100 10

−

−
××
×

	=	1.2	×	10–3	H	=	1.2 mH

   Induced e.m.f., e	 = 	 dN
dt
φ 	=	

7

3

1.33 10
900

75 10

−

−
××

×
	=	1.6	×	10–3	V	=	1.6 mV

 Example 9.13. An air-cored choke is designed to have an inductance of 20H when operating at 
a flux density of 1 Wb/m2 ; the corresponding relative permeability of iron core is 4000. Determine 
the number of turns in the winding ; given that the flux path has a mean length of 22 cm in the iron 
core and 1 mm in air gap and that its cross-section is 10 cm2.
 Solution.  L	 = 	N2/ST
where ST	is	the	total	reluctance	of	the	magnetic	path.

   ST	 = 	Siron + Sair	=	
0 0

iron air

r r

l l
a a

+
µ µ µ µ

	 	 	 	 = 	( ) ( )4 7 4 7

0 22 0 001

10 10 4 10 4000 10 10 4 10 1− − − −
⋅ ⋅+

× × π× × × × π× ×
 

	 	 	 	 =	 43767	+	795774	=	839541	AT/Wb
 Now L	 = 	N2/ST

 \  N	 = 	 20 839541TL S = × 	=	4097 turns
 Example 9.14. An iron rod, 1 cm diameter and 50 cm long is formed into a closed ring and 
uniformly wound with 400 turns of wire. A direct current of 0·5 A is passed through the winding and 
produces a flux density of 0·75 Wb/m2. If all the flux links with every turn of the winding, calculate 



Electromagnetic  Induction 443 

(i) the relative permeability of iron (ii) the inductance of the coil (iii) the average value of e.m.f. 
induced when the interruption of current causes the flux in the iron to decay to 20% of its original 
value in 0·01 second.
 Solution. (i) H	 = 	 400 0 5 400 AT/m

0 5
N I

l
× ⋅= =
⋅

   µr	 = 	 7
0

0.75

4 10 400

B
H −=

µ π × ×
	=	1492

 (ii)  φ	 = 	 ( )220 75 1 10
4

B a −π× = ⋅ × × =	0·589×10−4 Wb

 \  L	 = 	
( ) 4400 0 589 10

0 5
N

I

−× ⋅ ×φ =
⋅ 	=	0.0471 H

 (iii)		 Change	in	flux, dφ	 =	 80%	of	original	flux	=	0·8×0·589×10−4	=	0·47×10−4 Wb

 \  e	 = 	
40.47 10

400
0.01

dN
dt

−×φ = × 	=	1.88 V

 Example 9.15. A circuit has 1000 turns enclosing a magnetic circuit 20 cm2 in section. With 
4A, the flux density is 1 Wb/m2 and with 9A, it is 1.4 Wb/m2. Find the mean value of the inductance 
between these current limits and the induced e.m.f. if the current falls from 9A to 4A in 0·05 seconds.

 Solution.  L	 = 	 ( )
d d dBN N BA NA
dI dI dI

φ = =

	 Here	 N	=	1000	 ;	 dB	=	1·4	–	1	=	0·4	Wb/m2 ;	 dI	=	9	–	4	=	5A

 \  L	 =	 (1000)	×	(20	×	10–4)	×	 0.4
5

	=	0.16 H

	 Also	 e	 = 	 50·16
0·05

dIL
dt

= × 	=	16 V

 Example 9.16. A single element has the current and voltage functions graphed in Fig. 9.10 (i) 
and (ii). Determine the element.

Fig. 9.10

 Solution.	From	i –	t and V –	t	graph	of	the	element,	we	observe	that	:
 Between 0 – 2 ms   ;				di	=	10A			;			dt	=	2	ms			;			V	=	15	volts

 \ di
dt 	 = 	 3

10A

2 10 s−×
	=	5000	A/s.	Now,	L	=	 V

di dt 	=	
15

5000
	=	3	×	10–3	H	=	3	mH

 Between 4 – 6 ms ;	di	=	–20A	;	dt	=	2	ms	;	V	=	–	30	volts

 \ di
dt 	 = 	 3

20A

2 10 s−
−
×

	=	–10,000	A/s.	Now,	L	=	 V
di dt 	=	

30
10,000
−

− 	=	3	×	10–3	H	=	3	mH

 Note that when current is constant, di/dt	=	0	so	that	voltage	across	L is zero. Hence, the element 
is 3 mH inductor.
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 Example 9.17. A 300-turn coil has a resistance of 6 Ω and an inductance of 0·5 H. Determine 
the new resistance and new inductance if one-third of the turns are removed. Assume all the turns 
have the same circumference.
 Solution. As	the	resistance	of	a	coil	is	directly	proportional	to	its	length,
 \  R1/R2	 = 	N1/N2	 or	 6/R2	=	300/200

 \  R2	 = 	
2006
300

× 	=	4 W

	 Also	 1

2

L
L 	 = 	

2
1
2
2

/

/

N S
N S

 or 
2

2
2

(300)0.5

(200)L
=

 \  L2	 = 	
2

2

(200)
0.5

(300)
× 	=	0·22 H

 Example 9.18. A battery of 24 V is connected to the primary (coil 1) of a two-winding trans-
former as shown in Fig. 9.11 and the secondary (coil 2) is open-circuited. The coil parameters are :
  R1 = 10 Ω  R2 = 30 Ω
  N1 = 100 turns N2 = 160 turns
  φ1 = 0·01 Wb φ2 = 0·008 Wb
 Calculate (i) the self-inductance of coil 1 (ii) the mutual inductance (iii) the coefficient of 
coupling and (iv) the self-inductance of coil 2.

Fig. 9.11

 Solution. (i) I1	 = 	V/R1	=	24/10	=	2·4A

 \  L1	 = 	
1 1

1

100 0.01
2·4

N
I

φ ×= 	=	0.417 H

 (ii)  M	 = 	 2 2

1

160 0.008
2·4

N
I

φ ×= 	=	0.533 H

 (iii)  k	 =	 0·008/0·01	=	0·8

 (iv)  M	 = 	 1 2k L L 	 or	 0·533	=	 20·8 0·417 L×  \ L2	=	1·064 H
 Example 9.19. A coil of 1000 turns is wound on a laminated core of steel having a cross-section 
of 5 cm2. The core has an air gap of 2 mm cut at right angle. What value of current is required to 
have an air gap flux density of 0.5 T? Permeability of steel may be taken as infinity. Determine the 
coil inductance.
 Solution. Bg	=	0.5	T	;	a	=	5	×	10

–4 m2			;			N	=	1000	turns		;			lg	=	2	×	10
–3	m		;			µr	=	∞

	 	 	 Total	AT	required	 =	 Hili + Hglg	=	
0 0

g g
i g

r

B B
l l+

µ µ µ

	 	 	 	 = 	
0

0 g
g

B
l+

µ 	=	 3
7

0.50 2 10
4 10

−
−+ × ×

π ×
	=	796	AT	 (µr	=	∞)
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 Now NI	 =	 796	 \ I	=	 796
N 	=	 796

1000
	=	0.796 A

	 	 	 Inductance	of	coil,	L	 = 	 N
I
φ 	=	

( )gN B a
I

× ×
	=	

41000 (0.5 5 10 )
0.796

−× × ×
	=	0.314 H

Tutorial Problems
 1.	 A	current	of	2·5	A	flows	through	a	1000-turn	coil	that	is	air-cored.	The	coil	inductance	is	0·6	H.	What	

magnetic	flux	is	set	up	?    [1·5 m Wb]
 2.	 A	2000-turn	coil	is	uniformly	wound	on	an	ebonite	ring	of	mean	diameter	320	mm	and	cross-sectional	

area	400	mm2.	Calculate	the	inductance	of	the	toroid	so	formed.	 [2 mH] 
 3.	 A	coil	has	self-inductance	of	10	H.	If	a	current	of	200	mA	is	reduced	to	zero	in	a	time	of	1	ms,	find	the	

average	value	of	induced	e.m.f.	across	the	terminals	of	the	coil. [2000 V] 
 4.	 A	coil	consists	of	750	turns	and	a	current	of	10	A	in	the	coil	gives	rise	to	a	magnetic	flux	of	1200	µWb.	

Calculate	 the	 inductance	of	 the	 coil	 and	determine	 the	 average	 e.m.f.	 induced	 in	 the	 coil	when	 this	
current	is	reversed	in	0·01	second.	  [0·09 H ; 180 V]

 5.	 Calculate	the	inductance	of	a	solenoid	of	2000	turns	wound	uniformly	over	a	length	of	50	cm	on	a	cy-
lindrical	paper	tube	4	cm	in	diameter.	The	medium	is	air.	 [12·62 mH]

 6.	 A	circular	iron	ring	of	mean	diameter	100	mm	and	cross-sectional	area	500	mm2	has	200	turns	of	wire	
uniformly	wound	around	the	circumference.	If	the	relative	permeability	of	iron	is	assumed	to	be	1200,	
find	the	self-inductance	of	the	coil.  [96 mH]

 7.	 A	certain	40-turn	coil	has	an	inductance	of	6	H.	Determine	the	new	inductance	if	10	turns	are	added	to	
the	coil.    [9·38 H]

 8.	 The	e.m.f.	induced	in	a	coil	is	100V	when	current	through	it	changes	from	1A	to	10	A	in	0·1s.	Calculate	
the	inductance	of	the	coil.	    [1·11 H]

 9.	 A	6-pole,	500	V	d.c.	generator	has	a	flux/pole	of	50	mWb	produced	by	a	field	current	of	10	A.	Each	pole	
is	wound	with	600	turns.	The	resistance	of	entire	field	circuit	is	50	Ω.	If	the	field	circuit	is	broken	in	
0·02s,	calculate	(i)	the	inductance	of	the	field	coils	(ii)	the	induced	e.m.f.	and	(iii)	the	value	of	discharge	
resistance	so	that	the	induced	e.m.f.	should	not	exceed	1000V.	 [(i) 18 H (ii) 1500 V (iii) 50 Ω]

 10. What is the inductance of a single	layer	10-turn	air-cored	coil	that	is	1	cm	long	and	0·5	cm	in	diameter	?	
[ 0·214 µH ]

9.11.  Magnitude of Mutually Induced E.M.F.
 Consider	two	coils	A and B	placed	adjacent	to	each	other	as	shown	in	Fig.	9.12.	If	a	current	I1 
flows	in	the	coil	A,	a	flux	is	set	up	and	a	part	φ12	(mutual flux)	of	this	flux	links	the	coil	B. If current 
in	coil	A	is	varied,	the	mutual	flux	also	varies	and	hence	an	e.m.f.	is	induced	in	the	coil	B.	The	e.m.f.	
induced	in	coil	B	is	termed	as	mutually	induced	e.m.f.	Note	that	coil	B	is	not	electrically	connected	
to	coil	A	;	the	two	coils	being	magnetically	linked.

Fig. 9.12
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	 The	larger	the	rate	of	change	of	current	in	coil	A,	the	greater	is	the	e.m.f.	induced	in	coil	B. In 
other	words,	mutually	induced	e.m.f.	in	coil	B	is	directly	proportional	to	the	rate	of	change	of	current	
in	coil	A i.e.,
 Mutually	induced	e.m.f.	in	coil	B  ∝ 	Rate	of	change	of	current	in	coil	A

or   eM ∝ 1dI
dt

or   eM	 = 	 1dIM
dt 	 (in magnitude)	 ...(i)

where M	 is	 a	 constant	 called	mutual inductance	 between	 the	 two	 coils.	 The	 unit	 of	mutual	
inductance is	henry	(H).	If	in	exp.	(i), eM	=	1	volt,	dI1/dt	=	1	A/sec,	then,	M =	1	H.
 Hence mutual inductance between two coils is 1 henry if current changing at the rate of  
1 A/sec in one coil induces an e.m.f. of 1 V in the other coil.
 Mutual	inductance	comes	into	picture	when	two	coils	are	placed	close	together	in	such	a	way	
that	flux	produced	by	one	links	the	other.	We	say	then	that	the	two	coils	are	coupled.	Each	coil	has	
its	own	inductance	but	in	addition,	there	is	further	inductance	due	to	the	induced	voltage	produced	
by	coupling	between	the	coils.	We	call	this	further	inductance	as	mutual	inductance.	We	say	the	two	
coils	are	coupled	together	by	mutual	inductance.	The	terms	magnetic or inductive coupling are 
sometimes used.
 Note. The	magnitude	of	mutually	induced	e.m.f.	in	coil	B	(secondary)	is	eM	=	M dI1/dt where dI1 is the 
change	of	current	in	coil	A	(primary).	However,	the	magnitude	and	direction	of	mutually	induced	e.m.f.	in	coil	
B	should	be	written	as	:
   eM	 = 	 1dIM

dt
−

	 The	minus	sign	is	because	the	mutually	induced	e.m.f.	sends	current	in	coil	B in such a direction so as to 
produce	magnetic	flux	which	opposes	the	change	in	flux	produced	by	change	in	current	in	coil	A. In fact, minus 
sign	represents	Lenz’s	law	mathematically.

9.12.  Expressions for Mutual Inductance
 The	mutual	 inductance	between	 two	coils	 can	be	determined	by	one	of	 the	 following	 three	
methods	:
 (i)  First Method. If	the	magnitude	of	mutually	induced	e.m.f.	(eM)	in	one	coil	for	the	given	
rate	of	change	of	current	in	the	other	is	known,	then	M	between	the	two	coils	can	be	determined	 
from	the	following	relation	:
   eM	 = 	

1dIM
dt

 or  M	 = 	
1 /

Me
dI dt 	 ...(i)

 (ii)  Second Method.	Let	there	be	two	magnetically	coupled	coils	A and B having N1 and N2 
turns	respectively	(See	Fig.	9.13	).	Suppose	a	current	I1	flowing	in	coil	A	produces	a	mutual	flux	φ12. 
Note	that	mutual	flux	φ12	is	that	part	of	the	flux	created	by	coil	A	which	links	the	coil	B.

   eM	 = 	
1

1( )
dI dM M I
dt dt

=

	 Also	 eM	 = 	
12

2 2 12( )
d dN N
dt dt
φ = φ

	 From	these	two	expressions,	we	have,
   MI1	 = 	N2 φ12

 or  M	 = 	 2 12

1

N
I
φ

	 ...(ii)
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	 Thus,	mutual	inductance	between	two	coils	is	equal	to	the	flux	linkages	of	one	coil	(N2φ12) due 
to	one	ampere	in	the	other	coil.	If	N2 φ12	=	1	Wb-turn	and	I1	=	1	A,	then,	M	=	1	H.
 Hence mutual inductance between two coils is 1 henry if a current of 1 A flowing in one coil 
produces flux linkages of 1 Wb-turn in the other.
 (iii) Third Method.	The	mutual	inductance	between	the	two	coils	can	be	determined	in	terms	
of	physical	dimensions	of	the	magnetic	circuit.	Fig.	9.13	shows	two	magnetically	coupled	coils	A 
and B having N1 and N2	turns	respectively.	Suppose	l and ‘a’	are	the	length	and	area	of	cross-section	
of	the	magnetic	circuit	respectively.	Let	µr	be	the	relative	permeability	of	the	material	of	which	the	
magnetic	circuit	is	composed.

	 													Mutual	flux,		φ12	 = 	 m.m.f.
reluctance

	 	 	 = 	 1 1

0/ r

N I
l a µ µ

 or 12

1I
φ

	 = 	 1 0 rN a
l
µ µ

 Now M	 = 	 2 12

1

N
I
φ

 \ M	 = 	 1 2 0 rN N a
l

µ µ
	 ...(iii)

	 	 	 = 	 1 2

0/ r

N N
l a µ µ  

	 	 	 = 	 ( )
1 2

Reluctance
N N

S 	 	 ...(iv)

	 The	mutual	inductance	can	be	found	by	using	relation	(iii)	or	(iv).	Note	that	mutual	inductance	
is	inversely	proportional	to	the	reluctance	of	the	magnetic	circuit.	The	smaller	the	reluctance	of	the	
magnetic	circuit,	the	greater	is	the	mutual	inductance	and	vice-versa.

9.13.  Coefficient of Coupling
 The coefficient of coupling (k) between two coils is defined as the fraction of magnetic flux 
produced by the current in one coil that links the other.
 When	the	entire	flux	of	one	coil	links	the	other,	coefficient	of	coupling	is	1	(i.e.,	100%).	If	only	
half	the	flux	set	up	in	one	coil	links	the	other,	then	coefficient	of	coupling	is	0·5	(or	50%).	If	two	
coils	have	self-inductances	L1 and L2,	then	mutual	inductance	M	between	them	is	given	by	;

   M	 = 	 1 2k L L
where k	 =	 coefficient	 of	 coupling.	 Clearly,	 the	mutual	 inductance	M	 between	 the	 coils	 will	 be	
maximum when k =	1.	If	flux	of	one	coil	does	not	at	all	link	with	the	other	coil,	then	k	=	0.	Under	
such	condition,	mutual	inductance	(M)	between	the	coils	will	be	zero.
 Proof.	Consider	two	magnetically	coupled	coils	1	and	2	having	N1 and N2	turns	respectively	
(See	Fig.	9.14).	The	current	I1	flowing	in	coil	1	produces	a	magnetic	flux	φ1.	Suppose	the	coefficient	
of	coupling	between	the	two	coils	is	k.	It	means	that	flux	kφ1	links	with	coil	2.	Then,	by	definition,

  L1	 = 	
1 1

1

N
I
φ

 and M12	 = 	
1 2

1

k N
I

φ
	 ...(i)

where M12	represents	mutual	inductance	of	coil	1	to	coil	2.

Fig. 9.13
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	 The	current	I2	flowing	in	coil	2	will	produce	flux	φ2.	Since	
the	coefficient	of	coupling	between	the	coils	is	k, it means that 
flux	kφ2	will	link	with	coil	1.	Then,

   L2	 = 	
2 2

2

N
I

φ

 and  M21	 = 	
2 1

2

k N
I

φ
	 ...(ii)

where M21	represents	mutual	inductance	of	coil	2	to	coil	1.
	 Mutual	 inductance	between	 the	 two	coils	 is	 exactly	 the	
same i.e., M12	=	M21	=	M.

 \  M12	×	M21	 = 	
1 2 2 1

1 2

( ) ( )k N k N
I I

φ φ×

 or  M2	 = 	 2 1 1 2 2

1 2

N Nk
I I

φ φ× 	=	k2 L1L2

 \  M	 = 	 1 2k L L 	 ...(iii)
	 Expression	(iii)	gives	the	relation	between	the	mutual	inductance	of	the	two	coils	and	their	self-
inductances.	The	reader	may	note	that	mutual	inductance	between	the	two	coils	will	be	maximum	
when k	=	1.	Obviously,	the	maximum	value	of	mutual	inductance	between	the	two	coils	is	=	 1 2 .L L

 \  k	 = 	
1 2

Actual mutual inductance
Max. possible mutual inductance

M
L L

=

	 Hence,	coefficient	of	coupling	can	also	be	defined	as the ratio of the actual mutual inductance 
(M) between the two coils to the maximum possible value 1 2( )L L .
	 When	two	coils	are	wound	on	a	single	ferromagnetic	core	as	shown	in	Fig.	9.15	(i),	effectively	
all	of	 the	magnetic	flux	produced	by	one	coil	 links	with	 the	other.	The	coils	are	 then	said	 to	be	
tightly coupled.	Another	way	to	ensure	tight	coupling	is	shown	in	Fig.	9.15	(ii) where each turn of 
the	secondary	winding	is	side	by	side	with	one	turn	of	primary	winding.	Coils	wound	in	this	fashion	
are	said	to	be	bifilar	and	it	is	called bifilar winding.

Fig. 9.15

	 When	the	two	coils	are	air-cored	as	shown	in	Fig.	9.15	(iii),	then	only	a	fraction	of	magnetic	flux	
produced	by	one	coil	may	link	with	the	other	coil.	The	coils	are	then	said	to	be	loosely coupled.

Fig. 9.14
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 Example 9.20. Two identical coils A and B of 1000 turns each lie in parallel planes such that 
80% of flux produced by one coil links with the other. A current of 5 A flowing in coil A produces a 
flux of 0·05 mWb in it. If the current in coil A changes from + 12A to −12A in 0·02 second, calculate 
(i) the mutual inductance and (ii) the e.m.f. induced in coil B.

 Solution. (i) M	 = 	 2 12

1

N
I
φ

	 Here	N2	=	1000	;	I1	=	5	A	;	*φ12	=	0·8	×	0·05	×	10
−3	=	0·4	×	10−4 Wb 

 \  M	 =		
41000 0 4 10

5

−× ⋅ × 	=	0.008 H

 (ii)	 	 E.M.F.	in	coil	B, eB	 = 	
1dIM

dt
	 Here	  M	=	0·008	H	;	 dI1	 =	 12	−	(−12)	=	24	A	;	 	dt	=	0·02	s

 \  eB	 = 	
240 008

0 02
⋅ ×

⋅ 	=	9.6 V

 Example 9.21. Coils A and B in a magnetic circuit have 600 and 500 turns respectively. A 
current of 8 A in coil A produces a flux of 0·04 Wb. If the coefficient of coupling is 0·2, calculate :
 (i)  Self-inductance of coil A, with B open-circuited.
 (ii) Flux linking with coil B.
 (iii) The average e.m.f. induced in coil B when the flux with it changes from zero to full value in 

0·02 second.
 (iv) Mutual inductance.
 (v) Average e.m.f. in B when current in A changes from 0 to 8 A in 0·05 second.

 Solution. (i)  Inductance	of	coil	A, LA	=	
A A

A

N
I

φ
	=	 600 0 04

8
× ⋅ 	=	3 H

 (ii)	 	 Flux	linking	coil	B, φB	 = 	k	×	φA	=	0·2	×	0·04	=	0·008 Wb

 (iii)		 e.m.f.	in	coil	B, eB	 = 	
0 0 008500

0 02
B

BN
t

φ − ⋅=
⋅ 	=	200 V

 (iv)	 	 Mutual	inductance,	M	 = 	 A B

A

k N
I

φ
	=	 0 2 0 04 500

8
⋅ × ⋅ × 	=	0.5 H  

 (v)	 	 e.m.f.	in	coil	B	 = 	 8 00.5
0.05

AdIM
dt

−= × 	=	80 V

 Example 9.22. Two identical coils are wound on a ring-shaped iron core that has a relative 
permeability of 500. Each coil has 100 turns and the core dimensions are : area, a = 3 cm2 and 
magnetic path length, l = 20 cm. Calculate the inductance of each coil and the mutual inductance 
between the coils.
 Solution. N	=	100	turns	;	mr	=	500	;	a	=	3	×	10

–4 m2	;	l	=	20	×	10–2 m
	 The	statement	of	the	problem	suggests	that	each	coil	has	the	same	inductance.

 \  L1	 = 	L2	=	µ0µr N
2 a

l
	 	 	 	 =	 4p	×	10–7	×	500	×	(100)2	×	

4

2

3 10

20 10

−

−
×
×

	=	9.42	×	10–3	H	=	9.42mH

	 Since	the	coils	are	wound	on	the	same	iron	core,	coefficient	of	coupling	k	=	1.

 \  M	 = 	 1 2k L L 	=	1 9.42 9.42× 	=	9.42 mH

*	 Note	 that	 80%	 of	 flux	 produced	 in	 coil	 A links	 with	 coil	 B.	 Therefore,	 mutual	 flux	 (φ12)	 is	 80%	 of	 
0·05	mWb.
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 Example 9.23. Two identical 750-turn coils A and B lie in parallel planes. A current changing 
at the rate of 1500 A/s in coil A induces an e.m.f. of 11·25 V in coil B. Calculate the mutual induc-
tance of the arrangement. If the self-inductance of each coil is 15 mH, calculate the flux produced 
in coil A per ampere and the percentage of this flux which links the turns of coil B.

 Solution.	Induced	e.m.f.	in	coil	B, eB	=	
AdIM

dt
	 or	 	 11·25	 =	 M	×	1500	 \ M	=	7·5	×	10–3	H	=	7·5 mH

 Now L1	 = 	
1 1

1

N
I
φ

 \ 
3

1 1

1 1

15 10
750

L
I N

−φ ×= = 	=	2 × 10–5 Wb/A

	 	 Coefficient	of	coupling,	k	=	
3

32
1 2

7·5 10

15 10

M M
L L L

−

−
×= =
×

	=	0·5 or 50%

 Example 9.24. Two coils A and B of 500 and 750 turns respectively are connected in series on 
the same magnetic circuit of reluctance 1·55 × 106 AT/Wb. Assuming that there is no flux leakage, 
calculate (i) self-inductance of each coil and (ii) mutual inductance between coils.

 Solution. (i) LA	 = 	
( )22

6

500

Reluctance 1 55 10
AN =

⋅ ×
 = 0.16 H

   LB	 = 	
( )22

6

750

Reluctance 1 55 10
BN =

⋅ ×
	=	0.36 H

 (ii)  M	 = 	 6

500 750
Reluctance 1 55 10

A BN N ×=
⋅ ×

	=	0.24 H 

  Alternatively.  M	 = 	 1 2 1 0 16 0 36k L L = ⋅ × ⋅ 	=	0.24 H

  Example 9.25. Two coils A and B are wound side by side on a paper tube former. An e.m.f. 
of 0·25 V is induced in coil A when the flux linking it changes at the rate of 10−3 Wb/s. A current of 2 
A in coil B causes a flux of 10−5	Wb to link coil A. What is the mutual inductance between the coils?

 Solution.  Induced	e.m.f.	in	coil	A	=	 1
dN
dt
φ  	 or	 	 0·25	=	N1	×	10

−3

 \  N1	=	0·25	/	10
−3	=	250	turns

	 Flux	linkages	in	coil	A	due	to	2	A	in	coil	B	=	250	×	10−5	Wb-turns.

 \  M	 = 	
Flux linkages in coil

Current in coil
A

B

 	 	 	 = 250	×	10−5/2	=	1·25 × 10−3 H
 Example 9.26. The coefficient of coupling between two coils is 0·6 or 60%. The excited coil 
produces 0·1 Wb of magnetic flux. How much flux is coupled to the other coil ? What is the value of 
the leakage flux ?
 Solution. The	coefficient	of	coupling	is	given	by	;

   k	 = 	 m

t

φ
φ

where  φt	=	flux	of	the	coil	receiving	current	 ;	 φm	=	flux	that	links	with	the	other	coil
 \	 	 0·6	 =	 φm/φt

 or  φm	 =	 0·6	×	φt	=	0·6	×	0·1	=	0·06 Wb
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 The	difference	between	φt and φm	is	the	leakage	flux.

 \	 	 Leakage	flux,	φl	 = 	φt	−	φm	=	0·1	−	0·06	=	0·04 Wb
 Example 9.27. Two coils, A of 12,500 turns and B of 16,000 turns, lie in parallel planes so that 
60% of flux produced in A links coil B. It is found that a current of 5A in A produces a flux of 0·6 mWb 
while the same current in B produces 0·8 mWb. Determine (i) mutual inductance and (ii) coupling 
coefficient.
 Solution. (i)		Mutual	inductance,	M	=	 A B

A

k N
I

φ

	 Here	 k	=	0·6	 ;	 φA	=	0·6	mWb	=	0·6	×	10–3	Wb	 ;	 NB	=	16000	 ;	 IA	=	5A

 \  M	 = 	
30.6 0.6 10 16000

5

−× × ×
	=	1·15 H

 (ii) Now LA	 = 	
312500 0.6 10

5
A A

A

N
I

−φ × ×= 	=	1500	×	10–3	H	=	1500	mH

 and  LB	 = 	
316000 0·8 10

5
B B

B

N
I

−φ × ×= 	=	2560	×	10–3	H	=	2560	mH

 \	 Coefficient	of	coupling,	k	=	
31·15 10

1500 2560A B

M
L L

×=
×

	=	0·586

	 The	coefficient	of	coupling	is	a	measure	of	how	tightly	the	two	coils	are	coupled.	It	is	a	pure	
number	(no	units)	that	varies	from	0	to	1.	The	only	way	to	closely	approach	k	=	1	is	to	wind	both	
coils	on	the	same	high-permeability	core.	This	couples	them	tightly.
 Example 9.28. The coefficient of coupling between two coils is 0.85. Coil 1 has 250 turns. When 
the current in coil 1 is 2A, the total flux of this coil is 3 × 10–4 Wb. When I1 is changed from 2A to 
zer linearly in 2 ms, the voltage induced in the coil 2 is 63.75 V. Find L1, L2, M and N2.

 Solution.	Inductance	of	coil	1,	L1	=	
1 1

1

N
I
φ
	=	

4250 3 10
2

−× ×
	=	37.5 × 10–3 H

	 e.m.f.	induced	in	coil	2,	e2	=	
1dIM

dt
	 Here,	e2	=	63.75	V	;	dI1	=	2	–	0	=	2A	;	dt	=	2ms	=	2	×	10–3 s

 \	 	 63.75	 =	 3
2

2 10
M −×

×
 or M	=	63.75 × 10–3 H

 Now, M	 = 	 1 2k L L

	 Here,	 M	 =	 63.75	×	10–3	H	;	k	=	0.85	;	L1	=	37.5	×	10
–3	H

 \	 	 63.75	×	10–3	 = 	 3
20.85 37.5 10 L−× × ×  or L2	=	150 × 10–3 H

 Now 1

2

L
L 	 = 	

2
1
2
2

N
N

 or 
3 2

3 2
2

37.5 10 (250)

150 10 N

−

−
× =
×

 \	 	 0.25	 =	
2

2
2

(250)

N
 or N2	=	500

 Example 9.29. The dimensions of the magnetic core shown in Fig. 9.16 are :
 Cross-sectional area, a = 3 cm2 ; magnetic path length, l = 10 cm and the relative permeability 
is 250.
 The primary coil has NP = 100 turns and the secondary coil has NS = 75 turns. If the current is 
increased from 0 to 5A in 0.1s, determine the e.m.f. induced in the secondary.
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Fig. 9.16
 Solution.	 m.m.f.	 =	 NPI	=	100	×	5	=	500	AT

	 	 	 Magnetising	force,	H	 =		 m.m.f.
l

	=	 2
500

10 10−×
	=	5000	AT/m

	 	 	 Flux	density	in	core,	B	 = 	µ0µrH	=	4p	×	10–7	×	250	×	5000	=	1.57	Wb/m2

	 	 	 Total	flux	in	core,	φ	 = 	B	×	a	=	1.57	×	3	×	10–4	=		471	×	10–6 Wb
 \	 Induced	e.m.f.	in	the	secondary	is	given	by	;

   eS	 = 	 S
dN
dt
φ 	=	

6471 10
75

0.1

−×× 	=	0.35 V

 Example 9.30. A long single layer solenoid has an effective diameter of 10 cm and is wound 
with 2500 T/m. There is a small concenterated coil having its plane lying in the centre cross-section-
al plane of the solenoid. Calculate the mutual inductance between the two coils if the concentrated 
coil has 120 turns on an effective diameter of (i) 8 cm and (ii) 12 cm.
 Solution. Let I1	be	the	current	flowing	through	the	solenoid.	
 (i)	Fig.	9.17	(i)	shows	the	conditions	of	the	problem	when	the	effective	diameter	of	concentrated	
search	coil	is	8	cm	(less	than	that	of	the	solenoid).
	 Magnetising	force	H inside the solenoid	is	

   H	 = 	 1NI
l 	=	 1

N I
l 	=	2500	I1		 (	 N

l 	=	2500)	

 \	 Flux	density	at	the	centre	of	the	solenoid	is	
   B	 = 	µ0H	=	2500	µ0	I1 Wb/m2

	 	 	 Area	of	search	coil,	aS	 = 	
2

4
dπ 	=	 2(0.08)

4
π 	=	0.005	m2

	 Flux	linking	with	search	coil	is	given	by	;	
   φ2	 = 	B aS	=	2500	µ0 I1	×	0.005	=	15.79	×	10

–6 I1 Wb

 \  M	 = 	 2 2

1

N
I
φ

	=	
6

1

1

120 15.79 10 I
I

−× ×
	=	1.895 × 10–3 H

Fig. 9.17
 (ii)	Fig.	9.17	(ii)	shows	the	conditions	of	the	problem	when	the	effective	diameter	of	concen-
trated	search	coil	is	12	cm	(i.e.	more	than	that	of	the	solenoid).	Since	the	field	strength	outside	the	
solenoid	is	negligible,	the	effective	area	of	search	coil	will	be	equal	to	the	area	of	solenoid	i.e. 
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   a′S	 = 	
2(0.1)

4
π

 \	Flux	linking	with	the	search	coil	is	given	by	;

   φ′2	 = 	B a′S	=	2500	µ0 I1	×	
2(0.1)

4
π ×

 \  M	 = 	 2 2

1

N
I

′φ
	=	

2
0 1

1

2500 ( 4) (0.1)
120

I
I

µ × π ×× 	=	2.962 × 10–3 H

Tutorial Problems

 1.	 A	solenoid	70	cm	in	length	and	of	2100	turns	has	a	radius	of	4·5	cm.	A	second	coil	of	750	turns	is	wound	
upon	the	middle	part	of	the	solenoid.	Find	the	mutual	inductance	between	the	two	coils.	 [18·2 mH]

 2.	 Two	coils	having	150	and	200	turns	respectively	are	wound	side	by	side	on	a	closed	iron	circuit	of	sec-
tion	150	cm2	and	mean	length	of	300	cm.	Determine	the	mutual	inductance	between	the	coils	and	e.m.f.	
induced	in	the	second	coil	if	current	changes	from	zero	to	10A	in	the	first	coil	in	0·02	second.	Relative	
permeability	of	iron	=	2000.	    [0·377 H; 188·5 V]

 3.	 The	self-inductance	of	a	coil	of	500	turns	is	0·25H.	If	60%	of	the	flux	is	linked	with	a	second	coil	of	
10,000	turns,	calculate	the	mutual	inductance	between	the	two	coils.	 [3 H]

 4.	 The	windings	of	a	transformer	has	an	inductance	of	L1	=	6H;	L2	=	0.06	H	and	a	coefficient	of	coupling	
k	=	0·9.	Find	the	e.m.f.	in	both	the	windings	when	current	in	primary	increases	at	the	rate	of	1000	A/s.	

[6000 V; 540 V]
 5.	 An	air-cored	solenoid	with	length	30	cm,	area	of	X-section	25	cm2	and	number	of	turns	500	carries	a	

current	of	2·5	A.	The	current	is	suddenly	switched	off	in	a	brief	time	of	10−4	second.	How	much	average	
e.m.f.	is	induced	across	the	ends	of	the	open	switch	in	the	circuit	?	Ignore	the	variation	of	magnetic	field	
near	the	ends	of	the	solenoid.    [ 6·5 V ]

9.14.  Inductors in Series
 Consider	two	coils	connected	in	series	as	shown	in	Fig.	9.18.

 Let  L1	 =	 inductance	of	first	coil

   L2	 =	 inductance	of	second	coil

   M	 =	 mutual	inductance	between	the	two	coils

 (i)  Series-aiding.	This	is	the	case	when	the	coils	are	so	arranged	that	their	fluxes	*aid	each	
other i.e.	in	the	same	direction	as	shown	in	Fig.	9.18	(i).	Suppose	the	current	is	changing	at	the	rate	 
di/dt.	The	total	induced	e.m.f.	in	the	circuit	will	be	equal	to	the	sum	of	e.m.f.s	induced	in	L1 and L2 
plus	the	mutually	induced	e.m.f.s,	i.e.
   e	 = 	 1 2

di di di diL L M M
dt dt dt dt

+ + +  ... in magnitude

	 	 	 	 = 	(L1 + L2 + 2M) di/dt
 If LT	is	the	total	inductance	of	the	circuit,	then,

   e	 = 	 T
diL
dt

 \  LT	 = 	L1 + L2 + 2M ... fluxes additive

*	 Dot notation. It	 is	generally	not	possible	to	state	from	the	figure	whether	the	fluxes	of	the	two	coils	are	ad-
ditive	or	 in	opposition.	Dot	notation	removes	this	confusion.	 	The	end	of	 the	coil	 through	which	the	current	
enters	 is	 indicated	 by	 placing	 a	 dot	 behind	 it.	 	 If	 the	 current	 after	 leaving	 the	 dotted	 end	 of	 coil	L1 enters 
the	 dotted	 end	of	 coil	L2,	 it	means	 the	fluxes	of	 the	 two	 coils	 are	 additive	otherwise	 in	 opposition.
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Fig. 9.18

 (ii)  Series-opposing.	Fig.	9.18	(ii)	shows	the	series-opposing	connection	i.e.	the	fluxes	of	the	
two	coils	oppose	each	other.	Suppose	the	current	is	changing	at	the	rate	di/dt.	The	total	induced	e.m.f.	
in	the	circuit	will	be	equal	to	sum	of	e.m.f.s	induced	in	L1 and L2 minus	the	mutually	induced	e.m.f.s.

    e	 = 	 1 2 1 2( 2 )
di di di di diL L M M L L M
dt dt dt dt dt

+ − − = + −

 If LT	is	the	total	inductance	of	the	circuit,	then,

    e	 = 	 T
diL
dt

 \   LT	 = 	 L1 + L2	–	2M ...fluxes subtractive
	 In	general,		 LT	 = 	 L1 + L2 ± 2M
	 Use	+	sign	if	fluxes	are	additive	and	–ve	sign	if	fluxes	are	subtractive.
 If	the	two	coils	are	so	positioned	that	*M	=	0,	then,	LT	=	L1 + L2.

9.15.  Inductors in Parallel with no Mutual Inductance
 Consider three inductances L1, L2 and L3	in	parallel	as	shown	in	Fig.	9.19.	Assume	that	mutual	
inductance	between	the	coils	is	zero.	Referring	to	Fig.	9.19,	we	have,
    iT	 = 	 i1 + i2 + i3

 or   Tdi
dt 	 = 	 31 2 didi di

dt dt dt
+ +

 But  e	 = 	 di di eL or
dt dt L

=

 \   
T

e
L 	 = 	

1 2 3

e e e
L L L

+ +

 or   1

TL 	 = 	
1 2 3

1 1 1
L L L

+ + 	 ...(i)

	 If	only	two	inductors	L1 and L2	are	in	parallel,	then,

   1

TL
	 = 	

1 2

1 1
L L

+ 	=	 1 2

1 2

L L
L L

+

 or  LT	 = 	
1 2

1 2

L L
L L+  i.e. Product

Sum
 

*	 If	 the	 coils	 are	 so	 placed	 that	fluxes	 produced	by	 them	are	 at	 right	 angles	 to	 each	other,	 then	mutual	
flux	will	 be	 zero	 and	hence	M	 =	 0.

Fig. 9.19
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9.16.  Inductors in Parallel with Mutual Inductance
 Consider	 two	 coils	A and B of inductances L1 and L2	 connected	 in	 parallel	 as	 shown	 in	 
Fig.	9.20.	Let	the	mutual	inductance	between	the	two	coils	be	M.	The	supply	current	i divides into 
two branch currents i1 and i2.
        By KCL,  i	 = 	i1 + i2

 \  di
dt 	 = 	

1 2di di
dt dt

+ 	 ...(i)

Fig. 9.20

	 	 Self-induced	e.m.f.	in	coil	A	 = 	 1
1

diL
dt

−

	 	 Mutually	induced	e.m.f.	in	coil	A	 = 	 2diM
dt

−

	 	 Total	e.m.f.	induced	in	coil	A	 = 	 1 2
1

di diL M
dt dt

 − +  

	 	 Similarly,	total	e.m.f.	induced	in	coil	B	 = 	 2 1
2

di diL M
dt dt

 − +  
	 Since	the	two	coils	are	in	parallel,	these	e.m.f.s	are	equal	i.e.

  1 2
1

di diL M
dt dt

+ 	 = 	 2 1
2

di diL M
dt dt

+

 or 1
1( )

di L M
dt

− 	 = 	 2
2( )

di L M
dt

−

 \  1di
dt 	 = 	

2 2

1

L M di
L M dt

− 
 − 

	 ...(ii)

	 Putting	this	value	of	di1/dt	in	eq.	(i), we have,

   di
dt 	 = 	

2 2

1
1

L M di
L M dt

 −   +  −  
	 ...(iii)

 If LT	is	the	equivalent	inductance	of	the	parallel	combination,	then,

	 	 	 Induced	e.m.f.	 =		 T
diL
dt

−

	 Since	induced	e.m.f.	in	the	parallel	combination	is	equal	to	the	e.m.f.	induced	in	any	one	coil	
(say	coil	A),
 \  T

diL
dt 	 = 	

1 2
1

di diL M
dt dt

+

 or  di
dt 	 = 	

1 2
1

1

T

di diL M
L dt dt

 +  
	 Putting	the	value	of	di1/dt	from	eq.	(ii), we have,
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   di
dt 	 = 	

2 2
1

1

1

T

L M diL M
L L M dt

 −   +  −  
	 ...(iv)

	 From	eqs.	(iii)	and	(iv), we have,

   2

1
1

L M
L M

− +
− 	 = 	 2

1
1

1

T

L M
L M

L L M
 −  +  −  

 or  1 2

1

2L L M
L M
+ −

−
	 = 	

2
1 2

1

1

T

L L M
L L M

 −
 − 

 \  LT	 = 	
2

1 2

1 2 2
L L M

L L M
−

+ −  ... when mutual flux aids the individual fluxes

	 	 	 	 = 	
2

1 2

1 2 2
L L M

L L M
−

+ +  ... when mutual flux opposes the individual fluxes

	 If	there	is	no	mutual	inductance	between	the	two	coils	(i.e. M	=	0),	then,

   LT	 = 	
2

1 2 1 2

1 2 1 2

(0)
2(0)

L L L L
L L L L

− =
+ ± +

 Example 9.31. When two coils are connected in series, their effective inductance is found to 
be 10 H. When the connections of one coil are reversed, the effective inductance is 6 H. If the co-
efficient of coupling is 0·6, calculate the self-inductance of each coil and the mutual inductance.
 Solution. 	 10	 =	 L1 + L2 + 2M	 ...(i)
	 	 	 6	 =	 L1 + L2	–	2M	 ...(ii)
	 Subtracting	(ii)	from	(i),	we	get,	4	=	4M or M	=	1 H
 Putting M	=	1	H	in	eq.	(i), we have, L1 + L2	=	8	 ...(iii)

	 Also	 L1L2	 = 	
22

2 2

(1)

(0.6)

M
k

= 	=	2·78	 ...(iv)

	 Now	 (L1	–	L2)
2	 = 	(L1 + L2)

2	–	4L1L2	=	(8)
2	–	4	×	2·78	=	52·88

 \  L1	–	L2	 = 	 52.88 	=	7·27		 	 ...(v)
	 Solving	eqs.	(iii)	and	(v), L1	 = 	7·635 H and L2	=	0·365 H
 Example 9.32. The total inductance of two coils, A and B, when connected in series, is 0.5 H or 
0.2H, depending upon the relative direction of the currents in the coils. Coil A, when isolated from 
coil B, has a self-inductance of 0.2 H. Calculate (i) the mutual inductance between the two coils, 
(ii) the self-inductance of coil B, (iii) the coupling factor between the coils, and (iv) the two possible 
values of the induced e.m.f. in coil A when the current is decreasing at 1000 A/s in the series circuit.
 Solution. (i)	Combined	inductance	of	two	coils,	L	=	L1 + L2 + 2M
 For series-aiding	:	 L1 + L2 + 2M	 =	0.5	 ...(i)
 For series-opposing :	L1 + L2	–	2M	 =	0.2	 ...(ii)
	 Subtracting	eq.	(ii)	from	eq.	(i), we have,
	 	 	 4M	 =	 0.3	 \ M	=	0.075 H
 (ii)	Adding	eq.	(i)	and	eq.	(ii), we have,
	 	 	 2(L1 + L2)	 =	 0.7			or			2(0.2	+	L2)	=	0.7	 \ L2	=	0.15 H
 (iii)	Coefficient	of	coupling	is	given	by	;

   k	 = 	
1 2

M
L L

	=	 0.075

0.2 0.15×
	=	0.433 or 43.3%

 (iv)  e1	 = 	 1
di diL M
dt dt

±
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 \  e1	 = 	 1
di diL M
dt dt

+ 	=	0.2	×	1000	+	0.075	×	1000	=	275 V

 or  e1	 = 	 1
di diL M
dt dt

− 	=	0.2	×	1000	–	0.075	×	1000	=	125 V

  Example 9.33. Two mutually coupled coils, A and B, are connected in series to a 360 V 
d.c. supply. Coil A has a resistance of 6 Ω and inductance 4 H. Coil B has resistance of 11 Ω	and 
inductance 9 H. At a certain instant after the circuit is energised, the current is 10 A and is increasing 
at the rate of 10 A/s. Calculate (i) the mutual inductance between the coils and (ii) the coefficient of 
coupling.

 Solution. Fig.	 9.21	 shows	 the	 condi-
tions	of	the	problem.
      (i)	Total	circuit	resistance,	RT 	=		RA + RB 
	 	 =	6	+	11	=	17	Ω
	Total	circuit	inductance,	LT	=		LA + LB + 2M

	 					 	 		 	 	 =	4	+	9	+	2M	=	13	+	2M

 Now V	 = 	iRT + T
diL
dt

	 or	 	 360	 =	 10	×	17	+	(13	+	2M)	10	 \ M	=	3 H

 (ii)	Coefficient	of	coupling,	k	 = 	 3

4 9A B

M
L L

=
×

	=	0·5

 Example 9.34. Two identical coils with terminals, T1T2 and T3T4 respectively are placed side 
by side. The inductances measured under different sets of connections are as follows :
 When T2 is connected to T3 and inductance measured between T1 and T4, it is 4H.
 When T2 is connected to T4 and inductance measured between T1 and T3, it is 0.8 H.
 Determine the self inductance of each coil, the mutual inductance between the coils and the 
coefficient of coupling.

Fig. 9.22

 Solution.	Since	the	two	coils	are	identical,	each	has	inductance	L	(say).
 When T2 is connected to T3	as	shown	in	Fig.	9.22	(i),	it	is	a	series-aiding	connection	so	that	:
                    L + L + 2M	=		4			or			L + M	=	2	 ...(i)
 When T2 is connected to T4	as	shown	in	Fig.	9.22	(ii),	it	is	a	series-opposing	connection	so	that:

                    L + L	–	2M	 =		0.8			or			L	–	M	=	0.4	 ...(ii)

	 From	eqs.	(i)	and	(ii), L	=	1.2 H	;	M	=	0.8 H

	 	 Coefficient	of	coupling,	k	=	
1 2

0.8

1.2 1.2

M
L L

=
×

	=	0.667 or 66.7 %

                   Fig. 9.21
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 Example 9.35. Find the total inductance of 
the circuit shown in Fig. 9.23.
  L1 = 10 H  M12 = 5 H
  L2 = 15 H M23 = 3 H
  L3 = 12 H M13 = 1 H
 Solution. The	 fluxes	 of	L1 and L2 add to 
each other and hence M12	is	positive.	The	fluxes	
of L1 and L3	are	in	opposition	so	M13 is negative. 
Similarly,	it	can	be	seen	that	M23 is negative.
 \  LT	 = 	(L1 + M12	–	M13)	+	(L2	–	M23 + M12)	+	(L3	–	M23	–	M13)
	 	 	 	 =	 (10	+	5	–	1)	+	(15	–	3	+	5)	+	(12	–	3	–	1)
	 	 	 	 =	 14	+	17	+	8	=	39 H
 Example 9.36. Fig. 9.24 shows three 
inductances in series. Find the total inductance 
of the circuit from the following data :
  L1 = 12 H k1 = 0·33
  L2 = 14 H k2 = 0·37
  L3 = 14 H k3 = 0·65
 Solution.  

 M12	=	 1 1 2 0.33 12 14k L L = × 	=	4·28	H

 M23	=	 2 2 3 0·37 14 14k L L = × 	=	5·18	H

 M13	=	 3 1 3 0·65 12 14k L L = × 	=	8·42	H
\ LT	 =		(L1	–	M12 + M13)	+	(L2	–	M12	–	M23)	+	(L3 + M13	–	M23)

	 	 =		(12	–	4.28	+	8.42)	+	(14	–	4.28	–	5.18)	+	(14	+	8.42	–	5.18)
	 	 =		16·14	+	4·54	+	17·24	=	37·92 H
 Example 9.37. Two coils of self-inductances 150 mH and 250 mH and of mutual inductance 120 
mH are connected in parallel. Determine the equivalent inductance of the combination if (i) mutual 
flux helps the individual flux and (ii) mutual flux opposes the individual flux.
 Solution.	Here,	L1	=	0.15	H	;	L2	=	0.25	H	;	M	=	0.12	H
 (i)	Equivalent	inductance	LT	of	the	parallel	combination	when	mutual	flux	helps	the	individual	
flux	is	

   LT	 = 	
2

1 2

1 2 2
L L M

L L M
−

+ − 	=	
20.15 0.25 (0.12)

0.15 0.25 2 0.12
× −
+ − × 	=	0.144 H

 (ii)	Equivalent	 inductance	LT	 of	 the	parallel	 combination	when	 the	mutual	flux	opposes	 the	
individual	flux	is	

   LT	 = 	
2

1 2

1 2 2
L L M

L L M
−

+ + 	=	
20.15 0.25 (0.12)

0.15 0.25 2 0.12
× −
+ + × 	=	0.036 H

 Example 9.38. Two coils of inductances 0.3 H and 0.8 H are connected in parallel. If the 
coefficient of coupling is 0.7, calculate the equivalent inductance of the combination if mutual 
inductance assists the self-inductance.

Fig. 9.23

Fig. 9.24
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 Solution.	Here,	L1	=	0.3	H	;	L2	=	0.8	H	;	k	=	0.7
	 Mutual	inductance	M	between	the	two	coils	is	

   M	 = 	 1 2k L L 	=	 0.7 0.3 0.8× 	=	0.343	H
 \ Equivalent	 inductance	 LT	 of	 the	 combination	 when	 mutual	 inductance	 assists	 the	 self-	
inductance is 
   LT	 = 	

2 2
1 2

1 2

0.3 0.8 (0.343)
2 0.3 0.8 2 0.343

L L M
L L M

− × −=
+ − + − × 	=	0.2955 H

 Example 9.39. Find the equivalent inductance LAB in Fig. 9.25.

Fig. 9.25

 Solution.	It	is	understood	that	there	is	no	mutual	coupling	between	the	coils	because	it	is	not	
given	in	the	problem.
	 	 	 	 	 	 	 	 	 Here,	 L1	 =	 0.5	H	;	L2	=	0.6H	;	L3	=	0.3	H

 \  LAB	 = 	
2 3

1
2 3

L LL
L L

+
+ 	=	

0.6 0.3
0.5

0.6 0.3
×+
+ 	=	0.7 H

Tutorial Problems

 1.	 The	mutual	inductance	between	two	coils	in	a	radio	receiver	is	100	mH.	One	coil	has	100	mH	of	self-
inductance.	What	is	the	self-inductance	of	the	other	if	coefficient	of	coupling	between	the	coils	is	0·5	?

[400 mH]
 2.	 The	self-inductances	of	two	coils	are	L1	=	150	mH,	L2	=	250	mH.	When	they	are	connected	in	series	with	

their	fluxes	aiding,	their	total	inductance	is	620	mH.	When	the	connection	to	one	of	the	coils	is	reversed	
(they	are	still	in	series),	their	total	inductance	is	180	mH.	How	much	mutual	inductance	exists	between	
them	?	    [110 mH]

 3.	 Two	coils	of	self-inductances	5	H	and	8	H	are	connected	in	series	with	their	fluxes	aiding.	If	the	co-
efficient	of	coupling	between	the	coils	is	0·45,	find	the	total	inductance	of	the	circuit.	 [18·06 H]

 4. The	self-inductances	of	three	coils	are	LA	=	20	H,	LB	=	30	H	and	LC	=	40	H.	The	coils	are	connected	in	
series	in	such	a	way	that	fluxes	of	LA and LB	add,	fluxes	of	LA and LC	are	in	opposition	and	fluxes	of	LB 
and LC	are	in	opposition.	If	MAB	=	8	H,	MBC	=	12	H	and	MAC	=	10	H,	find	the	total	inductance	of	the	
circuit.    [62 H]

9.17.  Energy Stored in a Magnetic Field
 In	order	to	establish	a	magnetic	field	around	a	coil,	energy	is	*required,	though	no	energy	is	
needed	to	**maintain	it.	This	energy	is	stored	in	the	magnetic	field	and	is	not	used	up.	When	the	
current	 is	 decreased,	 the	flux	 surrounding	 the	 coil	 is	 decreased,	 causing	 the	 stored	 energy	 to	be	
returned	to	the	circuit.	Consider	an	inductor	connected	to	a	d.c.	source	as	shown	in	Fig.	9.26	(i).	The	
inductor	is	equivalent	to	inductance	L	in	series	with	a	small	resistance	R	as	shown	in	Fig.	9.26	(ii). 
The	energy	supplied	to	the	circuit	is	spent	in	two	ways	:
*	 When	 the	 coil	 is	 connected	 to	 supply,	 current	 increases	 from	 zero	 gradually	 and	 reaches	 the	 final	 value	 

I	 (=	V/R) after some time.  During this change of current, an e.m.f. is induced in L due to the change in 
flux	 linkages.	This	 induced	 e.m.f.	 opposes	 the	 rise	 of	 current.	 	 Electrical	 energy	must	 be	 supplied	 to	meet	
this	 opposition.	This	 supplied	 energy	 is	 stored	 in	 the	magnetic	field.

**	 To	 impart	 a	kinetic	 energy	of	 21

2
mv 	 to	 a	body,	 energy	 is	 required	but	no	energy	 is	 required	 to	maintain	 it	

at	 that	 energy	 level.



460    Basic  Electrical  Engineering 

 (i)	 A	part	of	supplied	energy	is	spent	to	meet	I2R	losses	and	cannot	be	recovered.
 (ii)	 The	remaining	part	is	spent	to	create	flux	around	the	coil	(or	inductor)	and	is	stored	in	the	

magnetic	field.	When	the	field	collapses,	the	stored	energy	is	returned	to	the	circuit.

Fig. 9.26

 Mathematical Expression.	Suppose	at	any	instant	the	current	in	the	coil	is	i and is increasing 
at the rate of di/dt.	The	e.m.f.	e across L	is	given	by	;

   e	 = 	
diL
dt

 \	 	 Instantaneous	power,	p	 = 	ei	=	
diLi
dt

	 During	a	short	interval	of	time	dt, the energy dw	put	into	the	magnetic	field	is	equal	to	power	
multiplied	by	time	i.e.
   dw	 = 	p.dt	=	

diLi
dt

 
  

dt	=	Li di

	 The	total	energy	put	into	the	magnetic	field	from	the	time	current	is	zero	until	it	has	attained	the	
final	steady	value	I	is	given	by	;
   W	 = 	 2

0

1

2

I
Lidi LI=∫

 \ 	 Energy	stored	in	magnetic	field,	E	=	 21

2
LI 	joules

	 It	is	clear	that	energy	stored	in	an	inductor	depends	upon	inductance	and	current	through	the	
inductor.	For	a	given	inductor,	the	amount	of	energy	stored	is	determined	by	the	maximum	current	
through	the	inductor.	Note	that	energy	stored	will	be	in	joules	if	inductance	(L)	and	current	(I) are in 
henry	and	amperes	respectively.
 Note.	 If	 current	 in	an	 inductor	varies,	 the	 stored	energy	 rises	and	 falls	 in	 step	with	 the	current.	Thus,	
whenever	current	increases,	the	coil	absorbs	energy	and	whenever	current	falls,	energy	is	returned	to	the	circuit.
 Alternate method. In order to determine the amount 
of energy an inductor stores, we need to determine 
inductor’s	current	and	voltage	during	the	time	it	is	storing	
energy.	Since	the	inductor	stores	energy	only	during	the	
time the current is increasing, we must determine the 
average	current	during	the	time	the	current	is	rising.	This	
can	 be	 done	 by	 referring	 to	 Fig.	 9.27	which	 shows	 the	
current	 in	an	 inductor	 increasing	at	a	constant	 rate	until	
it	reaches	the	maximum	value	Im.	Since	the	current	rises	
linearly	from	0	to	Im,	the	average	value	of	current	is	

                Iav	= 
0

2
mI+

 = 0.5	Im

Fig. 9.27
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	 The	voltage	VL across the inductor during the time it is storing energy is 

   VL	 = 	
dIL
dt

	 Since	current	rises	from	0	to	Im	linearly,	dI/dt	remains	constant.	Therefore,	VL remains constant 
during	the	time	the	current	in	inductor	is	increasing.	As	a	result,	expression	for	VL	reduces	to	:

   VL	 = 	
mLI

t
	 (dI	=	Im and dt	=	t)

 \ Energy stored in the inductor during time t is 

   E	 = 	VLIav t	=	 0.5m
m

LI I t
t

× × 	=	0.5	I2
m L

 or  E	 = 	 21

2 mLI

	 The	subscript	m	is	usually	dropped	so	that	:

   E	 = 	 21

2
LI

 Note that I	is	the	final	steady	current	through	the	inductor.	It	may	be	kept	in	mind	that	an	induc-
tor	stores	energy	in	its	magnetic	field	when	the	current	is	rising	and	returns	energy	to	the	circuit	when	
the	current	is	falling. 
 Note.	In	case	of	inductors	connected	in	series,	the	energy	stored	is	given	by	;

  E	 = 	 2
1 2

1
( 2 )

2
L L M I+ +  ... series-aiding

  E	 = 	 2
1 2

1
( 2 )

2
L L M I+ −  ... series - opposing

 Example 9.40. A current of 20 mA is passed through a coil of self-inductance 500 mH. Find the 
magnetic energy stored. If the current is halved, find the new value of energy stored and the energy 
released back to the electrical circuit.
 Solution. Magnetic	energy	stored	when	current	is	20	mA	is

   E1	 = 	
2 3 3 21 1

(500 10 ) (20 10 )
2 2

L I − −= × × × 	=	100 × 10–6 J

	 Magnetic	energy	stored	when	current	becomes	10	mA	is

   E2	 = 	
2 3 3 21 1

(500 10 ) (10 10 )
2 2

L I − −= × × 	=	25 × 10–6 J

	 	 Magnetic	energy	released	back	to	the	circuit
	 	 	 	 = 	E1	–	E2	=	(100	–	25)	×	10

–6	=	75 × 10–6 J
 Example 9.41. The field winding of a machine consists of 8 coils in series, each containing 1200 
turns. When the current is 3A, flux linked with each coil is 20 mWb. Calculate (i) the inductance 
of the circuit, (ii) the energy stored in the circuit and (iii) the average value of induced e.m.f. if the 
circuit is broken in 0·1 s.
 Solution.
 (i)	 Inductance	of	each	coil,	L	 = 	

31200 20 10

3

N
I

−φ × ×= 	=	8H

 \	 Total	inductance,	LT	 =	 8	L =	8	×	8	=	64 H

 (ii)	 Magnetic	energy	stored	 =	 2 21 1
64 3

2 2TL I = × × 	=	288 J

 (iii)	 Average	e.m.f.	induced,	e	 = 	
3 0

64
0 1T

diL
dt

−= ×
⋅

	=	1920 V
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 Example 9.42. A coil of inductance 5 H and resistance 100 Ω carries a steady current of 2 A. 
Calculate the initial rate of fall of current in the coil after a short-circuiting switch connected across 
its terminals has been suddenly closed. What was the energy stored in the coil and in what form is it 
dissipated ?
 Solution.	The	conditions	of	the	problem	are	represented	in	Fig.	9.28.

   V	 = 	
diiR L
dt

+

	 or	 	 0	 =	 2 100 5
di
dt

× +

 \  
di
dt

	 = 	
200

5

−
	=	– 40 A/s

	 Magnetic	energy	stored	in	coil	=	 2 21 1
5 (2)

2 2
LI = × × 	=	10 J

	 The	stored	magnetic	energy	is	dissipated	in	the	form	of	heat.
 Example 9.43. (a) A coil of 100 turns is wound on a toroidal magnetic core having a reluctance 
of 104 AT/Wb. When the coil current is 5A and is increasing at the rate of 200 A/s, determine (i) 
energy stored in the magnetic circuit and (ii) voltage applied across the coil. Assume coil resistance 
as zero.
 (b) How are your answers affected if the coil resistance is 2W ?
 Solution. N	=	100	turns	;	Reluctance	of	core,	S	=	104	AT/Wb

 (a)	 Inductance	of	coil,	L	=	
2 2

4

(100)

10

N
S

= 	=	1	H

 (i) Energy	stored	=	 21

2
LI 	=	 21

1 (5)
2

× × 	=	12.5 J

 (ii)	 	 Voltage	applied	across	coil	=	 Self-induced	e.m.f.	in	the	coil

	 	 	 	=	
dIL
dt

	=	1	×	200	=	200 V

 (b)	 If	the	coil	resistance	is	2W,	the	energy	stored	will	remain	the	same	i.e., 12.5 J. 

	 	 Voltage	across	coil	=	
dIIR L
dt

+ 	=	5	×	2	+	1	×	200	=	210 V 

	 	 However,	there	will	be	a	loss	of	energy	=	I2R	=	(5)2	×	2	=	50W
 Example 9.44. An iron ring 15 cm in diameter and 10 cm2 in cross-section is wound with 200 
turns of wire. For a flux density of 1 Wb/m2 and a relative permeability of 500, find the exciting 
current, the inductance and the stored energy. Find the corresponding quantities when there is a  
2 mm air gap.
 Solution.		 Magnetic	flux,	φ	 = 	B	×	a	=	1	×	(10	×	10–4)	=	10–3 Wb
	 	 	 Magnetic	length,	l	 =	 0·15	×	π	m
	 Now	 Flux	density, B	 = 	µ0 µr H

 \  Magnetising	force,	H	 = 	 7
0

1

(4 10 ) 500r

B
−=

µ µ π × ×
	=	1590	AT/m

	 	 	 Total	ampere-turns	 =	 H	×	l	=	1590	×	(0·15	×	π)	AT

 \	 	 Exciting	current,	I	 = 	
Total AT 1590 (0·15 )

200N
× × π= 	=	3·75 A

   Inductance, L	 = 	
3200 10

3·75

N
I

−φ ×= 	=	53·4	×	10–3	H	=	53·4 mH

Fig. 9.28
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	 	 	 Magnetic	energy	stored	 =	 2 3 21 1
53·4 10 (3·75)

2 2
LI −= × × × 	=	0·375 J

 With 2 mm air gap. The	length	of	air	gap,	lg	=	2	mm	=	2	×	10
–3 m

	 	 	 Air	gap	AT	 = 	H	×	lg	=	
3

7
0

1
2 10

4 10
g

B l −
−× = × ×

µ π ×
	=	1590	AT

	 	 Additional	current	required	 =	 1590/200	=	7·95	A
 \	 Total	exciting	current,	IT		=		3·75	+	7·95	=	11·7 A

   Inductance, L	 = 	
3200 10

11·7T

N
I

−φ ×= 	=	17·1	×	10–3	H	=	17·1 mH

	 	 Magnetic	energy	stored	 =	 2 3 21 1
(17·1 10 ) (11·7)

2 2TLI −= × × × 	=	1·17 J

 Example 9.45. An inductor with 10 W resistance and 200 mH inductance is connected across  
24 V d.c. source. Calculate (i) energy stored in the inductance, (ii) power dissipated by the resistance  
and (iii) power dissipated by the inductance.
 Solution. V	=	24	volts	;	R	=	10	W	;	L	=	200	mH	=	0.2	H

 (i)	 Final	current	in	inductor,	I	=	
V
R
	=	

24

10
	=	2.4	A

	 	 Energy	stored	in	inductance	=	 21

2
LI 	=	 21

0.2 (2.4)
2

× × 	=	0.576 J

 (ii)	 Power	dissipated	by	resistor	=	I2R	=	(2.4)2	×	10	=	57.6 W
 (iii)	 Power	dissipated	by	inductance	=	0 W
 Example 9.46. A coil of inductance 0.25 H and negligible resistance is connected to a source 
of supply represented by v = 4 t volts. If the voltage is applied at t = 0 and switched off at t = 5 sec., 
find (i) the maximum value of current, (ii) r.m.s. value of current and (iii) the energy stored during 
this period.
 Solution. (i) v	 = 	4t  or 

diL
dt
	=	4t or 0.25

di
dt
	=	4t

 \  
0

0.25
I

di∫ 	 = 	
5

0

4t dt∫

	 or	 	 0.25	I	 = 	
52

0

4

2

t
	=	50

 \	 Max.	value	of	current,	 I	 =	 50/0·25	= 200 A
 (ii)	 Suppose	i is the current at any time t.	Then,

	 	 	 0·25	i	 = 	
0

4
t

t dt∫ 	=	2t2

 \  i	 = 	8t2

	 The	sum	of	squares	of	current	from	0	to	5	sec.

	 	 	 	 = 	
5 5

4

0

64 5
64

5
t dt ×=∫ 	=	64	×	54

 \	 	 Mean	square	value	 =	
464 5

5

×
	=	64	×	53
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 \	 	 R.M.S.	value	 =	 364 5× 	=	89·5 A

 (iii)		 Energy	stored	 =	
5 5

2

0 0

(4 8 )vi dt t t dt= ×∫ ∫

	 	 	 	 = 	
54 4

0

32 32 5

4 4

t ×= 	=	5000 J

 Example 9.47. A direct current of 1 A is passed through a coil of 5000 turns and produces a 
flux of 0·1 mWb. Assuming that whole of this flux threads all the turns, what is the inductance of the 
coil ? What would be the voltage developed across the coil if the current were interrupted in 10–3 

second ? What would be the maximum voltage developed across the coil if a capacitor of 10 µF were 
connected across the switch breaking the d.c. supply ?

 Solution.	Inductance	of	coil,	L	 = 	
35000 0·1 10

1

N
I

−φ × ×= 	=	0·5 H

	 	 E.M.F.	induced	in	coil,	e	 = 	 3

1 0
0·5

10

dIL
dt −

−= × 	=	500 V

	 When	capacitor	is	connected,	the	voltage	developed	will	be	equal	to	the	p.d.	developed	across	
the	capacitor	plates	due	to	the	energy	stored	in	the	coil.	If	V	is	the	value	of	voltage	developed,	then,

   21

2
CV 	 = 	 21

2
LI

 or  6 21
(10 10 )

2
V−× × 	 = 	 21

0·5 (1)
2

× ×

 \  V	 = 	2·24 volts

Tutorial  Problems

 1.	 The	field	winding	of	a	d.c.	 electromagnet	 is	wound	with	960	 turns	and	has	 resistance	of	50	W.	The	
exciting	voltage	is	230	V	and	the	magnetic	flux	linking	the	coil	is	5	mWb.	Find	(i)	self-inductance	of	the	
coil	and	(ii)	the	energy	stored	in	the	magnetic	field.		 [(i) 1.043H (ii) 11.04 J]

 2.	 An	iron	ring	of	20	cm	mean	diameter	having	a	cross-section	of	100	cm2	is	wound	with	400	turns	of	wire.	
Calculate	the	exciting	current	required	to	establish	a	flux	density	of	1	Wb/m2	if	the	relative	permeability	
of	iron	is	1000.	What	is	the	value	of	energy	stored?	 [1.25 A ; 2.5 J]

 3.	 The	inductance	of	a	coil	is	0.15H.	The	coil	has	100	turns.	Find	(i)	total	magnetic	flux	through	the	coil	
when	the	current	 is	4A	(ii)	energy	stored	in	the	magnetic	field	(iii)	voltage	induced	in	the	coil	when	
current	is	reduced	to	zero	in	0.01	second.	 [(i) 6 mWb (ii) 1.2 J (iii) 60 V]

 4.	 An	air-cored	solenoid	has	a	length	of	50	cm	and	a	diameter	of	2	cm.	Calculate	its	inductance	if	it	has	
1000	turns	and	also	find	the	energy	stored	in	it	if	the	current	rises	from	zero	to	5A.	 [0.7 mH ; 8.7 mJ]

9.18.  Magnetic Energy Stored Per Unit Volume
 Consider	a	coil	of	N	turns	wound	over	a	magnetic	circuit	of	length	l metres and uniform cross-
sectional	area	of	‘a’	m2. 
  	 Magnetic	energy	stored	 =	 21

2
LI 	=	

2
201

2
rN a I

l
 µ µ
   

	=	 ( )
2

0
1

2 r
N Ia l

l
 µ µ   

	 	 	 	 = 	( ) ( ) 2
0

1

2 r a l Hµ µ 	 ( H =	NI/l)

 Now, al	 =	 volume	of	magnetic	field	in	m3
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\	 	 Magnetic	energy	stored/m3	 = 	 2
0

1

2 r Hµ µ  

  	 	 = 
2

0
0

1

2 r
r

B 
µ µ  µ µ 

  
0 r

BH = µ µ 
∵

   	 = 
2

02 r

B
µ µ

 joules	 ...in a medium

	 	 	 	 = 	
2

02

B
µ

	joules	 ...in air

	 Note	that	magnetic	energy	stored	will	be	in	joules	if	the	flux	density	B is in Wb/m2.

9.19.  Lifting Power of a Magnet
	 When	two	opposite	polarity	magnetic	poles	are	separated	by	a	short	distance	 in	air,	 there	 is	
a	 force	 of	 attraction	 tending	 to	 pull	 the	 two	poles	 together.	The	magnitude	 of	 this	 force	 can	be	
calculated	in	terms	of	flux	density	in	the	air	gap	and	cross-sectional	area	of	the	pole.
	 Consider	two	poles,	north	and	south,	each	of	area	‘a’	square	metres	separated	by	a	short	distance	
in	air	as	shown	in	Fig.	9.29.	Let	P	newtons	be	the	force	of	attraction	between	the	two	poles.	If	one	
of	the	poles,	say	S-pole,	is	pulled	apart	through	a	small	distance	dx,	then	work	will	have	to	be	done	
against the force of attraction.

  Fig. 9.29 Fig. 9.30

	 	 	 Work	done	 =	 P	×	dx	joules
	 This	work	done	is	stored	in	the	additional	volume	of	the	magnetic	field	created.
	 Additional	volume	of	magnetic	field	created
	 	 	 	 = 	a	×	dx m3

 \	 Increase	in	stored	energy	 =	
2

02

B a dx×
µ

	 But	increase	in	stored	energy		 =	 Work	done

 or  
2

02

B a dx×
µ

	 = P	×	dx

 \  P	 = 	
2

02

B a
µ

 newtons

 It may be noted that P	will	be	in	newtons	if	B is in Wb/m2 and ‘a’	in	m2.
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 Note that P	is	the	force	of	attraction	at	each	pole.	In	a	practical	magnet,	there	are	two	poles	
(See	Fig.	9.30)	so	that	total	force	of	attraction	is	2P.	Electromagnets	are	widely	used	for	commercial	
lifting	jobs	such	as	loading	scrap	iron	into	a	truck	or	raising	an	armature	to	a	higher	position.
 Example 9.48. A lifting magnet of inverted U-shape is formed out of an iron bar 60 cm long and 
10 cm2 in cross-sectional area [See Fig. 9.31]. Exciting coils of 750 turns each are wound on the 
two side limbs and are connected in series. Calculate the exciting current necessary for the magnet 
to lift a load of 60 kg, assuming that the load has negligible reluctance and makes close contact with 
the magnet. Relative permeability of the material of magnet is 600.

 Solution. 	Attractive	force	at	eact	pole	is

   P	 = 	
60 9.81

2

×
	=	294.3	N

 Now, P	 = 	
2

02

B a
µ

 or  B2	 = 	 02 P
a

µ

	 	 	 	 = 	
7

4

2 (4 10 ) 294.3

10 10

−

−
× π × ×

×
	=	0.74

 \  B	 = 	 0.74 	=	0.86	Wb/m2

	 	 	 Magnetising	force,	H	 = 	
0 r

B
µ µ

	=	
0.86

600−74π×10 ×
	=	1141	AT/m

	 	 Length	of	magnetic	path,	l	 =	 60	cm	=	0·6	m
	 	 						Total	AT	required	=		0·6	×	1141	=	684·6	AT
	 	 Total	number	of	turns	=		2	×	750	=	1500
 \	 Exciting	current	required	 =	 684·6/1500	=	0.456 A
 Example 9.49. A smooth core armature working in a 4-pole field magnet has a gap (iron to iron) 
of 0·5 cm. The area of the surface of each pole is 0·1 m2. The ampere-turns absorbed by each pole 
are 3000. Calculate (i) the mechanical force exerted by each pole on the armature and (ii) energy 
stored in the four air gaps.
 Solution. (i) AT	per	gap	 =	 Flux	×	Reluctance	of	air	gap	=	

0

( ) glB a
a

 
× ×  µ 

	=	
0

gB l
µ

 or  
0

B
µ

	 = 	
per gap

g

AT
l

	=	 5
2

3000
6 10

0 5 10− = ×
⋅ ×

 or  B	 = 	µ0	×	6	×	10
5	=	(4π	×	10−7)	×	6	×	105	=	0·75	Wb/m2

	 Mechanical	force	exerted	by	each	pole	is

   P	 = 	
2

02

B a
µ

	=	
( )2

7

0.75 0.1

2 4 10−
×

× π×
	=	22381 N

 (ii)	 	 Volume	of	4	air	gaps	 =	 4	a lg	=	4	×	0·1	×	0·5	×	10
−2	=	0·002	m3

	 	 	Energy	stored	in	air	gaps	 =	
2

02

B
µ

	×	Volume	of	4	airgaps

	 	 	 	 = 	
( )2

7

0.75
0.002

2 4 10− ×
× π×

	=	448 J

Fig. 9.31
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 Example 9.50. An iron ring having a mean circumference of 30 cm and a cross-sectional area of 
1 cm2 has two radial saw cuts at diameterically opposite points. A brass plate is inserted in each gap 
(thickness of each gap being 0·1 mm). If the ring is wound with 200 turns, calculate the magnetising 
current to exert a pull of 5 kg between the two halves. Assume the magnetic data for the iron to be :
 B (Wb/m2) 0·79 1·0 1·3
 H (AT/m) 250 350 520
 Solution.	The	total	force	of	attraction	at	the	two	separations	is	=	5	×	9·80	=	49	N.	Therefore,	
force	of	attraction	at	each	separation, P	=	49/2	=	24·5	N.

 Now, P	 = 	
2

02

B a
µ

 \ B	=	
7

4

2 4 10 24·5

1 10

−

−
× π × ×

×
	=	0·79	Wb/m2

	 	 	 Corresponding	to	B	 =	 0·79	Wb/m2, we have, H	=	250	AT/m.
   Length	of	iron	path	 =	 30	cm	=	0·3	m
   AT	for	iron	path	 =	 250	×	0·3	=	75	AT
   H	for	brass	 =	 B/µ0	=	0·79/4	π	×	10

–7	=	628662	AT/m
	 	 	Thickness	of	brass	plates	 =	 0·1	+	0·1	=	0·2	mm	=	0·2	×	10–3 m
   AT	for	brass	paths	 =	 628662	×	0·2	×	10–3	=	125·73	AT
	 	 	 Total	AT required	 =	 75	+	125·73	=	200·73	AT
 \	 Magnetising	current	required		=	200·73/200	=	1 A
 Example 9.51. The arm of a starter is held in the “ON” position by means of an electromagnet. 
The torque exerted by the spring is 5 Nm and the effective radius at which the force is exerted is  
10 cm. Area of each pole face is 2·5 cm2 and each air gap is 0·4 mm. Find the minimum number of 
AT required to keep the arm in the “ON” position.
 Solution.	Fig.	9.32	shows	the	whole	arrangement.	Let	F	newtons	be	the	force	exerted	by	the	
electromagnet.
	 	 Torque	 =	 Force	×	radius
	 or	 5	 =	 F	×	0.1	 \ F	=	5/0.1	=	50	N
	 The	force	exerted	at	each	pole	of	the	magnet,	P	=	50/2	=	25	N

 Now P	 = 	
2

02

B a
µ

 \ B	 = 	
7

4

25 2 4 10

2·5 10

−

−
× × π ×

×
	=	0.5	Wb/m2

 The	AT	for	iron	path	may	be	neglected	;	being	very	small.
  H	in	air	gap	 =	 B/µ0	=	0.5/4π	×	10

–7	=	397887	AT/m
	 	 Total	air	gap	length	 =	 2	×	0.4	×	10–3	=	0.8	×	10–3 m
  AT	required	 =	 397887	×	0.8	×	10–3	=	318.3 AT
 Example 9.52. The electromagnet shown in  
Fig. 9.33 has pole pieces each having a cross-sectional 
area of 25 cm2. The total flux crossing each pole is 250 
µWb. Determine the maximum weight of iron plate that 
can be lifted by the magnet. Neglect magnetic leakage 
and fringing.
 Solution.	Flux	density	in	the	air	gap	is	

  B	 = 	
a
φ
	=	

6

4

250 10

25 10

−

−
×

×
	=	0.1	Wb/m2

Fig. 9.32

Fig. 9.33



468    Basic  Electrical  Engineering 

	 Attractive	force	at	each	pole	is	

   P	 = 	
2

02

B a
µ

	=	
2 4

7

(0.1) 25 10

2 4 10

−

−
× ×

× π ×
	=	9.95	N

	 	 Total	force	due	to	two	poles	 =	 2P	=	2	×	9.95	=	19.9	N
 Let m	be	the	maximum	mass	of	the	plate	that	can	be	lifted.
 \  m	×	g	 =	 19.9

 or  m	 = 	
19.9

g
	=	

19.9

9.8
	=	2.03	kg

	 Therefore,	maximum	weight	of	the	plate	that	can	be	lifted	is	2.03 kg.

Tutorial Problems
 1.	 Find	the	pull	exerted	on	the	plunger	of	an	electromagnet	when	the	total	flux	uniformly	distributed	is	 

500	µWb.	Diameter	of	the	plunger	is	2·54	cm.	 [196·3 N]
 2. A	horse	shoe	magnet	has	two	poles,	each	of	area	5	cm2.	Find	the	pull	between	the	poles	and	the	keeper	

when	the	flux	density	at	the	contact	surface	is	1	Wb/m2. [398 N]
 3. The	core	material	for	use	in	an	electromagnet	should	not	have	a	flux	density	more	than	1·5	Wb/m2.	How	

much	area	each	of	the	two	poles	should	have	if	the	magnet	is	to	lift	200	kg	?	 [10·95 cm2]
 4.	 A	circular	 crane	magnet	has	 an	 iron	 cross-section	of	200	cm2	 and	 a	mean	magnetic	path	of	80	 cm.	

Assuming	the	total	length	of	each	air	gap	to	be	1·5	mm,	calculate	(i) the AT	to	produce	a	gap	flux	of	
0·025	Wb	(ii)	the	force	to	separate	the	contact	surface,	assuming	no	leakage	or	fringing.

  B(Wb/m2)	 1·0	 1·2	 1·4
  H	(AT/m)	 900	 1230	 2100	 [(i) 4080 AT (ii) 2500 kg (force)]
 5. In	a	telephone	receiver,	the	size	of	each	pole	of	the	electromagnet	is	1.2	cm	×	0.2	cm	and	flux	between	

each	 pole	 and	 diaphragm	 is	 4	 ×	 10–6	Wb.	With	what	 force	 is	 the	 diaphragm	 attracted	 towards	 the	
poles?	 [0.532 N]

 6.	 Magnetic	materials	 having	 a	 surface	 area	 of	 100	 cm2	 are	 in	 contact	with	 each	 other.	They	 are	 in	 a	
magnetic	circuit	of	flux	0.01	Wb	uniformly	distributed	across	the	surface.	Calculate	the	force	required	
to detach the two surfaces. [3978 N]

 7.	 Each	of	the	two	pole	faces	of	a	lifting	magnet	has	an	area	of	150	cm2	and	this	may	also	be	taken	as	the	
cross-sectional	area	of	the	40	cm	long	flux	path	in	the	magnet.	Determine	the	AT needed on the magnet 
if	it	is	to	lift	a	900	kg	iron	block	separated	by	0·5	mm	from	the	pole	faces.	Assume	the	magnetic	leakage	
factor	to	be	1·2.	Neglect	fringing	of	the	gap	flux	and	reluctance	of	the	flux	path	in	the	iron	block.

  H(AT/m)	 400	 600	 800	 1200	 1600
  B(Wb/m2)	 0·81	 0·98	 1·1	 1·24	 1·35 [955 AT]

9.20.  Closing and Breaking an Inductive Circuit
	 Consider	an	inductive	circuit	shown	in	Fig.	9.34.	When	
switch S	is	closed,	the	current	increases	gradually	and	takes	
some	time	to	reach	the	final	value.	The	reason	the	current	does	
not	build	up	*instantly	to	its	final	value	is	that	as	the	current	
increases,	the	self-induced	e.m.f.	in	L	opposes	the	change	in	
current	(Lenz’s	Law).	Suppose	at	any	instant,	the	current	is	i 
and is increasing at the rate of di/dt.
 Then,	 V	 = 	vR + vL

Fig. 9.34*	 The	 current	 is	 zero	 at	 the	 instant	 the	 switch	 is	 closed	because	 it	
must start from zero.

	 Now,	 	 self-induced	 e.m.f.,	vL	 = 	
diL
dt

	 If	 current	 change	 (i.e.di) is instant, it means di/dt	 =	 0.	 	 This	means	 that	L	 is	 infinite	which	 is	 impossible.	
So	 it	 is	 not	 possible	 for	 current	 in	 inductance	 to	 change	 from	one	value	 to	 the	other	 in	 zero	 time.
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	 	 	 	 = 	
diiR L
dt

+

	 As	the	current	increases,	vR	(=	iR) increases and vL decreases since V	is	constant.	The	decrease	
in vL	(=	L di/dt) means that di/dt decreases because L	is	constant.	The	result	is	that	after	some	time,	
di/dt	becomes	zero	and	so	does	the	self-	induced	e.m.f.	vL	(=	L di/dt).	At	this	stage,	the	current	attains	
the	final	fixed	value	I	given	by	;
   V	 = 	I R	+	0	 or	 I	=	

V
R

	 Thus,	when	a	d.c.	circuit	containing	 inductance	 is	switched	on,	 the	current	 takes	some	 time	
to reach the	final	value	I	(=	V/R).	Note	that	the	role	of	inductance	is	to	delay	the	change;	it	cannot	
prevent	the	current	from	attaining	the	final	value.	Similarly,	when	an	inductive	circuit	is	opened,	the	
current	does	not	jump	to	zero,	but	falls	gradually.	In	either	case,	the	delay	in	change	depends	upon	
the	values	of	L and R	as	explained	in	the	next	article.

9.21.  Rise of Current in an Inductive Circuit
 Consider an inductive	circuit	shown	in	Fig.	9.34.	When	switch	S	 is	closed,	 the	current	rises	
from	zero	to	the	final	value	I (=	V/R)	in	a	small	time	t.	Suppose	at	any	instant,	the	current	is	i and is 
increasing at the rate of di/dt.	Then,
   V	 = 	

diiR L
dt

+  or V	–	iR	=	
diL
dt

 or  
di

V iR−
	 = 	

dt
L

	 *Multiplying	both	sides	by	–R, we get,

   
R di

V iR
−

−
	 = 	

R dt
L

−

 Integrating both sides, we get,

   
R di

V iR
−

−∫ 	 = 	
R dt
L

− ∫
	 or	 	 loge	(V	–	iR)	 =	

R t K
L

− + 	 ...(i)

where K	is	a	constant	whose	value	can	be	determined	from	the	initial	conditions.	At	t	=	0,	i	=	0.	
Putting	these	values	in	exp.	(i),	we	have,	loge V	=	K.
 \	 Equation	(i)	becomes	:

	 	 	 loge	(V	–	iR)	 =	 loge
R t V
L

− +

 or  loge
V iR

V
−

	 = 	
R t
L

−

 or  
V iR

V
−

	 = 	e–Rt/L

 or  V	–	iR	 = 	V e–Rt/L

 or  i	 = 	
V
R
	(1	–	e–Rt/L)

 But V/R	=	I,	the	final	value	of	current	attained	by	the	circuit.

 \  i	 = 	I(1	–	e–Rt/L)	 ...(ii)
*	 This	 step	makes	 the	numerator	 on	 the	L.H.S.	 a	 differential	 of	 the	denominator.
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Fig. 9.35

	 Eq.	(ii)	shows	that	rise	of	current	follows	an	exponential	law	(See	Fig.	9.35).	As	t increases, the 
term e–Rt/L	gets	smaller	and	current	i	in	the	circuit	gets	larger.	Theoretically,	the	current	will	reach	its	
final	value	I	(=	V/R)	in	an	infinite	time.	However,	practically	it	reaches	this	value	in	a	short	time.
 Note. V	=	iR + L di/dt
	 At	the	instant	the	switch	is	closed,	i	=	0.	 	 \ V	=	L di/dt

	 Initial	rate	of	rise	of	current,	
di V
dt L

= 	A/sec.

	 The	initial	rate	of	rise	of	current	in	an	inductive	circuit	helps	us	in	defining	the	time	constant	of	
the circuit.

9.22.  Time Constant
	 Consider	the	eq.	(ii) above showing the rise of current w.r.t. time t.
   i	 = 	I	(1	–	e–Rt/L)
	 The	exponent	of	e is Rt/L.	The	quantity	L/R	has	the	dimensions	of	time	so	that	exponent	of	e 
(i.e. Rt/L)	is	a	number.	The	quantity	L/R	is	called	the	time constant of the circuit and affects the rise 
of	current	in	the	circuit.	It	is	represented	by	λ.
 \	 	 Time	constant,	λ	 =	 L/R seconds
 \  i	 = 	I(1	–	e–t/l) 
	 Time	constant	of	an	inductive	circuit	can	be	defined	in	the	following	ways	:
 (i)		 Consider	the	graph	showing	the	rise	of	current	w.r.t.	time	t	[See	Fig.	9.35	(ii)].	The	initial	
rate	of	rise	of	current	(i.e. at t	=	0)	in	the	circuit	is

   
di
dt

	 = 	
V
L

	 If	this	rate	of	rise	of	current	were	maintained,	the	graph	would	be	linear	[i.e. OA	in	Fig.	9.35	
(ii)]	instead	of	exponential.	If	this	rate	of	rise	could	continue,	the	circuit	current	will	reach	the	final	
value	I	(=	V/R) in time
	 	 	 	 = 	

V V L
R L R

÷ = 	=	Time	constant	λ

 Hence time constant may be defined as the time required for the current to rise to its final 
steady value if it continued rising at its initial rate (i.e. V/L).
 (ii)	 	 If	time	interval,	t	 =	 λ	(or	L/R), then,

   i	 = 	I	(1	–	e–Rt/L)	=	I	(1	–	e–1)	=	0·632	I
 Hence time constant can also be defined as the time required for the current to reach 0·632 
of its final steady value while rising.
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	 Fig	9.36	as	well	as	adjoining	 table	shows	 the	percentage	of	final	current	 (I) after each time 
constant	interval	during	current	buildup	(i)	in	the	inductor.	The	current	will	increase	to	about	63%	
of	its	full	value	(I)	in	first	time	constant.	A	5	time-constant	time	interval	is	accepted	as	the	time	for	
the	current	to	attain	its	final	value	I.

                    Fig. 9.36

9.23.  Decay of Current in an Inductive Circuit
	 Consider	an	inductive	circuit	shown	in	Fig.	9.37.	When	switch	S	is	thrown	to	position	2,	the	
current	in	the	circuit	starts	rising	and	attains	the	final	value	I	(=	V/R)	after	some	time	as	explained	
above.	If	now	switch	is	thrown	to	position	1,	it	is	found	that	current	in	the	R	–	L circuit does not cease 
immediately	but	gradually	reduces	to	zero.	Suppose	at	any	instant,	the	current	is	i and is decreasing 
at the rate of di/dt.	Then,
	 	 	 0	 =	

diiR L
dt

+

 or  
di
i
	 = 	

R dt
L

−

	 Integrating	both	sides,	we	get,	loge i	=	
R t K
L

− + 	 ...(i)

where K	is	a	constant	whose	value	can	be	determined	from	the	initial	conditions.	When	t	=	0,	then 
i	=	I (=	V/R).
	 Putting	these	values	in	eq.	(i),	we	have,	 loge I	=	0	+	K or K	=	loge I

 \ 	 Equation	(i)	becomes	:			loge i	=	 loge
R t I
L

− +

  Fig. 9.37 Fig. 9.38

 or  loge
i
I
	 = 	

R t
L

−  or 
i
I
	=	e–Rt/L 

 \  i	 = 	I e–Rt/L or i =	I e–t/l ...(ii)

Number of time 
constants

% of final value

1 63
2 86
3 95
4 98
5 99	(considered	

100%)
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	 Eq.	 (ii) gives the decay of current in an R	 –	L series circuit with time t	 and	 is	 represented	
graphically	in	Fig.	9.38.	Note	that	decay	of	current	follows	the	exponential	law.
 Time constant.	The	quantity	L/R	 in	eq.	 (ii)	 is	known	as	 time	constant	of	 the	circuit.	When	 
t	=	λ	(=	L/R),
   i	 = 	I e–1	=	0·37 I
 Hence, time constant may also be defined as the time taken by the current to fall to 0·37  
of its final steady value I (= V/R) while decaying.
 Fig.	9.39	as	well	as	adjoining	table	shows	the	percentage	of	initial	current	(I) after each time 
constant	interval	while	the	current	is	decreasing.	During	the	first	time	constant	interval,	the	current	
decreases	37%	of	its	initial	value.	A	5	time-constant	interval	is	accepted	as	the	time	for	the	current	
to	reduce	to	zero	value.

  Fig. 9.39

 Example 9.53. The resistance and inductance of a series circuit are 5 Ω and 20 H respectively. 
At the instant of closing the supply, the current increases at the rate of 4 A/s. Calculate (i) the applied 
voltage and (ii) the rate of growth of current when the current is 5 A.
 Solution. (i)		The	voltage	equation of R-L series circuit is 

   V = 
dii R L
dt

+

 At	the	instant	the	switch	is	closed,	i	=	0.

 \  V = 
diL
dt

 =	20	×	4	= 80 V

 (ii)  V = 
dii R L
dt

+

 Here	 	V	 =	 80	volts	;	 	i	=	5	A	;	L	=	20	H	;	 R	=	5	Ω

 \  80 = 5 5 20
di
dt

× +  or 
di
dt

 = 
80 25

20

−
 = 2.75 A/s

	 An	important	difference	between	RC and RL circuits is the effect of resistance on the duration 
of the transient. In an RC	circuit,	a	large	resistance	prolongs	the	transient	because	it	makes	the	time	
constant l (=	RC)	large.	In	an	RL	circuit,	a	large	resistance	shortens	the	transient	because	it	makes	
time constant l	(=	L/R)	small.
 Example 9.54. A constant voltage is applied to a series R – L circuit at t = 0 by closing a switch. 
The voltage across L is 25 V at t = 0 and drops to 5 V at t = 0.025s. If L = 2H, what must be the value 
of R ?
 Solution.	Applied	voltage,	V =	

diiR L
dt

+

	 At	t	=	0,	i	=	0	and	
diL
dt
	=	25	volts	(given)

 \                                 V		=		0	+	25	=	25	volts

	 At	t	=	0.025	second,	
diL
dt
	=	5V	so	that	iR	=	25	–	5	=	20	V.

Number of time 
constants

% of final value

1 37
2 14
3 5
4 2
5 1	(considered	0)



Electromagnetic  Induction 473 

 Now, i	 = 	I(1	–	e–t/l)	=	 (1 )tV e
R

− λ−

 or  iR	 = 	 (1 )tV R e
R

− λ× −

 \  iR	 = 	V(1	–	e–t/l)
	 At	t	=	0.025	second,	iR	=	20	V	and	V	=	25	volts.

 \	 	 20	 =	 25(1	–	e–0.025/l)

	 or	 	 1	–	e–0.025/l	 =	 0.8	 or	 e+0.025/l	=	5

 \  
0.025

loge e
λ

	 =	 loge5	 or	 l =	
0.025

log 5e
	=	0.0155

 Now, l	 = 	
L
R

 or R	=	
L
λ
	=	

2

0.0155
	=	129.03W

 Example 9.55. The steady current flowing in an inductor is 250 mA ; the current flowing 0.1 
sec. after connecting the supply voltage is 120 mA. Calculate (i) time constant of the circuit and  
(ii) the time from closing the circuit at which circuit current has reached 200 mA.
 Solution. (i) i	 = 	I	(1	−	e−t/λ)
	 Here	 i	 =	 120 mA ;	 I	=	250	mA	;	 t	=	0.1	sec.

 \	 	 120	 =	 250	(1	− e−0.1/λ) or e−0.1/λ	=	1	−	(120/250)	=	0·52

 \  e0.1/λ	 =	 1/0.52	=	1.923
	 or	 	 (	0.1/λ	)	loge e	 =	 loge	1.923

 \  Time	constant,	λ	 =	
0.1

log 1.923e
	=	0.153 s

 (ii)  i	 = 	I	(	1	−	e−t/λ ) 
 Here	 i	 =	 200 mA ;	I	=	250	mA	;	λ	=	0.153	sec.
 \	 	 200	 =	 250	(1	− e−t/0.153) or e−t/0.153	=	1	−	(	200/250	)	=	0.2
 \  et/0.153	 =	 1/0·2	=	5
	 or	 	 (t/0·153)	loge e	 =	 loge	5
 \  t	 =	 0·153	loge	5	=	0·25 s
 Example 9.56. A coil having L = 2·4 H and R = 4 Ω is connected to a constant 100 V supply 
source. How long does it take the voltage across the resistance to reach 50 V ?

 Solution. i	 = 	I	(1	−	e−t/λ)	=	 /(1 )tV e
R

− λ−

 or  i R	 = 	V	(1	− e−t/λ)
	 Here	 i R	 =	 50	volts	;	V	=	100	volts	;	 λ	=	L/R	=	2·4/4	=	0·6	s
 \	 	 50	 =	 100	(1	− e−t/0.6) or e−t/0.6	=	1	−	(50/100)	=	0·5
 \  et/0.6	 =	 1/0·5	=	2
 or	 	 (t/0·6)	loge e	 =	 loge 2
 \  t	 =	 0·6	loge	2	=	0·416 s
 Example 9.57. The time constant of a certain inductive coil was found to be 2·5 ms. With a 
resistance of 80 Ω added in series, a new time constant of 0·5ms was obtained. Find the inductance 
and resistance of the coil.
 Solution.  Time	constant,		λ	 =	 L/R
    For	the	first	case,	 L/R	 =	 2·5	 ;	 For	the second case, L/(R +	80)	=	0·5
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 \  
80R

R
+

	 = 	
2 5

5
0 5

⋅ =
⋅

 or R	=	20 Ω

 Now L/R	 =	 2·5	 \ L	=	2·5	R	=	2·5	×	20	=	50 H
 Example 9.58. A coil having an effective resistance of 25 Ω and an inductance of 5 H is 
suddenly connected across a 50 V d.c. supply. What is the rate at which energy is stored in the field 
of the coil when current is (i) 0·5 A, (ii) 1A and (iii) steady ? Also find the induced EMF in the coil 
under the above conditions.
 Solution. 
 (i) When current is 0·5 A
	 Power	input	=	50	×	0·5	=	25	W	 ;	 Power	wasted	as	heat	=	i2R	=	(0·5)2	×	25	=	6·25	W
 \ 	 Rate	of	energy	storage	in	the	field	of	the	coil	=	25	–	6·25	=	18·75 W
 (ii) When current is 1 A
	 Power	input	=	50	×	1	=	50	W	 ;	 Power	wasted	as	heat	=	(1)2	×	25	=	25	W
 \	 	 Rate	of	energy	stored	 =	 50	–	25	=	25 W
 (iii)  When current is steady = V/R = 50/25	=	2A
	 Power	input	=	50	×	2	=	100	W	 ;	 Power	wasted	as	heat	=	(2)2	×	25	=	100	W
 \	 	 Rate	of	energy	stored	 =	 100	–	100	=	0 W
 Induced e.m.f.
	 	 	 Voltage	across	coil,	eL	 = 	V	–	iR
 (i)  When i	 =	 0·5	A	 ;	eL	=	50	–	0·5	×	25	=	37·5 V
 (ii)  When i	 =	 1	A	 ;	eL	=	50	–	1	×	25	=	25 V
 (iii)  When i	 =	 2	A	 ;	eL	=	50	–	2	×	25	=	0 V
 Example 9.59. A circuit of resistance R ohms and inductance L henries has a direct voltage of 
230 V applied to it. 0.3 second after switching on, the current in the circuit was found to be 5A. After 
the current had reached its final steady value, the circuit was suddenly short-circuited. The current 
was again found to be 5A at 0.3 second after short-circuiting the coil. Find the values of R and L.
 Solution.	This	is	a	case	of	growth	and	decay	of	current	in	R –	L series circuit. In both cases,  
i	=	5A	and	t	=	0.3	s.
 For growth : i	 = 	I(1	–	e–t/l)
	 or	 	 5	 =	 I(1	–	e–0.3/l)	 ...(i)
 For decay : i	 = 	I e–	t/l

	 or	 	 5	 =	 I e–0.3/l ...(ii)
	 From	eqs.	(i)	and	(ii), I e–0.3/l =	 I(1	–	e–0.3/l)
 or  2 e–0.3/l	 = 	1
 \  e–0.3/l	 =	 0.5	 or	 l =	0.4328
 Putting l =	0.4328	in	eq.	(ii), we get,
	 	 	 5	 =	 I e–0.3/0.4328 or I	=	5	e+0.3/0.4328	=	5	×	2	=	10	A

 Now, I	 = 	
V
R

  \ R	=	
V
I
	=	

230

10
	=	23W

	 Also,	 l	 = 	
L
R

 or L	=	Rl	=	23	×	0.4328	=	9.95 H

 Example 9.60. Two mutually coupled coils, A and B, are connected in series to a 400 V d.c. 
supply. Coil A has a resistance of 14 Ω and inductance of 4 H. Coil B has a resistance of 20 Ω 
and inductance of 9 H. At a certain instant after the circuit is energised, the current is 5 A and is 
increasing at the rate of 10 A/s. Calculate (i) the mutual inductance between the coils, and (ii) the 
coefficient of coupling.
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 Solution. Fig.	9.40	shows	the	conditions	of	the	problem.	When	not	mentioned	in	the	problem,	
it	is	understood	that	the	mutual	fluxes	of	the	two	coils	aid	each	other.

 (i)  V	 = 	i	(RA + RB) + T
diL
dt

where LT	is	the	total	inductance	of	the	circuit.
	 or	 	 400	 =	 5	(14	+	20)	+	10	LT \ LT	=	23	H

Fig. 9.40

 Now, LT	 = 	LA + LB + 2M	 or	 23	=	4	+	9	+	2M \ M	=	5 H

 (ii)  Coefficient	of	coupling,	k	 = 	
5

4 9A B

M
L L

=
×

	=	0·83

 Example 9.61. The two circuits of Fig. 9.41 have the same time constant of 0·005 second. 
With the same d.c. voltage applied to the two circuits, it is found that steady state current of circuit  
(i) is 2000 times the initial current of circuit (ii). Find R1, L and C.

Fig. 9.41
 Solution. The	time	constant	for	both	the	circuits	is	0·005	s.

 \  R2C	 =	 0·005	 or	 C	=	
2

0.005

R

 \  C	 = 	 6

0.005

2 10×
	=	0·0025	×	10–6	F	=	0·0025 µF

	 Steady	state	current	in	Fig.	9.41	(i)	=	V/R1	=	10/R1

 Initial	current	in	Fig.	9.41	(ii)	=	V/R2	=	10/2	×	10
6	=	5	×	10–6	A

	 As	per	statement	of	the	problem,	we	have,
	 	 	 10/R1	 =	 2000	×	(5	×	10

–6) \ R1	=	1000 Ω

 Now L/R1	 =	 0·005	 \ L	=	1000	×	0·005	=	5 H

Tutorial Problems
 1. A	12	V	battery	is	connected	in	series	with	30	Ω	resistor	and	a	220	mH	inductor.	How	long	will	it	take	the	

current to	reach	half	its	maximum	possible	value	?	At	this	instant,	at	what	rate	is	energy	being	delivered	
by	the	battery	?    [ 5ms ; 2·4 W ]
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 2.	 A	p.d.	of	100	V	 is	applied	 to	a	circuit	consisting	of	a	 resistance	of	50	Ω	and	an	 inductance	of	5	H.	
Determine	the	current	in	the	circuit	0·1	second	after	the	application	of	the	voltage.	 [1·264 A]

 3.	 How	many	time	constants	one	should	wait	for	the	current	in	an	RL circuit	to	grow	within	0·1%	of	its	
steady	value	?	 	 	 	 [ 6·9 time constants ]

 4.	 Calculate	the	back	e.m.f.	of	a	1	H,	10	Ω	coil	0·1	s	after	100	V	d.c.	supply	is	connected	to	it. [ 36·8 V ]
 5.	 The	resistance	and	inductance	of	a	series	circuit	are	50	Ω	and	20	H	respectively.	At	the	instant	of	closing	

the	supply,	the	current	increases	at	the	rate	of	4	A/s.	Calculate	(i)	supply	voltage	(ii) the rate of growth 
of current when current	is	5	A.		 	 	 [(i) 80 V (ii) 2·75 A/s ]

9.24.  Eddy Current Loss
 When	a	magnetic	material	is	subjected	to	a	changing	magnetic	field,	in	addition	to	the	hysteresis	
loss,	another	 loss	 that	occurs	 in	 the	material	 is	 the	eddy current loss.	The	changing	flux	induces	
voltages	in	the	material	according	to	Faraday’s	laws	of	electromagnetic	induction.	Since	the	material	
is	 conducting,	 these	 induced	 voltages	 circulate	 currents	 within	 the	 body	 of	 the	material.	 These	
induced	currents	do	no	useful	work	and	are	known	as	eddy	currents.	These	eddy	currents	develop	i2R 
loss	in	the	material.	Like	hysteresis	loss,	the	eddy	current	loss	also	results	in	the	rise	of	temperature	
of	the	material.	The hysteresis and eddy current losses in a magnetic material are sometimes called 
core losses or iron losses.

Fig. 9.42

	 Fig.	9.42	(i)	shows	a	solid	block	of	iron	subjected	to	a	changing	magnetic	field.	The	eddy	current	
power	loss	in	the	block	will	be	i2R where i is the eddy current and R is the resistance to the eddy 
current	path.	Since	the	block	is	a	continuous	iron	piece	of	large	X-section, the magnitude of i	will	
be	very	*large	and	hence	greater	eddy	current	loss	will	result.	The	obvious	method	of	reducing	this	
loss	is	to	reduce	the	magnitude	of	eddy	current.	This	can	be	achieved	by	splitting	the	solid	block	
into	thin	sheets	(called	laminations)	in	planes	parallel	to	the	magnetic	flux	as	shown	in	Fig.9·42	(ii). 
Each	lamination	is	insulated	from	the	other	by	a	layer	of	varnish.	This	arrangement	reduces	the	area	
of	each	section	and	hence	the	induced	e.m.f.	It	also	increases	the	resistance	of	eddy	current	paths	
since	the	area	through	which	the	currents	can	pass	is	smaller.	Both	effects	combine	to	reduce	the	
eddy	current	and	hence	eddy	current	loss.	Further,	reduction	in	this	loss	can	be	obtained	by	using	a	
magnetic material	of	high	resistivity	(e.g.	silicon	steel).
	 The	 only	 drawback	 of	 laminated	 core	 is	 that	 the	 total	 cross-sectional	 area	 of	 the	magnetic	
material	is	reduced	by	the	total	thickness	of	the	insulation.	This	is	generally	taken	into	account	by	
allowing	about	10%	reduction	in	the	thickness	of	core	when	making	the	magnetic	calculations.

*	 The	 large	 area	 of	 the	 block	 will	 have	 greater	 e.m.f.	 induced	 in	 it.	 Larger	 X-section	 also	 means	 smaller	
resistance	 to	eddy	current	path.	Both	 these	effects	 increase	 the	magnitude	of	eddy	current	 to	a	great	extent.
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9.25.  Formula for Eddy Current Power Loss
 It	is	difficult	to	determine	the	eddy	current	power	loss	because	the	current	and	resistance	values	
cannot	be	determined	directly.	Experiments	have	shown	that	eddy	current	power	loss	Pe in a magnetic 
material	can	be	expressed	as	:
  Pe	 = 	ke Bm

2 t2 f2 V watts
where  ke =	 	eddy	current	coefficient	and	its	value	depends	upon	the	nature	of	the	material.
  Bm =	maximum	flux	density	in	Wb/m2

  t	 =	 thickness	of	lamination	in	m
  f	 =	 frequency	of	flux	in	Hz
  V	 =	 volume	of	material	in	m3

 Example 9.62. The flux in a magnetic core is alternating sinusoidally at 50 Hz. The maximum 
flux density is 1·5 Wb/m2. The eddy current loss then amounts to 140 watts. Find the eddy current 
loss in the core when the frequency is 75 Hz and the flux density is 1·2 Wb/m2.
 Solution.	Eddy	current	power	loss,	Pe ∝ Bm

2 f2

	 	 	 For	the	first	case,	Pe1  ∝	 (1·5)
2	×	(50)2 ;	 For	the	second	case,	Pe2 ∝	(1·2)

2	×	(75)2

 \  2

1

e

e

P
P

	 = 	
2 2

1 2 75

1 5 50

⋅   ×   ⋅   
	=	1.44

 \  Pe2	 =	 1·44	Pe1	=	1·44	×	140	=	201·6 W
 Example 9.63. Find the eddy current power loss in a 50 Hz transformer with a maximum flux 
density of 1 Wb/m2. The core is of section 8 cm × 6 cm and total effective length is 50 cm constructed 
of laminations of thickness 0·4 mm. The eddy current coefficient is 6·58 ×	106. Assume a space factor 
of 0·9.
 Solution.  Total	core	area	 =	 8	×	6	=	48	cm2	=	48	×	10−4 m2

	 	 	 *Useful	core	area	 =	 0·9	×	48	×	10−4	=	43·2	×	10−4 m2

	 	 Volume	of	iron	in	core,	V	=	 43·2	×	10−4	×	0·5	=	21·6	×	10−4 m3

	 	 Thickness	of	lamination,	t	 =	 0·4	mm	=	0·4	×	10−3 m
 \  Pe	 = 	ke Bm

2 t2 f2 V watts

	 	 	 	 =	 (6·58	×	106)	×	(1)2×	(0·4	×	10−3)2 ×	(50)2 ×	21·6	×	10−4 = 5·68 W
 Example 9.64. A transformer connected to 25 Hz supply has a core loss of 1500 watts of 
which 1000 watts are due to hysteresis and 500 watts due to eddy currents. If the flux density is kept 
constant and frequency is increased to 50 Hz, find the new value of the core loss.
 Solution. 
  Hysteresis	power	loss,	Ph ∝ Bm

1·6 f
	 	 Eddy	current	power	loss,	Pe ∝ Bm

2 f 2

 Hysteresis loss
   2

1

h

h

P
P

	 = 	
1·6

2 2

1 1

m

m

B f
B f

 
× 

 
	=	(1)1·6	×	50/25	=	2		 ( Bm2	=	Bm1)

 \  Ph2	 =	 2	×	1000	=	2000	W

*	 The	 core	 of	 the	 transformer	 is	 laminated	 to	 reduce	 the	 eddy	 current	 loss.	 The	 cross-sectional	 area	 of	 iron	
is	 now	 less	 than	 the	 apparent	 area	due	 to	 the	 area	 taken	up	by	 the	 insulation.

	 Space	 factor	=	
Useful area

Total area
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 Eddy current loss
   2

1

e

e

P
P

	 = 	
2 2 2

22 2

1 1

50
(1) 4

25
m

m

B f
B f

     × = × =        
 \  Pe2	 =	 4	Pe1	=	4	×	500	=	2000	W
 \  New	core	loss	 =	 Ph2 + Pe2	=	2000	+	2000	=	4000 W
 Example 9.65. The core loss in a given specimen is found to be 65 W at a frequency of 30 Hz 
and a flux density of 1 Wb/m2 and 190 W at 60 Hz and the same flux density. What are the hysteresis 
loss and the eddy current loss at each frequency ?
 Solution. Since	 the	 flux	 density,	 the	 volume	 of	 specimen	 and	 the	 thickness	 of	 laminations	
remain	constant,	the	iron	or	core	loss	(=	hysteresis	loss	+	eddy	current	loss)	can	be	written	as	:
	 	 	 Core	loss,	Pc	 = 	k′h f + k′e f 

2	 ...(i)
where k′h	=	kh Bm

1·6 V and k′e	=	ke Bm
2 t2 V

	 Putting	the	given	values	in	eq.	(i), we have,
	 	 	 65	 =	 k′h	×	30	+	k′e	×	(30)

2	 ...(ii)
	 	 	 190	 =	 k′h	×	60	+	k′e	×	(60)

2	 ...(iii)
	 Solving	eqs.	(ii)	and	(iii),  k′h	 =	 1·167	;	 k′e	=	0·0333
 At 30 Hz.	At	30	Hz,	these	losses	are	:
   Ph	 = 	k′h	×	30	=	1·167	×	30	=	35 W

   Pe	 = 	k′e	×	(30)
2	=	0·0333	×	(30)2	=	30 W

 At 60 Hz.	At	60	Hz,	these	losses	are	:
   Ph	 = 	k′h	×	60	=	1·167	×	60	=	70 W
   Pe	 = 	k′e	×	(60)

2	=	0·0333	×	(60)2	=	120 W

Objective Questions

 1. The	basic	requirement	for	inducing	e.m.f.	in	a	
coil	is	that	............

	 (i)	 flux	should	link	the	coil
	 (ii)	 there	should	be	change	in	flux	linking	the	

coil
	 (iii)	 coil	should	form	a	closed	loop
	 (iv) none of the above
 2. The	e.m.f.	induced	in	a	coil	is	............	the	rate	

of	change	in	flux	linkages.
	 (i)	 directly	proportional	to
	 (ii)	 inversely	proportional	to
	 (iii)	 independent	of
	 (iv) none of the above
 3. The	e.m.f.	induced	in	a	coil	of	N turns is given 

by ..............
	 (i) dφ/dt	 (ii) N dφ/dt
	 (iii)	 −N dφ/dt	 (iv) N dt/dφ
 4. The	direction	of	induced	e.m.f. in a conductor 

(or	coil)	can	be	determined	by	...............
	 (i)	 work	law	
	 (ii)	 Ampere’s	law

	 (iii)	 Fleming’s	right-hand	rule
	 (iv)	 Fleming’s	left-hand	rule
 5. In	Fig.	9.43,	the	conductor	is	moving	upward.	

The	direction	of	induced	e.m.f.	is	............

Fig. 9.43

	 (i) from A to B	 (ii) from B to A
	 (iii) none of the above
 6. In	Fig.	9.44,	the	direction	of	induced	e.m.f.	in	

the conductor A is ..............

Fig. 9.44
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	 (i)	 into	the	plane	of	paper
	 (ii)	 out	of	plane	of	paper
	 (iii) none of the above
 7. In	Fig.	9.44,	the	rate	of	change	of	flux	linkages	

of conductors A and B is .............. 
	 (i)	 minimum	 (ii)	 maximum
	 (iii)	 mid-way	between	(a)	and	(b)
	 (iv) none of the above
 8. The	e.m.f.	induced	in	a	.............	is	the	statically	

induced e.m.f.
	 (i)	 d.c.	generator	 (ii) transformer
	 (iii)	 d.c.	motor	 (iv) none of the above
 9. The	 e.m.f.	 induced	 in	 a	 ...............	 is	 dynami-

cally	induced	e.m.f.
	 (i)	 alternator	 (ii) transformer
	 (iii)	 d.c.	generator	 (iv) none of the above
 10. In	 Fig.	 9.45,	 1	 single	 conductor	 of	 length	 l 

metres	moves	at	right	angles	to	a	uniform	field	
of B Wb/m2	with	a	velocity	of	v	m/s.	The	e.m.f.	
induced is ...............

	 (i) B l/v	 (ii) Bv/l
	 (iii) Blv	 (iv) lv/B

 Fig. 9.45 Fig. 9.46

 11. In	 Fig.	 9.46,	 the	 component	 of	 velocity	 that	
does not induce any e.m.f. in the conductor is 
.......

	 (i) v	sin	θ	 (ii) v	cos	θ
	 (iii) v	tan	θ	 (iv) none of the above
 12. Inductance	 opposes	 ...............	 in	 current	 in	 a	

circuit.
	 (i)	 only	increase	 (ii)	 only	decrease
	 (iii)	 change	 (iv) none of the above
 13. If	the	number	of	turns	of	a	coil	is	increased,	its	

inductance .............
	 (i)	 remains	the	same	 (ii) is increased
	 (iii)	 is	decreased	 (iv) none of the above

 14. If	 the	 relative	 permeability	 of	 the	 material	
surrounding	the	coil	is	increased,	the	inductance	
of the coil	.............

	 (i)	 is	increased	 (ii) is decreased
	 (iii) remains unchanged
	 (iv) none of the above 
 15. Inductance in a circuit ...............
	 (i)	 prevents	the	current	from	changing
	 (ii)	 delays	the	change	in	current
	 (iii)	 causes	power	loss
	 (iv) causes the current	to	lead	the	voltage
 16. The	 inductance	 of	 a	 coil	 is	 ...........	 the	 reluc-

tance	of	magnetic	path.

	 (i)	 independent	of
	 (ii)	 directly	proportional	to
	 (iii)	 inversely	proportional	to
	 (iv) none of the above
 17. If	the	number	of	turns	of	a	coil	is	increased	two	

times, its inductance is ................
	 (i) increased two times
	 (ii) decreased two times
	 (iii) decreased four times
	 (iv) increased four times
 18. A	 circuit	 has	 inductance	 of	 2H.	 If	 the	 circuit	

current	changes	at	the	rate	of	10	A/second,	then	
self-induced	e.m.f.	is	.............

	 (i)	 5	V	 (ii)	 0·2	V
	 (iii)	 20	V	 (iv)	 10	V
 19. A	 current	 of	 2	A	 through	 a	 coil	 sets	 up	 flux	

linkages	 of	 4	Wb-turn.	The	 inductance	 of	 the	
coil	is	.................

	 (i)	 8	H	 (ii)	 0·5	H
	 (iii)	 2	H	 (iv)	 1	H
 20. An	 air-cored	 choke	 is	 used	 for	 .................	

applications.
	 (i)	 radio	frequency	 (ii)	 audio	frequency
	 (iii)	 power	frequency	 (iv) none of the above
 21. If	a	10-turn	coil	has	a	second	layer	of	10	turns	

wound	over	the	first,	then	total	inductance	will	
be	about	............	the	original	inductance.

	 (i)	 two	times	 (ii) four times
	 (iii)	 six	times	 (iv) three times
 22. An	iron-cored	coil	of	10	turns	has	reluctance	of	

100	AT/Wb.	The	inductance	of	the	coil	is	.........
	 (i)	 1	H	 (ii)	 10	H
	 (iii)	 0·1	H	 (iv)	 5	H
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 23. An	 iron-cored	 coil	 has	 an	 inductance	 of	 2	H.	
If	 the	 reluctance	 of	 the	magnetic	 path	 is	 200	 
AT/Wb,	 the	 number	 of	 turns	 on	 the	 coil	 is	
..............

	 (i)	 100	 (ii)	 400
	 (iii)	 50	 (iv)	 20
 24. The	 mutual	 inductance	 between	 two	 coils	 is	

...............	reluctance	of	magnetic	path.
	 (i) directly	proportional	to
	 (ii)	 inversely	proportional	to
	 (iii)	 independent	of	 (iv) none of the above
 25. Mutual	 inductance	 between	 two	 coils	 can	 be	

decreased by ...............
	 (i) increasing the number of turns of either 

coil
	 (ii)	 by	moving	the	coils	closer
	 (iii)	 by	moving	the	coils	apart
	 (iv) none of the above
 26. Mutual	 inductance	 between	 two	 coils	 is	 4H.	

If	 current	 in	one	coil	 changes	at	 the	 rate	of	2	 
A/second,	then	e.m.f.	induced	in	the	other	coil	
is ...........

	 (i)	 8	V	 (ii)	 2	V
	 (iii)	 0·5	V	 (iv) none of the above 
 27. If	 in	Fig.	9.47,	φ12	=	2	Wb,	N2	=	20	and	 I2	= 	 

20	A,	then	mutual	inductance	between	the	coils	
is .........

	 (i)	 200	H	 (ii)	 20	H
	 (iii)	 4	H	 (iv)	 2	H

Fig. 9.47

 28. If	 in	 Fig.	 9.47,	 N1	 =	 100,	 N2	 =	 1000	 and	
mutual	inductance	between	the	coils	is	2H,	the	
reluctance	of	magnetic	circuit	is	..............

	 (i)	 5	×	104	AT/Wb	 (ii)	 105	AT/Wb
	 (iii)	 20	AT/Wb	 (iv)	 5	AT/Wb
 29. If	the	coefficient	of	coupling	between	two	coils	

is	 increased,	 mutual	 inductance	 between	 the	
coils	.............

	 (i)	 is	increased	 (ii) is decreased
	 (iii) remains unchanged 
	 (iv) none of the above
 30. The	maximum	mutual	inductance	between	the	

coils	shown	in	Fig.	9.47	is	given	by	............
	 (i) LA LB (ii) LA / LB

	 (iii) A BL L 	 (iv)	 (LA LB)2

Answers
 1.	 (ii) 2.	 (i) 3.	 (iii) 4.	 (iv) 5.	 (ii)  
 6.	 (ii) 7.	 (ii) 8.	 (ii) 9.	 (iii) 10.	 (iii)  
 11.	 (ii) 12.	 (iii) 13.	 (ii) 14.	 (i) 15.	 (ii)  
 16.	 (iii) 17.	 (iv) 18.	 (iii) 19.	 (iii) 20.	 (i)
 21.	 (ii) 22.	 (i) 23.	 (iv) 24.	 (ii) 25.	 (iii)  
 26.	 (i) 27.	 (iv) 28.	 (i) 29.	 (i) 30.	 (iii)



Introduction
 The reader is well acquainted with the passage of electric current through metallic conductors, 
e.g., copper, aluminium etc. In such conductors, current conduction is due to the movement of free 
electrons and there is no chemical or physical change except the rise in temperature. However, 
conduction of current through *certain salt solutions is quite different. Such liquids provide a large 
number of oppositely charged atoms (called ions) and are known as electrolytes e.g., acids (H2SO4, 
HCl etc.), solutions of inorganic compounds (NaCl, CuSO4, AgNO3 etc.), hydroxides of metals 
(KOH, NaOH etc). In an electrolyte, conduction is due to the movement of ions (an electrolyte has 
no free electrons) and chemical changes occur so long as the conduction takes place. Thus passage 
of electric current through an electrolyte causes chemical changes i.e. electrical energy is converted 
into chemical energy. The converse of this is also true i.e., we can produce electrical energy from 
chemical energy. In this chapter, we shall study about the close relationship between electrical 
energy and chemical energy.

10.1.   Electric Behaviour of Liquids
 Some liquids conduct current while others do not permit the passage of current through them. 
On the basis of electrical conductivity, the liquids may be divided into three classes viz.
 (i) Those liquids which do not conduct current are called insulators e.g., mineral oils, 
distilled water etc.
 (ii) Those liquids which conduct current due to drifting of free electrons are called 
conductors e.g., mercury.
 (iii) Those liquids which conduct current due to drifting of †ions are known as electolytes 
e.g., solutions of CuSO4, AgNO3 etc. This is the most important class of liquid conductors.

10.2.   Electrolytes
A liquid which conducts electric current due to the drifting of ions is called an electrolyte.
 Salts like silver nitrate (AgNO3), sodium chloride (NaCl), copper sulphate (CuSO4), etc. when 
dissolved in water dissociate into ions. Their ionic dissociation can be represented as under :
  AgNO3 → Ag+ + NO3

–

  NaCl → Na+ + Cl–

  CuSO4 → Cu++ + SO–
4 

–

 The atom or group of atoms having positive charge is called a positive ion. On the other hand, 
the atom or group of atoms having negative charge is called a negative ion. For example, when NaCl 

* Conduction of current is possible only in those liquids which break up into oppositely charged atoms called ions. 
Such liquids are called electrolytes. There are, however, many substances (e.g., sugar) which dissolve without 
splitting into ions. Solutions of these substances do not conduct current and are called non-electrolytes.

† An electrolyte has no free electrons.

10
Chemical  Effects  of   

Electric  Current
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is dissolved in water, it splits into positve ions (Na+) and negative ions (Cl–). The conduction of 
current through an electrolyte is due to the drifting of negative and positive ions within the liquid.

10.3.   Mechanism of Ionisation
 The splitting up of an ionic compound in solution into ions is known as ionisation or ionic 
dissociation. Let us take the example of sodium chloride (NaCl). The structure of this solid 
crystalline salt is made up of Na+ and Cl– ions. When in solid state, there is a very strong force of 
attraction between Na+ and Cl– ions which holds them together as a molecule of NaCl. However, 
when sodium  chloride is dissolved in water, the force of attraction between the ions (Na+ and Cl–) 
of sodium chloride molecule is tremendously *reduced due to high permittivity of water (K = 81). 
In fact, the force of attraction between ions reduces 81 times. The result is that sodium ion (Na+) 
and Cl– ion get separated. This process is called ionisation. It may be noted that as soon as sodium 
chloride is dissolved in water, ions are formed. In other words, ions are present in an electrolytic 
solution even before it conducts electric current.

10.4.  Electrolysis
 The condution of electric current through the solution of an electrolyte together with the 
resulting chemical changes is called electrolysis.
 Fig. 10.1 shows the process of 
electrolysis in a copper voltameter. 
When copper sulphate (CuSO4) is 
dissolved in water, it splits up into 
its components viz. the positive 
copper ions (Cu++) and negative 
sulphate ions (SO– 

4
–). This process 

is called **ionisation. When d.c. 
voltage is applied across the 
electrodes, the negative sulphate 
ions (SO–

4
–) move towards the 

anode (+ve electrode) and positive 
copper ions move towards the 
cathode (–ve electrode) causing 
the following chemical changes :
 At anode. A sulphate ion (SO4

– –) on reaching the anode gives its two extra electrons to it and 
becomes sulphate radical. These given up electrons continue their journey towards the cathode via 
the external circuit. Now the sulphate radical cannot exist and, therefore, it acts chemically on the 
anode material to form copper sulphate according to the following reaction :

Cu + SO4  →  CuSO4

 Thus copper from anode continuously dissolves into the solution so long as this action takes 
place.
 At cathode. At the same time, a copper ion (Cu++) on reaching the cathode takes two electrons 
from it (these are the same electrons given by the sulphate ion at the anode and have come to cathode 

SO4

Cu++

Cathode
(Copper)

Electron flowElectron flow

Anode
(Copper)

– –

Fig. 10.1

* F = 1 2
2

0

1

4

q q
K rπε

. For air, K = 1 and for water at room temperature, K = 81.

** The reader may recall that copper sulphate is an ionic compound i.e,, each molecule of CuSO4 is formed 
due to the attraction between oppositely charged atoms viz Cu++ and SO4

– –. When dissolved in water, the 
force of attraction between them is tremendously reduced due to high relative permittivity of water. The 
result is that Cu++ and SO4

– – get separated. These charged atoms (Cu++ and SO4
– –) are called ions.
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via the external circuit). The copper ion (Cu++) combines with these two electrons to become copper 
atom and gets deposited on the cathode.

Cu++ + 2e → Cu atom
 Thus copper from the solution (CuSO4) gets deposited on the cathode.
 The following points may be carefully noted :
 (i) Electrolysis is possible only if d.c. potential is applied to the electrodes. It is because we 
are to attract ions of only one kind to each electrode.
 (ii) During electrolysis, either anode material gets deposited over the cathode or gases are 
liberated at the two electrodes.
 (iii)	 The	resulting	chemical	changes	during	electrolysis	take	place	so	long	as	the	current	flows	
through the electrolyte. When the current through the electrolyte ceases, chemical action also ceases.

10.5.  Back e.m.f. or Polarisation Potential
 The process of electrolysis is carried out in an apparatus called voltameter or electrolytic 
cell. When external d.c. voltage is applied across the electrodes, an e.m.f. is set up between each 
electrode and the electrolyte which opposes the external d.c. voltage. This opposing e.m.f. is called 
back e.m.f. (Eb) of the electrolyte and is produced due to the coating of electrodes by the products 
of electrolysis. This effect is called polarisation and for this reason, back e.m.f. is also called 
polarisation potential.
 The e.m.f. set up in the voltameter which opposes the external d.c. voltage is called back 
e.m.f. of the electrolyte.
 The value of back e.m.f. is different for different electrolytes. For acids and alkalies which 
evolve hydrogen and oxygen, its value is about 1.7 V. For other electrolytes, the value of back e.m.f. 
depends on the particular salt and generally lies between 0.5 V and 2 V for normal solutions. 
 Voltage equation for electrolysis. For electrolysis, the applied external d.c. voltage V must 
overcome the back e.m.f. (Eb) and voltage drop (IRe) in the electrolyte i.e.
  V = Eb + IRe ... (i)
         where V = External d.c. voltage
  Eb = Back e.m.f. of electrolyte
  I = Circuit current
  Re = Resistance of electrolyte
 Therefore, in order to carry out electrolysis at an appreciable rate, the external d.c. voltage V 
must be atleast equal to Eb + IRe. If the external d.c. voltage is less than this value, electrolysis will 
not take place.
10.6.  Faraday’s Laws of Electrolysis
 Faraday performed a series of experiments to determine the factors which govern the mass of 
an element deposited or liberated during electrolysis. He summed up his conclusions into two laws, 
known as Faraday’s laws of electrolysis.
 First law. The mass of an element deposited or liberated at an electrode is directly proportional 
to the quantity of electricity that passes through the electrolyte.
 If m is the mass of an element deposited or liberated due to the passage of I amperes for t 
seconds,	then	according	to	first	law,
  m ∝ Q
 or m ∝ It ( Q = It) 
 or m = ZIt  or  m = ZQ
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where Z is a constant known as electro-chemical equivalent (E.C. E.) of the element. It has the same 
value for one element but different for other elements.
 If Q = 1 coulomb, then, m = Z.
 Hence electro-chemical equivalent (E.C.E.) of an element is equal to the mass of element 
deposited or liberated by the passage of 1 coulomb of electricity through the electrolyte. Its unit is  
gm/C or kg/C.
 For example, E.C.E. of copper is 0·000304 gm/C. It means that if 1 coulomb of electricity is 
passed through a solution of CuSO4, then mass of copper deposited on the cathode will be 0·000304 
gm.
	 The	validity	of	first	law	is	explained	by	the	fact	that	current	inside	the	electrolyte	is	carried	by	
the ions themselves. Hence the masses of the chemical substances reaching the anode and cathode 
are proportional to the quantity of electricity carried by the ions i.e., mass of an ion liberated at any 
electrode is proportional to the quantity of electricity passed through the electrolyte.
 Second law. The mass of an element deposited or liberated during electrolysis is directly 
proportional to the chemical equivalent weight of that element i.e.
  m ∝ Chemical equivalent weight of the element (E)
 Faraday’s second law is illustrated in Fig. 10.2 where silver and copper voltameters are 
connected in series. When the same current is passed for the same time through the two voltameters, 
it will be seen that the masses of silver (Ag) and copper (Cu) deposited on the respective cathodes 
are in the ratio of 108 : 32. These values of 108 and 32 are respectively the equivalent weights of 
silver and copper.

  
Mass of silver deposited

Mass of copper deposited
 = 

Eq. wt. of Ag 108

Eq. wt. of Cu 32
=

Fig. 10.2

 Faraday’s second law can be explained as follows. The negative ions (i.e. NO3
– and SO4

– –) 
from the solutions give up their respective extra electrons to the anodes. These electrons come to 
cathodes via the external circuit and are taken up by the positive ions (Ag+ and Cu++) to become 
metallic	 atoms	and	get	deposited	on	 the	 respective	 cathodes.	Suppose	10	 electrons	 are	flowing	
in the external circuit. Since silver is monovalent (i.e., its valency is 1), 10 silver ions must be 
liberated at the cathode of silver voltameter. Again copper is bivalent (i.e., its valency is 2) and 
hence 5 copper ions must be liberated at the cathode of copper voltameter. This means that mass of 
an element (silver or copper) liberated is directly proportional to the atomic weight and inversely 
proportional to the valency of that element i.e.

  Mass liberated, m ∝ 
Atomic weight

Valency
   ∝ Chemical equivalent wt. of the element
 i.e. m ∝ E
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10.7.  Relation Between E and Z
 Suppose the same amount of charge (Q) is passed through the solutions of two electrolytes. If m1 
and m2 are the masses of the substances liberated/deposited and Z1 and Z2 are their electro-chemical 
equivalents, then, m1 = Z1Q ;  m2 = Z2Q

 \ 1

2

m
m

 = 1

2

Z
Z

 But 1

2

m
m

 = 1

2

E
E

 ...Faraday’s second law

 \ 1

2

E
E

 = 1

2

Z
Z

 or 
E
Z

 = Constant

 Thus the ratio E/Z is the same for all substances. This constant is called Faraday constant 
F(=E/Z).
 Faraday constant (F). The value of Faraday constant is found to be 96500 C i.e. F = 96500 C.
 Hence Faraday constant is the quantity of charge (i.e., 96500 C) required to liberate/deposit 
one gram equivalent (chemical equivalent in gram) of the substance during electrolysis.
 For example, chemical equivalent of silver is 108. When a charge of 96500 C is passed through 
a silver voltameter, then mass of silver deposited on the cathode will be 108g. Again chemical 
equivalent of copper is 31·75. If a charge of 96500 C is passed through a copper voltameter, then 
mass of copper deposited on the cathode will be 31.75 g.
 Finding the value of F. According	to	Faraday’s	first	law	of	electrolysis,
  m = ZQ
 Suppose M is the mass of one mole of the substance. If, during electrolysis, the mass of the 
substance to be deposited is M and p is the valency of the depositing atom, then NA (= 6.023 × 1023) 
atoms will deposit on the electrode.
   Now    m = M   and     Q   = NA pe
         where  e = Charge on electron
 \ M = Z NA pe ...Faraday’s	first	Law

 or Z = 1

A

M
N e p

⋅

         But 
M
p

 = 
Mass of one mole

Valency
 = Chemical Equivalent of the substance

 \ Z = 
1

A
E

N e

 Now, NA e is a constant, called Faraday constant F.

 \ Z = 
E
F

 Now,  1F = NA e = (6.023 × 1023) × 1.602 × 10–19 = 96485 C  96500 C

10.8.  Deduction of Faraday’s Laws of Electrolysis
 Suppose a charge Q is passed through an electrolyte during electrolysis and the mass  
liberated/deposited on the cathode is m. 
 \ m = ZQ

 or m = 
E Q
F

 ( Z = 
E
F

) ...(i)
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 Equation (i) is the fundamental equation of electrolysis and contains Faraday’s two laws of 
electrolysis. 
 (i) It is clear from equation (i) that :
   m ∝ Q	 ...Faraday’s	first	law
 (ii) If the same charge is passed (i.e. Q is constant) through different electrolytes during 
electrolysis, then, m ∝ E ...Faraday’s second law
 Example 10.1. A current passes through two voltameters in series, one having silver plates and 
a solution of AgNO3, and the other copper plates and a solution of CuSO4. After the current has 
ceased to flow, 3·6 gm of silver have been deposited. How much copper will have deposited in the 
other voltameter ? Take E.C.E. of silver as 0·001118 gm/C and that of copper as 328·86 × 10–6 gm/C.
 Solution. For silver voltameter, we have,
  m1 = Z1It

 or It = 1

1

3.6

0.001118

m
Z

=

  For copper voltameter, m2 = Z2It = (328.86 × 10–6) × 
3.6

0.001118
 = 1.06 gm

 Example 10.2. If 16 amperes deposit 12 gm of silver in 9 minutes, how much copper would  
10 amperes deposit in 15 minutes? At. wt. of silver = 108 and At. wt. of copper = 63.5.
 Solution. 16A in 9 minutes deposit silver = 12 gm

 10A in 15 minutes deposit silver = 
10 15

12
16 9

× ×  = 12.5 gm

 Eq. wt. of silver = At. wt./Valency = 108/1 = 108 ; Eq. wt. of copper = 63.5/2 = 31.75
 Let m gm be the mass of copper deposited by 10 A in 15 minutes. Then by Faraday’s second law 
of electrolysis,

  
mass of Cu deposited

mass of Ag deposited
 = 

Eq. wt. of Cu

Eq. wt. of Ag

 or 
12.5

m
 = 

31.75

108
 \ m = 

31.75
12.5

108
×  = 3.67 gm

 Example 10.3.  A coating of nickel 1 mm thick is to be deposited on a cylinder 2 cm in diameter 
and 30 cm in length. Calculate the time taken if the current used is 100 A. The following data may 
be taken. Specific gravity of nickel = 8·9, At. wt. of nickel = 58·7 (divalent), E.C.E. of silver =  
1·12 mg/C, At.wt. of silver = 108.
 Solution. Area of curved surface of cylinder = pD × l = p × 2 × 30 = 188.5 cm2

  Volume of Ni to be deposited = Area of curved surface × thickness of Ni
   = 188.5 × 0.1 = 18.85 cm3

  Mass of Ni to be deposited, m = 18.85 × 8.9 = 167.7 gm
 Eq. wt. of Ni = 58.7/2 = 29.35  ;  Eq. wt. of Ag = 108/1 = 108 

  
E.C.E. of Ni

E.C.E of Ag
 = 

Eq. wt. of Ni

Eq. wt. of Ag
 or 

E.C.E of Ni

1.12
= 

29.35

108

 \ E.C.E. of Ni = 
29.35

1.12
108

×  = 0.304 mg/C

 Now, m = ZIt

 \ t = 
m
ZI

 = 3

167.7

0.304 10 100−× ×
 = 5516 seconds = 91.93 minutes 
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 Example 10.4. Find the thickness of copper deposited on a plate area of 0.00025 m2 during 
electrolysis if a current of 1 A is passed for 100 minutes. Density of copper = 8900 kg/m3 and E.C.E. 
of copper = 32.95 × 10–8 kg/C.
 Solution. According to Faraday’s law of electrolysis, mass (m) of copper deposited is
  m = ZIt
        Here, Z = 32.95 × 10–8 kg/C  ;   I = 1 A  ;   t = 100 min = 100 × 60 sec.
 \ m = 32.95 × 10–8 × 1 × 100 × 60 = 0.001977 kg

  Volume of Cu deposited, v = 
Mass 0.001977

=
Density 8900

 = 0.222 × 10–6 m3

 \ Thickness of Cu deposited  = 
60.222 10

Plate area 0.00025

v −×=  = 0.888 × 10–3 m = 0.888 mm

 Example 10.5.  An ammeter is being calibrated with the aid of copper voltameter. The ammeter 
continually reads 2 A when a current is passed through the voltameter for 1 hour. During this 
time, 2·34 gm of copper was liberated. Taking the electro-chemical equivalent of copper to be  
330 × 10–9 kg/C, determine the magnitude of error of the ammeter.
 Solution. Let I amperes be the actual current.
 Now, m = ZIt
 Here,    m = 2.34 × 10–3 kg ; Z = 330 × 10–9 kg/C ; t = 1 hr = 3600 s

 \ I = 
3

9

2.34 10

330 10 3600

m
Zt

−

−
×=

× ×
 = 1.97A

 \ Error = 2 – 1.97 = 0.03 A ; ammeter reads more
 This example shows that the phenomenon of electrolysis can also be used to measure the 
magnitude of current.
 Example 10.6.  Find the mass of zinc which has been dissolved in a simple zinc-copper voltaic 
cell when 2200 J of energy has been supplied. Assume that electromotive force (e.m.f.) is constant at 
1.1 V and that electro-chemical equivalent of zinc is 0·34 × 10–6 kg/C.
 Solution. A cell is a device which converts chemical energy into electrical energy. Faraday’s 
law m = ZQ is applicable to cells also but in this case, the mass m refers to the mass dissolved instead 
of mass liberated. Energy = Volts × Coulombs
 or 2200 = 1.1 Q \ Q = 2200/1.1 = 2000 C
 Now, m = ZQ = (0·34 × 10–6) × (2000) = 0·68 × 10–3 kg = 0·68 g
 \ Mass of zinc dissolved  = 0.68 g
 Example 10.7. A steady direct current of 100A flows for 5 minutes through fused sodium 
chloride. How much sodium will be drawn off and how much chlorine will be evolved ? The atomic 
masses of sodium and chlorine are 23 and 35·5 respectively.

 Solution. m = 
QE
F

 Sodium ENa = 
23

1
 = 23 ; 

Q
F

 = 
100 5 60

0.311
96500

× × =

 \ m = 23 × 0.311 = 7.15 g
 Chlorine ECl = 35.5/1 = 35.5 ; Q/F = 0.311  (same as before)
 \ m = 35.5 × 0.311 = 11.04 g
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 Example 10.8. A steady current of 10.0 A is passed through a water voltameter for 300 s. 
Estimate the volume of hydrogen evolved at standard temperature and pressure. Use the known 
value of Faraday constant. Relative molecular mass of H2 is 2.016 and molar volume = 22.4 litres 
(volume of 1 mole of an ideal gas at S.T.P.).
 Solution.   m = Z I t

 Now, Z = 
E M
F pF

=  or m = 
MIt
pF

 Here, M = 2.016 ; p = 2 ; F = 96500 C ; I = 10.0 A ; t = 300 s

 \ m = 
2.016 10 300

2 96500

× ×
×

 = 0.0313 g

 \ Volume of 0·0313 g of H2 at STP = 
22.4 0.0313

2.016

×
 = 0.35 litres   

 Example 10.9. The potential difference across the terminals of a battery of e.m.f. 12 V and 
internal resistance 2 W drops to 10 V when it is connected to a silver voltameter. Calculate the silver 
deposited at the cathode in half an hour. Atomic weight of silver is 107.9 g mol–1.
 Solution. E.M.F. of battery, E = 12 volts ; Terminal p.d. of battery, V = 10 volts ; Internal 
resistance  of battery, r = 2 W ; Resistance of voltameter = R.  

 \ r = 
E V R

V
− ×  or 2 = 

12 10

10
R− ×  \ R = 10 W

 \ Circuit current, I = 
12

1A
10 2

E
R r

= =
+ +

 Now, EAg =  
Atomic weight 107.9

Valency 1
= = 107.9 g mole–1

 Electrochemical equivalent, Z = 1107.9
g C

96500
AgE
F

−=

 \  Mass of silver deposited in half hour (t = 30 × 60 s) is

  m = ZIt = 
107.9

1 30 60
96500

× × × = 2.01 g

 Example 10.10. A silver and copper voltameters are connected across a 6 V battery of negligible 
resistance. In half hour, 1 g of copper and 2 g of silver are deposited. Calculate the rate at which 
energy is supplied by the battery. Given that E.C.E. of Cu is 3294 × 10–7 g/C and that of silver is 
1118 × 10–6 g/C.  

 Solution.  We know that : I = 
m
Zt

   For copper voltameter, I1 = 1
7

1

1

3294 10 1800

m
Z t −=

× ×
 = 1·687 A

   For silver voltameter, I2 = 2
6

2

2

1118 10 1800

m
Z t −=

× ×
 = 0·994 A

 Total current I drawn from the battery is
  I = I1 + I2 = 1·687 + 0·994 = 2·681 A

 Rate at which energy is supplied by the battery is

  P = VI = 6 × 2.681 = 16.1 W
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 Example 10.11. A refining plant employs 1000 electrolytic cells for copper refining. A current 
of 5000 A is used and the voltage per cell is 0.25 V. If the plant works for 100 hours/week, determine 
the annual output of refined copper and the energy consumed in kWh/tonne. The E.C.E. of copper = 
1.1844 kg/1000 Ah.
 Solution. Since the voltage drop across each electrolytic cell is less than 1V, a number of cells 
are connected in series so that the generator can supply current at reasonable voltage.
  Supply voltage, V = 0.25 × 1000 = 250 volts
  Circuit current, I = 5000 A
  Plant working time/year,  t = 100 × 52 = 5200 hours/year
  E.C.E. of copper, Z = 1.1844 kg/1000 Ah

   = 
1.1844

1000 3600As×
 = 0.329 × 10–6 kg/C ( As = C)

 The amount (m)	of	refined	copper	per	year	is	
  m = ZIt = 0.329 × 10–6 × 5000 × 5200 × 3600 = 30794 kg

   = 
30794

tonne
1000

 = 30.794 tonne

  Energy consumption/year = VIt  = 250 × 5000 × 5200 Wh  = 6500 × 106 Wh

   = 
66500 10

kWh
1000

×
 = 6500 × 103 kWh

	 Since	this	energy	consumption	is	for	refining	30.794	tonne	of	copper,

 \ Energy consumption/tonne = 
36500 10

30.794

×
 = 211.08 × 103 kWh/tonne 

Tutorial Problems
 1.	 A	current	of	5	A	flows	for	40	minutes	through	an	electrolyte	which	is	a	solution	of	a	salt	of	chromium	

in water. Calculate the mass of chromium liberated. The electro-chemical equivalent of chromium is 
90 × 10–9 kg/C.    [1.08 gm]

 2. How long will it take to deposit, from a copper sulphate solution, a coating of copper 0.05 mm thick on 
an area of 118 cm2 if the supply p.d. is 4.5 volts and the total resistance of the circuit is 2.3 W.	Specific	
gravity of copper is 8·93 and E.C.E. of copper = 0.329 mg/C. [2.269 hr]

 3. A metal plate having a surface area of 115 cm2 is to be silver plated. If a current of 1.5 A is passed for  
1	hour	and	30	minutes,	what	thickness	of	copper	will	be	deposited	?	Specific	gravity	of	silver	=	10.5	and	
E.C.E. of silver = 1.118 mg/C.    [0.075 mm]

 4. A worn shaft is to be reconditioned by depositing chromium on its curved surface to a thickness of 
0·1 mm. The shaft has a diameter of 3.5 cm and a length of 80 cm. If a current of 4.4 A is passed, 
calculate how long the plate will take. Density of chromium = 6600 kg/m3 and E.C.E. of chromium =  
90 × 10–9 kg/C.     [41 hours, 44 minutes]

 5. Due to an error, a car battery is overcharged with a current of 5 A for 10 hours. Given that the electro-
chemical equivalents of hydrogen and oxygen are 10.4 × 10–9 kg/C and 83.2 × 10–9 kg/C respectively, 
calculate the volume of distilled water which must be added to compensate for the loss. [168 c.c.]

10.9.  Practical Applications of Electrolysis
 The phenomenon of electrolysis has many industrial and commercial applications. A few of 
them are discussed below by way of illustration.
 (i) Electroplating. The process of depositing a thin layer of superior metal (e.g., gold, silver, 
nickel, etc.) over an inferior metal (e.g., iron) is known as electroplating. The aim of electroplating 




